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Abstract:

The aim of this project was to extend a piece of open source software developed by

David Ganter M.Sc.,Trinity College Dublin[1]. The software known as Kinect Stream

Record tool records a depth video, converts it into a series of sets of points (known as

point clouds) and stores it in a raw format so it can be accessed by researchers. The

tool also features a Mesh Creator tool that loads the video and stitches the individual

frames together. In order to do this, the point clouds need to be transformed according

to the estimated position of the camera at the moment each frame was captured so

that they fit correctly in the combined mesh in a process known as registration. The

main aims of this project were to:

1. Extend the Mesh Creator tool so that it stored the point clouds generated from

the individual video frames along with their edge data in a recognised mesh
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format known as .ply rather than the entire video in the unrecognised raw file

format that it was previously.

2. Explore the use of a more robust algorithm to determine the required transfor-

mation of each of the frames so that they fit correctly in the combined mesh;

specifically the Gaussian Mixture Model registration method.

Both of these tasks were successfully carried out. The research tool was extended to

not only store the frames as ply meshes but also to fill holes present in the depth

frames. It was found that the robust Gaussian Mixture Model Registration method

was indeed an accurate algorithm but would be too slow to construct meshes on the

fly as Kinect Fusion can, using the Iterative Closest Point method.
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Chapter 1

Introduction

1.1 Introduction

Three Dimensional geometric models of real world objects have become essential today

in the entertainment industries of gaming and film through their constant demand for

realistic special effects. Other application areas have emerged in more recent times

such as design and virtual prototyping, quality assurance and medical software. This,

coupled with the recent developments in the area of accessible 3D printing has made it

necessary to broaden the availability of 3D scanners. Up until recently, the process of

creating 3D models was time consuming and expensive; often requiring skilled artists

and modelling software inaccessible to most unskilled users. Over the years progress

has been made in automating the process of generating 3D models through the use of

shape scanning technology. With the 2010 release of Microsoft′s Kinect device, such

sensors have been made accessible to all.

Though the Kinect is quite accessible and Microsoft are very supportive of develop-

ers through their consistant updates for the Kinect SDK [3], the system remains quite

closed. Much of the internal functionality that is known about the Kinect has been

discovered through reverse engineering [4] and is not accessible to researchers. Herrera

et al.[5] discuss in a recent paper that when developing a new calibration algorithm

that relies on both depth and colour information they choose the Kinect for imple-

mentation. They cite the Kinects affordability as well as its popularity as deciding

factors in that decision. They determined that a calibration method that functions on
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the Kinect would be widely applicable to other devices. They do however reflect on

how the device is not open and how they do not have access to some original intensity

images used by Microsoft for the calibration. They also discuss how the Kinects depth

camera undergoes no calibration out of the box and it falls into the hands of researchers

to tackle such problems.

It is for these reasons that open source projects pertaining to the Kinect hold such

merit. The Kinect could be a powerful device for research if more access to the internal

functionality was made available to researchers. The project described throughout this

dissertation makes steps towards both uncovering the functionality of the Kinect as

well as exploring alternatives to some of the algorithms already in place.

1.2 Overview

Chapter 2 - Sate of the Art will discuss some of the current 3D scanning technology

before giving a brief introduction to the major concepts of geometry as well as some

of the terminology relating to this area. This chapter will go on to discuss some of

the prominent research relating to 3D scanning with the Kinect before describing the

relevant tools and libraries in the area of computer vision and modeling. Finally the

chapter will give a brief overview of the work that was to be carried out and highlight

the aims of the project.

Chapter 3 - Point Cloud File Formats & Kinect Fusion will present two file formats

and discuss how well they would be suited to the goals of the project as described in

chapter 2. The chapter will then go on to discuss the example of Kinect Fusion released

in the Kinect for Windows SDK.

Chapter 4 - Recovering Edges for better PLY will describe how an application for

Recording and managing Kinect video data was extended in order to store individual

depth frames as point clouds. It will the go on to discuss some methods to create

meshes from point cloud data before giving a detailed description of how a ply mesh

writer was written to store that data along with the edges between the vertices.

Chapter 5 - Registration will describe how point clouds generated using the Kinect

and the aforementioned application were merged using an alternative registration algo-

rithm to the one used by Microsoft for Kinect Fusion. It will also detail how to install

libraries that the implemented algorithm is dependant on before presenting the results

2



of the registration process.

Finally Chapter 6 will present the conclusion and describe future work that could

be pursued.

In the Appendices, information can be found on how to run the code on the accom-

panying usb drive as well as a description of what data can be found there.
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Chapter 2

State of The Art

2.1 Current Technology

There are a wide variety of technologies available for acquiring 3D shape data of an

object. This section will describe a few of these technologies while discussing their

advantages and disadvantages.

2.1.1 Time of Flight

The time-of-flight 3D laser scanner is an active scanner that uses laser light to probe

the subject. The camera uses a laser range finder to determine the distance of a surface

by timing the round-trip time of a pulse of light. A laser is used to emit a pulse of light

and measures the amount of time before the reflected light is detected by the device.

Since the speed of light c is known, the round-trip time determines the travel distance

of the light, which is twice the distance between the scanner and the surface. If t is

the round-trip time, then distance is equal to c·t/2[6].

The laser rangefinder only detects the distance of one point in its direction of view.

In order to scan the entire field of view the range finder’s direction is changed and

each of the different points are measured one at a time. The view direction of the

laser rangefinder can be changed either by rotating the range finder itself, or by using

a system of rotating mirrors. The latter method is commonly used because mirrors are

much lighter and can thus be rotated much faster and with greater accuracy.

Time-of-flight range finders are capable of operating over very long distances, in the
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order of kilometers. Therefore, these scanners are suitable for scanning large structures

like buildings or geographic features. The disadvantage of time-of-flight range finders

is their accuracy. Due to the high speed of light, timing the round-trip time is difficult.

Time-of-flight range finders are expensive and not ideal for indoor use.

2.1.2 Triangulation

Triangulation based 3D laser scanners are also active scanners that use laser light to

probe the environment. Rather than measuring the round trip time of the emitted light,

these scanners use a camera to determine the location of the laser dot. Depending on

the distance of the subject at the target point, the laser dot appears on a different

location in the cameras field of view. This technique is called triangulation because

the laser dot, the camera and the laser emitter form a triangle. The length of one side

of the triangle, the distance between the camera and the laser emitter is known. The

angle of the laser emitter corner is also known. The angle of the camera corner can

be determined by looking at the location of the laser dot in the camera’s field of view.

These three pieces of information fully determine the shape and size of the triangle and

gives the location of the laser dot corner of the triangle. In most cases a laser stripe,

instead of a single laser dot, is swept across the object to speed up the acquisition

process[7].

Unlike time-of-flight range finders, triangulation scanners have a limited range of

some meters but have a relatively high accuracy. The accuracy of triangulation range

finders is in the order of tens of micrometers.

2.1.3 Kinect

Kinect is a motion sensing input device developed by Microsoft initially for use with

the Xbox 360 video game console and later Windows PCs. The device features a

depth sensor consisting of an infrared laser projector combined with a monochrome

CMOS sensor, which captures video data in 3D under any ambient light conditions.

The device is capable of recording depth data by using a structured-light technique.

Structured-light 3D scanners project a pattern of light on the subject and look at the

deformation of the pattern on the subject. In the case of the Kinect this is done using

the devices infrared projector and sensor. The camera, offset slightly from the pattern
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projector, looks at the shape of the pattern and calculates the distance of every point in

the field of view by comparing the detected pattern against the projected pattern. The

advantage of structured-light 3D scanners is speed and precision. Instead of scanning

one point at a time, structured light scanners scan multiple points or the entire field

of view at once. Scanning an entire field of view in a fraction of a second generates

profiles that are exponentially more precise than laser triangulation. This reduces or

eliminates the problem of distortion from motion. The Kinect offers a portable cheaper

alternative to other 3D scanning devices, however the data collected is often noisy.

2.2 Common Concepts

Image: An image I of size w × h is a finite set of values I (x,y) ∈ Rd where x ∈
{0,...,w - 1}, y ∈ {0,...,h - 1}, d = 3 for a colour image, d = 1 for an intensity im-

age. For a non-integer position (u,v) in the range of image, I (u,v) is computed as an

interpolation of the value of pixels around (u,v). Therefore,I can be considered as a

function in a continuous domain [0, w - 1]×[0,h - 1].

Camera: Hartley and Zisserman[8] describe the pinhole camera; a popular model of

the camera for use in multi-view stereo methods. This model is such that the camera’s

center, the 3D point of the model surface, and the corresponding pixel are collinear.

Because the camera is placed on a flat surface, it assures that a straight line in the

world space remains a straight line in the image. A pinhole camera is presented mathe-

matically as a 3×4 matrix and the projection is a formula of projective geometry. With

two images I 1, I 2 taken from pinhole cameras, for a pixel p1 in I 1, it is not necessary

to search all pixels of I 2 to find its match,but only along a segment in I 2 known as the

epipolar line.

Depth map/Image range: Each pixel p of an image, corresponding to a point

P ∈ R3 the scene surface, the depth of pixel p is the distance between the camera

center C to the perpendicular projection of P in the principal direction line of the

camera. The depth map of an image is the set of depth values at all its pixels.

Point cloud/Point set: A set of points in R3 that is a sample of the object sur-
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face. Depending on algorithm used to create this point cloud, it may contain many

points that are a significant distance from the actual surface (called outliers). Each

point should associate with images from which it is triangulated. The Point Cloud was

first introduced by Rusinkiewicz[9].

Vertex: A vertex is a data structure that describes a point in either 2D or 3D space.

Models are composed of arrays of flat surfaces (typically triangles or quads) and ver-

tices define the location and other attributes of the corners of the surfaces.

Normal: A line or vector that is perpendicular to another object is said to be a

normal to that object. In the two dimensional case, the normal line to a curve at a

given point is the line perpendicular to the tangent line to that curve at that point. In

the three dimensional case the vector perpendicular to the plane that acts as tangent

to a surface is said to be the normal vector of the surface.

Patch: A patch is 3D rectangle shape segment of a surface. Normally it is a tan-

gent patch to the surface. It comprises of a 3D point along with its normal vector.

Triangular Mesh: A Triangular Mesh is a polyhedron whose faces are triangles.

Triangular meshes are commonly used in computer graphics and the games industry,

where texture projection is easily computed with commodity hardware. Triangular

meshes are an economical means of representing an object’s surface. The main draw-

back of using a triangular mesh is the difficulty in handling topological change during

surface evolution.

Voxel: A voxel is the smallest entity of a 3D volume. This is analogous to a pixel,

which represents 2D image data in a bitmap. As with pixels in a bitmap, voxels them-

selves do not typically have their position explicitly encoded along with their values.

Instead, the position of a voxel is inferred based upon its position relative to other

voxels (i.e., its position in the data structure that makes up a single volumetric image).

In contrast to pixels and voxels, points and polygons are often explicitly represented

by the coordinates of their vertices. A direct consequence of this difference is that

polygons are able to efficiently represent simple 3D structures with lots of empty or
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homogeneously filled space, while voxels are good at representing regularly sampled

spaces that are non-homogeneously filled.

Level Set: The objects surface is represented implicitly as the zero level set for a

scalar function f in R3. For implementation, the function is typically dened over a

volumetric grid, or over a small band near the surface. The main advantage of level

methods is any deformation of the surface can be done by modifying the underlying

function. Thus, it also handles natural topological change. However, it has many

shortcomings including; large memory consumption for the grid that leads to expen-

sive computation along with difficulty in tracking correspondence during the surface

evolution.

Silhouette:The silhouette is the projection of the object surface on an image. Such

projection shape can be easily estimated by segmentation, especially if the background

color is homogeneous and quite different to surface color e.g. a white statue in a black

background.

Visual Hull:If the silhouette of the object on an image is known, then the silhou-

ette along with the camera viewing parameters defines a back-projected generalized

cone that contains the actual object. This cone is called a silhouette cone. The in-

tersection of two or more of these cones is called a visual hull, which is a bounding

geometry of the actual 3D object. This concept was first introduced by Laurentini[10].

Registration: The problem of registration can be defined as follows: Given a fixed

‘scene’ point set S and a moving ‘model’ point set M where both models are subsets

of a finite-dimensional real vector space Rd, estimate the mapping from Rd to Rd that

best aligns the transformed model M to the scene S. The mapping may represent a

rigid or non-rigid transformation[11].

2.3 Modeling with the Kinect

Microsoft’s Kinect device is capable of capturing depth data from a scene. The quality

of the depth sensing, given the low-cost and real-time nature of the device has made
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the sensor instantly popular with researchers and enthusiasts alike. The Kinect camera

uses a structured light technique to generate real-time depth maps containing discrete

range measurements of the physical scene. This data can be projected as a set of

discrete 3D points (or point cloud).

Even though the Kinect depth data is compelling, particularly compared to other

commercially available depth cameras, it is still inherently noisy as described by Izadi

et al.[12]. Depth measurements can fluctuate leaving areas in the depth map where no

readings are obtained whatsoever. In order to generate high level 3D meshes, surface

geometry needs to be inferred from this noisy point based data.

Cui et al.[13] discovered a similar problem when attempting to generate three di-

mensional models using a Time of Flight camera. They developed and successfully

implemented an algorithm that compensates for noise. This algorithm involves a com-

bination of a 3D super resolution method with a probabilistic scan alignment approach

that explicitly takes into account the sensors noise characteristics. The results of their

research proved that 3D models of a reasonable quality can in fact be generated using

economical equipment regardless of noise.

A similar approach was adopted by Newcombe et al.[14] for The Kinect Fusion

project. This paper presents a solution whereby a complete 3D model can be generated

by capturing different viewpoints of a scene and fusing their interpolated depth data

into a single representation. A user holding a Kinect camera can move within any

indoor space and automatically reconstruct a 3D model of the scene within seconds.

Using only depth data, the system continuously tracks the 6 degrees-of-freedom (6DOF)

pose of the sensor using all of the live data available from the Kinect device rather than

an abstracted feature subset, and integrates depth measurements into a global dense

volumetric model. Tracking is performed at 30Hz frame-rate and is always relative to

the fully up-to-date fused dense model. By using only depth data the system can work

in complete darkness mitigating any issues concerning low light conditions, problematic

for passive camera and RGB-D based systems. Fig. 2.1 displays the reconstruction of

a static scene using Kinect Fusion.
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Figure 2.1: Kinect Fusion taking the depth image from the Kinect camera with lots

of missing data and within a few seconds producing a smooth 3D reconstruction of a

static scene [2].

The implementation of Kinect Fusion can be broken down into the following steps:

Depth Map Conversion: The live depth map is converted from image coordinates

into vertices and normals in the coordinate space of the camera.

Camera Tracking: A rigid 6DOF transform is computed to closely align the current

oriented points with the previous frame, using a GPU implementation of the Iterative

Closest Point algorithm described in the next section.

Volumetric Integration: A volumetric surface representation is generated rather

than fusing point clouds or creating a mesh. Oriented points are converted into global

points given the pose of the camera and a single 3D voxel grid is updated. Given the

global pose of the camera, oriented. Each voxel stores a running average of its distance

to the assumed position of a physical surface.

Raycasting: The volume is raycast to extract views of the implicit surface, for ren-

dering to the user. This raycasted view of the volume also equates to a synthetic depth

map, which can be used as a less noisy more globally consistent reference frame for

the next iteration of Iterative Closest Point. Live depth maps are aligned with the less

noisy raycasted view of the model rather than merely the frame to frame depth maps.
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2.4 Registration

2.4.1 Iterative Closest Point

The iterative closest point (ICP) algorithm first introduced by Besl and McKay[15]

is one of the most well-known algorithms for point set registration. The idea of the

ICP algorithm was motivated by the fact that there exist closed-form solutions for

estimating 3D rigid body transformations, given a correspondence of point pairs [16].

Traditional ICP works as follows:

for each point mi in the model set M, find its closest point, si, in the scene set

S. The rigid transformation T that best aligns the {mi, si} pairs in a least squares

sense is then calculated using the closed form solution. Then, all the points in M are

transformed by T.

This establish-correspondence-then-register cycle is iterated until the specified stop-

ping criterion is satisfied. The traditional ICP algorithm is intuitive and simple but

has practical limitations due to its assumption that every closest point pair should

correspond to each other. This assumption can easily fail when the two point sets are

not coarsely aligned or the model set is not a proper subset of the scene due to possible

occlusions in the scene.

2.4.2 Gaussian Mixture Model Registration

Jian and Vemuri[11] proposed a method of using Gaussian mixture models to represent

the point set data with the intention of giving less credence to outliers and in some

sense reflecting the uncertainty of feature extraction. The point sets are interpreted as

a statistical sample drawn from a continuous probability distribution of random point

locations rather than the discrete points themselves. By doing so, traditionally hard

discrete optimization problems usually encountered in the point matching literature can

be converted to more tractable continuous optimization problems. The implementation

of this algorithm can be described as follows:

Given the model set M, the scene set S, and a parametrized transformation model

T, output the optimal transformation parameter θ of model T that best aligns M and

S.

1. begin
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2. Estimate an initial scale σ from input point sets;

3. Specify an initial parameter θ, e.g. from the identity transform;

4. repeat

5. Set up the objective function f (θ) as the L2 distance between the Gaussian

mixtures constructed from the transformed model T (M, θ) and the scene S with

a scale σ. A regularization term can be added depending on the transformation

model;

6. Optimize the objective function f using a numerical optimization engine (e.g.

quasi-Newton algorithm when ∇f is available) with θ as the initial parameter;

7. Update the parameter θ ← argminT f ;

8. Decrease the scale σ accordingly as an annealing step;

9. until some stopping criterion is satisfied

10. end

This algorithm was found to perform well with 50% more outliers and was compa-

rable in accuracy to an ICP algorithm using a Levenberg-Marquardt algorithm rather

than the standard closed form solution. It was also found to perform slightly better

at higher angles of disparity between depth images. Arellano and Dahyot[17] took this

algorithm further and presented a Mean Shift Algorithm which built upon the afore-

mentioned method. Using the Euclidean distance between the mixture of Gaussians

it was shown that their algorithm was more robust due to the annealing framework

implemented and the use of variable bandwidth for modelling the density functions.

Shape from X

There are many other ways to estimate the shape of objects with information like

shading, texture and focus. If it is possible to control and adjust the light source, the

resulting shadows on an objects surface can provide orientation information such as

normal vectors. When the light source is a texture’s pattern, the deformation of the

pattern wrapped onto the surface can also assist in estimating the surface orientation.
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The camera focus is also an indication of object depth.The amount of blur increases

as the object moves away from the cameras focal distance. By adjusting the camera

focus and measuring the blur of images, the depth of the object can be recovered.

Structure from Motion

The extrinsic and intrinsic parameters of the camera along with the shape of an ob-

ject can be estimated successfully using structure from motion techniques. A popular

and powerful method to solve Structure from Motion is Bundle adjustment, which

is described in detail in many papers and textbooks such as Triggs et al.[18],Hartley

and Zisserman,[8] and Snavely et al.[19]. First,the key points of the input images

are extracted then matched together. Second,from the obtained matching, the initial

cameras parameters are estimated and matching pixels are triangulated to obtain 3D

points. These parameters are iteratively adjusted to optimize a sum of the squared

distance between matching pixels and the computed projection of 3D points. Snavely

et al.[19] implemented a method where input cameras were added incrementally during

the execution. This incremental approach is quite time consuming and is improved by

a direct initialization in Crandall et al.[20].

2.5 Tools and Libraries

2.5.1 Kinect SDK for Windows

The Kinect for Windows SDK and toolkit contain drivers, tools, APIs, device interfaces,

and code samples to simplify development of applications for commercial deployment

or academic research [3]. The SDK is frequently updated and is currently on version

1.7 as of 2013.

Kinect Studio

The Kinect Studio application which comes with the Kinect SDK is a useful tool

that enables the recording and playback of depth and color streams captured from a

Kinect [2]. The tool is intended to be used to read and write data streams to help

debug functionality, create repeatable scenarios for testing, and analyze performance.
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While this tool does in fact deliver on the concept of recording kinect data, it requires

an application that uses the Kinect be operational before it will begin recording. It

also requires a Kinect to be connected before it can playback the recorded files. The

recorded videos are stored are .xed files which is a proprietary format controlled by

Microsoft.

Kinect Fusion

An implementation of the Kinect Fusion algorithm also comes as part of the Kinect

Developer Toolkit in the Kinect SDK. Kinect Fusion performs 3D object scanning and

model creation using a Kinect for Windows sensor [2]. It allows users to paint a scene

with the Kinect camera and simultaneously see, and interact with, a detailed 3D model

of the scene. Kinect Fusion can be run at interactive rates on supported GPUs, and

can run at non-interactive rates on a variety of hardware. The minimum hardware

requirement for GPU based reconstruction is a DirectX 11 compatible graphics card.

Four code samples come with the SDK to assist developers. The KinectFusionBasics-

D2D and KinectFusionExplorer-D2D are in native C++ and the KinectFusionBasics-

WPF and KinectFusionExplorer-WPF are in C#.

2.5.2 Kinect Stream Recording Tool

An open source tool for recording and managing depth data captured from Microsoft’s

Kinect device has been developed by David Ganter, Trinity College Dublin in 2013[1].

Much like Kinect studio it can capture depth and RGB data at multiple resolutions

but stores the raw data as a custom open source file type, giving researchers access

to that raw data. The application also has the advantage of being operable without

the need for a Kinect device to be connected and it also runs independently of other

applications. Fig. 2.2 displays the user interface of the Kinect Stream Record tool

with the depth representation of the current video frame presented on the left side of

the window and the RGB frame on the right.
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Figure 2.2: The user interface of the Kinect Stream Record Tool. Depth representation

of the current frame is displayed on the left. RGB representation of the same frame is

displayed on the right [1].

As well as merely storing the depth data the Mesh Creator application has the

ability to load its own stored data files for repeated testing and displays a point cloud

extrapolated from this data as it plays back the recorded frames. Much like Newcombe

et al.[14], the system employs the Iterative Closest Point algorithm to determine the

global camera position at each frame. However, this system merges the point clouds to

generate one unified cloud consisting of all of the frames from the recording rather than

using a volumetric grid of voxels. The Recording tool also interfaces with MATLAB

allowing some registration methods to be run on the point cloud data and enhancing

the research development environment. It is noted that there is a degree of radial

distortion if the raw data is used to generate the point cloud directly. This occurs as

a result of the Kinect acting as a pin hole camera and object to the periphery of the

captured scene having a larger focal length than object directly in front of the camera.

In order to overcome this issue a function known as Depth to 3D Space in the Kinect

SDK was used to correct the distortion which takes in a raw depth value and returns

a 4 element vector containing a point on the x,y and z axes as well as a depth value

for that point and returns a new x,y and z coordinate without radial distortion.
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2.5.3 Point Cloud Library

The Point Cloud Library (PCL) is a standalone open-source framework including nu-

merous state of the art algorithms for n-dimensional point clouds and 3D geometry pro-

cessing [21]. The library contains algorithms for filtering, feature estimation, surface

reconstruction, registration, model fitting, and segmentation. It also provides struc-

tures for representing point clouds,k-d trees and quad meshes as well as libraries for file

I/O and search algorithms. PCL is developed by a large consortium of researchers and

engineers around the world. It is written in C++. The library is frequently updated

and is on version of 1.7 as of 2013.

2.5.4 MeshLab

MeshLab is an advanced 3D mesh processing software system which is well known in

the more technical fields of 3D development and data handling [22]. As free software

it is used both as a complete package, and also as libraries powering other software.

MeshLab is developed and supported by the ISTI - CNR research center. MeshLab was

initially created as a course assignment at the University of Pisa in late 2005. It is an

open-source general-purpose system aimed at the processing of typical unstructured 3D

models that arise in the 3D scanning pipeline. MeshLab is oriented to the management

and processing of unstructured large meshes and provides a set of tools for editing,

cleaning, healing, inspecting, rendering and converting these kinds of meshes. MeshLab

supports the input and output of many file formats including: PLY, STL, OFF, OBJ,

3DS, VRML 2.0, U3D, X3D and COLLADA as well as raw files of ascii values.

2.5.5 OpenCV

The OpenCv Library is an open source cross platform library which provides thousands

of functions that focus on real time computer vision[23]. It was originally developed by

Intel and is now free for both commercial and research use. It is currently supported by

Willow Garage and as of this time it is currently on version 2.4.6. It has C, C++, and

Python interfaces supported under Windows , Linux, Android and Mac. It provides

many functions that focus on:

• Capturing video frames from a video source
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• Loading and storing images

• Accessing image data through the use of matrices

• Performing transformations and manipulating images

• Outputting image and video data

• Drawing

• basic coordinate geometry

OpenCV is well regarded as one of the leading computer vision APIs and provides

similar functionality to other libraries in the field such as Aforge and MATLAB.

2.5.6 MATLAB

MATLAB is a high-level language and interactive environment developed by Math-

Works [24]. It is most commonly used for numerical computation and visualization

while programming. MATLAB can assist in the analysis of data, development of al-

gorithms and creation of models and applications. The language, tools, and built-in

math functions are capable of providing solutions faster than with spreadsheets or

traditional programming languages, such as C/C++ or Java. MATLAB is used for

a range of applications, including signal processing and communications, image and

video processing, control systems, test and measurement, computational finance, and

computational biology. It is well regarded as being the language of technical computing

and is at the forefront of scientific and academic research.

2.5.7 VXL

VXL is a large collection of C++ libraries designed for computer vision research and

implementation[25]. It was created from TargetJr and the IUE with the aim of making

a light, fast and consistent system. VXL is written in ANSI/ISO C++ and is designed

to be portable over many platforms. The core libraries in VXL are:

vnl (vision numerics library): This library provides numerical containers and al-

gorithms such as matrices, vectors, decompositions and optimisers.
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vil (vision imaging library): This library focuses on the loading, saving and ma-

nipulation of images in many common file formats, including very large images.

vgl (vision geometry library): This library focuses on geometry for points, curves

and other elementary objects in 1, 2 or 3 dimensions.

The vsl (vision streaming I/O library), vbl (vision basic templates library) and vul

(vision utilities library) provide miscellaneous platform-independent functionality. As

well as the core libraries, there are libraries covering numerical algorithms, image pro-

cessing, co-ordinate systems, camera geometry, stereo, video manipulation, structure

recovery from motion, probability modelling, GUI design, classification, robust estima-

tion, feature tracking, topology, structure manipulation and 3D imaging. As of 2013

it’s current release is version 1.17.

2.6 Project Description

While the research tool developed by David Ganter[1] does successfully record Kinect

depth data, the raw file format used to represent this data is not ideal in some respects.

The file format consists of taking the depth information of each pixel as an unsigned

short and casting this value to two unsigned char values. These two char values are

then output to a file. In order to recover the depth information when loading in a file,

every pair of unsigned char values are cast back to their original unsigned short values.

This custom file format used, while it is not a proprietary format is still only readable

by the application itself or alternatively it would require someone to write a custom

application to read the format. The research tool also only dealt with point cloud

vertices ignoring the edge data between those vertices. The edge data is important

for visualisation of the individual frames and may be relevant during the registration

process, depending on the algorithm to be implemented.

The first goal of this project was to extend the MeshCreator.exe program so that

the individual point clouds along with their edge data were written to the hard disk in

a known non-proprietary format. Two file formats were researched and eventually one

representation was chosen as an alternative to the custom format. This will be discussed

in the next chapter. The second goal of this project was to explore the implementation

of an alternative registration algorithm, specifically the gaussian mixture model method
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developed by Jian and Vemuri[11] described in the previous chapter. This will be

detailed in the next chapter. Fig. 2.3 shows the work carried out previously in blue

and the work to be carried out in this project in green.

KinectRecorder.exe 
Input: 
 Kinect stream 

Output: 
RGB+depth video 
file stored on 
hard drive 

MeshCreator.exe 

Output: 
Realtime Point 
cloud 
visualisation. 

Point Clouds/Depth 
Data frame mesh 

writer 

Camera parameters 
estimation and 

transformation using 
Gaussian Mixture 

Model Registration 

Output: point 
clouds or depth 
frames  stored 
on hard drive in 
a sequence of 
‘ply’/pcd format 
files 

Output: 
Transformed 
depth frames 
based on correct 
camera pose 

Robust Point Set Registration 
https://code.google.com/p/gmmreg/ 

https://github.com/ganterd/dissertation 

Ply file format: 
http://en.wikipedia.org/wiki/PLY_(file_format)   

Visualisation of all depth 
frames in the same 

coherent coordinate 
system in MeshLab 

Output: One 
combined 
point set 
consisting of 
collection of 
frames 
 

MeshLab: 
http://meshlab.sourceforge.net/ 

Extend 
MeshCreator.exe 

Figure 2.3: An Overview of the Project. Work carried out by David Ganter is high-

lighted in the blue textboxes. Work to be carried out by Ronan O’Mullane is highlighted

in the green textboxes
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Chapter 3

Point Cloud File Formats & Kinect

Fusion

3.1 Point Cloud File Formats

3.1.1 PCD Format

The PCD or Point Cloud Data format is a file format supported by the Point Cloud

Library. It is used to store the data of 3 dimensional point cloud data structures in

either ASCII or binary representation. The format consists of a header followed by the

point cloud’s vertex list denoted in the specified representation. The header consists

of ten entries:

• VERSION: specifies the PCD file version

• FIELDS: specifies the name of each dimension/field that a point can have. The

format can represent

x, y, z positional data

RGB data

normal data

moment invariants.

• SIZE: specifies the size of each dimension in bytes.
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• TYPE: specifies the type of each dimension as a char. The currently supported

types are

I - represents signed types int8 (char), int16 (short), and int32 (int)

U - represents unsigned types uint8 (unsigned char), uint16 (unsigned short),

uint32 (unsigned int)

F - represents float types

• COUNT: specifies the number of elements each dimension has.

• WIDTH: specifies the width of the point cloud dataset in the number of points.

In unorganised point clouds this represents the entire number of points in the

cloud, whereas in organised point clouds this represents the number of points in

a row.

• HEIGHT: specifies the height of the point cloud dataset in the number of points.

If the cloud is organised then it represents the number of rows, otherwise it is set

to 1 in which indicates that the point cloud is unorganised.

• VIEWPOINT: specifies an acquisition viewpoint for the points in the dataset.

• POINTS: specifies the total number of points in the cloud.

• DATA: specifies the data type that the point cloud data is stored in. As of version

0.7, two data types are supported: ascii and binary.

Initially the PCD format seemed to be the most viable option for storing the point

cloud data produced by the Kinect Research tool on disk. It allowed for the point cloud

produced at each frame to be stored as a separate PCD file in an easy to read ASCII

format. This format also seemed ideal as the Point Cloud Library used to develop the

Kinect Stream Recording tool already has functions that are capable of writing point

clouds as PCD files as well as reading those files in as point cloud objects. Initially the

research tool was altered to write each frame’s point cloud as a PCD file and work had

begun on a program capable of reading those files in using the savePCDFileASCII and

loadPCDFile functions of the Point Cloud Library.

However, some drawbacks were discovered in that the PCD file format was not

broadly recognised by third party applications such as MeshLab. While MeshLab
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provides a means to extend its supported file formats through the use of plugins,

no PCD plugin exists at this time and writing one would be outside the scope of this

project. The only means of visualising these PCD files was through the use of the Cloud

Viewer application that comes with the Point Cloud Library. This application is quite

restrictive and does not offer the host of features other model viewing applications

such as MeshLab provide. Another major disadvantage is that the PCD file format is

incapable of storing edge data. Depending on the registration algorithm that was to

be used later on when merging the depth frames, the edge data could be key in their

implementation. For these reasons an alternative file format was to be employed.

3.1.2 PLY Mesh Format

The Polygon File Format (PLY) or Stanford Triangle Format is very similar to the PCD

format in its simplicity but is in fact a regonised file format supported by MeshLab.

It is quite similar to the PCL library’s PCD format in that it consists of a header

followed by data represented in either binary or ASCII but rather than just storing a

point cloud, it is capable of storing a complete mesh consisting of both vertices and

edges. In order to achieve this an additional face list is stored along with the vertex list

which describes which points are connected. Each entry in the face list first consists

of the number of points that are to be connected in that face (e.g 2 for an edge, 3 for

a triangle, 4 for a quad) followed by the indexes of the faces to be connected as they

appear in the vertex list. The header of a ply file has the following entries:

• format: specifies whether the format is binary big-endian,binary little-endian or

ascii followed by the version number.

• element vertex: specifies the number of vertices in the file as an integer.

• property float x: specifies that each vertex has a property x that is a float.

• property float y: specifies that each vertex has a property y that is a float.

• property float z: specifies that each vertex has a property z that is a float.

• element face: specifies the number of vertices in the file as an integer.

• property list uchar int vertex index: specifies the vertex indices are a list of ints.
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• end header: delimits the end of the header.

The PLY format was a better choice in that it did not have the drawbacks that

accompanied the use of the PCD format mentioned above. The point cloud data of

each frame along with the edges could be converted to a mesh object and then written

as individual PLY files.

3.2 Kinect Fusion & ICP

The traditional ICP algorithm used in Kinect Fusion to determine the camera position

is intuitive and simple but has practical limitations due to its assumption that every

closest point pair should correspond to each other [11]. This assumption can easily

fail when the two point sets are not coarsely aligned or the model set is not a proper

subset of the scene due to possible occlusions in the scene. This problem is evident in

the Kinect Fusion example KinectFusionBasics-D2D which comes as part of the Kinect

Developer Toolkit in the Kinect SDK (see Fig. 3.1). The example code was run and

it was noted that when moving the Kinect around a scene the program would often

return an error stating that the tracking had failed and requesting that the camera be

realigned to the last tracked position.

Because it is quite difficult to determine where exactly the last tracked position was

this often lead to the system failing and the construction being reset. This reaffirms the

findings of Jian and Vemuri[11] and presents a case that their registration algorithm

using Gaussian Mixture models may be suited to such an application. This example

was designed to run on hardware that features a DirectX 11 compatible GPU ideally

with 2GB of onboard memory. Because such hardware was unavailable, minor changes

to the example code were made. In order to run the code in non realtime CPU mode

the parameter

m processorType = NUI FUSION RECONSTRUCTION PROCESSOR TYPE AMP

must be changed to

m processorType = NUI FUSION RECONSTRUCTION PROCESSOR TYPE CPU

Because the frame rate is slower in CPU mode another parameters has to be al-
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tered. The cResetOnTimeStampSkippedMilliseconds stores the length of time before

the program determines that the frame timestamp has skipped a large number and re-

sets the generated 3D construction. This is is to enable playback of a .xed file through

Kinect Studio and reset the reconstruction if the video loops. However, due to the slow

frame rate when running on the CPU if this time is shorter than the length of time

between frames then the reconstruction resets at every frame. Therefore the cRese-

tOnTimeStampSkippedMilliseconds parameter needs to be increased until it is longer

than the time between frames.

This example was tested on a machine with a 2.53Ghz 64bit Intel i5 processor

with 4gb of RAM in CPU mode and produced output between 0.09 and 0.25 frames

per second. Because the machine only featured an Intel integrated graphics card the

realtime GPU mode could not be tested. The program was also run on machines in

the IET Lab and produced similar results.
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Figure 3.1: The KinectFusionBasics-D2D example capturing a scene of a shoe on a

table with chairs. Note that the program is returning the following error at the bottom

of the window ‘Kinect Fusion camera tracking failed. Align the camera to the last

tracked position’
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Chapter 4

Recovering Edges for better PLY

4.1 Writing Meshes Using the Point Cloud Library

The point cloud library offers some functions for outputting depth data as a PLY mesh,

specifically the savePLYFile function which takes in a string to denote the file name, a

mesh object and an integer to signify the ASCII precision. In order to save the point

cloud data as a PLY mesh using this functions, the point cloud object must first be

converted to a mesh object.

4.1.1 Greedy Projection Triangulation Mesh

The first method used to achieve this was a greedy projection triangulation algorithm

implemented in the point cloud library. This algorithm assumes locally smooth surfaces

and relatively smooth transitions between areas with different point densities when

creating meshes. In order to run this algorithm, the point clouds normals are first

estimated and stored in alongside the point cloud data. A kd-tree object is generated

using the point cloud vertices along with the estimated normals. The greedy algorithm

generates a triangular mesh by connecting neighbouring points in the tree based on

the following parameters:

• Maximum Nearest Neighbours: Sets the maximum number of nearest neighbors

to be searched for.
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• Maximum Surface Angle: Disregards points for triangulation if their normal

deviates more than this value from the query point’s normal.

• Minimum Angle: Sets the minimum angle each triangle can have.

• Maximum Angle: Sets the maximum angle each triangle can have.

• Normal Consistency: A flag that determines if the input normals are oriented

consistently.

• SearchRadius: The nearest neighbors search radius for each point and the maxi-

mum edge length.

• Mu Value: The nearest neighbor distance multiplier to obtain the final search

radius.

When this algorithm was run it successfully produced a mesh object for each of

the point clouds presented as input. These mesh objects were then written as PLY

meshes using the savePLYFile function to produce a 3D mesh of each frame. However

regardless of how the parameters were altered (i.e increasing the Maximum Nearest

Neighbours, Search Radius and Mu Value ) the meshes that were output always con-

tained holes (see Fig. 4.1 and Fig. 4.2).
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Figure 4.1: A PLY mesh of a frame’s point cloud with a resolution of 320×240 generated

using the greedy projection algorithm. This algorithm results in holes appearing in the

mesh.

Figure 4.2: A PLY mesh generated from the point cloud of the same frame as 4.1 but

recorded with a resolution of 80×60. This mesh was also generated using the greedy

projection algorithm. The holes are also evident at this resolution.
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This algorithm was also found to be quite slow considering the fact that it was

designed for unorganised point clouds rather than the organised dataset that was being

worked on in this instance. The algorithm disregarded the fact that point clouds x and

y values were increasing from their lower left corners to their upper right. To perform

a greedy search for neighbouring points was unnecessary.

4.1.2 Organised Fast Mesh

The second method to create a mesh object from the point cloud was to use the

OrganisedFastMesh object which is applied to the point cloud in much the same way

as the Greedy Projection Triangulation algorithm. Again this algorithm is featured as

part of the Point Cloud Library. This method does not require a kd-tree to be created

and relies on neighbouring points being incremental along the x and y axes to generate

the mesh. The following parameters are required to be set to generate the mesh from

the point cloud:

• Triangle Pixel Size: Sets the edge length (in pixels) used for constructing the

fixed mesh.

• Store Shadowed Faces: A flag which determines whether shadow faces are created

or not.

• Triangulation Type: Denotes which triangulation method should be used (e.g

Quad mesh).

While this function did speed up the conversion from a point cloud to a mesh

significantly, the problem of the mesh containing holes persisted. It was also noted

that because the depth data for each frame was put through the Kinect SDK’s Depth

to 3D Space function to alleviate radial distortion(see chapter 2); depth pixels with

null values were being given x,y and z positional data of value (0,0,0). This caused a

scenario where any holes in the mesh were being connected back to the origin, creating

a cone effect(see Fig. 4.3 and Fig. 4.4).
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Figure 4.3: A PLY mesh generated from a frame’s point cloud using the Organised Fast

Mesh algorithm. This mesh has a resolution of 320×240. The ‘cone’ effect is evident

here where points bordering holes are being connected to the origin.

Figure 4.4: A PLY mesh generated from a frame’s point cloud using the Organised

Fast Mesh algorithm at the 80×60 resolution. Again, the ‘cone’ effect is evident at the

lower resolution.
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This function was also applying a transformation based on the cameras position

which was altering the orientation of the meshes produced. In order to remedy these

issues a new custom PLY writer function was created.

4.2 PLY Mesh Writer

4.2.1 Point Cloud Data vs Depth to 3D Space

A custom PLY mesh writer function was initially written in order to write point clouds

as PLY meshes by connecting neighbouring points with the intention of avoiding holes

appearing in the meshes. When it was noted that the Kinect SDK’s Depth to 3D

Space function was causing the problems mentioned above it was made clear that the

raw depth data should be used to generate point clouds and should be stored as PLY

meshes rather than the point clouds produced by the Depth to 3D Space function.

While these frames would contain radial distortion, that issue could be tackled later.

To generate the PLY mesh, the depth value at each pixel is taken as the z coordinate

value and the x and y values are directly related to that pixels position in the frame.

4.2.2 Process Description

Before the data can be written as a PLY mesh it must first be processed correctly based

on the frames resolution. The program has the capability to write depth frames cap-

tured at resolutions of 80×60 and 320×240 as PLY meshes of quads. It also performs

basic hole filling to avoid the problem mentioned above. Firstly the depthArrayto-

PointCloud function determines the resolution of the frame and sets a maximum width

variable to the width of the resolution. This function then cycles through the depth

pixels taking their values and storing them as the z component of an array of 3D points

contained in an output point cloud object. The x value to be stored is incremented each

time until it reaches the maximum width value at which point it is reset to zero and

the y value is incremented. This ensures that the output array begins at position (0,0)

populating each row incrementally from left to right until it reaches position (80,60)

or (320,240) depending on the resolution.

It is during the population of this output array that a basic hole filling check is
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implemented. If the depth value at a certain pixel is equal to zero then the value of

the previous pixel is put in its place. This gives generally positive results. The depth

values are also multiplied by a different multiplier value depending on the resolution

in order to keep the depth ratio the same for the different resolutions. This function

produces a point cloud object with the raw depth data stored incrementally.

This point cloud is input as a parameter of the writePLY function along with the

resolution of the frame and the current frame number. This function uses the c++

‘iostream’ library, and ‘boost’ library function ‘lexical cast’ in order to efficiently output

the depth data as a PLY mesh file. The file name simply consists of the word ‘frame’

concatenated with the frame number cast to a string and the characters ‘.ply’. The

function keeps track of three string variables; ‘header’, ‘body’ and ‘faces’ as well as two

integers for the face count and vertex count . The function is limited to only one ‘for’

loop that generates the vertex list and faces list simultaneously, concatenating each

entry to the the body string and faces string respectively. The face count and vertex

count are incremented each time a face or vertex is concatenated to their respective

lists. Once the loop reaches the last entry in the point cloud’s array the header is

generated using the face count and vertex count. The complete header, body and faces

strings are then output in the correct order to the file. By generating the PLY file in

this manner and limiting the function to a singular ‘for’ loop, the task of generating

the two lists along with the header file is completed in O(n) time.

When generating the list of faces, each vertex[i] is connected to its neighbours to the

east[i+1], southeast[i+frame width+1] and south[i+frame width]. To stop a situation

where vertex[i] on the edge of a row is connected to the first vertex of the next row[i+1],

the following check is imposed: if the modulus of [i+1] and [frame width] is not equal

to zero then do not connect [i to i+1]. Fig. 4.5 displays a mesh written using the

writePLY function without hole filling where Fig. 4.6 displays the same mesh with the

holes filled.
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Figure 4.5: A PLY mesh of a point cloud generated from a depth frame with a resolution

of 320×240 without the simple hole filling implementation. Areas with no depth value

appear closest to the screen

Figure 4.6: A PLY mesh of a point cloud generated from the same frame as Fig. 4.5

with a resolution of 320×240 with the hole filling implementation. Problem areas are

no longer visible
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Chapter 5

Registration

5.1 Using Gaussian Registration Code

Implementations of the robust point set registration algorithm using gaussian mixture-

models as described by Jian and Vemuri[11] are available online[26]. Full source code

is implemented in Python, MATLAB and C++. As an alternative to the Iterative

Closest Point algorithm, this implementation was demonstrated on the vertex data of

the ply meshes that were output from the modified MeshCreator.exe tool described in

the previous chapter.

5.1.1 Installing VXL library

It is a requirement of the C++ implementation that the VXL library be installed

before that code can be run. The C++ implementation makes heavy use of the data

structures and functions provided by the vnl library in particular in order to execute

the algorithm. The vnl matrix and vnl vector structures and function such as the

determinant and iterate functions are used throughout the code. Installing the VXL

library proved to be quite difficult. The latest release of the library’s source can be

downloaded from its google code repository using an Apache subversion client such

as TortoiseSVN. The library then needs to be built using the CMake cross-platform,

open-source build system [27], and the Microsoft Visual Studio 2010 compiler. This

process is quite straight forward and results in a visual studio .sln file that should allow

the different components of the VXL library to be built in Visual Studio. While the
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VXL core libraries claim to be independent of one another this was found not to be

the case in practice and some libraries could not be built as one file had a bug where

it could not be built using Visual Studio 2010.

The bug was eventually discovered in the vcl cstudio.h file on line 28. The line #elif

defined(VCL VC 7) || defined(VCL VC 8) || defined(VCL VC 9) must be appended

with || defined(VCL VC 10) in order for the library in question, vil.lib to build in

Visual Studio 2010 and in turn for the rest of the libraries to build. Once built, the

libraries can be linked to the gaussian mixture registration Visual Studio project which

is also generated using Cmake.

5.1.2 Finding Correspondence

The first of the C++ demonstration samples that was successfully run was the extract

correspondence algorithm. While finding the correspondence between point clouds is

not a requirement for this type of registration, the data produced is still of interest and

could be used as possible control points for the gaussian mixture model registration.

This will be discussed further in the next section. The extract correspondence program

takes two point cloud files (one model and one scene) consisting of ASCII coordinate

values to denote the vertexes as well as a threshold value. These ASCII files were

created simply by stripping the ply meshes produced by the MeshCreator.exe program

of their header and faces, leaving only the vertices. These stripped files were given

the .asc file extension and can be visualised in MeshLab. The program computes the

square distance matrix between the model and scene and simply returns pairs with a

distance below the specified threshold.

5.1.3 Registration on Point Clouds

Attempts were made to run the C++ source code implementation of the gaussian reg-

istration code on two .asc point cloud files. However, the program could not accept the

input arguments when run in command prompt or in Visual Studio. Ultimately the

pre-built gmmreg demo.exe program that comes with the source code was run using

MATLAB as described by the README file. The program takes a .ini configuration

file and a string to denote which transformation model to perform. The two types of

transformation that were tested were the standard rigid transformation and the non
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rigid transformation using thin plate splines. In order to run this code the following

commands must be entered in the MATLAB command window while in the directory

of the gmmreg demo.exe file :

exe file = ‘.\gmmreg demo.exe’

followed by either:

gmmreg demo(exe file,‘configuration file.ini’,‘rigid’) for the rigid transformation or

gmmreg demo(exe file,‘configuration file.ini’,‘TPS L2’)

for the transformation using thin plate splines.

In the configuration file the .asc model and scene input files are specified. For non

rigid transformations an optional third input file can be specified featuring control

points to speed up the transformation, otherwise all of the values in the model file are

used as control points. The correspondence between the scene and model file described

in the last section could potentially be used here, this was not tested however. Op-

tional initial transformation parameters can also be provided but if left blank, default

parameters corresponding to the identity transform are used. These parameters were

left blank during all testing. Finally the output models can be specified along with

files in which to output the transformation either rigid or the spline transformation

and affine transform if ‘TPS L2’ is selected.

5.1.4 Results

Rigid Transformations

The gaussian mixture model registration using a rigid transformation was performed on

two 80 × 60 point clouds generated from frames of depth video four frames apart. The

transformation took 40.981435 seconds to perform. The results of this transformation

can be seen in Fig. 5.1. Fig. 5.2 shows the MATLAB output of the transformation

with frame 850 coloured in blue and frame 854 coloured in red before and after the

transformation.
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Frame 850  Frame 854  

Frame 854 registered, transformed and merged with frame 850  

Figure 5.1: Gaussian registration and a rigid transformation performed on two 80

× 60 point clouds generated from frames 850(scene) and 854(model) as visualised in

MeshLab

Figure 5.2: The MATLAB output of the rigid transformation seen in Fig. 5.1 from

a slightly aerial perspective. Frame 850 is coloured in blue frame 854 is coloured in

red. Frames before the rigid transformation are seen on the left; frames after the

transformation are seen on the right.
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The gaussian mixture model registration using a rigid transformation was also per-

formed on two 320 × 240 point clouds generated from frames of depth video seven

frames apart. This transformation took 9433.589060 seconds ( ˜ 157minutes) to per-

form. The results of this transformation can be seen in Fig. 5.3. Due to how densely

populated the meshes are, the lighting in MeshLab could not display both clouds prop-

erly, therefore the point set data from the frame 77 model appears much darker in

this figure. Fig. 5.4 shows the MATLAB output of the transformation with frame 70

coloured in blue and frame 77 coloured in red before and after the transformation.

Frame 70  Frame 77  

Frame 77 registered, transformed and merged with frame 70  

Figure 5.3: Gaussian registration and a rigid transformation performed on two 320

× 240 point clouds generated from frames 70(scene) and 77(model) as visualised in

MeshLab. The transformed frame 77 model appears darker in the merged point cloud.
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Figure 5.4: The MATLAB output of the rigid transformation seen in Fig. 5.3 from

a slightly aerial perspective. Frame 70 is coloured in blue frame 77 is coloured in

red. Frames before the rigid transformation are seen on the left; frames after the

transformation are seen on the right.

Non-Rigid Transformations

The gaussian mixture model registration using a non-rigid thin plate spline transforma-

tion was performed on two 80 × 60 point clouds generated from frames of depth video

four frames apart. This transformation took 15466.190239 seconds (˜258minutes) to

perform however. The results of this transformation can be seen in Fig. 5.5. Fig. 5.6

shows the MATLAB output of the transformation with frame 850 coloured in blue and

frame 854 coloured in red before and after the transformation.
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Frame 850  Frame 854  

Frame 854 registered, transformed and merged with frame 850  

Figure 5.5: Gaussian registration and a non-rigid transformation using thin plate

splines performed on two 80 × 60 point clouds generated from frames 850(scene) and

854(model) as visualised in MeshLab. The model point cloud is distorted slightly in

order to align with the scene as expected with this type of transformation
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Figure 5.6: The MATLAB output of the non-rigid transformation seen in Fig. 5.5

from a slightly aerial perspective. Frame 854 is coloured in blue frame 850 is coloured

in red. Frames before the rigid transformation are seen on the left; frames after the

transformation are seen on the right.

The gaussian mixture model registration using a non-rigid thin plate spline trans-

formation was again performed on two 80 × 60 point clouds but this time were spaced

76 frames apart. This time the transformation failed to align the point clouds correctly

as the disparity between the frames was too great. The frames also had some infor-

mation repeating such as the monitors on the desk and the chairs which most likely

contributed to the failure of the algorithm. The results of this transformation can be

seen in Fig. 5.7. Fig. 5.8 shows the MATLAB output of the transformation with frame

4 coloured in blue and frame 80 coloured in red before and after the transformation.
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Frame 4  Frame 80  

Frame 80 registered, transformed and misaligned with frame 4  

Figure 5.7: Gaussian registration and a non-rigid transformation using thin plate

splines performed on two 80 × 60 point clouds generated from frames 4(scene) and

80(model) as visualised in MeshLab. The registration algorithm failed to align the

point clouds correctly
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Figure 5.8: The MATLAB output of the non-rigid transformation seen in Fig. 5.7 from

a head on perspective. Frame 4 is coloured in blue frame 80 is coloured in red. Frames

before the rigid transformation are seen on the left; frames after the transformation

are seen on the right.

5.1.5 Registration Completion Time

Due to the fact that the completion time for the non rigid transformation appeared to

be taking exponentially longer depending on the number of vertices in the model, a non

rigid transformation was not carried out on two 320 × 240 sized point clouds as it was

estimated that it would likely take days to complete on the available hardware. Table

5.1 displays the length of time it took to complete each of the registration computations.

One way to speed up the algorithm could be to use control points. Rather than

comparing the gaussian values at each of the model point locations, key points could

be identified and used instead, thus lowering the overall number of calculations and

speeding up the algorithm. While identifying good control points remains outside the

scope of this project, the correspondence mentioned earlier in this chapter could prove

useful.
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Vertices/Point Cloud Transformation Completion Time(seconds)
4800 rigid 40.981435
76800 rigid 9433.589060
10 TPS L2 0.791154
275 TPS L2 5.440258
800 TPS L2 470.611227
4800 TPS L2 15466.190239

Table 5.1: A table displaying the length of time taken in seconds in order to run the
registration algorithms with point clouds of different sizes.
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Chapter 6

Conclusion

6.1 Summary

The MeshCreator tool in the Kinect Stream Recording application was successfully

extended with the functionality to export point clouds as ply Meshes while the tool is

running. Three separate executable versions of the MeshCreator.exe program now exist

that output the point clouds as ply meshes using the Point Cloud Library’s Greedy

Projection Triangulation algorithm, the Point Cloud Library’s Organised Fast Mesh

algorithm and the custom PLY Mesh writer that was developed respectively. Basic

hole filling was also implemented in the PLY mesh writer. Each of these versions of

the program are capable of outputting the point clouds along with their edge data, as

meshes when given depth videos as input with resolutions of 80 × 60 and 320 × 240.

It was demonstrated that these ply meshes could be visualised in MeshLab.

It was shown that at least two of these ply meshes could be stripped of their faces

and headers and used as input for the Gaussian Mixture Model Registration. During

this process one of the two point clouds was treated as a model and the other a scene.

The model was accurately transformed using a rigid transformation based on the output

produced by the Registration code. In all cases when a rigid transformation was used

the code was successful in aligning the model point set with the scene point set. The

registration algorithm failed to align the model with the scene on one occasion when

using the non-rigid transformation using thin plate splines. This transformation also

appeared to warp the model point set in order to align it with the scene which does not
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produce good results when attempting to build an entire point cloud scene comprised

of different point clouds. The final aligned point clouds were successfully visualised

and merged in MeshLab.

6.2 Discussion of Results & Future Work

On reflection having imlpemented hole filling at the meshing stage, it is clear that this

is not the best course of action. In order to create a full mesh, it is desirable to fill

the holes based on the point cloud data of the other frames that possibly contain that

missing data rather than the neighbouring vertices of those for which there is no value.

The problem of meshing the final merged cloud was not addressed and left for future

work. One suggestion would be to use the Greedy Triangulation Algorithm on the

merged scene point cloud. The likelihood of holes appearing in a mesh produced with

this algorithm would decrease with each additional point cloud registered and merged

with the scene.

The gaussian mixture model registration code was not successfully implemented

in the MeshCreator tool due to time constraints. It was also found that should the

algorithm be implemented it would be too slow to run in a real time application unless

control points were used. As suggested previously the correspondence between the

model and scene point clouds could be used as robust control points but this would

need to be studied further. A corner detection algorithm could be used to pick out

key points in the model and scene and these could potentially be used as control

points. Alternatively an algorithm much like RANSAC [28] could be implemented

that iteratively takes a series of random points relying on the probability that most

will be inliers. These random point sets could be used as control points for a certain

amount of iterations and the best transformation could be used. Considering that the

point set data is being interpreted as mixtures of gaussians rather than the discrete

points themselves, the influence in the objective function of the outlying points is

naturally being suppressed so this may be a good course of action.

The problem of radial distortion caused by the pinhole camera and its affect on

the reliability of the registration algorithm was never addressed. An alternative to the

Kinect SDKs depth to 3D space function could be explored or a calibration matrix

could be generated manually for each point cloud in order to eliminate the distor-
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tion. Alternatively each point cloud could be treated as a convex hull and a specific

registration algorithm could use this fact when determining the correct transformation.

Finally it was an intention to explore the concept of adding colour to the meshes

but due to time contraints this never came about. The Kinect Stream Recording

application records both the depth and RGB values of pixels in each frame. The RGB

values of many frames could be taken into account when determining the correct colour

for a certain vertex. Vertex and Pixel shaders could be written to apply these colours

to the mesh or large textures could be generated in tandem with the mesh and applies

at a later stage.
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Appendix

.1 USB Flash Drive Contents

The attached USB flash drive contains two folders ‘code’ and ‘data’

.1.1 code

The ‘code’ folder contains four sub-folders for each of the three versions of the code:

• OrganizedFastVersion

• GreedyVersion

• PlyWriterFinalVersion

• DaveOriginalVersion

Each of these subfolders contains the source code, a Release folder that contains the

.exe and a ‘datadump’ folder that contains the output produced by that version. The

‘code’ folder also contains the Visual Studio Dissertation.sln file which runs the Ply-

WriterFinalVersion of the code and the PCD Reader that was written but abandoned.

.1.2 data

The ‘data’ folder contains two sub-folders called ‘interestingdata’ and ‘olddata’.

The ‘olddata’ folder contains some old pcd point cloud files as well as some other old

meshes produced from early in development and can most likely be ignored.

The ‘interestingdata’ folder comprises of a ‘meshes’ folder and a ‘registration’

folder
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The ‘meshes’ folder contains a single example of all the possible outputs of each

of the programs and is well labelled. These .ply meshes can be viewed in MeshLab.

the ‘registration’ folder contains the following folders:

• non rigid transform that didnt work

• rigid transform 320x240

• rigid transform 80x60

• non rigid transform 80x60

Each of these folders contain the MATLAB output figure of the transforms, aswell

as a .asc file for the point cloud before transformation, .asc file for the point cloud after

transformation and a .asc for the scene point cloud.

The best way to view these files is to load all three .asc files into MeshLab at once

and click on view - show layers dialogue. Then the different point clouds can be hidden

by clicking on the eye icon. To view the fully merged scene just leave the transformed

model and the scene model visible.
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