
Scargos: Towards automatic vulnerability distribution of

zero-day vulnerabilities

Florian Rhinow

A dissertation submitted to the University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Master of Science (Computer Science)

August 2013

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or

any other University, and that unless otherwise stated, it is entirely my own work.

Florian Rhinow

Dated: August 29, 2013

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this

dissertation upon request.

Florian Rhinow

Dated: August 29, 2013

Abstract

Information about vulnerabilities spread too slow and allow for a significant attack

window during which applications are virtually unprotected. Zero-day attacks jeopardise

the security of any IT-system due to the lack of an effective remedy. Recent work

has suggested automated approaches to vulnerability distribution, but are limited to

memory-corruption detection techniques and disallow custom vulnerability response

processes. We present Scargos, a novel approach to automate the distribution and

verification of vulnerabilities, while allowing for automatic, custom countermeasures

without the need to trust a central authority. By leveraging collaborative detection,

vulnerabilities can be contributed by anybody and are announced to an open network

by using packet-based self-certifying alerts (SCA), which are a proof of existence of a

vulnerability by capturing the original, unmodified attack.

We compare two ways to generate and verify an attack: brute-force replay and exact

stream replay. After successful verification, SCAs allow for a custom vulnerability

response process such as generating automatic malware analysis reports or IDS

signatures.

We evaluate Scargos with 24 real-world attacks, and show that for all detected attacks,

we can generate and verify packet-based SCAs inexpensively and accurately. Scargos

performs better for bigger SCA file sizes than previously proposed mechanisms. We

show that our approach allows for detection of previously unknown attacks, whereas an

entire life cycle including distribution and verification is achieved on average in under

2 seconds. While vulnerability distribution is at present mainly done manually, often

reaching end-users after several hours, Scargos reduces the available attack window of

adversaries to a minimum.

iv

Acknowledgements

First and foremost, I would like to express the deepest appreciation to Michael Clear

whose enormous support and comprehensive feedback was invaluable for completing this

work. He gave me the necessary orientation and focus to achieve results that would have

been out of reach without his guidance and persistent help. He not only supported me

with regular feedback sessions, but he was especially supportive in the critical phases

of completing this work and helped to solve any issues along the way, for which I am

deeply grateful.

Advice and comments given by Stephen Barret have been a great help as they made

me aware of a limitation in one of my algorithms. After overcoming this limitation the

results of my work were significantly improved.

I also want to thank Mark Kührer and Thorsten Holz, who initially pointed me to

investigate honeypots a few years ago. This eventually led me into developing the ideas

that were necessary for this work.

I would also like to express my special thanks to my family, girlfriend and friends for

their moral support and warm encouragements.

Florian Rhinow

University of Dublin, Trinity College

August 2013

v

Contents

Abstract iii

Acknowledgements v

List of Tables ix

List of Figures x

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Research Question . 3

1.3 Contribution . 3

Chapter 2 Background 5

2.1 Virtual Machines and their Security . 5

2.2 Dynamic Taint Analysis . 6

2.2.1 Performance . 7

2.2.2 Accuracy . 8

2.3 Honeypots . 10

2.3.1 Overview . 10

2.3.2 Argos . 11

2.4 Vulnerability Distribution . 12

2.4.1 Vigilante and Self-Certifying Alerts 12

2.4.2 Noah . 16

2.5 Malware Processing Tools . 17

2.5.1 CWSandbox . 17

2.5.2 Honeycomb . 17

vi

CONTENTS

2.6 Vulnerability Management . 17

2.6.1 Common Vulnerabilities and Exposures Identifier 17

2.6.2 Open Vulnerability Assessment Language 18

2.6.3 Open Vulnerability Assessment System and Network Vulnerability

Tests . 19

Chapter 3 Architecture 20

3.1 Detection and SCA Publishing . 21

3.2 Packet-Based Self-Certifying Alerts . 22

3.3 Distribution: SCA Repository . 23

3.4 SCA Verification . 24

3.4.1 Common Configuration . 25

3.4.2 Placement of the SCA Verifier . 27

3.4.3 Security Considerations . 28

3.5 Vulnerability Response . 30

3.5.1 Semi-Automatic Vulnerability Response 30

3.5.2 Full-Automatic Vulnerability Response 30

Chapter 4 Replay Mechanisms 33

4.1 Brute-Force Replay . 35

4.2 Exact Stream Replay . 36

4.3 Limitations . 37

4.4 Summary . 39

Chapter 5 Implementation 41

5.1 SCA Repository . 42

5.1.1 Packet-Based Self-Certifying Alerts 44

5.1.2 Push-Notification . 45

5.2 SCA Publisher . 47

5.2.1 Attack Detection and Logs . 47

5.2.2 Single Packet Extraction . 48

5.2.3 Stream Extraction . 48

5.3 SCA Verification . 52

5.3.1 Brute-Force Replay . 52

5.3.2 Exact Stream Replay . 53

vii

CONTENTS

Chapter 6 Experimental Evaluation 55

6.1 Accuracy . 58

6.1.1 Argos . 60

6.1.2 SCA Generation . 62

6.1.3 SCA Verification . 66

6.2 Performance . 67

6.2.1 SCA Verification . 67

6.2.2 SCA Generation . 73

6.2.3 Comparison to Vigilante . 74

6.2.4 Overall Performance . 76

6.3 Discussion . 79

Chapter 7 Conclusion 81

7.1 Future Work . 82

Bibliography 83

Appendices 87

Chapter A Additional Experimental Results 1

viii

List of Tables

3.1 Comparison of Vigilante’s SCAs with Packet-Based SCAs. 23

3.2 Benefits and Risks of using either an IDS or IPS for fully-automatic

vulnerability response. 32

5.1 Drawbacks of using different types of distribution methods for push-

notifications. 46

6.1 Applications and versions we used during our experiments. 56

6.2 Protocols and operating systems of the applications that we have

investigated experimentallly. 58

6.3 Accuracy results of detecting, generating and verifying vulnerabilities by

using packet-based SCAs. 60

6.4 Number of runs each search algorithm needs to perform to find a substring

that matches a packet from the session packet capture. 64

6.5 Combined overview of the accuracy results for SCA generation. 66

6.6 Performance of single packet extraction and brute-force replay in relation

to number and size of layer-5 PDUs. 69

6.7 Performance of stream extraction and exact stream replay in relation to

number and size of layer-5 PDUs. 70

A.1 Attack Vectors of vulnerable FTP applications. 1

A.2 Performance of Scargos for selected well-known applications. 1

A.3 Performance of Vigilante [9]. 2

A.4 Standard Deviation of 10 runs of all investigated applications and metrics.

The total time of Scargos’ lifecycle was being measured using Stream

Extraction and Stream Replay. 2

A.5 Attacks and vulnerabilities used in our experiments. 3

ix

List of Figures

2.1 An example of Vigilante’s SCA. 13

2.2 SCA verification of Vigilante [9]. 14

2.3 Vigilante’s performance for SCA signature generation 14

3.1 Scargos’ life cycle. 21

4.1 Different states a FTP client transitions into according to the responses

of an FTP server. 34

4.2 Verifying an SCA by using brute-force replay for the FTP protocol. 36

5.1 Depiction of the different processes that are required to enable exact

stream replay and brute-force replay. 42

5.2 An example application entry with an assigned application ID by a SCA

repository. 44

5.3 An example SCA of the application WFTPD Server. 45

5.4 Output of the honeypot Argos showing a manipulated memory sections. . 48

6.1 The number of available windows server attack per protocol per application. 57

6.2 Image of Argos being successfully compromised. 61

6.3 Occurrence of different FTP command attack vectors 68

6.4 Performance of SCA verification in relation to the number of layer-5 PDUs. 71

6.5 SCA verification performance of brute-force replay and exact stream replay. 72

6.6 SCA Generation: Performance of single packet extraction and stream

extraction. 74

6.7 Comparing Vigilante’s and Scargos’ Performance. 76

6.8 Total time of to complete Scargos’ life cycle. 78

x

Chapter 1

Introduction

“In the early days of the Internet, port scans were the background noise of

attackers and detected by firewalls. A few years later, vulnerability scanners

were in vogue. They were detected by intrusion detection systems. Today,

we use honeypots to detect automatic tools exploiting well-known flaws. To

capture more interesting activities we have to look ahead and develop the next

generation of honeypots. As always the arms race continues, and we need to

stay ahead of the game!”

Niels Provos and Thorsten Holz, Virtual Honeypots – From Botnet Tracking

to Intrusion Detection, 2008 [34].

Niels Provos and Thorsten Holz neatly summarise the past years of fighting virtual

attackers. The MITRE Corporation, the official issuer of the Common Vulnerabilities

and Exposures (CVE) identifier, has recently announced the need for a syntax change

to address more than the current maximum of 10,000 vulnerabilities per year. Taking

this into account, we seem to be more in need for advances in computer security than

ever, “to stay ahead of the game!” [41].

Although, in some areas significant advancements have been made in security, other

areas have been neglected; vulnerability distribution is one of these areas. The security

of companies and organisations relies heavily on its IT and IT-security departments.

Often specialised incident response teams are employed to surveil the state of the

network. These teams react to intruders or analyse past attacks. However they also

take action if a new vulnerability is announced for one of their used applications. New

vulnerabilities are conventionally first announced by the vendor of an application and are

later redistributed by secondary sources such as a CVE. The time from a vulnerability

announcement until it is known by an incident response team is critical, yet it often relies

1

CHAPTER 1. INTRODUCTION

on manual checking of websites or newsletters, or is heavily reliant on secondary sources.

The situation becomes worse when considering full-disclosure announcements, which can

be made by virtually everybody. As a consequence, the number of primary sources

seems indefinite. Automated software exists, but likewise, relies on the publication by a

primary source. Furthermore, vendors often know about a vulnerability much earlier, but

delay its announcement in order to write an appropriate patch in time – time, in which

applications are vulnerable in companies and organisations, without their knowledge.

Informed attackers can intrude and steal valuable assets, while there is no effective way

to ensure protection.

However, there are vulnerabilities which remain unknown for an even longer period:

zero-day vulnerabilities. These vulnerabilities are not known to the public, but only to

attackers. A recent study by Symantec [4] developed the worldwide intelligence network

environment (WINE) to collect data from over 11 million hosts around the world. The

data was analysed in retrospect from 2008 until 2011 to determine whether vulnerabilities

were previously used by attackers prior to their official discovery. In total, 18 zero-day

vulnerabilities were found and the data suggests that the attacks remained undetected

for between 19 days to 30 months; on average 312 days [4].

We present Scargos, a framework for automatic vulnerability distribution. Scargos can

detect zero-day attacks by using dynamic taint analysis in a honeypot. The information

about the vulnerability is then decoded as a packet-based self-certifying alert and verified

by all interested parties. As we will show in this work, the entire process can be

accomplished in on average less than 2 seconds, while not requiring that the participants

trust each other.

1.1 Motivation

The attack window a sophisticated attacker has to compromise innocuous machines is

big because:

1. Zero-day attacks are not known to the public for on average 312 days

2. Vendors which know about a vulnerability, withhold publication to develop a

remedy

3. It takes time until end users know about a vulnerability announcement

Furthermore, the time until end users know about a vulnerability is increased because

an announcement can be made by n seemingly indefinite amount of different primary

2

CHAPTER 1. INTRODUCTION

sources, while popular secondary sources such as CVE ID publications or vulnerability

scanners rely on the publication of a vulnerability by a primary source.

This works strives to provide a solution to greatly minimise the attack window of an

attack, while not requiring trust to be placed in a central authority.

1.2 Research Question

Vigilante and self-certifying alerts (SCAs) [9] have been suggested previously as a way

to distribute vulnerabilities without the need of trusting a central authority. However,

such SCAs modify the content of the original attack and can only be used by memory-

violation detection engines. In contrast, packet-based SCAs require that the original

attack remain unchanged, which allows for a custom vulnerability response process by

end users, and can be used with any attack detection engine.

In this work we want to investigate whether packet-based SCAs can be generated

and verified, and furthermore, to investigate what performance and accuracy they can

achieve. We formulate our primary research question as follows:

Can packet-based SCAs be efficiently generated and verified?

This question leads to several other questions that we would like to answer.

Accuracy:

• Can packet-based SCAs be successfully generated and verified for a variety of

attacks?

• Do packet-based SCAs achieve the same accuracy as the state-of-the-art?

Performance:

• Can Scargos effectively reduce the available attack window of attackers?

• Do packet-based SCAs outperform the state-of-the-art for well-known attacks?

1.3 Contribution

We show in our work, that packet-based SCAs can be constructed by using specialised

extraction algorithms on the logs of DTA honeypots and we introduce replay mechanisms

to enable verification. Our evaluation of packet-based SCAs shows that the time from

generation to verification including server-based distribution is on average less than 2

seconds. Furthermore, we compare packet-based SCAs to conventional SCAs. Our

3

CHAPTER 1. INTRODUCTION

results suggest that packet-based SCAs perform better for greater file sizes and seem to

have significantly better worst-case performance.

4

Chapter 2

Background

Our architecture is based on well-known security concepts such as honeypots, dynamic

taint analysis or virtual machines, which we want to discuss in more detail in the

following sections. Furthermore, we want to outline solutions which are currently either

used or proposed for vulnerability management and distribution.

2.1 Virtual Machines and their Security

While virtual machines (VM) are guest operating systems (OS) that are being operated

within a certain host, VM monitors (VMMs) are the software layer between the host’s

OS and the guest’s OS, which emulate and control a virtual environment for the guest

OS. Using VMMs enables us to perform a variety of operations with a certain guest OS

such as:

• Instantiation, termination, stopping and starting of VMs;

• Saving the state of a VM (snapshot);

• Reinstantiating a VM from a saved snapshot.

Virtualisation is one of the core concepts which power today’s cloud computing

infrastructure, as it facilitates running multiple machines on one host, and greatly

improves administration. Additionally, VMs provide a layer of segregation between the

host and guest OS. The goal of this isolation is to prevent the guest operating system from

obtaining or altering any information located on the host OS. As one might suspect, this

lends itself well to many security applications; VMs are often used to prevent malware

and threats from spreading to the host OS. VMs are employed in the realization of

concepts such as:

5

CHAPTER 2. BACKGROUND

Honeypots: gather malware and attacks in the wild [34].

Malware Analysis: dissects malware and observes its behavior [48].

Self-Certifying Alerts: process potentially infected information [9].

Cloud Computing: Applications such as eucalyptus rely on the security of VMs to

prevent consumers from intruding the host OS [28].

Unfortunately, there are also three well-known attacks that can be performed against

VMs:

Detection of the VM: The attacker can identify the vendor of the virtual machine and

possibly more information. Most VMs are not designed to be protected against

their detection and there exists several ways to detect all well-known VMMs [12,34].

Denial-of-Service: The VM terminates and any network-facing services of the VM is no

longer available [12].

VM escape: An attacker can escape from the guest OS and execute arbitrary code on

the host OS [12].

The latter attack is the most interesting because it defeats the goal of isolation and

was first demonstrated by the attack Cloudburst. Cloudburst [21] allows an attacker

to escape from VMware Workstation 6.5.1 and earlier, as well as VMware Player 2.5.1

and other versions, by using a vulnerability in its 3D support component (CVE-2009-

1244). While attacks remain relatively scarce, arbitrary code execution vulnerabilities

also exists in some versions of other VMMs such as QEMU 1.3.0-rc2 (CVE-2012-6075)

or Microsoft Virtual PC 2004 (CVE-2007-0948). Also, there are VMMs for which we

have not found a reported arbitrary code execution vulnerability (Oracle Virtual Box).

2.2 Dynamic Taint Analysis

Dynamic taint analysis (DTA) also known as dynamic dataflow analysis or dynamic

information flow tracking has been proposed independently by multiple groups [8,10,27,

38]. The proposed systems tackle the same problem in a similar way. In the following

chapters, we will mainly focus on the implementation of dynamic taint analysis because

this is the technique that is used in the honeypot Argos, which we used as a basis to

build our prototype.

6

CHAPTER 2. BACKGROUND

Software often has vulnerabilities that allow an attacker to execute malicious code.

Attackers use exploits which are a certain type of attack to utilise a vulnerability. Most

often overwrite attacks are used as an exploit. This category of attack subsumes most

common threats such as buffer overflow attacks or format string attacks. In general,

overwrite attacks manipulate the execution flow by using return addresses, function

pointers, or format strings. This enables an attacker to control the program’s execution

flow and eventually execute arbitrary code [7].

DTA detects the attacks described by tracking all external data that is received by

the host. External data is often received as incoming traffic such as network-facing

services, but can also include other data such as that from external drives. External

data is marked and all variables that use marked variables as inputs are also tagged. If a

marked variable is used to change the execution flow, than this means that some external

data is trying to dictate the program flow, which by definition makes it malicious. As a

result, the execution of the external data is stopped and an alarm may be thrown [27].

DTA has a variety of applications in security but is often used in relation to detecting

attacks. The advantages of DTA compared to conventional security measures such as

intrusion detection systems (IDS) or other solutions are as follows:

• attacks can be discovered which have previously been unknown, so called zero-day

exploits [35];

• a high accuracy of the detection mechanism is provided coupled with a very low

false-positive rate [35];

• does not require any source code or software manipulation;

2.2.1 Performance

DTA performs quite poor compared to other security solutions. The slowdown depends

on the application and implementation that is being used.

Newsome et al. experienced a slowdown of 3x to 100x in their first prototype

implementation TaintCheck compared to the original execution time of the original

application [27]. The DTA framework Dytan reports a similar high slowdown of 40x [7].

However, there are multiple proposals to improve performance. FlexiTaint [44] is a

hardware solution which is added to an existing processor. Experiments have shown

that it achieves a slowdown of only 1%-9%. Lam et al. [23] and Xu et al. [49] present

a solution which in only 1.5x to 3x slower, but both solutions require that the source

code of the application be present. However, recently the emulator Minemu [5] has

7

CHAPTER 2. BACKGROUND

been proposed. The emulation architecture is specifically designed for DTA. In the

environment, applications are only 1.5x to 3x slower.

Although recent improvements seem promising, the slowdown is still too high to be

practical for real world scenarios. If a production network deployed DTA in its systems,

a system that is at least 3x faster than the previous system would be required to uphold

previous performance. As a result, a much higher cost would be required to operate the

production network, which often outweighs the benefits in the eyes of the stakeholders.

As a result, DTA has mainly been deployed in systems where speed is not as important,

such as honeypots. The honeypot Argos [32] is on average about 15x slower compared

to the performance of the original operating system. Yet, given that a honeypot has to

handle far fewer requests than a production system, this slowdown is often negligible.

2.2.2 Accuracy

DTA can only detect attacks in which the control flow of the application is manipulated.

In so-called overwrite attacks, jump targets such as return addresses or function pointers

are overwritten in the benign application. Often the control flow is either redirected to

point to injected code (code injection attack) or to existing code (existing code attack).

Jump targets are overwritten using attacks such as:

format string attacks: An attacker is able to modify the format string argument into

functions like printf() and uses special format tokens to modify the control flow.

buffer overflow attacks: An attack is able to write data to a buffer that has no boundary

checks in place to prevent an overflow, which can ultimately allow arbitrary cod

execution.

double free attacks: A memory portion that was previously allocated is deallocated twice

with functions such as free(). If data is later written to a doubly-allocated

memory portion, it might be vulnerable to a buffer overflow attack.

It is important to note that overwrite attack are by far the most common attacks used

in worms and viruses. Many major worms such as the Slammer worm or CodeRed worm

are based on overwrite attacks [27].

However, DTA will not prevent many other types of attacks that can be used to attack

a system such as cryptographic weaknesses in the system, remote command executions

or SQL injections. Although there are systems that use a special form of DTA to protect

web application from attacks such as SQL injections [16] or cross-site scripting [45].

8

CHAPTER 2. BACKGROUND

2.2.2.1 False Positives

Experiments that have been conducted with DTA suggest that its false-positive rate

is extremely low. Newsome et al. [27] and Clause et al. [7] independently conducted

accuracy experiments, which both resulted in no false positives. However, Newsome et

al. states the following two cases in which false positives could occur:

1. No attack took place, but a software vulnerability that could be used for an attack

was used.

2. The program intentionally uses external data to influence the control flow.

The first case might not be as severe because it still signals a vulnerability in the software.

The second case will always throw an alert because external data is used to directly

manipulate the control flow. A software developer may perform such an operation after

applying security checks or escaping on the provided data. Although, this may not be

considered best practice because these checks can fail to ensure the security of the input

and thus open a backdoor into the application.

2.2.2.2 False Negative

False negatives can occur as a result of under-tainting, which is a known limitation of

DTA. Yet, in some cases they might also occur because of an incorrectly configured

analysis.

2.2.2.2.1 Under-tainting Under-tainting is an error of DTA in which a value is not

tainted although it is influenced by another tainted value. Under-tainting is often a result

of implicit flows, which occur when a tainted value implicitly affects another program

value. An example is a table index of a hash map, which is closely connected to the

related value of the hash map index. Dytan++ is a solution which attempts to mitigate

under-tainting. While the solution is able to fix most under-tainting errors, there are

still special situations where it can not be prevented [17].

2.2.2.2.2 Trusting of input that should not be trusted A taint-analysis software

has a policy that states which data inputs are trusted and which data inputs may

contain malicious input. If these parameters are not specified correctly, data may be

not be tainted which is in fact malicious and false negatives occur. For instance, some

applications save external data to the disk before processing it. In this case, DTA may

not taint these values if all data input is trusted that is read from the disk. Thus, a

9

CHAPTER 2. BACKGROUND

policy could be configured that states that all data from a certain file path should be

regarded as tainted [27].

2.3 Honeypots

Honeypots are resources which only obtain value when accessed with malicious

intentions. Because honeypots hold no production value, any network-facing service

that they offer exists to lure attackers into accessing the honeypot. As a result, any

access to a honeypot can generally be regarded as suspicious. The dummy data that

honeypots provide acts as a decoy to convince attackers about the authenticity of the

machine. False positives are very seldom encountered when honeypots report an access

because no user should have intentions to access the machine [37].

2.3.1 Overview

Honeypots are most often used by researchers to gather information about attackers

such as their geographical distribution or used attacks. However, honeypots can also

be used to enhance security in production networks, for example as an early warning

system.

Commonly, honeypots are categorised into two categories: low-interaction honeypots

and high-interaction honeypots. Low-interaction honeypots provide only an emulation

of services to make attackers believe that they are communicating with a real service.

However, because emulations have limitations, low-interaction honeypots are best suited

for investigating automated attacks [34].

High-interaction honeypots offer a full system and are usually virtual machines

with specialised monitoring software. They bear a higher security risk because they

execute real attacks directly on the virtual machine. While this allows for detailed

forensic analysis, high-interaction honeypots are usually secured further by using reverse-

firewalls. These firewalls only permit requests to the honeypot, but the honeypot itself

is disallowed to establish any connections [34]. This way worms are contained within the

host and cannot infect real machines. Low-interaction cannot become compromised as

such, as they only provide emulations of services and gather incoming traffic accordingly.

However, attempts could be made to specifically target honeypots for an attack, in which

case a vulnerability within the emulation has to be found and exploited. However, to

date there have not been any attacks specifically against honeypots which is most likely

owed to their few users compared to other network-facing services [47].

10

CHAPTER 2. BACKGROUND

2.3.2 Argos

Argos is a honeypot that attempts to mitigate many of the drawbacks that accompany

conventional high-interaction honeypots. It decreases the risk and maintenance of high-

interaction by accurately detecting attacks and stopping them before they compromise

the system.

The development of Argos started in 2006 at Vrije University in Amsterdam. The

current available version is 0.5.0 [46]. This high-interaction honeypot works differently

to other solution tools. It works only in conjunction with the virtualisation software

QEMU. On QEMU, all common operating systems can be installed; thus it can be used

like practically any other virtualisation software for high-interaction honeypots. Yet,

DTA is built into the virtualisation software. Thus Argos and the DTA lies in between

QEMU and the virtual operating system [34]. This leads four distinct advantages:

Reduction of risk Argos accurately detects attacks by using DTA and stops them before

any malicious code is executed.

Improved maintainability After detecting attacks, Argos logs the incident and extracts

more useful data about the attack. As a result, less forensic analysis is needed

compared to conventional analysis.

System-wide detection Argos offers an entire virtualisation environment which detects

applications as well as kernel attacks.

Captures zero-day attacks Low-interaction honeypots can only detect attacks which fall

into a certain pattern and are thus previously known. In contrast, DTA detects

any exploit that uses an overwrite attack, and hence also detects zero-day attacks.

In essence, Argos taints all data that is received externally and throws an alert when

this data is used to manipulate the execution flow of an application. When an attack

is detected Argos extracts the exploit code and stops the attack. The honeypot also

offers the option to continue the attack, while recording all external inputs to gather

more information about the attacker. Additionally, Argos can generate a signature for

intrusion detection systems (IDS) to protect systems in a real network from the attack.

Argos successfully utilises the power of DTA, albeit the DTA is extremely slow. This is

not as relevant to honeypots because they usually are not attacked very often. However,

the high accuracy of the analysis is very beneficial because it allows Argos to virtually

detect any attack.

11

CHAPTER 2. BACKGROUND

2.4 Vulnerability Distribution

There have been previous attempts to enable automatic vulnerability distribution. In

the following sections we will outline two previously suggested approaches and discuss

their drawbacks.

2.4.1 Vigilante and Self-Certifying Alerts

Vigilante [9] is a proposed system to stop worms and viruses from spreading in an

infected network. Worms like the Slammer worm infected 90% of all vulnerable hosts

in the Internet within 10 minutes [26], which calls for an automatic solution to contain

worms in networks. In essence, vigilante detects an attack, generates a fingerprint of the

attack and sends it to all the other hosts on the network. Because these fingerprints are

self-certifying, hosts do not need to trust each other.

Vigilante uses so called self-certifying alerts (SCAs) as mean to transfer information

about an software vulnerability. SCAs are unique because they contain some parts of

the exploit code itself. SCAs are generated when a host detects an attack by using DTA

or non-executable pages. Other hosts then verify SCAs by executing modified parts of

the attack code in virtual machine. If the exploit succeeds, the host sets a custom filter

onto its network interfaces to protect against the worm. Costa et al. suggested that

every host runs a mechanism to detect attacks. Thus, each host can detect a worm and

in turn notify all other hosts about the worm by sending its exploit code [9].

Figure 2.1 shows the composition of an SCA. It specifies parameters such as the service

name, alert type or verification information. Vigilante defines three alert types which

cover most vulnerabilities:

Arbitrary Execution Control The exploit redirects the execution to a different point in

the service’s address space.

Arbitrary Code Execution The exploit injects code into the vulnerable service that is to

be executed.

Arbitrary Function Argument The vulnerable service is instructed to call a system

critical function, such as exec with a supplied argument.

The verification information of an SCA specifies where an SCA verifier has to modify

the message to trigger the calling of the verified function, as described in Section 2.4.1.1.

Consequently, it specifies the offset in a message, where the exploit executes either a

system-critical function or its payload.

12

CHAPTER 2. BACKGROUND

Fig. 2.1: An example of Vigilante’s SCA. The message data has been truncated and is
originally 376-bytes long [9].

2.4.1.1 Verification

As depicted in Figure 2.2, Vigilante uses three components to verify an SCA: a SCA

Verifier, a Verification Manager and a virtual machine. Using a binary rewriting tool,

inside the virtual machine, all network-facing services are instrumented to load a new

verified function into their address space. System critical functions, which are functions

that are often used by attackers in their exploits, such as exec, trigger the pre-loaded

verified function. The verification manager, a service inside the virtual machine, surveils

all network-facing services and detects calls to the verified function.

When a new SCA is to be verified, the SCA is sent to the verification manager by the

SCA verifier. Depending on the alert type, the manager then modifies the byte string at

the offset of the message to call either the verified function or a system critical function.

The message is then sent to the vulnerable service. If the verified function is called, the

SCA passes; otherwise it fails after a certain timeout. The SCA verification manager

informs the SCA verifier accordingly.

2.4.1.2 Generation

Vigilante provides two methods to detect attacks: non-executable pages and DTA. The

latter is described in Section 2.2. While non-executable pages have a high false negative

rate, DTA is much more accurate but also much slower. Given that almost no worms

and viruses should remain undetected, DTA has to be chosen as a detection scheme.

The trade-off between accuracy and performance is shown in Figure 2.3. DTA is at least

9x slower than non-executable pages in generating exploits.

In Vigilante DTA is implemented by using a binary rewriting tool at load time. When

an attack is detected, an appropriate SCA is generated. Due to the memory information

13

CHAPTER 2. BACKGROUND

Fig. 2.2: SCA verification of Vigilante [9].

that are constantly maintained by DTA, an SCA candidate can be generated fast. The

SCA generator then tries to verify the SCA candidate. It will pass for single-message

attacks, but fail for multi-message requests. If the verification fails, Vigilante reassembles

the multiple message of the attack and includes an increasingly long message in the SCA

Candidate until it verifies.

Fig. 2.3: Performance of the SCA signature generation; left: dynamic taint analysis;
right: non-executable pages [9].

2.4.1.3 Performance

Although Costa et. al [9] documented the performance of SCA generation and

verification, they did not measure the performance overhead that instrumented network-

14

CHAPTER 2. BACKGROUND

facing services experienced while using DTA. As described in Section 2.2.1, DTA causes a

significant overhead on the used services. The best performing system, to our knowledge,

Minemu [5] still has an 1.5x-3x performance overhead compared to the performance of

the original application. Taking into account that Minemu was developed almost five

years after Vigilante, the performance overhead per service can only be speculated.

Given that the information to generate an SCA can be gathered about as fast as for

non-executable pages, Figure 2.3 hints that Vigilante incurs a performance overhead of

9x the original service.

2.4.1.4 Drawbacks

Vigilante was developed to contain worms and viruses in production network and as

such is not suited for global distribution of SCAs. However, even with modifications of

the system it has fundamental disadvantages:

Non Packet-Based SCAs – Vigilante modifies the original attack before decoding it as

a SCA and verifies it with further modifications. Using these non-packet-based

SCAs leads to a variety of disadvantages:

• Non-packet-based SCAs cannot be processed by other services because

information about the original attack might be missing. As a consequence,

custom vulnerability response process are not possible.

• Vigilante’s verification VM can be compromised easily because messages are

executed directly on the machine. Before executing the code of an SCA on the

VM, Vigilante replaces arbitrary code with its own detection code. However,

the position where the replacement is to be made (offset) is part of the SCA

and can easily be replaced with a bogus offset. This increases the chance that

Vigilante may be a target of a successful VM escape. Scargos can pre-filter

uninteresting SCAs with an IDS and is further protected by using full-system

DTA, which increases the required attack complexity.

Binary Instrumentation – Because Vigilante uses non-packet-based SCAs, it relies on

binary instrumentation to verify and generate SCAs, which leads to multiple

disadvantages:

• Vigilante relies on binary instrumentation of its network facing services for the

usage of DTA. The drawback of this is that calls to other programs or kernel

vulnerabilities cannot be detected because only the binaries of the network-

15

CHAPTER 2. BACKGROUND

facing service are surveilled. In contrast, using DTA honeypots allows full-

system protection.

• Binary instrumentation is OS-dependent, which requires that every Vigilante

implementation would need to be modified for every possible operating system

to be universal. On the contrary, DTA honeypots are based on VMs, which

naturally support a vast number of operating systems.

• By using binary instrumentation, systems which intend to verify and generate

SCAs have to run the network-facing service twice: once in the verification

manager VM and once as a network-facing service. In contrast, Scargos’

verification and generation of SCAs is done with the same resources.

Limited to Memory-Based Detection Techniques: Any detection mechanisms that

Vigilante uses must be translated prior to use into binary instrumentation

algorithms. This essentially limits the choices for Vigilante’s detection engines

to memory violation-detection techniques. In contrast, Scargos’ usage of packet-

based SCAs allow for virtually any detection engine. We decided to use DTA

because it currently provides the best accuracy. However, packet-based SCAs

could also be generated using technologies such as highly-accurate anomaly-based

detection systems. This is not possible for Vigilante because network analysis

tools can hardly be translated into binary instrumentation code.

2.4.2 Noah

The network of affined honeypots (NoAH) is a network of honeypots which occupies

unused IP-addresses on the internet. Automated attacks which scan portions of the

Internet’s IP-addresses are detected by using Argos as a DTA honeypot. The results

from Argos are then converted into IDS signatures and are intended to be used by

third parties [19, 20]. NoAH is an interesting approach because it allows for detection

of zero-day attacks by using DTA honeypots. However, the system has a significant

drawback: IDS signatures cannot be verified and discard the original content of the

attack. This disallows any alternative vulnerability response process. Furthermore,

malicious IDS signatures could be injected into the system by compromising Argos,

which can have serious ramifications as we discuss in Section 3.4.3. The possibility of

such an attack is fair, taking into account (1) that we have found real-world attacks

that have remained undetected by Argos, as shown in Section 6.1.1, and (2) that there

have been vulnerabilities that have allowed a VM escape from QEMU, the VM used by

Argos, as described in Section 2.1,

16

CHAPTER 2. BACKGROUND

2.5 Malware Processing Tools

In the following sections, we discuss the two tools CWSandbox and Honeycomb that can

process malware automatically for different purposes.

2.5.1 CWSandbox

CWSandbox is a tool that is developed for the Win32 platform to automatically generate

malware analysis reports. The tool uses Windows application programmers’ interface

(API) hooking to monitor all system-level behavior of Windows. Although, malware

can circumvent the Windows API, this is often unusual because attacks strive to use

a very small payload. CWSandbox is operated as a virtual machine and after it has

received malicious traffic, it generates a human-readable report about the intentions

of the malware. As such CWSandbox notes in its reports among other events the

creation, interaction and modification of files, windows registry entries, dynamic link

libraris (DLLs), processes and network connections [34,48].

2.5.2 Honeycomb

Honeycomb is a plug-in for the low-interaction honeypot Honeyd [33]. Using Honeyd,

Honeycomb collects malicious traffic to automatically create IDS signatures of the

received data. IDS signatures are created for intrusion detection systems (IDSs) such as

Snort [36] by using protocol analysis and pattern detection algorithms on the received

data. Connection tracking is an additional feature of Honeycomb that offers to aggregate

signatures. In the algorithm, new malicious packets are compared to previously stored

attack to generate compressed signatures instead of new ones [22].

2.6 Vulnerability Management

The following sections outline the most common ways to exchange information about

vulnerabilities. This information exchange is essential for automatic vulnerability

management because systems need to know, which vulnerabilities exists and what

platforms and versions are affected.

2.6.1 Common Vulnerabilities and Exposures Identifier

Common Vulnerabilities and Exposures Identifier (CVEs) is a dictionary of publicly

known software vulnerabilities. Before CVEs existed, different security tools and vendors

17

CHAPTER 2. BACKGROUND

used different names and identifiers for the same or multiple vulnerabilities. This

led to a global inconsistency and it became increasingly difficult to determine which

tools cover which vulnerability. CVEs attempt to solve this problem by giving each

distinct vulnerability a unique identifier. As a result, security vendors can refer to

the CVE in their own software and this allows for interoperability between security

products. Additionally, end-users can compare their security products based on their

CVE coverage, and hence choose their most appropriate product [40].

2.6.2 Open Vulnerability Assessment Language

The Open Vulnerability Assessment Language (OVAL) provides a method to perform

vulnerability testing on information systems. The language consists of multiple parts.

There is the OVAL XML language, which describes a specific configuration state of a

system; the OVAL Schema, which collects and reports configurations; and the OVAL

content tests for vulnerabilities or configuration issues. However, the OVAL definitions

are most relevant to vulnerability management because they are involved in each step of

the process. Generally, vulnerability management is roughly divided into three stages:

1. A software vulnerability is discovered and published by a software vendor.

2. The existence of vulnerability is verified by end-users in their systems.

3. The vulnerability is patched by the end-user.

OVAL definitions can act as a central point during this process. An OVAL definition

is created when a new vulnerability is discovered. This new OVAL Definition is usually

created by the affected software vendor after checks have been made to check which

software versions and platforms are affected. The definition itself usually contains the

following items:

CVE A CVE is included as a global reference.

Description A description states which security concerns the vulnerability raises and in

some cases the cause of the vulnerability.

Affected Software It is stated what software products and platforms are affected by the

vulnerability.

Vulnerability Tests A series of tests are included to verify the existence of the

vulnerability. Usually, these tests check whether the affected software version is

installed.

18

CHAPTER 2. BACKGROUND

With the release of an OVAL definition, end-users can easily verify whether their

machines are affected. If so, they can leverage patch management utilities to update

their software or deactivate the component if the involved risks are too high [42].

The OVAL offers a great tool to facilitate software vendors and end-users in terms

of security vulnerabilities. However, the process of publishing an OVAL is often too

long to effectively protect systems. Zero-day exploits can spread in just a few minutes,

such as the Slammer worm which infected 90% of all vulnerable hosts in the Internet

within 10 minutes [26]. On the other hand, it can take weeks until an appropriate OVAL

definition is published. Consequently, systems are in an unprotected state without end-

users knowing about any threat.

2.6.3 Open Vulnerability Assessment System and Network Vulnerability

Tests

The Open Vulnerability Assessment System (OpenVAS) is one of the most used open-

source vulnerability scanners [43]. In a similar way to the OVAL system, the OpenVAS

system checks for vulnerabilities by checking whether vulnerable software versions are

installed on the system. The checks that are used to verify this are called Network

Vulnerability Tests (NVTs). NVTs are licensed under the GNU GPLv2+ license which

allows free distribution and usage. Unfortunately, the process of publishing a NVT is

not well documented. Although, the developers of OpenVAS state that vulnerabilities

can be submitted without the existence of an CVE, it remains unclear how bogus or

even malicious submissions are prevented [29,30].

19

Chapter 3

Architecture

The Scargos architecture is an approach to detect, distribute and verify the existence

of previously unknown network-based attacks, conventionally called zero-day attacks.

By combining dynamic taint analysis (DTA) and honeypots with traffic replaying, zero-

day attacks can be distributed and verified much faster than non-automatic approaches.

Figure 3.1 shows the relationship between all of Scargos’ components. A prerequisite for

Scargos’ process is the detection of an attack; the process continues with SCA publishing,

distribution and verification. Vulnerability response is optional and depends on the need

of the end user.

By using DTA, described in Section 2.3.2, the detection component detects previously

unknown network-based attacks. The goal of the detection component is not necessarily

to gather as many threats as possible but rather to gather the most recently developed

attacks. After a threat has been detected, all attack information is decoded into a custom

format: packet-based self-certifying alerts.

New SCAs are submitted and aggregated in SCA repositories. The SCA repository

stores self-certifying alerts and distributes them. User groups, which are interested in

receiving the newest attacks can subscribe to SCA repositories. For every unique payload

that the repository receives, subscribers receive a notification.

Subscribers will usually verify a SCA before it is further processed to initiate an

individual vulnerability response process, given the SCA is valid. SCA verification is

done by leveraging the same methods that were used for SCA generation: DTA. What

happens after a SCA has been verified depends on the needs of the user group. There

are different user groups which may benefit from using Scargos:

Researchers: can study new threats to complement their vulnerability research for

academia, security vendors, ISPs, institutes or corporations.

20

CHAPTER 3. ARCHITECTURE

Incident Response Teams: need to be aware of the newest attacks in order to take

appropriate action.

IT-security Processes: Scargos can be operated in a fully-automatic fashion. As

such, Scargos can be part of a larger IT-Process to automate handling of new

vulnerabilities in a predefined manner.

Detection

of Attack

SCA

Publisher

SCA

Repository

SCA

Veriefier

Vulnerability

Response

Fig. 3.1: Scargos’ life cycle starts with the detection of an attack and is followed by SCA
publishing, distribution, verification and optionally ends with vulnerability
response. Detection is usually handled by a DTA honeypot and handling of
vulnerability response depends on the needs of the end user.

3.1 Detection and SCA Publishing

The goal of SCA publishers is to automatically publish preferably zero-day exploits of

attacks on network-facing services. This assumes that a large and likely volatile pool of

SCA publishers exists. Scargos is designed to encourage a high number of participants

by allowing anonymous submission of SCAs.

Our system makes no assumptions as to how SCAs are gathered and published, but

we propose the use of honeypots as described in Section 2.3. To automate the process

of instantly publishing new attacks, DTA honeypots can be leveraged, as described in

Section 2.3.2, as this allows for the automation of SCA generation. As soon as the

DTA engine of a DTA honeypot detects an attack, an alert is thrown and detailed

information is supplied. The SCA publisher can use this information to craft a unique

SCA for submission to a SCA Repository.

Our solution encourages usage in corporations because honeypots which utilise the

production environment posses more value than pure research honeypots that are used

in the wild. Ultimately, in production networks the likelihood of detecting zero-day

exploits in a timely manner is increased by receiving more:

21

CHAPTER 3. ARCHITECTURE

Traffic: A percentage of traffic received by production networks is naturally malicious.

Increasing traffic for research honeypots often requires further advertising such as

the usage of search engines [6, 24].

Sophisticated Attacks: A production system naturally holds information assets that it

needs to protect from disclosure, which makes it more attractive for targeted

attacks, and thus leads to more sophisticated attacks.

We propose different ways to integrate honeypots into production systems by using:

Unused Resources: Unoccupied IP-addresses could be replaced by redirections to

honeypots. This concept is well established and has been realised by honeypots

such as Honeyd or LaBrea [25, 33, 34]. Likewise, unoccupied ports of production

servers could be used to forward requests on these ports to a special honeypot.

Malicious Packet Forwarding: Production networks which are protected by an anomaly-

based IPS can forward all traffic that is to be discarded to the DTA honeypot.

There is a high probability that this traffic is malicious. A similar approach in a

different context has been proposed by shadow honeypots [1].

It should be noted that honeypots used in production environments should lie outside

of the production network and should be encapsulated by a reverse firewall.

3.2 Packet-Based Self-Certifying Alerts

While Vigilante’s SCAs [9], described in Section 2.4.1, use a custom format to generate

and verify themselves by using binary instrumentation, we propose packet-based SCAs

to preserve attacks in their original format.

Packet-based SCAs store the transport-protocol payload of all packets of an attack

in binary format. Each transport-protocol payload that has been made during the

conversation which lead to the compromise is separated as an element in a list. As such,

packet-based SCAs lead to many simplifications when compared to conventional SCAs

as shown in Table 3.1.

Packet-based SCAs allow Scargos to generate and verify SCAs with the same machine.

This has many advantages such as the fast accumulation of all affected versions in an SCA

repository and a greater number of possible contributors to vulnerability repositories.

Also, as described in Section 3.5.2.2, packet-based SCAs can be easily processed by

many third-party applications such as for IDS signature generation because the exploit’s

content remains preserved. Likewise, as described in Section 3.5.1 and 3.5.2.1, researchers

22

CHAPTER 3. ARCHITECTURE

or incident response teams can more easily analyse attacks as part of their vulnerability

response.

Vigilante’s SCAs Packet-Based SCAs

Generation

Each network-facing service of

the surveilled system is binary-

instrumented separately to allow

verification or generation of SCAs.

The entire system is constantly

surveilled using system-wide

DTA for verification and

generation of SCAs.

Verification

Vigilante modifies the original

payloads that led to the compromise

to trigger an injected verified

function as a sign of validity.

Packet-based SCAs preserve

original payloads of an attack

and determine validity by

replaying it to a verifier.

SCA

Types

Verification of SCAs differs

depending on which kind of

SCA-type was generated (Arbitrary

Execution Control, Arbitrary Code

Execution, Arbitrary Function

Argument).

All SCAs are generated and

verified in the same manner.

There is no need for different

SCA types.

Parameters

SCAs, as shown in Figure 2.1,

depend on a variety of parameters

to verify an SCA, such as offset or

alert-type.

Only the transport-protocol

payload of the attack needs to

be present to determine validity

of a SCA.

File

Format

SCAs are present in a custom

format. They can only be processed

by other custom applications.

SCAs can be converted easily

into many common formats such

as pcap-files, IDS signatures

or malware analysis reports as

described in Section 3.5.

Table 3.1: Comparison of Vigilante’s SCAs (left) with Packet-Based SCAs (right).

3.3 Distribution: SCA Repository

Similar to software repositories which store software, SCA repositories store SCAs for

different applications. These repositories have different channels. Each channel has a

23

CHAPTER 3. ARCHITECTURE

unique ID which corresponds to a specific application. SCAs can be submitted and

downloaded from the SCA repository, but each SCA is uniquely tied to an application.

A unique aspect of SCA repositories is that no assumptions are made about the

validity of SCAs. While their might be an upper limit as to how many SCAs a user can

submit and download before the connection is aborted or slowed down, the repository

imposes no restriction on who can submit or download SCAs. It is to be expected that

anonymous submissions invite attackers to submit malicious SCAs. However, given that

the SCA verifiers are sufficiently isolated, SCAs can only pass or fail, and compromises

should be sufficiently hard, as described in Section 3.4.3.

Because SCA verifiers may also be SCA publishers, this can create a feedback loop.

We advise that SCA repositories detect duplicates of SCAs with the same payload and

thus inform SCA verifiers only if a SCA with a unique payload was published. However,

SCA repositories should aggregate other information about an SCA duplicate such as

the version of the application: A newly published SCA specifies a particular version;

resubmissions of the same SCA with a different specified version can thus be easily

combined. Using this method, within an instant all affected versions can be populated.

Although, this might include false positives. Given that the pool of SCA publishers and

verifiers is large enough to cover all common versions of an application, very few false

negatives should exists.

3.4 SCA Verification

Scargos can be used in different ways by different user groups. However, in most cases,

it is only desirable to receive a subset of newly submitted SCAs for the applications that

are of interest. After all, it is necessary that a DTA honeypot is used for verification,

which can only run a limited number of network-facing services. While some user

groups may arbitrarily select the applications that SCAs are wanted for, others may

want to receive SCAs to protect used systems from being compromised by previously

unknown vulnerabilities. We call hosts that are protected this way Permanently Audited

Machines (PAMs).

SCA verification uses similar components as Vigilante [9]: a SCA verifier, a Verification

Manager and a virtual host that we call a PAM Mirror.

PAM mirror: The PAM mirror is located inside a DTA honeypot, which effectively is

a VMM that constantly surveils its VMs by using DTA, see Section 2.3.2. The

PAM Mirror is configured to closely mirrors the configuration of the PAM with

its installed services and operating system, which is described in more detail in

24

CHAPTER 3. ARCHITECTURE

Section 3.4.1. Similar to the SCA Publisher, described in Section 3.1, the PAM

mirror detects attacks by throwing an alert every time external input manipulates

the execution flow of a program.

Verification Manager: The verification manager is an application installed on the host

OS which runs the PAM mirror VM. It is responsible for interpreting alerts of the

PAM mirror to decide about the validity of a SCA. For every verified SCA, the

verification manager initiates a custom vulnerability response process, as described

in Section 3.5.

SCA verifier: The purpose of the SCA verifier is to gather the most recent vulnerabilities

and to replay them to the network-facing services of the PAM Mirror. The SCA

verifier subscribes to at least one SCA Repository and maintains a PAM List

which contains the IDs of all installed network-facing services on the PAM/PAM

Mirror. Each SCA repository sends a notification containing an application ID to

all subscribers as soon as a new SCA with a unique payload is submitted. The

SCA verifier replays the payload to the PAM Mirror whenever the application ID

matches one of the IDs in its PAM list.

In contrast to Vigilante, our architecture uses packet-based SCAs as described in

Section 3.2 and thus we are not surveilling a particular network-facing service inside a

virtual machine, but verify a specific SCA system-wide. We accomplish this by hosting

the PAM Mirror inside a DTA honeypot.

After the PAM mirror has been initially set up, its state is being saved in a default

snapshot. The PAM Mirror runs in a DTA virtual machine and as such it notifies the

host OS (verification manager) as soon as the system becomes compromised. This way,

the verification manager can verify SCAs directly by waiting for a notification, or the

verification fails after a certain timeout. For every TCP stream that is received by the

verification manager, the verification manager destroys the PAM Mirror and reinitiates

its state from the default snapshot. Given that a SCA is verified, a vulnerability response

process is initiated.

3.4.1 Common Configuration

Scargos is designed to replay attacks that were successful on one system on another

similarly-configured system. In order to ensure that replaying is successful for the vast

majority of attacks, it is advisable that the DTA honeypots on the SCA verifier and

publisher are configured very similarly.

25

CHAPTER 3. ARCHITECTURE

SCA publishers can take a number of steps to increase the likelihood that an SCA

verifies. Although, the application’s configuration can be set in a arbitrary fashion by

SCA publishers, we advise that for any resource that an application uses, the default,

preconfigured resource is to be used. We define application resources as any additional

files or static content that a network-facing service serves, such as:

HTML Files The HTML files that a webserver serves clients which make HTTP

requests. Web servers are often bundled with a set of default web pages.

Databases The databases a database server offers to query. Often, after a database

installation, there are default databases preconfigured.

FTP Files FTP servers usually specify a default path in which the served files are

located.

While the SCA verifier’s PAM mirror should use the configuration of the PAM (or

any other arbitrary one that is of interest to the verifier), we advise that the default

application resources should be used instead of copying any resources from PAM. This

has two advantages:

• When the PAM mirror is compromised, no production information is leaked, such

as source code of websites or sensitive databases.

• The likelihood that an SCA verifies when the application is in fact vulnerable is

increased, when the SCA publisher followed our guidelines.

Additionally, we advise both the SCA publisher and SCA verifier to run all applications

on their official standard ports as specified by the Internet Assigned Numbers

Authority (IANA). If the application does not fall in any of the IANA specified uses, the

preconfigured default port should be used. Because some applications occupy multiple

ports, this is necessary to identify the affected component of a network facing service.

Moreover, in Section 5.3.1 we propose an alternative implementation for package replay

which relies on the usage of standard ports.

Lastly, some services require that accounts or host names be set up. we advise that

all SCA verifiers and publishers use a default username/hostname such as anonymous

and a default password such as An0nym0uS, so that attacks which in some way process

this data, can successfully be replayed.

26

CHAPTER 3. ARCHITECTURE

3.4.2 Placement of the SCA Verifier

There are different possibilities as to how the individual verification components are

relatively placed with varying benefits and drawbacks. While the PAM Mirror always is

the guest OS of the verification manager, there exists three possibilities as to how the

SCA verifier is placed:

Repository Placement: The SCA verifier is placed inside the SCA repository and the

verification manager maintains the PAM list and performs requests for attacks. In

this placement, the SCA repository performs the replaying of SCA payloads and

the verification manager issues requests to be attacked. Because all network-facing

services are contained in the PAM mirror, the attack is eventually received only

by the PAM mirror, while the verification manager decides about the validity

of the attack. Although, this placement allows for increased security of the

verification components (since the SCA verifier can only be compromised on the

SCA repository), it increases the risk for the repository and raises ethical questions.

Specially crafted payloads could be stored on the SCA repository and misused to

infiltrate innocent hosts or distribute malicious commands to malicious structures

such as bot nets.

Network Placement: The SCA verifier is being placed between the SCA repository and

the verification manager. A firewall is configured so that the SCA verifier is only

allowed to connect to the SCA repository and PAM Mirror. This leads to high

performance as the SCA verifier is an individual host. For increased security, the

SCA verifier needs to be placed in a new VM and reinstantiated for every new

SCA that is to be verified as described in Secion3.4.3.

PAM mirror Placement: The SCA verifier is placed inside the PAM Mirror. The

contents of an SCA is replayed to the loopback interface of the PAM Mirror. All

network-facing services of the PAM Mirror can be kept local or made accessible for

the outside world, if the PAM mirror is also used as a honeypot/SCA publisher.

Because the SCA verifier is located inside the PAM mirror, attacks against the

SCA verifier are detectable. Yet performance may be crippled because DTA is

constantly operating inside the PAM mirror.

In our implementation and experimental evaluation, we use the network placement.

27

CHAPTER 3. ARCHITECTURE

3.4.3 Security Considerations

Every output from the SCA repository has to be regarded as malicious because an

anonymous user can submit any data to the SCA repository. The main attack vectors

involve targeting the DTA honeypot/PAM mirror or the SCA verifier.

The SCA verifier processes the SCA from the SCA repository and replays it. Although,

this includes only a handful of functions likely to be implemented by using defensive

programming, exploitation may not be impossible. However, given that a SCA verifier

is being compromised that uses our described network placement, this only leads to a

denial-of-service (DoS) of the SCA replaying because firewalls should be configured to

only allow connections to SCA repositories or the DTA honeypot. Furthermore, a DoS

can be prevented by running the SCA verifier in a VM and by reinstantiating it for every

new SCA that is being processed. In a SCA verifier that uses our described PAM mirror

(DTA honeypot) placement, this is already accomplished.

A second attack vector can be the DTA honeypot. A SCA might be carefully crafted

such that the SCA verifier replays a special message to its DTA honeypot, which

eventually leads to a VM escape. To be able to exploit the DTA honeypot, an exploit

must successfully fulfill all of the following requirements:

1. One of the network-facing services must be successfully exploited in the DTA

honeypot.

2. The exploit is not detected by the DTA engine.

3. The exploit can compromise the VMM and escape to its host OS.

4. All tasks have to be accomplished before the verification manager times out and

terminates the VM.

5. The entire attack must be crafted into one SCA.

Taking into account that such a chain of attacks has not been demonstrated yet, the time

such an attack may take remains unknown, but theoretically such an attack is possible.

Yet, it should be noted, that VM escape vulnerabilities and attacks remain scarce as

described in Section 2.1 and that many security applications depend on the security of

VMs. Additionally, if the DTA honeypot is only operated as a research tool as part of

semi-automatic vulnerability response as described in Section 3.5.1, it is unlikely that

such an investment would be made by an attacker. Likewise, the consequences of a

compromise may not be very harsh because when Scargos is used for semi-automatic

processing, there should be no connection to any production environment.

28

CHAPTER 3. ARCHITECTURE

However, we have to apply a higher notion of security when Scargos is operated in a

fully-automatic fashion as described in Section 3.5.2. When Scargos operates in this

mode, production systems may gather and process data created by the verification

manager for verified SCAs, which increases the attractiveness of attacking the SCA

verification process. Thus, the goal of Scargos has to bethat the effort required to

successfully compromise the DTA honeypot should be higher than that to successfully

exploit the actual, well-secured PAM.

We can increase the security by improving on its most likely attack vector. The DTA

honeypot can be secured by having all versions of the network-facing services up-to-

date and protected by the same IDS as the PAM. We also propose to run the DTA

honeypot inside another VM from another vendor to add an additional layer of security.

This intermediate VM could notify the host OS about the validity of an SCA through

a covert channel to further increase security. Such a channel could be used by the

intermediate VM to initialise an immediate shutdown or send a ping to the host OS.

This can be easily detected by the verification manager. By using this set up, we further

increase the effort an attacker has to make to compromise the verification manager:

1. The SCA must be a zero-day exploit/near zero-day exploit, as the network-facing

services and IDS signatures are up-to-date.

2. The exploit is not being detected by the DTA engine.

3. The exploit compromises the VMM and escapes to the intermediate VM.

4. The exploit escapes from the intermediate VM.

5. All tasks are accomplished by one single exploit before the verification manager

times out and terminates the intermediate VM.

6. The entire attack must be crafted into one SCA.

While an attack may still be theoretically possible, in most cases it should require more

effort than to compromise the actual PAM because two consecutive VM escapes have

neither been demonstrated and are highly unlikely, given that only a handful of suitable

VM vulnerabilities have been found for mostly older VMMs.

29

CHAPTER 3. ARCHITECTURE

3.5 Vulnerability Response

In this section, we want to outline which actions a user group might take after a SCA

has been successfully verified. Vulnerability response falls into two categories: semi-

automatic and full-automatic.

3.5.1 Semi-Automatic Vulnerability Response

Using a semi-automatic approach, new vulnerabilities are detected automatically, but

further processing requires human-interaction. This is particularly interesting for

researchers to investigate the cause of the vulnerability and for incident response teams

in corporations in order to take the appropriate action manually.

A semi-automatic approach can be realised in many ways. The most straightforward

approach is to let the SCA verification manager store new verified vulnerabilities in a

log file which can then be investigated. Remote access could be realised using a log

management tool or protocols such as SSH.

In most cases, faster access to the newest vulnerabilities is desirable. Either push-

notification could be sent to incident response teams as soon as a new vulnerability

has been discovered or automatic polling can be leveraged. By reusing the previously

mentioned components, the SCA repository and SCA publisher from Section 3.1 and

Section 3.4, the verification manager could republish a SCA to a locally running an

SCA repository. Researchers or incident response teams could be notified from the SCA

repository using its native push-server or constantly poll for changes.

3.5.2 Full-Automatic Vulnerability Response

Using a semi-automatic approach, new vulnerabilities are detected and processed

automatically into desired formats such as IDS signatures or malware analysis reports.

This enables faster response time as a semi-automatic approach, but in some cases bears

a higher security risk. The fully-automatic approach uses the gathered data of a verified

vulnerability and processes this data in the desired fashion. We propose two use cases:

automatic malware analysis and IDS signature generation.

3.5.2.1 Automatic Malware Analysis

In Section 2.5.1 we presented a tool that enables automatic malware analysis. Because

our proposed packet-based SCAs preserve the actual payloads of an exploit, a

combination of Scargos with CWSandbox enables us to get a detailed analysis of the most

30

CHAPTER 3. ARCHITECTURE

recent worms and viruses. Because Scargos uses packet-based SCAs, the communication

between Scargos and CWSandbox works natively. Scargos’ verification manager replays

an SCA as it is implemented in the SCA verifier to a locally running CWSandbox.

Subsequently, a detailed report about the malware is generated, which can then be

further analysed.

3.5.2.2 IDS Signature Creation

Automatically generating an IDS signature for previously unknown attacks might be

one of the most compelling attributes of Scargos for production networks. The tool

Honeycomb 2.5.2 generates and aggregates IDS signatures when it receives malicious

traffic. Verified packet-based SCAs can be authentically replayed to honeycomb to

generate and aggregate IDS signatures for every new verified SCA. These signatures can

then be signed and published by the verification manager. IDSs or IPSs can incorporate

these signatures automatically by using polling or push notifications as described in

Section 3.5.1.

Although this approach may be very useful for institutions and corporations (it

significantly shortens the timeframe where a zero-day attack remains undetected), it also

bears greater risks. Given that our proposed system can be compromised as described in

Section 3.4.3, risks and benefits fall into two categories as shown in Table 3.2, depending

on whether the IDS exclusively has detection capabilities or whether it can also be used

as an IPS.

31

CHAPTER 3. ARCHITECTURE

Benefits Risks

IDS

An IDS alert is
thrown for every
attack which has
been verified as a
SCA.

An attacker may be able to compromise the IDS
given that a vulnerability in the IDS signature
processing can be found. Additionally, an attacker
may increase the amount of false positives by
inserting bogus signatures.

IPS

Every attack
which has been
verified as an
SCA is being
prevented by
similar packets.

All the risks of an IDS also apply for an IPS.
Moreover, an IPS might enable an attacker to drop
valid traffic which effectively would causes a denial-
of-service.

Table 3.2: Benefits and Risks of using either an IDS or IPS for fully-automatic
vulnerability response.

32

Chapter 4

Replay Mechanisms

In contrast to Vigilante, Scargos uses packet-based SCAs, which preserve the original

attack. This requires us to use new approaches to verify an SCA. We propose that

verification of an attack is done in the same manner as that in which the original

attack compromised the system. Using this approach we allow for a custom vulnerability

response process by end users and any attack detection engine can be used with Scargos.

Attacks on network-facing services are usually conducted by sending a series of

malicious packets. We present two replay mechanisms as a way to imitate attackers:

brute-force replay and exact stream replay. We base our approach of successful imitation

on Assumption 1 and later show its validity in Section 6.1.

Assumption 1 Given two identical machines are in the same internal state, sending

the same input to both machines will transfer both machines into the same state.

It seems assumption 1 is hardly practical because two computers can rarely be identical,

when we for example take the many possible hardware configurations into account.

Yet, more often, malicious attacks are automated and not developed for one specific

machine; instead, attackers aim to increase the likelihood of a successful compromise;

thus, attacks on network-facing services are more likely to be tailored to a particular

application, version and operating system. Also, taking into account how pervasively

worms and viruses have spread in the past, while using the same attack on every system,

it seems that trivial replaying of malicious traffic is often enough to compromise a system

that has the same vulnerability.

When we look at network services in an abstract manner as event-driven systems, we

can categorise them into two types:

33

CHAPTER 4. REPLAY MECHANISMS

Stateless Protocols: In a stateless protocol, the server always remains in the same state

during the conversation. On an abstract level, protocols using SSL/TLS connection

only effect the transport of the protocol, and encrypted stateless protocols can for

our purposes still be viewed as stateless.

Stateful Protocols: In a stateful protocol, the server remembers the state it is in during

a conversation and processes client inputs accordingly.

We are particularly interested in stateful network-facing services as they expect

different inputs depending on their state; likewise, clients have to remember the state of

the session to issue valid requests. In the following discussion we call these states input

states because it is the next input that the application expects; otherwise the input is

discarded instead of being processed. Figure 4.1 shows the various input states of the

FTP protocol. After a connection has been established, the protocol expects to receive a

USER command with a valid username. Subsequently, the password is expected before

the user is either logged in or further account information is requested. If for example a

LIST command were issued by the client as the first command, the server would discard

the input instead of processing it because a LIST command can only be issued after a

successful login.

start USER . . . PASS . . . ACCT . . . FTP CMD
220 331 332 230

230

Any Response Code

Fig. 4.1: Different states an FTP client transitions into (circles) according to the
responses of a FTP server (arrows). The command ACCT is optional. FTP
CMD represents any valid FTP command after successful login.

Taking this information into account is vital because, as a result, there exists to the

best of our knowledge only two valid ways to replay an attack:

Brute-Force Replay: Given the single layer-5 PDU which led to the compromise of

one host, a second host that has the same vulnerability can be compromised by

replaying the single layer-5 PDU to each input state of the vulnerable service.

34

CHAPTER 4. REPLAY MECHANISMS

Exact Stream Replay: Given an entire layer-5 PDU conversation, which led to the

compromise of one host, a second host that has the same vulnerability can be

compromised by replaying the entire conversation as it was previously recorded.

Both of our approaches transfer the network service into the required state before sending

the compromising packet. This is necessary because packets which arrive in the wrong

input state are discarded.

4.1 Brute-Force Replay

In brute-force replay, a malicious layer-5 PDU is sent to all possible input states of an

application. The basis of brute-force replay is formulated in Assumption 2.

Assumption 2 When a system has multiple states and a particular input only succeeds

in one particular state, then sending the input to all possible states ensures that it succeeds

at least once.

Brute-force replay requires that all input states and the actions that are required to

transfer an application into a particular state are previously known. We call this set of

information a protocol handler.

35

CHAPTER 4. REPLAY MECHANISMS

Malicious

PDU
start1:

USER

anonymous
start

PASS

anonymous@

Malicious

PDU

Any

Response

Any

Response
2:

USER

anonymous
start

Malicious

PDU

Any

Response
3:

Fig. 4.2: Brute-force replays an attack to all input states of the FTP protocol in order
of likelihood.

Figure 4.2 shows an example of a protocol handler for FTP. As we have shown before,

the FTP protocol has four input states. By sending the malicious PDU as shown in

Figure 4.2, we reach all four states and a vulnerable system should become compromised.

4.2 Exact Stream Replay

In contrast to brute-force replay, exact stream replay does not need to know which

protocol is being used. Instead, the entire conversation which led to the compromise of

a SCA publisher is simply replayed by SCA verifiers. However to ensure that the attack

remains successful, we need to follow the guidelines mentioned in Section 3.4.1.

Exact stream replay is protocol-independent. One of the challenges this poses is that

we do not know if or when a network-facing service will send an answer to a PDU that we

have previously sent. An example of this is illustrated in Figure 4.1. A FTP service will

usually greet a newly connected client with a 220 Response Code and a custom welcome

message. The FTP service may discard any other commands sent by the client such as

USER, up until this message is successfully delivered. On the other hand, other services

36

CHAPTER 4. REPLAY MECHANISMS

do not send a welcome message e.g. HTTP. Consequently, we developed Algorithm 1 to

guarantee correct delivery of PDUs, while ensuring that all packets from the server are

received.

Algorithm 1 shows that we wait for a welcome message and then proceed to wait for

an answer for each layer-5 PDU that we send. However, regardless of whether we have

received an answer or not, after 100ms we proceed with sending the next PDU. We

felt that 100ms is a very generous timeframe because we expect that even slow services

would respond within this time, especially taking into account the fact that the verifier

and the vulnerable host can be arranged close enough to attain a very low latency.

Algorithm 1: Exact Stream Replay

Data: L as an ordered list layer-5 PDUs; Host as the IP and port of a host

Result: Each packet from L is replayed to Host

begin

1 socket = establish connection(Host)

2 receive data(socket)

3 foreach element p of L do

4 send data(socket, p)

5 receive data(socket)

6 close connection(Host)

7 return

Procedure receive data(socket)

8 Set timer to 100ms

9 start to countdown timer

10 while timer 6= 0 do receive from socket

11 return

4.3 Limitations

There are limitations to our suggested replay mechanisms, in which attacks cannot be

replayed or a valid SCA fails to succeed.

The most obvious limitation is when the SCA publisher uses a different operating

system, application version or configuration than the SCA verifier. However, because the

SCA verifier should use a DTA honeypot which closely mirrors a permanently audited

37

CHAPTER 4. REPLAY MECHANISMS

machine (PAM mirror), SCAs that do not verify should not jeopardise the system’s

security. Hence, the SCA only fails to verify when system is not vulnerable to the

attack. This is the desired outcome.

Secondly, SCAs may not verify because the SCA publisher or verifier has not been

configured as described in Section 3.4.1.

There also exists other types of possibly non-verifiable SCAs. Some of these can be

addressed, while others cannot:

IP-address/URL: Each host is assigned an IP-address and optionally a URL. Some

protocols such as HTTP require that a HOST field be specified, which contains

the IP or URL of the server. This has privacy implications and could disrupt

correct replaying because an IP or URL is unique to a host. However, given all

other parameters are configured generically, as mentioned ins Section 3.4.1, the

only remaining unique host-specific values are its network addresses: IP, URL and

MAC.

We suggest that SCA publishers identify all network addresses of their honeypots in

their unpublished SCAs. Every occurrence can then be replaced with a universally-

known unique string. After the SCA has been published and is received by a SCA

verifier, we search for the universally known unique string and replace it with the

IP-address or URL of the PAM mirror/DTA honeypot.

Run-time generated values: Some applications may generate unique or random values

for their application resources. An attack could be based on first extracting the

unique value and then using this value as part of an attack. Although such an

attack may exist in a proprietary protocol, we assume they are rare as we have not

found such an attack.

Using previously created malicious resources: There are attacks which may involve two

separate requests to the honeypot in order to launch an attack. In the first request,

data is submitted to the honeypot to create a new resource. In a second request

the new resource is then used to compromise the honeypot. Such a multistage

attack could for example include first creating a user account before using it in a

second request to compromise the system.

We can not effectively generate SCAs for these attacks as we only extract the

stream which led to the compromise because an attacker can wait an arbitrary

amount of time between the two requests and can easily change identities by using

forged IP- and MAC-addresses. This is not a Scargos-specific problem, but rather

38

CHAPTER 4. REPLAY MECHANISMS

an open problem since Vigilante [9] is also not able to generate a universally-

verifiable SCA for such an attack.

However, attacks that rely on creating a malicious resource beforehand and then

using the resource to compromise the server are rare. If at all, they are most likely

encountered as part of a targeted attack. In fact, none of the vulnerabilities that

we have found, including all of the most recent high profile attacks such as the

worms Slammer, Blaster, Sasser or Lsass use this technique.

This type of attack should not be confused with common staged attacks that utilise

techniques such as egg-hunting. With this technique a service is compromised twice

to place long arbitrary code into the machine’s memory, which would not otherwise

fit into one request. Egg-hunting is detected and can easily be verified because the

execution flow is manipulated in both requests.

Apart from the mentioned limitations, brute-force replay may have further limitations,

compared to exact stream replay. First, SCAs cannot be verified if no protocol handler

is present. Second, SCAs cannot be verified if the number of input states of the used

protocol is too high. Finally, attacks which consist of multiple layer-5 PDU cannot be

verified except when instead of single packet extraction, stream extraction is used to

generate the SCA, as described in Section 5.2.3. However, this would deteriorate many

of the performance advantages that brute-force replay has compared to exact-stream

replay.

4.4 Summary

Packet-based SCAs preserve the original content of an attack, which requires us to use

new approaches for verification mechanisms. In this chapter, we presented two replay

mechanisms to verify packet-based SCAs: brute-force replay and exact stream replay.

Verification is achieved by replaying the attack to a DTA honeypot and thus imitates

the original attack.

Brute-force replay requires that one packet be present, which eventually leads to the

compromise of a service. This packet is then sent to every possible input state of the

network-facing service. Thus, one of the input states that the packet is replayed to must

be the state in which the original service was compromised.

Exact stream replay requires that the entire stream of packets that led to the

compromise be present. Exact stream replay is protocol-independent and replays packets

sequentially as they have been decoded in the SCA.

39

CHAPTER 4. REPLAY MECHANISMS

Both replay mechanisms have limitations. They both require that the host which

created the SCA and the host to which the SCA is replayed on be configured in the

same way. Furthermore, there are edge cases, in which SCAs can be created but not

verified automatically, such as when a service uses randomly generated resources or when

a service was compromised by a certain targeted attack.

40

Chapter 5

Implementation

In this chapter we present how we implemented the three components of Scargos:

SCA publishing, SCA verification and the SCA repository. We presented two replay

mechanisms: brute-force replay in Section 4.1 and exact stream replay in Section 4.2.

Both approaches operate quite differently and expect different prerequisites. In order to

investigate both approaches, a different implementation was required for each suggested

approach as depicted in Figure 5.1. On the one hand, exact stream replay relies on

successful SCA generation of stream extraction, which in turn relies on the successful

outcome of either jump target memory block search, compromised memory block search

or exploit Ethernet frame search. On the other hand, brute-force replay relies on single

packet extraction which requires that an exploit Ethernet frame be successfully extracted

from the logs. In the following, sections we will outline how we implemented each of the

components.

41

CHAPTER 5. IMPLEMENTATION

Jump Target

Memory

Block Search

Compromised

Memory

Block Search

Exploit

Ethernet

Frame

Search

OR

Stream

Extraction

SCA

Distribution

Exact

Stream

Replay

Exploit

Ethernet

Frame

Single

Packet

Extraction

SCA

Distribution

Brute-Force

Replay

SCA

Generation

SCA

Verification

Fig. 5.1: Different processes are required to enable exact stream replay (left) and brute-
force replay (right).

5.1 SCA Repository

An SCA repository is responsible for receiving, storing, presenting and notifying about

SCAs. In our implementation we used Django 1.5.2 with the extension Django REST

Framework 2.3.6. By combining these programs we created a RESTful web service [13]

that offers its data in the JSON-format. Web services are well suited for distributing

and receiving data and also, RESTful web services provide high flexibility for further

42

CHAPTER 5. IMPLEMENTATION

processing, since virtually any programming language can process HTTP. Additionally,

an SCA repository can be operated using HTTPS and thus protect SCA verifiers from

being eavesdropped. By using JSON, JavaScript’s native object notation, the data of a

SCA repository is in a human-readable format and can easily be integrated into external

JavaScript applications. This facilitates using our data for other purposes such as a super

SCA repository which aggregates from all known SCA repositories. SCA repositories

offer the following functions:

Receiving and submitting application entrys: The SCA respository assigns each

application an ID. This ID has to be referenced in SCAs to refer to a specific

applications. New application IDs can be assigned via a HTTP request

immediately if SCA publishers or verifiers have applications installed, which do

not yet have an application ID.

Receiving and submitting SCAs: The SCA repository receives and provides SCAs. Like

application IDs, each SCA is assigned a unique ID. The process and composition

of SCAs is discussed in more detail in Section 5.1.1.

Sending a push-notification for every unique SCA: The SCA repository sends a push-

notification to all subscribers for every newly created SCA. Push-notifications are

described in more detail in Section 5.1.2

Aggregating versions: SCA repositories need to be able to detect duplicates. A duplicate

SCA is defined as an SCA which contains the same layer-5 PDU entry as another

SCA for the same application. In case duplicates are received, we discard all

of its content, except the specified version. The version is then appended to the

original SCA that was being duplicated. Because SCA verifiers can also act as SCA

publishers, many duplicates can be received once push-notifications have been sent

to all interested SCA verifiers.

Filtering SCAs: We suggests that SCA repositories use filters on their SCA listings to

improve look-up performance of SCA verifiers. Firstly, an application filter can be

applied to only show SCAs for particular applications because many SCA verifiers

may be mainly interested in their installed applications. Secondly, users can use

a SCA filter to only receive SCAs which were created after a certain previously

submitted SCA. We implemented this filter because users may not want to receive

SCAs that they have already assessed. We suggest that SCA verifiers store the ID

of their most recently checked SCA to benefit from using SCA filters. This filter

could also be used for polling algorithms if receiving push-notifications is not of

43

CHAPTER 5. IMPLEMENTATION

interest to the SCA verifier. Also, both mentioned filters can be combined in one

query. In our implementation, filtering is realised by using URL query strings.

5.1.1 Packet-Based Self-Certifying Alerts

Packet-based SCAs are an integral part of Scargos. All three components of Scargos use

SCAs as a mean of communication:

• SCA publishers create and publish SCAs when an attack is detected;

• SCA repositories store and distribute SCAs;

• SCA verification manager decides about the authenticity of a SCA and takes

appropriate actions.

SCAs always refer to a vulnerability of a specific network-facing service. By using unique

application IDs, all mentioned components can address a specific application. The IDs

are assigned by each repository individually and SCA publishers and subscribers need

to be aware of existing IDs for their surveilled application or create a new entry, if one of

the used application has not been registered yet. Figure 5.2 shows an application entry

for WFTPD Server. To assign an application ID, only the official application name and

the vendor needs to be specified. A unique application ID can be looked up for each

submitted application entry in a SCA repository.

Application ID: 1

Name: WFTPD Server

Vendor: Texas Imperial Software

Fig. 5.2: An example application entry with an assigned application ID by a SCA
repository.

SCAs use application IDs to refer to a vulnerability in an application and describe

the affected software version, the transport protocol, the affected port and the layer-5

PDUs. Figure 5.3 shows an example SCA of the application WFTPD Server with the

assigned application ID 1. Transport Protocol and port are given because an application

can serve on multiple ports using different transport protocols. If there is a standard

port specified by the IANA for the application’s use, then this port is to be included in

the SCA; otherwise the default port that the application is preconfigured with is used.

We define a layer-5 PDU as the transport-protocol payload, which is conventionally

44

CHAPTER 5. IMPLEMENTATION

contained in a TCP segment/UDP datagram. Packet-based SCAs contain a list of layer-

5 PDUs, where each list item corresponds to single layer-5 PDU. The layer-5 PDU list is

ordered, where the first element corresponds to the first PDU that was sent, the second

element to the secondly send PDU, and so on. Because requests often contain binary

data, each PDU is encoded using Base64.

Application ID: 1

Version: 3.23

Port: 21

Transport Protocol: TCP

Layer-5 PDUs: VVNFUiBhbm9ueW1vdXMNCg==\n
UEFTUyBtb3ppbGxhQGV4YW1wbGUuY29tDQo=\n
U0laRSAvHUc0JUIcs6kURvm4Q0sEtJE1tiywTgz4k3RPJ . . .

Fig. 5.3: An example SCA of the application WFTPD Server. The attack consists of
three Layer-5 PDUs, which are encoded using Base64. The last PDU has been
truncated and is 727-Bytes long.

5.1.2 Push-Notification

We term notifications that SCA verifiers receive for every newly submitted SCA push-

notifications. In our implementation we use Twisted 13.1.0 which is a highly-configurable

Python library for event-driven server architectures. Push-notfications are usually short

messages which contain the ID of an application for which a new SCA was submitted.

On receipt of this while using the application and SCA filter discussed in Section 5.1, the

SCA verifier would query the SCA repository for the all new SCAs of that application

ID. The SCA filter then ensures that the verifier only receives all SCAs that it has not

yet verified.

Push-notifications can be sent in two ways, either in single-channel mode in which

a SCA repository sends all push notifications to only one channel, or in multi-channel

mode in which the SCA repository offers a separate channel for each application ID.

When using the single-channel mode, a SCA verifiers may receive push-notfications about

applications that are of no interest to the verifier. However, when using multi-channel,

sensitive information could be disclosed, given that the PAM mirror is configured in the

same manner as a PAM in the internal network. This can be partially mitigated by

45

CHAPTER 5. IMPLEMENTATION

using encryption and adding random time delay for each push-notification sent to an

individual host. The drawbacks of each approach are shown in Table 5.1.

Method to distribute push-

notifications

Drawbacks

Single-Channel

All SCA verifiers receive the same information. Sensitive

information is can only be disclosed by the SCA verifier

itself.

Multi-Channel
Sensitive information is disclosed when the PAM mirror

is configured similarly to hosts in the internal network.

Encrypted Multi-Channel

Although encryption prevents eavesdroppers seeing

which push-notification was received, an attacker can

listen on all channels and infer from the timing that

a notification was sent and which applications was

used. Furthermore, an overhead is introduced by using

encryption.

Encrypted and Time-

Delayed Multi-Channel

Delaying the time a push-notification was sent by

a random amount can be semi-effective to prevent

information disclosure. An attacker could still create

multiple bogus SCAs and then decide which application

is used based on the received traffic. Additionally, the

receipt of a push-notification is delayed which may defeat

the purpose of push-notifications.

Table 5.1: Drawbacks of using different types of distribution methods for push-
notifications.

In our implementation, the SCA repository uses single-channel push notifications

because of the following reasons:

• Push-notifications are small and usually contain only one message, which specifies

the affected application. Hence, receiving push-notifications causes a minimal

overhead.

• Sending every SCA verifier all push-notifications is the only way to ensure that no

sensitive information is disclosed by SCA repositories. While the SCA verifier can

46

CHAPTER 5. IMPLEMENTATION

disclose which applications are used by querying the SCA repository right after

a certain push-notification was received, this can be easily prevented by the SCA

verifier itself. An attacker could for example not determine which specific FTP

application is used by a PAM mirror, if the SCA verifier requests a SCA for every

push-notification related to FTP-servers.

5.2 SCA Publisher

The SCA publisher is concerned with processing the logs of its DTA honeypot into a

SCA for publishing. SCA publishing consists of three steps:

1. A network-facing service of the SCA publisher’s honeypot is being attacked and

the threat is being detected.

2. The attack logs are analysed and relevant information is extracted.

3. A valid SCA is being produced and published to a SCA repository.

5.2.1 Attack Detection and Logs

Generally, the SCA publisher uses an DTA honeypot to automatically detects attacks.

In our implementation we use the Argos honeypot which is described in Section 2.3.2.

Argos automatically detects new attacks and instantly generates two log files:

session packet capture: Contains all of Argos’ network logs, which are all the packets

Argos has received while running. The data is contained in the argos.netlog and

can be exported as a pcap-File [14] using the Argos tool raw-2-pcap.

attack log: Contains the memory pages and other data that can be correlated with the

detected attack. The data is contained in the argos.csi and can be extracted

using Argos’ carlog tool of the cargos-lib.

The attack log is particularly interesting. It essentially consists of three types of data:

Exploit Ethernet Frame: The Ethernet frame which contains the attack that led to the

manipulation of the execution flow. It is extracted by Argos by looking at which

tainted data manipulated the execution flow and from which memory block the

data originated.

Compromised Memory Block: The memory block in which the execution flow was

manipulated.

47

CHAPTER 5. IMPLEMENTATION

Jump Target Memory Block: The memory block in which the arbitrary code is contained

that the manipulated execution flow was instructed to jump to.

5.2.2 Single Packet Extraction

For brute-force replay, described in Section 4.1, only the packet which led to the

compromise of the host is necessary to replay the attack. Because Argos already exports

the exploit Ethernet frame natively, the goal of the single packet extraction is to convert

Argos’ output into a valid layer-5 PDU.

Fig. 5.4: Truncated output for the command carlog -E argos.csi.660313445

argos.netlog using the logs of an attack against WFTPD Server running
in Argos with the ID 660313445.

Figure 5.4 shows the shell output of Argos’ carlog tool. By combining a variety of

Linux shell commands this output can be converted into a pcap-file, which enables

further analysis by tools like Scapy [18] or Wireshark [31]. Using Scapy we are able

to dynamically extract the layer-5 PDU of the exported exploit Ethernet frame and

information such as the destination port. The generated SCA is published to a SCA

repository by correlating the extracted information with information from the SCA

publisher’s global configuration file.

5.2.3 Stream Extraction

Aggregating all layer-5 PDUs of the TCP conversation which let to a compromise requires

more steps than single packet extraction. TCP stream extraction is necessary to create

a packet-based SCA for exact stream replay described in Section 4.2. We mentioned in

Section 5.2.1 the different outputs that Argos’ carlog tool produces from it logs. It is

48

CHAPTER 5. IMPLEMENTATION

essential that these logs are present to perform stream extraction. We extract a TCP

stream from these logs, by taking the following steps:

1. Extract a TCP package which is part of the larger conversation that led to the

exploit

2. Get the ID of the TCP conversation

3. Extract the conversation as pcap

4. Extract and reassemble the individual layer-5 PDUs

5. Create and submit the SCA to the SCA repository

5.2.3.1 Finding the compromising packet in a packet capture

Finding the compromising packet seems trivial by directly using the exploit Ethernet

frame in a similar way to single packet extraction, as described in Section 5.2.2.

Unfortunately, Argos can not effectively extract the Ethernet frame for all cases. In

Section 6.1.2 we discuss the likelihood that the correct data is found. Our experiments

showed that if Argos was unable to extract the data, a random UDP packet was exported

instead. We can only suspect that this is an implementation error or the false result of

an operation. However, this shows that the generation of the exploit Ethernet frame is

rather unreliable.

To circumvent the problem, we instead leverage other parts of the attack log. Both

the compromised memory block and the jump target memory block contain data that

must have been present in the original attack. The goal of Overwrite attacks is to

manipulate the execution flow and thus always manipulate the data of some memory

block. The two memory blocks that Argos extracts for us both are directly connected to

the TCP conversation which led to the exploit. The jump target memory block contains

the arbitrary code an attacker wants to execute on the machine. On the other hand, the

compromised memory block is the memory block in which the execution was manipulated

and thus contains external data which enabled the manipulation. Because the attacker

injected the data in both memory blocks by means of exploiting a vulnerability, the data

is contained somewhere in the packet capture. Taking this information into account we

can formulate Assumption 3.

49

CHAPTER 5. IMPLEMENTATION

Assumption 3 Given that the conversations received by a compromised host along

with the manipulated memory block are available, the conversation which led to the

compromise is most likely the conversation which shares the Longest Common Substring

with the manipulated memory block.

Using suffix trees the longest common substring problem can be solved in O(n) [2, 15],

whereas n is the length of the longest text input. Because n can be quite large, as it

usually contains all packets that Argos has encountered while running, the algorithm

can significantly impact overall performance. In our experiments in Section 6.1.2 we

show that the first couple of substrings of one of our memory blocks is often sufficient

to find the compromising packet, which leads to a much better performance of O(1).

Algorithm 2 shows the entire algorithm that we use and has a worst-case performance

of O(n/m), where m is the minimum length that a string has to be. As a consequence,

we us a weaker version of Assumption 3 depending on the type of memory block:

Jump Target Memory Block Search: The jump target memory block starts with the first

byte of arbitrary code that an attacker injected. Thus by taking a long enough

sequence of bytes, one packet should carry the same byte sequence, which is the

packet that injected the code. We use Algorithm 2 for the search, but instead

of continuously increasing the position for our search, we decrease the substring

length to a minimum point because the jump target always includes the correct

byte sequence which the attacker wanted to execute. In our implementation we

use a minimum substring length of 50 Bytes.

Compromised Memory Block Search: The compromised memory block may also contain

other data that is unrelated to the attack; thus we take a predefined byte sequence

length interval, extract parts of the memory with a certain interval length and

search the session packet capture for any matching packets with the same byte

sequence. If unsuccessful we increase the offset by the interval length and take the

next byte sequence. We use Algorithm 2 for our search with a minimum substring

length of 15 Bytes.

Exploit Ethernet Frame Search: We extract the layer-5 PDU of the Ethernet frame and

proceed with the same search algorithm as for the compromised memory block

search

Similar to the exploit Ethernet frame which cannot always be extracted by Argos,

the jump target memory block also fails to be exported in some instances. Thus, we

50

CHAPTER 5. IMPLEMENTATION

combine all three methods to extract a package that is part of the attacking TCP stream.

We evaluated the likelihood of encountering a false packet and the overall accuracy is

described in Section 6.1.2.

Algorithm 2: Compromising Packet Search Algorithm

Data: pcap as the session packet capture;

mem as the manipulated memory block or compromising Ethernet frame;

substringlength the length of the substring that is to be searched with;

Result: The compromising packet within the packet capture

begin

1 position = 0

2 repeat

3 substring=get substring(mem,substringlength, position)

4 result=get string position(pcap, substring)

5 position = position + substringlength

until result 6= ∅ or position = length(mem)

6 return result

5.2.3.2 Extracting TCP streams

In order to create a valid SCA for exact stream replay, we need to extract the entire

stream of packets sent by the attacker by using the single packet that we already have

extracted. Our implementation is simplified by using available tools to aid stream

extraction. The tool Wireshark [31] offers a command-line version of its tool called

tshark. Using tshark we can apply filters on packet capture files. One of the features

tshark/Wireshark offers it that every TCP stream is assigned a unique ID, which we call

stream ID. By using the payload of our single package, we filter in our packet capture file

for the same packet, but output the stream ID. Subsequently, we use this ID to extract

the entire stream.

5.2.3.3 Generating SCAs from TCP streams

Having the TCP stream, the next step to create a valid SCA is to extract all layer-5

PDUs. We discard packets that do not carry any payload such as SYN, ACK, FIN,

RST as well as any retransmissions, and then use the tool scapy [18] to extract all layer-

5 PDUs. Unfortunately, a layer-5 PDU might be segmented and reassembly becomes

51

CHAPTER 5. IMPLEMENTATION

necessary to create to an equivalent PDU. In our implementation, we do the reassembly

ourselves by reassembling all TCP packets which acknowledge the same previously sent

packet. The layer-5 PDUs are then used to create a SCA by combining it with any

information that has been set in the SCA publisher’s configuration such as version and

application ID.

5.3 SCA Verification

SCA verification is initiated by the SCA verifier. The SCA verifier maintains a PAM

list, which we have briefly mentioned in Section 3.4. This list contains all the application

IDs of all installed services on the PAM mirror, which we implemented as part of the

SCA verifier’s configuration file. Simultaneously, the SCA verifier listens for new push-

notifications, which are sent by the SCA repository. If a new push-notification is received,

which contains one of the IDs of the PAM list, the SCA verifier issues a HTTP request

to the SCA repository, to receive all SCAs that have not been verified yet using the

SCA repository filters mentioned in Section 5.1. The received SCAs are then replayed

one after the other using one of our proposed methods: brute-force replay or exact

stream replay. If the verification manager detects an attack using its DTA honeypot,

the corresponding SCA is valid; otherwise it is invalid after a timeout.

5.3.1 Brute-Force Replay

The mechanisms of brute-force replay have already been discussed in Section 4.1.

Brute-force replay sends a malicious PDU to all possible input states and relies on

the implementation of a protocol handler. The malicious PDU needs to be previously

extracted, as we have described in Section 5.2.2.

Protocol handlers are necessary to be able to replay a packet to all input states.

Thus, it is vital that the protocol used is publicly known. In our implementation, a

new protocol handler inherits from an abstract base class. The handler has to specify

the IANA standard port of the protocol and a function which takes as an argument the

layer-5 PDU and a host IP to which the payload is replayed to. When the replay function

of a protocol handler is being called it is desirable that the input states that most likely

get compromised are attacked first. This is to shorten the average time frame that

brute-force replaying takes. In Section 4.1 we showed Figure 4.1 to depict the process

of brute-force replay. Figure 4.1 also depicts how we designed the protocol handler

for the FTP protocol to achieve best performance. First, we send the malicious PDU

when the USER command would be expected. Our experimental evaluation, discussed

52

CHAPTER 5. IMPLEMENTATION

in Section 6.2.1.1, shows that the USER command seems to be among the most common

attack vectors. Also, sending only the USER command is fastest to execute because it

consists of only one command. We choose to issue the second malicious PDU after the

PASS command because our experiments have shown that it is the second most likely

attack vector. Also, sending the PDU after the PASS command includes vulnerabilities in

the ACCT command. Finally, an attack on the PASS command is sent last, since we have

found no PASS attack vectors in our selection of FTP attacks, which indicates that this

type of attack is rather unlikely. During brute-force replay, we ignore any response codes

that the servers issues to us, as they might be a predictor as to whether a particular

state transfer was successful. However, given that not much can be changed to re-ensure

the state transfer, overall response codes are irrelevant for the success or failure of an

attack.

5.3.2 Exact Stream Replay

While brute-force replay relies on the implementation of a protocol handler, exact

stream replay is protocol-independent. Hence, we only need to dissect and decode each

individual PDU from the layer-5 PDU list and then send it to the vulnerable service

accordingly. Replaying is non-trivial because it is protocol-independent, and as a result

we describe it further in Section 4.2. Although Algorithm 1 works fast for SCAs with

few layer-5 PDUs, performance is significantly limited by the timeout value. If a process

responds faster than within the set timeout value, it stays idle, while we could have sent

the next layer-5 PDU.

As a result, we developed Algorithm 3 for our implementation for SCAs that include

more than one layer-5 PDU. In this algorithm, the next layer-5 PDU is sent either when

a timeout occurs, or directly after a consecutive data block was received by the client.

We increased the timeout value to 150ms because the chances of taking longer to deliver

a packet are higher with multiple packets and also we cannot fit in other computational

tasks before we receive an answer as we did in Algorithm 3 by decoding all SCA packets.

While lower timeout values may also lead to better performance, an SCA may not

verify if it is set too low. Defining the timeout inherently depends on the latency between

SCA verifier and its DTA honeypot as well as the performance of the network-facing

service. Given that both values can fluctuate quite a bit, the maximum timeout can only

be estimated empirically. Our chosen timeout values of 100ms or 150ms respectively

worked well for all of our tested attacks.

53

CHAPTER 5. IMPLEMENTATION

Algorithm 3: Exact Stream Replay for multiple layer-5 PDUs

Data: L as an ordered list layer-5 PDUs; Host as the IP and port of a host

Result: Each packet from L is replayed to Host

begin

1 socket = establish connection(Host)

2 receive data(socket)

3 foreach element p of L do

4 send data(socket, p)

5 receive data(socket)

6 close connection(Host)

7 return

Procedure receive data(socket)

8 Set timer to 150ms

9 start to countdown timer

10 repeat
receive data from socket

until timer = 0 or data 6= ∅
11 return

54

Chapter 6

Experimental Evaluation

This chapter evaluates Scargos by discussing a variety of experiments. We implemented

Scargos as a prototype on a x86 machine running Linux 3.5.0 and using Argos 0.5.0 as

DTA honeypot. Experiments were being done on a Intel(R) Core(TM) i3 CPU M 370

which is a 2.40GHz dual-core processor with 4GB RAM.

Application Name Version Vendor

3CDaemon 2.0.10 3Com Corp,

Dream FTP Server 1.02 BolinTech Inc.

FileCopa FTP Server 1.01 InterVations, Inc

FreeFloat FTP server 1.0. FreeFloat

Sami FTP Server 2.0.1 KarjaSoft

WAR-FTPD 1.65 Jarle Aase

WFTPD 3.23 Texas Imperial Software

Savant Web Server 3.1 Michael Lamont

Win.: MS05-039 (PnP) — Microsoft

PCMan’s FTP Server 2.0. PCMan

freeSSHd 1.0.9 WeOnlyDo

freeFTPd 1.0.8 WeOnlyDo

Apache HTTP Server 1.3.24 Apache Software Foundation

BadBlue Enterprise 2.72b Working Resources Inc.

Light HTTP Daemon 0.1 The LHTTPd Development Team

KNET 1.04b Zero Point Five

Continued on next page

55

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.1: (continued)

Application Name Version Vendor

Kolibri 2.0. Fedja Stevanovic

Xitami 2.5c2 iMatix

Win.: MS03-026 (RPC) — Microsoft

Win.: MS04-011 (LSASS) — Microsoft

Mercury/32 Mail 4.51 NetWare Systems

IntraSrv Web Server 1.0. Leigh Brasington

Mdeamon PRO 8.03 Alt-N Technologies

Win.: MS08-067 (NetAPI) — Microsoft

Table 6.1: Applications and versions we used during our experiments. Windows are
abbreviated as Win and include the appropriate Microsoft security bulletin
ID for the exploited vulnerability that we have chosen.

Figure 6.1 show the different applications and used versions that we attacked as

part of our evaluation. Scargos is evaluated with real attacks, which we have listed

in the Appendix in Figure A.5. We have included high profile attacks against Windows

and Apache. The vulnerability MS03-026 (RPC) was for example used in the Blaster

Worm [3] and infected 100,000 Microsoft Windows hosts within one week; some estimate

that a total of 500,000 hosts had once been infected [9].

Likewise, the Sasser [39] worm uses vulnerability MS04-011 (LSASS) and is

estimated to have infected over 250,000 Windows computers. More recently the worm

Conficker [11] uses MS08-067 (NetAPI) to infect millions of hosts. The virus downloads

arbitrary files and disables security related system settings. In the second quarter of

2011, Microsoft reported that still about 1.7 million hosts were infected by Conficker.

While attacks against operating system services certainly offer a large pool of victims,

it is important to also consider threats on other services. Metasploit is an open-source

framework for launching automated attacks and offers insight into which services are

most likely to be attacked by intruders.

56

CHAPTER 6. EXPERIMENTAL EVALUATION

H
T
T
P

FT
P

SC
A
D
A

SM
B

C
A

A
R
C
se

rv
e
Se

rv
ic
es

IM
A
P

N
ov

el
l Se

rv
ic
es

M
ic
ro

so
ft

SQ
L

II
S

SS
H

SM
T
P

0

20

40

60

80

100

106

54

24
19 19 16

9 8 8 6 6

N
u

m
b

er
of

at
ta

ck
s

Fig. 6.1: The number of available windows server attack per protocol per application.
The results were aggregated from the open-source attack framework
Metasploit.

Figure 6.1 show the number of available attacks per protocol in the Metasploit

framework. We can see that while there are a number of attacks on Windows SMB service

(19 attacks), most threats exists for HTTP (106 attacks) and FTP (54 attacks). One of

the reasons might be that there are many HTTP and FTP servers openly accessible on

the Internet, while other protocols maybe often hidden behind firewalls or offer less of

an attack surface. When comparing Windows to Linux in terms of number of attacks,

we found there a total of 853 Windows attacks, while only 94 attacks for Linux exists.

Application Name Operating System Protocol

3CDaemon Windows 2000 (SP0) FTP (21)

Dream FTP Server Windows 2000 (SP0) FTP (21)

FileCopa FTP Server Windows 2000 (SP0) FTP (21)

FreeFloat FTP server Windows 2000 (SP0) FTP (21)

Sami FTP Server Windows 2000 (SP0) FTP (21)

WAR-FTPD Windows 2000 (SP0) FTP (21)

Continued on next page

57

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.2: (continued)

Application Name Operating System Protocol

WFTPD Windows 2000 (SP0) FTP (21)

Savant Web Server Windows 2000 (SP0) HTTP (80)

Win.: MS05-039 (PnP) Windows 2000 (SP0) MS SMB (445)

PCMan’s FTP Server Windows XP (SP0) SFTP (22)

freeSSHd Windows XP (SP0) SSH (22)

freeFTPd Windows XP (SP0) SFTP (22)

Apache HTTP Server Windows XP (SP0) HTTP (80)

BadBlue Enterprise Windows XP (SP0) HTTP (80)

Light HTTP Daemon Windows XP (SP0) HTTP (80)

KNET Windows XP (SP0) HTTP (80)

Kolibri Windows XP (SP0) HTTP (80)

Xitami Windows XP (SP0) HTTP (80)

Win.: MS03-026 (RPC) Windows XP (SP0) MS DCE/RPC (135)

Win.: MS04-011 (LSASS) Windows XP (SP0) MS SMB (445)

Mercury/32 Mail Windows XP (SP2) SMTP (25)

IntraSrv Web Server Windows XP (SP2) HTTP (80)

Mdeamon PRO Windows XP (SP2) IMAP (143)

Win.: MS08-067 (NetAPI) Windows XP (SP2) MS SMB (445)

Table 6.2: Overview of the protocol each application uses and the operating system we
have conducted the experiments on.

In the light of this data, our selection of applications seems to be well-suited to the

current threat level. Table 6.2 shows which protocols our selected applications use and

which operating systems we used for our experiments. The majority of evaluated attacks

are Win32 HTTP and FTP server applications as well as attacks on native windows

services, which covers the group of applications that is most likely being attacked in the

wild.

6.1 Accuracy

A high accuracy is vital to ensure Scargos’ widespread use. We define accuracy of Scargos

as having a high probability to generate and verify SCAs correctly. When evaluating

58

CHAPTER 6. EXPERIMENTAL EVALUATION

accuracy it is important to look at all parts which can effect the result. In Scargos,

accuracy depends on three components:

Argos: We use Argos as our DTA honeypot and rely on the correct detection of attacks.

SCA can not be created, if attacks remain undetected.

Packet Extraction: The SCA publisher relies on a robust algorithm to extract the needed

packets. If packet extraction fails, no SCA can be published.

Packet Replay: The SCA verifier needs a replay algorithm that can successfully replay

SCAs such that honeypots become compromised. If packets cannot be replayed

or are replayed in a manner that the attack fails, false negatives occur because

correct SCAs are not verified.

In our accuracy experiment, we tested all three components and subcomponents by

conducting 10 runs for each of our selected applications shown in Table 6.1.

Packet Extraction Packet Replay

Application Name
Argos

DTA

Jump

Target

Memory

Block

Compro-

mised

Memory

Block

Exploit

Ethernet

Frame

Brute-

Force

Exact

Stream

Mercury/32 Mail — — — — — —

Mdeamon PRO — — — — — —

3CDaemon J J — — — J

Dream FTP Server J J — — — J

FileCopa FTP Server J — J J J J

FreeFloat FTP server J — J J J J

Sami FTP Server J — J J J J

WAR-FTPD J — J J J J

WFTPD J — J J J J

Savant Web Server J — J J J J

MS05-039 (PnP) J J — — — J

Continued on next page

59

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.3: (continued)

Packet Extraction Packet Replay

Application Name
Argos

DTA

Jump

Target

Memory

Block

Compro-

mised

Memory

Block

Exploit

Ethernet

Frame

Brute-

Force

Exact

Stream

PCMan’s FTP Server J — J J — J

freeSSHd J — J J —? J

freeFTPd J — J J —? J

Apache HTTP Server J J J — — J

BadBlue Enterprise J J — — — J

Light HTTP Daemon J — J J J J

KNET J — J J J J

Kolibri J — J J J J

Xitami J — J J J J

MS03-026 (RPC) J — J J —? J

MS04-011 (LSASS) J — — J —? J

IntraSrv Web Server J J J — — J

MS08-067 (NetAPI) J — J J —? J

Table 6.3: Success or Failure of each component/subcomponent to process its previous

input correctly. The symbol J signifies success, — signifies failure and —?

means we did not implement the protocol used by the application. Failure in
packet extraction are either due to that no logs were generated successfully
or no matching packet could be found in the session packet capture.

6.1.1 Argos

During our experiments we worked extensively with Argos, as it is was our selected

approach to detect attacks. Argos uses DTA as described in Secion 2.2, which is known

to have a very low false negative rate. However, the results from Table 6.3 show, that

out of our 24 applications an attack against Mercury Mail and Mdeamon Pro was not

60

CHAPTER 6. EXPERIMENTAL EVALUATION

detected by Argos and successfully circumvented its DTA. We can not say with certainty

why Argos did not detect the attack, but can only suspect that it is due to:

1. under-tainting as described in Section 2.2.2.2.1;

2. a bug in the implementation;

3. or Argos was trusting input, which should not be trusted as described in

Section 2.2.2.2.2.

Due to the detection failure, we can not create a SCA and all the following steps fail

accordingly.

Fig. 6.2: An attack is successfully launched against Mercury/32 Mail 4.51 on Windows
XP SP2 while circumventing Argos DTA detection. We use the Metasploit
Framework to exploit a weakness in the SMTP CRAM-MD5 handling and
inject a payload to open a message box on the client saying “Attack successful”.

61

CHAPTER 6. EXPERIMENTAL EVALUATION

6.1.2 SCA Generation

In order for SCA generation to succeed, it is of vital importance that we find the correct

stream/packet which led to the compromise of the host. We described two ways to

accomplish packet extraction: single packet extraction, described in Section 5.2.2 and

stream extraction, further described in Section 5.2.3. Both ways rely on the success of

particular algorithms. While single packet extraction relies on the successful generation

of the exploit Ethernet frame, stream extraction relies on the success of either of the

following:

Jump Target Memory Block Search: Substrings of the jump target memory block are

used to search for a matching packet in the session packet capture.

Compromised Memory Block Search: Substrings of the compromised target memory

block are used to search for a matching packet in the session packet capture.

Exploit Ethernet Frame Search: Substrings of the exploit Ethernet frame are used to

search for a matching packet in the session packet capture.

In contrast to single packet extraction, in stream extraction just one of the described

search algorithms must be successful to ensure the success of SCA generation. However,

if the correct exploit Ethernet frame is available, both methods will succeed because we

are always able to find the same packet in the session packet capture. Unfortunately,

generating the exploit Ethernet frame from Argos’ logs is also an unreliable approach

because if no packet could be found a random packet is returned.

Table 6.3 shows the results of our experiments: packet extraction is inherently

unreliable. The results show that there is no method which consistently extracts

a packet/stream correctly. This is mainly due to the fact that Argos cannot

always determine the right memory block and neither can it reliably trace back the

compromising data to export the correct exploit Ethernet frame. Furthermore we do

not use the longest common substring method because it is too slow; instead, our search

algorithm simply uses substrings of the generated memory block results to find matching

packets in the session packet capture. This may contribute to some false negatives in

the results. The most reliable method is using the compromised memory block search,

while the most unreliable is using the jump target memory block.

We gathered more detailed results about the SCA generation algorithms we used

in Table 6.4. It shows that either our algorithm is successful in its first or second

run, or it searches through the entire block before ending up with no results. That

results are generated either in the first few runs or never helps us to adopt our solution

62

CHAPTER 6. EXPERIMENTAL EVALUATION

to improve performance, as further discussed in Section 6.2.2. However, one of the

remaining questions is: why do the searches exhaust without any results? When our

search exhausts, no matching packet is found in the session packet capture with different

substrings of the memory block. We suggest two possibilities: firstly, a false memory

block was exported, or secondly, no consecutive, at least 15 byte long byte sequences

were pushed by an attacker into the appropriate memory block during the attack. Given

that false packets could be exported at times and that there are maybe other packets

with the same byte sequence as the one we use in our search, the question remains,

how likely is it to find a packet in the session packet capture which in fact belongs to

another unrelated non-compromising conversation. We try to mitigate the probability

of such an event by requiring that a minimum amount of consecutive bytes be used as a

substring to search for in the packet capture. The minimum substring length for jump

target memory block search is 50 Bytes and for compromised memory block search it is

15 Bytes, which leads to a very low probability of finding an unrelated packet.

Number of Runs

Application Name

Length

of all

layer-5

PDUs

in Bytes

Jump

Target

Memory

Block

Search

Compromised

Memory

Block

Search

Exploit

Ethernet

Frame

Search

3CDaemon 2055 1 —? —?

Dream FTP Server 1049 1 — —

FileCopa FTP Server 815 — 1 1

FreeFloat FTP server 571 — 1 1

Sami FTP Server 567 —? 2 1

WAR-FTPD 1031 — 1 1

WFTPD 579 — 1 1

Savant Web Server 401 —? 1 1

Win.: MS05-039 (PnP) 3266 1 —? 19 (false packet)

PCMan’s FTP Server 5007 — 1 1

freeSSHd 20272 — 1 1

freeFTPd 20609 — 1 1

Apache HTTP Server 7145 1 1 —?

Continued on next page

63

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.4: (continued)

Number of Runs

Application Name

Length

of all

layer-5

PDUs

in Bytes

Jump

Target

Memory

Block

Search

Compromised

Memory

Block

Search

Exploit

Ethernet

Frame

Search

BadBlue Enterprise 4285 1 — —?

Light HTTP Daemon 782 — 1 1

KNET 1039 — 1 1

Kolibri 1013 — 1 1

Xitami 857 — 1 1

Win.: MS03-026 (RPC) 2272 —? 1 1

Win.: MS04-011 (LSASS) 11287 — —? 1

IntraSrv Web Server 4792 1 1 —?

Win.: MS08-067 (NetAPI) 7711 —? 2 1

Table 6.4: Number of runs each search algorithm needs to perform to find a substring
that matches a packet from the session packet capture. — signifies that
Argos was not able to export the needed memory block/Ethernet frame or
the export was too short (below 90 Bytes) and —? signifies that a log file was
generated by Argos, but no matching packet could be found in the packet
capture using our search algorithm. false packet indicates that the correct
matching packet was found but by using a falsely exported Ethernet frame.

If Argos cannot export the correct Ethernet frame, it returns an arbitrary packet. In

all our tested cases this was a small UDP packet. To reduce the chances of rediscovering

the same falsely-exported packet in the session packet capture, we restrict our exploit

Ethernet frame search to only look for TCP packets. This circumvention backlashes

as we can see when looking at the results of vulnerability MS05-039 (PnP). In this

case, Argos exported a DHCP packet instead of a packet form the attacking stream.

Interestingly, using our algorithm we still correctly retrieved the right packet. The

chances of discovering the correct packet instead of an unrelated one are higher because:

1. Argos might not return a completely random packet, when it cannot find the

correct packet, but rather a packet which may be similar byte-wise;

64

CHAPTER 6. EXPERIMENTAL EVALUATION

2. when two packets are discovered at once during our search, we return the newest

packet.

However, this example shows that there is a high risk involved when using the exploit

Ethernet frame logs, as it can lead to generating a false SCA.

Our accuracy results for SCA generation are summarised in Table 6.5. When using the

jump target memory block search, we have a mediocre chance of being successful to find

a matching packet, while the risk of discovering an unrelated packet is very low. Using

the compromised memory block seems to combine the best of both worlds: we have

a very good chance of finding a matching packet and the risk of getting an unrelated

packet is relatively low. Using the exploit Ethernet frame for searching can only be

recommended as a last means, as the risk of detecting a false packet is comparatively

high.

In conclusion, we can say that the best approach to finding a matching packet of

the attackers’ conversation is by combining all three methods in the following order:

compromised memory block search, jump target memory block search and exploit

Ethernet frame search. This way we only use the more risky exploit Ethernet frame

search when the other methods have failed.

65

CHAPTER 6. EXPERIMENTAL EVALUATION

Successful

Packet

Extractions

Probability to generate false results

Jump Target

Memory

Block Search

6 Very low: We start with a substring length of 600

Bytes and stop the search after using a substring

length of 50 Bytes. In the worst case, the probability

of a encountering a unrelated packet from another

stream depends on the number of packets in the

session packet capture and is: numberofpackets
4002

Compromised

Memory

Block Search

17 Low: We use a substring length of 15 Bytes. The

probability of encountering a different packet with

the payload depends on the number of packets in

the session packet capture and is: numberofpackets
1202

Exploit

Ethernet

Frame

Search

16 High: Argos returns a random packet if it was

unsuccessful to generate the exploit Ethernet frame.

Table 6.5: Combined overview of the accuracy results for SCA generation.

6.1.3 SCA Verification

SCA verification can be done in two ways: brute-force replay or exact stream replay.

Table 6.3 shows the results of our accuracy experiments. Brute-force replay depends on

the success or failure of Argos’ exporting the correct exploit Ethernet frame. Our results

show that brute-force replay fails when either no packet is exported or an incorrect

exploit Ethernet frame is extracted. Furthermore, brute-force replay requires that an

appropriate protocol handler has been developed. For our experiments we implemented

a handler for HTTP and FTP. Lastly, the table shows that a vulnerability in PCMan’s

FTP Server failed to be verified. The reason for this is that the exploit Ethernet frame

only exports a single frame, while the the original attack against PCMan’s FTP Server

consisted of two constituent Ethernet Frames. Stream reassembly would be necessary

to enable correct verification as we have implemented it in exact stream replay, but this

would also significantly decrease performance of SCA generation for brute-force replay.

In our implementation, we have different search algorithms for stream extraction. If

one search fails to find a matching packet, we use the next algorithm; thus only one

66

CHAPTER 6. EXPERIMENTAL EVALUATION

the algorithm needs to succeed to generate a correct SCA for exact stream replay. By

combining compromised memory block search, jump target memory block search and

exploit Ethernet frame search, it turns out that we always find the correct compromising

packet in the session packet capture to generate a SCA. Furthermore, we have tested all

generated SCA with exact stream replay and correctly verified every SCA each time.

6.2 Performance

In the following, we want to measure the performance of verifying and generating packet-

based SCA as well as the overall performance of Scargos. We then compare our results

with the results of Vigilante [9]. We define performance as the speed in which a process

finishes successfully.

6.2.1 SCA Verification

SCA verification performance differs greatly depending on the used variant. We proposed

exact stream replay and brute-force replay. While both protocols suffer from relying

the performance of the attacked service, in general, exact stream replay has a lower

performance, but is protocol independent.

When we measure SCA verification performance, we measure the time beginning from

when the SCA verifier fully received a SCA from a SCA repository until the SCA verifier’s

DTA honeypot alerts the verification manager that a compromise occurred.

6.2.1.1 Brute-Force Replay

As we have discussed in Section 5.3.1, brute-force replay sends a malicious layer-5 PDU

to every possible input state of an application to ensure that one of the input states is

the correct one. Brute-force replay requires that a protocol handler be implemented for

every protocol that is to be attacked. Hence, performance decreases with the number

of input states. We have implemented two protocols for brute-force replay: HTTP and

FTP. While HTTP is stateless and thus only one input state exists, as we depicted in

Figure 4.1, FTP has four input states that can be reached by sending layer-5 PDUs

at three different times: after the welcome message, after the user command and after

being successfully logged in. We need to define the priority in which each input state is

being tried because sending requests takes time. We analysed the attack vectors of our

vulnerable FTP applications and compiled them in Figure 6.3. In our scenario, five FTP

attacks targeted the USER command, which is usually issued after the welcome message,

67

CHAPTER 6. EXPERIMENTAL EVALUATION

and three attacks used commands which would usually be issued after being logged in.

We gathered no attack which targeted the PASS command. We used this data to adapted

the priorities of the FTP protocol handler accordingly in the following order:

1. We send the payload after the welcome message, which requires to issue no other

layer-5 requests beforehand.

2. We send the payload after authenticating, which requires to issue two layer-5

requests (USER and PASS).

3. We send the payload after the USER command, thus one layer-5 requests needs to

be issued beforehand.

We believe that this is a good order of priorities because item 1 can be done quickly and

also is being used by many attacks. Thus, even though our pool of tested applications is

small, putting attacks on the USER command first seems to be a good choice. The rest

of the ordering results from the fact that attacks on the PASS command seem rare.

USER LIST SIZE
0

1

2

3

4

5
5

2

1N
u

m
b

er
of

o
cc

u
re

n
ce

s

Fig. 6.3: Number of times each FTP command was used as an attack vector. Further
details can be found in Table A.1

68

CHAPTER 6. EXPERIMENTAL EVALUATION

SCA Generation SCA Verification

Application Name

Number
of L5-
PDUs

Length
of all L5-
PDUs
(bytes)

Single Packet
Extraction (ms)

Brute-Force
Replay (ms)

FileCopa FTP Server 3 815 36.67 168.49

FreeFloat FTP server 1 571 26.97 49.74

Sami FTP Server 1 567 37.37 512.65

WAR-FTPD 1 1031 52.04 795.31

WFTPD 3 579 44.41 350.91

Light HTTP Daemon 1 782 32.03 37.33

KNET 1 1039 37.4 188.67

Kolibri 1 1013 31.29 5153.4

Xitami 1 857 31.64 260.3

Table 6.6: Performance of single packet extraction and brute-force replay in relation to
number and size of layer-5 PDUs (L5-PDUs). The results are the average of
10 runs. Standard deviations are shown in Table A.4.

6.2.1.2 Exact Stream Replay

We compiled the results of evaluating exact stream reply and stream extraction in

Table 6.7. When evaluating exact stream replay, the results seem at first glance quite

mixed and a general pattern is not easily found. The application vulnerabilities that can

be verified the fastest targets FreeFloat FTP server, while the slowest is targeting Kolibri.

At first glance, there is not much difference between the two SCAs, as both need only

one request to compromise the target. While Kolibri’s SCA does carry twice as many

bytes as FreeFloat FTP server, other attacks such as the attack against freeFTPd carry

20x more bytes and are still much faster than Kolibri. This implies that there is another

factor that affects the performance of exact stream replay, which is the performance of

the attacked applications and its time to process the attack.

Applications that should have a high performance and behave quite uniformly are

system services offered by Windows itself. Yet, if we look at the performance of these

applications, we see quite a fluctuation. The reason for this lies in our implementation.

Exact stream replay waits after each request was sent 100ms for a reply from the server

as explained in Section 5.3.2. This enables exact stream replay to be very accurate

and protocol-independent, since the attacked applications transitions into its next input

state automatically. However, the downside of a timeout is poorer performance.

69

CHAPTER 6. EXPERIMENTAL EVALUATION

SCA Generation SCA Verification

Application Name

Number

of L5-

PDUs

Length

of all L5-

PDUs

(bytes)

Stream

Extraction

(ms)

Exact Stream

Replay (ms)

3CDaemon 1 2055 927.12 171.08

Dream FTP Server 1 1049 488.5 1937.52

FileCopa FTP Server 3 815 475.34 238.68

FreeFloat FTP server 1 571 684.73 126.47

Sami FTP Server 1 567 696.28 822.31

WAR-FTPD 1 1031 697.91 890.91

WFTPD 3 579 471.96 727.71

Savant Web Server 1 401 487.75 164.26

Win.: MS05-039 (PnP) 13 3266 487.42 442.1

PCMan’s FTP Server 1 5007 839.07 297.76

freeSSHd 1 20272 504.1 241.8

freeFTPd 1 20609 500.86 229.17

Apache HTTP Server 1 7145 851.3 498.38

BadBlue Enterprise 1 4285 537.43 185.54

Light HTTP Daemon 1 782 702.87 128.81

KNET 1 1039 716.1 242.09

Kolibri 1 1013 485.1 5103.76

Xitami 1 857 854.32 401.56

Win.: MS03-026 (RPC) 2 2272 488.12 207.06

Win.: MS04-011 (LSASS) 27 11287 980.18 494.18

IntraSrv Web Server 1 4792 505.89 180.28

Win.: MS08-067 (NetAPI) 36 7711 760.74 754.17

Table 6.7: Performance of stream extraction and exact stream replay in relation to
number and size of layer-5 PDUs (L5-PDUs).

In Figure 6.4 we contrast the verification performance of Windows system services in

relation to the layer-5 PDUs. We also added the average of all remaining applications,

which have between one and three layer-5 PDU per attack. The graph clearly shows

that the performance of exact stream replay depends directly on the number of layer-5

PDUs that the SCA contains.

70

CHAPTER 6. EXPERIMENTAL EVALUATION

M
S03

-02
6 (R

PC):
1 PDU

M
S05

-03
9 (P

nP):
13

PDUs

M
S04

-01
1 (L

SASS):
27

PDUs

M
S08

-06
7 (N

etA
PI):

36
PDUs

0

200

400

600

800

207.06

442.1
494.18

754.17

S
C

A
v
er

ifi
ca

ti
on

ti
m

e
(m

s)

Fig. 6.4: Performance of SCA verification (exact stream replay) in relation to the
number of layer-5 PDUs for system services. The label Avg. represents the
average time of all applications which are not already listed as a label. The
results are the average of 10 runs. Standard deviations are shown in Table A.4.

6.2.1.3 Comparison of Brute-Force Replay and Exact Stream Replay

In this section we want to compare the performance of brute-force replay and exact

stream replay. In Figure 6.5 we can see that brute-force replay performs consistently

better than exact stream replay. The average performance of exact stream replay is

884.66ms, while brute-force replay takes on average about 761.1ms. Brute-force replay

can be up to 3 times faster as it is the case with Light HTTP Daemon, it is on average

about 16% faster.

The reasons for this lie in the implementation. While brute-force replay possess a

protocol handler and knows when the server has finished answering and when to e.g.

expect a welcome message. exact stream replay is protocol-independent. Exact stream

replay waits 100ms before each request to see if the server wants to send any new

messages. As a result, exact stream replay always takes more than 100ms to verify

an attack. The biggest difference can be seen in an attack against Sami FTP Server,

in which exact stream replay takes more than 300ms longer to verify the SCA. The

71

CHAPTER 6. EXPERIMENTAL EVALUATION

100 1,000

Kolibri

WAR-FTPD

Sami FTP
Server

WFTPD

Xitami

KNET

FileCopa
FTP Server

Savant
Web Server

Light HTTP
Daemon

FreeFloat
FTP server

5,153.40

795.31

512.65

350.91

260.30

188.67

168.49

94.12

37.33

49.74

5,103.76

890.91

822.31

727.71

401.56

242.09

238.68

164.26

128.81

126.47

SCA verification time (ms)

Brute-Force Replay Exact Stream Replay

Fig. 6.5: SCA verification performance of brute-force replay and exact stream replay.
The results are the average of 10 runs. Standard deviations are shown in
Table A.4.

attack against Sami FTP Server targets the LIST command, which in order to bring

the server into the right input state takes two requests before the the malicious PDU

can be launched. Consequently, it takes exact stream replay at least 300ms to reach

the state because the algorithm waits 100ms before each request. Also, as discussed in

Section 6.2.1.2, services may take longer to process an attack, which is the reason for

the long time to verify the attack against Kolibri.

72

CHAPTER 6. EXPERIMENTAL EVALUATION

Although, brute-force replay performs better time-wise, it has to be noted that its

accuracy is worse and relies on the implementation of a protocol handler.

6.2.2 SCA Generation

Similar to SCA verification, SCA generation can be done in two ways, by using single

packet extraction or stream extraction. Single packet extraction uses the Argos tool

carlog directly to generate from the logs the exploit Ethernet frame, which contains the

compromising packet of the attacker.

In contrast, stream extraction takes many more steps; the generated data from Argos’

carlog tool is further processed to find the stream of packets which led to the compromise

of the host. This search takes time and in some cases has to be repeated with different

substrings from the logs, which we have partly investigated in Section 6.1.2 and show that

our used algorithms are unreliable by itself. Thus the algorithms need to be combined

to achieve best accuracy. This leads to a big performance decrease because if one search

algorithm fails to return results the next one is tried and previous computations were

useless. However, Table 6.4 of Section 6.1.2 show that our search algorithms generate

results either in the first few runs or never. This helped us greatly improve performance

because we alternate in the first few runs between all three algorithms to see if any of

them can generate a result quickly, before doing the complete search. In detail, we do

one run for a matching packet using compromised memory block search and start with

an offset of one interval. If unsuccessful we try jump target memory block search for one

run as well. Only if neither algorithm succeeds do we one run using the exploit Ethernet

frame search, until we proceed with the normal order to do an exhaustive search with

each.

In Figure 6.6 we see how much faster single packet extraction is in comparison

to stream extraction. Because of the previously mentioned reasons, the performance

difference is even greater that compared brute-force replay and exact stream replay

from Section 6.2.1.3. On average, stream extraction takes 627.24ms, while single packet

extraction can be achieved in only 38.49ms, which means it is on average 16 times

faster. However, this performance increase comes with a price, as we have shown in

Section 6.1.2, we can not blindly rely on the accuracy of single packet extraction and

SCAs generated with single packet extraction can only be replayed using brute-force

replay, which requires the implementation of a protocol handler.

73

CHAPTER 6. EXPERIMENTAL EVALUATION

100 1,000

Xitami

KNET

Light HTTP
Daemon

WAR-FTPD

Sami FTP
Server

FreeFloat
FTP server

Savant
Web Server

Kolibri

FileCopa
FTP Server

WFTPD

31.64

37.4

32.03

52.04

37.37

26.97

55.11

31.29

36.67

44.41

854.32

716.1

702.87

697.91

696.28

684.73

487.75

485.1

475.34

471.96

SCA verification time (ms)

Single Packet Extraction Stream Extraction

Fig. 6.6: SCA Generation: Performance of single packet extraction and stream
extraction. The results are the average of 10 runs. Standard deviations are
shown in Table A.4.

6.2.3 Comparison to Vigilante

In this section we want to compare our solution to Vigilante in terms of performance.

Scargos and Vigilante are not easily comparable because Vigilante reduces the file size

of SCAs by about 20% as it can be seen for the attack MS05-039 (PnP) in Table A.2

and Table A.3 in Chapter A. Furthermore, evaluated applications also depend on the

74

CHAPTER 6. EXPERIMENTAL EVALUATION

number of layer-5 PDUs and especially on the performance of the network-facing service

to process the request.

In the original paper by Costa et. al [9], only three applications were evaluated.

All three were either system services or well-known windows application: Microsoft

SQL Servers, Microsoft IIS Server and Microsoft Windows (MS03-026 (RPC)). To

enable a fair comparison we selected equally well-known applications and service

vulnerabilities:Apache HTTP Server, Microsoft Windows MS03-026 (RPC), Microsoft

Windows MS04-011 (LSASS), Microsoft Windows MS05-039 (PnP) and Microsoft

Windows MS08-067 (NetAPI). We compared the total time needed for SCA generation

and verification in relation to SCA file size. The results are depicted in Figure 6.7.

We can see that Vigilante performs better for smaller SCA file sizes while Scargos

performs better for bigger file sizes. Even taking into account that the SCA file size of

Vigilante is truncated and in fact bigger than in the graph shown, Scargos outperforms

Vigilante. If we look in more detail at Table A.2 and Table A.3 of Chapter A we see

that Vigilante performs consistently better than Scargos in SCA verification, while SCA

generation takes much more time in Vigilante than in Scargos.

Although both data sets are hard to compare, an observation can be made that in

our data set, the worst-case performance in Scargos is about 45% better than that of

Vigilante, while Vigilante has a better best-case performance.

75

CHAPTER 6. EXPERIMENTAL EVALUATION

0 2,000 4,000 6,000 8,000 10,000 12,000

0

500

1,000

1,500

2,000

2,500

3,000

695.18

929.52

1,349.68

1,514.91 1,474.36

28

224

2,742

SCA Filesize (Bytes)

T
im

e
fo

r
S

C
A

G
en

er
at

io
n

a
n

d
V

er
ifi

ca
ti

on
(m

s)
Scargos

Vigilante

Fig. 6.7: Comparing Vigilante’s and Scargos’ performance for the combined times of
SCA generation and verification excluding distribution.

6.2.4 Overall Performance

In this section we want to outline what the overall performance of Scargos by showing

how much time it takes until a full life cycle of Scargos completes including distribution.

Simply put, we measure the time form when a threat is detected and complete until

it is verified by an verification manager and include each part of the process, which is

specifically in the following order:

1. A threat is detected by a SCA publisher. (start)

2. An SCA is generated using stream extraction.

3. The SCA is published to an SCA repository.

4. The SCA repository notifies all interested SCA verifiers by using a push

notification.

76

CHAPTER 6. EXPERIMENTAL EVALUATION

5. A SCA verifier downloads and replays (exact stream replay) the SCA to its DTA

honeypot (PAM mirror).

6. The SCA’s authenticity is verified. (end)

We decided to use exact stream replay and stream extraction as our algorithms because

they allow higher accuracy and thus we were able to assess more applications. Our

SCA repository was provided by an Amazon EC2 micro instance, which has 0.615 GiB

memory and 1 virtual CPU. The average latency of 10 runs to this instance from our

system was 6.86ms with a standard deviation of 0.11ms.

Figure 6.8 show the results of our experiments. It shows that Scargos operates fast.

The majority of vulnerabilities of our applications could be verified and thus detected

in under 2 seconds. On average, it takes 1993.88ms from the first detection of an attack

by a honeypot until all interested SCA verifiers have verified the vulnerability on their

systems. In the worst case, the process takes 6094.11ms (Kolibri), which should still

give enough leeway to safely initiate a vulnerability response process.

77

CHAPTER 6. EXPERIMENTAL EVALUATION

1,000 1,260 1,590 2,000 2,510 3,160 3,980 5,010 6,310

Kolibri

Dream FTP Server

Win.: MS08-
067 (NetAPI)

Win.: MS04-011 (LSASS)

Sami FTP Server

WFTPD

WAR-FTPD

Win.: MS05-039 (PnP)

Apache HTTP Server

Xitami

FileCopa FTP Server

Win.: MS03-026 (RPC)

PCMan’s FTP Server

3CDaemon

freeFTPd

KNET

IntraSrv Web Server

Light HTTP Daemon

FreeFloat FTP server

freeSSHd

BadBlue Enterprise

Savant Web Server

6,094.11

2,990.15

2,902.54

2,739.64

2,268.10

2,185.15

2,046.17

2,025.04

1,832.23

1,725.20

1,687.96

1,665.41

1,606.09

1,566.56

1,559.19

1,428.57

1,357.55

1,324.04

1,276.32

1,265.24

1,199.13

1,120.87

Time of Scargos’ Lifecycle (ms)

Fig. 6.8: Total time from SCA generation to successful verification including
distribution. The results are the average of 10 runs. Standard deviations
are shown in Table A.4.

78

CHAPTER 6. EXPERIMENTAL EVALUATION

6.3 Discussion

In this work, we want to answer the question: Can packet-based SCAs be efficiently

generated and verified?

We show that packet-based SCAs are generated and verified correctly for all detected

attacks of 24 applications. Furthermore, packet-based SCAs allow us to automate the

distributing, receiving and initiating of appropriate actions for new vulnerabilities. A

full life cycle to distribute a vulnerability can be achieved in under 2 seconds and thus

can greatly accelerate current practices. Compared to the state-of-the-art non-packet-

based SCAs our solution not only performs better for bigger SCA file sizes and thus more

complex attacks, but also has a 45% better worst-case performance within our data set.

We can thus confidentially answer the question with yes.

We also want to address all remaining questions that we have previously raised:

Can packet-based SCAs be successfully generated and verified for a variety of attacks?

We have show in Section 6.1 that using DTA honeypots all detected attacks can

be successfully generated and verified using packet-based SCAs in conjunction

with exact stream extraction and exact stream replay. Furthermore, it has to be

noted that generation and verification can be done with only few limitations in a

protocol-independent manner.

Do packet-based SCAs achieve the same accuracy as the state-of-the-art? Vigilante’s

SCA successfully generated and verified non-packet-based SCA for 3 out of 3

vulnerabilities. In this work, we evaluated packet-based SCAs with 24 different

applications using many different protocols and operating systems. For all

detected vulnerabilities we generated packet-based SCAs and correctly verified

them, while using the same detection mechanisms as proposed by Vigilante. As a

result, we can state that the accuracy of packet-based SCAs is at least the same

as the state-of-the-art.

Can Scargos effectively reduce the available attack window of attackers? Currently,

vulnerabilities are announced by primary sources which is usually the affected

vendor (coordinated disclosure) or the group who discovered the vulnerability (full-

disclosure). Due to the seemingly indefinite amount of possible primary sources,

end users have to check manually for new vulnerabilities, and furthermore, rely

often on secondary sources. As a result, the time until vulnerability information

has reached end users is often hours and in the best case a couple of minutes. The

79

CHAPTER 6. EXPERIMENTAL EVALUATION

time before zero-day attacks are discovered is much higher and takes on average

312 days [4].

Our evaluation shows that an entire life cycle of Scargos is on average accomplished

in under 2 seconds. Additionally, our implementation uses DTA honeypots, which

can effectively detect zero-day attacks. Thus, Scargos can effectively reduce the

attack window to a minuscule fraction of current best practices.

Do packet-based SCAs outperform the state-of-the-art for well-known attacks? In

Section 6.2.3 we compare Vigilante’s SCAs with packet-based SCAs. The results

show that Scargos performs better for higher file sizes than Vigilante, while high

profile attacks such as the very recent Conficker worm with an increasing amount

of complexity lead to bigger SCA file sizes. We further show that packet-based

SCAs outperform the worst-case performance of the state-of-the-art in our data

set, although both solutions are hard to compare given the very different SCA file

sizes.

80

Chapter 7

Conclusion

In this work, we presented Scargos, a framework to distribute vulnerabilities in seconds

without needing a central authority. The goal of Scargos is it to shorten the attack

window attackers have available to attack vulnerable applications. We propose packet-

based SCAs, which differ from previously presented SCAs. Packet-based SCAs require

that an attack be preserved in its original form, in packets; furthermore, they are

independent from the detection engine used and allow for a custom vulnerability response

process. We proposed and implemented an architecture for Scargos which uses the DTA

honeypot Argos for detecting attacks. Packet-based SCAs are generated by using the

logs of its detection engine.

We show in our work how packet-based SCAs can be used for a custom vulnerability

response, which includes automatic generation of IDS signatures or malware analysis

reports. We further outline the architectural components which are necessary to facilitate

real-time vulnerability distribution, which are SCA repositories and push-notifications

as well as the structure of packet-based SCAs.

Packet-based SCAs require different verification methods to previously known

approaches. We present two replay mechanisms: brute-force replay and exact stream

replay. While brute-force replay replays an attack to every possible input state of an

application, exact stream replay replays an attack as it was originally received. Although,

brute-force replay depends on the previous implementation of a protocol handler and is

less accurate than exact stream replay, appropriate SCAs are generated 16 times faster

and verification is completed on average 16% faster than when using exact stream replay.

Finally, we evaluated the overall performance of Scargos and packet-based SCAs.

We showed that packet-based SCAs perform better for bigger SCA file sizes and seem

to have a much better worst-case performance than conventional SCAs, while having

81

CHAPTER 7. CONCLUSION

all previously mentioned advantages. Further, Scargos entire life cycle from the first

detection until end-users verify an attack including distribution takes on average less

than 2 seconds, which is a significant improvement compared to today’s typically used

vulnerability distribution methods, and which considerably shortens the attack window

available to attackers.

Scargos can be the vaccine that helps globally contain malware, and it might be a

solution that further slows down the continuing virtual arms race between attackers and

defenders.

7.1 Future Work

In future work, improvements can be made to further increase accuracy, performance

and usability of packet-based SCAs and Scargos. A specialised DTA honeypot could

be developed or the honeypot Argos could be improved to reduce the amount of false

negatives in attack detection that we have found. If the false negatives are due to

under-tainting, new approaches to DTA could be used as suggested by Kang et. al [17].

Improvements of DTA honeypot could also be addressed to improve the accuracy of

exporting the correct manipulated memory blocks and exploit Ethernet frames.

Research questions that could be addressed in future work with particular implications

for Scargos include the following: how efficiently can a dual VM solution be utilised as

a honeypot? Furthermore, an automatic way to estimate an optimal timeout value for

our proposed exact stream replay algorithm would increase usability of our solution.

Finally, we could investigate whether to combine the protocol independence of exact

stream replay with the performance benefits of brute-force replay into a unified hybrid

solution.

82

Bibliography

[1] Anagnostakis, K. G., Sidiroglou, S., Akritidis, P., Xinidis, K., Markatos, E.,

and Keromytis, A. D. Detecting targeted attacks using shadow honeypots. In Proceedings

of the 14th USENIX security symposium (2005), vol. 1.

[2] Arnold, M., and Ohlebusch, E. Linear time algorithms for generalizations of the longest

common substring problem. Algorithmica 60, 4 (2011), 806–818.

[3] Bailey, M., Cooke, E., Jahanian, F., Watson, D., and Nazario, J. The blaster

worm: Then and now. Security & Privacy, IEEE 3, 4 (2005), 26–31.

[4] Bilge, L., and Dumitras, T. Before we knew it: an empirical study of zero-day

attacks in the real world. In Proceedings of the 2012 ACM conference on Computer and

communications security (2012), ACM, pp. 833–844.

[5] Bosman, E., Slowinska, A., and Bos, H. Minemu: The worlds fastest taint tracker. In

Recent Advances in Intrusion Detection (2011), Springer, pp. 1–20.

[6] Chicago Honeynet Project. The Google Hack Honeypot, August 2013. http://ghh.

sourceforge.net/.

[7] Clause, J., Li, W., and Orso, A. Dytan: a generic dynamic taint analysis framework.

In Proceedings of the 2007 international symposium on Software testing and analysis (2007),

ACM, pp. 196–206.

[8] Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Shannon, C., and Brown,

J. Can we contain internet worms. In Proceedings of the 3rd Workshop on Hot Topics in

Networks (HotNets-III) (2004), Citeseer.

[9] Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., and

Barham, P. Vigilante: End-to-end containment of internet worms. In ACM SIGOPS

Operating Systems Review (2005), vol. 39, ACM, pp. 133–147.

[10] Crandall, J. R., and Chong, F. T. Minos: Control data attack prevention orthogonal to

memory model. In Microarchitecture, 2004. MICRO-37 2004. 37th International Symposium

on (2004), IEEE, pp. 221–232.

83

http://ghh.sourceforge.net/
http://ghh.sourceforge.net/

Bibliography

[11] Faulhaber, J., Lambert, J., Probert, D., Srinivasan, H., Felstead, D.,

Lauricella, M., Rains, T., and Stewart, H. Microsoft security intelligence report.

Tech. Rep. 11, Microsoft Corporation, Redmond, WA 98052-6399, February 2011.

[12] Ferrie, P. Attacks on more virtual machine emulators. Symantec Technology Exchange

(2007).

[13] Fielding, R. T. Architectural styles and the design of network-based software architectures.

PhD thesis, University of California, 2000.

[14] Garcia, L. M. Programming with libpcap±sniffing the network from our own application.

Hakin9-Computer Security Magazine (2008), 2–2008.

[15] Gusfield, D. Algorithms on strings, trees and sequences: computer science and

computational biology. Cambridge University Press, 1997.

[16] Halfond, W. G., Orso, A., and Manolios, P. Using positive tainting and syntax-

aware evaluation to counter sql injection attacks. In Proceedings of the 14th ACM SIGSOFT

international symposium on Foundations of software engineering (2006), ACM, pp. 175–185.

[17] Kang, M. G., McCamant, S., Poosankam, P., and Song, D. Dta++: Dynamic taint

analysis with targeted control-flow propagation. Proc. of the 18th NDSS (2011).

[18] Kobayashi, T. H., Batista, A. B., Brito, A., and Pires, P. S. M. Using a

packet manipulation tool for security analysis of industrial network protocols. In Emerging

Technologies and Factory Automation, 2007. ETFA. IEEE Conference on (2007), IEEE,

pp. 744–747.

[19] Kohlrausch, J. Experiences with the noah honeynet testbed to detect new internet worms.

In IT Security Incident Management and IT Forensics, 2009. IMF’09. Fifth International

Conference on (2009), IEEE, pp. 13–26.

[20] Kontaxis, G., Polakis, I., Antonatos, S., and Markatos, E. P. Experiences and

observations from the noah infrastructure. In Computer Network Defense (EC2ND), 2010

European Conference on (2010), IEEE, pp. 11–18.

[21] Kortchinsky, K. Cloudburst - a vmware guest to host escape story. BlackHat USA 2009,

Las Vegas, USA.

[22] Kreibich, C., and Crowcroft, J. Honeycomb: creating intrusion detection signatures

using honeypots. ACM SIGCOMM Computer Communication Review 34, 1 (2004), 51–56.

[23] Lam, L. C., and Chiueh, T.-c. A general dynamic information flow tracking framework

for security applications. In Computer Security Applications Conference, 2006. ACSAC’06.

22nd Annual (2006), IEEE, pp. 463–472.

[24] Leyden, J. Scada honeypots attract swarm of international hackers. The Register (Mar. 26,

2013).

84

Bibliography

[25] Liston, T. Labrea: Sticky honeypot and ids, May 2009. http://labrea.sourceforge.

net/labrea-info.html.

[26] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and Weaver, N.

Inside the slammer worm. Security & Privacy, IEEE 1, 4 (2003), 33–39.

[27] Newsome, J., and Song, D. Dynamic taint analysis for automatic detection, analysis,

and signature generation of exploits on commodity software.

[28] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,

and Zagorodnov, D. The eucalyptus open-source cloud-computing system. In Cluster

Computing and the Grid, 2009. CCGRID’09. 9th IEEE/ACM International Symposium on

(2009), IEEE, pp. 124–131.

[29] OpenVAS project. Openvas - about openvas, May 2013. http://www.openvas.org/

about.html.

[30] OpenVAS project. Openvas - nvt development, May 2013. http://www.openvas.org/

nvt-dev.html.

[31] Orebaugh, A., Ramirez, G., and Beale, J. Wireshark & Ethereal network protocol

analyzer toolkit. Syngress, 2006.

[32] Portokalidis, G., Slowinska, A., and Bos, H. Argos: an emulator for fingerprinting

zero-day attacks for advertised honeypots with automatic signature generation. In ACM

SIGOPS Operating Systems Review (2006), vol. 40, ACM, pp. 15–27.

[33] Provos, N. Honeyd-a virtual honeypot daemon. In 10th DFN-CERT Workshop, Hamburg,

Germany (2003), vol. 2.

[34] Provos, N., and Holz, T. Virtual honeypots: from botnet tracking to intrusion detection,

third ed. Addison-Wesley Professional, 2009.

[35] Schwartz, E. J., Avgerinos, T., and Brumley, D. All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been afraid to ask).

In Security and Privacy (SP), 2010 IEEE Symposium on (2010), IEEE, pp. 317–331.

[36] Sourcefire, I. Snort, May 2012. http://www.snort.org/.

[37] Spitzner, L. Honeypots: Catching the insider threat. In Computer Security Applications

Conference, 2003. Proceedings. 19th Annual (2003), IEEE, pp. 170–179.

[38] Suh, G. E., Lee, J. W., Zhang, D., and Devadas, S. Secure program execution

via dynamic information flow tracking. In ACM SIGPLAN Notices (2004), vol. 39, ACM,

pp. 85–96.

[39] Sullivan, B. Sasser infections begin to subside. NBC News (May 5,

2004). http://www.nbcnews.com/id/4890780/ns/technology_and_science-security/

t/sasser-infections-begin-subside/#.UhANu3byrUI.

85

http://labrea.sourceforge.net/labrea-info.html
http://labrea.sourceforge.net/labrea-info.html
http://www.openvas.org/about.html
http://www.openvas.org/about.html
http://www.openvas.org/nvt-dev.html
http://www.openvas.org/nvt-dev.html
http://www.snort.org/
http://www.nbcnews.com/id/4890780/ns/technology_and_science-security/t/sasser-infections-begin-subside/#.UhANu3byrUI
http://www.nbcnews.com/id/4890780/ns/technology_and_science-security/t/sasser-infections-begin-subside/#.UhANu3byrUI

Bibliography

[40] The MITRE Corporation. Cve - about cve, May 2013. http://cve.mitre.org/about/

index.html.

[41] The MITRE Corporation. Cve - cve-id syntax change, August 2013. http://cve.

mitre.org/cve/identifiers/syntaxchange.html.

[42] The MITRE Corporation. Oval - oval use cases guide, May 2013. http://oval.mitre.

org/adoption/usecasesguide.html.

[43] The Nmap Security Scanner Project. Vulnerability scanners sectools top network

security tools, May 2013. http://sectools.org/tag/vuln-scanners/.

[44] Venkataramani, G., Doudalis, I., Solihin, Y., and Prvulovic, M. Flexitaint: A

programmable accelerator for dynamic taint propagation. In High Performance Computer

Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on (2008), IEEE,

pp. 173–184.

[45] Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., and Vigna, G.

Cross site scripting prevention with dynamic data tainting and static analysis. In Proceeding

of the Network and Distributed System Security Symposium (NDSS) (2007), vol. 42.

[46] Vrije Universiteit Amsterdam. Argos - an emulator for capturing zero-day attacks,

May 2012. http://www.few.vu.nl/argos/.

[47] Wicherski, G. Medium interaction honeypots. German Honeynet Project (April 2006)

(2006).

[48] Willems, C., Holz, T., and Freiling, F. Toward automated dynamic malware analysis

using cwsandbox. Security & Privacy, IEEE 5, 2 (2007), 32–39.

[49] Xu, W., Bhatkar, S., and Sekar, R. Taint-enhanced policy enforcement: A practical

approach to defeat a wide range of attacks. In Proceedings of the 15th USENIX Security

Symposium (2006), pp. 121–136.

86

http://cve.mitre.org/about/index.html
http://cve.mitre.org/about/index.html
http://cve.mitre.org/cve/identifiers/syntaxchange.html
http://cve.mitre.org/cve/identifiers/syntaxchange.html
http://oval.mitre.org/adoption/usecasesguide.html
http://oval.mitre.org/adoption/usecasesguide.html
http://sectools.org/tag/vuln-scanners/
http://www.few.vu.nl/argos/

Appendices

87

Appendix A

Additional Experimental Results

Application Name FTP Attack Vector

3CDaemon User

Dream FTP Server User

FileCopa FTP Server List

FreeFloat FTP server User

Sami FTP Server List

WAR-FTPD User

WFTPD Size

PCMan’s FTP Server User

Table A.1: Attack Vectors of vulnerable FTP applications.

Application Name

SCA

size in

Bytes

SCA

Generation

(ms)

SCA

verification

(ms)

Total (ms)

Win.: MS03-026 (RPC) 2272 488.12 207.06 695.18

Win.: MS05-039 (PnP) 3266 487.42 442.1 929.52

Apache HTTP Server 7145 851.3 498.38 1349.68

Win.: MS08-067 (NetAPI) 7711 760.74 754.17 1514.91

Win.: MS04-011 (LSASS) 11287 980.18 494.18 1474.36

Table A.2: Performance of Scargos for selected well-known applications.

1

APPENDIX A. ADDITIONAL EXPERIMENTAL RESULTS

Application Name

SCA

size in

Bytes

SCA

Generation

(ms)

SCA

verification

(ms)

Total (ms)

Microsoft SQL Servers 457 18 10 28

Win.: MS03-026 (RPC) 1857 206 18 224

Microsoft IIS Server 3899 2667 75 2742

Table A.3: Performance of Vigilante [9].

Application Name

Exact

Stream

Extraction

(ms)

Exact

Stream

Replay

(ms)

Total Time

of Scargos’

Lifecycle

(ms)

Single

Packet

Extraction

(ms)

Brute-

Force

Replay

(ms)

3CDaemon 19.08 6.15 28.08 — —

Dream FTP Server 12.74 41.93 445.86 — —

FileCopa FTP Server 6.4 31.12 37.19 19.57 6.9

FreeFloat FTP server 18.3 7.37 92.41 3.43 30.82

Sami FTP Server 13.16 268.75 865.55 25.23 257.09

WAR-FTPD 9.56 430.15 430.67 45.65 504.07

WFTPD 12.38 96.3 103.3 30.08 35.15

Savant Web Server 18.76 126.91 146.01 88.62 10.46

Win.: MS05-039 (PnP) 6.45 50.79 63.55 — —

PCMan’s FTP Server 18.38 52.35 57.39 — —

freeSSHd 24.1 74.31 83.59 — —

freeFTPd 10.49 41.81 979.9 — —

Apache HTTP Server 5.04 14.13 37.66 — —

BadBlue Enterprise 15.77 11.73 66.04 — —

Light HTTP Daemon 8.64 22.28 48.58 1.2 7.83

KNET 10.8 7.26 27.79 17.66 8.53

Kolibri 7.35 90.06 133.71 1.2 10.41

Xitami 9.83 233.07 248.05 16.58 223.25

Win.: MS03-026 (RPC) 8.39 36.63 65.05 — —

Win.: MS04-011 (LSASS) 8.94 41.03 52.06 — —

IntraSrv Web Server 6.81 137.75 623.55 — —

Win.: MS08-067 (NetAPI) 17.35 138.34 142.15 — —

Table A.4: Standard Deviation of 10 runs of all investigated applications and metrics.
The total time of Scargos’ lifecycle was being measured using Stream
Extraction and Stream Replay.

2

APPENDIX A. ADDITIONAL EXPERIMENTAL RESULTS

A
p
p
li

ca
ti

o
n

N
a
m

e
C

V
E

o
r

O
S

V
D

B
A

tt
a
ck

3C
D

ae
m

o
n

C
V

E
-2

00
5-

02
77

M
et

as
p

lo
it

:
ex

p
lo

it
/w

in
d

ow
s/

ft
p

/3
cd

ae
m

on
ft

p
u

se
r

D
re

a
m

F
T

P
S

er
ve

r
C

V
E

-2
00

4-
02

77
M

et
as

p
lo

it
:

ex
p

lo
it

/w
in

d
ow

s/
ft

p
/d

re
am

ft
p

fo
rm

at

F
il

eC
o
p

a
F

T
P

S
er

ve
r

C
V

E
-2

00
6-

37
26

M
et

as
p

lo
it

:
ex

p
lo

it
/w

in
d

ow
s/

ft
p

/fi
le

co
p

a
li

st
ov

er
fl

ow

F
re

eF
lo

a
t

F
T

P
se

rv
er

O
S

V
D

B
-6

9
62

1
M

et
as

p
lo

it
:

ex
p

lo
it

/w
in

d
ow

s/
ft

p
/f

re
efl

oa
tf

tp
u

se
r

S
am

i
F

T
P

S
er

ve
r

C
V

E
-2

00
8-

51
06

M
et

as
p

lo
it

:
ex

p
lo

it
/w

in
d

ow
s/

ft
p

/s
am

i
ft

p
d

li
st

W
A

R
-F

T
P

D
C

V
E

-2
00

7-
15

67
M

et
as

p
lo

it
:

ex
p

lo
it

/w
in

d
ow

s/
ft

p
/w

ar
ft

p
d

16
5

u
se

r

W
F

T
P

D
C

V
E

-2
00

6-
43

18
M

et
as

p
lo

it
:

ex
p

lo
it

/w
in

d
ow

s/
ft

p
/w

ft
p

d
si

ze

S
av

a
n
t

W
eb

S
er

ve
r

C
V

E
-2

00
2-

11
20

M
et

as
p

lo
it

:
ex

p
lo

it
/w

in
d

ow
s/

h
tt

p
/s

av
an

t
31

ov
er

fl
ow

P
C

M
an

’s
F

T
P

S
er

ve
r

C
V

E
-2

01
3-

47
30

E
x
p

lo
it

-D
B

-I
D

:
26

47
1

fr
ee

S
S

H
d

C
V

E
-2

00
6-

24
07

M
et

as
p

lo
it

:
ex

p
lo

it
/w

in
d

ow
s/

ss
h

/f
re

es
sh

d
ke

y
ex

ch
an

ge

fr
ee

F
T

P
d

C
V

E
-2

00
6-

24
07

M
et

as
p

lo
it

:
ex

p
lo

it
/w

in
d

ow
s/

ss
h

/f
re

ef
tp

d
ke

y
ex

ch
an

ge

A
p

ac
h

e
H

T
T

P
S

er
ve

r
C

V
E

-2
00

2-
03

92
M

et
as

p
lo

it
:

ex
p

lo
it

/w
in

d
ow

s/
h
tt

p
/a

p
ac

h
e

ch
u

n
k
ed

B
ad

B
lu

e
E

n
te

rp
ri

se
E

d
it

io
n

C
V

E
-2

00
7-

63
77

M
et

as
p

lo
it

:
ex

p
lo

it
/w

in
d

ow
s/

h
tt

p
/b

ad
b
lu

e
p

as
st

h
ru

L
ig

h
t

H
T

T
P

D
ae

m
o
n

C
V

E
-2

00
2-

15
49

E
x
p

lo
it

-D
B

-I
D

:
24

99
9

K
N

E
T

C
V

E
-2

00
5-

05
75

E
x
p

lo
it

-D
B

-I
D

:
24

89
7

K
ol

ib
ri

C
V

E
-2

00
2-

22
68

M
et

as
p

lo
it

:
ex

p
lo

it
/w

in
d

ow
s/

h
tt

p
/k

ol
ib

ri
h
tt

p

X
it

a
m

i
C

V
E

-2
00

7-
50

67
M

et
as

p
lo

it
:

ex
p

lo
it

s
/

w
in

d
ow

s
/

h
tt

p
/

x
it

am
i

if
m

o
d

si
n

ce

W
in

d
ow

s:
M

S
0
3-

02
6

(R
P

C
)

C
V

E
-2

00
3-

03
52

M
et

as
p

lo
it

:
ex

p
lo

it
/w

in
d

ow
s/

d
ce

rp
c/

m
s0

3
02

6
d

co
m

W
in

d
ow

s:
M

S
0
4-

01
1

(L
S

A
S

S
)

C
V

E
-2

00
3-

05
33

M
et

as
p

lo
it

:
ex

p
lo

it
/

w
in

d
ow

s/
sm

b
/m

s0
4

01
1

ls
as

s

W
in

d
ow

s:
M

S
0
5-

03
9

(P
n

P
)

C
V

E
-2

00
5-

19
83

M
et

as
p

lo
it

:
ex

p
lo

it
/w

in
d

ow
s/

sm
b

/m
s0

5
03

9
p

n
p

M
er

cu
ry

/3
2

M
ai

l
C

V
E

-2
00

7-
44

40
M

et
as

p
lo

it
:

ex
p

lo
it

/w
in

d
ow

s/
sm

tp
/m

er
cu

ry
cr

am
m

d
5

In
tr

aS
rv

-
S

im
p

le
W

eb
S

er
ve

r
O

S
V

D
B

-9
4
09

7
E

x
p

lo
it

-D
B

-I
D

:
25

83
6

M
d

ea
m

o
n

P
R

O
C

V
E

-2
00

4-
15

20
M

et
as

p
lo

it
:

ex
p

lo
it

/w
in

d
ow

s/
im

ap
/m

d
ae

m
on

cr
am

m
d

5

M
S

08
-0

67
(N

et
A

P
I)

C
V

E
-2

00
8-

42
50

M
et

as
p

lo
it

:
ex

p
lo

it
/w

in
d

ow
s/

sm
b

/m
s0

8
06

7
n

et
ap

i

T
a
b
le

A
.5

:
A

tt
ac

k
s

an
d

v
u

ln
er

ab
il

it
ie

s
u
se

d
in

ou
r

ex
p

er
im

en
ts

.

3

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Chapter Introduction
	Motivation
	Research Question
	Contribution

	Chapter Background
	Virtual Machines and their Security
	Dynamic Taint Analysis
	Performance
	Accuracy

	Honeypots
	Overview
	Argos

	Vulnerability Distribution
	Vigilante and Self-Certifying Alerts
	Noah

	Malware Processing Tools
	CWSandbox
	Honeycomb

	Vulnerability Management
	Common Vulnerabilities and Exposures Identifier
	Open Vulnerability Assessment Language
	Open Vulnerability Assessment System and Network Vulnerability Tests

	Chapter Architecture
	Detection and SCA Publishing
	Packet-Based Self-Certifying Alerts
	Distribution: SCA Repository
	SCA Verification
	Common Configuration
	Placement of the SCA Verifier
	Security Considerations

	Vulnerability Response
	Semi-Automatic Vulnerability Response
	Full-Automatic Vulnerability Response

	Chapter Replay Mechanisms
	Brute-Force Replay
	Exact Stream Replay
	Limitations
	Summary

	Chapter Implementation
	SCA Repository
	Packet-Based Self-Certifying Alerts
	Push-Notification

	SCA Publisher
	Attack Detection and Logs
	Single Packet Extraction
	Stream Extraction

	SCA Verification
	Brute-Force Replay
	Exact Stream Replay

	Chapter Experimental Evaluation
	Accuracy
	Argos
	SCA Generation
	SCA Verification

	Performance
	SCA Verification
	SCA Generation
	Comparison to Vigilante
	Overall Performance

	Discussion

	Chapter Conclusion
	Future Work

	Bibliography
	Appendices
	Chapter Additional Experimental Results

