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Residual Memory for Background Characters in

Complex Environments

Tiarnán McNulty

University of Dublin, Trinity College, 2014

Supervisor: Dr. Mads Haahr

This dissertation aims to explore methods for increasing the believability of background

characters in open-world games by giving them the ability to react to situations in a

much more natural manner than current approaches. Background characters play

a vital role in making a game’s environment feel cohesive and believable, but they

generally follow scripted, repetitive motions until influenced by the actions of a player.

This project presents a generalised memory model that enables characters to remember

and recall the state of the world around them, either in the form of larger scale events

or as smaller scale interactions, and react to any changes as they occur. Over time,

memories which aren’t reinforced become fuzzy, may be remembered incorrectly, and

are eventually forgotten.

The model is tested by developing a small prototype environment within the Unity

game engine, and observing how the characters within this environment behaved. A
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goal-driven system allows characters to access their memories to determine the best

methods to achieve their goals, and a fallback system allows characters to attempt to

resolve their own problems if they find themselves unable to recall the memories they

need. Through consideration of the memories they have, a character can determine

how best to gain the memories they need, for example by asking someone they know to

share their relevant memories. Players can even interact with the characters, to help

or hinder them.

The implementation showcases a model with significant potential, where characters

naturally develop habits and make decisions with genuine purpose, making them much

more interesting to observe and encounter within the environment.
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Chapter 1

Introduction

This dissertation explores methods for increasing the believability of background char-

acters in complex environments by giving them the ability to react to situations and

recall past events in a much more natural manner than current approaches. The re-

search focuses on the non-player characters (NPCs) that are not considered essential

to a game’s story, but which still play a vital role in making the game environment feel

cohesive and believable. This project proposes a hypothesis that the creation of a gen-

eralised memory model would enhance overall believability by allowing NPC behaviour

to be impacted by their ability to remember and recall past events. The hypothesis

would be tested through the creation of a prototype environment that showcases the

new model and allows for it to be observed and compared to current approaches. It is

hoped that this model would lead to more immersive, interactive and engaging game-

play experiences for players, and by keeping the model generalised it would ensure it

remains applicable to many different game genres.

1.1 Open World Games
An open world game is one in which a player is given considerable freedom to roam a

virtual environment and choose how or when to approach their objectives [72]. Open-

world design is largely absent of the artificial barriers that are particularly common in

more linear designs.

The first open-world game, Elite, was created in 1984 and featured a fully inhabited
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universe of planets in which players could freely explore [8]. Unlike other games at

the time, Elite allowed the player to choose where they went and how they behaved,

providing them with a variety of different options for progressing through the game.

Elite was a seminal success for its time, with an estimated 600,000 copies being sold

[77].

2001 saw the release of Grand Theft Auto 3 for the PS2 [31]. This would prove to be a

milestone in open-world games as it presented players players with a fully explorable 3D

city packed with dozens of different missions they could tackle using whatever weapons

and vehicles they liked. It became an overnight success and would spawn an entire

genre of increasingly popular ‘city sandbox games’ [68].

Previously open world games were mainly PC cult hits due to the technical trade-offs

and excessive performance demands they required to achieve their large environments.

Elite rendered its universe entirely using wire-frame, while other, such as The Elder

Scrolls: Arena [75], used extensive fog to only show the environment directly in front of

the player. GTA 3’s success can be partially attributed to the fact that hardware had

now reached a point where open-world games could be created without such limitations.

As hardware performance continued to improve the scale and scope of environments

in even traditionally linear games continued to grow, and today most games now have

some element of open-world design within them.

1.2 Challenges of Open-World Games
The most significant design challenge in an open-world game is striking the correct bal-

ance between the freedom of the environment and the actual structure of the game’s

story. The designers need creative ways to impose a storyline on a player even when

they could be performing actions that the designer did not expect. A large number of

open-world games provide a main character who is a blank slate, allowing the player

to project their own thoughts and actions into the environment. However it is becom-

ing more common for open-world games to have a complex player character who has

their own development, personality and dialogue. This approach often leads to the

problem of ‘ludonarrative dissonance’, where the actions of the character during player

controlled sequences and during scripted sequences are widely different and potentially
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contradictory [82]. Another common way in which this dissonance surfaces is through

the actions of other background characters whom the player might ignore or treat badly

during the course of the game only for them to be friendly, supportive and completely

ignorant of every negative action the player did to them during the scripted sequences.

World building proves to be another challenge for open-world games. Some can con-

tain large but empty and uninteresting environments, while others contain repetitive

locations used to give a false sense of a larger scale. Creating a vast, populated and

detailed open environment is a very time consuming process, so procedural generation

can be used to reduce this requirement while still keeping quality high. A smart use

of procedural generation for characters, environments and objects can allow game sys-

tems to build the world rather than requiring the designers to oversee every individual

element of it.

Finally, open-world games must consider the concept of ‘emergence’, a term which

defines the complex situations within a game that emerge, either intentionally or by

accident, from the interactions between relatively simple mechanics [18]. Emergence

puts a focus on the design of the simulation and its rules, rather than explicitly scripting

individual actions or events. A good open-world simulation will allow the player a lot

of scope to explore, bend and occasionally break the rules, while a poor simulation will

have much less room for improvisation and personalisation.

1.3 Motivation
In regards to the area of AI research, it has been stated that “of all the technological

frontiers in world-building, artificial intelligence (AI) holds the most promise of change”

[15] and that “from the point of view of world design, AI promises great things. If

virtual worlds could be populated by intelligent NPCs, all manner of doors would open”

[4]. Immersion is directly related to the wilful suspension of disbelief, a state in which

a player chooses to fully engage with the game world regardless of its virtual nature.

Considering this context, the role of background NPCs is to enrich this virtual world

and further entice players into immersing themselves within the game world. NPCs

which are unconvincing in this role can cause players to look more closely at other

flaws in the environment and potentially lose their ability to fully immerse themselves.
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Ed del Castillo believes that AI is one of the most important areas for enhancing open-

world gaming, and that “in order to have great AI, you need [to] create systems that

simulate life” [72]. Tom Howard has a similar viewpoint, stating “it’s become common

for developers to be able to push lush scenery together, but creating other characters

that can react to what you do in a believable and compelling way is still very difficult”

[72]. Brian Baglow clarifies the issue further, stating “The environment is not merely

the setting for the action, but is an active part of the overall gameplay, which affects

and reacts to the player as they progress” [72].

Within the context of an open-world game, an environment refers to all the background

elements that make up the overall world. That includes the geometry, buildings, vehi-

cles, objects, etc., but also the characters that actively inhabit the environment. These

characters are usually the most important factor at play when considering a ‘reactive’

environment, and so their behaviour is crucial to the creation of an immersive world.

However when speaking about the quality of these background characters, Howard

paints a grim picture as he states “We have a long way to go” [72]. The graphical

fidelity, size, and general level of detail of game environments has increased at a rapid

rate with each new generation of console hardware, however improvements in Artificial

Intelligence has noticeably lagged behind the other fields [21]. This ever-increasing

gap between A.I. and graphics manifests itself in the form of incredibly realistic game

worlds being populated by simplistic and unconvincing caricatures of real people. As

realism increases, the lack of intelligence in these NPCs becomes increasingly apparent.

The effect is somewhat similar to the advancements made in film, where early films

used painted backdrops, simple special effects and various tricks to get around their

limitations. As skills and technology improved, so did the methods by which envi-

ronments were realised. While the simple methods were acceptable during their time,

and were at least internally consistent, the stagnation of character behaviour is simi-

lar to a modern film employing a lot of CGI but still occasionally featuring a poorly

painted backdrop. The modern nature of the other techniques would only cause the

glaring nature of the backdrop to become readily apparent, and in a similar fashion

simple behaviours threaten to break a player’s immersion as games continue to improve.

However the new generation of console hardware, and ever improving PC hardware,

have powerful CPUs with large pools of memory which provide ample opportunity for
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developers to explore and implement new and greatly improved A.I. This significant

increase in available memory proves to be a key motivation in why now is the right

time to explore how a memory model could improve NPC believability.

The complexity of A.I. required for creating believable NPC varies greatly across dif-

ferent genres, and can even vary with different NPCs within the same game. As such,

the rather abstract and hard to judge question of “Is this a believable NPC?” could

instead be refocused as “Will the player believe this NPCs and its purpose?” For ex-

ample, an NPC shopkeeper has a completely different purpose to that of an NPC that

simply drinks at a bar. The triggers that make people believe that either NPC is real

are different, and their expectations of how they should behave changes too. Therefore

the memory that each NPC chooses to retain should be related to its purpose and help

further increase its believability.

The concept of believability is not unique to games, with it being explored across a

variety of mediums including film, T.V, theatre and literature. In this essence, the be-

lievability of a character comes from not just their actions, but from their thoughts and

speech too. This comprises their personality, emotion, motivation and relationships,

but it also comes from their ability to be internally consistent. Which is to say that

they follow similar patterns of learned behaviour, e.g., an NPC blacksmith would be

more believable if they were to use their favourite tools on a daily basis instead of just

randomly selecting the closest tool at a given time, which allows them to maintain an

‘illusion of life’ [50]. These types of characters are referred to as ‘believable agents’,

and it is now widely accepted that a character’s personality and their expressions of

emotion are key factors in whether agents are perceived as ‘believable’ or not [6].

1.4 Improving Believability
The vast majority of interactive characters currently achieve their believability through

heavily controlled scripting, with pre-defined animations, behaviours and dialogue be-

ing executed at the right moments to convey an illusion of life. This static design

approach means that NPCs have no ability to respond outside of their scripting, so a

player interacting with them in an unexpected way can cause undesirable, and usually

bizarre, responses. There has been a large amount of research done to overcome these

limitations, with various procedural techniques being developed to allow for more dy-
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namic approach NPC responses, such as combining pre-made animations with dynamic

blends to convey additional emotion in real-time. These blends are usually focused on

the face, with the eyes and the mouth being capable of manipulation independently of

any animation [28].

There has been significantly less work done with regards to memory models that could

improve the believability of action choices, but A.I. researchers have explored how emo-

tional models could be used in this context. These models allow believable characters

to have a wider range of responses based on a variety of external factors that have

impacted their overall mood [3].

1.5 Scope / Objectives
This dissertation aims to create a new model that uses residual memory to enhance

the believability and behaviours of the non-critical background NPCs that populate the

towns and villages of open-world games. These background characters usually have no

direct influence in the overall plot or gameplay of a game but remain crucial in creating

a believable and fully realised world for the player to explore. This model will then

be prototyped and the results will be evaluated. The model will aim to achieve the

following objectives:

1. Offer a tangible improvement over existing approaches for background characters.

2. Support the procedural generation of A.I. behaviours by giving NPCs initial

‘prior’ memory of the game world.

3. Provide an efficient implementation, which makes smart use of available CPU

and memory.

The project’s core focus is on the first objective, which is of primary significance to

this proposal’s aim to create more believable NPCs. The second objective hopes to

take advantage of the ability for developers to ‘pre-load’ NPCs with residual memory

so that they have default, initial behaviours that do not necessarily need to be scripted

from start-to-finish. This pre-loaded memory would contain information about the

character’s history and the events that happened to the world before the game has

begun. Finally, it is important that the model strives for efficiency where possible, as

a more efficient implementation is far more likely to have wider use across the industry
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than a bloated, buggy one, but as the proposal is only implementing a prototype this

objective is secondary compared to the other two.

1.6 Roadmap
The dissertation continues in Chapter 2 with a review of the current industry state

of the art for NPC behaviour, focusing on current models, approaches to believability,

and recommended AI architectures. Chapter 3 uses the knowledge gained through

the industry review to present a design for the new model which will address issues

currently impacting the perceived believability of NPCs in related games. This will be

followed in Chapter 4 with a breakdown of the process for how the model presented

in the design was implemented in the prototype. This implementation is evaluated

in Chapter 5, with the project’s successes and failures being discussed and addressed.

Chapter 6 presents a final conclusion, drawing together all the work done on the project

and presenting the overall contributions it has made, as well as suggesting future work

that could be carried out to further expand upon the model.
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Chapter 2

State of the Art

The purpose of this chapter is to carry out a comprehensive review of the state of

the art for a number of areas that prove crucial to the success of this project. Initially

focusing on the concept of believable agents, the aim is to discover the aspects of human

behaviour these agents must capture for players to consider them ”‘real”’. Identifying

the requirements for truly believable agents is necessary before any model for cognitive

behaviour can be created. Having identified the requirements the focus then proceeds

on to an investigation of the current state of NPC agents through their accompanying

behavioural models, to see how believable they actually are. Finally, the potential

architectures which can be used to model NPC behaviour are presented and evaluated.

2.1 Believability
Believability is difficult to precisely define; thanks to a family of different meanings that

are used almost interchangeably [36]. Simply put, believability quite literally means

something that a person can believe. In the realm of background characters it can be

further defined as a character, or aspect of that character, that a person believes is

genuine, plausible or real within the context of the environment it inhabits. (i.e., a

fictitious environment inhabited by alien characters can still be considered believable

given the right context.)
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2.1.1 Role of Human Behaviour
The potential, both positive and negative, within the field of Artificial Intelligence has

always been wildly discussed, and it is commonly defined within two brackets - Weak

AI and Strong AI. Weak AI encompasses any non-sentient computer intelligence that

is usually assigned a very specific task and is the most widely used category of A.I.

Voice recognition software is a particularly prevalent example of it, being software that

will attempt to understand and respond to human speech but has no other functional

capability. Weak AI is usually recognisable by the fact it can easily break down if it goes

outside of its parameters, i.e., strong accents, foreign languages, or unusual speaking

patterns can cause spectacular failures in voice recognition software. A benefit to this

approach is that multiple weak AIs can be combined together, i.e., voice recognition

and route planning, to provide a much stronger impression of overall intelligence.

Strong AI defines artificial intelligence that is capable of behaving as intelligently as

a real person, and so by extension must have a mind of its own and the ability for

conscious thought. This is AI most people consider to be real AI and the holy grail of

a large degree of AI research, but is also the most contentious with many disagreements

over what exactly is meant by ‘human-like behaviour’. The Turing Test is a popular

method by which such behaviour can be tested, but some believe that the very idea

of Strong AI is a fallacy. Using the example of the Chinese Room, Searle argues

that a program enabling a computer to perform intelligent actions does not mean the

computer is intelligent as it does not actually understanding the action. Haugeland

summaries this fallacy as “the problem with Artificial Intelligence is that computers

don’t give a damn” [35].

When considering the believability of NPCs this philosophical argument initially seems

important, since the aim is to create characters that players believe to be genuine and

real. However these is no true expectation of the NPCs being ‘real’ and as long as the

outward behaviour appears ‘strong’ then the systems that drive the behaviour can be

‘weak’.

Considering the need to display human-like behaviour naturally leads to a study of

what human behaviour actually entails. Maurice Merleau-Ponty is considered to have

the greatest insight into human behaviour [70], and so his work proves to be ideal for

identifying the behaviour an NPC should imitate. Once this behaviour is identified
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then weak AI systems can be used to model suitable imitations that are capable of

convincing players that a character is real.

Merleau-Ponty’s discussion of unreflective behaviour proves useful in this context, as

he believes that human behaviour is caused by a person’s perception of its environ-

ment. For example, someone who changes their behaviour to suit a social situation

is displaying unreflective behaviour, as is a martial artist sparring in a tournament.

Although the subject will be fully absorbed in what they are doing in the tournament,

the actual movements will not be guided by specific thought. In addition, the be-

haviour required for a given environment is determined by the current task. Compare

a golfer to someone who has accidentally wandered on to the course. In this case, the

ball would considered by the golfer as to-be-putted but for the walker it would be to-

be-avoided. These contextual perceptions of the objects in the environment naturally

drive the actions associated with them, a process known as “absorbed coping” [58].

Absorbed coping provides a starting point for explaining how a person’s intentions can

drive behaviour, but it only considers unreflective behaviour. Essentially, an agent

observes its surroundings and determines opportunities to perform actions that are

suitable for the current activity. Absorbed copying has no concept of practical reason-

ing, and so struggles to capture a person’s ability to make conscious decisions. This is

most easily demonstrated when considering intentions that are formed from thoughts,

e.g., a person considers their monthly expenditure and decides to buy a new television

which forms the intention to go to the shop and ultimately drives the behaviour of

leaving the house [70]. If perception drives action, then what role does intention play

in this process?

Dreyfus suggests that intention initiates the absorbed copying process when behaviour

has reached a standstill. This could occur in two scenarios: the person has stopped

perceiving and so intention is necessary to restart the process or the perception is

insufficient in determining the next action and so intention gives the system a nudge to

continue. However this is an inadequate solution in both instances, as the first suggests

that intention can only drive behaviour if the person was unconscious, or otherwise

unresponsive, which is not true. Secondly, imagine a person returns home after a long

day and collapses into a chair. They sit relaxed and content, but although they are

receiving perceptions from the environment there is no change in behaviour and coping
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appears to have ceased [22]. However in reality, this is not true. Considering the earlier

examples, the person is sitting in the chair because it-is-comfortable, if their perceptions

became such that the chair was uncomfortable it would likely trigger movement, to find

a more comfortable position. This interpretation appears to overlook the key fact that

a person can independently choose to act and then do so [70].

Romdenh-Romluc provides an elegant solution to the above contradiction by making

the simply claim that humans can decide to take on projects, and that deciding to carry

out a project involves forming the intention to do it. Since the current task determines

the contextual perceptions provided by the absorbed coping process, and the decision

to take on a task is achieved by forming the intention to do so, Dreyfus’ initial account

of unreflective behaviour already explains how intention can drive behaviour [70].

However Merleau-Ponty provides even more insight into this process through his dis-

cussion of instincts [58]. Physical creatures must satisfy their basic needs, such as

hunger, rest, companionship, safety, etc. These needs impose specific demands that

must be met, and so if a creature feels hungry they will seek food. The feeling of

hunger naturally imposes the task of searching for food without explicit need to form

the intention. It is also possible for a creature to progress from one task to another

without making any actual decision, for example a creature manages to find food, eats

the food, becomes satisfied but feels sleepy so takes on a task to rest. As such, a person

can form intentions to carry out actions, and also instinctively carry out actions [70].

When carrying out a specific task, the actual environment and actual task drive a

person’s absorbed copying, but Merleau-Ponty also claimed that humans have the

power “to reckon with the possible” [58]. The ‘possible’ in this context represents the

other tasks a person could do or the possible environments they could inhabit. For

example, passing a house of a friend will cause a person to recognise the house, and

perhaps consider visiting it later. However the opportunities for action that drive the

person’s current task will be perceived as most urgent and so will be executed, but less

urgent actions that relate to ‘possible’ tasks will also be perceived and stored [70].

This ability “to reckon with the possible” provides people with an appreciation of the

options available to them, while perception allows for the demand of a task to be

evaluated, allowing for one task to be selected out of many.
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Figure 2.1: Dr. Mashario Mori’s original depiction of the ‘Uncanny Valley’. (Adapted
from [24])

2.1.2 Believable Players
Believable players are NPCs within an environment which a player believes are real and

being player by other humans, despite them actually being controlled by a computer.

The aim of believable players is of interest mainly in the area of multiplayer games,

where AI controlled characters take the place of human controlled ones, and so is not

a focus here.

2.1.3 Believable Characters
Characters can be considered believable when a player believes that they are an actual

living, autonomous entity. This belief is not truly genuine, but is achieved through the

‘suspension of disbelief’ and the willingness for the player to invest in the world and

its characters.

As mentioned previously, believability is only loosely defined and it is often used to

mean ‘realistic’. That is to say that if a character is believable then they are real and

so are ‘realistic’. Within the context of a game, realistic characters are determined

by how they visually appear and act, usually through a mixture of high quality tex-

tures, detailed animations, and plentiful dialogue. This means that a NPC can appear

‘realistic’ without being believable, a combination known as the ‘uncanny valley’.

The ‘Uncanny Valley’, shown in Figure 2.1.3, refers to a temporary dip in the positive
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relationship between how human a robot or virtual character looks and how comfortable

people are with its appearance [24]. Additionally, Vinayagamoorthy found a strong

relationship between the strength of the uncanny valley effect and the disparity of the

character from its environment [86]. Realistic characters in low-resolution environments

seemed less believable than low-resolution ones in the same space, and the reverse was

also true. A higher resolution environment creates the expectation of a greater depth

of character, which means that as game’s get more detailed the believability of NPCs

will be further called into question, as they increasingly seem to be “out-of-place”.

Using The Sciences of the Artificial [73] as a basis, Togelius suggests that the believ-

ability of an NPCs behaviour could be as much influenced by the environment as the

complexity of the NPC itself. To that end, optimising the environment for believabil-

ity, in conjunction with an appropriate NPC, could be every bit as effective as simply

optimising each NPC. This makes it conceivable that the most believable NPCs are

achieved by a combination of well designed environmental and character interaction

[85].

2.1.4 Creating Believable Agents
Aaron Bryan Loyall defines believable agents as “personality-rich autonomous agents

with the powerful properties of characters from the arts” [51]. He makes the comparison

that in the traditional arts a character is considered believable if it allows the audience

to suspend their disbelief by providing a convincing portrayal of the personality they

expect. A believable agent is simply an autonomous version of this type of character.

Unlike more traditional agent types, it is not a necessity for believable agents to be

capable of accomplishing useful tasks or even to be effective at solving problems. In-

stead the focus is on less studied areas such as self-motivation, emotional drive, and

social facility. A believable agent is entirely virtual and so a human actor cannot be

expected to instinctively provide a lot of the more subtle aspects of believability, such

as happens in film. However this disadvantage is not exclusive to games, being also

shared with animated works and literature, and so these industries can provide useful

insight towards solving this problem. Disney’s The Illusion of Life tackled the difficul-

ties in creating and animating real characters “out of nowhere” [84]. The interactive

nature of these believable agents remains a unique challenge, which makes their cre-
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ation particularly difficult. It is impossible to explicitly control a believable agent, they

can only really be guided within a loose framework. This means there is an inherent

uncertainty to the situations an agent will encounter, which is only compounded by

the potentially chaotic interaction provided by a human player. In linear mediums the

creator can control and highlight specific aspects of a character’s personality, emotions

and actions to push the story forward, while a believable agent needs to contain a much

more comprehensive and within the context of the environment ‘complete’ personality

to allow them to correctly react to as many situations as possible, even some which

the creator might not have explicitly considered [51].

Loyall also provides a set of criteria that provides a standard for believable agents,

which he derived from an analysis of character-based artists and experience gained

from agents.

Personality

Personality is considered to be the most important requirement for any believable

agent. It is so powerful that it can single-handedly draw the audience in and bring

the characters alive. It is claimed that for a character to be real they must have an

interesting personality [84]. The personality is defined as all of the particular details

(i.e., behaviour, thought and emotion) that collectively define an individual.

Emotion

It is important for believable agents to have emotion reactions, and for those emotions

to be conveyed in a logical way. These emotions should be inspired by the personality

defined above, and artists often consider a character’s emotional response to be the

characteristic that brings them to life.

Self-Motivation

It is common for autonomous agents to only react to external events, not to any actions

initiated of their own accord. Believable agents, however, need to be self-motivated

and give the illusion that they are “really appearing to think” for themselves [84]. For

example, an agent which gets hungry should begin to seek out food. These sometimes

inconsequential actions have a profound impact on the believability of an agent.
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Change

Egri [25] claims that bad writing is defined by characters that forever remain the

same or which change without regard for their own characteristics. In the case of a

believable agent, this change could be in how it reacts to a player over time based

on prior interactions. Although difficult to achieve, character growth has a profound

impact on believability.

Social Relationships

Humans are naturally social creatures [11]. The believability of an agent can similarly

be defined by how it interacts with other agents. These interactions can be influenced

by a character’s own personality, the personality of the agent (or agents) it is interacting

with, as well as the relationship these agents have with each other. The artists at Disney

believe that these relationships are central to believability, but as no two relationships

are the same this can be quite a difficult concept to realise [84].

Consistency of Expression

At almost every moment, an agent will have a variety of potential methods of expres-

sions available to it. These can include facial expressions, posture, actions, etc. To

be believable the combination of these expressions must be consistent, conveying one

collective message that matches the agent’s personality, current feelings and situation

[78]. A contradiction of expressions can almost instantly ruin an agent’s believability,

although conversely a contradiction in expressions can be used to convey a different

message (i.e., lying). Such contradictions must be made clearly intentional to ensure

they seem sincere.

It’s also important for expression to be consistent across a longer time period. A

character simply cycling through animations will seem much less believable than an

agent which has habitual expressions.

The Illusion of Life

The final requirement is of particular interest to believable agents as it covers an area

that is simply taken for granted in other mediums. This covers some ‘common sense’

areas that are so completely assumed that they can be easily forgotten when it comes

to designing these agents. The ability for human characters to multi-task, i.e., walk
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and talk, is something that is never explicitly stated as a necessity in animated, film

or literature works but almost all characters are naturally capable of doing more than

one thing at a time. As such, when creating believable agents they must also capable

of these ‘sub-conscious’ abilities.

• Appearance of Goals - Characters are naturally goal-driven, so agents must also

appear to have goals.

• Concurrent Pursuit of Goals / Parallel Actions - Characters generally have mul-

tiple goals, both short term and long term, so believable agents should be also

capable of working towards multiple goals in parallel. Either simultaneously, such

as working on something while conversing with the player, or as a progressive,

repeatable, and interruptible sequence of steps.

• Reactive and Responsive - Believable agents should react and respond to events

as they are happening, not just at the exact moment they occur. For example,

an agent crossing the street should react if a speeding car approaches, not only

once it has been hit. Similarly these reactions should be responsive, but in

a believable fashion. An observer would likely expect an agent to react to a

gunshot faster than they would someone calling their name, and similarly their

personality should impact how they respond to events. Tired agents should react

slower than energetic ones.

• Situated - Agents should appear situated in the world around them, as described

by [1], changing what they are doing and how they are doing it in response to

any events unfolding around them.

This can also include the bounding of an agent’s available resources, either men-

tally or physically. For example, it is not believable for an ‘old person’ agent to

be capable of lifting, or moving, heavy objects multiple times their own weight.

Similarly, NPCs that instantly respond to the player could be considered to be

thinking ‘too fast’, so delays can actually help believability.

Agents should exist within a social context, and as such understand the social

conventions, culture and environment in which they exist. Their behaviours

should be consistent with those around them, unless their personality is such

16



that they are defying convention.

They should also be well integrated, with complementary capabilities and be-

haviours. If all of the agent’s routines are separate independent modules then

a viewer might see the boundaries in capabilities as the different modules are

given control, i.e., an agent stopping when it attempts to process its next line of

speech. A well-integrated agent will also prevent contradictions between actions

and words, such as an agent which speaks as if it knows nothing of the world,

but then confidently pathfinds across a large area.

2.2 Emotional Agents
When selecting behaviours for NPCs, the overall aim is to create as lifelike a perfor-

mance as possible and so the combination of behaviours available to each NPC must

be suitable for this purpose. They should also focus on areas that players would most

likely use as identifiers for believable behaviour. When it comes to identifying these

areas, it is best to first look at how existing psychological theories have been translated

into the digital realm.

It is now well understood that believable agents must be emotional. Previous sections

provided insights into this problem, but they do not provide any computational sug-

gestions for how these believable emotional agents can be created. However, the fields

of psychology and cognitive AI do provide some suggestions for tackling this problem.

2.2.1 OCC Emotional Model
When discussing believability there is one core focus that comes up repeatedly across

a variety of related works - Emotion. Bates argues that “appropriately timed and

clearly expressed emotion is a central requirement for believable characters” [6]. When

discussing believability, Chuck Jones, animator at Warner Brothers, states that “Char-

acter always comes first, before the physical representation. Just as it is with all living

things, including human beings. We are not what we look like. We are not even what

we sound like. We are how we move; in other words, our personalities. And our per-

sonalities are shaped by what we think, by where we come from, by what we have

experienced. And that personality is unique to each of us” [41]. The argument being
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Figure 2.2: The structure of the OCC Emotional Model. (Adapted from [64])
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that when a character is believable the creator’s job is not to invent what the character

did but actually to report their doings.

Knowing an agent’s personality allows for a natural decision to be made about how

they should act, and the OCC Emotional Model provides a solid framework for this

approach. This model breaks down the creation of emotion in to an easy to understand

structure, that can then be applied to believable agents. Within the OCC model,

emotions are triggered when an event, action, or object is appraised. This appraisal

reveals if an agent is pleased or displeased, and produces a consequence that is applied

to either the agent or others in the environment. If applicable, the other agents will

then determine if the consequence was desirable or undesirable. If the consequence had

a direct impact on another agent then that agent will rate the consequence relative to

its current goal, which this will elicit an emotional response dependent on it having a

positive or negative impact on their ability to attain the goal. If an agent recognises

the action which triggered the initial event then they will make an appraisal related to

who carried out the event and if it was considered a positive or negative action. This

will result in a change to the agent’s opinion of the character that triggered the initial

event.

The appraisal of events is key to how the OCC model captures personality, and thus

powers believability, as the emotional response can then be mapped to an action or

state. Bates presents a simple example of the OCC model through three OCC Agents

with different personalities. Although all three agents can get in a situation which

elicits the ‘fear’ emotion, it triggers the ‘alarmed’ state in one agent and the ‘aggressive’

state in another. Similarly, when appraising an event caused by another agent that

has caused a character to fail their goal, the ‘anger’ emotion is triggered [6]. This

combination of emotional cause and effect allows for the OCC model to easily build up

a very complex web of emotional reactions from a small set of basic events.

The OCC model can also be used as an evolving model, changing an NPCs personality

over time in reaction to the player’s actions. Winanda presents an implementation

of the model which can be used to power a variety of values that represent an NPC’s

opinion of a player and their personality which allows them to choose the best emotional

response to player actions [88].
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2.2.2 GO Emotional Model
There have been few attempts to decompose emotion-based action within the fields

of AI research, probably because of the difficulty of the task. There are multiple

obstacles preventing a satisfactory solution to this problem. Should the actions be

merely expressive, or should they also drive the underlying system? What level of

emotional complexity is most suitable - should it be as simple as making an embarrassed

agent blush, or should it allow for a betrayed agent to plan revenge? If agents are

already carrying out behaviours then how can emotion-based action help agents to

further their goals? What is the specific purpose of an emotional system, and how

can it be integrated in such a way that the new sequence is more beneficial than the

old? Finally, taxonomic issues prove a significant challenge. Smiling is an emotional

response, but it can be triggered by a person feeling pride or happiness, or it can be

used to mask negative emotions such as sadness. Other responses are actions that are

heavily associated with particular emotions, such as glaring at someone when angry.

Emotional expressions form many-to-many relationships, with most emotions having

multiple possible expressions, while one expression could be triggered by many possible

emotions [26].

This creates a weak-theory domain, one where some relationships consistently hold but

where most only occasionally do.

Figure 2.3 provides a breakdown of the action response categories and their theoretical

groupings for the ‘gloating’ emotion. The high-level categories are arranged from the

most spontaneous to the most planned. Within each category the particular response

are similarly arranged. Within each action the tokens / mini-plans are arranged from

least to most intense. Of course, these ratings are purely subjective.

It is important to consider that this is not a list of action words associated with

a particular emotion (e.g., boasting as a glory action) and is instead a record of a

purpose that would better and more generally reflect a possible internal state or action.

Although ‘slapping’ an inanimate object is a obscure way of gloating, it is more useful

to the system than saying ‘crow’ [26].

The model presents twenty-four emotion categories, identical in design to Figure 2.3,

each with twenty action response categories, each with three actions. This gives 1440
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Figure 2.3: The structure of the GO Emotional Model, showing the action response
categories for ‘Gloating’. (Adapted from [26])
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Table 2.1: The Twenty-Four Categories of Emotion. (Sourced from [63])
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possible actions within the system, and even only allowing three simultaneous actions

to represent the physical manifestation of an emotion gives 14403 possible combinations

[26].

The twenty-four categories of emotion are shown in Table 2.1 sourced from [63], while

the action response categories build upon [32], with the actions coming from [26].

Characters are represented within the GO Model with their own unique personalities,

controlling how they choose which actions are most suitable for specific emotional

triggers. The model splits personality into two areas: the ‘interpretive’ component

represents how they react with respect to their interpretations of situations, while

the ‘manifestative’ component represents their temperament and how they express

or manifest their emotions. For example, a character could have an optimistic or

pessimistic interpretation of events, along with a passive or aggressive manifestation of

his emotions [26].

2.2.3 OCC / GO Emotional Hybrid
Elliot describes further research that combines the work of the OCC and GO model

to create a hybrid model for the processing of emotions in multi-agent systems. The

main contribution comes in the form of an ‘Affective Reasoner’ which breaks stories

down into features which comprise the antecedents of emotions. The appeal comes

from how a simulation unfolds as the agents interpret these antecedents in their own

way to create a dynamic and appealing story [26]. Figure 2.4 shows how the Affective

Reasoner can be used in combination with the OCC and GO models to generate the

correction emotional action response for a given situation.

The combination of both models creates a very complex hybrid, and it is not well

suited to a non-programmer. This makes it of less use to a designer, and more limited

in that sense. Designing all the required action responses is also particularly complex,

and some limitations necessary for implementation had to be made. For example, the

Reasoner has no concept of emotional intensity or duration. An agent can be angry, but

it has no way of knowing how angry an event actually is, therefore a minor annoyance

is treated the same as a major one. Additionally, the model uses working memory to

store basic relationship information about emotions (e.g., Tom knows that Harry was

mad) but has only basic complexity and loses out on a lot of finer detail.
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Figure 2.4: The Affective Reasoner process for generating an action response. (Sourced
from [26])
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2.3 Narrative Agents
When considering the research done by AI researchers, the work done to create be-

lievable agents is, of course, key. However, when considering the work done to create

believable characters in other industries, the comments by Disney [84] and Warner [41]

suggest that a potential area of interest could be in the area of AI research that creates

stories. Good stories need believable characters, and so the tools and learnings of that

field could be directly applicable to this one.

Meehan created TALE-SPIN, a program capable of creating simple stories in the style

of old fables. The stories feature simple characters with interesting personalities and

their own unique goals, and are generated by the program simulating the interaction

of the characters in the environment over a period of time. The characters use the fol-

lowing scalar values: affection, competition, deception, trust, domination, familiarity,

indebtedness. These values drive the interactions, which are recorded and create the

story. Although the stories are not interactive, Meehan does provide an insight into

how to generate believable agent to agent interactions [56], [57].

Lebowitz created UNIVERSE, a similar program which creates soap-opera style stories

and features four-dimensional character relationships (positive / negative, intimate /

distant, dominant / submissive, and attractiveness). Although three dimensions were

sourced from Schank [71], based on the work of Wish [89], it is particularly interesting

to note that Lebowitz added the dimension of ‘attractiveness’ because he found it

necessary for the proper generation of believable stories [48], [49].

When considering the requirements necessary for believable agents, interactive or not,

Reilly points out that there is a particular need to consider the social role of an agent.

These roles are usually implicit when designing characters in other arts, but a computer

needs the role to be made explicit so that it can act on it in a believable manner [67].

When it comes to interactive methods for story generation, the Oz Project proves to

be a notable success. It blends AI technology with ideas and insight from traditional

arts and media. The long term goal for Oz was to develop a popular and widespread

new form of entertainment [5], [52], [53], [54].

The research of the Oz Project culminated in the creation of Façade, a fully interactive

story [76]. Façade puts the player in an dynamic, ever changing environment where
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Figure 2.5: Freytag’s Dramatic Arc (Sourced from [53])

two agents try to create an intriguing dramatic arc (such as in Figure 2.3) on each play.

The history of the two characters is randomised at the start of each story, allowing for

even identical player actions to cause entirely different stories on subsequent plays.

Façade’s dynamic story is built upon the concept of beats, referencing the smallest

unit of change in dramatic theory. A beat roughly consists of an action / reaction pair

between characters, for example a character speaking and another reacting. Beats are

selected by the drama manager to raise or lower the intensity according to follow the

flow of the dramatic arc. An important part of the Façade system is that it remembers

what beats have previously occurred, giving the impression that characters remember

what they and the player have previously said and did [53].

However the characters themselves have no real agency or memory, simply being told

exactly what to do by the drama manager. This makes them more like puppets than

truly independent agents. Although to the end user these puppets appear just like

believable agents, the drama engines omnipotence does limit its ability to be applied

to large situations or environments.

Although narrative agents might initially seem unrelated, their similar need for be-

lievable agents creates a lot of overlap. When considering games, believable agents

must also be engaging and so a consideration of the areas that narrative AI researcher

focus on gives additional insight into the kind of behaviours that players would find

appealing. This allows a better understanding of the role believable agents play in

stories and what behaviours play in to the telling of a good story. Reilly notes that

studying this field provides a better understanding of the many ways emotions can be
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expressed. For example, a narrative reaction to failure can be depression. A depressed

agent personality can then respond to failures by being more likely to abandon their

current goal [67].

2.4 Cognitive Agents
As previously noted, a large amount of research has been done in the area of believ-

able agents. This research primarily focuses on the creation of believable emotional

responses, but little is done in the way of giving these agents the ability to remember

the events that caused the emotions in the first place. An agent might remember that

they are ‘mad’ or ‘sad’, but what, or who, caused them to feel that way is never stored.

This can create odd and undesirable phenomenon, such as repetitive behaviours, and

a general lack of learning and understanding.

In recent years, more research has been done to understand how enhanced cognition

could help create better agents. Some research even goes as far as to say that truly

believable agents require “histories”, e.g., memories, which allows them to perceive and

interpret the world in terms of their own experiences [20]. Agents must also be capable

of explicitly communicating with each other, and each agent must contribute to the

dynamics of an entire group, or society, and that society should also contribute to the

individual. Others argue that the current lack of intelligent depth in NPCs diminishes

believability, and ultimately creates a less enjoyable gaming experience for the player

[50].

2.4.1 Parametrised Cognition
A parametrised memory model allows for agents to story sensory, working, and long-

term memories. This model also has methods for acquiring, story, and retrieving

these memories, and is aimed at long-term individual NPCs, those likely to feature as

companions or recurring enemies that are central to a game’s story. The focus comes

from the belief that these are the characters a player examines most closely, and also

from a pragmatic admission that it is technically infeasible to use such a model on

a large number of short-lived characters. Focusing on long-term NPCs creates more

reasonable competition and more engaging interactions [50].

The parametrised model attempts to give NPCs cognitive abilities that are roughly
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those of a human, i.e., sharing similar limitations. It also incorporates elements of

false memories, as well as distorted or hazy memories, to provide more human-like

behaviour. ‘Fuzzy’ memories are a common feature in cognitive models, also being

used in [10], [46], [69], and [9]. An NPC that continues to expand its memory will

eventually consume all available space and cause the simulation to crash, but allowing

memories to decay enables the system to reach a stable equilibrium, and [10] argues

such decay is a technical necessity.

Memory is represented as a directed graph with nodes representing concepts and edges

enacting links between concepts. A directed edge approach is used as humans generally

archive memories in a specific sequence which does not necessarily work in reverse. This

representation has the added benefit of allowing NPCs to work through memory recall

in a linear sequence. For example, if an NPC is trying to remember the formula for a

magic potion it could recall “To concoct this potion I need to add one more item after

adding the purple potion, but I can’t remember what”. This recollection could then be

used to recall a location where it can find the ingredient it is missing. A directionless

representation would make such activities much more difficult to capture.

Two strength factors, NodeStrength and EdgeStrength are used to represent false memo-

ries. NodeStrength indicates how strongly a concept is encoded within the model, while

EdgeStrength denotes the degree of ease traversing from one node to another. Essentially,

NodeStrength is how strong the memory is, while EdgeStrength represents how familiar

other memories are to the original memory. As an example, imagine an NPC builder

who is trying to build a ladder. He remembers that he needs wood and nails, but

also a tool to combine the two. He remembers multiple tools that could do the job,

i.e., a hammer or nail-gun, but he is more familiar with using a hammer and so the

hammer will have the larger EdgeStrength and be selected as a tool to use. Essentially,

EdgeStrength can represent habits, or experience, and allow for NPCs to be consistent

but also personalised as they develop in the simulation. Remembrance thresholds are

used to support memory distortion, with a simple probability calculation determin-

ing if a memory below the threshold is returned correctly, misremembered, or entirely

forgotten.
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Sensory Memory

The Sensory Memory module maintains transient information captured by the sensory

system. The paper only addresses vision, i.e., the component handles the creation of

memories which correspond to the location of items in the environment. The NPC can

then recall the item, and its location, when searching for it later. An upper limit is

placed on the capacity of this module, to represent a human’s ability to only process a

certain amount of items at once [13].

Working Memory

This module stores information currently being used by the agent for a variety of cogni-

tive activities such as reasoning, thinking and comprehending. Compared to long-term

memory, the working memory has a much smaller working size and maintaining time.

Essentially, to represent human ability only one graph structure is allowed in working

memory at a time, with others being stored in long-term memory. An algorithm, in-

spired by human thought patterns [79], determines how strongly the nodes and edges

will be retained after the information leaves the working memory.

Long-Term Memory

Unsurprisingly, this module contains an extensive number of concepts and maintains

them for longer periods. Concepts within long-term memory will have their NodeStrength

and EdgeStrength slowly decay, with the decaying percentage roughly following the

Ebbinghaus forgetting curve [23].

Working Pattern

When cues are observed in the environment the sensory memory passes them to the

working memory, where connections are made and a graph structure representation of

the items is created. The cues in the working memory are then matched against long-

term memory, and if a prior memory exists then using the previous NodeThreshold and

EdgeThreshold the information is either retrieved correctly or incorrectly. For example, if

an NPC is looking for his car keys, it is possible that he will remember where they keys

are, or he could incorrectly remember where his house keys are instead. This correlation

is possible because the two sets of keys are categorised under a meta-concept, i.e., ‘keys’.

If it has been too long since the NPC last saw his keys that the memory has entirely
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Figure 2.6: The general working pattern of sensory memory, working memory, and
long-term memory. ‘C’ stands for Cue while ‘N’ stands for Node (not all nodes are
labelled). (Adapted from [50])

decayed, then he will have no clue where they are. This relationship is shown in Figure

2.6.

The parametrised nature of the model allows for a lot of adhoc tuning, with tests being

executed to understand what settings most closely simulate real humans with good,

bad, and average recall ability and this allows for a great deal of personalisation in

what NPC types are created. However the focus is mainly on the remembrance of

items alone, with no mention of the models ability to remember people, places, events

etc. As a generic model it provides a lot of useful information, and could certainly be

used as the foundation for a more comprehensive model.

2.5 Episodic Cognition
Another popular approach to cognition is to store memories in an episodic format (such

as in [10] and [9]), of which DyBaNeM is a particularly recent framework. DyBaNeM

improves upon previous episode memory approaches by using a Baysesian represen-

tation to more easily model some the crucial facets of human memory, such as the

hierarchical organisation of episodes, re-constructive memory retrieval, and the encod-

ing of episodes with respect to previously learn schemata. The framework is inspired by

the Fuzzy-Trace Theory (FTT) [29], and uses the Dynamic Bayesian Network (DBN)

[46] as its underlying probabilistic model.

DyBaNeM has several key innovations over its predecessors. It is the first episodic
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Figure 2.7: A summarisation example. Bob is monitoring Alice, and has observed the
above atomic actions (Hygiene, Breakfast etc.). He deduces the higher level episodes
(Morning Routine, etc.), and then encodes the day using the most salient events (the
shaded mems). (Adapted from [42])

memory model to enable the reconstruction of a hierarchical episode structure (i.e., the

episode to sub-episode relationship shown in Figure 2.7), so an agent can reconstruct

the high-level goals of another agent to remember them. The framework also enables

a probabilistic re-constructive inference process, that allows for the reconstruction of

events that have not actually happened, but which are highly likely give the sequence

of stored memories surrounding. Essentially, when considering a daily routine an agent

can infer that another agent is most likely at work, as they always are at this time.

The model only remembers the most salient events, as opposed to the comprehensive

log of all events that were stored by DyBaNeM’s predecessors, for a more efficient use

of resources. Like most other models, but a first for episodic memory, it also allows for

incorrect, or fuzzy, memories to be recalled. Finally, an agent’s personal experience is

encoded as part of an episode, meaning two agents may remember the same episode

slightly differently [42].

The framework enables the following feature set for a player / NPC interaction.

1. An NPC can provide a high level summary of an activity. For example, when

describing its day - “After getting up I went to work. In the afternoon I visited

my friends, and then I returned home.”

2. It can respond with further clarification, e.g., “How did you get to your friends?”

- “I walked there.”

3. The NPC can also convey degrees of certainty for recalled events, e.g., “Actually,
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Figure 2.8: a) If Bob is asked for detail about Alice’s dinner, he can break the episode
into more detail. Shaded boxes represent stored mems, while white boxes are recon-
structed events. b) When asked to recall the action represented by O6, Bob’s uncer-
tainty of Alice’s transport method is represented by a probability graph. (Adapted
from [42])

I might have went there by car. I’m not sure.”

4. The NPC can also make mistakes that are believable in context, e.g., “I’m sure

I used public transport.”

5. The model tracks events by level of interest, so it can highlight unusual memories,

e.g., “A foreign army was marching through town yesterday, but the rest of the

day was just as usual.”

6. NPC personality can also impact perception of events, e.g., “You seem to be

enjoying the museum” could become “I can see you are scoping out security in

preparation for a theft.”

A Cascading Hidden Markov Model (CHMM) [7] is used to store the framework, which

was chosen for its simple computation cost and ease of use. An agent stores their

observations in short-term memory and then at a fixed point, e.g., the end of the day,

these mems are encoded as episodes of the whole experience. While being encoded

for storage the mems can undergo optional time decayed forgetting, where any that

fall under a given threshold can be ‘forgotten’, and thus deleted. The memories can

be recalled using cues, e.g., a specific time of day, where stored memories are then

reconstructed, possibly misremembered, for further use.

DyBaNeM claims reasonable computation time requirements for domains of moderate
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complexity, i.e., background characters in Massive Multiplayer Online Role Playing

Games (MMORPGs). In addition, it has an initialisation period that can be executed

offline to allow the agents time to build up their daily routines, meaning that simu-

lations can start with agents having prior knowledge of the environment with already

established behaviours. DyBaNeM, however, provides no suggested initial parameters

that would create human-like behaviours, leaving it up to designers to discover good

parameters for themselves [42].

In addition to the DyBaNeM framework, further research has been done into the kind

of episodic structure that humans best respond to. This uncovered that general, fuzzy

categories such as “morning”, “after lunch”, and “at night” are more believable than

specific time frames, or overly detailed events. People use “socially established” time

patterns, not specific clock times, and human users do not ask virtual characters for

detailed depictions of their personal concerns, unless it is directly relevant to their

current interests. As such, the detail that needs to be stored in episodic memory can

be high-level, while still serving the same function [9].

2.6 Embodied Cognition
The CENSYS model takes a different approach towards cognitive agents, with a more

detailed framework that attempts to model the human relationship between the mind

and the body. Arguing that the generation of behaviours is a shared process between

the mind and body, CENSYS creates individual modules which are neither body nor

mind to allow for more flexibility and control [69].

Motivated by the belief that an intelligent agent is one who complies with both the

physical and social rules of its environment, with the exploitation of those rules cre-

ating diverse, believable behaviour. As an agent’s interaction with the environment

is achieved through some virtual body, the CENSYS model believes that intelligence

cannot be entirely dissociated from the body, which it is in most other models. The

CENSYS approach aims to improve believability by considering the mind and body

as a continuum, with the mind being a collection of cognitive processes specialised for

specific functions [69].

Current approaches usually model the mind as a centralised decision-making system,
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Figure 2.9: An example of a Censys agent, consisting of interfaces, modules, a percep-
tion channel and an action channel. (Adapted from [69])

which has to cope with all levels of control simultaneously, from low-level sensor and

effectors to high level cognitive tasks such as reasoning and decision making. CENSYS

provides a way of separating this traditional approach such that the mind can more

believably emulate conscious and subconscious thoughts. Since humans subconsciously

recall items of importance, and since movement is not a conscious act where each

individual muscle is moved in turn, CENSYS presents a model for representing the

human subconscious [69].

CENSYS is modelled as a distributed network of Modules, shown in Figure 2.6, which

can have any non-zero number of connectors. Conceptually, a module is a black-box

which reacts to data received on its sensors. A module can be one of four types:

• Perception Sensor - Subscribes to and receives perceptions of a type T.

• Perception Effector - Generates perceptions of a type T.

• Action Sensors - Subscribes to and receives actions of a type T

• Action Effector - Generates actions of a type T.

The main advantage of this type of architecture is that the mind does not explicitly

need to know how to communicate with the body, enabling a layered approach to

decision-making and cognitive behaviour. This also allows for modules to be swapped
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in and out as agents need them, without any significant rewrite being needed.

CENSYS allows for various functionality to be easily implemented in an intuitive way,

such as in the scenario of a virtual robot character moving through an environment.

When the robot hears a noise, one module senses the noise and processes it as a po-

tential speech command, while another module turns the robot to look towards the

sound to give it more human-like behaviour. A third module can handle movement,

allowing for agents to move, gaze and process input simultaneously without any com-

plex branching requirements. Taking the role of the “body” away from agents allows

the mind to be refocused on only the thought processes a human would traditionally

deal with, such as memories, thoughts and emotional responses. This combination can

also lead to a greater degree of believability to be implicitly programmed as emergent

interactions between modules [69].

However, the distributed nature of the modules means that concurrency could become

a potential concern, and a solid design framework would be necessary to ensure that

modules are easy to design and change as needed.

2.7 Self-Organised Cognition
Three key requirements of realistic agents in virtual worlds can be identified as auton-

omy, interactivity, and personification [44]. The self-organising model attempts to pro-

vide this by proposing a brain inspired agent architecture that integrates goal-directed

autonomy, natural language interaction and human-like personification [43].

Many other approaches have attempted to model dynamic environments and a user’s

immediate context, however they typically ignore a significant component - making

the virtual world experience more intense and personal for players. This is due to

the fact that they usually ignore the capability for agents to adapt over time to the

environment, and to the habits and eccentricities of each player. This approach is

difficult, because learning in a virtual world is unsupervised, and without an explicit

teacher to guide the agent’s growth. The paper presents a solution to this problem in

the form of a self-organising neural model named FALCON-X. This model integrates

some other previous architectures, including ACT-R [2] and fusion ART [81], with the

design being motivated by the neural anatomy of human brains.
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Figure 2.10: A schematic of the integrated agent model. (Adapted from [43])

Autonomy is achieved through the Inference Engine, which is based upon fusion ART,

and performs a myriad of cognitive functions, including recognition, prediction and

learning, in response to a continual stream of input. This allows agents to make deci-

sions not only based on situational factors, but also from mental states characterised

by desire, intention and personality.

FALCON-X adopts the Five Factor Model (FFM) [55] for improving the believability of

agents. This model characterises personality in five trait dimensions, and by weighing

each dimension a unique personality can be formed from the combination of all traits.

It was found that players respond well to open and extrovert agents, as they are pro-

active and approach the player to make conversation and offer assistance.

FALCON-X has been extensively tested, with one user test presenting three versions

of an environment each with a distinct type of NPC. The first environment was a

control environment, where NPCs are only able to display static messages and cannot

interact with users. The second environment contained interactive NPCs designed for

conversation using the Artificial Intelligence Mark-Up Language (AIML). AIML is a

XML-compliant language, and is considered as a rule based repository of knowledge on

to which the engine performs pattern-matching to select the most appropriate output

for a given input. The third environment was similar to the second, but used the

paper’s model to power the NPCs instead of the AIML pattern-matching approach. An
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intuitive user interface is provided for interaction between players and agents, through

which a player make ask questions and provide responses through button click. The

agent builds an internal model of the player during these interactions, which allows for

the agent to adapt to each specific player [43].

A user study tasked players with exploring the environment, solving riddles to find

five check-points hidden within the world. The performance of the virtual humans was

rated in five key areas, which could then be compared to see which approach was most

effective [43].

The environment populated with the FALCON-X NPCs performed best, with users

completing their quest in a significantly shorter time than the other two environments.

When it came to analysing the other key areas, the third environment was also the

highest rated for all but one, enjoyment. The paper suggests that this is due to the fact

that the users exploring the second environment had the most experience with game

environments, and so were naturally predisposed to having a more enjoyable time [43].

Using data analysis techniques it was also uncovered that the flow experience (i.e., how

smoothly the game went) was significantly stronger in the third environment, likely as

a result of the heightened NPC interaction [43].

2.8 Inference Agents
Cognitive agents can be used to generate a “theory of mind” (ToM) [87] of a human

player and to use this approximated ToM to choose the best responses during interac-

tion. One such area of research is to see if a simplified ToM is worth considering as it

is less computationally expensive, so there might be trade-offs that can be successfully

made between accuracy and efficiency. Such research even suggests that the formation

of an incorrect ToM is not inherently damaging, and can actually prove to be beneficial.

As such, cognitive agents which make decisions without having all the correct facts can

actually appear more believable than those that do.

Agents need a theory of mind to successfully interact with people [37], and so a common

approach is for an agent to use their own reasoning mechanisms as a model for the

reasoning of others. The main challenge of such an implementation is to overcome the

unavoidable uncertainty about the complete mental state of others, e.g., not knowing
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the true goals of a player, and so the aim is to see what level of uncertainty is acceptable

while still retaining believability.

To test a simplified theory of mind, researchers used a war game, based around the

negotiation of territory, which pitted a human player against agents with simplified

ToMs. The players had to come to an agreement over the percentage split of territory,

or they could fight over it instead. This continued until both sides agreed, or one side

had successfully won the war and gained all the territory.

240 participants took part in the test, of which each participant took part in four games.

In each game they faced an agent using different reasoning models, either Powell [65]

or Slantchev [74], but with the same ToM, and against each reasoning model the player

would begin with a territorial advantage in one game, and a disadvantage in the other.

The participants had no idea they were competing against an inference agent, while

the agent only had an approximated ToM so it could not be certain what a player

would do each turn. To this end, it had to decide the best actions to try and win the

game.

Although the approximated ToM of the agents caused them to make some strong as-

sumptions, they still performed very well in the games (although worse than an optimal

ToM would have done), so the assumptions did not significantly hurt its performance.

Players put a higher value on ending the game through negotiation than other meth-

ods as it was considered a peaceful resolution, while the agent had no such concerns.

Similarly, it did not adapt its strategies based on the player, and so did not adapt to

negotiations with a more stubborn player. The simplifications made to those areas hurt

an agent’s believability, while those in other areas did not. This suggests that the areas

of approximation need to be targeted, e.g., the simplified ToM did not consider some

additional “human values” placed upon the game. An unfocused ToM simplification

would be detrimental to agent performance, making it necessary to explicitly design

the approximations to suit the environments and the role of the NPCs.

2.9 Current Architectures
There is currently an inconclusive debate over whether symbolic or sub-symbolic rep-

resentations of human cognition are most suitable for computer models. Current cog-
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Figure 2.11: A simple Finite State Machine (Sourced from [62])

nitive models ([10], [9], [42], [69], [66], and [50]) all use their own custom architecture

and the problem is that no firm answer has been found on which system is used in

the human cognitive system, so it is hard to know which system to use for the closest

possible emulation in a model. Although a largely unanswered question, Kelley argues

for a hybrid approach as it is most effective at realising cognitive models [45].

In addition to a cognitive model, a solid AI architecture is necessary to support the

complex models that have been discussed previously. When considering the architec-

ture of AI behaviours, it is wildly regarded that they should be responsive (promptly

react to the environment), interruptible (impedible by other behaviours or events), re-

sumable (continue after being interrupted), collaborative (instigate and react to joint

behaviour requests), and generative (easily implementable by non-programmers) [19].

Although many architectures fail to satisfy all five requirements.

Finite State Machines (FSMs) are the most common architecture for controlling NPC

behaviour [62]. An FSM contains a fixed set of states that a character can be in, such

as standing, sitting, running, and jumping. A character can only be within one state

at a time, i.e., they cannot be both standing and jumping. A sequence of events are

sent to the FSM, and these events might trigger a transition from one state to another

state, as shown in Figure 2.11.

However, FSMs are low-level, unorthodox and are limited in their logic, i.e., they

cannot handle something as simple as counting by default. In addition, they are not

resumable, they do not work well with concurrency, and they scale poorly. FSMs are

also not deliberative, making them particularly ill suited towards creating the goal-

directed behaviours more suited to believable characters [16].
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Stack-based FSMs (SFSMs) and Hierarchical Finite State Machines (HFSMs) attempt

to overcome some of these issues, to varying degrees of success, but the industry as a

whole is moving away from the entire FSM architecture due to its inherent unwieldiness

[16], [62].

Behaviour Trees (BTs) are one alternative to the FSM, however BTs within games are

very different from BTs in more traditional AI programming, being closer to HFSMs.

BTs focus on increasing the modularity of states by encapsulating logic transparently,

for example by using nested states. This is achieved by removing the transitions to

external states, making them self-contained. This makes them essentially behaviours,

or a collection of related actions. The priority of behaviours is also revealed in a

much more natural way than with FSMs, as the tree can simply be traversed with

the first valid behaviour being executed, although higher-priority siblings are given the

ability to interrupt on subsequent ticks. Halo 2 implements a HFSM for its combat AI,

specifically using a Behaviour Directed Acyclic Graph (BDAG). In addition, it uses

stimulus behaviours (dynamic nodes placed in the tree based on callbacks) to allow

for joint behaviours and context-specific behaviours, although these are not resumable

[39]. Halo 3 upgraded their BT to support collaborative behaviours (Collaborative

behaviours defines NPC interaction, while the previous joint behaviours represented

simultaneous behaviours.), although this is something that is not normally supported,

and is actually quite difficult to implement, in BTs [40].

Rule-based systems (or inference engines) are a particular popular architecture used in

real-time strategy games. They can be used to encode behavioural rules that capture

knowledge about a particular game scenario and the agents that inhabit it. These

architectures comprise a database of associated rules, containing conditional program

statements with consequent actions that are performed if the specified conditions are

satisfied [38].

Goal-Driven Architectures provide an intuitive and cognitively motivated way for think-

ing about NPC problems. As an abstraction that guides behaviour, goals are often

formalised as a partial description of a desired word state, such as ‘GoToTheShip’ or

‘AttackEnemy’. Unlike FSMs, goals are both interruptible and resumable, and they

also save their previous state. A goal consists of a plan of how that goal can be achieved,

which is represented as a sequence of actions that will achieve that goal. Multiple so-
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lutions might be possible, so the goal will attempt to determine the best path. Goals

also support re-planning, so if a current plan fails it can attempt to try an alternative

plan or it could change its current goal. For example, if an agent’s goal is to reach

the castle and the entrance is locked, then its current goal would fail and a new goal

would be to ‘find the key’. Goals can be represented as either Hierarchical plans, where

goals consist of sub-goals that decompose the goal into a series of atomic actions where

actions only appear in the leaves, Hierarchical Task Networks (HTNs), And/Or Trees,

or as a Behaviour Tree [12].

AI Planners are an evolution of the goal-driven architectures, essentially having a top

level brain (or planner) which oversees the planning of current goals. STRIPS-based

planners work backward from the goal state, searching possible situations to find the

best path to get from the current world state to the goal world state. F.E.A.R was

the first game to make use of a STRIPS planner, although in recent years there has

been a shift away from STRIPS towards more hierarchical approaches, since it did not

perform well in situations which were heavily scripted, or games with linear story-driven

characters, and behaviours were not resumable. Hierarchical Task Network Planners

(HTNPs) [33] work top-down, breaking the current world state down into an eventual

sequence of actionable steps that represents the current ideal goal state. The method

by which the plan is expanded can vary, although planners inspired by the Simple

Hierarchical Ordered Planner (SHOP) are becoming increasingly popular thanks to

the success of Killzone 2. Killzone’s NPCs received continuous praise from players and

critics, which encouraged other developers to switch to a HTNP [17].

DEMIGOD and The Sims employ utility systems, which essentially use a voting / score

system that tries to evaluate the benefit of short sequences of actions and select the

best one. In the case of The Sims, this utility system evaluation occurs through the

object-character interaction loop. Game objects around the NPC signal interactions,

and a scoring system causes the sim to make the best choice. The Sims 3 puts more

focus on a top-level hierarchy, reducing the utility decisions to a lower level, creating

a more consistent goal-driven behaviour that retains the rich object interactions but

makes them more purposeful and consistent [17].
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2.10 Conclusion
An agent cannot simply be classed as believable if they are emotional, or if they have

good memory, or if they are socially aware, or even if they can interact with the en-

vironment in an intuitive way. Simply put, an agent can only really be perceived as

believable if they can do all those things simultaneously, with every facet of their being

feeding in to a complete whole. An agent’s memory informs their social interaction, as

well as how they perform in the environment. Similarly, interactions create new mem-

ories which influence which interactions, and placement in the environment presents

new opportunities for interactions and events. This cycle of constant evolution is key

to any believable agent, and any memory model must be designed so as to work as

part of this constant feedback loop.

To create a new kind of agent it was necessary to cast a wide net of research and sample

works in many connected areas, as although the structure of a memory model is key it

is information gathered in these other areas that best informs what the memory model

should actually be.
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Chapter 3

Design

This chapter offers a comprehensive design for the project, addressing the creation of a

model which will aim to create more believable behaviours for background characters

in games. Starting with the model’s high level definition, this chapter then presents

some common character tropes that illustrate its potential to improve upon current

behavioural approaches. Once a clear understanding has been achieved, an architecture

diagram of the model’s core components can then be defined. Following this, methods

are discussed for using the model to facilitate the procedural generation of content.

3.1 Previous Work
The initial inspiration for this work comes from Fallon’s research into a similar area [27].

Although focusing on emotion instead of memory, his work has many parallels with

this one. From a design point of view, the processes he used to design his emotional

model can be readily applied to the creation of this cognitive one.

3.2 Model Definition
When it comes to making decisions, it can generally be said that a person’s current

actions are a direct result of their previous ones. Prior experiences, and by the extension

the memories associated with those experiences, influence the decisions that a person

will make in the future. Considering this, the model should represent memory in a way

which allows these prior experiences to be stored, and then queried when it comes time

43



Figure 3.1: Representation of the basic memory graph. C = Concepts / Cues, N =
Node. Nodes are generic, but through node flags (represented by colours, e.g., Orange
= Item, Purple = Location) different thoughts can be captured. A green outline
represents an active cue or node, while red represents an inactive one.

to make future choices. This is made possible through a directional graph, a tried and

tested method for memory storage, with nodes on the graph representing individual

thoughts. Unlike other approaches, the information stored in the nodes will be entirely

generic. This might seem chaotic, but in actuality the design’s potential arises from

how the controlled creation and accessing of these memories allows for meaning to arise

from what might at first appear to be nonsense. This is captured in Figure 3.1.

3.2.1 Memory Representation
Within the graph each individual node represents a unique memory concept, i.e., a

thought. A node remains generic, so a thought could be about an item, an area, a

character, or even a colour. The thoughts that are created by the system are appro-

priate for what that system requires, so if a game requires the characters to remember

colours then they will, and similarly if they need to remember specific items then they

can.

The edges between nodes, i.e., memory links, are represented in Figure 1-1 as an arrow,

but in reality are actually represented by two factors: Memory Strength and Opinion
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Strength. Memory Strength captures how vivid the memory is within the graph, while

Opinion Strength captures a context dependant viewpoint of what the agent thinks

about that specific edge relationship.

The generic nature of the graph inevitably leads to a lot of different information being

stored within it. For example, a node could represent an item, character, or place. To

provide the necessary context, a type flag will be contained within each node that tells

the system what the memory represents at a high level. The chosen types can reflect

the demands of the system, and so a system can have any number of types.

Memory Strength

Memory is represented within the graph in a 0 - 10 range, with 10 representing a very

vivid memory and 0 representing an entirely faded one. Although somewhat unrealis-

tic, there is a design need for certain memories to be permanent. This requirement is

two-fold: It can capture memories that humans consider to be essentially permanent,

i.e., how it is said that nobody forgets how to ride a bike, and it can also capture mem-

ories that for design specific reasons cannot be forgotten. For example, if a game’s

design requires that agents must always remember where they live, then that require-

ment can be facilitated through the application of a permanently encoded memory.

These permanent memories are represented in the system with a Memory Strength of

11.

Section 2.4.1 presented an approach where the storage of conscious and subconscious

memories was represented as two distinct graphs, i.e., active and inactive. When

memories are in the active graph they are being thought about and strengthened, and

when in the inactive graph they are stored and fading. This leads to some repeated,

and redundant, data since nodes are temporarily duplicated when in both the active

and inactive sets, and adds additional overhead when it comes to checking both the

active and inactive graphs, as well as overhead from copying data between the two.

This process is simplified by adding an ‘active’ flag to each node, meaning that both

active and inactive memories can be represented within the one graph, allowing for

lookups to be centralised and removing the need to copy data.

If memories are not reinforced then they will decay and eventually be forgotten. Memo-

ries are forgotten when their Memory Strength falls below the Forgotten Threshold,
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Figure 3.2: Illustration of a Forgetting Curve. (Sourced from [14])

Figure 3.3: Illustration of how the forgetting curves become flatter over the course of
the repetition process. (Sourced from [14])
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a tunable value that can be changed in real-time to create characters with different

types of memory personalities, or that can be temporarily changed as a result of outside

effects (e.g., to represent the effects of alcohol).

In addition to memories being forgotten, memories will also get increasingly fuzzy

as they decay. When a memory is considered fuzzy then there is a chance that the

recollection process will fail and the memory will be remembered incorrectly. In this

case certain aspects of the memory might be altered. For example, when considering

the location of an item that has not been seen in a long time then an agent might recall

it being in a different place to where it actually is. This process is not random, instead

the fuzzy process will alter the memory with the values of a related neighbouring

concept, so that it still appears credible to the agent. Memories are considered fuzzy

when they falls below the Fuzzy Threshold, which means they can be categorised in

two groups: Vivid Memories and Fuzzy Memories. Vivid Memories will always be

remembered correctly, but the likelihood of a Fuzzy Memory being altered will increase

as the Memory Strength falls. This process follows a very simple probability:

FuzzyProbability = 1− MemoryStrength

FuzzyThreshold
(3.1)

So given a Memory Strength of 4 and a Fuzzy Threshold of 5, a memory would have

a 20% of being remembered incorrectly.

Human memories do not decay linearly, and so greater control of memory decay can

be provided by simulating the human process more closely. Human memories decay

according to the Ebbinghaus Forgetting Curve, shown in Figure 3.2, which resembles

that of an exponential curve.

Additionally, the forgetting curve actually changes based on how frequently a human

revisits the memory, as shown in Figure 3.3. Considering a player is unlikely to notice

this extra detail, and remembering that the focus is on believability, not accuracy, it

was decided that only the basic curve would be represented in the model. However to

allow for more control the steepness of the curve would be incorporated as a tunable

value, allowing for different retention rates to be set on a per-system or per-character

basis.
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Figure 3.4: Illustration of how different opinions can be captured within ‘Opinion
Strength’. Edge between a Cue and Item = ‘Desirability’. Cue and Character =
‘Friendliness’, Cue and Location = ‘Appeal’, Character and Item = ‘Likelihood of that
character having or knowing about that item’

Opinion Strength

Opinion is represented within a -1.0 to +1.0 range, capturing a ‘negative’ to ‘positive’

viewpoint. Other implementations capture the edge relationship in a similar manner

to Memory Strength, but by allowing Opinion Strength to be negative creates a more

general, practical design that provides greater benefits when compared to other ap-

proaches. The choice an agent might make about related memories is not necessarily

just the ‘strongest positive edge’, but it could also be the most negative, most positive,

or the opinion closest to 0.0. The neighbours of each node will be sorted based upon

their opinion strength, with most positive being first and most negative being last.

This means that thoughts which concern the selection of specific neighbours can be

simplified to select the either the best or worst case directly in a lot of cases, while still

falling back on a search if necessary to select a value in the middle. Since neighbours

might not all be of a similar type of memory, i.e., item, place, or person, it will also

be possible to filter neighbours to only get the information needed. For example, the

most positive neighbour might be a character node when an item node is wanted, and

so filtering out all non-item nodes will provide the answer in the right place.

Opinion Strength captures a context dependant view of what the agent thinks of that
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specific edge, so the edges between different types of thoughts can represent different

opinions. Some examples of potential opinions stored within the opinion strength value

are presented in Figure 3.4.

3.2.2 Memory Interface
The graph provides an interface for the agents that consists of a series of functions

that allows them to query it and gain the results they want. This keeps the actual

graph model separate from any specific implementation, with only the interface needing

to be adapted. At a most basic level, the agent will provide the interface with a

unique identifier that maps to a node in the graph. This ‘cue’ node represents the

concept the agent is curious about, and the edges, i.e., neighbours, of this node are

the specific thoughts the agent remembers about that basic concept. For example, an

agent considering “Where is my favourite hammer?” can be represented as a call to

the interface to return the most positive edge under the cue node of ‘Hammers’. Since

the opinion captured by the hammers edge is ‘desirability’, an agent will desire his

favourite hammer the most out of all the ones he can remember.

Of course this query interface will also invisibly handle the other aspects of the memory

model, such as the process by which fuzzy memories are misremembered. If the agent

has not encountered his favourite hammer in a while, then it is possible the process

will return a memory that tells him the hammer is in a different location entirely.

The below pseudocode provides a brief outline of how such an interface could be im-

plemented.

memory selectedMemory;

bool SelectBestMemory(string concept, out memory rememberedMemory)

{

IF memory graph contains nothing related to \textit{concept}

return false;

memory memoryConcept = Node that has the ID of \textit{concept};

rememberedMemory = Node neighbour of memoryConcept that has the most

positive opinion value.
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IF rememberedMemory’s Memory Strength < Fuzzy Threshold

rememberedMemory’s location = Random location of one of

memoryConcept’s other neighbours.

return true;

}

3.2.3 Sensing System
A sensing system is necessary to generate the memories that the graph will store, and

these memories are generated based on what the agent is perceiving in the environment.

This sensing is made possible through the creation of specific environmental ‘cues’

which are attached to objects of relevance in the environment. These cues could be

attached to characters, specific locations, or items. They could also, more generally,

be attached to specific events.

A virtual sensor attached to each agent would then identify these environmental cues

once they enter the agent’s sensory radius. As a simplification, the agent does not need

to specifically see the item, with a spherical radius around the agent instead being used

in place of line of sight checks. A cue provides information about the item, to help

guide how appropriate memories should be generated. Generally, an environmental cue

will contain information about the object itself, as well as the unique identifier of the

concepts it is associated with.

When a cue crosses the threshold of this sensor it is immediately passed to the memory

graph. If the memory is new then the graph creates it, while if it previously existed

then it is retrieved and updated. Any concept associations are then made in the same

way.

This process also marks the associated memories of the cue as active, i.e., being thought

about by the agent, and so each subsequent update of the graph will strengthen the

active memories. In addition, the observations made by the sensor will be used to create

associations and opinions about the memory node. For example, while the memory

of an item is active the sensor will be creating an associated link between the item
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Figure 3.5: Representation of the Sensory Process. I = Items, C = Concepts / Cues,
L = Locations. A green outline represents an active cue or node, while red represents
an inactive one.

and the location it is being observed. It will also be evaluating the item, to create an

opinion of it. If the item is new, shiny and useful then this could be quite a positive

one, but if it is a broken, discarded item then it is likely to be a negative one.

At some point, the environmental cue will leave the sensory area. At this point the

cue is again passed to the memory system, where it performs a final check to make

sure the information stored in the node matches the object’s current state. One last

update of the memory is performed, and then the memory is marked as inactive. This

forced update ensures that memories are always kept correct even if the model is not

updated every single frame. This allows for larger time steps between model updates,

while still allowing cues to enter and exit the system freely.

The first three steps of the sensing process are shown in Figure 3.5. At (A) a new

environmental cue has entered the sensory radius, and so is passed to the memory

graph where an associated memory is created. At (B) this process then makes the

necessary associations by creating the high-level concept that represents this specific

item. At (C) a relationship is made between the high-level concept and the specific

item, so that an agent can think of the item by considering the concept. This edge

will also capture the agent’s initial opinion about the item. The diagram also shows

how the three items within the sensory radius are considered active (outlined in green)

within the graph, so are being strengthened, while the fourth item has left the radius
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and so is inactive (outlined in red).

3.3 Illustrating the Model
The vast majority of games create characters from a pre-set criteria of personalities, or

‘classes’. These character bases are made unique through the personalisation of their

appearance, voice, habits, etc. but at a fundamental level two characters from the

same class perform the same actions. A class can encompass any group of characters

that share a similar core set of functions, for example an archer class, a beggar class,

a shopkeeper class, and so on. The list of potential archetypes is almost endless, and

will vary greatly from game to game, but the same design rules can be applied in each

case.

In most games, these character classes follow the same scripts, with the difference in

their behaviour coming about simply due to the differences in their respective envi-

ronments. Two archers might eat different food in different places but only because

the environment at the time makes do so, with the actual scripts that trigger how

and when they eat being identical. As such, scripting can lead to repetitive behaviour

unless the game has an incredibly diverse number of base character types.

To consider how memory can help diversify character types, as well as to identify what

memories they need to store, some potential archetypes have been created.

3.3.1 The Blacksmith Type
The daily routine for a Blacksmith is quite simple. They wake in the morning, collect

their hammer, and then head to work. As part of their work, they might occasionally

need to go and collect new materials. At some point they are likely to go and eat, and

in the evening they will relax with a hobby, such as fishing or drinking. Finally they

will retiring to bed and repeat the entire routine the next day. Therefore the actions

can be identified as follows:

• Sleep

• Collect Tools

• Go to Work

• Collect Materials
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• Eat Food

• Go Fishing

• Go Drinking

Since ‘waking up’ is not actually an action, instead being a result of the sleeping action

ending, it has been omitted from the above list. These can be further expanded into a

series of atomic steps.

• Sleep

– Go to Bed

∗ Think of Bed Location

∗ Walk to Bed Location

– Sleep in Bed

∗ Play Bed Animation

∗ Play Sleeping Animation

So to go to sleep, an agent must first go to bed. To go to bed, they must access the

location of their bed, and then walk to it. Once they have arrived, they must sleep in

it. To do this, they can play an animation where they climb into bed, and then one in

which they sleep.

This provides the first memory - Agents must recall where they sleep.

Applying this same breakdown to the other actions can provides the full suite of places

and items a Blacksmith would need to remember to accurately do his job. These

include:

• Bed

• Hammers

• Work

• Collected Materials

• Mining Spot to gather new materials / Shop to purchase new materials

• Food

• Eating Locations

• Fishing Rod / Alcohol

• Fishing Spots / Pubs . . .
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If it is assumed that all Blacksmiths are going to select the ‘Most Positive’ tool they

can think of, then the value that is captured by each agent in this regard can provide

greater variety. For example, consider the difference between a Frugal Blacksmith and

a Perfectionist Blacksmith. They both make and store opinions about the tools they

see in the world, but the Frugal one likes to save money and so puts a high value on

using tools he already owns, even if they are old and worn. On the other hand, the

perfectionist always wants the newest and best items, so puts a high value on owning

the best type of tool available for the job.

Simply by querying their memories, the most tool for the frugal blacksmith can be the

one he always uses, while the one for a perfectionist might be one they can buy new in

a shop.

3.3.2 The Archer Type
Gathering classes are particularly popular in many role playing games, being the char-

acter players are most likely to encounter out in the wilderness. These characters

usually patrol the areas outside of towns, capturing and killing monsters to simulate a

hunter / gatherer role. The daily routine for an archer might be as follows: He awakens

very early in the morning, and collects his bow and arrows. He then decides the best

place to hunt for the day, perhaps based on external factors that he remembers, like

where he last saw a large monster. He travels to this point and begins searching for

animals. He collects a reward from each animal he kills, i.e., a pelt, and in the evening

he returns home and sells his loot at the shop. He then might retire to his home and

use some nearby wood to create more arrows.

Again, what the archer remembers helps to create a unique character. For example, he

is going to explore the area outside of the town and begin identifying potential hunting

locations. As he uncovers these locations, he will make an association between each

location and the animals / plants he can find there. If he is searching for a specific

item, he will head to the place it was last spotted. Similarly, if he found a particularly

abundant hunting spot he will remember the next day that there was still numerous

animals left there, and so will return to it. Essentially, applying memories to the archer

can give him habits and power his with behaviours with genuine purpose.

A different archer, even in the same area, will develop their own habits, and might even
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develop memories of areas to avoid simply because it puts him in competition with the

first archer. This behaviour would be difficult to explicitly script, but can arise quite

naturally from the interactions of simply memory types.

3.3.3 General Memories
The above designs feature two specific, and quite different, archetypes and so the

memories that each must store initially appear quite different. However, they can be

broadly summarised as belonging to three categories: Locations, Items, and Characters.

By considering the characters (animals and monsters are also considered to be ‘char-

acters’) associated with a specific location, then an archer knows where best to hunt.

Considering the location most strongly associated with a hammer tells the Blacksmith

the best place to find it. Similarly, if one archer considers the locations most associated

with another archer then he knows where to avoid if he wants to hunt by himself. As

such, the associations between these three memory types can drive all of the previous

behaviour.

However, more broadly, the design has implicit requirements that are not directly ad-

dressed by looking at one specific character type. For example, what if the Blacksmith

is not aware of any hammers, or when he reaches his hammer it is no longer there?

In the latter scenario he could update his hammer memory to indicate the location is

unknown, but this still leaves him without a hammer. The solutions to this type of

problem are not specific to any character type, and so are better defined broadly as

part of the model.

If the above scenario will break the game design, then the obvious solution is to ensure

there is no possibility for the Blacksmith to find himself in such a situation. If he is

provided at run-time with a permanently encoded memory (i.e., Memory Strength =

11) of a hammer, then he will always know where to go. Similarly, if the hammer is

created in such a way that only he can interact with it, then he will never find that

someone else has taken it. This solution is less than ideal, since it forces the model to

behave more like the scripted behaviours it is trying to surpass, but it does show how

the model can be adapted for specific design limitations.

A much more suitable outcome would be achieved if the blacksmith could use additional
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memories to solve this problem for himself. As such, behaviours which operate on

the model should have fall-back scenarios for when the graph does not contain any

supported memories for the initial query. For example, if he is not aware of a specific

hammer then he could query his memories for a shop and visit it to see if they sell one.

He could also consider locations where other tools are located, to see if he can find a

hammer nearby. He might even query the other characters he knows, and by visiting

them he could enquire if they own a hammer, or if they know where he could find one.

Essentially, the design of the memory model provides agents with a way of self-resolving

their own issues in a method not possible through conventional scripting, and so any

behaviours should take advantage of this process. This method of self-resolution also

helps prevent repetitive behaviour from becoming common place.

Combining the model with traditional behaviours, such as wandering, patrolling and

searching, allows them to effectively use the thought of a specific ‘location’ to then fully

search that location in a believable way to find an item or character they are searching

for.

Considering the model is designed for interactive games, it makes it possible to include

the player as part of this process. Consider the worst case scenario, where the agent

has exhausted all the possible avenues of self-resolution suggested above. In this case,

an agent could simply accept that they cannot resolve their own problem. For example,

they might go to the Town Square and post up a notice that says “I’ll pay anyone 100

gold coins if they can find me a hammer”, and then perform another activity in the

meantime. The player could see this notice and decide to undertake the agent’s request

by collecting a hammer and giving it to them. The agent is now able to resolve his

problem, the player has been rewarded, and as an added bonus the dynamic interaction

will come across as being quite believable.

The specifics of any such implementation would depend on the systems used for players,

quests, character etc. so will be expanded upon further in the next chapter.

3.4 Event Memories
It is easy to consider how physical concepts can be captured in the graph, since they

exist within the world and can be detected by the sensory system as an agent moves
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Figure 3.6: Design of the Global Events system. An event (E1) occurs at a location
(L1) and involves three monsters (CH1, CH2, CH3). The agent takes part in the
event, and gains a pointer memory in their own graph so they are aware of the event.
In addition, they form a personal opinion about the location the event took place (C1
-¿ E1), as well as an opinion on the two monsters they saw (C2 -¿ CH1, C2 -¿ CH3)
there. Finally, the monsters called for backup creating a sub-event as part of the main
event (SE1) which the agent was involved in. However they had started to run away,
so have no specific knowledge of where (L2) or what (CH4, CH5) was involved in this
sub-event.

through the environment, but capturing memories related to specific ‘events’ proves to

be more abstract. For example, if a dragon was to attack a village the environmental

cues would automatically provide information about the dragon and where he was, but

not necessarily what he was doing. To capture this extra level of detail that would

allow an agent to say that a dragon ‘attacked’, instead of just thinking ‘there was a

dragon’, requires a different approach.

Events can be considered global as they impact a large number of agents within a

given area. This could be within a single town, but it could also be across the entire

world within the game. To that end, the event system needs to be capable of handling

any number of agents. Considering this, having each agent remember all the details

of an event seems wasteful, as lots of potentially repetitive data would be stored in

each memory graph. Since events are global, then so too should event memories be

global. Essentially, each agent will have their own graph of personal memories as well

as access to a shared ‘event graph’. An agent will store event memories locally, but
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these memories are simply pointers to the global information about the event in the

event graph. That way information can be shared without being repeated.

Of course no two agents are going to see an event from the exact same viewpoint, so

additional detail has to be provided in the way that agents can access global event

info while still storing local, personalised thoughts about the event. For example, in

the above dragon example, everyone is aware that the dragon attacked the village, but

only one agent locally stores the thought that ”‘the dragon burned down my house”’.

Such functionality also allows players to question agents about what they saw to find

out what happened, although no two agents might necessarily agree on the finer details

of an event. This global ‘shared event’ process is presented in Figure 3.6.

All games have an event system of some kind, to control specific gameplay behaviours,

so centralising the event graph within this system seems like a natural approach. The

systems that generate the events can then be expanded to send messages to agents

involved in events, allowing them to create their own event memory pointers as well as

any personalised memories they want to remember.

3.5 Goal-Driven Behaviours
A goal-driven system, such as the one presented by Buckland [12], mainly differs from

more traditional state-based agents through its stack-based hierarchical architecture.

This allows for context specific goals to be updated in real-time by pushing more

pressing goals on to the stack. Goals can be either atomic or composite. Atomic goals

define a single action, such as ‘pick up item’ or ‘move to position’, while composite

goals define more complex tasks, such as ‘buy a weapon’ or ‘build a house’. Composite

goals are achieved through the application of a series of atomic goals, such as ‘buy a

weapon’ being achieved by ‘walk to shop’, ‘talk to shopkeeper’, and ‘buy sword’.

A goal-driven behaviour system captures the ability for humans to not think about

something until absolutely necessary. For example, if a person decides to go to the

shop they do not explicitly consider the need to open the door until they reach it. In

a similar way, the goal ‘go to the shop’ would be pushed on to the goal stack, then

expanded, and then a ‘open door’ goal would be pushed as a sub-goal of the main goal,

making it the current active goal. This process of decomposing and satisfying goals
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Figure 3.7: An example of goal driven behaviours, showing how the goals are expanded
in a sequential manner based on the hierarchy.

by pushing and popping from the stack is repeated until the entire hierarchy has been

traversed and the agent is fully satisfied.

The goal system works on a stack based hierarchy, consisting of both atomic and

composite goals. A goal has a status (e.g., active, inactive, complete, or failed) which

tracks its current progress in achieving its aim. In addition, composite goals contain

another stack of sub-goals that must be achieved before it can be considered complete.

Specific goals, such as ‘Fishing’, ‘Patrolling’, or ‘Collecting Item’, can be defined on a

case by case basis, depending on the needs of the implementation.

When considering goal-driven systems, the top-level goal is usually a never ending

‘brain’ goal that drives the agents behaviour. This is able to set the agent’s current

main task (i.e., work, sleep, eat, fish, etc.) based on a daily routine that can be set for

each agent. This allows for agent’s to be easily personalised by providing them with

their own unique routines. For example, the routine might list ‘Fishing’ as starting at

8pm, so when the in-game time matches this the scheduler goal updates the agent’s

current high-level goal, which previously could have been ‘Working at the Shop’, to

make the agent think about the things he needs to do to fish instead.
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3.5.1 Example Scenarios
Goal-driven behaviours provide a way for the memory model to drive behaviour that

would not be easily possible using other behavioural systems. The ability to push sub-

goals dynamically allows for them to be decomposed according to an agent’s thoughts.

This is best demonstrated through some example scenarios that consider how goals are

created in response to thoughts.

The high-level goal of Blacksmith has three sub-goals: ‘Get a Hammer’, ‘Walk to

Work’, and ‘Be a Blacksmith’. An agent will work towards these goals in sequential

order, but how he does so will depend on his memory graph.

Scenario 1 - Hammer in Inventory

When the first sub-goal becomes active, the agent will first check if he has any memory

of a hammer. In this scenario he does, and its in his inventory. As such, this goal pushes

the sub-goal of‘Equip Hammer’, which will play whatever animations are necessary to

put the hammer in the agent’s hand. This goal then completes, and the agent proceeds

to ‘Walk to Work’.

Scenario 2 - Hammer in Environment

This time the agent knows of a hammer sitting at a location in the environment. The

sub-goals that will be pushed are ‘Walk to Hammer’, and then ‘Pickup Hammer’. The

‘Pickup Hammer’ goal will check if the hammer is still in the area, and make any

memory updates that are necessary. It is possible that it could fail if the hammer has

moved since the agent last spotted it, and in that case the ‘Get a Hammer’ goal will

send him towards another hammer he knows.

Scenario 3 - No Hammer

A tricky scenario presents itself if the agent is told to get a hammer but has no memory

of ever encountering one. In this case, the sub-goal becomes ‘Ask about a Hammer’

and the agent will check their memory to see which other characters they are aware

of who might be able to share information that could get them a hammer. The agent

will select the most appropriate candidate, perhaps based on friendliness, and then

push the ‘Look for Person’ and ‘Ask Person about Hammer’ goals. Once they have

talked to the person the sub-goal is complete, so the ‘Get a Hammer’ goal will catch
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Figure 3.8: Representation of the Agent’s Cognitive Architecture

this complete message and reset itself, checking to see if the agent is now aware of a

hammer.

3.5.2 Fallback Scenarios
The ability for goals to gracefully fall back and expand is what allows the memory

model to impact them in such a large way. For example, if Scenario 2 was to end

with the agent exhausting all possible hammer locations, then the goals mentioned in

Scenario 3 would automatically be pushed. Similarly, once Scenario 3 is finished, if the

agent knows about a hammer then they would proceed to push the goals in Scenario

2.

3.6 Model Architecture
The high-level architecture of the model can be defined based on the requirements

identified above, and is shown in Figure 3.8. Environmental Cues are passed in to

the Agent via its sensor, where they are converted from Memory Cues into Memory

Nodes and passed to the graph, where new nodes are added and pre-existing nodes are

updated. Alongside this, an agent has a state machine, or some similar system driving

its behaviour, which has a current state or goal that it is trying to achieve. This current

state is, through the state machine, querying the memory graph about what the agent

knows, and the results are then changing and driving the agent’s current behavioural
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state.

Throughout this process the information being provided by the environmental cues are

marking relevant nodes as active or inactive, and the memory graph’s update process

is strengthening or decay nodes at frequent intervals.

One of the core objectives outlined in the introduction was to create an efficient model,

and one way this can be achieved is by ensuring that tunable parameters are a central

part of the model’s architecture. Any value which is used as a factor in the model,

e.g., update frequency, the decay rate of memories, the decay curve steepness, etc. is

designed as a separate, individual parameter, never as a hard-coded constraint. If one

implementation has a strong memory limitation then the overall memory requirements

can be reduced by increasing the memory decay rate. Similarly, increasing the decay

rate will create characters with poor recall. As such, the tunable values can be set

system wide to tweak overall performance and individually for each agent to define

their cognitive personality.

3.7 Procedural Content Generation
Procedural content defines any content in a game that was generated automatically,

rather than manually. This is most commonly in the form of levels that are randomly

created at run-time. From the point of view of game design, it can also refer to

the process by which content is automatically generated on behalf of a designer. For

example, rather than explicitly creating every single aspect of a character, a system can

generate one given a set of high-level parameters. This process speeds up development

and allows for a greater variety of content, and avoids the overheads normally associated

with manually creating every single aspect of a game. As well as saving time, such

systems also reduce the overall number of bugs and testing required, since issues can

be traced directly to the generator itself.

For this project the procedural generation comes from the way that a character’s mem-

ories drive their behaviour. Changing their memories changes their behaviour, so de-

signers only need to consider what memories to give each character without manually

needing to assign every individual behaviour. Additionally, interactions between these

generated behaviour systems can create emergent gameplay that the designer might

62



not have explicitly designed, which adds extra layers of believability to the system.

There are two main methods by which memories can be created by a designer.

3.7.1 Manual Memory Creation
This requires support from the editor being used to implement the model, but allows

for a designer to automatically assign environmental cues to agents. Essentially, a drag

and drop interface could allow for cues to be placed in an agent’s initialisation panel.

At run-time, the cues that have been placed are instantly passed to the memory graph,

creating initial memories that an agent can use to power their starting behaviour. This

interface would allow for a designer to quickly assign appropriate memories to agents, to

guide them along the desired path. It also prevents the scenario where agents initially

perform poorly because they have no memory of the environment.

3.7.2 Simulated Memory Creation
Memories can be simulated offline by running the game for a certain period of time

and saving the memory state for later use. This allows the agents to accrue memories

in real-time, and when the simulation is run again these memories can be used as the

initial memories, much like the manual creation above. Combining manual creation

to start a simulation, and then using offline saving once the agents have spent time

simulating the world provides a very easy way to quickly provide the agents with a

complex set of behaviours right from the start.

3.8 Conclusion
The high level design for the model has been presented, showing how the initial idea

of a memory graph was tailored towards the needs of the model. Using some example

characters to define the requirements for the core memory nodes, as well as example

gameplay sequences to provide scope for the more abstract event memories, allowed

for the creation of a model well suited for implementation. The model’s architecture

diagram provides a simple look at how it could potentially be implemented in an agent,

without it being necessary to change the underlying animation, movement or general

control systems.
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Chapter 4

Implementation

This chapter presents the implementation of the proposed prototype, illustrating the

relevant technical details and the challenges faced. The choice of platform is discussed

first, before launching into an in-depth breakdown of how the model was implemented

based on the design specification.

4.1 Platform Review
Two different platforms were used during the creation of this project. The first turned

out to be unsuitable, and so the project had to be moved to a more suitable platform

during development. The reasons for this switch, and its outcome, are briefly discussed

below.

4.1.1 The Elder Scrolls Creation Kit
The project was inspired by upon John Fallon’s research, and so following this it was

first proposed that the model be implemented within The Elder Scrolls V: Skyrim [80].

The Creation Kit (CK) is the name for a set of tools that allows a user to create custom

content, i.e., modifications, for the Skyrim game. Users can use the Creation Kit to

create their own characters, stories, and environments, through a scripting language

known as Papyrus. In addition, a plug-in known as the Skyrim Script Extender (SKSE)

further expands this by enabling modifications to be written in C++ and access the

base elements of the Skyrim game engine to change anything they would like.
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It was initially believed that it would be possible to use the Creation Kit to create

a special version of the Skyrim world that would automatically come pre-populated

with a variety of characters, personalities, jobs, and so on that could provide a lot of

the foundations that the model would require. It was hoped this would save the time

needed to make such an environment from scratch, and allow more time to be spent

on developing the model itself. The SKSE extension would then allow for the model

to be written in C++, as it required low-level access to core Skyrim systems.

However, development soon ran into problems as the SKSE proved to be more cum-

bersome than expected, with a troublesome setup process and no documentation. At

the same time, it was discovered that the behavioural system used by the characters

was much more limiting than it initially appeared, as it consists of a sequence of script

packages sitting on a stack which are evaluated at set periods, and the top most pack-

age that has valid conditions is then used for the next period (usually an hour of game

time). This did not suit the design of dynamic, memory driven behaviours, and so it

became apparent that the A.I. systems might need to be rewritten from scratch if the

model was ever to be possible in Skyrim.

A final, crippling issue was uncovered when trying to expand the characters interaction

capabilities. As mentioned above, the Creation Kit allows users to create their own

quests, and this also includes the dialogue that characters can say as part of this

quest. Since this was possible, it was believed possible to dynamically determine what

characters would say, based on their thoughts. However, it became apparent that all

dialogue in Skyrim must be written externally, and cannot be passed to characters

from a script. Essentially, dialogue files which contain text and voice data are called

by scripts and a sequence of these files can create a conversation, but there is no way

to dynamically create these files from within scripts.

As such, it became apparent that creating the model from within Skyrim was not

going to be feasible, and time hoped to be gain by using Skyrim’s environment would

inevitably be lost again when struggling with the other issues.

4.1.2 Unity Game Engine
It was then decided that the prototype would be implemented within the Unity game

engine, as its framework was particularly well suited to the quick iteration of ideas [83].
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The ability to code at a low level would also prevent the issues identified above from

reoccurring. In addition, the asset store provided access to an abundant resource of

materials, such as environmental and character models, that, although not strictly

necessary for the model, were still needed to create a fully functional prototype.

Plug-ins

The base engine was expanded through the following plug-ins, which were used where

possible to expand the project and save on writing unnecessary boilerplate code.

• NGUI: Next-Gen UI : A powerful UI system and event notification framework,

which replaces (and greatly improves) Unity’s default GUI system.

• Mobile Cartoon GUI : A collection of image templates for quickly create appealing

user interfaces.

• Medieval Toon Village: A large suite of models that provide everything necessary

for creating a village environment.

• Villager Boy (NPC Model): A model and suite of animations that can be used

to bring a character to life.

• Cartoon Food Pack : A small selection of food models that can be used as envi-

ronmental cues.

• Stone Frog (Enemy Model): A mode and suite of animations for an enemy char-

acter to drive events.

4.2 Agent Movement
It was necessary to create a navigation mesh that would allow agents to move through

the environment. Unity provides a tool for creating these meshes from geometry,

but first each object in the environment must be flagged as walkable (i.e., floors),

unwalkable (i.e., walls), or ignorable (i.e, roofs, which would otherwise block interior

mesh generation).

The Cognitive Agent component was created to manage all aspects of an agent’s

behaviour. This includes the code for interacting with the navigation mesh, including

selecting the correct movement animations based on how fast the agent is travelling.

Unity also provides assistance when it comes to navigating this mesh, so object avoid-

ance settings were created to ensure agents could safely move in crowded interior spaces.
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Figure 4.1: The environmental navigation mesh, shown in blue. Left shows only the
mesh, while right shows it overlaid against the environment.

Finally, doors and gates were given custom behaviours to open and close as agents

approached, so they did not have to worry about interacting with them or getting

stuck.

4.3 Environmental Tagging
As stated in Section 3.2.3, an agent’s sensor is only concerned with environmental cues,

and has no other concept of the world. To that end, a special collision layer was created

in Unity that was only occupied by the cues and the agent sensors. This layer system

controls the objects that can interact, and so the sensor will only ever detect cues.

This abstraction keeps the visual, and even gameplay, environment entirely separate

from the cognitive one, meaning that an increase in the visual complexity of the real

environment does not impact the model.

4.3.1 Environmental Cues
It was necessary to define the type of cues that would be placed in the environment,

and after some consideration those shown in Figure 4.3.1 were selected. The choice
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Figure 4.2: The cue types chosen for this implementation.

of cues can be considered implementation specific, but would at least be generalised

across similar game genres. For example, the cues chosen here would be useful in

most role-playing games, but a stealth game might be better suited to having ‘sight’ or

‘sound’ cues that would suit an agent in that environment trying to remember where

they last saw or heard a character. In addition, a role-playing game with a multiple

character party system might want to have an additional ‘party member’ cue which

contains more personal information than would be stored about background characters.

Thankfully, the generic nature of the graph allows for a designer to rethink, adapt, or

even add any additional cues they believe they need.

The base Memory Cue contains a type flag, a unique identifier (UID), and a location.

The other cues inherit from this base type and add any type specific information they

require. For example, Item Cues also contain information about the item’s status, if it

has an owner, as well as how durable it is.

Appropriate cues can be attached to the items, characters and locations in the envi-

ronment. Like with the sensors, the cue components are placed on the memory layer,

while an invisible sphere collider acts as a trigger to tell the sensor when the cue has

entered its radius.

Locations were created in a similar manner, with invisible markers floating above cer-

tain areas. When an agent, or environmental cue, enters the area covered by the

marker’s sphere collider it considers itself to be within that location. This information

is stored within the cue to save on each sight event calculating the location itself.
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Figure 4.3: The green spheres indicate individual locations within the environment.

Once the cue system was completed it was necessary to apply it to all the relevant

objects in the scene, which was quite a time-consuming task considering that over 100

environmental cues were created during the project. Thankfully, the task was made

possible by splitting it between two people. Niall Mullally’s research into improving

emotional models for background characters shares some overlap with this project [60],

as he was able to take advantage of the environment created here. Tagging objects in

the environment simultaneously assisted both projects, and so sharing environmental

updates made this task manageable.

4.4 Memory Representation
Once the environment was completed, and the agent’s had rudimentary functionality

to enable them to navigate about randomly, it was then possible to start applying

the memory model. The design of the memory graph was laid out at a high-level in

Section 3.2.1, but more detail concerning how this was achieved in the implementation

is presented here.
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4.4.1 Memory Node
Section 3.2.1 stated that thoughts are stored within the graph as generic memory

nodes, with flags identifying specific thought types that allow for the nodes to be

expanded. This is achieved through inheritance, so although the memory graph is

full of ‘memory nodes’, these nodes individually could be ‘item nodes’, or ‘location

nodes’, and so on, with their own category specific variables. The nodes are memorial

representations of the environmental cues, so the node types are the same as those

presented in Figure 4.3.1 plus one additional high-level ‘Cue’ category which captures

the base ‘concept’ as discussed in Section 3.2.2.

Within the Memory Node is an update function which performs the ‘thought process’

an agent goes through when the nodes are active in their memory. Since the associations

that agents make varies between node types, this enables the virtual function to be

inherited and tweaked to suit specific needs. For example, when updating an Item

Node, the function makes associations between the item and where it is located, but

when updating a Character Node, the function is making associations between the

character and location, as well as between the character and the items in their inventory

(so they can ask them about those items later if required). Encapsulating the thought

process in this way allows for new node categories to be added easily, without impacting

the rest of the implementation.

4.4.2 Memory Graph Node
In addition to the core memory node, which contains the various parameters that

constitute a ‘thought’, a Memory Graph Node (MGN) was created to store the model’s

graph specific information. A MGN contains one Memory Node, but it also contains

a list of neighbours, as well as a list of Memory Strengths and Opinion Strengths.

These three lists collectively making up the edge associations that memory node has,

as shown in Figure 4.4.

Although not considered in the design, the graph-specific (MGN) and thought-specific

(Memory Node) requirements were split to ease the process by which thoughts can be

shared. When two agents are communicating the inquiring agent only cares about the

Memory Node information, not the MGN information, so an agent can simply create

their own MGN around a copy of someone else’s Memory Node.
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Figure 4.4: Representation of how Neighbours, Memory Strength, and Opinion
Strength lists collectively make up one edge association. Edge numbers map directly
to elements within each list. The association between MGN 1 → MGN 2 is Edge [0],
while MGN 1 → MGN 3 is Edge [1].

The core functionality that drives the model’s behaviour is also captured within the

MGN. An active flag indicates if a memory is being thought about or if it should

decay. In addition, the MGN contains various helper functions to provide the following

features:

• Node Activations : Help quickly mark this node, and any necessary relations, as

active or inactive.

• Edge Associations : Ensure that adding and removing edges is handled correctly,

ensuring the three lists remain in-sync.

• Concept Retrieval : Search within the neighbours for a node which matches a

specific UID.

• Memory Binding : Can permanently or temporarily make memories unforget-

table.

• Memory Strength Control : Strengthen or decay given edge associations.

• Opinion Strength Control : Ensure an agent’s opinion of the edge reflects what

they observe in the environment.

• Neighbour Sort : Neighbours are sorted based on Opinion Strength, so a one-pass

Quick Sort1 is used to keep the edge associations in line

4.4.3 Memory Graph
The Memory Graph is the container for an agent’s thoughts, represented as a list of

Memory Graph Nodes. This list is linearly iterated during an update, but directly

accessing a node within it would be costly. This cost is overcome through the addition

1Considered one-pass because it is known if the opinion strength has increased or decreased, so
only the one value needs to be moved in either ascending or descending order, allowing the inner loop
to be abolished.
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of a hashtable (in the form of a C# dictionary), with the key being the node’s unique

identifier. This points directly to elements within the list, allowing (in most cases) a

direct lookup of a specific memory node. Collectively, this list and hashtable represent

the graph discussed in Section 3.2.

The graph contains various functionality to seamlessly handle the process by which

memories are created, updated, and deleted. When a node no longer has any edge

associations it can be considered entirely forgotten. In this case it is deleted, and so

any functionality which removes edges will check if the node should also be deleted.

When a node is deleted, any cue nodes pointing to it are also updated. If a cue node

is left with no associations then it too can be removed.

When a node is created the graph will automatically make the correct concept asso-

ciations based on the information within the environmental cue. If the cue does not

exist then it will be automatically created along with its associations.

This recursive method, by which the graph adds or removes all the nodes it needs,

automatically ensures that anything accessing the graph does not need to concern itself

with the underlying functionality. A sensor may pass an environmental cue which will

then spark multiple node creations, while an agent which breaks a link will not even

be aware that the memory graph has automatically tidied up a forgotten node and its

cues.

The core functionality of the Memory Graph falls under the following areas:

• Add Nodes : Adds a node, creating any cues (and cue associations) needed.

• Remove Nodes : Removes a node from the graph, ensuring any nodes pointing to

it are also updated. Also removes any nodes that are made edgeless because of

this.

• Add Edge: Can add a one-way or two-way edge association between nodes.

• Search: Uses the hashtable to quickly return a node with specified UID.

• Share Information: Copies relevant nodes from another graph, emulating agent’s

communicating and sharing information.

• Update Opinions : Updates the core opinion (between concept and specific node)

the agent has about the node.

• Print : Prints the graph for debugging and testing purposes.
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Figure 4.5: Illustration of memory sharing. The enquiring agent initially has the
memory graph shown on the left, and wants to know what the answering agent (middle
graph) knows about the concept ‘0’. Neighbours of location nodes (marked in purple)
are not shared. Sharing is one way. The answering agent is unaware of the association
between nodes ‘3’ and ‘4’ because he did not ask.

Sharing Memories

The concept of agents sharing memories was not initially given much considering during

the design, being merely mentioned as possible methods of resolution in Section 3.3.3

and Section 3.5, however the process by which two agents share information turned out

to be particularly complex. One agent, the enquiring agent, provides a second agent,

the answering agent, with a UID that represents the concept they are enquiring about

(e.g., Hammers). The answering agent provides the first agent with their version of

the cue node that represents the concept, if they have one, and then a recursive copy

of related memories occurs.

Starting at the cue node, the memory graph compares the current neighbours of its

cue against the neighbours of the provided cue. If it finds an edge association on the

provided cue that it is not aware of, it copies this association across. An association

needs to have an Opinion Strength, and rather than copying the other agent’s opinion

directly an ‘Influence Rate’ multiplier is applied. This is set per character, and reflects

how easily influenced they are by the opinions of others during the copy operation.

It is possible that the provided cue makes an association with a memory node that the

enquiring agent is not aware of, so the copy operation will also create that node before

copying the association. This reflects the idea of someone saying “Jill is down by the
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lake”, meaning that the agent becomes aware of both the lake as a place, as well as Jill

being there.

Once these associations have been copied, the operation is recursively called on all the

neighbours of the provided cue. Considering the complexity of the graph, it would

be very easy for this process to continue indefinitely. A limit was put on how much

information can be shared by considering what two people would likely discuss in

reality. It was decided that the recursive copy can continue until it reaches a location

node. Since lots of other nodes unrelated to the original concept can be neighbours

of a location, it would not make sense to share them. This keeps sharing concise, and

relevant, to the topic being discussed. The sharing process is visualised in Figure 4.5.

However issues arose from the fact that the memory graph can have two way relation-

ships. If there is a connection between item → character and character → item then

this could easily spiral into an infinite loop. Another hashtable is used to prevent this,

with the node’s UID being added at the start of the copy operation. The recursive

operation then skips neighbours it has already visited to prevent an infinite loop from

ever occurring.

4.5 Memory Interface & Sensing System
As discussed in Section 3.2.2, the graph needs an interface through which memories can

be created and accessed. This interface would also handle the fuzzy memory process.

Section 3.2.3 then discussed how a sensing system would be needed for an agent to

be aware of the environmental cues around them, as well as how those cues could be

converted and passed to the memory graph.

In Unity, any C# scripts, essentially classes, are considered individual components

when attached to an object within the scene. Considering that any agent which has a

sensor will also have both an interface and a memory graph, it seemed wise to include

all three within a single script. This ensures memory functionality can be added to a

character by simply providing them this single component.

This component, called the Mind’s Eye, includes the Memory Graph presented in

Section 4.4.3. It also contains the triggers necessary to perform the sensing duties.

Unity contains functionality to track when two colliders collide, which it considers
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a trigger when they have no physical representation. Essentially, a large invisible

sphere collider exists around the agent and represents their sensor area, while a smaller

invisible sphere ‘trigger’ exists around environmental cues. When this trigger enters

the sensor area it fires an event within the Mind’s Eye which passes the sensor the cue

information. Similarly, when a cue trigger leaves the sensor area another event informs

the sensor so it can act.

Between these two events the cues are considered to be within the sensor radius, so

being actively thought about. When a cue enters the radius, the memory it corresponds

to is marked as active, and when the cue leaves the memory is set back to inactive.

Each update (not necessarily every frame, as the graph can handle longer time steps),

the component calls an update of the memory graph. This update decays any inactive

nodes, while updating and strengthening those that have been marked as active, as

discussed in Section 4.4.1.

The memory interface wraps around the above sensor behaviour by providing functions

that seemed useful for this project. The distinction between what functionality was

included in the interface and what was included in the graph itself was determined by

how implementation specific it was. The desire was to create a truly implementation

independent node / graph situation, so any functions that would need to be rewritten

for each project were instead placed in the interface. To that end, the interface within

the Mind’s Eye includes the following capabilities:

• Create Memory : Given a cue, it creates the inherited memory type (i.e., Location

Node, Item Node, Character Node, etc.) that is eventually passed to the memory

graph. Implementation specific node types can be added to the overall system

by adding them here, without needing to update the graph functionality.

• Get Concept : Given a concept UID, this will get the child node with the strongest

positive opinion. It will then perform the Fuzzy Check below.

• Fuzzy Memory Check : This performs the fuzzy check before a node is returned,

and determines which fake memories to return if the fuzzy check fails.

• Filter Neighbours : Filters out all neighbours that do not match a given type.

Can be useful if agent’s do not want to consider certain types.

• Get Node: Access the graph and returns a specific node, if it exists. Can also

handle implementation specific situations for how to proceed if the graph does
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not contain the node.

• Share Memories : Given a series of agents, enables them all the share memories

by making calls to appropriate enquiring and answering memory graphs.

4.6 Goal-Driven Behaviours
As discussed in Section 3.5, goal-driven behaviours prove to be best choice for any

implementation which hopes to take full advantage of the memory model.

The goal system works on a stack based hierarchy, consisting of a base atomic Goal class

and a Composite Goal class which inherits from this. A Goal contains a reference to the

agent who owns the goal, as well as the goal’s current status (active, inactive, complete,

failed). A composite goal additionally contains a stack of goals, which are the sub-goals

that must be achieved before the composite goal can be considered complete. Specific

goals, such as ‘Fishing’, ‘Patrolling’, or ‘Collecting Item’, are created by inheriting from

either the atomic or composite goal, and then scripting the specific behaviours needed

to achieve the goal.

Goals contain the following functionality:

• Activate: Initialises the goal, performing any starting functionality.

• Reactivate: Called after a goal has been resumed after being interrupted.

• Terminate: Called when a goal is finished, either due to failing, completing, or

being purged.

• Process : Called each update, where the core behaviour for the goal is contained.

Composite goals will also process the current sub-goal here.

• Handle Message: Allows a goal to handle messages passed to it from the messag-

ing system. Composite goals will also pass the message to sub-goals for handling.

When considering goal-driven systems, the top-level goal is usually a never ending

‘brain’ goal that drives the agents behaviour. The prototype emulated this functionality

through the scheduler goal, which is able to set the agent’s current main task (i.e., work,

sleep, eat, fish, etc.) based on a routine loaded from an external text file. This allows

for agents to have a wide variety of different behaviours by simply adding to or updating

the timetable in the file. For example, the routine file might list ‘Fishing’ as starting

at 8pm, so when the in-game time matches this the scheduler goal updates his current
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high-level goal, which previously could have been ‘Working at the Shop’, to make the

agent think about the things he needs to do to fish instead.

4.6.1 Player Interaction & Quests
The graceful fallback systems required a definite endpoint, and Section 3.3.3 suggested

that this could be in the form of dynamic quests. This is implemented as a last resort,

if the agent has exhausted all other possible avenues for solving their problem. When

this occurs the agent gains a temporary ‘quest’ goal which makes them move toward

the Town Square, as if to make an announcement on the notice board. When inside

this goal, the agent is also able to access their Quest Information. This struct contains

any quest the agent is currently offering, and so this information gets updated with

whatever concept they are unable to find through normal means. A flag inside this

struct indicates that the the quest is active, and the quest info is then passed to the

UI where it can be displayed.

The agent will then attempt to carry out other duties that are not impacted by the

quest requirements, while still displaying the Quest UI as they do so. A player can

pick up and carry items in the environment within their own inventory, and can hand

these items over to an agent if doing so would satisfy their current quest. If the agent’s

current desired action is blocked by the quest (i.e., they are trying to work, but need

a hammer) then handing over the quest item causes them to instantly resume their

high-level tasks. If, however, they have moved on to do something else then the quest

is marked as completed, but the agent will only resume their original duties when their

routine next instructs them to do so.

In addition to this, an agent is also aware of its own quest. This means it is possible

for agents to self-complete quests, if they manage to resolve issues in the meantime.

For example, an agent might post a quest to get a hammer in the morning, then go

fishing in the afternoon. While fishing they might see a hammer nearby, or they might

find someone to talk to about a hammer. When it comes time to carry out their work

again, the agent will recognise that they have a pending quest related to the task that

can now be resolved, so they will collect the hammer, complete their own quest, and

then resume their duties. Much like with the graceful fallback behaviour of the goals,

self-resolution of quests is handled at a high-level within the goal-behaviour system.
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Figure 4.6: The UI used to visualise the memory and related behaviours. Top - Thought
Bubble, Middle - Speech Bubble, Bottom - Quest Information

4.7 Model Visualisation
It was important to visualise the model as much as possible, to both showcase its

potential and assist in debugging. While the size of the memory graph meant it was

not possible to intuitively visualise specific nodes, it was at least possible to print graphs

out and visualise them externally to ensure they were working correctly. Within the

prototype, the memory was visualised on a smaller scale by focusing mainly on the

current thought. Each character was provided with visualisation capabilities, in the

form of graphics which floated next to them, that could be managed as part of their

behaviours. This surfaced in two forms: Thoughts and Speech. A thought bubble

above each character showed their current high-level goal (e.g., Fishing) and their

current active sub-goal (e.g., Looking for Rod), so that character actions could be

easily understood. In addition to this, they were given the ability to verbalise some

behaviours to further clarify what they are doing. For example, when characters are

sharing information the speech bubble above their head can reflect what they are

talking about.

Finally, when a goal completely fails and the characters revert to creating a quest, a
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special quest icon and quest goal appears. Since they are allowed to take on other goals

while waiting for the quest to be completed, this allows a user to easily see if the agent

is having trouble achieving previous goals, as well as suggesting how they can solve

their problem. This indicates to a player what items they need to provide them, but

can also indicate to a designer that there is a flaw in the environment if the character

is unable to find an item they are expected to have.

4.8 Shared Event Memories
It was not within the scope of the project to create the powerful, yet complex, event

systems that drive modern games, so it was decided that this would be simulated and

the focus placed on the method by which event memories are created and populated

instead.

The event process is simulated through an event manager, which breaks an event down

into a sequence of moments which could potentially generate memories if they have

been observed by an agent. Essentially, rather than a variety of dynamic events, the

manager hard-codes one significant event to allow more time to be spent on the model

rather than the boilerplate code necessary to code real events. The event takes the

form of a large frog attack on the village, where three large and highly visible frogs

attack the beach, while seventeen smaller frogs invade at the same time. The large

attack is considered the core event, while the smaller frogs are a possible sub-event, as

discussed in Section 3.4.

When the event is triggered, the manager populates the shared event graph (another

Memory Graph) with the specific memories that form the event. The messaging system

is used to tell each agent within the village that the event has occurred, the UID of

which maps to the event stored within the shared event graph. A series of line-of-sight

tests then occur between the agents and the frogs, with them creating local memories

about what they personally observe. If an agent cannot see any of the smaller frogs,

then they will only be aware of the larger event, not the sub-event.

Once the event is over, a player can then interact with the agents and quiz them about

what has happened. As with the above, a more general system would be designed to

handle multiple events in a real game, but for the prototype this is simplified and a
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high-level ‘Discuss Event’ goal is triggered. This goal then queries the agent’s memory

for their personal interpretation of the event and verbalises this to the player in the

form of generated text. The response can vary greatly depending on where the agent

was at the time of the event. It is rare for an agent to be fully aware of everything,

although most will know the main details, while a few will only spot one or two frogs,

and usually at least one agent will have been indoors so will only be able to tell the

player that “the ground was shaking”. In fact, trying to get a player to piece together

the full facts of the event from the differing eye-witness accounts was an interesting

case of emergent game-play that was not considered during the initial design.

4.9 Implementation Architecture
Figure 4.7 presents an agent’s architecture, showing the main interactions between

components. Following these links demonstrates how, either directly or indirectly, the

memory model impacts every facet of an agent’s behaviour.

This impact is probably best shown through the view controller, which is a component

which can in real-time adapt pre-set animations through inverse kinematics to have

an agent look at a particular point in space. The view controller is provided with a

target point and a effect strength, which controls how much the agent will turn towards

the target point. Various constraints were also set up, so that the animations did not

distort in unrealistic ways. Typically this is used to have a character look towards

another character, making them seem more alive. However, when the controller is

assigned a new target character it first queries the memory graph to see what the

agent thinks of that character. If they have a positive opinion then the animation is as

expected and the agent looks towards the character, however if they have a negative

opinion then the animation is actually reversed, causing the agent to look away in a

scornful manner.

Similarly, when two agent’s meet they usually greet each other. However before this

behaviour is triggered, a similar opinion lookup is performed. Two unfriendly agents

will ignore each other, while two especially friendly ages will stop to have a conversation.

The above behaviours are just a small example of how the connections shown in the ar-

chitecture diagram use the memory model to drive a much greater sense of believability
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Figure 4.7: The agent’s architecture in the completed prototype. Boxes denote individ-
ual components, which may contain sub-components. Only core component interac-
tions are shown. Grey components = Unity components used for additional function-
ally. Arrows denote the flow of information, i.e., Nodes in the Agent’s Memory Graph
‘reference’ nodes in the Shared Memory Graph. Two way arrows represent data being
passed both ways, i.e., Goal-Driven Behaviour ↔ Mind’s Eye represents a behaviour
querying the Memory Graph, getting an response, and then potentially passing an
updated memory back to the graph.
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than would be possible with simple scripted behaviours.

Finally, as per the design specifications in Section 3.6, the implementation was created

with tunability in mind. It was decided to focus on the parameters that would have

the strongest impact on the model, as they allow memory capabilities to be set on a

per character and system-wide basis. Character specific changes can even be made in

real-time, to temporarily simulate human effects that impact memory, i.e., forgetfulness

when drunk. The core tunable values are:

• Influence Rate: How strongly another agent influences Opinion Strength when

sharing memories.

• Retention Rate: How quickly inactive memories will decay.

• Update Frequency : How frequently the graph is updated.

• Decay Factor : Represents the steepness of the forgetting curve.

• Fuzzy Threshold : Separates vivid and fuzzy memories.

• Forgetting Threshold : Point at which memories are too faded to be remembered.
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Chapter 5

Evaluation

This chapter presents an evaluation of the entire project, starting with an assessment

of how successfully the prototype achieved the objectives outlined in Section 1.5. The

behaviour fidelity of the background characters is measured to see how it compares to

existing approaches, the model’s ability to procedurally generate behaviours is consid-

ered, and the memory and computational requirements of the prototype are profiled

to determine how efficient the implementation is. Following this, methods for tuning

the model are discussed, and some suitable values are suggested. Finally, the major

impediments are discussed, along with a consideration of their impact on the project.

5.1 Improvement over Existing Approaches
The system’s ability to adapt current tasks based on the memory graph provides a

sense of purpose that is noticeably lacking from current approaches. The decision to

allow generic information to be stored in the graph also creates opportunity for the self

resolution of problems. Agents store information that they might not need immediately,

but which can assist when they run into trouble or when they share it with others, and

this behaviour would not be easily possible with scripted behaviours.

To provide a more direct comparison, behaviour logs for characters within the prototype

can be compared to those of similar characters within Skyrim. One such example

has been chosen here, but similar observations can be made for all characters in the

prototype. Table 5.1 covers Flynn’s morning routine, which begins with him waking
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Table 5.1: Flynn’s Morning Routine

Time
High-Level

Goal
Current Goal

Current
Sub-Goal

6:00am Sleeping - -

8:00am Blacksmith
Collecting
Hammer

-

8:05am Blacksmith
Collecting
Hammer

Looking for
Chester

8:10am Blacksmith
Looking for

Chester
Searching
Gardens

8:30am Blacksmith
Looking for

Chester
Searching Town

Square

8:45am Blacksmith
Collecting
Hammer

Asking Chester

9:15am Blacksmith
Collecting
Hammer

Searching Shop

9:30am Blacksmith
Collecting
Hammer

Purchasing
Hammer

9:30am Blacksmith
Walking to

Smithy
-

10:00am Blacksmith Working -

at 8am. The scheduler provides him with his first top-level goal, be a Blacksmith.

He requires a hammer to do this, so the first sub-goal is to collect one. Flynn has

no memory of where a hammer is located, so decides to ask his friend, Chester. This

new sub-goal recalls that Chester is most likely in the gardens, so Flynn heads there.

Chester is not found, so the goal then checks the second most likely place, the Town

Square. Flynn finds Chester there, so they enter a conversation and discuss hammers.

This shares related memories from Chester’s memory graph, which tells Flynn that

a hammer is in the shop. Flynn goes there and purchases one, so with the goal now

completed the final requirement is to head to work.

In the afternoon, shown in Table 5.2, Flynn needs to eat and recalls seeing food in

the shop. While on the way there, Asbel approaches him and asks him if he is aware
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Table 5.2: Flynn’s Afternoon Routine

Time
High-Level

Goal
Current Goal

Current
Sub-Goal

12:00pm Eating Collecting Food -

12:05pm Eating Collecting Food Walking to Shop

12:20pm Eating
Having a

Conversation
Talking about

Hammers

12:45pm Eating Collecting Food Purchasing Food

12:50pm Eating - -

1:00pm Blacksmith
Collecting
Hammer

Equip Hammer

1:00pm Blacksmith Walking to Smith -

1:30pm Blacksmith Working -

of any hammers. Like with Chester, Flynn then shares relevant information from his

memory graph. Flynn then continues to the shop, purchases food, and then consumes

it. He then resumes his high-level blacksmith goal. This time he recalls that he has a

hammer in his inventory, so he can simply equip it in his hand.

Finally in the evening, shown in Table 5.3, Flynn finishes work and must eat again. He

then wants to relax with some fishing, and so decides to ask Leon if he knows where

to find a rod. As it happens, Leon currently has a fishing rod he is not using, and so

gives it to Flynn. The goal is satisfied, and Flynn heads towards the fishing spot. He

spends the evening relaxing there, before heading home to bed.

Compare this behaviour to a character within Skyrim, who’s routine is shown in Ta-

ble 5.4. Alvor is a blacksmith within the small village of Riverwood, an area similar

in size and complexity to the environment within the prototype. In general, Alvor

does not not display the same level of fidelity as Flynn. He never searches for a tool,

or food, as they simply appear in his hands when required. Similarly, he will never

actively seek other characters, or have dynamic conversations. Alvor’s logs frequently

display him as idling, although in Skyrim’s case this does not represent him standing

still. Skyrim features an activity manager which drives where characters go, but not
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Table 5.3: Flynn’s Evening Routine

Time
High-Level

Goal
Current Goal

Current
Sub-Goal

5:00pm Eating Collecting Food Equip Food

5:00pm Eating - -

7:00pm Fishing
Collecting

Fishing Rod
-

7:00pm Fishing
Collecting

Fishing Rod
Searching for

Leon

7:00pm Fishing
Searching for

Leon
Searching Town

Square

7:20pm Fishing
Searching for

Leon
Asking Leon

7:20pm Fishing Asking Leon
Borrowing

Fishing Rod

7:20pm Fishing
Walking to

Fishing Spot
-

7:35pm Fishing Relaxing -

8:00pm Sleeping Walking to Bed -

8:15pm Sleeping - -

specifically what they do. For example, at 8am Alvor’s activity becomes working and

so he walks to the Blacksmiths. Invisible ‘interaction markers’ are attached to the

objects within the area which tell characters what animations to use so that it looks

correct. While ‘idling’ as a blacksmith, Alvor randomly moves between each of the

blacksmith interaction markers, but in reality he has no genuine concept of work, and

there is no purpose to his actions. Although he will be frequently noticed as making

tools, they never have any physical presence and simply vanish once the animation is

completed. Similarly, while idling at home he will be sitting in his chair, or perhaps

reading a book, and when he goes to the Inn his idling can cause him to drink, or

work at an alchemy station. However, again, he will never get drunk (or even interact

with the barman to refill his drink), and although he could use the alchemy station

for hours, he will not ever comment on it, or actually create anything using it. This
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Table 5.4: Alvor’s Routine

Time Activity

6:00am Idle (At Home)

8:00am Walking to Work

8:15am Idle (At Blacksmiths)

8:00pm Walking to Home

8:15pm Idle (At Home)

9:00pm Walking to Inn

9:25pm Idle (At Inn)

11:00pm Walking Home

11:25pm Idle (At Home)

12:00am Sleeping

approach is particularly well suited to creating the illusion of believable characters,

but any scrutiny of their behaviour can easily cause this illusion to shatter.

Both systems share one general flaw in the strictness of their actions. Observing the

logs, it can be noted that behaviour changes always happen at specific intervals. This

raises the interesting question of how the characters are aware of the time, considering

both environments have no clocks. Discussion in Section 2.5 suggested that people

find ‘fuzzy’ timeframes, such as ‘morning’ or ‘evening’ more believable than specific

times, so both systems could be improved if this was incorporated into the timing

methods. For example, if Alvor and Flynn were to finish work ‘in the evening’, which

was a slightly different time each day, it would seem more believable than the current

approach.

In summary, while both systems can be further improved, the the logs for the memory

model convey a character driven by specific purpose, while the logs for Skyrim display

a character driven only by scripting.

Finally, it is worth considering the risks of both systems. The simplistic and predefined

nature of the approach used within Skyrim means that it is unlikely to break, and so

it could be considered more robust than the memory model, which is more complex
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so contains more risk of errors. However, the graceful fall back of behaviours does

mitigate this to a large extent, since there is always at least one thing an agent can

do. It could even be possible, although less than ideal, to create a hybrid approach,

where the model could fall back to more traditional scripted behaviours if the agent

finds itself without the necessary memories to function correctly. However, while the

Skyrim approach could be considered more robust, an argument could be made that its

repetitive, simplistic behaviours diminish believability in the long-term just as much

as broken behaviours would.

Overall, it can be argued that the model does provide a noticeable improvement over

existing approaches. More work would need to be done before such a claim could be

definitively proved, but within the constraints of the prototype the objective can at

least be considered partially satisfied.

5.2 Support for Procedural Generation
Two potential methods for using the model to procedurally generate behaviours were

presented in Section 3.7. The manual method was implemented and allows for char-

acters to be quickly quickly pre-populated with memories, which then powers their

behaviours without the explicit need to define every action. In addition, the routine

system provides a simple way to provide characters with their top-level goals, while

leaving them to decide how best to achieve them.

Unfortunately, time constraints prevented the simulated method from being imple-

mented, so it is not possible to save the memory state of agents and then reuse them

as initial states later.

It is possible to run the prototype without providing the characters any memories.

They initially have no idea of the world but will still attempt to achieve their goals,

showing how the model can procedurally generate behaviours even with no input.

As only one of the two methods was implemented during the prototype, it is fair to

say this method was only partially satisfied, but some future work could easily achieve

this fully.
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5.3 Efficiency of Implementation
The model makes memory demands for the storing of graphs, as well as computational

demands for accessing and operating on them. An efficient model should have small

memory and processing requirements, so these two areas will be evaluated to see how

the model performs.

Memory Requirements

Unity runs on the Mono Framework, which offers a managed heap from which memory

is allocated. Objects that are allocated within scripts, such as the memory graph,

are allocated from this heap. While this does mean that memory management is

less of a concern, it does prove to be an issue when analysing the model’s memory

requirements. Unity’s profiling tools provide a comprehensive breakdown of all the

game objects within a scene, but it does not list the size of individual objects allocated

from the heap.

However, it does provide the total size of allocated heap memory. This means that

comparing the difference in size of the heap with and without the model can provide

a fairly accurate estimation of how much memory the model is using. To ensure a fair

test, the same scene is used for all experiments. Similarly, the average size of the heap

is measured for the same number of frames, which in this case is the first 16. Finally,

the agents are provided at initialisation with graphs of specific sizes, and forgetting

is temporarily disabled so that an exact measure can be taken. Multiple experiments

with a variety of graph sizes are preformed, and for each size of graph the number of

agents is also varied. This provides insight into the impact of larger graphs and the

impact of more agents. These tests were executed on a compiled build, as profiling in

the editor adds undesirable noise.

Table 5.5 shows the results of the experiments, and Figure 5.1 plots the results. The

experiment shows that demand increases linearly, both as the number of agents and

the size of the graph increases. The prototype is a large, complex environment and

features just over 100 possible environment cues, so an agent who remembers every

possible cue would have a graph of approximately 200 nodes. For ten agents, this

is approximately 1.2 MB. However, this is a worst case estimation as the forgetting

process makes it highly unlikely an agent will ever be aware of such a number. In fact,
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Table 5.5: Model’s Memory Requirements

Number of
Agents

Nodes in
Graph

Allocated
Memory

5 100 0.4 MB

5 200 0.6 MB

5 400 1.1 MB

5 1000 2.1 MB

5 10000 16.7 MB

10 100 1.0 MB

10 200 1.2 MB

10 400 2.1 MB

10 1000 4.1 MB

10 10000 33.1 MB

for the current scene the average graph is around 80 nodes, with an allocation size of

0.6 MB for ten agents. This shows that the model could handle a much large number

of nodes without any real memory concern.

While information for current generation memory budgets is lacking, it is possible to

extrapolate based on data available for previous generations. Millington states that

the memory budgeted for A.I. on previous generation machines was typically 8MB,

out of 512MB [59]. Current generation hardware boosts 16x the amount of memory in

the previous generation, so scaling this suggests an average memory budget of 128MB

for current generation A.I., which could comfortably fit over 300 agents with graphs of

approximately 1000 nodes. Skyrim has approximately 600 background characters, and

so each could have a graph of about 400 nodes within this budget. However, games

such as Skyrim typically allocate a larger budget for character A.I., and an argument

could be made for allocating the model a higher budget if the increased believability is

deemed worthwhile.

In addition, agents only remember cues in their own vicinity. If a game world contains

10,000 cues but an agent only ever exists in a village area with 500 nearby cues, then
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Figure 5.1: A graph of the model’s memory requirements, displaying linear complexity.

while 10,000 is a potential worst case scenario, in reality it is almost impossible for

it to occur. The realistic worst case is actually the total number of cues within the

agent’s active area. If a game did require agents to frequently traverse the world, then

the forgetting process would still likely prevent the worst case from ever occurring.

Controlling the rate at which they forget memories makes it possible for them to have

forgotten the last area by the time they reach the new one, meaning the realistic worst

case is still only the size of the area they visit with the most cues.

CPU Requirements

Unity’s profiler has a much easier time analysing a scene’s computational requirements,

but the time spent accessing the graph is difficult to capture because agents access it

so infrequently. The actual computational requirement of the model per frame is so

small that the Unity profiler has trouble identifying it.

Agents update their memory graph, to perform the decay process, much more con-

sistently than they access it, so this can be more easily measured. Ensuring a fair
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Table 5.6: Model’s CPU Requirements

Number of
Agents

Nodes in
Graph

Time Per
Update

Percentage of
Frame Time

6 200 0.07 ms 0.6%

12 200 0.18 ms 1.0%

24 200 0.42 ms 1.7%

48 200 0.81 ms 2.9%

128 200 2.21 ms 4.1%

6 200 0.07 ms 0.6%

6 400 0.12 ms 1.2%

6 1000 0.29 ms 2.5%

6 10000 2.35 ms 13.7%

test in the same way as with the memory requirements, Table 5.6 lists the average

time required to update all graphs for a variety of agent and graph sizes, with the

results being plotted in Figure 5.2 and Figure 5.3. The frequency of which an agent

updates their graph can be tuned, in this case every half a second, so this presents

an opportunity for graph updates to be staggered across multiple frames. The frame

time percentage grows much slower than the milliseconds per update, as the overheads

associated with adding more characters impacts a scene alongside the actual cost of

updating their graphs. This shows the graph update itself is not necessarily a limiting

factor on the amount of characters possible in a scene, as they would be limited by

other factors regardless.

An exception to these measurements occurs in the morning of each simulation, as the

computation spikes when the agents all simultaneously wake up and starting accessing

the graph. This spike takes an average of 31.27 ms, or 46.6% of the entire frame

time. Analysing the spike reveals that a large amount of time is spent within the

agent behaviours considering the graph, and not accessing the graph itself. The spike

occurs because multiple agent’s are simultaneously going through multiple fall-back

behaviours, accessing their graphs multiple times, and then searching the results to

determine the best course of action. When a single, or even a small number, of agents
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Figure 5.2: A graph showing how the computational requirements for updating the
model increases linearly as memory graph size increases.

does this at other points in the day there is no noticeable spike, which suggests that a

simple solution would be to manage the number of agents that can ‘think’ in a single

frame. Agent planning could be staggered across multiple frames to keep performance

stable. A player is not going to notice if an agent takes a few extra milliseconds to

respond, and so this would not impact believability. Of course, more simply, the issue

can be mitigated against by having the agents wake up at different times. Not only

does this space out initial calculations, but it would actually make the system appear

more believable if agents had varying sleep cycles.

An open world game will likely contain dozens, if not hundreds, of agents and so

initially the time needed to update 128, or even 48, agents seems potentially concerning.

However, while the prototype is simulating the entire world and all agents within it,

a real game would only simulate the area and agents around the player. As such, the

time for updating 12 or 24 agents is much more likely to occur in a real game. The

agents and areas that are not nearby are only partially simulated, so could be updated

less frequently with a simple method. As a player is not going to see these agents for

a while, a simpler update is not likely to impact believability.
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Figure 5.3: A graph showing how the computational requirements for updating the
model increases linearly as the number of agents increases.

Considering these results, it can be said that for most scenarios the memory and

CPU requirements are entirely reasonably, and so the objective has been achieved.

However, increasing the number of agents in a scene or nodes within a graph increases

computational demand faster than it does memory. This suggests that CPUs are the

factor most likely to limit the model’s capabilities.

5.4 Parameter Tuning
As discussed in Section 3.6 and Section 4.9, the project incorporated tunable parame-

ters that could personalise the model’s performance either on a per-character or system

wide basis. Revisiting these parameters, it is possible to evaluate the range of values

that are appropriate for each of them.

• Influence Rate: Small non-negative values (< 0.5) work best here, although nega-

tive values could create an interesting personality type as it would drive an agent

to take the opposite view of any of his peers.

• Retention Rate: This is a multiplier which controls the rate of decay, and is best

set at a rate which matches the speed of time within the world. If agents move
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above more often, then a higher rate works well, but if they spend longer in one

place then a lower rate prevents memories from decaying while they idle. A value

of 0.05 was used for the prototype, meaning that it would take 200 seconds to

completely forget a memory if the decay was linear. It takes much longer due

to the forgetting curve, but does ensure memories get ‘fuzzy’ quickly. Timing

the decay shows that memories last approximately 24 minutes (36 hours for the

characters) if not reinforced, which suited demonstrations.

• Update Frequency : Updating the graph every half second worked perfectly fine for

the prototype, although as the computational requirements were not particularly

significant a quicker frequency would allow a finer decay curve.

• Decay Factor : 1.0 was used here, meaning the forgotten curve was a normal

exponential. This meant that memories would become fuzzy quickly but would

not be forgotten for quite a while. This created interesting behaviour, but if fuzzy

memories are not as necessary then a flatter curve (i.e., higher value) would help

avoid this.

• Fuzzy Threshold : A value of 5 (out of 10) was used here, but lower values can

create more confident agents. Higher values create very scatterbrained agents,

which could be desirable for certain personalities.

• Forgetting Threshold : A value of 0.007 was used in the prototype, ensuring mem-

ories stayed around until they were almost entirely faded. If large graphs are

being used then a higher forgetting threshold would keep memory requirements

down, as memories will be purged sooner.

The Forgetting Threshold used in the prototype was too extreme, as a value of 0.1, or

even slightly higher, would still be perfectly acceptable. A player is not going to notice

if an agent has forgotten a memory that has less than 0.1 strength. Considering the

forgetting curve decays memories in this range very slowly, keeping them around does

not provide any significant benefit.

Retention Rate can seriously impact believability, as too fast of a rate causes the model

to collapse as agents forget memories they have just learned. Unfortunately, it is not

possible to identify a value which will trigger this behaviour in all cases, as it depends

on how fast the game environment moves, but any value above 0.5 should be considered

a risk. As a general guideline, ensuring agents remember for at least two days of game
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time (or, more specifically, two cycles of their behaviour) produces good results. This

ensures they remember things they require daily, and also allows any small details to be

retained in the short term. Ideally, however, tuning retention rate to enable memories

to last at least a week would allow for a wider variety of daily behaviours (i.e., weekdays

and weekends) to be represented without the agents always starting over each morning.

While it was hoped that more concrete values could be provided, experimentation shows

that the suitable range is quite implementation specific, and it is the combination of

all values that truly impacts how it behaves.

5.5 Impediments
The project initially built upon John Fallon’s research, and so it was first proposed

that the model be implemented within The Elder Scrolls V: Skyrim. Time was spent

investigating, designing, and even implementing this version before it was discovered

that it would be impossible to achieve within Skyrim’s predefined A.I. framework. This

discovery led to the project being swapped to Unity, and as the design of the model

was generic it did not requite any major changes. However it does mean that time

investigating and implementing within Skyrim was wasted and, in hindsight, if the

issues had been uncovered earlier then more time could have been spent on the Unity

prototype.

As development progressed the distinction between model and prototype started to

blur. When designing goals that access the memory it became difficult to define if

an idea would further the model or simply create an interesting implementation of it.

This meant that scoping the prototype, which was primarily concerned with creating

and showcasing the model, was occasionally difficult. However, this blurring does show

how the model manages to impact a great variety of systems, and so is not necessarily

a negative from the perspective of the model’s potential.

The memory graph itself proved to be a constant challenge through development, as

its generic nature and overall high complexity created numerous issues. In particu-

lar, the desire to simplify the interface, by automatically adding or deleting nodes

when an agent needed it, required meticulous designing and testing to ensure it was

robust. These issues primarily surfaced as memory leaks, as nodes with no associa-
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tions remained within the graph when the interface should have detected and deleted

them. Other issues caused the edge associations, represented by Neighbours, Memory

Strength, and Opinion Strength, to go out of sync. Some of these issues could be de-

tected at run-time when an agent’s behaviour did not match what was being displayed

in their thought bubble, while others had to be manually tracked through the printing

of agent graphs or by tracing the programme’s execution. The ability to manually

generate memories was also very useful for testing, as it allowed specific combinations

to be checked without needing to wait for agents to recreate their steps.
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Chapter 6

Conclusion

This final chapter provides a conclusion to the dissertation by presenting the main

contributions that this project achieved, highlighting some further work that could be

undertaken to continue or improve the model, and ending with some final remarks.

6.1 Main Contributions
Although more work may be undertaken in the future, it is possible to identify the

main contributions the project has made to date.

Within the area of believability, the project, as shown in Figure 6.1, contributed a

practical model that has been tested within a working prototype. The residual mem-

ory system provides agents with a new sense of purpose when determining how best to

achieve their goals, which fuels more interesting and more believable behaviours. The

creation of a prototype also allowed for the true potential of the model to be conveyed,

as a user only has to watch the interaction between agents to get a sense of its oppor-

tunities. In addition, the prototype highlights the lack of truly believable behaviour in

the approaches used for background characters in current games.

Characters have a clear purpose when choosing their actions, which provides a notable

advantage over existing approaches. The prototype is fully capable of demonstrating

the model and so can be considered functionally complete, but some features could not

be implemented within the time-frame.
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Figure 6.1: An image taken from the prototype, showing two agents meeting for a
conversation.

Although not implemented as completely as was first hoped, the model also supports

the procedural generation of behaviours. This allows a variety of character types to be

created automatically by simple varying the memories they start with. The behaviours

are then driven by these initial memories, and so the ‘history’ of characters can be

created relatively quickly.

Additionally, the project contributes an efficient model which could be used today.

The prototype is a practical implementation that tested the design to see if it could

be genuinely applied to current hardware, and the results were certainly promising.

While the memory demands are more expensive than existing approaches, Section 5.3

showed that they still remain reasonable, and it could be argued that the increase in

believability is worth some extra expense in this area. Similarly, Section 5.3 shows that

the computational demand remains low for a variety of graph sizes.

The project presents a body of work that collects together a wide variety of sources that

were used as inspiration for the model. This forms a powerful foundation for anyone

seeking to further the work undertaken here, and it is hoped that the dissertation can

help guide anyone looking to create a similar model.
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6.2 Future Work
As mentioned in Section 5.2, one aspect of the procedural generation design could not

be finished in time, and so completing this would be a top priority for any future work.

When considering the project as a whole there are some additional areas that could be

improved or extended in the future.

6.2.1 Improved Memory Decay
The current model decays memories from 10 to 0 in a rough emulation of the Ebbing-

haus Forgetting Curve, but it became apparent late in development that this design

could be improved. Tuning parameters, such as Decay Rate and Retention Rate,

change both the steepness of the curve and how quickly the value decays along it.

When combined with the Forgetting Threshold, which will be larger than 0, these val-

ues can make it difficult to know precisely how memories will decay. Since the player

never sees these systems it was not considered an issue, but does add complexity to

the design that could be avoided if the method was improved.

An improvement could be made if the value stored in memory strength was actually a

lookup value that is transformed into the value of the memory strength when needed.

Essentially, if the curve was to be plotted the stored value would represent the dis-

tance along the x-axis, i.e., length of decay. A lookup could then transform this into

an accurate strength based on the function that describes the curve. This would pro-

vide a much more intuitive representation of the memory, and allow for the memory

parameters to have a clearer impact on how memories perform.

6.2.2 Long Term Capabilities
There is a lack of understanding with regards to how the prototype would perform over

a longer time period. The simulation has been left running for nearly an hour without

any issues, but role playing games can be played for hundreds of hours, so in the future

it would be interesting to see how it performs over more significant periods of time.

6.2.3 Integration
The routine system employed by the agents is very simple, and quite rigid in design.

They are provided new high-level goals at set periods, which they will then try and

achieve. While the model gives them increased purpose with how they achieve these
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goals, the routine system does not provide the characters with any real ability to decide

their own high-level goals. To this end, integration with other systems, such as Niall

Mullally’s emotional model [60], would provide an interesting method for characters to

make decisions for themselves, which would likely further improve their believability.

6.2.4 Extensions & Optimisations
More generally, interesting results could be attained by creating further prototypes

which target other popular game genres, such as Stealth or Action, to see how the

memory model could impact the behaviour of those characters. In addition, there are

likely further optimisations to be uncovered by spending more time analysing the code.

6.3 Perspective
In 2011, game designer Cliff Harris posted his thoughts on the background characters

within Skyrim. He highlighted that the game did not appear to improve character

interaction beyond that of its predecessor, and then claimed that background characters

in most games are “staggeringly stupid”. He then suggested a potential alternative

system in which every character could “store some data about their attitude to you,

plus a list of recent events, plus reaction to your appearance” [34].

It is interesting that his description captures the capabilities of this memory model

quite closely, and suggests that the industry is all too aware of the need for improved

A.I. models. In addition, Harris claims that voice acting is holding back improvements

in character believability. When all lines must be pre-written, then an A.I. model loses

out on the ability to generate dialogue for specific situations, making interactions less

relevant and believable.

The model generates dialogue for character greetings, as well as more detailed dialogue

when characters are explaining their opinions on events. It would be impossible to

pre-record voices for all the lines that could be generated, and so the model would

be inevitably constrained in such a situation. It could still drive their behaviour and

improve upon the pre-existing approach, but ultimately a character would not be able

to convey any generated detail about their actions.

However, this is not an impossible task to overcome. Certain games, such as Tomodachi
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Life [61] and Metal Gear Solid: Peace Walker [47], make use of voice synthesis to

allow a user to customise their experience. Peace Walker allows a user to generate

short phrases of robotic speech, while Tomodachi Life uses extensive synthesis for its

dynamic interactive dialogues. Although still quite unnatural sounding in those games,

it is possible to imagine games in the future having improved synthesis that allows for

voice dialogue to be more dynamic.

Alternatively, the model could be incorporated within a smaller budget game, which

is not as concerned with voiced dialogue. Solatorobo [30] suggests one solution, as it

features thousands of lines of text-based dialogue with no voiced segments. Instead, a

selection of pre-recorded ‘sound bites’, such as “Hi!”, “What!?”, “It can’t be!”, and so

on, are used to capture the intention of the text and provide it with extra flavour. Such

functionality could certainly be added to the model, allowing it to select an appropriate

sound bite to match the generated dialogue.

From an academic standpoint, the model presents a practical implementation which

attempts to create something that might be used today, and could be used as a spring-

board for further research into this area, considering other genres, or even approaches

that might only become feasible in the near future as hardware continues to improve.

In addition, the ability to observe and interact with the agents in the environment

suggests that the model could be potentially re-purposed as an educational tool to

highlight the concepts of A.I. behaviours.
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Appendix A

Reference Materials

A disc with all the files (e.g., the Unity project, plugins, models, scripts, etc.) used in

the creation of this project is attached to the back of this dissertation.
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[9] Cyril Brom, Ondřej Burkert, and Rudolf Kadlec. Timing in Episodic Memory for

Virtual Characters, 2010.
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