
A Shared Memory Architecture for a Hybrid

Real-Time Ray Tracing System

by

Ciaran Tuohy, B.A., B.A.I.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2014

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Ciaran Tuohy

September 2, 2014

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Ciaran Tuohy

September 2, 2014

Acknowledgments

I would like to first thank my supervisor Michael Manzke. He has provided me with

valuable guidance through the course of this project and could always put me in touch

with the right people when I was in need of assistance

I must also thank Michael Doyle and Colin Fowler who helped greatly in bringing

me up to speed on current ray tracing research and also offered advice and guidance

throughout. Their help has been invaluable.

Cathal McCabe from Xilinx went above and beyond to help me with the many

technical issues I had working with the Xilinx hardware and software. Without him I

don’t know how I would have got this finished

I’d also like to thank my girlfriend and family for all their support this year and

in all those that came before. They’ve helped me in every way I could have hoped for

and I will always appreciate what they’ve done for me

Lastly, I need to thank my fellow classmates in IET, for helping me and for pushing

me. Their company may have been all that kept me sane these last 12 months

Ciaran Tuohy

University of Dublin, Trinity College

September 2014

iv

A Shared Memory Architecture for a Hybrid

Real-Time Ray Tracing System

Ciaran Tuohy

University of Dublin, Trinity College, 2014

Supervisor: Michael Manzke

The ability to create interactive applications with high fidelity ray traced visuals,

has long been a goal towards which the computer graphics community has strove.

However, despite decades of research and advancements in computing technology it

remains, for any non-trivial application, beyond the capabilities of modern commercial

hardware. Furthermore, recent developments in computer architecture research suggest

that performance gains will cease to continue in line with Moore’s Law as result of the

failure of power density scaling.

Consequently, contemporary thought in computer architecture has turned towards

more novel approaches to tackle this problem. Fixed function hardware, which had

long ago fallen out of favour with chip designers in favour of general purpose computing

cores, has recently seen a return of significant interest. Motivated also in part by the

need for power efficiency in mobile processors, this development has led to a rich vein

v

of research into custom ray tracing microarchitectures.

In the near future similar fixed function microarchitectures for ray tracing may find

themselves on commercial chips accompanying traditional CPUs and GPUs in a het-

erogeneous architecture. If this is to become a reality an efficient means of transferring

large quantities of data into the custom device will be essential. This project presents

an architecture wherein memory is shared between a CPU and custom peripheral. An

evaluation of the system shows that this architecture is capable of efficiently delivering

data to fixed function hardware without placing undue demand on processor time.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.1.1 Performance . 1

1.1.2 Dark Silicon . 2

1.1.3 Power Efficiency . 2

1.2 Contribution . 3

Chapter 2 Background 4

2.1 Global Illumination . 4

2.1.1 Ray Casting . 5

2.1.2 Ray Tracing . 6

2.2 Acceleration Data Structures . 8

2.2.1 Spatial Subdivisions . 9

2.3 Bounding Volume Hierarchy . 10

2.3.1 BVH Construction . 11

2.4 Ray Tracing Hardware . 15

2.4.1 Fixed Function . 15

2.4.2 Fully Programmable . 16

vii

2.4.3 Hybrid Fixed Function - Programmable 16

2.5 The Hardware BVH Builder . 17

2.5.1 Top Level System Architecture 17

2.5.2 The Subtree Builder . 18

Chapter 3 Hardware Platform 22

3.1 Zynq-7000 Series . 22

3.1.1 Processing System . 23

3.1.2 Programmable Logic . 25

3.1.3 ZC702 Evaluation Board . 26

Chapter 4 Design and Implementation 28

4.1 Design Elements . 28

4.2 Design Environment . 29

4.2.1 Vivado . 29

4.2.2 Xilinx SDK . 30

4.2.3 PetaLinux SDK . 31

4.3 Implementation . 31

4.3.1 Hardware . 32

4.3.2 Software . 38

4.3.3 Operating System . 39

Chapter 5 Results & Evaluation 41

5.1 Interface Simulation . 41

5.2 Throughput Analysis . 45

5.3 Resource Utilisation . 47

5.3.1 256bit Data Channel . 47

5.3.2 32bit Data Channel . 48

5.4 Overall Evaluation . 50

Chapter 6 Discussion 52

6.1 Conclusion . 52

6.2 Future Work . 53

viii

Bibliography 54

ix

List of Tables

4.1 Zynq Memory Map [1]. 38

5.1 Results of subtree builder simulation. 46

5.2 Performance results for the 256bit system variant @250MHz. 46

5.3 Performance results for the 32bit system variant @250MHz. 47

5.4 Logic resource utilisation for 256bit data channel configuration @ 50MHz. 48

5.5 Memory resource utilisation for 256bit data channel configuration @

50MHz. 48

5.6 Logic resource utilisation for 256bit data channel configuration @ 250MHz. 49

5.7 Logic resource utilisation for 32bit data channel configuration @ 50MHz. 49

5.8 Memory resource utilisation for 32bit data channel configuration @ 50MHz. 50

5.9 Logic resource utilisation for 32bit data channel configuration @ 250MHz. 50

5.10 Logic resource utilisation for 32bit data channel configuration @ 250MHz

and FIFO depth of 20. 51

x

List of Figures

2.1 An Illustration of Ray Casting. 6

2.2 Illustration of Ray Tracing [2]. 7

2.3 A perspective view of the uniform grid [3]. 9

2.4 A sample kd-tree [2]. 10

2.5 Sample BVH [2]. 11

2.6 Top Level Architecture of the BVH construction unit [4]. 18

2.7 Top Level Architecture of the Subtree Builder [4]. 19

3.1 High level block diagram of Zynq system [5]. 23

3.2 Zynq Processing System Components [6]. 24

3.3 ZC702 Evaluation Board. 27

4.1 Dataflow Block Diagram [7]. 32

4.2 Dataflow block diagram with FIFO control. 34

4.3 Dataflow block diagram with FIFO control and register set. 35

4.4 Complete Top Level System Diagram 37

5.1 Simulation of DMA memory mapped to stream transfer for the BVH

builder interface. 42

5.2 Simulation of DMA stream to memory mapped transfer for the BVH

builder interface. 43

5.3 Simulation of simultaneous reading and writing. 44

xi

Chapter 1

Introduction

1.1 Motivation

Of the numerous rendering techniques that have been developed in computer graphics,

ray tracing holds the greatest promise in terms of realistic visual fidelity. However

the expensive process required to produce ray traced images has prevented its use in

most interactive applications. Instead it has been restricted to producing high quality

rendered stills or animated films. A recent trend in graphics and hardware research

towards hardware accelerated ray tracing, which seeks to make ray tracing viable in

an interactive capacity, provides the main motivation for this project. There has been

a great variety of these systems designed utilising fixed function, programmable and

hybrid approaches [8, 9, 10]. Many of the stages of the ray tracing pipeline have been

implemented in these systems from ray generation and ray-scene intersection test, to

shading. This trend towards application-specific hardware has been driven by a number

of factors.

1.1.1 Performance

Ray tracing is a notoriously expensive process. It has been the focus of research since

the 1960s [11] and yet today it still remains an extremely expensive process relative

to the capabilities of modern consumer hardware. Indeed even in offline applications

with enormous compute resources, only very recent advances in ray traced global il-

lumination [12] have made the process feasible for application in 3D animated film

1

production. Monsters University released in 2013 was the first Pixar film to feature

true ray traced global illumination [13]. Much of this computational cost arises from

a small few algorithms. In many cases, such as rasterisation [14] and ray-scene in-

tersection testing [15] dedicated hardware has been demonstrated to provide superior

performance to software implementations on general purpose hardware.

1.1.2 Dark Silicon

In 2011 Esmaeilzadah et al. presented their paper entitled “Dark Silicon and the End

of Multicore Scaling” [16] a thorough analysis of the projected failure of multicore

scaling. The Dark Silicon concept refers to the paper’s conclusion that even at current

lithographic scales (22nm) approximately 21% of the logic on a chip must remain

powered off. Their projections suggest that this will increase over time to the point at

which only 50% of on-chip logic can be powered simultaneously. The reason that this

is occurring is the failure of so called Dennard Scaling which states that power density

of chip logic will remain constant as manufacturing scales decrease, i.e power per area

will remain constant [17]. This failure in part led to the push toward multicore chip

architectures and is now beginning to lead such systems into the realm of diminishing

returns.

A conclusion that may be drawn from this is that alternative architectural ap-

proaches are required if we wish to see the performance gains to which we have become

accustomed. Since it would make little sense to fill all of our chips with general pur-

pose hardware if we can only power a certain percentage of it simultaneously, then

it follows that fixed function or application specific hardware might be implemented

along side the traditional general purpose processing cores. In order to maximise the

benefit from this additional custom logic that will be available it would be prudent

to only implement custom microarchitectures to accelerate frequently used algorithms.

Suitable algorithms within the field of ray tracing include ray-scene intersection tests

and bounding volume hierarchy construction.

1.1.3 Power Efficiency

The last few years has seen what has been popularly referred to as the“Mobile Rev-

olution”, the dramatic increase in popularity of mobile computing devices such as

2

smartphones and tablets. Development of these devices has advanced rapidly and re-

cent mobile processor designs boast quad core processors clocking at over 2GHz [18].

However, advancements in battery technology have lagged behind the pace of advance-

ments on the processing side. The need for portability in these devices restricts the

size of battery that can be utilised meaning that low power consumption is heavily

prioritised in mobile processor design. Most of these processors are be custom system

on chip (SoC) implementations based on low power RISC processors from ARM and

featuring dedicated hardware for certain important tasks in mobile communications

such as audio decoding and image processing. Chip designers with a history in graph-

ics such as NVIDIA have already begun to implement some graphics related custom

microarchitectures such as for rasterisation [19].

1.2 Contribution

Many of the custom ray tracing microarchitectures discussed, such as those by Doyle

[4] and Schmittler et al. [8], are designed and evaluated individually. Clock frequencies

are assumed or taken for the system independent of all else and resource utilisation

figures similarly consider only the microarchitectures in isolation. However, if we are

to consider that future processors may feature heterogeneous architectures consisting

of multicore, manycore and fixed function components, then it becomes obvious that

we must also have an efficient means of communicating between the main processor

systems and the custom microarchitectures. As these systems are typically designed

with modularity in mind, they can not consider the limitations that may be imposed

by such a communication interface in practical terms.

This thesis outlines a shared memory architecture to facilitate efficient communi-

cation between a processor and custom hardware using the BVH builder outlined by

Doyle et al. [4] as a design target. This unit is suitable as it requires a large quantity

of data movement to and from the custom microarchitecture and also some control

signalling from the processor to the hardware. The goal is to produce a system that

would allow for the development of a hybrid hardware/software ray tracing system.

3

Chapter 2

Background

This background section will be primarily focused on the three research areas most

closely related to the project, namely: Ray Tracing and Global Illumination, Accelera-

tion Data Structures and Ray Tracing Microarchitectures. Each of these fields will be

discussed providing context for the investigation and justification for the details of the

proposed research.

2.1 Global Illumination

Global illumination is a blanket term used to refer to a set of advanced rendering

techniques used for 3D scenes which consider both direct illumination and indirect

illumination. Direct illumination is considered to be illumination that results from

light directly incident on a surface from a light source, whereas indirect illumination

results from light incident on a surface that was itself reflected off other surfaces in the

scene. In most cases, reflections, refraction and shadow casting are examples of visual

effects that can be achieved through global illumination.

A subset of global illumination techniques use the ray model of light transport

in order to compute the lighting value at a particular point in the scene. This sub-

set of techniques is sometimes referred to as ray-based global illumination. Many of

these techniques such as Path Tracing [20] are extremely computationally expensive

but produce excellent results, as such their use has traditionally confined to offline

applications. Other techniques such as ray casting and ray tracing are suitable for real

4

time applications.

2.1.1 Ray Casting

Amongst the simplest of the ray-based global illumination techniques is the method

of ray casting. This sometimes ambiguous term is used here to refer to a ray based

illumination model that only accounts only for direct illumination. As such it can

provide hard shadows but no effects like reflection or refraction. However it is a clear

and simple demonstration of the principles on which the more sophisticated techniques

build.

Originally proposed by IBM researcher Arthur Appel in 1968, the ray casting tech-

nique considers a scene that is projected onto a two dimensional viewing plane by some

perspective projection [11]. Consider this plane to be some distance in front of our vir-

tual camera and that the plane is divided into uniform segments each corresponding to

a pixel on the display of the corresponding device. A ray is then cast from the virtual

camera out through each of the segments of the viewing plane into the scene. Each

ray then searches the scene to find its first point of intersection with a scene object i.e.

the closest point in the scene to the camera along that line.

We now have the intersection point but because we have gone backwards from the

camera rather than forwards from the light we do not know what colour this point

is meant to be. As such our next step is to determine this colour and “shade” the

pixel. We do this by tracing additional rays from our point of intersection to each

light source in the virtual scene. These rays are often called “shadow rays” as if there

is another primitive blocking the path of the ray then the point will be shadowed by

that object. Once each of these shadow rays have been traced to the light sources

we know what the incident illumination at the intersection point is. We can then use

this in conjunction with the material properties of the object on which the intersection

point lies to produce a limited solution to the rendering equation. This is described by

Kajiya as [20]:

I(x, x′) = g(x, x′)[ε(x, x′) +
∫
S
ρ(x, x′, x′′)I(x′, x′′)dx′′] (2.1)

where:

5

I(x, x′) is related to the intensity of light passing from point x′ to point x.

g(x, x′) is a geometry term.

ε(x, x′) is related to the intensity of emitted light from x’ to x.

ρ(x, x′, x′′) is related to the intensity of light scattered from x” to x by a patch of

surface at x’.

The ray casting solution is extremely simple. It completely ignores the whole re-

cursive integral which accounts for light not directly incident on the surface.

Figure 2.1: An Illustration of Ray Casting.

2.1.2 Ray Tracing

As mentioned previously, the ray casting method as described is capable of taking

into account direct illumination only, meaning that while it can produce shadows, it

is incapable of producing other effects that we would expect to see in the real world;

such as reflections and refractions. With this in mind an extension to ray casting was

proposed by Whitted [21] which is referred to as ray tracing or “Whitted ray tracing.”

Consider how the ray model of light behaves in the real world. Light is emitted

from various sources and is cast out into the environment. It impinges on objects

6

and is reflected off those surfaces. Some of those rays will reflect directly into the eye

(as we considered with ray casting) however many others with continue through the

environment to impinge on other objects and reflect again. This can happen many

times with energy lost upon each reflection.

Whitted ray tracing aims to model this effect using backwards ray tracing (from

the camera) rather than forward ray tracing (from the light). It differs from ray casting

only once we reach the initial intersection. Here instead of just casting shadow rays to

the light sources, additional rays referred to as secondary rays are cast. If the surface

is highly reflective then a reflection ray will be cast into the scene. Additionally if

the surface is considered to be transparent then a refraction ray will be computed in

accordance with Snell’s Law.

A further difference between ray casting and Whitted’s approach is the recursive

nature of ray racing. Each of these secondary rays will be traced until they intersect

with another piece of scene geometry whereupon the whole process starts again. How-

ever, as previously stated upon each intersection energy is lost, accordingly we limit the

number of recursive secondary ray traces. Choosing the number of recursive bounces

to allow leads to a trade off in image fidelity against performance. The more steps

allowed the better the visual result however each ray traced comes with an associated

cost and allowing too many would impact on the frame-rate.

Figure 2.2: Illustration of Ray Tracing [2].

7

2.2 Acceleration Data Structures

In addition to the potentially very large number rays which must be traced, we must

also consider the complexity of the scene itself. It is not uncommon for scenes to

consist of thousands or even millions of triangles. If the geometry is left unstructured,

each primary and secondary ray would have to run an intersection test with every

triangle viewable in the scene, in order to determine which ones it interacts with. This

would make ray tracing impossible to compute in real time if we were to take the naive

approach. Indeed, in his paper, Whitted determined that between 75% and 95% of the

total compute time of his ray tracing method was consumed by ray intersection tests

[21]. Clearly it is desirable to find methods to improve how rays find their intersection

points.

A solution is to use acceleration data structures (ADS) to organise scene geometry

in such a way that allows for a significant reduction in the number of intersection tests

that need to be conducted. There are a number of spatial data structures that are used

to achieve this such as Octrees, Binary Space Partitioning (BSP) trees or k-d trees.

These are all referred to as spatial index structures as they divide the scene into certain

spatial sections which are then navigated rather than the scene geometry itself.

Each of the above listed structures are so called hierarchical structures as they use

multilevel spatial subdivisions. However there also exists another class of spatial index

structure called a flat data structure where no multilevel hierarchy is employed. An

example of such a structure is Fujimoto’s uniform grid [22]. The uniform grid divides

the scene into a regular lattice structure of rectangular volume elements. A ray can

be traced through the grid and only those primitives overlapping with those grid cells

with which the ray intersects need be tested for intersection, potentially culling a huge

amount of geometry. Wald et al. present an efficient means of traversing these uniform

grid structures [23]. There are a number of beneficial features of the flat spatial data

structure, such as its relative simplicity, constant memory usage and ease of update for

handling dynamic scenes. However they typically perform poorly in many scene types

due to an inefficient handling of primitive-dense areas, it is possible for a very large

proportion of scene primitives to end up in only a few cells of a uniform grid.

8

Figure 2.3: A perspective view of the uniform grid [3].

2.2.1 Spatial Subdivisions

Amongst the hierarchical structures there are two main methodologies by which they

are conceptually organised. The BVH with which this project is primarily concerned is

an object partitioning structure [24], another example is the bounding interval hierarchy

[25]. In these methods the spatial divisions are made so as to partition the scene

geometry.

On the other hand we have structures like the kd-tree which uses spatial partitioning

[26]. The kd-tree is a binary spatial data structure that is defined not by regions but by

splitting planes along the major axes. At each node level the scene is further divided in

space and the scene geometry is mapped to the side of the plane with which it overlaps.

This makes traversal incredibly simple. At each node on the tree an intersection test is

perforedwith the relevant splitting plane. If the intersection occurs before or after the

scene boundary then we know which child node must be tested. However if it occurs

within the scene boundary then both child nodes must be checked.

9

Figure 2.4: A sample kd-tree [2].

2.3 Bounding Volume Hierarchy

As previously stated, the main ADS with which this investigation is concerned is the

bounding volume hierarchy. A bounding volume is considered to be a volume that

encloses an object or set of objects, in this case geometric primitives. We want the

bounding volume to be a more simple shape than the geometry it contains to facilitate

easy intersection tests. For this purpose the Axis Aligned Bounding Box (AABB) is

a popular choice. This is simply a cuboid bounding volume that is axis aligned with

the world’s coordinate system. The AABB is popular as there exist simple, efficient

ray-AABB intersection algorithms [27], it is also much less expensive to compute than

other geometric proxies like the oriented bounding box (OBB) [28] or discrete oriented

polytrope (K-DOP) [29].

The BVH is a tree structure of bounding volumes where each parent node encloses

their child nodes. The consequence of this is that the root node of the tree structure is

a bounding volume that encloses all of the geometry in the scene. Organising triangles

in this way significantly reduces the number of intersection tests required for each ray.

Rather than testing each triangle in turn it can now simply test first against the root

node of the structure. If the test returns true, it can then begin to recursively traverse

the tree. Each time it will test against the child bounding volumes of a successfully

tested parent volume until a leaf node representing a single triangle or small subset of

triangles is reached.

While the use of a BVH will undoubtedly improve ray tracing performance they do

10

Figure 2.5: Sample BVH [2].

not come without a cost. It must be remembered that the BVH is geometry-dependant.

This means that in dynamic scenes where any movement of scene geometry occurs the

previous BVH can no longer be used. The two most common ways of handling scene

dynamics are:

• The existing BVH can be refitted to accommodate the changes in scene geometry.

This has the notable advantage of being relatively simple to compute. However

it limits the amount and types of movement allowed in the scene as the quality of

the tree can degrade over time if there is too much movement and this will have

an impact of ray tracing compute time [30]. The operation is of the order O(n).

• The BVH can be rebuilt entirely each frame. This method does not restrict scene

dynamics in any way but takes longer to execute. Rebuilding trees is an O(n log

n) operation.

2.3.1 BVH Construction

There are a number of methods that have been developed to construct BVHs however

each is not without their deficiencies. There are two important properties of a BVH

construction process, build time and tree quality. Tree quality is typically considered

as the average number of ray/scene intersections required to find the appropriate prim-

itive. The different approaches perform better in one area than the other as there is a

trade off between quality and build speed.

11

Both divisive (top-down) and agglomerative (bottom-up) approaches tend to per-

form will in both metrics with divisive methods having a slight edge in terms of build

time and agglomerative methods, slightly higher tree qualities. Other construction

methodologies such as the linear BVH, strongly favour build time over quality. The

system under investigation seeks to further improve the construction time of divisive

BVH’s using hardware acceleration.

Divisive Method

The top down method presented by Wald in 2007 is the current standard for top-

down BVH construction [31]. Wald noticed certain optimisations that had occurred in

relation to the construction of k-d trees and noticed that the same methods were at

least as applicable to BVHs if not more so. Typically when using a divisive clustering

method, the way to achieve an optimal tree structure in terms of traversal cost, is to

use a greedy Surface Area Heuristic (SAH) partitioning method. The SAH, originally

developed by MacDonald and Booth, is a reasonably simple concept [32]. It is a greedy

cost function that estimates traversal cost if the volume is divided in a particular

fashion. It generates this cost by considering the surface area of the two volumes that

would be produced if the current volume V containing N primitives were to be split

into two parts VL and VR, each containing NL and NR primitives respectively. KT and

KL are implementation specific constants.

Cost(V → [L,R]) = KT +KI(
SA(VL)

SA(V)
NL +

SA(VR)

SA(V)
NR) (2.2)

The issue with this method is that there are 2N −2 partitions which must be tested

which is an extremely costly process. A solution is to implement a so called binned

SAH. Here instead of considering all possible split pairing Wald subdivides the volume

into K equally sized volumes called bins equidistant with respect to their centroids.

By subdividing the volume in this manner he reduces the number of possible partitions

from 2N − 2 to K − 1, a dramatic improvement in efficiency.

It is this binned SAH method that is of particular interest for this investigation.

Developements have been made that allow for a parallel implementation with improved

performance [33]. A further development has come from research by Doyle et al.

who presented a binned SAH construction microarchitecture that hardware simulations

12

suggest will provide enormous speed up over software implementations [34]. Algorithm

1 shows generalised form of the SAH construction approach [4].

ALGORITHM 1: Top-Down BVH Construction [4]

buildBV H(nodeN);
if terminationCondition(N) then

makeLeaf(N);
return

else
bestCost←∞
for all candidate partitions P of N do

if expectedCost(P) < bestCost then
bestCost← expectedCost(P);
bestPartition← P ;

end

end
partitionNode(N, bestPartition);
buildBV H(N.leftChild);
buildBV H(N.rightChild);
return;

end

Agglomerative Method

The leading work in relation to the agglomerative approach to tree construction was

carried out by Walter et al in 2008. Their efforts attempted to accelerate the greedy ag-

glomerative construction algorithm for which the O(N3) solution is shown in Algorithm

2.

This algorithm takes a set of singleton clusters C where each cluster is a single

primitive from P, the set of all primitives. It then loops until it has reached the root

node and only one large cluster remains. At each iteration, the algorithm checks every

cluster against every other cluster to see which two are nearest neighbours. When the

algorithm has identified the best pair, it combines the two into a new cluster C and

adds it to the set of clusters while removing the components of C from the set.

The issue with this approach is that the search for the nearest neighbour takes an

extremely long time during the early stages being an O(n2) process. Consider that

13

ALGORITHM 2: Greedy Agglomerative BVH Construction [35]

Input: Scene Primitives P = P1, P2, ... , PN

Output: BVH root node
Clusters C = P ;
while Size(C) < 1 do

Best =∞ ;
for Ci ∈ C do

for Cj ∈ C do
if Ci 6=Cj and d(Ci, Cj) < Best then

Best = d(Ci, Cj) ;
Left = Ci;Right = Cj) ;

end

end

end
ClusterC ′ = newCluster(Left, Right) ;
C = C − Left−Right+ C ′ ;

end
return C;

at the beginning every primitive is its own singleton cluster, this means that initially

every piece of geometry must be checked against every other piece of geometry.

This was later accelerated by storing the remaining clusters in a k-d tree created

using a divisive approach [36]. This creates the ability to limit the number of can-

didates considered for the nearest neighbour thus accelerating the process. Further

optimisations enabled development of two different methods for constructing a BVH

based on this idea of using the kd- tree. The first is a heap based method that uses

a min heap, to preserve dissimilarity information across outer loop iterations. The

second method, referred to as Locally-ordered clustering, attempts to automatically

cluster nearby nodes on a tree if it can be proven that the algorithm would eventually

cluster them anyway.

Later improvements to this this greedy agglomerative method were developed, the

new more efficient process is called approximate agglomerative clustering [35]. This

method relaxes the constraints of the greedy approach and manages to significantly

improve on build time with only a slight compromise in tree quality.

14

2.4 Ray Tracing Hardware

Considerable research has already proposed a number of custom micro-architectures

for ray tracing applications. These can be broadly divided into three categories, fixed-

function, fully programmable or hybrid fixed-function/programmable. Of these three

categories the most relevant to this investigation is the fixed function approach which

offers less versatility but more in terms of performance and power efficiency.

2.4.1 Fixed Function

In 2001 Kobayashi et al. presented their application-specific integrated circuit (ASIC)

for photo realistic image synthesis [37]. Their system uses a hardware accelerated 3D

line generator to find objects likely to intersect with traced rays. Functionally the

unit calculates all view independent light first and then for subsequent frames the ray

tracing hardware is activated to produce the view-dependent illumination. The spatial

data structure utilised is a uniform grid.

Also in 2001 came a study by Todman and Luk who tested he feasibility of using

reconfigurable hardware for real-time ray tracing [38]. They focus on accelerating the

most expensive aspect of the ray tracing algorithm which is the acceleration algorithm.

They conclude that based on their feasibility study, real-time interactive ray-tracing

could be achieved on 10 concurrent FPGAs. This investigation will also seek to use

FPGA technology but not specifically for ray tracing acceleration, so the required

resource quantity suggested by this report should not be relevant, additionally the age

of the paper is a factor to consider.

In 2002 Schmittler et al presented SaarCOR a system using a three part design

for ray tracing [8]. The three core components are the ray generation and shading

unit, the ray tracing core and the memory management unit. The system utilises the

technique known as packet tracing to achieve further gains by allowing multiple rays

to be grouped together into packets for efficient calculation [39]. Of particular interest

is an extension of this concept brought by Schmittler et al. two years later where they

were able to develop a complete ray tracing pipeline on a single FPGA chip [40]. In

this study, with the board running at 90MHz they were able to achieve frame rates

between 20 and 60 for a range of 3D scenes with support for texturing and multiple

light sources. The spatial data structure utilised is similar to a system proposed by

15

Wald that utilises a multi kd-tree structure [41].

2.4.2 Fully Programmable

A good recent example of a fully programmable architecture is the TRaX system

[42, 43]. TRaX (standing for Threaded Ray eXecution) is essentially a series of parallel

general purpose processing cores which share an L2 cache. Each of these cores contains

a number of thread processors each of which contains its own function unit. The

motivation for this system approach is the highly parallelisable nature of ray tracing

algorithms. Results from the system were extremely positive with good performance

seen at 500MHz and scene geometry comparable to contemporary video games. The

creators of TRaX, Spjut et al. have also presented a similar system suitable for use on

mobile platforms [44].

Further work has seen the concept behind TRaX expanded to create the STRaTA

architecture [9]. Additions to the design seek to reduce reduce bandwidth demands

and also improve the systems power consumption. The most relevant of these additions

from the perspective of this project is that the BVH spatial index is decomposed into

treelets [45]. The purpose of this is to maintain smaller tree structures capable of fitting

entirely on the efficent L1 caches for the different processors.

2.4.3 Hybrid Fixed Function - Programmable

In 2003 Sanchez-Elez et al. presented their mapping scheme of an optimised, octree

based ray tracing algorithm [46]. They also implemented it on a SIMD reconfigurable

architecture. This system operating at 300MHz consumes only 1Watt and supports

primary, shadows and reflection rays. Octrees are used as the ADS.

Other approaches include the Mobile Ray Tracing Processor (MRTP) which seeks to

solve issues with SIMD utilisation caused by diverging ray distributions [47, 48]. MRTP

uses reconfigurable stream multiprocessors (RSMPs) for high data-path utilisation.

These RSMPs are used to execute one of three kernels, ray traversal, ray intersection

and shading. There is very little fixed function hardware in this system, the only

prominent feature is the hardware ray generator, it is mostly a custom programmable

ray tracing architecture like those mentioned in the previous section.

16

Lastly we have the Samsung Reconfigurable GPU based on Ray-Tracing (SGRT)

GPU designed to enable ray tracing on Mobile devices [49, 10]. The system is composed

of two main parts. The first is a traversal and intersection (T and I) unit based on the T

and I engine presented by Nah et al in 2011 [15]. The fixed function T and I engine was

adapted to support BVHs rather than kd-trees as BVHs are more suitable for dynamic

scenes. The second main component is the Samsung Reconfigurable Processor (SRP).

The SRP is composed of a combination of a very long instruction word processor and

a coarse grained reconfigurable array. The SPT supports C languages and reconfigures

hardware for computationally expensive tasks at compile time. Above the SRGT cores

the top layer of the GPU is an ARM processor that in this instance is used to construct

the BVHs. This aspect of the design could be enhanced by additional fixed function

hardware.

2.5 The Hardware BVH Builder

As mentioned previously this investigation is centered around the hardware unit for

BVH construction presented by Doyle in his doctoral thesis [4]. This custom microar-

chitecture provides fast and efficient construction of BVHs. It implements a divisive

construction method which uses the binned SAH to determine the partitioning point.

Evaluation of the system has demonstrated that it produces a high quality tree with

good construction times and with significantly lower power consumption relative to the

same operation performed on general purpose hardware

2.5.1 Top Level System Architecture

At the top level of abstraction the BVH builder is a unit composed of two major

components, upper builder and subtree builder. The upper builder is designed to

directly interface with external memory while the subtree builder units interface with

the output from the upper builder. As its name suggest the upper builder constructs

the top few nodes of the hierarchy until it generates a node consisting of a number

of primitives less than a threshold value. This node is then delegated to one of the

connected subtree builders for further construction.

The system is separated in these conceptual parts for a number of reasons. Firstly

17

Figure 2.6: Top Level Architecture of the BVH construction unit [4].

because at each split the scene is wholly split into the two sub nodes the process

is highly parallelisable, however the benefits of parallelisation are far greater at the

bottom of the tree than at the top. As such a single threaded approach may be taken

initially and then parallelised once the upper nodes of the tree have been constructed.

Another reason for the design being laid out in this way arises from the nature of

the BVH construction algorithm. In order to start computation of the SAH for a

particular node we need access to all of the scene data associated with that node.

Obviously this is going to be limited by the interface with external memory. However

the subtree builders utilise high bandwidth internal memory to store primitives which

gives superior performance to the upper builder, the node size that the subtree builders

can accept is limited by the size of this internal memory.

2.5.2 The Subtree Builder

The subtree builder forms the main component of this overall system. It is also the

component most directly relevant to the memory architecture that this thesis will

outline. What follows is a detailed description of the interface to and architecture of

this component.

18

Architecture

Figure 2.7: Top Level Architecture of the Subtree Builder [4].

As can be seen in the top level diagram shown in Figure 2.7 the subtree builder

consists of a number of major components which dictate the operation of the unit.

Certain features of the design may appear confusing at first glance, such as the buffer

pairs. However it is important to recall that the subtree builder has been designed

to execute the binned SAH based construction method outlined by Wald [31]. The

recursive nature of this algorithm heavily influences the design of the hardware.

The first significant component of the subtree builder is the pair of primitive buffers,

two such pairs are seen in Figure 2.7 namely Buff0L - Buff0R and Buff1L - Buff1R. These

are composed of high performance on-chip memory similar to that used in an L1 cache.

They are used to store scene primitives passed to the subtree builder. As such it is

the size of memory allocated for these buffers that determines the threshold point at

which the upper builder will delegate to the subtree builder. The size of these buffers

is configurable but is generally considered to be of a size capable of storing a number

of primitives in the order of thousands.

Each pair of buffers is then connected to a Partitioning unit (labeled PUnit0 and

PUNIT1 in Figure 2.7) by a bidirectional channel. The logic within the partitioning

unit will take a determined value for an SAH split and begin organising the primitive

19

buffers into two separate data vectors depending on which side of the split they are

located. The double buffering structure allows the partitioning unit to read from one

buffer say Buff0L and write the reorganised vectors into its partner buffer Buff0R.

Then after the next SAH split has been calculated it will perform the reorganisation

procedure in reverse this time reading from Buff0R and writing to Buff0L.

Of course the partitioning unit needs a value for the split point and the axis along

which it is found. This is determined by the split calculation hardware comprised of

binning units and SAH calculators. The binning units take the scene primitive AABBs

as input and determine which SAH bin the AABB belongs to along the particular axis.

There is one binning unit for each the X, Y and Z axes. After this calculation the

binning unit will pass the AABB along with its determined bin location to the SAH

calculation units. These units will wait until all of the AABBs have been binned and

passed on to them and will then calculate the cost value of each possible split by way of

the surface area heuristic and output the lowest cost split along with its corresponding

axis.

Interface

As previously explained the subtree builder interfaces primarily with the upper builder.

This interface consists of a number of important components. Once upper builder

construction is complete and the requisite node size has been reached the scene data

corresponding to the node must be passed down to the subtree builder. This data

consists of a series of 216 bit values. These 216 bits are comprised by a 24 bit integer

index and six 32 bit floats corresponding to vertex coordinates. It is important to note

that only six float values are needed as primitive are not stored directly but rather

as their AABBs. Hence the primitives can be represented by two AABB vertices, the

front-bottom-left corner and the back-top-right corner. If we consider the gains relative

to directly storing a triangular primitive then 96 bits are saved for every one of the

thousands of primitives expected to be stored in the subtree builder. The 24 bit index

is used to reference to the scene primitive corresponding to a particular AABB. This

data is delivered to the subtree builder through a 216 bit channel.

Additionally the subtree builder has an output channel intended to communicate

directly with memory that will write the results of the calculations into memory. Cer-

20

tain control parameters which connect to the subtree builder in the form of 24 bit

channels represent memory addresses to which the output of the subtree builder will

be directed. These control parameters allow for multiple subtree builders to function

in parallel but still write their results into the correct locations in memory to produce

a valid tree structure.

Lastly there are a number of constant and control signals shared between the control

logic which dictates the operation of the unit. The constant signal tells the subtree

builder how many primitives are about to be sent to it. When it then detects that it has

received the number of primitives corresponding to that signal, it sets high it’s READY

channel indicating to the logic that it is ready to begin executing. The control logic

will then set the units GO channel high and the subtree builder will begin calculation.

21

Chapter 3

Hardware Platform

The goal of this investigation was to develop a memory architecture to enable efficient

communication between a traditional processing system and a custom microarchitec-

ture in the form of the hardware BVH builder. In order to design and evaluate such a

system a suitable platform was needed. Considering that a primary project goal was

to develop a system to make this kind of communication function in a practical envi-

ronment it was decided that a hardware platform that would allow for real hardware

implementations would be required. The development platform that most closely met

the conditions imposed by the project goals was the Xilinx Zynq-7000 Series

3.1 Zynq-7000 Series

The 7000 series is a recent series of chips from Xilinx that are referred to as “All

Programmable System on Chips” (AP SoCs). The phrase “all programmable” refers

to fact that the user is able to program the chips both in terms of hardware and

software. The main feature of the 7000-series chips is that they are composed of a

Processing System (PS) with a dual core ARM Cortex A9 processor surrounded by a

Programmable Logic (PL) subsystem using a Field Programmable Gate Array (FPGA).

These two systems are capable of running independently and can communicate by high

speed Advanced eXtensible Interface (AXI) connections. There are over 3000 internal

interconnects between the processing system and programmable logic which allows for

up to 100Gb of available bandwidth.

22

Figure 3.1: High level block diagram of Zynq system [5].

The block diagram shown in Figure 3.1 shows the general high level structure of the

Zynq chip. We can see the processing system consisting of an APU, memory interfaces

and IO peripherals. We also see that the PS and PL are very tightly connected. One

interesting thing to note is the distinction made between common peripherals and

accelerators and custom peripherals and accelerators in the PL subsystem. A number

of common systems we would typically expect from a processor, like the ability to

output video, are absent from the basic chip design. These common peripherals may

be implemented instead using the FPGA and are very simply instantiated using the

software provided by Xilinx. Custom hardware on the other hand may be directly

designed by the user or a 3rd party and integrated into the Zynq system through the

FPGA.

3.1.1 Processing System

Figure 3.2 shows an overview of the features of the Zynq processing system’s APU.

It can be seen that the system features two ARM Cortex A9 cores each with their

own single and double precision floating point unit, a NEON media processing engine

which supports Single Instruction Multiple Data (SIMD) vector operations and 32KB

23

Figure 3.2: Zynq Processing System Components [6].

instruction and data caches. These processors can operate in a number of different

modes allowing each of them to run separate operating systems if desired.

It can also be seen that there is a shared 512KB L2 cache with a snoop control

unit to maintain cache coherency. An interesting feature of the APU is the 256KB

dedicated on-chip memory. This is larger than one would normally expect and is

connected separate to the L2 cache. This is to enable operation of a real time OS such

as FreeRTOS without the need to deal with cache misses [6].

Lastly we see the APU peripheral connections, two of which, are of particular

interest to this investigation, the DMA and interrupt controllers. The DMA (direct

memory access) engine allows for a high speed delivery of data from memory to another

part of the system. The interrupt controllers allow for processes executing in the

programmable logic to interrupt and trigger routines in the APU.

A feature of the Zynq chip is that it is processor centric. At power-up the processor

will start and will then determine how much of the rest of the board will be powered

on. The processor can choose to function independently or can choose to power up

any of the programmable logic or IO peripherals that it needs. This a useful feature

24

in terms of power consumption as only the parts of the board that are being used will

draw power.

3.1.2 Programmable Logic

The programmable logic portion of the chip will consist of a Xilinx Artix-7 or Kintex-7

FPGA depending on the model of board. However both of these systems contain the

same basic components, just in different quantities. Four primary components make

up the Xilinx FPGA systems, Logic Cells, DSP Slices, Block RAMs and Clocking

Resources

Logic Cells are the basic building blocks of custom logic in an FPGA. They are

composed of a six input Look-up Table with a dual flip flop. The logic cells in Xilinx

FPGAs can also be utilised as distributed memory or shift registers [1]. Logic cells also

contain connections to adjacent cells allowing them to be combined together to produce

complex logical systems. The main use of the Logic cell is in expressing combinatorial

logic and for pipelining.

The DSP slices are small powerful units targeted at digital signal processing func-

tions. They consist of a 25bit x 18bit multiplier, 25bit Pre-Adder, 48bit accumulator

that can function as an arithmetic logic unit and a 96bit accumulator. The presence

DSP slices is evidence of how the devices are tailored for signal and image processing

applications however they could equally of use in graphics. Filtering, state estimation

and other such processes would draw heavily on the DSP slice resources.

Block RAMs (BRAM) are the main memory component of the FPGA. They are

essentially a configurable, dual port 36kb memory block with built-in first-in first-out

(FIFO) logic. Their primary use is in local storage of data, multiple BRAMs can

be combined together to create larger local storage capacity. However, due to their

built-in FIFO logic they can also be used to handle re-timing between different system

components which might be reading and writing data at different rates.

Finally, there are the built in clocking resources. This is to service a need that often

arises where different components must function on independent clock domains. The

FPGA achieves this using what are called mixed-mode clock managers which can be

configured to meet a number of clocking criteria.

There exists multiple ways to implement custom logic on the FPGA. There is

25

the traditional method which is to use a hardware descriptive language (HDL) such as

VHDL or Verilog. These are languages which can by used to express logical statements

and can be used to simulate computer hardware. If run through a synthesis tool then

these HDL files will be used to configure the FPGA resources to reflect their logical

expressions. Another way is to use prepackaged intellectual property (IP) provided by

Xilinx or other third parties. This IP will typically be designed to operate on the Zynq

system and to interface with AXI standard. Lastly Xilinx development software offers

what it refers to as High Level Synthesis (HLS). This system will take an algorithm

expressed in C/C++ and use it to synthesise hardware, foregoing the need for a direct

implementation in a HDL.

3.1.3 ZC702 Evaluation Board

There are a number of different products produced which use a Zynq-7000 series chip,

from the relatively low cost Zedboard and MicroZed produced by Avnet, to Xilinx’s

powerful, fan-cooled ZC706. The board which was utilised in this investigation is

the ZC702 Evaluation Board. The board features the typical Dual ARM Cortex A9

processor capable of clocking at 866MHz and a Atrix-7 FPGA with 85,000 Logic cells,

560KB of BRAM and 220 DSP slices available [50]. In terms of available logic this

equates to roughly 1.3 million gates in the equivalent application specific integrated

circuit (ASIC).

In addition to its processing system and programmable logic resources the ZC702

has an array of common peripherals and connections available such as HDMI, USB

UART, Micro USB and Ethernet which can all be seen in Figure 3.3. There are also

a number of ways to boot the device if running an OS. It can boot from the 128Mb

of QSPI flash memory available, from an inserted SD card or via a JTAG connection

to a host machine. While the board does not natively support video without a HDMI

controller and OS installation with frame buffer support, it is possible to establish a

serial connection over USB UART and interface directly with the device in that fashion.

26

Figure 3.3: ZC702 Evaluation Board.

27

Chapter 4

Design and Implementation

Before beginning implementation, a significant amount of experimentation with sample

system designs provided by Xilinx was carried out. The goal of this experimentation

was to gain insight into the operation and limitations of the board and accompanying

software which would inform the design process. It was important to try to envision how

the proposed shared memory architecture could be facilitated on the ZC702. Ultimately

it was concluded that the design would consist of three levels.

4.1 Design Elements

Hardware

The hardware level design covers the necessary circuitry to deliver the data and

control signals needed for the custom module to operate and also features a cus-

tom shim to allow the module to interface with the AXI standard on which the

PS-PL communication is based. Hardware interrupts allow for the programmable

logic to communicate back to the processing system when certain important

events occur. This data delivery method and custom interface are then to be

tested for resource utilisation and how it affects the clock speed limits and oper-

ating capacity of the BVH builder.

Software

The software-level design would consist of a “bare metal” application which would

be capable of basic interaction with the custom hardware. This application could

28

be used to measure the performance of the interface in practical rather than

theoretical terms by measuring operation timings on the software side.

Operating System

The final stage of the design is at the OS level. It was proposed that custom OS

install would be created. It would feature frame buffer and multithreading sup-

port as well as custom libraries to allow for video output and texture support in

a ray tracing application. This application would then delegate the construction

of the BVH to the custom hardware using the the hardware and software from

the previous stages.

4.2 Design Environment

Designing for the Zynq system requires the use of a number of different software pack-

ages which together form a lengthy end-to-end work-flow which will produce a func-

tioning Zynq system.

4.2.1 Vivado

The hardware portion will be primarily designed using Xilinx Vivado software. This

program can be configured with the presets of the particular board one is using, which

allows it to automatically generate a large number of circuit connections that would

otherwise need to be specified manually. Is also contains an extensive catalog of hard-

ware IP which can be integrated into one’s own design. Many of these IP blocks are

targeted at signal processing applications such as the Fast Fourier Transform block.

Vivado also contains an extensive set of analysis tools. Hardware expressed using IP

blocks or HDL can be simulated and its behavior analysed on the signal level. This can

be vital in applications where a single clock cycle delay in a particular operation could

cause the system to fail. Additionally Vivado allows for design validation which will

quickly pick up any errors or critical warnings in the design before it is processed. This

is especially useful as the full bitstream generation flow can take a very long time, over

an hour depending on the extent of the design. Vivado also supports on-chip debugging

which allows for a live analysis of the signal values while the system is powered on and

operating [51].

29

The most important functionality that Vivado provides is the ability to take a

hardware bitstream that can be loaded onto the board. This is a multistage process

that begins with a project specified at the register transfer level (RTL) and ends with

a bitstream that describes the FPGA custom hardware. The first of these stages is

called synthesis. Synthesis is essentially the process of taking the RTL description

which may be a combination of IP blocks and HDL and convert this into a logic

gate level representation [52]. Once the design has been synthesised and a gate level

representation has been generated, it must be converted so as to be compatible with

the FPGA. This stage which seeks to configure the FPGA resources to represent the

gate level logic expression is called implementation [53]. With the design implemented

it must be converted to a format that can be loaded onto the board, this process is

called bitstream generation.

4.2.2 Xilinx SDK

After the bitstream has been generated in Vivado it can be exported to the Xilinx SDK.

SDK is an integrated development environment (IDE) based on Eclipse which has been

heavily adapted to support the particular needs of the Zynq system. The hardware

description that has been exported from Vivado can be loaded onto the chip through

SDK using the “Program FPGA” command. This hardware description can also be

used by the SDK to generate a Board Support Package (BSP). The BSP contains

drivers automatically generated for the hardware that has been implemented in the

design. This allows the user to communicate with the board in C/C++ code using

driver calls.

The main function of the SDK is software development. When creating a new

application one can select between a bare metal, “standalone” application or a Linux

application. The bare metal application will run directly on the hardware with no need

for an OS layer. This gives excellent performance but is limited in what it can achieve.

The Linux application option will create an application that when it builds will be

cross-compiled using the GNU Linux compiler appropriate for the ARM processor on

the chip in use. The cross compiled application can then be transferred via storage

media to the board and executed from the OS running on the board.

Another important ability of the SDK is its debugging capabilities. Applications

30

can be launched remotely on the hardware and a connection can be maintained that will

allow SDK to manage the program flow control. Breakpoints and operation stepping

function just like they would in a conventional IDE but the code is being executed

remotely.

4.2.3 PetaLinux SDK

Xilinx provide a software package called the PetaLinux SDK which can build, develop,

test and deploy an embedded Linux solution onto Zynq devices. With embedded

processor systems like this, a lightweight OS is desirable and the PetaLinux SDK is

configurable so that it can contain only those packages and capabilities an application

requires. If a particular application does not need to output video then the PetaLinux

SDK can be configured to produce a boot image that does not contain a frame buffer.

While applications can be developed in the SDK, cross compiled and transferred

to a Linux install it is also possible to create applications within the PetaLinux SDK

itself. Applications made in this way will be compiled when the boot image is being

built. While this approach allows for applications to be part of the main Linux file

system it does lack the debugging and syntax highlighting capabilities of the SDK. In

similar fashion custom libraries can be added to the install which can greatly expand

the capabilities of the OS.

4.3 Implementation

Implementation of the shared memory architecture followed the same three component

structure outlined in the design phase. It was decided that the subtree builder, rather

than the complete hardware BVH builder, would be the target for the interface design.

This decision was made for a number of reasons. Results produced by Doyle in his doc-

toral thesis which presents the BVH builder indicate that the majority of performance

gain arose from the parallel subtree builders and hypothesised that a processor system

computing the upper nodes would be no less efficient and could prove more flexible [4].

Additionally the subtree builder has a slightly more simple interface making it easier

to implement as a proof of concept.

31

4.3.1 Hardware

The hardware shared memory interface must be designed such as to communicate with

the subtree builder. As described previously the most important important aspects

of the subtree builder’s interface are the 216 bit data in and data out channels, three

24 bit address channels and the single bit go channel. It was envisioned that the

main data, the scene data in and the BVH data out would be managed by the shared

memory architecture. Another, more direct solution would be better suited to manage

the address channels and control signals.

AXI DMA Engine

The solution to achieving the desired shared memory architecture was found in the

AXI DMA Controller. This IP core enables high bandwidth direct memory access

between main memory and peripherals. The DMA controller connects to the target

peripherals with an AXI4-Stream channel supporting bandwidths of 8, 16, 32, 64, 128,

256, 215 and 1024 bits [54]. Conceptually, the module sits between the DDR3 memory

controller and the peripheral. The processor does not connect directly to the peripheral

but rather will negotiate the data transfer between the DMA controller and the DDR3

controller and then return to it’s normal operation. In this way the processor does

not even have to wait for the transfer to the peripheral to be completed before it can

return to other operations.

Figure 4.1: Dataflow Block Diagram [7].

32

One limitation of the DMA engine which affects the system design is its capacity

to handle unaligned transfers. If there are two AXI4-Stream channels connecting the

DMA engine and the custom peripheral with 64 bits or less of bandwidth, then the

system can support unaligned transfers. That is, transfers of data not aligned on a 64,

32, 16, etc. bit boundary. However if the channel is increased above a 64 bit width

then this ability is lost, meaning that addresses given to the DMA engine must be

correctly aligned along the appropriate boundary.

Peripheral Interface

We can consider then that the peripheral interface will contain two AXI4-Stream inter-

faces which will connected to the data in and data out channels on the subtree builder.

However, those channels on the subtree builder are a peculiar 216 bits wide, a size

not supported by the DMA engine. This means that there are two main options for

designing the interface between the subtree builder and the AXI4-Stream port.

• Proceed with the next closest channel width available, 256bit. This will result in

40 bits of additional wasted memory for every scene primitive, there will also be

further data waste at the start and end of the memory block in order to ensure

than the memory is aligned along 256bit boundaries.

• Utilise a 32bit channel and buffer the input up to 224 bits before releasing to

the BVH builder. This will result in only 8 bits of waste memory per primitive

but will be forced to take multiple clock cycles to deliver each complete set of

primitive data.

Regardless of the approach taken there is an important factor to consider, namely

the AXI4-Stream Protocol. The stream interface isn’t simply a single channel that

continuously outputs data, but rather it contains a number of important control signals

which allow for communication between the master and slave devices. Consider the

connection through which data is delivered to the peripheral. In this case the DMA

controller is acting as the master device and the subtree builder as the slave device. The

reverse is true for the other stream connection that writes the output of the peripheral

back to memory. On the slave side there is the TREADY signal which informs the

master device that the slave is ready to accept data. Similarly on the master side

33

there is the TVALID signal which indicates the master device has valid data ready

to be written. The AXI4-Stream transfer will only take place if both TVALID and

TREADY are being asserted [55].

It is also of importance that rate of data flow be managed between the two devices.

If the subtree builder reads data at a rate slower than the DMA engine can deliver it

then it would be desirable to maintain a memory buffer next to the subtree builder to

allow the DMA transfer to complete as swiftly as possible. To achieve this a custom

FIFO unit is utilised which will moderate the dataflow rate and also manage the control

signals. FIFOs essentially function as a data queue, where the first value written in

will be the first value read out, they contain logic that will signal to the connected

devices when they are full or empty. A separate FIFO will be maintained either side

of the BVH builder with slightly different configurations for communicating with the

the AXI4-Stream master and slave ports.

Figure 4.2: Dataflow block diagram with FIFO control.

In addition to the FIFO, logic if the approach is taken to use the 32bit data channel

width in order to minimise data waste and enable unaligned transfers, further logic will

be needed to allow for the data to be concatenated together into the required 216bit

data in signal and similarly on the data out channel. This would be achieved using a

small set of seven 32bit registers and a counter. The counter would direct each data

34

read from the FIFO to the appropriate register then increment to the next one. When

it reaches the seventh register it would enable a simultaneous write into the subtree

builder from all of the registers with the remaining eight bits simply connected to

ground, the counter would then reset to zero.

Figure 4.3: Dataflow block diagram with FIFO control and register set.

However data delivery is not the only aspect which must be considered. It is also

necessary for the processor to communicate directly with the peripheral to allow for

the delivery of constant and control signals to the BVH builder. For the subtree

builder interface we need three 24-bit address values, two 16-bit values relating to the

primitive count, two 8-bit values relating to the tree depth and a single bit GO signal.

The solution to achieve this is through the AXI4-Lite interface. This will allow us to

establish a connection directly between one of the processors AXI master ports and

the slave port that we create on the peripheral.

Upon creation of the AXI4-Lite slave port in Vivado the user will be prompted to

select the number of registers associated with the port. It is into these registers that

the control signals will be written and the register output can then be connected to

the appropriate port on the subtree builder unit. The total size of control signals is

121 bits which means that four 32 bit registers will be required. The remaining seven

output bits can simply be connected to ground.

35

The processor is now trying to connect to both the DMA controller in order to

negotiate transfers and directly to the peripheral via the AXI4-Lite interface. Because

of this we can simply connect one of the processors general purpose AXI master ports

to an AXI interconnect which will then connect to both the slave ports on the DMA

controller and on the peripheral. The final connection which must be made is to

connect the two interrupt ports on the DMA controller to a concatenation unit which

is, in turn, connected to the interrupt input port on the processing system labelled

IRQ F2P. The complete hardware design is illustrated in Figure 4.4.

36

Figure 4.4: Complete Top Level System Diagram

37

4.3.2 Software

After the hardware design has been synthesised, implemented and converted into a

bitstream, it can be used to generate a Board Support Package (BSP). This BSP

will consist of a number of headers and libraries for controlling the hardware resources

described in the exported hardware platform. The processor however still needs to know

where exactly it’s supposed to send data to, when communicating with the hardware.

Because the whole system is connected by AXI interfaces when the hardware platform

is generated the custom peripherals become memory mapped within the address space

reserved for custom logic. The required addresses are found within the BSP.

Start Address Description
0x0000 0000 External DDR RAM
0x4000 0000 Custom Peripherals
0xE000 0000 Fixed I/O Peripherals
0xF800 0000 Fixed Internal Peripherals
0xFC00 0000 Flash Memory
0xFC00 0000 On-Chip Memory

Table 4.1: Zynq Memory Map [1].

A software application communicating with the peripheral begins by initialising

the driver for the DMA controller. It also initialises the interrupts for the DMA. This

involves binding an appropriate interrupt service routine to be called when a particular

interrupt is called. In the case of a full ray tracing application with BVH acceleration,

these interrupt service routines might be used to dictate the operation of the device.

The routine called when the data transfer to the device has completed for instance,

might be used to write the GO signal into the appropriate register to start the BVH

calculation. The routine that is triggered at the end of the return transfer could set

a flag variable which informs the processor that the BVH has been constructed and is

ready for use.

Making the requisite calls to begin the data transfer processes uses the AxiD-

maSimpleTransfer . This function, which can be found in the libraries of the BSP,

takes a number of parameters:

• A reference to the DMA object which was used to initialise the hardware.

38

• The address in memory at which the transfer is to begin. In the case of the BVH

builder this would is address of the array containing all of the scene primitive

data.

• A length parameter indicating the amount of data to be transferred.

• A parameter indicating the direction of the transfer; XAXIDMA-DEVICE-

TO-DMA will start the transfer to the peripheral and XAXIDMA-DMA-

TO-DEVICE will start the transfer from the peripheral back to memory.

Similarly the call to write data into the control registers of the device can be found

in the BSP. The function call is of the form Peripheral Name mWriteReg and takes

the following parameters:

• A reference to the memory mapped address of the start of the peripherals register

set. This reference will be found in the BSP.

• An offset to the base address for the particular register being written to. This is

also found in the BSP files.

• The 32bit data value to be written to the register.

4.3.3 Operating System

Implementation of the operating system layer in the PetaLinux SDK requires a number

files which must be generated either in Vivado or the SDK. The first is the hardware

bitstream which is generated and exported to the SDK. The board support package

which had previously been generated for use in software design is also needed as it con-

tains vital headers and libraries for communicating with the peripherals implemented

in the target design. The last thing needed to generate a boot image is a First Stage

Boot Loader (FSBL). The FSBL can be created in SDK and takes the form of an ELF

file. It is responsible for the early stages of the boot process including determining

which pieces of hardware are to be used and need to be powered on [56].

With these files created and PetaLinux installed (Linux only) a project can be

created using the BSP as a source. From here the desired kernel version can be selected,

in this case linux-xlnx. With the kernel configured, a boot image can be generated

39

using the petalinux-package terminal command. This command takes as parameters

the FSBL and FPGA bitstream. This will generate the two files necessary to allow the

system to boot; the boot binary, BOOT.bin and the boot image image.ub.

Before the PetaLinux OS has been built it is possible to add custom code and li-

braries. In this custom install a ray tracing application is created. This application

is cross compiled for the Zynq when PetaLinux builds the boot image. Similarly this

application requires the SDL libraries to function [4]. As there are no officially sup-

ported SDL implementations for Zynq it is necessary to cross compile the libraries

from source and copy them across at build time. Unfortunately the lack of windowing

system support in the OS means that the ray tracer fails when it attempts to start

rendering an image. Work on this aspect of the project is ongoing.

40

Chapter 5

Results & Evaluation

This section will present an evaluation of the outlined shared memory architecture.

This analysis will cover the simulation results for the custom peripheral and how its

interface with the AXI4-Stream protocol. It will also discuss factors such as the effect

of the system throughput on the BVH builder and also the resource utilisation of the

interface.

5.1 Interface Simulation

Vivado allows the user to simulate hardware for the purposes of testing. There are

a number of way to apporach this, for instance a VHDL testbench. However, this

system was evaluated using Tool Command Language (TCL) code. TCL commands

drive the simulation behaviour setting signals high or low, simulating clock signals

and instructing the system to run for set periods A script was written to simulate the

behaviour of the DMA controller when performing a transfer to and from the custom

module. The signal characteristics associated with these processes were obtained from

the DMA product guide [54].

41

Figure 5.1: Simulation of DMA memory mapped to stream transfer for the BVH builder
interface.

42

Figure 5.2: Simulation of DMA stream to memory mapped transfer for the BVH builder
interface.

43

Figure 5.3: Simulation of simultaneous reading and writing.

44

In Figure 5.1 we see a simulation of a DMA memory mapped to stream (MM2S)

transfer. The S AXIS TDATA channel, connected to the FIFO’s din channel, is

delivering a stream of data that changes value every cycle for clarity. The DMA engine

would constantly be delivering valid data so the S AXIS TV ALID signal will be

asserted for the duration of the transfer. The moment of particular interest that is

captured in Figure 5.1 relates to the FIFO reaching it’s full state and how it influences

the transfer. It can be seen from examination of the signals that on the same rising

edge that the full signal gets set high indicating that there is no room left in the FIFO

the S AXIS TREADY signal is set low which indicates to the DMA controller that

the device is no longer able to accept data thus halting the transfer.

Similarly in Figure 5.2 we see a simulation of a DMA stream to memory mapped

(S2MM) transfer. In this case the dout channel of the FIFO is connected to the

M AXIS TDATA master AXI port. As this side of the design is writing to the

AXI4-Stream port rather than reading from it, it will need to control the valid signal

rather than the read signal. This behaviour can be seen in in Figure 5.2 where we see

the last available valid data being written from the FIFO to the AXI port. Note how

then the empty signal goes high to indicate that the last piece of data has been read

from the FIFO, the M AXI TV ALID signal remains high for 1 additional clock cycle

to allow it to read the value on the M AXIS TDATA channel before going low. If

the FIFO were to be refilled with data the M AXI TV ALID would return to a high

state until all of the data had been read again.

5.2 Throughput Analysis

The two main properties of the system interface, which must be considered when

analysing how it would affect the performance of the subtree builder hardware are;

bandwidth and clock frequency. The main performance metric of the subtree builder

is the total time to build (TTTB) which is the sum of the fill time (the time required

to deliver the data into the builder) and execution time (the time required to compute

the BVH). The bandwidth of the interface affects the fill time and the clock frequency

affects both the fill time and the execution time.

A simulation of the subtree builder was carried out, on a number of standard scenes

using the same method as Doyle et al. [4]. Only portions of the standard scenes are

45

taken as the capacity of the subtree builder is insufficient for the whole scene. This

simulation calculates the number of clock cycles it would take for the subtree builder to

construct the BVH on a given scene. Using this data and figures for the clock frequency

and bandwidth we can determine the TTTB

Scene No. Primitives Leaf Size Cycles to Complete
toasters p0 2.obj 4838 4 75199
marbles p1 2.obj 4408 4 58334
cloth subtree0.obj 7488 4 87983
armadillo subtree30.obj 6407 4 83196
dragon subtree50.obj 7093 4 96178

Table 5.1: Results of subtree builder simulation.

The data in Table 5.1 is generated from a simulation of the subtree builder using a

particular configuration. The simulated builder had a width value of 4. Width refers

to the number of partitioning units that are available in the system. It also has 8

available thread contexts which are used to hide the latency of certain operation and

ensure optimal pipeline utilisation.

From these results the fill time can be calculated by taking the number of primitives,

multiplying it by the number of bits per primitive of the interface (256 or 224), dividing

by the bandwidth and then multiplying by the period of the clock signal. The execution

time can be found by simply multiplying the number of cycles to complete. We can sum

them together to determine the TTTB. Applying this to the two system configurations

at 250MHz gives the following results.

Scene Fill Time(ns) Ex. Time(ns) TTTB(ns) Pad(bits)
toasters p0 2.obj 19352 300796 320148 193,520
marbles p1 2.obj 17632 233336 250968 176320
cloth subtree0.obj 29952 351932 381884 299520
armadillo subtree30.obj 25628 332784 358412 256280
dragon subtree50.obj 28372 384712 413084 283720

Table 5.2: Performance results for the 256bit system variant @250MHz.

The results in Table 5.2 and Table 5.3 reveal a trade off between performance and

data efficiency. While the limitations of working with the DMA engine mean that both

approaches have significant padding, the 256bit system wastes five times as much data

46

Scene Fill Time(ns) Ex. Time(ns) TTTB(ns) Pad(bits)
toasters p0 2.obj 135464 300796 436260 38704
marbles p1 2.obj 123424 233336 356760 35264
cloth subtree0.obj 209664 351932 561596 59904
armadillo subtree30.obj 179396 332784 512180 51256
dragon subtree50.obj 198604 384712 583316 56744

Table 5.3: Performance results for the 32bit system variant @250MHz.

per frame as the 32bit system. However, the price for this more efficient data usage is

a significant hit in performance.

On average the 32-bit system took 145123.2ns longer in terms of TTTB. That

means that the 32-bit system takes on average 42.05% longer than the 256-bit system,

with fill time comprising 34.55% of TTTB, as opposed to only 7% for the 256-bit

approach. Considering the scale of the performance difference between the 256-bit

system is clearly the preferable option despite is inferior efficiency in terms of data.

It would be possible to reduce the large amount of padding in the 26-bit system by

making the spare 40 bits for each primitive the first 40 bits of the next primitive data,

however this would add significant complexity to the hardware design and may cause

the design to meet timing. A thorough evaluation of such a system would be worthy

of investigation but was beyond the scope of this project.

5.3 Resource Utilisation

An important factor to consider in relation to these interfaces is the amount of resources

that are required to implement them. In the case of an ASIC this might be measured

in terms of number of gates or consumed chip area. However as this implementation

is for an FPGA it is convenient to discuss resource utilisation in terms of the amount

of available resources on the FPGA, such as logic cells and memory blocks, that must

be used to implement the interface.

5.3.1 256bit Data Channel

The following results present the FPGA Logic and Memory resources consumed by

the 256bit channel design. While it lacks the register logic of the 32 bit variant, its

47

increased bandwidth means that the memory allocated for the FIFO will be larger.

The figures are reported from Vivado after the design has been synthesised.

Site Type Used Loced Available Util%
Slice LUTs 6293 0 53200 11.82
LUT as Logic 6078 0 53200 11.42
LUT as Memory 215 0 17400 1.23
LUT as Distributed RAM 106 0
LUT as Shift Register 109 0
Slice Registers 8103 0 106400 7.61
Register as Flip Flop 8103 0 106400 7.61
Register as Latch 0 0 106400 0.00

Table 5.4: Logic resource utilisation for 256bit data channel configuration @ 50MHz.

Site Type Used Loced Available Util%
Block RAM Tile 13 0 140 9.28
RAMB36/FIFIO 12 0 140 8.57
RAMB36E1 only 12
RAMB18 2 0 280 0.71
RAMB18E1 only 2

Table 5.5: Memory resource utilisation for 256bit data channel configuration @ 50MHz.

From the results in Table 5.4 and Table 5.5 we can see that this interface consumes

a non negligible amount of system resources. However these results consider the board

to be operating at the default 50MHz FPGA clock. If the frequency is increased to the

maximum supported by this clocking structure Vivado will seek to optimise the design

during synthesis, in order to meet the imposed timing constraints. This may involve

adding additional registers or other necessary logic in order to shorten certain pipeline

stages. The result is a system capable of operating at higher frequencies but consuming

a greater amount of FPGA resources. No change to the memory requirements of the

FPGA is caused by the frequency increase.

5.3.2 32bit Data Channel

The tables below show the level of resource utilisation of the 32 bit data channel

interface solution at 50MHz and 250MHz. This implementation consumes significantly

48

Site Type Used Loced Available Util%
Slice LUTs 6927 0 53200 13.02
LUT as Logic 6712 0 53200 12.61
LUT as Memory 215 0 17400 1.23
LUT as Distributed RAM 106 0
LUT as Shift Register 109 0
Slice Registers 8103 0 106400 7.61
Register as Flip Flop 8103 0 106400 7.61
Register as Latch 0 0 106400 0.00

Table 5.6: Logic resource utilisation for 256bit data channel configuration @ 250MHz.

fewer system resources.

Site Type Used Loced Available Util%
Slice LUTs 3387 0 53200 6.36
LUT as Logic 3242 0 53200 6.09
LUT as Memory 145 0 17400 0.83
LUT as Distributed RAM 18 0
LUT as Shift Register 127 0
Slice Registers 4174 0 106400 3.92
Register as Flip Flop 4174 0 106400 3.92
Register as Latch 0 0 106400 0.00

Table 5.7: Logic resource utilisation for 32bit data channel configuration @ 50MHz.

These results considered in light of the performance analysis suggest that increased

performance will also require a significantly greater amount of system resources. It

should be considered that the ZC702 has a lower grade Zynq chip containing fewer

FPGA resources than more expensive boards. As such the percentage of resources

consumed would be less for the same hardware. Another point of note is that the

FIFOs utilised are very large each having a depth of 256. Simulations seen in Figure 5.3

suggest that such a large FIFO depth is unnecessary. However the utilisation results

in Table 5.10 show that a significant reduction in FIFO depth from 256 to 20 had

an almost negligible effect on the resources consumed. This indicates that the DMA

engine is responsible for the majority of the consumed resources.

49

Site Type Used Loced Available Util%
Block RAM Tile 3.5 0 140 2.50
RAMB36/FIFIO 2 0 140 1.42
RAMB36E1 only 2
RAMB18 3 0 280 1.07
RAMB18E1 only 3

Table 5.8: Memory resource utilisation for 32bit data channel configuration @ 50MHz.

Site Type Used Loced Available Util%
Slice LUTs 3585 0 53200 6.73
LUT as Logic 3440 0 53200 6.46
LUT as Memory 145 0 17400 0.83
LUT as Distributed RAM 18 0
LUT as Shift Register 127 0
Slice Registers 4174 0 106400 3.92
Register as Flip Flop 4174 0 106400 3.92
Register as Latch 0 0 106400 0.00

Table 5.9: Logic resource utilisation for 32bit data channel configuration @ 250MHz.

5.4 Overall Evaluation

The stated goal at the beginning of this investigation was to create a complete hard-

ware/software hybrid ray tracing system running on the ZC702. While much of each of

the stages has been completed they do not fully work together. The hardware interface

has been developed, tested and evaluated but has yet to be successfully integrated with

the subtree builder hardware. In spite of this the implementation is at a level where the

results presented can be considered a valid representation of a final, fully functioning

system.

50

Site Type Used Loced Available Util%
Slice LUTs 3500 0 53200 6.57
LUT as Logic 3355 0 53200 6.30
LUT as Memory 145 0 17400 0.83
LUT as Distributed RAM 18 0
LUT as Shift Register 127 0
Slice Registers 4165 0 106400 3.91
Register as Flip Flop 4165 0 106400 3.91
Register as Latch 0 0 106400 0.00

Table 5.10: Logic resource utilisation for 32bit data channel configuration @ 250MHz
and FIFO depth of 20.

51

Chapter 6

Discussion

6.1 Conclusion

This thesis proposed a design for a shared memory architecture to enable efficient

communication between a processor system and a BVH accelerator. The system was

designed and implemented for the Xilinx ZC702 evaluation board.

The shared memory architecture, composed of Vivado IP blocks and custom VHDL

modules, was evaluated by variety of metrics. Two different configurations of the

design were examined with each producing superior performance than the other in

certain areas. Ultimately it was determined that the proposed architecture is feasible

for implementation on a device featuring an integrated processor and programmable

logic subsystem.

Ray tracing will continue to be a goal towards which the computer graphics com-

munity strives. The dark silicon problem and the rise of mobile computing may drive

chip manufacturers to provide power efficient, fixed function hardware alongside the

traditional CPU and GPU oriented architectures. This investigation has demonstrated

that, fixed function hardware sharing memory with a processor, can provide efficient

delivery of large quantities of data without occupying processor time. This research

could be a starting off point, a platform on which further research into heterogeneous

graphics architectures could build.

52

6.2 Future Work

Following on from this project the next obvious goal would to complete the system

initially planned and allow for a software ray tracing system to delegate the construction

of a BVH for small scenes to the programmable hardware. The existing system is very

close to this point and would require only a few notable issues to be fixed. Moving

beyond that then, the next step would be to augment the interface to support the

complete BVH builder hardware. This would enable support for significantly large

scenes.

Ultimately no amount of hardware acceleration will make the ZC702 a suitable

device for ray tracing. It’s unique hardware capabilities made it ideal for testing this

proof of concept memory architecture. The bulk of research opportunities arising from

this investigation lie with the BVH builder hardware. Recent research by Fowler et al.

[57] considers the dual role of the BVH in ray tracing and physics simulations. Their

analysis shows that the optimal number primitives per leaf node of the BVH changes is

different for the two applications. As such they propose an adaptive BVH which inner

nodes flagged as leaf nodes for ray tracing traversal while the final leaf nodes consisting

of only one primitive would function normally for physics simulation.

From a hardware perspective the current iteration of the BVH builder would be

unable to achieve this structure. This is due to the binned SAH algorithm utilised

in the design which is unable to guarantee a primitive count of one per leaf node.

Further research in this area might consider an addition of a third conceptual layer

to the hardware. Much like the upper builder delegates nodes of an appropriate size

to the subtree builder; the subtree builder could delegate nodes of a certain size to

a sweep builder. This unit would implement the more complex and computationally

expensive SAH sweep algorithm. This approach would allow for hardware generation

of an adaptive BVH suitable for both physics simulation and ray tracing.

53

Bibliography

[1] Xilinx, “Zynq programmable logic highlights,” 2012.

[2] T. Akenine-Moller, E. Haines, and N. Hoffman, Real-Time Rendering. CRC Press,

2008.

[3] H. Nguyen, Gpu Gems 3. Addison-Wesley Professional, first ed., 2007.

[4] M. Doyle, “Hardware support for power and area efficient construction of high-

quality bounding volume hierarchies,” 2014.

[5] Xilinx, ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Programmable

SoC User Guide, v1.3 ed., June 2014.

[6] Xilinx, “Zynq processing system highlights,” 2012.

[7] J. Johnson, “Using the axi dma in vivado,” 2014.

[8] J. Schmittler, I. Wald, and P. Slusallek, “Saarcor: A hardware architecture for

ray tracing,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Confer-

ence on Graphics Hardware, HWWS ’02, (Aire-la-Ville, Switzerland, Switzerland),

pp. 27–36, Eurographics Association, 2002.

[9] D. Kopta, K. Shkurko, J. Spjut, E. Brunvand, and A. Davis, “An energy and

bandwidth efficient ray tracing architecture,” in Proceedings of the 5th High-

Performance Graphics Conference, HPG ’13, (New York, NY, USA), pp. 121–128,

ACM, 2013.

[10] W.-J. Lee, Y. Shin, J. Lee, J.-W. Kim, J.-H. Nah, S. Jung, S. Lee, H.-S. Park,

and T.-D. Han, “Sgrt: A mobile gpu architecture for real-time ray tracing,” in

54

Proceedings of the 5th High-Performance Graphics Conference, HPG ’13, (New

York, NY, USA), pp. 109–119, ACM, 2013.

[11] A. Appel, “Some techniques for shading machine renderings of solids,” in Proceed-

ings of the April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68

(Spring), (New York, NY, USA), pp. 37–45, ACM, 1968.

[12] P. H. Christensen, G. Harker, J. Shade, B. Schubert, and D. Batali, “Multireso-

lution radiosity caching for global illumination in movies,” in ACM SIGGRAPH

2012 Talks, SIGGRAPH ’12, (New York, NY, USA), pp. 47:1–47:1, ACM, 2012.

[13] C. Hery and R. Villemin, “Physically based lighting at pixar,” July 2013.

[14] S. Laine and T. Karras, “High-performance software rasterization on gpus,” in

Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics,

HPG ’11, (New York, NY, USA), pp. 79–88, ACM, 2011.

[15] J.-H. Nah, J.-S. Park, C. Park, J.-W. Kim, Y.-H. Jung, W.-C. Park, and T.-D.

Han, “T and i engine: Traversal and intersection engine for hardware accelerated

ray tracing,” in Proceedings of the 2011 SIGGRAPH Asia Conference, SA ’11,

(New York, NY, USA), pp. 160:1–160:10, ACM, 2011.

[16] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,

“Dark silicon and the end of multicore scaling,” in Proceedings of the 38th Annual

International Symposium on Computer Architecture, ISCA ’11, (New York, NY,

USA), pp. 365–376, ACM, 2011.

[17] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “Design of

ion-implanted mosfet’s with very small physical dimensions,” Solid-State Circuits,

IEEE Journal of, vol. 9, pp. 256–268, Oct 1974.

[18] Qualcomm, “Qualcomm snapdragon 810 processor product brief,” 2014.

[19] NVIDIA, “Bringing high-end graphics to handheld devices,” 2011.

[20] J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th Annual Con-

ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’86, (New

York, NY, USA), pp. 143–150, ACM, 1986.

55

[21] T. Whitted, “An improved illumination model for shaded display,” Commun.

ACM, vol. 23, pp. 343–349, June 1980.

[22] A. Fujimoto, T. Tanaka, and K. Iwata, “Arts: Accelerated ray-tracing system,”

Computer Graphics and Applications, IEEE, vol. 6, pp. 16–26, April 1986.

[23] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker, “Ray tracing animated

scenes using coherent grid traversal,” in ACM SIGGRAPH 2006 Papers, SIG-

GRAPH ’06, (New York, NY, USA), pp. 485–493, ACM, 2006.

[24] J. H. Clark, “Hierarchical geometric models for visible surface algorithms,” Com-

mun. ACM, vol. 19, pp. 547–554, Oct. 1976.

[25] C. Wächter and A. Keller, “Instant ray tracing: The bounding interval hierar-

chy,” in Proceedings of the 17th Eurographics Conference on Rendering Techniques,

EGSR’06, (Aire-la-Ville, Switzerland, Switzerland), pp. 139–149, Eurographics

Association, 2006.

[26] J. L. Bentley, “Multidimensional binary search trees used for associative search-

ing,” Commun. ACM, vol. 18, pp. 509–517, Sept. 1975.

[27] A. Williams, S. Barrus, R. K. Morley, and P. Shirley, “An efficient and robust

ray-box intersection algorithm,” in ACM SIGGRAPH 2005 Courses, SIGGRAPH

’05, (New York, NY, USA), ACM, 2005.

[28] J. O’Rourke, “Finding minimal enclosing boxes,” International Journal of Com-

puter Information Sciences, vol. 14, no. 3, pp. 183–199, 1985.

[29] J. Klosowski, M. Held, J. Mitchell, H. Sowizral, and K. Zikan, “Efficient colli-

sion detection using bounding volume hierarchies of k-dops,” Visualization and

Computer Graphics, IEEE Transactions on, vol. 4, pp. 21–36, Jan 1998.

[30] D. Kopta, T. Ize, J. Spjut, E. Brunvand, A. Davis, and A. Kensler, “Fast, effective

bvh updates for animated scenes,” in Proceedings of the ACM SIGGRAPH Sym-

posium on Interactive 3D Graphics and Games, I3D ’12, (New York, NY, USA),

pp. 197–204, ACM, 2012.

56

[31] I. Wald, “On fast construction of sah-based bounding volume hierarchies,” in

Interactive Ray Tracing, 2007. RT ’07. IEEE Symposium on, pp. 33–40, 2007.

[32] D. J. MacDonald and K. S. Booth, “Heuristics for ray tracing using space subdi-

vision,” Vis. Comput., vol. 6, pp. 153–166, May 1990.

[33] I. Wald, “Fast construction of sah bvhs on the intel many integrated core (mic) ar-

chitecture,” Visualization and Computer Graphics, IEEE Transactions on, vol. 18,

pp. 47–57, Jan 2012.

[34] M. J. Doyle, C. Fowler, and M. Manzke, “A hardware unit for fast sah-optimised

bvh construction,” ACM Trans. Graph., vol. 32, pp. 139:1–139:10, July 2013.

[35] Y. Gu, Y. He, K. Fatahalian, and G. E. Blelloch, “Efficient bvh construction via

approximate agglomerative clustering.,” in High Performance Graphics, pp. 81–88,

ACM, 2013.

[36] B. Walter, K. Bala, M. Kulkarni, and K. Pingali, “Fast agglomerative clustering

for rendering,” in Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium on,

pp. 81–86, 2008.

[37] H. Kobayashi, K. Suzuki, K. Sano, Y. Kaeriyama, Y. Saida, N. Oba, and T. Naka-

mura, “3dcgiram: an intelligent memory architecture for photo-realistic image syn-

thesis,” in Computer Design, 2001. ICCD 2001. Proceedings. 2001 International

Conference on, pp. 462–467, 2001.

[38] T. Todman and W. Luk, “Reconfigurable designs for ray tracing,” in Field-

Programmable Custom Computing Machines, 2001. FCCM ’01. The 9th Annual

IEEE Symposium on, pp. 300–301, March 2001.

[39] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Interactive rendering with

coherent ray tracing,” in Computer Graphics Forum, pp. 153–164, 2001.

[40] J. Schmittler, S. Woop, D. Wagner, W. J. Paul, and P. Slusallek, “Realtime

ray tracing of dynamic scenes on an fpga chip,” in Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS ’04,

(New York, NY, USA), pp. 95–106, ACM, 2004.

57

[41] I. Wald, C. Benthin, and P. Slusallek, “Distributed interactive ray tracing of dy-

namic scenes,” in Parallel and Large-Data Visualization and Graphics, 2003. PVG

2003. IEEE Symposium on, pp. 77–85, Oct 2003.

[42] J. Spjut, A. Kensler, D. Kopta, and E. Brunvand, “Trax: A multicore hardware

architecture for real-time ray tracing,” Computer-Aided Design of Integrated Cir-

cuits and Systems, IEEE Transactions on, vol. 28, pp. 1802–1815, Dec 2009.

[43] J. Spjut, S. Boulos, D. Kopta, E. Brunvand, and S. Kellis, “Trax: A multi-threaded

architecture for real-time ray tracing,” in Application Specific Processors, 2008.

SASP 2008. Symposium on, pp. 108–114, June 2008.

[44] J. Spjut, D. Kopta, E. Brunvand, and A. Davis, “A mobile accelerator archi-

tecture for ray tracing,” 3rd Workshop on Socs, Heterogeneous Architectures and

Workloads, Feb 2013.

[45] T. Aila and T. Karras, “Architecture considerations for tracing incoherent rays,”

in Proceedings of the Conference on High Performance Graphics, HPG ’10, (Aire-

la-Ville, Switzerland, Switzerland), pp. 113–122, Eurographics Association, 2010.

[46] M. Sanchez-Elez, H. Du, N. Tabrizi, Y. Long, N. Bagherzadeh, and M. Fernndez,

“Algorithm optimizations and mapping scheme for interactive ray tracing on a

reconfigurable architecture.,” Computers and Graphics, vol. 27, no. 5, pp. 701–

713, 2003.

[47] H.-Y. Kim, Y.-J. Kim, and L.-S. Kim, “Reconfigurable mobile stream processor

for ray tracing,” in Custom Integrated Circuits Conference (CICC), 2010 IEEE,

pp. 1–4, Sept 2010.

[48] H.-Y. Kim, Y.-J. Kim, and L.-S. Kim, “Mrtp: Mobile ray tracing processor with

reconfigurable stream multi-processors for high datapath utilization,” Solid-State

Circuits, IEEE Journal of, vol. 47, pp. 518–535, Feb 2012.

[49] W.-J. Lee, S.-H. Lee, J.-H. Nah, J.-W. Kim, Y. Shin, J. Lee, and S.-Y. Jung, “Sgrt:

A scalable mobile gpu architecture based on ray tracing,” in ACM SIGGRAPH

2012 Posters, SIGGRAPH ’12, (New York, NY, USA), pp. 44:1–44:1, ACM, 2012.

58

[50] Xilinx, “Zynq 7000 combined product table,” may 2014.

[51] Xilinx, Vivado Design Suite User Guide, Programming and Debugging,

v2014.1 ed., May 2014.

[52] Xilinx, Vivado Design Suite User Guide, Synthesis, v2013.2 ed., June 2013.

[53] Xilinx, Vivado Design Suite User Guide, Implementation, v2013.4 ed., December

2013.

[54] Xilinx, LogiCORE IP AXI DMA Product Guide, 7.1 ed., April 2014.

[55] ARM, AMBA 4 AXI4-Stream Protocol Specification, 1.0 ed., 2010.

[56] Xilinx, Zynq-7000 All Programmable SoC Software Developers Guide, 9.0 ed., June

2014.

[57] C. Fowler, M. Doyle, and M. Manzke, “Adaptive bvh: An evaluation of an efficient

shared data structure for interactive simulation,” in Proceedings of the Spring

Conference of Computer Graphics, SCCG ’14, (New York, NY, USA), ACM, 2014.

59

