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Social media is gradually becoming an important source of knowledge. For example, 

Twitter, one of the largest social networks for people to share things and catch up with friends, 

contains enough information generated by millions of users all around the world. 

We can take advantages of Twitter data and semantic web technologies to discover 

potential trends in varieties of industries and much much more. 

In this project, we present a novel approach to perform temporal reasoning on real time 

Twitter stream using Semantic Web Technologies so that we could derive more valuable 

information from time dimension data on Twitter. Moreover, in order to deal with such high-

frequency data, several filter mechanisms have also been implemented to, significantly, 

improve the performance of the reasoning process. 
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Chapter 1 
 
 
 

Introduction 
 

 
 
 
 

1.1     Background 
 
Social media is gradually becoming an important source of knowledge. For example, Twitter, 

one of the largest social networks for people to share things and catch up with friends, 

contains enough information generated by millions of users all around the world. 

     Semantic Web is believed to be the future generation of World Wide Web, a “Web of data”, 

where data could be easily shared, reused and processed by machines [1].  

     Semantic Reasoning is a very important part of Semantic Web Technologies to enable 

people to infer implied and valuable information from vast explicit data all over the Internet 

using customized inference rule set [2]. In order to achieve this, a number of rule engine or 

semantic reasoners have been developed by researchers all around the world. 

     Stream reasoner and temporal reasoner are two important categories of semantic reasoner. 

Stream reasoner aims to enable inference on data stream instead of static data file, while 

temporal reasoner is designed to enable reasoning on time dimension data.  
 
 
1.2     Motivation 

 
Stream reasoning [7] and temporal reasoning [8] are widely used in semantic web for various 

purposes, such as Medical Information System and Network Management System and so on. 

However, the existing reasoners for both of these reasoning categories have their own 

limitations.  

     Firstly, take the most powerful tool C-SPARQL as an example, the stream reasoners at the 

moment could support continuous but simple queries over the RDF (Resource Description 
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Framework) data streams [3]. However, temporal functors or temporal reasoning are not fully 

supported in these stream reasoners, which, as a consequence, makes user unable to derive 

valuable information that based on time dimension relations.   

     Secondly, there are a number of existing temporal reasoning approaches. Each of them has 

presented its own way to introduce time dimension content into RDF data, and implemented 

temporal functors to cover both instant and interval time relations between different events [4] 

[5]. Although these approaches are widely used in the real world, like Medical Information 

System or Network Management System, they could only perform temporal reasoning on 

huge static historical data but are not capable of dealing with real time data stream.  

     Thirdly, most of the existing stream reasoners or temporal reasoner are very expensive, 

both in reasoning time and memory usage. 

     Finally, social media, like Twitter, is gradually becoming an important source of 

knowledge. The lack of semantic reasoning on Twitter stream provides a great opportunity. 

This project will present a novel approach to perform temporal reasoning on real time Twitter 

data stream. Moreover, in order to deal with such high-frequency data, several filter 

mechanisms have also been implemented to, significantly, improve the performance of the 

reasoning process. 
 
 

1.3     Research Question 
 
According to the background and motivations, the research question of this dissertation is 

addressed as “How to semantic reasoning to improve real time analysis of high frequency 

Twitter stream data”, which could be divided into several small challenges: 
 

1. How to take advantages Semantic Web Technologies to reason on real time Twitter 
data stream? 
 

2. How to extend the semantic reasoner to perform temporal reasoning over Twitter data 
stream? 

 

3. In order to deal with such high-frequency Twitter data, is there any way that could be 
used to improve the performance of reasoning process? 

 

4. How much improvement we could get from these optimization mechanisms?  
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1.4     Contributions 
 
 
1.4.1   Semantic Reasoning on real time Twitter Stream 

 
Firstly, we implement a JSON-RDF convertor to transfer Twitter data from JSON format to 

RDF format that could be accepted by the static semantic reasoner. Moreover, we present a 

window-based approach to extend the reasoner for reasoning on real time Twitter data 

stream. 

 

1.4.2   Temporal Reasoning on real time Twitter Stream 
 
This project present our approach to perform temporal reasoning on real time Twitter stream 

by creating our own temporal functors which could cover all the valuable temporal relations 

between each two pieces of twitter data.  
 
 
1.4.3   Reasoning Optimization 

 
We designed and implemented two regular expression based Rule Analyzers, and two filter 

mechanisms built upon them, so that we can delete all the unnecessary RDF triples (subject- 

predicate-object data format) before the actual temporal reasoning process. According to the 

evaluation, these optimization approaches could improve both the reasoning time and memory 

usage up to 90%. 
 
 
1.4.4   Configurable Reasoner 

 
Each key components of our reasoner could easily be configured through a configuration file, 

which increases the flexibility. Moreover, we design and implement an intermediate time 

format, which could also be customized through the configuration file. Therefore, this reasoner 

is very extensible to reason on other data streams that with different data formats instead of 

Twitter.  
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1.5     Outline of the thesis 
 
Chapter 2 discusses the state of the art of Stream Reasoning and Temporal Reasoning 

 

Chapter 3 presents system requirements, system concept model, system architecture and 

design decisions.  

 

Chapter 4 provides information about development environment, libraries used, and key 

components’ implementations.  

 

Chapter 5 evaluates our system performance, and the reasoning accuracy. 

 

Chapter 6 concludes our contributions and discuss about the potential future work. 
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Chapter  2 
 
 
 

State of the Art 
 

 
 
 
 

2.1     Introduction 
 
Social medias, like Twitter or Facebook, are gradually becoming an important source of 

knowledge. Their high-frequency user generated data has great potential value not only for 

business or industry area but also for research area. One of the great examples would be [6], 

where drug-related advertisement could be detected from tweets analysis so that not only 

manufactures could have better pharmacovigilance over those post-market or investigational 

drugs, but more importantly, this could provide more safety for patients or drug consumers.   

     This project aims to reason on Twitter’s real time stream data using Semantic Web 

Technologies. Semantic Web is considered as the next generation of World Wide Web [1]. 

One of its major breakthroughs is to extend current unstructured or semi-structured data to 

machine-readable data. The Resource Description Framework (RDF) is a well-known 

framework to describe web resources so that they could be easily shared and reused across 

different machines. Our approach will convert Twitter’s JSON format data into RDF (subject-

predicate-object) triples before pass it into semantic reasoner. In order to properly and 

efficiently perform reasoning process, several semantic reasoners are compared and evaluated. 

     This project focuses on extending this existing semantic reasoner to not only perform 

continuous reasoning on real time Twitter stream but be able to perform temporal reasoning as 

well.  Therefore, a number of stream reasoning and temporal reasoning approaches are also 

studied.  

     All in all, in order to achieve temporal reasoning on real time Twitter stream, a number of 

challenges are required to be addressed, such as Semantic Reasoning, Stream Reasoning and 
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Temporal Reasoning. Each of these challenges will be discussed in detail in the following 

sections.  
 
 

2.2     Semantic Reasoning 
 
 
2.2.1   Semantic Web Technologies 

 
Semantic Web Technologies are the foundation of this project. Figure 2.1 shows its 

technology stack. Some of the layers will be discussed in details in this section.  
 

 
 

Figure 2.1: Semantic Web Stack1 

 
 

Uniform Resource Identifier (URI): A string of characters to uniquely identify a resource 

across entire World Wide Web. It always begins with “http”, so that the resource 

identified could be easily accessed through the Internet. 

 

Resource Description Framework (RDF): Different from tree-based XML structure, RDF 

is graph-based data model to identify things and relations between things using URIs. 

The core structure of this data model is called triples, each of which contains a subject, 

a predicate and an object. Each RDF graph consists of a number of these triples.   
 

 
 Copy from Dr. Rob Brennan’s lecture  
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Rules (RIF): Inference is very important in Semantic Web Technology stack to make 

people reasoning over different data source through rules. Since a number of rule 

system are used in the real world, World Wide Web Consortium (W3C) working 

group create Rule Interchange Format (RIF) as a standard to exchange rules between 

different rule systems [9].  
 
 

2.2.1   Semantic Reasoners 
 
In order to get better understanding of Semantic Reasoning, several existing approaches are 

studied.  

 
[10] presents a very detailed description about Jena which is the most commonly used 

Semantic web toolkit for Java developers. The architecture of Jena and the key structure 

RDF Graph is well explained which is very valuable for our approach. Moreover, it presents 

the architecture of Reasoner and explained how different components cooperate with each 

other to accomplish the inference process. As shown in Figure 2.2, these components are 

well worth researching before we design and implement our system. In addition, it also 

present several built-in reasoners, including Transitive Reasoner, RDFS Reasoner and 

Rubrik Reasoner and their specifics. Rubrik is more valuable to us since it is a rule based 

RDF reasoner and provide both forward rule engine and backward rule engine for us to use.    
 

 
 Figure 2.2 Jena Reasoner Architecture from [10] 
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[10] presents a very detailed description about Jena which is the most commonly used 

Semantic web toolkit for Java developers. The architecture of Jena and the key structure 

RDF Graph is well explained which is very valuable for our approach. Moreover, it presents 

the architecture of Reasoner and explained how different components cooperate with each 

other to accomplish the inference process. As shown in Figure 2.2, these components are 

well worth researching before we design and implement our system. In addition, it also 

present several built-in reasoners, including Transitive Reasoner, RDFS Reasoner and 

Rubrik Reasoner and their specifics. Rubrik is more valuable to us since it is a rule based 

RDF reasoner and provide both forward rule engine and backward rule engine for us to use. 

 

[11] presents another production rule based reasoner which is developed to transform OWL 

ontologies into an object-oriented schema. Instead of RETE rule engine, this approach uses 

CLIPS to support both rule based and Object Oriented (OO) programming paradigms. In 

addition, it provides the detailed description and key procedures of TBOX reasoning and 

ABOX reasoning, which are also meaningful to our approach. Moreover, it presents an 

Incremental Rule Loading mechanism, which improves the performance a lot. To provide 

better understanding, the author not only presents sufficient evaluation result but also 

explain the theory behind his approach, which is a great way that we could learn to justify 

our system.  

 

[12] presents detailed design and implementation for rule based reasoner called 

MiRE4OWL, which is designed to provide reasoning service for resource-constrained 

devices. In addition, it provides very detailed information about RETE network and explains 

how it is built with presudocode. Moreover, its lightweight design that results in reducing 

the memory usage up to 80% could inspire us to optimize our system.  

 

[13] presents a lightweight OWL reasoner called µOR, which is also developed for 

resource-constrained device. The authors point out that the most commonly used query 

language SPARQL and its engine are too expensive to run on a resource-constrained device. 

Therefore, they develop their own language for N-Triples, called SCENT, and their own 

pattern-matching algorithm called SCENTRA, which are both lightweight. The performance 

improvement made by µOR is significant comparing to other small reasoners, like Bossam 

and Pocket KRHyper. Therefore, it is valuable to research on the lightweight language and 

pattern-matching algorithm implemented. 
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[14] presents an OWL reasoner, COROR as a new approach for resource-constrained 

devices, which achieves better time efficiency with less memory cost over other reasoners 

by implementing two novel algorithms to compose the reasoners on the fly. In addition, this 

paper presents some brief description about OWL and its sublanguages, and very detailed 

description about RETE, the fast pattern matching algorithm and presents a number of ways 

to optimize RETE algorithm. The author also analyzes the advantages and disadvantages of 

each optimization approach. Moreover, the authors presents very detailed description about 

the key part of this research, two composition algorithms, i.e. a selective rule loading 

algorithm and a two-phase RETE algorithm, and also explained two join sequence 

optimization heuristics they implemented in the beta network construction, i.e. the most 

specific condition first heuristic and the connectivity heuristic. This research is well studied 

because our system is developed upon COROR. Therefore it is reasonable to understand the 

architecture and contributions of this approach.  

 

[15] presents another rule based reasoner for resource-constrained device. This paper is 

studied because it presents a detailed survey of reasoning approaches on 26 OWL reasoners. 

The authors classify these reasoners into 5 categories based on their reasoning approaches, 

including rule-entailment based reasoners, resolution-based reasoners, Description Logic 

(DL) tableau based reasoners, reasoners using hybrid approaches, and reasoners using 

miscellaneous approaches. In addition, characteristics of each category are well discussed. 

This paper provides very helpful information for us to decide which kind of reasoner to use. 

Since our system need to reason on Twitter stream, the capability of domain-specific 

reasoning is highly required. Therefore, we choose to build our system on rule-entailment 

reasoner, as it is very straightforward to model and deploy domain-specific rules.  

 

2.3     Stream Reasoning 
 

Stream reasoning is very widely used in daily life, for example, Medical Information 

System [23], Transportation System [22] and so on. [7] presents most of the important 

basics of stream reasoning, including its formal definition and characteristics. It states that 

Window and Continuous Processing are the two notions peculiar to stream reasoning. 

Figure 2.3 shows the window based reasoning approach. For each step, a new window size 

of data is captured from the data stream and passed to reasoner and in next step, the window 

moves a certain step forward to capture a new window size of data for the reasoner.  
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[7] also presents details about C-SPARQL, which now is a well known and very powerful 

stream reasoning tool. The author provides very brief comparison between C-SPARQL and 

its two alternatives, Time-Annotated SPARQL and Streaming SPARQL on their 

functionalities only and concludes that only C-SPARQL supports continuous processing and 

aggregation functions.  

 

[16] questions a number of challenges faced to combine streaming with semantic reasoning. 

The data stream management system, which could analyze the changing data during the 

runtime, could not perform complex reasoning tasks, while reasoners that could perform 

complex reasoning tasks could not manage reasoning on the rapidly changing information. 

In addition, the system that could perform reasoning on the changing information could only 

detect the changes with very limited amount of data and at very low frequency. Therefore, 

the authors proposed Stream Reasoning as a new approach to integrate Semantic Web 

technology, data stream and reasoning together to answer the questions. Moreover, the 

author raised some issues for a stream reasoning system that should be taken into 

consideration, including limited stream reasoning theory, heterogeneous formats and access 

protocols, semantic modeling, scale, continuous processing, real-time constraints and 

parallelization and distribution. The author also presents a discussion of potential measuring 

progress to evaluate a stream reasoning system, including how fast the data is updated, how 

many data streams are handled at the same time, how many subscribers are registered, and 

the time delay between the time that a particular event happened and the time when all the 

Figure 2.3 Window Based Stream Processing 
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subscribers got notified and so on. All of these discussions in this paper are very valuable 

and will definitely inspire the design and implementation of our own stream processor.  

 

[17] introduces Twitter phenomenon at the very beginning to describe the trend that people 

were caring about feeds and information published on well-known social media which 

justifies my motivation. In addition, it proposes a novel approach to combine inductive and 

deductive reasoning with streaming (C-SPARQL) to reduce the gap between streaming and 

static knowledge analysis. In addition, the author presents a well-designed experiment 

process to  provide better understanding of how their approach will improve the efficiency 

of C-SPARQL. 

 

 

2.4     Temporal Reasoning 
 

Temporal reasoning could be easily explained as derive new information from time 

dimension data. As shown in Figure 2.4, [18] presents the basic interval time relations 

between two events, which were firstly proposed by Allen in 1980’s. This is the start point 

for almost every temporal reasoning research as specific time relations could be easily 

designed from it.  

 

 
 

 

The authors also present their approach to introduce time dimension relations into Complex 

Event Processing (CEP) system by design and implement three new temporal functors into 

Figure 2.4 Allen’s interval time relations (copies from [18]) 
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their old system. [18] provides me a very clear understanding of what temporal reasoning is 

and why it is meaningful. With the details of two motivating scenarios, readers could get 

even better understanding that temporal dependencies could capture more information from 

the historical events and data. In addition, the paper presented a way to implement temporal 

operators. With the help of this, researchers could create their own operators to support 

specific tasks.  

 

More importantly, this paper made me think. Why we really need temporal reasoning or 

developing temporal operators. If all the historical data is available, could we just write 

some short program that use file stream reader and simple if-statement to compare the 

temporal relationship between two events. Yes, we can. However, the truth is people are 

eager to find a generic way to do the reasoning, more specifically, we need to use the same 

pattern matching framework to deal with all the rules, no matter it is temporal or not. 

Therefore, we should implement the temporal operators so that the previous framework 

could stay the same. 

 

[19] introduces another approach to perform temporal reasoning. It proposes temporal RDF 

graphs as the main part of a new framework to make pure RDF graphs are capable of 

handling temporal reasoning. More specifically, they presented a syntax which mainly use 

both the temporal labels and RDF vocabulary to extend pure RDF graphs to this temporal 

framework and also presented semantics for temporal graphs, including the definition of 

temporal entailment. 

 

In addition, it presented a very long and detailed discussion about several issues that might 

arise when extending RDF with temporal information, e.g. versioning versus time labeling, 

time points versus time intervals, vocabulary for temporal labeling, temporal entailment and 

temporal query language. Moreover, it provides detailed description on each of its 

contributions, including how to define a temporal graph, how to define the temporal 

semantics and syntax and so on. 
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[20] presents an approach related to both stream reasoning and temporal reasoning which is 

motivated by the fact that the state-of-the-art EP only provides the ability of analyzing a 

large stream of events without considering the background knowledge while separate 

semantic tools can process static data and analyze context and perform reasoning. The 

authors of this paper also developed temporal RDF, but they claim their work is different 

because they tend to detect complex temporal patterns dynamically instead of one time 

query and response model. The authors also believe more temporal relations should be 

detected if we want to process more complex reasoning or analysis over the RDF stream. 

There are researches where all the inference rules are designed before the actually execution 

and stored in the knowledge base. But the authors think stream reasoning requires to 

inference processed dynamically during the execution. In my opinion, the automatically 

generated rules could be a very interesting topic to research on.  

 
 
2.5     Chapter Summary 

 
In this chapter, we discussed state of the art in Semantic Reasoning, Stream Reasoning and 

Temporal Reasoning. We compared different reasoners and decided to base our work on rule-

based reasoner. In addition, we introduced the basics of stream reasoning and considered the 

main challenges faced in implementing stream processor. Moreover, we talk about the 

importance of temporal reasoning, compared several approaches to implement it and finally 

decided to design and implement our own temporal functors to achieve temporal reasoning. 

Not all the approaches discussed in this chapter will be used for our development, but the 

understanding of the pros and cons is important for us the make right decisions.  
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Chapter  3 
 
 
 

Design 
 
 
 
 
In this chapter, we discuss about both the functional and non-functional system 

requirements, conceptual model of our design and also the system architecture. In the 

architecture section, we discuss the function of each key component and present several 

examples to provide readers better understanding of our design. In addition, we present 

discussions about several valuable design decision-makings and also provide sufficient 

reasons to prove our decisions.  
 
 

3.1     Requirements 
 
In order to answer the research questions posed in the introduction chapter and achieve 

efficient temporal reasoning on real time Twitter Stream, the system should be able to:  
 

1. Capture real time data from Twitter stream. 

 

2. Extend the semantic reasoner to perform temporal reasoning on Twitter Stream. 

 

3. Delete some uninteresting data from the high-frequency Twitter stream to improve the 

performance of reasoning process. 

 

In addition, there are also some non-functional system requirements that need to be fulfilled:  

 

•  Flexibility: Each key components of this reasoning system should be easily configured 

for different purpose   
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•  Extensibility: The system should be easily extended to reason on other data stream. 
 
 
3.2     Conceptual Model 

 
According to the functional system requirements, we present a conceptual model of our design 

to provide readers basic understanding of how different components work together.  

 
 

 
 

 
 
 

     As shown in the conceptual model, we design two filter mechanisms. One of them is 

property based and the other one is time based, and both of their filter patterns are based on the 

analysis of reasoning rule set.  

     The Twitter data stream will then pass through these two filters before it goes into the 

Temporal Reasoner where uninterested pieces of data are deleted. 

     Finally, after the reasoning process, new deduced data will be produced and stored.   
 

 

Figure 3.1: Conceptual Model 



 16 

3.3   System Architecture 
 

Basic on the conceptual design model, there are four functional parts of the system, including 

Twitter Stream Processing, Rule Analyzers, Filter Mechanisms, and Temporal Reasoner.  

     In this section, we present a more specific system architecture to explain the design of each 

key components and how they cooperate with each other to match functional requirements.   
 
 

 
 
 
 
 
3.3.1 Twitter Stream Processing 

 
Twitter Stream Processing is responsible to listen on Twitter Stream, capture real time data 

and transfer JSON format data to RDF triples. To achieve this, a window based processor and 

a JSON-RDF convertor are designed.  

 

3.3.1.1 Window Based Processor 
 
According to what we discussed in previous section, window based approach is the major 

method in stream processing. As shown in Figure 3.3, every step the stream processor captures 

a fixed window size (for example 30 seconds) of data and then passes it to the following 

components. After each step, the window will more forward in a certain step size (for example 

Figure 3.2: System  
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10 seconds), capture new data and pass it again. Therefore, the system is capable of continuous 

processing of Twitter real time data stream.  

 

 
 
 
 
3.3.1.2 JSON-RDF Convertor 

 
This convertor is designed to accomplish two main tasks.  

 

• Twitter’s original data format is JSON, while, in order to perform semantic reasoning, 

RDF triples are required. Therefore, the convertor needs to convert JSON data stream 

to RDF triple stream. N-triples notation is selected to encode RDF triples in this 

system, because it is a line-based and plain text format, which is very lightweight and 

easy to construct.  

 

• In addition, as Twitter’s data is too complicated, this convertor also selects 17 valuable 

attributes of full JSON data set, including basic information about each tweet and its 

relative user.  

 

Figure 3.4 shows the RDF graph for each tweet produced by this convertor, which contains a 

number of valuable properties, including tweet’s text, created time, retweeted count and user’s 

name, friends count, followers count and so on. 
 
 

 

Figure 3.3: Window Based Processor 
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3.3.2   Rule Analyzers 

 
Rule analyzers are the foundation of filter mechanisms and optimization process. There are 
two main reasons that we design this component: 
 

• Not all rule set needs all of 17 properties of each tweet to perform reasoning. 
 

• Not all reasoning needs the whole window period of data. For example, if the window 
size is configured to be 30 seconds, while we only interested in the events happened in 
last 10 second. Then the earlier 20 seconds of data is not required for the reasoning 
process. 

 
According to these reasons, two kinds of regular expression based rule analyzers are designed 
to find the characteristics of each reasoning rule set.  

Figure 3.4: RDF Graph for each Tweet 
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3.3.2.1   Property Analyzer 
 
Property analyzer is designed to find all the properties used in a reasoning rule set. Here is an 
example to demonstrate how this analyzer works.  
 

• Trend Lead Rule: 
 
 

 

 
 

• Hot Topic Rule: 

 
 
 
 

• Analyzer Output: 

 
 
 
As shown in the example, this regular expression based Property analyzer will analyze the 
whole rule set and return all the used properties in a set. This set will be passed to Property 
Filter, which will be discussed in filters section. 

 
 
3.3.2.2   Time Analyzer 

 
Similar to Property Analyzer, this Time Analyzer is also based on regular expression and is 
designed to find the longest time period that need to be reasoned in a rule set. It only matches 
interval temporal functors but not the instant ones. There is also an example below to show an 
example input and output of this analyzer. 
 
 

• Temporal Rule 1: 
 
 

 

 
 

(?a twitter:retweeted_count ?r),  
(?a twitter:text ?t),  
(?a twitter:tweeted_by ?u),  
greaterThan(?r, 1000)  
-> 
 (?u twitter:trend_leader ?t) 
 

(?a twitter:retweeted_count ?r),  
(?a twitter:text ?t),  
greaterThan(?r, 1000)  
->  
(?a twitter:hot_topic ?t) 

["twitter:retweeted_count", 
"twitter:text", 
"twitter:tweeted_by" ]  
 

(?a twitter:created_at ?b),  
lastXSeconds(?b, 10) 
 ->  
(?a twitter:happenedInLast10Seconds ?b) 
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• Temporal Rule 2:  

 
 

 
• Analyzer Output: 

 
As shown in the example, this time analyzer will analyze the whole rule set and return the 
longest reasoning period in seconds. This number will be passed to Deletion Policy, which 
will be discussed in filters section. 
 
 
3.3.3   Filter Mechanisms 

 
According to the two rule analyzers presented, we design two corresponding filter mechanisms 

to delete uninterested data before the reasoning process. 
 
 
3.3.3.1    Property Filter 

 
Property Filter is designed to delete RDF triples with unused properties based on the analysis 

result from Property Analyzer. This filter works on the real time Twitter RDF stream produced 

by JSON-RDF Converter to delete all uninterested triples before it is passed into Graph 

Builder. 

     Graph here is not same as RDF graph. It is a data structure that used in the previous 

semantic reasoner. Therefore, Graph Builder is designed as the extended interface of that 

reasoner to combine a number of RDF triples together as a Graph.   
 
 
3.3.3.2    Deletion Policy 

 
Deletion Policy is also designed to delete uninterested RDF triples, however, different from 

Property Filter, it works on the Graph built by the Graph Builder. As part of the window 

based reasoner, this rule based Deletion Policy will firstly be performed on the Graph to 

remove out-of-date triples based on the longest period time analyzed by the Time Analyzer, 

and then the new filtered Graph will be passed into the final Temporal Reasoner.  

     Here is an example of the Deletion Policy rules and the delete functor is designed to delete a 

triple from a Graph. 

 

60 

(?a twitter:created_at ?b),  
lastXMinutes(?b, 10) 
 ->  
(?a twitter:happenedInLast1Minute ?b) 
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•  Sample Rule of Deletion Policy:  
 
 
 
 
 
3.3.4   Temporal Reasoner 

 
In order to achieve temporal reasoning on real time Twitter data stream, a number of temporal 

functors are designed. In addition, to perform more valuable and more complex reasoning on 

Twitter stream, several non-temporal functors are also designed.  
 
 
3.3.4.1    Temporal Functors 

 
Here is a list of temporal functors designed for this system and their descriptions:   

• GreaterThanInstant ( t1, t2 ): To compare if time t1 is greater than time t2. 

• LessThanInstant ( t1, t2 ): To compare if time t1 is less than time t2. 

• LastXSeconds (t, x): To check if time t is in last x seconds comparing to current system       

time. 

• LastXMinutes (t, x): To check if time t is in last x minutes comparing to current system       

time. 

• LastXHours (t, x): To check if time t is in last x hours comparing to current system 

time. 

• LastXDays (t, x): To check if time t is in last x days comparing to current system       

time. 

• NotInLastXSeconds (t, x): To check if time t is NOT in last x seconds comparing to 

current system time. 

• NotInLastXMinutess (t, x): To check if time t is NOT in last x minutes comparing to 

current system time. 

• NotInLastXHours (t, x): To check if time t is NOT in last x hours comparing to current 

system time. 

• NotInLastXDays (t, x): To check if time t is NOT in last x days comparing to current 

system time. 

These functors could cover both instant and interval time relations from Twitter stream.   

 

(?a twitter:created_at ?t),  
NotInlastXSeconds(?t, 10) 
 ->  
delete (?a twitter:created_at ?t) 
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3.3.4.2    Non-Temporal Functors 
 

Here is a list of non-functional functors designed for more valuable Twitter data reasoning: 

• IncreasedBeyondX ( a1, a2, x ): To compare a2 – a1 to check if this value is greater 

than x. This is very useful for some specific scenarios. For example, if we want to find 

during a certain amount of time which user’s followers count has increased beyond 

1000, this functor could be used in the rule to compare the difference of two follows 

counts from the same user with 1000. 

• Delete ( subject, predicate, object ): As mentioned in previous section, this functor is 

used in Deletion Policy rules to delete expired triples from Graph. 
 
 

3.3.4.3    Intermediate Time Format 
 
In order to design a high extensible reasoning system, an intermediate time format is also 

designed. Therefore, a new time format could be easily customized from a configuration file 

and extend this system to reason on new data stream instead of Twitter.  

     For example, Twitter’s time format string is “EEE MMM dd HH:mm:ss ZZZZZ yyyy”, 

where EEE stands for the day of week and ZZZZZ stands for time zones.  

 

3.4 Example System Flow 
 
In this section, we present a complete example of the whole system to give readers a better 

understanding of how these key components cooperate with each other to accomplish the 

whole reasoning process.  

     There are two things need to be clarified before the example. One is that the time value used 

in the example like “-15 seconds”, which stands for 15 seconds ago, is not the actual time 

value. This format is used to keep the example short and easy to understand. The other one is 

that there is only one rule in the reasoning rule set to keep it simple and it aims to find which 

new user has tweeted new things during the last 10 seconds? (New user means twitter user that 

registered during the last year) 
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• Example Reasoning Rule:  
 
 
 
 
 
 

 

Step 1.1 - Property Analyzer Process: to get all used properties from rule set 
 

 
 
 
 

 
 
Step 1.2 - Property Analyzer Process: to get longest period from the rule set 

 

 
 
 
 

 
 

 

(?a twitter:tweeted_by ?u),  
(?u twitter:account_created_at ?t1), 
greaterThanInstant(?t1, "-1 year"),  
(?a twitter:created_at ?t2),  
lastXSeconds(?t2, 10)  
->  
(?u twitter:new_user_new_tweet ?a) 
 

Figure 3.5: Property Analyzer Process 

Figure 3.6: Time Analyzer Process 
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Step 2 – JSON-RDF Convertor Process: to convert complicated Twitter JSON data to 17 

triples for each new tweet. 
 

 
 
 
 
 

Step 3 – Property Filter Process: to filter on each set of 17 triples to delete the ones with 

uninterested properties based on the result from Property Analyzer 
 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 3.7: JSON-RDF Convertor Process 

Figure 3.8: Property Filter Process 
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Step 4 – Deletion Policy Process: to delete expired triples from the Graph based on the result 

from Time Analyzer 
 

 
 
 
 

 
 

Step 5 – Temporal Reasoning Process: to perform temporal reasoning on filtered data 
 

 
 
 

 
 
 
 

 
 
 
 
 

Figure 3.9: Deletion Policy Process 

Figure 3.10: Temporal Reasoning Process 
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3.5     Design decisions 
 
A huge number of decisions have been discussed and made to achieve this final system 

design, while some of them are very valuable and worth being presented here.  

 

1. Why choose Twitter Stream to reason on?  

 

At the beginning of this project, we focused on extending a static semantic reasoner to 

be capable of stream reasoning and temporal reasoning. However, every concept was 

too general, so it was very hard to start. Therefore, we decided to think about some 

scenarios that this project should be capable of which led us to Twitter. Not only 

because Twitter is popular and familiar with everyone, but also because Twitter’s data 

stream has very high frequency and high diversity, which provided us a lot of 

opportunities to reason on.  

 

2. Why choose property related filter and time related filter? 

 

In fact, there are a lot of other filters could be designed, but the reason to pick up these 

two is very sufficient. That is because these two filters are more generic than the others. 

More specifically, these two filters are not specific for Twitter data reasoning and are 

not specific to any scenarios. Therefore, they could be easily extended to filter on other 

streams, as long as they have a number of properties for each RDF graph and they need 

to reason on time interval relations.  

 

3. Why design these two filters in different way? 

 
As mentioned in previous sections, Deletion Policy is rule based filter mechanism to 

delete expired triples from Graph, while Property Filter is not rule based and it 

removes the triples from the RDF stream before the Graph is built. Therefore, the 

Deletion Policy is easier to be configured and customized, while Property Filter is 

more efficient. In fact, these two filters could be designed in the same way to perform 

the same functionality. However, we prefer to design them in different ways so that the 

readers and following researchers would know there are two possible ways to design 
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filters so that they could have more choices to work upon our work or design their own 

systems.   
 
 
3.6     Chapter Summary 

 
In this chapter, we present both the functional and non-functional system requirements, 

conceptual model of our design and also the system architecture. In the architecture section, 

we present detailed design of each key component and provide sufficient examples to 

demonstrate how they cooperate with each other. In addition, we also present several 

valuable design decision-makings, which could inspire the implementation.    
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Chapter  4 
 
 
 

Implementation 
 
 
 
 
In this chapter, we present the programming language and several libraries used, and also 

provide our development environment as a reference. Moreover, we present major 

process to implement the key components so that we could fulfill the requirements 

discussed in the design chapter.   
 
 
4.1     Programming language and libraries 

 
 
4.1.1   Java Language 

 
As discussed in the previous chapters, our approach begins with extending an existing 

semantic reasoner. Therefore, we continue to use the same programming language Java 

to accomplish our implementation. 

 
4.1.2   Twitter4j  

 
Twitter4j is not an official library for Twitter API, but it is very widely for Twitter related 

development, because of:   

 

• 100% pure Java: It is developed by Java and is compatible for any Java platform 

version 5 or latter. 

 

• Built-in OAuth Support: OAuth is an authorization framework that used by 

Twitter to enable a third-party application to obtain limited access to Twitter API 

service. By using Twitter4j library, OAuth could be easily configured in a 

properties file.  
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• Zero Dependency: There is no additional library needed to use Twitter4j 

 

• 100% Twitter 1.1 API supported 

 

Apart from these technical reasons, Twitter4j also provide good documentations and 

sufficient examples to demonstrate the most commonly used functions, which as a 

consequence, makes it even easier to be used.  
 
 
4.1.3   Jena 

 
Jena is an open source Java framework for developing Semantic Web applications. It 

provides a variety of APIs for different functional purpose, including RDF API, SPARQL 

API, Text Search API, Security API, and Java Database Connectivity (JDBC) API and so 

on. For our development, RDF API is used in RDF-JSON Convertor to produce the RDF 

data stream. 

     In addition, JSON API is also included in Jena library, which could be used to fetch 

JSON object and exact values from it. 
 
 

4.2    Development Environment 
 
Specific information of system environments and Integrated Development Environment (IDE) 

are presented in this section as a reference for further development.  

 

4.2.1 System Environment Information 
 
 

System Component Description 

System Version Mac OS X 10.8.5 

Processor 2.7 GHz Intel Core i7 

Memory 16 GB 1600MHz DDR3 

 
 
 
 
 
 
 
 

Table 4.1: System Environment Information 
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4.2.2 IDE Information 
 

Environment Component Description 

IDE Eclipse 

Version  Kepler Service Release 1 

Java Version 1.6 

 
 

 
 
 
4.3    Key Components Implementation  

 
In this section, we present the key steps to implement each key component.  

 
 
4.3.1   Window Based Twitter Stream Processer 

 
In order to accomplish Twitter stream processer, a data stream listener and a window based 

buffer need to be implemented. 

 

Twitter Stream Listener  
 
Twitter4j stream API is used to listen on Twitter’s public data stream and get notification for 

each new tweet.  

 

Window Based Buffer  
 

This buffer stores a fixed window size of Twitter data and in each new step, a certain time of 

old data is removed from the buffer and same period of new data is added. According to these 

requirements, a circular list is implemented to maintain this fixed size buff. Figure 4.1 shows a 

more intuitive view of how this buffer works. 

 

 

 

 

Table 4.2: IDE Information 
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4.3.2   Rule Analyzers 

 
As discussed in the previous chapter, both the Property Analyzer and Time Analyzer are 

based on regular expression, which is a very commonly used technic in text processing. It 

defines a number of metacharacters, which could be combined to form a search pattern for 

specific string matching purpose. Table 4.3 shows some commonly used metacharacters and 

their meaning in regular expression.  
 

Metacharacter Description 

. Matches any single character 

$ Matches the ending position of a string or the ending 

position of any line. 

* Match the preceding element zero or more times. 

? Match the preceding element zero or one time. 

+ Match the preceding element one or more times. 

(    ) Defines a marked subexpression. 

[    ] Match a single character contained within the brackets. 

{ m, n } Match the preceding element at least m and not more than 

n times 

 

Figure 4.1: Circular Buffer 

Table 4.3: Metacharacter Descriptions 
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According to these metacharacters, two search patterns are implemented. One is integrated in 

Property Filter and is responsible for matching all the twitter properties appear in the rule set. 

The other one is integrated in Time Filter and is responsible for matching all the interval 

temporal functors in the rule set and comparing to find the longest period need to be reasoned. 

 

4.3.3   Filter Mechanisms  
 

According to our discussion in the previous chapter, the two filter mechanisms are 

implemented in different ways: 

 

• Property Filter: is implemented as code-based filter to process on Twitter RDF 

stream. For each of the 17 triples in each tweet, it traverse the set of used properties 

passed from the Property Analyzer to determine if this triple is needed or not.  

 

• Deletion Policy: is implemented as rule-based filter to process on the Graph. It 

traverses the whole Graph to find the expired tweet and delete all the triples belong to 

that tweet.  
 
 
4.3.4   Temporal Reasoner  

 
As discussed in the deign chapter, several new functors need to be implemented to achieve 

temporal reasoning on Twitter stream. In addition, in order to make this reasoner easy to 

extend to reason on other data streams, an intermediate time format is also implemented. 

 
New Functors Implementation 
 
There are several steps need to follow to implement a new functor: 

 

1. Pick up a simple and meaningful name for the functor, which will be used in reasoning 

rules.  

 

2. Specify the number of parameters that this functor need. 

 

3. Implement the functor body, which is actually main functional part of each functor. 

People could implement a variety of body functions based on their own requirements.  
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4. Register the new functor so that it could be recognized by the reasoner during the rule 

parsing process.  
 
 
Intermediate Time Format Implementation 
 
This time format is implemented to read the customized time format string from the 

configuration file and then use SimpleDateFormat Java class to convert each time format to a 

customized Java Date class so that the time values with different format could be comparable.  

 
 
 
4.4     Chapter Summary 

 
In this chapter, we presented the programming language and a number of libraries we used, 
and also provided our development environment as a reference. In addition, we presented the 
major processes needed to implement each key component, which makes it easy for other 
researchers to perform further development upon our work.  
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Chapter  5 
 
 
 

Evaluations 
 
 
 
 
After the development, it is very important to evaluate how well our system could perform. In 

this chapter, we will evaluate not only the system performance but also the reasoning 

accuracy. Both of these two aspects are very critical to our system, since without significant 

performance improvements, these novel filter mechanisms will make no contribution to this 

area; without high accuracy, this approach will not be trusted by other researchers.  
 
 
5.1     The Rationale 

 
Before presenting the actual experiment, it is reasonable to discuss factors that will affect the 

system performance and the metrics we select to evaluate the system. We will also provide 

sufficient reasons to justify our choices.  

 

5.1.1 Factors 
 
There are a number of factors that could affect the system from different aspects. However, 

since we put our focus on evaluating the performance improvements by these two novel filter 

mechanisms we presented, only several of these factors are selected. 

 

• Window Size: stands for a certain period time to measure the buffer size and also 

measure how much data is captured from Twitter stream in each cycle. This factor 

directly determines, in each cycle, how many triples are processed by the system and 

how many triples are reasoned by the temporal reasoner. In this chapter, window size 

is measured by seconds (s).  
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• Rule Complexity: stands for the number of different properties appeared in one 

reasoning rule set. Comparing to number of reasoning rules, this factor has more 

influence on the performance since the Property Filter is based on number of 

properties used in the rule set. In this chapter, the range of Rule Complexity is from 1 

to 17 since 17 is the total number of properties each tweet has. 

 

5.1.2 Metrics 
 
To present a reasonable evaluation result of the performance improvements that our approach 

achieved, several metrics are selected: 

 

• Number of Triples: is the most intuitive metric to measure how many triples are 

processed by the system and how many of them are deleted by the filter mechanisms. 

Therefore, this is a very valuable metric to provide direct result of the system 

performance. 

 

• Memory Usage: is the most commonly used metric to measure system performance. 

In addition, the result of this metric could be more valuable to other researchers as they 

could easily compare their approach’s performance with ours. In this chapter, this 

metric stands for the memory usage over the whole reasoning process and is measured 

in kilobytes (KB). 

 

• Reasoning Time: is another commonly used metric. Similar to Memory Usage, this 

metric is also very valuable to other researchers to compare. In this chapter, Reasoning 

Time stands for the reasoning time consumed over the whole reasoning process and is 

measured in milliseconds (ms). 

 

• Reasoning Accuracy: is a very quality metric especially for our system. Since we 

implemented two filter mechanisms, it is essential to evaluate, apart from deleting the 

uninterested data, if they also delete some interested data as well. This presents if the 

filter mechanisms will affect the number of triples deduced. Equation 5.1 shows how 

this metric is calculated.  

 

 Reasoning Accuracy =  
Number of triples deduced with filter on 

Number of triples deduced without any filter 
（5.1） 
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5.2 Experiments  
 
According to what we discussed in previous section, a number of experiments are designed 

and conducted to evaluate the system performance from different aspects. Note that in this 

chapter, every data value shown in the experiment result is the average value of 20 runs of the 

same experiment. 
 
 

5.2.1   Experiments about Number of Triples 
 

 
5.2.1.1   Number of Triples vs Property Filter 
 
Experiment Setup 
 
This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60 

seconds, and in each group, there are two values of Number of Triples metric. One is 

collected with no filter on, and the other one is collected with only Property Filter on. In this 

experiment, the Rule Complexity of the reasoning rule set is 7, which is a medium level and 

longest time period is 10 seconds.  

 
Results 
 
Figure 5.1 shows the evaluation results of this experiment. 
 

 
 
 Figure 5.1 Number of Triples vs Property Filter 
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Findings 
 
According to the result, we could find that Property Filter works well on reducing the total 

number of triples to be reasoned. The improvement is proportional to Rule Complexity. As 

shown in Figure 5.1, the Property Filter could reduce the number of triples by more 50% while 

the Rule Complexity is set to 7, which is also nearly 50% of 17, the maximum value.  
 
 
5.2.1.2   Number of Triples vs Deletion Policy 
 
Experiment Setup 
 
This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60 

seconds, and in each group, there are two values of Number of Triples metric. One is 

collected with no filter on, and the other one is collected with only Deletion Policy on. In this 

experiment, the longest period time of the reasoning rule set is 10 seconds, which is a 

reasonable level and the Rule Complexity is 7. 

 
Results 
 
Figure 5.2 shows the evaluation results of this experiment. 
 

 
 
 
 

 

Figure 5.2 Number of Triples vs Deletion Policy 
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Findings 
 
According to the result, we could find that Deletion Policy works very well on maintaining 

the total number of triples to be reasoned in very low level, even with an increasing window 

size. The level of this flat line is determined by the longest period time of the rule set. When 

the window size is smaller than this threshold, the Number of Triples should make no big 

difference between these two conditions (Deletion Policy on or off). Once the window size is 

greater than this threshold, the Number of Triples value for Deletion Policy off will still 

increase, while the value for Deletion Policy on will stay in the previous low level. 
 
 
5.2.1.3   Property Filter vs Deletion Policy on Number of Triples 
 
Experiment Setup 
 
This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60 

seconds, and in each group, there are two values of Number of Triples metric. One is 

collected with only Deletion Policy on, and the other one is collected with both Deletion 

Policy and Property Filter are on. In this experiment, the longest period time of the 

reasoning rule set is 10 seconds and the Rule Complexity is 7.  
 

Results 
 
Figure 5.3 shows the evaluation results of this experiment. 
 

 
 Figure 5.3 Property Filter vs Deletion Policy on Number of Triples 
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Findings 
 
According to the result, we could find that Property Filter could make further improvements 

even though the Deletion Policy is already on. This could be easily explained in theory as 

these two filter mechanisms are designed from different perspectives. One is based on used 

properties, and the other is based on longest time need to be reasoned. As shown in Figure 5.3, 

the further improvements made by Property Filter is still proportional to Rule Complexity, 

which is very reasonable.  
 
 
5.2.1.4   Combined Results on Number of Triples 
 
Figure 5.4 shows the combined results of four different conditions, both filters are off, only 

Property Filter is on, only Deletion Policy is on, and both filters are on. We present all 

groups of data in one diagram to provide readers an overall view of how much improvement 

each filter could achieve, performance comparison between these two filters and different 

specifics each filter has.  

 
 

 
 

 
 
 

 

Figure 5.4 Combined Results on Number of Triples 
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Findings Summary 
 
In this series of experiments, the Rule Complexity of the rule set is 7 and longest time period 

is 10 seconds. According to Figure 5.4, we could summarize our findings as: 

• Property Filter can delete more than 50% triples, which is proportional to Rule 

Complexity. 

 

• Deletion Policy can maintain the total number of triples under a very low level even 

with increasing window size. However, the level of this flat line is determined by the 

longest time period of rule set. 

 

• Property Filter could still make contribution to removing more triples even when 

Deletion Policy is already on. The further improvement made is also proportional to 

Rule Complexity. 

 
 
5.2.2   Experiments about Reasoning Time 
 

 
 
5.2.2.1   Reasoning Time vs Property Filter 
 
Experiment Setup 
 
This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60 

seconds, and in each group, there are two values of Reasoning Time metric. One is collected 

with no filter on, and the other one is collected with only Property Filter on. In this 

experiment, the Rule Complexity of the reasoning rule set is 7, which is a medium level and 

longest time period is 10 seconds.  
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Results 
 
Figure 5.5 shows the evaluation results of this experiment. 
 

 
 
 

 

Findings 
 
According to the result, we could find that Property Filter reduce the Reasoning Time around 

25%, which is less than its affects on Number of Triples. This is because the Reasoning Time 

also covers some processes that are not only affected by the Number of Triples, including 

RETE network building [21], rule pattern matching and so on. Even though the inference is 

not as big as it made on Number of Triples, 25% improvement is significant enough for a 

filter mechanism.   

 

 
5.2.2.2   Reasoning Time vs Deletion Policy 
 
Experiment Setup 
 
This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60 

seconds, and in each group, there are two values of Reasoning Time metric. One is collected 

with no filter on, and the other one is collected with only Deletion Policy on. In this 

experiment, the longest period time of the reasoning rule set is 10 seconds, which is a 

reasonable level and the Rule Complexity is 7. 

Figure 5.5 Reasoning Time vs Property Filter 
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Results 
 
Figure 5.6 shows the evaluation results of this experiment. 
 

 
 

 

Findings 
 
According to the result, we could find that Deletion Policy makes even better improvements 

on Reasoning Time comparing to Number of Triples. This is because the Reasoning Speed 

decreases a lot as the total number of triples increases, in other words, the reasoner could 

process much less triples per second if the total number of triples is getting larger. According 

to our previous findings, Deletion Policy could maintain the Number of Triples in a very low 

level, which as a consequence, resulting in maintaining the Reasoning Time in a much lower 

level. In addition, the level of this flat line is still determined by the longest time period of the 

rule set. 
 
 
5.2.2.3   Property Filter vs Deletion Policy on Reasoning Time 
 
Experiment Setup 
 
This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60 

seconds, and in each group, there are two values of Reasoning Time metric. One is collected 

Figure 5.6 Reasoning Time vs Deletion Policy 
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with only Deletion Policy on, and the other one is collected with both Deletion Policy and 

Property Filter are on. In this experiment, the longest period time of the reasoning rule set is 

10 seconds and the Rule Complexity is 7.  

 
Results 
 
Figure 5.7 shows the evaluation results of this experiment. 
 

 
 

 

Findings 
 
According to the result, we could find that Property Filter could make further improvements 

even though the Deletion Policy is already on. The reason behind this is similar to previous 

analysis, which is, Property Filter is based on used properties, and Deletion Policy is based 

on longest time need to be reasoned.  
 
 
5.2.2.4   Combined Results on Reasoning Time 
 
Figure 5.8 shows the combined results of four different conditions, both filters are off, only 

Property Filter is on, only Deletion Policy is on, and both filters are on. We present all 

groups of data in one diagram to provide readers an overall view of how much improvement 

each filter could achieve, performance comparison between these two filters and different 

specifics each filter has.  

Figure 5.7 Property Filter vs Deletion Policy on Reasoning Time 
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Findings Summary 
 
In this series of experiments, the Rule Complexity of the rule set is 7 and longest time period 

is 10 seconds. According to Figure 5.8, we could summarize our findings as: 

 

• Property Filter can reduce the reasoning time by around 25%. 

 

• Reasoning Speed decreases a lot while window size or total number of triples 

increases.  

 

• Deletion Policy can maintain the Reasoning Time under a much lower level even 

with increasing window size. In addition, the level of this flat line is still determined 

by the longest time period of rule set. 

 

• Property Filter could still make further improvements on Reasoning Time even the 

Deletion Policy is already on.  

 

 

Figure 5.8 Combined Results on Reasoning Time 
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5.2.3   Experiments about Memory Usage 
 

 
5.2.3.1   Memory Usage vs Property Filter 
 
Experiment Setup 
 
This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60 

seconds, and in each group, there are two values of Memory Usage metric. One is collected 

with no filter on, and the other one is collected with only Property Filter on. In this 

experiment, the Rule Complexity of the reasoning rule set is 7, which is a medium level and 

longest time period is 10 seconds.  

 
Results 
 
Figure 5.9 shows the evaluation results of this experiment. 
 

 
 
 

 

Findings 
 
According to the result, we could find that Property Filter reduce the Memory Usage around 

20% to 25%, which is still less than its affects on Number of Triples. The reason behind this 

is similar to previous analysis, which is because the Memory Usage also covers some other 

processes that are not only affected by the Number of Triples, including RETE network 

Figure 5.9 Memory Usage vs Property Filter 
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building [21], intermediate results caching and so on. Even though the inference is not as big 

as it made on Number of Triples, 20% to 25% improvement is significant enough for a filter 

mechanism.  In addition, we could find that the increase rate of Memory Usage is getting 

smaller as the window size or total number of triples increases.  

 

 
5.2.3.2   Memory Usage vs Deletion Policy 
 
Experiment Setup 
 
This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60 

seconds, and in each group, there are two values of Memory Usage metric. One is collected 

with no filter on, and the other one is collected with only Deletion Policy on. In this 

experiment, the longest period time of the reasoning rule set is 10 seconds, which is a 

reasonable level and the Rule Complexity is 7. 

 
Results 
 
Figure 5.10 shows the evaluation results of this experiment. 
 

 
 
 
 

 

 

Figure 5.10 Memory Usage vs Deletion Policy 
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Findings 
 
According to the result, we could find that Deletion Policy makes similar improvements on 

Memory Usage comparing to Reasoning Time. The reason behind is also similar. The 

Deletion Policy could maintain the total number of triples under a vey low level, which results 

in maintaining both the Reasoning Time and Memory Usage under a very low level as well. 

Again, the level of this flat line is determined by the longest time period of the rule set. 
 
 
5.2.3.3   Property Filter vs Deletion Policy on Memory Usage 
 
Experiment Setup 
 
This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60 

seconds, and in each group, there are two values of Memory Usage metric. One is collected 

with only Deletion Policy on, and the other one is collected with both Deletion Policy and 

Property Filter are on. In this experiment, the longest period time of the reasoning rule set is 

10 seconds and the Rule Complexity is 7.  

 
Results 
 
Figure 5.11 shows the evaluation results of this experiment. 
 

 
 

 
Figure 5.11 Property Filter vs Deletion Policy on Memory Usage 
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Findings 
 
According to the result, we could find that Property Filter could still make further 

improvements on Memory Usage even though the Deletion Policy is already on. The reason 

behind this is similar to previous analysis, which is, Property Filter is based on used 

properties, and Deletion Policy is based on longest time need to be reasoned.  
 
 
5.2.3.4   Combined Results on Reasoning Time 
 
Figure 5.12 shows the combined results of four different conditions, both filters are off, only 

Property Filter is on, only Deletion Policy is on, and both filters are on. We present all 

groups of data in one diagram to provide readers an overall view of how much improvement 

each filter could achieve, performance comparison between these two filters and different 

specifics each filter has.  

 

 
 

 
 
Findings Summary 
 
In this series of experiments, the Rule Complexity of the rule set is 7 and longest time period 

is 10 seconds. According to Figure 5.12, we could summarize our findings as: 

 

Figure 5.12 Combined Results on Memory Usage 
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• Property Filter can reduce the reasoning time by around 20% to 25%. 

 

• The increase rate of Memory Usage is getting smaller as the window size or total 

number of triples increases.  

 

• Deletion Policy can maintain the Memory Usage under a very low level even with 

increasing window size and this level is determined by the longest time period of rule 

set. 

 

• Property Filter could still make further improvements on Memory Usage even the 

Deletion Policy is already on.  

 

 

5.2.4   Experiments about Rule Complexity 
 

This series of experiments evaluates how Rule Complexity inferences on the improvements 

that Property Filter made against, Number of Triples, Reasoning Time and Memory 

Usage. 
 
 
 
5.2.4.1   Rule Complexity vs Property Filter on Number of Triples 
 
Experiment Setup 
 
This experiment collects 9 groups of data with increasing Rule Complexity from 1 to 17, and 

in each group, there are two values of Number of Triples metric. One is collected with no 

filter on, and the other one is collected with only Property Filter on. In this experiment, the 

Window Size is configured to 30 seconds. 
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Results 
 
Figure 5.13 shows the evaluation results of this experiment. 

 

 
 

 

Findings 

 

According to the result, it is very obvious that Rule Complexity has no inference on total 

number of triples. Once the Property Filter is on, the Number of Triples increases 

proportionally to Rule Complexity, because Rule Complexity has direct inference on 

Number of Triples, just like what we discussed in the previous analyses.   

 

 
5.2.4.2   Rule Complexity vs Property Filter on Reasoning Time 
 
Experiment Setup 
 
This experiment collects 9 groups of data with increasing Rule Complexity from 1 to 17, and 

in each group, there are two values of Reasoning Time metric. One is collected with no filter 

on, and the other one is collected with only Property Filter on. In this experiment, the 

Window Size is configured to 30 seconds. 

 
 

Figure 5.13 Rule Complexity vs Property Filter on Number of Triples 
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Results 
 
Figure 5.14 shows the evaluation results of this experiment. 

 

 
 
 

 

 

Findings 
 
According to the result, we could find that, when Rule Complexity is low, Property Filter 

could reduce the Reasoning Time up to 50%. However, as the Rule Complexity increases, 

fewer triples are removed by the Property Filter and more Reasoning Time is spent on 

building more complex RETE network or matching more complex patterns. Therefore, the 

Reasoning Time difference between these two lines are getting smaller, and finally, when the 

Rule Complexity is 17, they reach the same point, where no triples are removed by the 

Property Filter. 

     In addition, this result diagram also provide strong support to our findings about 

Reasoning Speed, which decreases a lot as total number of triples increases.  
 
 
 
 
 
 
 

Figure 5.14 Rule Complexity vs Property Filter on Reasoning Time 
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5.2.4.3   Rule Complexity vs Property Filter on Memory Usage 
 
Experiment Setup 
 
This experiment collects 9 groups of data with increasing Rule Complexity from 1 to 17, and 

in each group, there are two values of Memory Usage metric. One is collected with no filter 

on, and the other one is collected with only Property Filter on. In this experiment, the 

Window Size is configured to 30 seconds. 

 
Results 
 
Figure 5.15 shows the evaluation results of this experiment. 
 

 

 
 

 

 

Findings 
 
According to the result, we could find that, when Rule Complexity is low, Property Filter 

could reduce the Memory Usage up to 50%. However, as the Rule Complexity increases, 

fewer triples are removed by the Property Filter and more Memory Usage is spent on 

building more complex RETE network or caching more intermediate results. Therefore, the 

Memory Usage difference between these two lines are getting smaller, and finally, when the 

Figure 5.15  Rule Complexity vs Property Filter on Memory Usage 
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Rule Complexity is 17, they reach the same point, where no triples are removed by the 

Property Filter. 

     In addition, this result diagram also provide strong support to our findings about the 

increase rate of Memory Usage, which is getting smaller as the total number of triples 

increases. 

 
 
 
5.2.5   Experiments about Reasoning Accuracy 
 
Reasoning Accuracy is a very important metric to make our filter mechanisms being trusted 

and accepted by other researchers. No performance improvement is reasonable without the 

guarantee of Reasoning Accuracy. 

 

 

Experiment Setup 

 
 
It is not proper to analyze Reasoning Accuracy which is collected based on real time Twitter 

Stream, because even though we could make sure the window size stays the same across 

different experiment, we can’t ensure the total number of triples and information contained in 

these triples stay the same. Therefore, we decide to conduct experiments against the same and 

static file with 30 seconds triples for 4 different configurations, including both filters are off, 

only Property Filter is on, only Deletion Policy is on, and both filters are on. For each 

experiment, we collect the total number of triples reasoned and total number of triples 

deduced.    

     In these experiments, the Rule Complexity of the rule set is 7. Moreover, in order to 

ensure Temporal Functors and Deletion Policy are still working and could produce the same 

result across different experiments, a static reference time is created to take place of dynamic 

system time, so that the only factors that could affect reasoning accuracy left are the filters.  
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Results 
 
Table 5.1 shows the evaluation results of this experiment. Reasoning Accuracy is calculated 
based on Equation 5.1 
 

Configuration 
Triples 

Reasoned 
Triples 

Deduced 
Reasoning 
Accuracy 

Both Filters Off 26878 1324 ------ 
Only Property Filter On 13294 1324 100% 
Only Deletion Policy On 8327 1324 100% 

Both Filters On 3619 1324 100% 
 

 
 

Findings 
 
According to the result, we can conclude that, no matter which filter mechanism is used, the 

Reasoning Accuracy is not affected.  
 
 

5.3   Key Findings and Limitations  
 
 
In this section, we summarize all the key findings concluded from previous experiments and 
also present the limitations of these filter mechanisms.  

 
 
5.3.1 Key Findings  
 
Property Filter Performance (Rule Complexity of rule set is 7) 

 
• Property Filter can delete more than 50% triples, which is proportional to Rule 

Complexity. 
 
• Property Filter can reduce the Reasoning Time and Memory Usage by around 

25%. 

 

Table 5.1 Reasoning Accuracy vs Filters 
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• Performance improvements made by Property Filter are negatively related to Rule 

Complexity. More specifically, the improvement is getting smaller as Rule 

Complexity increases.  

 
Deletion Policy Performance (Longest Time Period of rule set is 10 seconds) 
 

• Deletion Policy can maintain the total Number of Triples under a very low level with 

increasing window size. 

 

• Deletion Policy can maintain the Reasoning Time and Memory Usage under a much 

lower level with increasing window size, comparing to Number of Triples.  

 

• These levels are determined by the longest time period of the rule set. 

 

 

Reasoner Performance 
 

• Reasoning Speed decreases a lot as Window Size or total Number of Triples 

increases.  

 

• The increase rate of Memory Usage is getting smaller as Window Size or total 

Number of Triples increases.  

 

•  

 

5.3.2 Limitations  
 
 

Property Filter Limitation 
 
According to our key findings, the improvements made by Property Filter are related to Rule 

Complexity. Therefore, under some rare circumstances, the rule set could cover nearly all the 

17 properties for each tweet, where the Property Filter could make very little contribution. 
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Property Filter Limitation 
 
According to our key findings, the performance level that Deletion Policy maintains is 

determined by the longest time period of the rule set. Therefore, under very rare circumstances 

where the longest time period is equal to or greater than the Window Size, Deletion Policy 

could make no improvements at all.  

 

 

5.4    Chapter Summary 
 
In this chapter, we evaluated our system performance from different aspects, including 

number of triples reasoned, reasoning time consumed and memory usage to show the 

significant improvements we achieved from our novel filter mechanisms. In addition, 

reasoning accuracy is also examined to provide more confidence for other researchers about 

our system. Last but not the least, the limitation of our filter mechanisms are also presented 

which inspires further research and development.  
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Chapter  6 
 
 
 

Conclusions and Future Work 
 

 
 
 

6.1     Conclusions 
 
Social media, like Twitter, is gradually becoming an important source of knowledge, 

which contains valuable information about a variety of industries. Semantic Web, 

believed as the next generation of World Wide Web, is very powerful on processing 

such high diversity data source.  

     In this dissertation, we present our approach to perform temporal reasoning on 

real time Twitter stream using Semantic Web Technologies. To achieve this, firstly, 

we design and implement our Twitter stream processor to capture real time Twitter 

data and convert it to RDF triples, which could be accepted by the semantic reasoner. 

In addition, we extend the previous semantic reasoner with temporal functors so that 

it can reason on time dimension data. Moreover, in order to process on Twitter’s 

high-frequency and high-diversity data stream, we contribute two novel filter 

mechanisms to remove uninterested data based on different rule set characteristics. 

Last but not the least, we conduct a number of experiments to our system. According 

to the result we provide, we can conclude that the performance improvement 

achieved by these two filters is significant.    
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6.2     Future work 
 
 
6.2.1   Design and Implement Incremental Reasoning  

 
At the beginning of each reasoning process, a RETE network is built by the rule engine 

as the preparation for pattern matching algorithm. During the matching process, a huge 

number of matched result nodes are cached in memory and they will be released after 

the reasoner deduces the result.  

     As mentioned in previous chapters, our stream processor is a window-based 

approach. Therefore, each two adjacent windows have a certain period time of duplicate 

data, which is already reasoned in the first cycle. Incremental reasoning is a very 

powerful technology to solve this problem so that we could keep the intermediate 

matched result in memory and when a new window of data comes, instead of building 

the network again, only the expired data and its related matched result is removed from 

the RETE network and new data is added.  

     In theory, this should contribute very significant performance improvement. 

Therefore, it is very worthy of further researching and developing.  

 

6.2.2   Extend to Reason on Other Data stream  
 
Apart from Twitter data stream, there are a number of interesting and valuable data 

source that could be reason on. For example, Facebook. It is well worth extending our 

approach to perform temporal reasoning on Facebook stream and implement some new 

functors for specific scenarios. We are very interested to see how easy our approach 

could be extended, how well it could perform on other data stream and how it could be 

improved.  
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Abbreviations 
 
 
 
 
RDF  Resource Description Framework.  1, 5, 6 

 
URI Uniform resource identifier.  6 
 
RIF   Rule Interchange Format. 7 
 
W3C World Wide Web Consortium.  7 

 
OO Object Oriented.  8 
 
DL Description Logic.  9 
 
CEP Complex Event Processing.  11 
 
JDBC Java Database Connectivity.  29 
 
IDE Integrated Development Environment.  29 

 
 
 
 
 
 
 
 
 
 
 



 60 

 
 
 
 
 
 
 
 
 

Bibliography 
 

[1] J. R. Hobbs and F. Pan, “An ontology of time for the semantic 

web,” ACM Transactions on Asian Language Information 

Processing, vol. 3, no. 1, pp. 66–85, Mar. 2004. 

[2] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee, “Linked data on the web 

(LDOW2008),” Proceeding of the 17th international conference on World 

Wide Web - WWW ’08, pp. 1265–1266, 2008. 

[3] N. Shadbolt, T. Berners-Lee, and W. Hall, “The Semantic Web Revisited,” IEEE 

Intelligent Systems, vol. 21, no. 3, pp. 96–101, May 2006.  

[4] J. R. Hobbs and F. Pan, “An ontology of time for the semantic web,” ACM 

Transactions on Asian Language Information Processing, vol. 3, no. 1, pp. 66–

85, Mar. 2004.  

[5] C. Gutierrez, C. Hurtado, and A. Vaisman, “Introducing Time into RDF,” IEEE 

Transactions on Knowledge and Data Engineering, vol. 19, no. 2, pp. 207–218, 

Feb. 2007. 

[6] J. Bian, U. Topaloglu, and F. Yu, “Towards large-scale twitter mining for drug-

related adverse events,” Proceedings of the 2012 international workshop on 

Smart health and wellbeing, pp. 25–32, 2012.  

[7] M. G. Barbieri, Davide, Daniele Braga, Stefano Ceri, Emanuele Della Valle,, 

“Stream reasoning: Where we got so far,” Proceedings of the 4th workshop on 

new forms of reasoning for the Semantic Web: Scalable & dynamic, pp. 1–7, 

2010. 



 61 

[8] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, “Stream reasoning and 

complex event processing in ETALIS,” Semantic Web, IOS Press, vol. 1, pp. 1–

5, 2012. 

[9] M. Kifer, H. Boley, “RIF Overview,” W3C Working Group, 2013. 

[10] J. Carroll, I. Dickinson, and C. Dollin, “Jena: implementing the semantic web 

recommendations,” Proceedings of the 13th international World Wide Web 

conference on Alternate track papers & posters, pp. 74–83, 2004. 

[11] G. Meditskos and N. Bassiliades, “A Rule-Based Object-Oriented OWL 

Reasoner,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, 

no. 3, pp. 397–410, 2008. 

[12] T. Kim, I. Park, S. J. Hyun, and D. Lee, “MiRE4OWL: Mobile Rule Engine for 

OWL,” 2010 IEEE 34th Annual Computer Software and Applications 

Conference Workshops, pp. 317–322, Jul. 2010. 

[13] S. Ali and S. Kiefer, “µOR–A Micro OWL DL Reasoner for Ambient 

Intelligent Devices,” Advances in Grid and Pervasive Computing, pp. 305–316, 

2009. 

[14] W. Tai, J. Keeney, and D. O’Sullivan, “COROR: a composable rule-entailment 

owl reasoner for resource-constrained devices,” in Proceedings of The 5th 

International Symposium on Rules: Research Based and Industry Focused 

(RuleML’11), pp. 212–226, 2011. 

[15] W. Tai, J. Keeney, and D. O’Sullivan, “Resource-Constrained Reasoning Using 

a Reasoner Composition Approach,” semantic-web-journal.net, 2013. 

[16] E. Della Valle, S. Ceri, P. Milano, F. Van Harmelen, and V. U. Amsterdam, “It 

’ s a Streaming World  ! Reasoning upon Rapidly Changing Information,” 

Intelligent Systems, IEEE, vol. 24, no. 6, pp. 83–89, 2009. 



 62 

[17] D. Barbieri, D. Braga, and S. Ceri, “Deductive and Inductive Stream Reasoning 

for Semantic Social Media Analytics,” Intelligent Systems, IEEE, vol. 25, no. 6, 

pp. 32–41, 2010.  

[18] J. Keeney, C. Stevens, and D. O’Sullivan, “Extending a knowledge-based 

network to support temporal event reasoning,” 2010 IEEE Network Operations 

and Management Symposium - NOMS 2010, pp. 631–638, 2010. 

[19] C. Gutierrez, C. Hurtado, and A. Vaisman, “Introducing Time into RDF,” IEEE 

Transactions on Knowledge and Data Engineering, vol. 19, no. 2, pp. 207–218, 

Feb. 2007.  

[20] S. Batsakis, “SOWL  : Spatio-temporal Representation , Reasoning and 

Querying over the Semantic Web Categories and Subject Descriptors,” 

Proceedings of the 6th International Conference on Semantic Systems, pp. 1–9, 

2010. 

[21] K. Walzer, T. Breddin, and M. Groch, “Relative temporal constraints in the 

Rete algorithm for complex event detection,” Proceedings of the second 

international conference on Distributed event-based systems - DEBS ’08, p. 

147, 2008. 

[22] F. Heintz, J. Kvarnström, and P. Doherty, “Stream reasoning in dyknow: A 

knowledge processing middleware system,” 1st Int’l Workshop Stream 

Reasoning, pp. 83–89, 2009. 

[23] J. C. Augusto, “Temporal reasoning for decision support in medicine.,” 

Artificial intelligence in medicine, vol. 33, no. 1, pp. 1–24, Jan. 2005. 

 


