

Temporal Reasoning on Twitter Stream

using Semantic Web Technologies

by

Meng Cui, B.Sc.(Hons)

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2014

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Cui Meng

August 29, 2014

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Cui Meng

August 29, 2014

 iv

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Prof. Declan O'Sullivan and my

assistant supervisor Dr. Wei Tai for their excellent guidance, patience on teaching me how to

research, giving me so much support and so many valuable suggestions. My dissertation is

based on their brilliant ideas and great assistances. I would also like to thank my parents, my

friends who are always supporting me and encouraging me with their best effort.

Cui Meng

University of Dublin, Trinity College
September 2014

 v

Temporal Reasoning on Twitter Stream

using Semantic Web Technologies

Cui Meng, M.Sc.

University of Dublin, Trinity College, 2014

Supervisor: Prof. Declan O'Sullivan
Assistant Supervisor: Dr. Wei Tai

Social media is gradually becoming an important source of knowledge. For example,

Twitter, one of the largest social networks for people to share things and catch up with friends,

contains enough information generated by millions of users all around the world.

We can take advantages of Twitter data and semantic web technologies to discover

potential trends in varieties of industries and much much more.

In this project, we present a novel approach to perform temporal reasoning on real time

Twitter stream using Semantic Web Technologies so that we could derive more valuable

information from time dimension data on Twitter. Moreover, in order to deal with such high-

frequency data, several filter mechanisms have also been implemented to, significantly,

improve the performance of the reasoning process.

 vi

Table of Contents

Acknowledgments ... iv

Abstract ... iv	

Chapter 1 Introduction ... 1

1.1 Background ... 1

1.2 Motivation .. 1

1.3 Research Question .. 2

1.4 Contributions .. 3

1.4.1 Semantic Reasoning on real time Twitter Stream .. 3

1.4.2 Temporal Reasoning on real time Twitter Stream .. 3

1.4.3 Reasoning Optimization .. 3

1.4.4 Configurable Reasoner ... 3

1.5 Outline of the thesis .. 4

Chapter 2 State of the Art .. 5

2.1 Introduction .. 5

2.2 Semantic Reasoning .. 6

2.2.1 Semantic Web Technologies ... 6

2.2.1 Semantic Reasoners .. 7

2.3 Stream Reasoning .. 9

2.4 Temporal Reasoning .. 11

2.5 Chapter Summary ... 13

 vii

Chapter 3 Design .. 14

3.1 Requirements .. 14

3.2 Conceptual Model .. 15

3.3 System Architecture ... 16

3.3.1 Twitter Stream Processing .. 16

3.3.2 Rule Analyzers ... 18

3.3.3 Filter Mechanisms ... 20

3.3.4 Temporal Reasoner ... 21

3.4 Example System Flow ... 22

3.5 Design decisions .. 26

3.6 Chapter Summary .. 27

Chapter 4 Implementation ... 28

4.1 Programming language and libraries ... 28

4.1.1 Java Language .. 28

4.1.2 Twitter4j ... 28

4.1.3 Jena ... 29

4.2 Development Environment ... 29

4.2.1 System Environment Information .. 29

4.2.2 IDE Information ... 30

4.3 Key Components Implementation .. 30

4.3.1 Window Based Twitter Stream Processer .. 30

4.3.2 Rule Analyzers ... 31

4.3.3 Filter Mechanisms .. 32

4.3.4 Temporal Reasoner ... 32

4.4 Chapter Summary .. 33

 viii

Chapter 5 Evaluation ... 34

5.1 The Rationale ... 34

5.1.1 Factors ... 34

5.1.2 Metrics .. 35

5.2 Experiments .. 36

5.2.1 Experiments about Number of Triples .. 36

5.2.2 Experiments about Reasoning Time .. 40

5.2.3 Experiments about Memory Usage ... 45

5.2.4 Experiments about Rule Complexity ... 49

5.2.5 Experiments about Reasoning Accuracy ... 53

5.3 Key Findings and Limitations ... 54

5.3.1 Key Findings ... 54

5.3.2 Limitations .. 55

5.4 Chapter Summary ... 56

Chapter 6 Conclusions and Future Work .. 57

6.1 Conclusions ... 57

6.2 Future work ... 58

6.2.1 Design and Implement Incremental Reasoning ... 58

6.2.2 Extend to Reason on Other Data stream ... 58

 ix

List of Tables

4.1 System Environment Information .. 29

4.2 IDE Information ... 30

4.3 Metacharacter Descriptions .. 31

5.1 Reasoning Accuracy vs Filters ... 54

 x

List of Figures

2.1 Semantic Web Stack .. 6

2.2 Jena Reasoner Architecture .. 7

2.3 Window Based Stream Processing ... 10

2.4 Allen’s Interval Time Relations .. 11

3.1 Conceptual Model .. 15

3.2 System Architecture .. 16

3.3 Window Based Processor .. 17

3.4 RDF Graph for each Tweet .. 18

3.5 Property Analyzer Process ... 23

3.6 Time Analyzer Process .. 23

3.7 JSON-RDF Convertor Process ... 24

3.8 Property Filter Process .. 24

3.9 Deletion Policy Process ... 25

3.10 Temporal Reasoning Process ... 25

4.1 Circular Buffer .. 31

5.1 Number of Triples vs Property Filter .. 36

5.2 Number of Triples vs Deletion Policy ... 37

5.3 Property Filter vs Deletion Policy on Number of Triples 38

5.4 Combined Results on Number of Triples .. 39

5.5 Reasoning Time vs Property Filter ... 41

5.6 Reasoning Time vs Deletion Policy .. 42

 xi

5.7 Property Filter vs Deletion Policy on Reasoning Time ... 43

5.8 Combined Results on Reasoning Time ... 44

5.9 Memory Usage vs Property Filter .. 45

5.10 Memory Usage vs Deletion Policy ... 46

5.11 Property Filter vs Deletion Policy on Memory Usage .. 47

5.12 Combined Results on Memory Usage ... 48

5.13 Rule Complexity vs Property Filter on Number of Triples 50

5.14 Rule Complexity vs Property Filter on Reasoning Time 51

5.15 Rule Complexity vs Property Filter on Memory Usage .. 52

 1

Chapter 1

Introduction

1.1 Background

Social media is gradually becoming an important source of knowledge. For example, Twitter,

one of the largest social networks for people to share things and catch up with friends,

contains enough information generated by millions of users all around the world.

 Semantic Web is believed to be the future generation of World Wide Web, a “Web of data”,

where data could be easily shared, reused and processed by machines [1].

 Semantic Reasoning is a very important part of Semantic Web Technologies to enable

people to infer implied and valuable information from vast explicit data all over the Internet

using customized inference rule set [2]. In order to achieve this, a number of rule engine or

semantic reasoners have been developed by researchers all around the world.

 Stream reasoner and temporal reasoner are two important categories of semantic reasoner.

Stream reasoner aims to enable inference on data stream instead of static data file, while

temporal reasoner is designed to enable reasoning on time dimension data.

1.2 Motivation

Stream reasoning [7] and temporal reasoning [8] are widely used in semantic web for various

purposes, such as Medical Information System and Network Management System and so on.

However, the existing reasoners for both of these reasoning categories have their own

limitations.

 Firstly, take the most powerful tool C-SPARQL as an example, the stream reasoners at the

moment could support continuous but simple queries over the RDF (Resource Description

 2

Framework) data streams [3]. However, temporal functors or temporal reasoning are not fully

supported in these stream reasoners, which, as a consequence, makes user unable to derive

valuable information that based on time dimension relations.

 Secondly, there are a number of existing temporal reasoning approaches. Each of them has

presented its own way to introduce time dimension content into RDF data, and implemented

temporal functors to cover both instant and interval time relations between different events [4]

[5]. Although these approaches are widely used in the real world, like Medical Information

System or Network Management System, they could only perform temporal reasoning on

huge static historical data but are not capable of dealing with real time data stream.

 Thirdly, most of the existing stream reasoners or temporal reasoner are very expensive,

both in reasoning time and memory usage.

 Finally, social media, like Twitter, is gradually becoming an important source of

knowledge. The lack of semantic reasoning on Twitter stream provides a great opportunity.

This project will present a novel approach to perform temporal reasoning on real time Twitter

data stream. Moreover, in order to deal with such high-frequency data, several filter

mechanisms have also been implemented to, significantly, improve the performance of the

reasoning process.

1.3 Research Question

According to the background and motivations, the research question of this dissertation is

addressed as “How to semantic reasoning to improve real time analysis of high frequency

Twitter stream data”, which could be divided into several small challenges:

1. How to take advantages Semantic Web Technologies to reason on real time Twitter
data stream?

2. How to extend the semantic reasoner to perform temporal reasoning over Twitter data
stream?

3. In order to deal with such high-frequency Twitter data, is there any way that could be
used to improve the performance of reasoning process?

4. How much improvement we could get from these optimization mechanisms?

 3

1.4 Contributions

1.4.1 Semantic Reasoning on real time Twitter Stream

Firstly, we implement a JSON-RDF convertor to transfer Twitter data from JSON format to

RDF format that could be accepted by the static semantic reasoner. Moreover, we present a

window-based approach to extend the reasoner for reasoning on real time Twitter data

stream.

1.4.2 Temporal Reasoning on real time Twitter Stream

This project present our approach to perform temporal reasoning on real time Twitter stream

by creating our own temporal functors which could cover all the valuable temporal relations

between each two pieces of twitter data.

1.4.3 Reasoning Optimization

We designed and implemented two regular expression based Rule Analyzers, and two filter

mechanisms built upon them, so that we can delete all the unnecessary RDF triples (subject-

predicate-object data format) before the actual temporal reasoning process. According to the

evaluation, these optimization approaches could improve both the reasoning time and memory

usage up to 90%.

1.4.4 Configurable Reasoner

Each key components of our reasoner could easily be configured through a configuration file,

which increases the flexibility. Moreover, we design and implement an intermediate time

format, which could also be customized through the configuration file. Therefore, this reasoner

is very extensible to reason on other data streams that with different data formats instead of

Twitter.

 4

1.5 Outline of the thesis

Chapter 2 discusses the state of the art of Stream Reasoning and Temporal Reasoning

Chapter 3 presents system requirements, system concept model, system architecture and

design decisions.

Chapter 4 provides information about development environment, libraries used, and key

components’ implementations.

Chapter 5 evaluates our system performance, and the reasoning accuracy.

Chapter 6 concludes our contributions and discuss about the potential future work.

 5

Chapter 2

State of the Art

2.1 Introduction

Social medias, like Twitter or Facebook, are gradually becoming an important source of

knowledge. Their high-frequency user generated data has great potential value not only for

business or industry area but also for research area. One of the great examples would be [6],

where drug-related advertisement could be detected from tweets analysis so that not only

manufactures could have better pharmacovigilance over those post-market or investigational

drugs, but more importantly, this could provide more safety for patients or drug consumers.

 This project aims to reason on Twitter’s real time stream data using Semantic Web

Technologies. Semantic Web is considered as the next generation of World Wide Web [1].

One of its major breakthroughs is to extend current unstructured or semi-structured data to

machine-readable data. The Resource Description Framework (RDF) is a well-known

framework to describe web resources so that they could be easily shared and reused across

different machines. Our approach will convert Twitter’s JSON format data into RDF (subject-

predicate-object) triples before pass it into semantic reasoner. In order to properly and

efficiently perform reasoning process, several semantic reasoners are compared and evaluated.

 This project focuses on extending this existing semantic reasoner to not only perform

continuous reasoning on real time Twitter stream but be able to perform temporal reasoning as

well. Therefore, a number of stream reasoning and temporal reasoning approaches are also

studied.

 All in all, in order to achieve temporal reasoning on real time Twitter stream, a number of

challenges are required to be addressed, such as Semantic Reasoning, Stream Reasoning and

 6

Temporal Reasoning. Each of these challenges will be discussed in detail in the following

sections.

2.2 Semantic Reasoning

2.2.1 Semantic Web Technologies

Semantic Web Technologies are the foundation of this project. Figure 2.1 shows its

technology stack. Some of the layers will be discussed in details in this section.

Figure 2.1: Semantic Web Stack1

Uniform Resource Identifier (URI): A string of characters to uniquely identify a resource

across entire World Wide Web. It always begins with “http”, so that the resource

identified could be easily accessed through the Internet.

Resource Description Framework (RDF): Different from tree-based XML structure, RDF

is graph-based data model to identify things and relations between things using URIs.

The core structure of this data model is called triples, each of which contains a subject,

a predicate and an object. Each RDF graph consists of a number of these triples.

 Copy from Dr. Rob Brennan’s lecture

 7

Rules (RIF): Inference is very important in Semantic Web Technology stack to make

people reasoning over different data source through rules. Since a number of rule

system are used in the real world, World Wide Web Consortium (W3C) working

group create Rule Interchange Format (RIF) as a standard to exchange rules between

different rule systems [9].

2.2.1 Semantic Reasoners

In order to get better understanding of Semantic Reasoning, several existing approaches are

studied.

[10] presents a very detailed description about Jena which is the most commonly used

Semantic web toolkit for Java developers. The architecture of Jena and the key structure

RDF Graph is well explained which is very valuable for our approach. Moreover, it presents

the architecture of Reasoner and explained how different components cooperate with each

other to accomplish the inference process. As shown in Figure 2.2, these components are

well worth researching before we design and implement our system. In addition, it also

present several built-in reasoners, including Transitive Reasoner, RDFS Reasoner and

Rubrik Reasoner and their specifics. Rubrik is more valuable to us since it is a rule based

RDF reasoner and provide both forward rule engine and backward rule engine for us to use.

 Figure 2.2 Jena Reasoner Architecture from [10]

 8

[10] presents a very detailed description about Jena which is the most commonly used

Semantic web toolkit for Java developers. The architecture of Jena and the key structure

RDF Graph is well explained which is very valuable for our approach. Moreover, it presents

the architecture of Reasoner and explained how different components cooperate with each

other to accomplish the inference process. As shown in Figure 2.2, these components are

well worth researching before we design and implement our system. In addition, it also

present several built-in reasoners, including Transitive Reasoner, RDFS Reasoner and

Rubrik Reasoner and their specifics. Rubrik is more valuable to us since it is a rule based

RDF reasoner and provide both forward rule engine and backward rule engine for us to use.

[11] presents another production rule based reasoner which is developed to transform OWL

ontologies into an object-oriented schema. Instead of RETE rule engine, this approach uses

CLIPS to support both rule based and Object Oriented (OO) programming paradigms. In

addition, it provides the detailed description and key procedures of TBOX reasoning and

ABOX reasoning, which are also meaningful to our approach. Moreover, it presents an

Incremental Rule Loading mechanism, which improves the performance a lot. To provide

better understanding, the author not only presents sufficient evaluation result but also

explain the theory behind his approach, which is a great way that we could learn to justify

our system.

[12] presents detailed design and implementation for rule based reasoner called

MiRE4OWL, which is designed to provide reasoning service for resource-constrained

devices. In addition, it provides very detailed information about RETE network and explains

how it is built with presudocode. Moreover, its lightweight design that results in reducing

the memory usage up to 80% could inspire us to optimize our system.

[13] presents a lightweight OWL reasoner called µOR, which is also developed for

resource-constrained device. The authors point out that the most commonly used query

language SPARQL and its engine are too expensive to run on a resource-constrained device.

Therefore, they develop their own language for N-Triples, called SCENT, and their own

pattern-matching algorithm called SCENTRA, which are both lightweight. The performance

improvement made by µOR is significant comparing to other small reasoners, like Bossam

and Pocket KRHyper. Therefore, it is valuable to research on the lightweight language and

pattern-matching algorithm implemented.

 9

[14] presents an OWL reasoner, COROR as a new approach for resource-constrained

devices, which achieves better time efficiency with less memory cost over other reasoners

by implementing two novel algorithms to compose the reasoners on the fly. In addition, this

paper presents some brief description about OWL and its sublanguages, and very detailed

description about RETE, the fast pattern matching algorithm and presents a number of ways

to optimize RETE algorithm. The author also analyzes the advantages and disadvantages of

each optimization approach. Moreover, the authors presents very detailed description about

the key part of this research, two composition algorithms, i.e. a selective rule loading

algorithm and a two-phase RETE algorithm, and also explained two join sequence

optimization heuristics they implemented in the beta network construction, i.e. the most

specific condition first heuristic and the connectivity heuristic. This research is well studied

because our system is developed upon COROR. Therefore it is reasonable to understand the

architecture and contributions of this approach.

[15] presents another rule based reasoner for resource-constrained device. This paper is

studied because it presents a detailed survey of reasoning approaches on 26 OWL reasoners.

The authors classify these reasoners into 5 categories based on their reasoning approaches,

including rule-entailment based reasoners, resolution-based reasoners, Description Logic

(DL) tableau based reasoners, reasoners using hybrid approaches, and reasoners using

miscellaneous approaches. In addition, characteristics of each category are well discussed.

This paper provides very helpful information for us to decide which kind of reasoner to use.

Since our system need to reason on Twitter stream, the capability of domain-specific

reasoning is highly required. Therefore, we choose to build our system on rule-entailment

reasoner, as it is very straightforward to model and deploy domain-specific rules.

2.3 Stream Reasoning

Stream reasoning is very widely used in daily life, for example, Medical Information

System [23], Transportation System [22] and so on. [7] presents most of the important

basics of stream reasoning, including its formal definition and characteristics. It states that

Window and Continuous Processing are the two notions peculiar to stream reasoning.

Figure 2.3 shows the window based reasoning approach. For each step, a new window size

of data is captured from the data stream and passed to reasoner and in next step, the window

moves a certain step forward to capture a new window size of data for the reasoner.

 10

[7] also presents details about C-SPARQL, which now is a well known and very powerful

stream reasoning tool. The author provides very brief comparison between C-SPARQL and

its two alternatives, Time-Annotated SPARQL and Streaming SPARQL on their

functionalities only and concludes that only C-SPARQL supports continuous processing and

aggregation functions.

[16] questions a number of challenges faced to combine streaming with semantic reasoning.

The data stream management system, which could analyze the changing data during the

runtime, could not perform complex reasoning tasks, while reasoners that could perform

complex reasoning tasks could not manage reasoning on the rapidly changing information.

In addition, the system that could perform reasoning on the changing information could only

detect the changes with very limited amount of data and at very low frequency. Therefore,

the authors proposed Stream Reasoning as a new approach to integrate Semantic Web

technology, data stream and reasoning together to answer the questions. Moreover, the

author raised some issues for a stream reasoning system that should be taken into

consideration, including limited stream reasoning theory, heterogeneous formats and access

protocols, semantic modeling, scale, continuous processing, real-time constraints and

parallelization and distribution. The author also presents a discussion of potential measuring

progress to evaluate a stream reasoning system, including how fast the data is updated, how

many data streams are handled at the same time, how many subscribers are registered, and

the time delay between the time that a particular event happened and the time when all the

Figure 2.3 Window Based Stream Processing

 11

subscribers got notified and so on. All of these discussions in this paper are very valuable

and will definitely inspire the design and implementation of our own stream processor.

[17] introduces Twitter phenomenon at the very beginning to describe the trend that people

were caring about feeds and information published on well-known social media which

justifies my motivation. In addition, it proposes a novel approach to combine inductive and

deductive reasoning with streaming (C-SPARQL) to reduce the gap between streaming and

static knowledge analysis. In addition, the author presents a well-designed experiment

process to provide better understanding of how their approach will improve the efficiency

of C-SPARQL.

2.4 Temporal Reasoning

Temporal reasoning could be easily explained as derive new information from time

dimension data. As shown in Figure 2.4, [18] presents the basic interval time relations

between two events, which were firstly proposed by Allen in 1980’s. This is the start point

for almost every temporal reasoning research as specific time relations could be easily

designed from it.

The authors also present their approach to introduce time dimension relations into Complex

Event Processing (CEP) system by design and implement three new temporal functors into

Figure 2.4 Allen’s interval time relations (copies from [18])

 12

their old system. [18] provides me a very clear understanding of what temporal reasoning is

and why it is meaningful. With the details of two motivating scenarios, readers could get

even better understanding that temporal dependencies could capture more information from

the historical events and data. In addition, the paper presented a way to implement temporal

operators. With the help of this, researchers could create their own operators to support

specific tasks.

More importantly, this paper made me think. Why we really need temporal reasoning or

developing temporal operators. If all the historical data is available, could we just write

some short program that use file stream reader and simple if-statement to compare the

temporal relationship between two events. Yes, we can. However, the truth is people are

eager to find a generic way to do the reasoning, more specifically, we need to use the same

pattern matching framework to deal with all the rules, no matter it is temporal or not.

Therefore, we should implement the temporal operators so that the previous framework

could stay the same.

[19] introduces another approach to perform temporal reasoning. It proposes temporal RDF

graphs as the main part of a new framework to make pure RDF graphs are capable of

handling temporal reasoning. More specifically, they presented a syntax which mainly use

both the temporal labels and RDF vocabulary to extend pure RDF graphs to this temporal

framework and also presented semantics for temporal graphs, including the definition of

temporal entailment.

In addition, it presented a very long and detailed discussion about several issues that might

arise when extending RDF with temporal information, e.g. versioning versus time labeling,

time points versus time intervals, vocabulary for temporal labeling, temporal entailment and

temporal query language. Moreover, it provides detailed description on each of its

contributions, including how to define a temporal graph, how to define the temporal

semantics and syntax and so on.

 13

[20] presents an approach related to both stream reasoning and temporal reasoning which is

motivated by the fact that the state-of-the-art EP only provides the ability of analyzing a

large stream of events without considering the background knowledge while separate

semantic tools can process static data and analyze context and perform reasoning. The

authors of this paper also developed temporal RDF, but they claim their work is different

because they tend to detect complex temporal patterns dynamically instead of one time

query and response model. The authors also believe more temporal relations should be

detected if we want to process more complex reasoning or analysis over the RDF stream.

There are researches where all the inference rules are designed before the actually execution

and stored in the knowledge base. But the authors think stream reasoning requires to

inference processed dynamically during the execution. In my opinion, the automatically

generated rules could be a very interesting topic to research on.

2.5 Chapter Summary

In this chapter, we discussed state of the art in Semantic Reasoning, Stream Reasoning and

Temporal Reasoning. We compared different reasoners and decided to base our work on rule-

based reasoner. In addition, we introduced the basics of stream reasoning and considered the

main challenges faced in implementing stream processor. Moreover, we talk about the

importance of temporal reasoning, compared several approaches to implement it and finally

decided to design and implement our own temporal functors to achieve temporal reasoning.

Not all the approaches discussed in this chapter will be used for our development, but the

understanding of the pros and cons is important for us the make right decisions.

 14

Chapter 3

Design

In this chapter, we discuss about both the functional and non-functional system

requirements, conceptual model of our design and also the system architecture. In the

architecture section, we discuss the function of each key component and present several

examples to provide readers better understanding of our design. In addition, we present

discussions about several valuable design decision-makings and also provide sufficient

reasons to prove our decisions.

3.1 Requirements

In order to answer the research questions posed in the introduction chapter and achieve

efficient temporal reasoning on real time Twitter Stream, the system should be able to:

1. Capture real time data from Twitter stream.

2. Extend the semantic reasoner to perform temporal reasoning on Twitter Stream.

3. Delete some uninteresting data from the high-frequency Twitter stream to improve the

performance of reasoning process.

In addition, there are also some non-functional system requirements that need to be fulfilled:

• Flexibility: Each key components of this reasoning system should be easily configured

for different purpose

 15

• Extensibility: The system should be easily extended to reason on other data stream.

3.2 Conceptual Model

According to the functional system requirements, we present a conceptual model of our design

to provide readers basic understanding of how different components work together.

 As shown in the conceptual model, we design two filter mechanisms. One of them is

property based and the other one is time based, and both of their filter patterns are based on the

analysis of reasoning rule set.

 The Twitter data stream will then pass through these two filters before it goes into the

Temporal Reasoner where uninterested pieces of data are deleted.

 Finally, after the reasoning process, new deduced data will be produced and stored.

Figure 3.1: Conceptual Model

 16

3.3 System Architecture

Basic on the conceptual design model, there are four functional parts of the system, including

Twitter Stream Processing, Rule Analyzers, Filter Mechanisms, and Temporal Reasoner.

 In this section, we present a more specific system architecture to explain the design of each

key components and how they cooperate with each other to match functional requirements.

3.3.1 Twitter Stream Processing

Twitter Stream Processing is responsible to listen on Twitter Stream, capture real time data

and transfer JSON format data to RDF triples. To achieve this, a window based processor and

a JSON-RDF convertor are designed.

3.3.1.1 Window Based Processor

According to what we discussed in previous section, window based approach is the major

method in stream processing. As shown in Figure 3.3, every step the stream processor captures

a fixed window size (for example 30 seconds) of data and then passes it to the following

components. After each step, the window will more forward in a certain step size (for example

Figure 3.2: System

 17

10 seconds), capture new data and pass it again. Therefore, the system is capable of continuous

processing of Twitter real time data stream.

3.3.1.2 JSON-RDF Convertor

This convertor is designed to accomplish two main tasks.

• Twitter’s original data format is JSON, while, in order to perform semantic reasoning,

RDF triples are required. Therefore, the convertor needs to convert JSON data stream

to RDF triple stream. N-triples notation is selected to encode RDF triples in this

system, because it is a line-based and plain text format, which is very lightweight and

easy to construct.

• In addition, as Twitter’s data is too complicated, this convertor also selects 17 valuable

attributes of full JSON data set, including basic information about each tweet and its

relative user.

Figure 3.4 shows the RDF graph for each tweet produced by this convertor, which contains a

number of valuable properties, including tweet’s text, created time, retweeted count and user’s

name, friends count, followers count and so on.

Figure 3.3: Window Based Processor

 18

3.3.2 Rule Analyzers

Rule analyzers are the foundation of filter mechanisms and optimization process. There are
two main reasons that we design this component:

• Not all rule set needs all of 17 properties of each tweet to perform reasoning.

• Not all reasoning needs the whole window period of data. For example, if the window
size is configured to be 30 seconds, while we only interested in the events happened in
last 10 second. Then the earlier 20 seconds of data is not required for the reasoning
process.

According to these reasons, two kinds of regular expression based rule analyzers are designed
to find the characteristics of each reasoning rule set.

Figure 3.4: RDF Graph for each Tweet

 19

3.3.2.1 Property Analyzer

Property analyzer is designed to find all the properties used in a reasoning rule set. Here is an
example to demonstrate how this analyzer works.

• Trend Lead Rule:

• Hot Topic Rule:

• Analyzer Output:

As shown in the example, this regular expression based Property analyzer will analyze the
whole rule set and return all the used properties in a set. This set will be passed to Property
Filter, which will be discussed in filters section.

3.3.2.2 Time Analyzer

Similar to Property Analyzer, this Time Analyzer is also based on regular expression and is
designed to find the longest time period that need to be reasoned in a rule set. It only matches
interval temporal functors but not the instant ones. There is also an example below to show an
example input and output of this analyzer.

• Temporal Rule 1:

(?a twitter:retweeted_count ?r),
(?a twitter:text ?t),
(?a twitter:tweeted_by ?u),
greaterThan(?r, 1000)
->
 (?u twitter:trend_leader ?t)

(?a twitter:retweeted_count ?r),
(?a twitter:text ?t),
greaterThan(?r, 1000)
->
(?a twitter:hot_topic ?t)

["twitter:retweeted_count",
"twitter:text",
"twitter:tweeted_by"]

(?a twitter:created_at ?b),
lastXSeconds(?b, 10)
 ->
(?a twitter:happenedInLast10Seconds ?b)

 20

• Temporal Rule 2:

• Analyzer Output:

As shown in the example, this time analyzer will analyze the whole rule set and return the
longest reasoning period in seconds. This number will be passed to Deletion Policy, which
will be discussed in filters section.

3.3.3 Filter Mechanisms

According to the two rule analyzers presented, we design two corresponding filter mechanisms

to delete uninterested data before the reasoning process.

3.3.3.1 Property Filter

Property Filter is designed to delete RDF triples with unused properties based on the analysis

result from Property Analyzer. This filter works on the real time Twitter RDF stream produced

by JSON-RDF Converter to delete all uninterested triples before it is passed into Graph

Builder.

 Graph here is not same as RDF graph. It is a data structure that used in the previous

semantic reasoner. Therefore, Graph Builder is designed as the extended interface of that

reasoner to combine a number of RDF triples together as a Graph.

3.3.3.2 Deletion Policy

Deletion Policy is also designed to delete uninterested RDF triples, however, different from

Property Filter, it works on the Graph built by the Graph Builder. As part of the window

based reasoner, this rule based Deletion Policy will firstly be performed on the Graph to

remove out-of-date triples based on the longest period time analyzed by the Time Analyzer,

and then the new filtered Graph will be passed into the final Temporal Reasoner.

 Here is an example of the Deletion Policy rules and the delete functor is designed to delete a

triple from a Graph.

60

(?a twitter:created_at ?b),
lastXMinutes(?b, 10)
 ->
(?a twitter:happenedInLast1Minute ?b)

 21

• Sample Rule of Deletion Policy:

3.3.4 Temporal Reasoner

In order to achieve temporal reasoning on real time Twitter data stream, a number of temporal

functors are designed. In addition, to perform more valuable and more complex reasoning on

Twitter stream, several non-temporal functors are also designed.

3.3.4.1 Temporal Functors

Here is a list of temporal functors designed for this system and their descriptions:

• GreaterThanInstant (t1, t2): To compare if time t1 is greater than time t2.

• LessThanInstant (t1, t2): To compare if time t1 is less than time t2.

• LastXSeconds (t, x): To check if time t is in last x seconds comparing to current system

time.

• LastXMinutes (t, x): To check if time t is in last x minutes comparing to current system

time.

• LastXHours (t, x): To check if time t is in last x hours comparing to current system

time.

• LastXDays (t, x): To check if time t is in last x days comparing to current system

time.

• NotInLastXSeconds (t, x): To check if time t is NOT in last x seconds comparing to

current system time.

• NotInLastXMinutess (t, x): To check if time t is NOT in last x minutes comparing to

current system time.

• NotInLastXHours (t, x): To check if time t is NOT in last x hours comparing to current

system time.

• NotInLastXDays (t, x): To check if time t is NOT in last x days comparing to current

system time.

These functors could cover both instant and interval time relations from Twitter stream.

(?a twitter:created_at ?t),
NotInlastXSeconds(?t, 10)
 ->
delete (?a twitter:created_at ?t)

 22

3.3.4.2 Non-Temporal Functors

Here is a list of non-functional functors designed for more valuable Twitter data reasoning:

• IncreasedBeyondX (a1, a2, x): To compare a2 – a1 to check if this value is greater

than x. This is very useful for some specific scenarios. For example, if we want to find

during a certain amount of time which user’s followers count has increased beyond

1000, this functor could be used in the rule to compare the difference of two follows

counts from the same user with 1000.

• Delete (subject, predicate, object): As mentioned in previous section, this functor is

used in Deletion Policy rules to delete expired triples from Graph.

3.3.4.3 Intermediate Time Format

In order to design a high extensible reasoning system, an intermediate time format is also

designed. Therefore, a new time format could be easily customized from a configuration file

and extend this system to reason on new data stream instead of Twitter.

 For example, Twitter’s time format string is “EEE MMM dd HH:mm:ss ZZZZZ yyyy”,

where EEE stands for the day of week and ZZZZZ stands for time zones.

3.4 Example System Flow

In this section, we present a complete example of the whole system to give readers a better

understanding of how these key components cooperate with each other to accomplish the

whole reasoning process.

 There are two things need to be clarified before the example. One is that the time value used

in the example like “-15 seconds”, which stands for 15 seconds ago, is not the actual time

value. This format is used to keep the example short and easy to understand. The other one is

that there is only one rule in the reasoning rule set to keep it simple and it aims to find which

new user has tweeted new things during the last 10 seconds? (New user means twitter user that

registered during the last year)

 23

• Example Reasoning Rule:

Step 1.1 - Property Analyzer Process: to get all used properties from rule set

Step 1.2 - Property Analyzer Process: to get longest period from the rule set

(?a twitter:tweeted_by ?u),
(?u twitter:account_created_at ?t1),
greaterThanInstant(?t1, "-1 year"),
(?a twitter:created_at ?t2),
lastXSeconds(?t2, 10)
->
(?u twitter:new_user_new_tweet ?a)

Figure 3.5: Property Analyzer Process

Figure 3.6: Time Analyzer Process

 24

Step 2 – JSON-RDF Convertor Process: to convert complicated Twitter JSON data to 17

triples for each new tweet.

Step 3 – Property Filter Process: to filter on each set of 17 triples to delete the ones with

uninterested properties based on the result from Property Analyzer

Figure 3.7: JSON-RDF Convertor Process

Figure 3.8: Property Filter Process

 25

Step 4 – Deletion Policy Process: to delete expired triples from the Graph based on the result

from Time Analyzer

Step 5 – Temporal Reasoning Process: to perform temporal reasoning on filtered data

Figure 3.9: Deletion Policy Process

Figure 3.10: Temporal Reasoning Process

 26

3.5 Design decisions

A huge number of decisions have been discussed and made to achieve this final system

design, while some of them are very valuable and worth being presented here.

1. Why choose Twitter Stream to reason on?

At the beginning of this project, we focused on extending a static semantic reasoner to

be capable of stream reasoning and temporal reasoning. However, every concept was

too general, so it was very hard to start. Therefore, we decided to think about some

scenarios that this project should be capable of which led us to Twitter. Not only

because Twitter is popular and familiar with everyone, but also because Twitter’s data

stream has very high frequency and high diversity, which provided us a lot of

opportunities to reason on.

2. Why choose property related filter and time related filter?

In fact, there are a lot of other filters could be designed, but the reason to pick up these

two is very sufficient. That is because these two filters are more generic than the others.

More specifically, these two filters are not specific for Twitter data reasoning and are

not specific to any scenarios. Therefore, they could be easily extended to filter on other

streams, as long as they have a number of properties for each RDF graph and they need

to reason on time interval relations.

3. Why design these two filters in different way?

As mentioned in previous sections, Deletion Policy is rule based filter mechanism to

delete expired triples from Graph, while Property Filter is not rule based and it

removes the triples from the RDF stream before the Graph is built. Therefore, the

Deletion Policy is easier to be configured and customized, while Property Filter is

more efficient. In fact, these two filters could be designed in the same way to perform

the same functionality. However, we prefer to design them in different ways so that the

readers and following researchers would know there are two possible ways to design

 27

filters so that they could have more choices to work upon our work or design their own

systems.

3.6 Chapter Summary

In this chapter, we present both the functional and non-functional system requirements,

conceptual model of our design and also the system architecture. In the architecture section,

we present detailed design of each key component and provide sufficient examples to

demonstrate how they cooperate with each other. In addition, we also present several

valuable design decision-makings, which could inspire the implementation.

 28

Chapter 4

Implementation

In this chapter, we present the programming language and several libraries used, and also

provide our development environment as a reference. Moreover, we present major

process to implement the key components so that we could fulfill the requirements

discussed in the design chapter.

4.1 Programming language and libraries

4.1.1 Java Language

As discussed in the previous chapters, our approach begins with extending an existing

semantic reasoner. Therefore, we continue to use the same programming language Java

to accomplish our implementation.

4.1.2 Twitter4j

Twitter4j is not an official library for Twitter API, but it is very widely for Twitter related

development, because of:

• 100% pure Java: It is developed by Java and is compatible for any Java platform

version 5 or latter.

• Built-in OAuth Support: OAuth is an authorization framework that used by

Twitter to enable a third-party application to obtain limited access to Twitter API

service. By using Twitter4j library, OAuth could be easily configured in a

properties file.

 29

• Zero Dependency: There is no additional library needed to use Twitter4j

• 100% Twitter 1.1 API supported

Apart from these technical reasons, Twitter4j also provide good documentations and

sufficient examples to demonstrate the most commonly used functions, which as a

consequence, makes it even easier to be used.

4.1.3 Jena

Jena is an open source Java framework for developing Semantic Web applications. It

provides a variety of APIs for different functional purpose, including RDF API, SPARQL

API, Text Search API, Security API, and Java Database Connectivity (JDBC) API and so

on. For our development, RDF API is used in RDF-JSON Convertor to produce the RDF

data stream.

 In addition, JSON API is also included in Jena library, which could be used to fetch

JSON object and exact values from it.

4.2 Development Environment

Specific information of system environments and Integrated Development Environment (IDE)

are presented in this section as a reference for further development.

4.2.1 System Environment Information

System Component Description

System Version Mac OS X 10.8.5

Processor 2.7 GHz Intel Core i7

Memory 16 GB 1600MHz DDR3

Table 4.1: System Environment Information

 30

4.2.2 IDE Information

Environment Component Description

IDE Eclipse

Version Kepler Service Release 1

Java Version 1.6

4.3 Key Components Implementation

In this section, we present the key steps to implement each key component.

4.3.1 Window Based Twitter Stream Processer

In order to accomplish Twitter stream processer, a data stream listener and a window based

buffer need to be implemented.

Twitter Stream Listener

Twitter4j stream API is used to listen on Twitter’s public data stream and get notification for

each new tweet.

Window Based Buffer

This buffer stores a fixed window size of Twitter data and in each new step, a certain time of

old data is removed from the buffer and same period of new data is added. According to these

requirements, a circular list is implemented to maintain this fixed size buff. Figure 4.1 shows a

more intuitive view of how this buffer works.

Table 4.2: IDE Information

 31

4.3.2 Rule Analyzers

As discussed in the previous chapter, both the Property Analyzer and Time Analyzer are

based on regular expression, which is a very commonly used technic in text processing. It

defines a number of metacharacters, which could be combined to form a search pattern for

specific string matching purpose. Table 4.3 shows some commonly used metacharacters and

their meaning in regular expression.

Metacharacter Description

. Matches any single character

$ Matches the ending position of a string or the ending

position of any line.

* Match the preceding element zero or more times.

? Match the preceding element zero or one time.

+ Match the preceding element one or more times.

() Defines a marked subexpression.

[] Match a single character contained within the brackets.

{ m, n } Match the preceding element at least m and not more than

n times

Figure 4.1: Circular Buffer

Table 4.3: Metacharacter Descriptions

 32

According to these metacharacters, two search patterns are implemented. One is integrated in

Property Filter and is responsible for matching all the twitter properties appear in the rule set.

The other one is integrated in Time Filter and is responsible for matching all the interval

temporal functors in the rule set and comparing to find the longest period need to be reasoned.

4.3.3 Filter Mechanisms

According to our discussion in the previous chapter, the two filter mechanisms are

implemented in different ways:

• Property Filter: is implemented as code-based filter to process on Twitter RDF

stream. For each of the 17 triples in each tweet, it traverse the set of used properties

passed from the Property Analyzer to determine if this triple is needed or not.

• Deletion Policy: is implemented as rule-based filter to process on the Graph. It

traverses the whole Graph to find the expired tweet and delete all the triples belong to

that tweet.

4.3.4 Temporal Reasoner

As discussed in the deign chapter, several new functors need to be implemented to achieve

temporal reasoning on Twitter stream. In addition, in order to make this reasoner easy to

extend to reason on other data streams, an intermediate time format is also implemented.

New Functors Implementation

There are several steps need to follow to implement a new functor:

1. Pick up a simple and meaningful name for the functor, which will be used in reasoning

rules.

2. Specify the number of parameters that this functor need.

3. Implement the functor body, which is actually main functional part of each functor.

People could implement a variety of body functions based on their own requirements.

 33

4. Register the new functor so that it could be recognized by the reasoner during the rule

parsing process.

Intermediate Time Format Implementation

This time format is implemented to read the customized time format string from the

configuration file and then use SimpleDateFormat Java class to convert each time format to a

customized Java Date class so that the time values with different format could be comparable.

4.4 Chapter Summary

In this chapter, we presented the programming language and a number of libraries we used,
and also provided our development environment as a reference. In addition, we presented the
major processes needed to implement each key component, which makes it easy for other
researchers to perform further development upon our work.

 34

Chapter 5

Evaluations

After the development, it is very important to evaluate how well our system could perform. In

this chapter, we will evaluate not only the system performance but also the reasoning

accuracy. Both of these two aspects are very critical to our system, since without significant

performance improvements, these novel filter mechanisms will make no contribution to this

area; without high accuracy, this approach will not be trusted by other researchers.

5.1 The Rationale

Before presenting the actual experiment, it is reasonable to discuss factors that will affect the

system performance and the metrics we select to evaluate the system. We will also provide

sufficient reasons to justify our choices.

5.1.1 Factors

There are a number of factors that could affect the system from different aspects. However,

since we put our focus on evaluating the performance improvements by these two novel filter

mechanisms we presented, only several of these factors are selected.

• Window Size: stands for a certain period time to measure the buffer size and also

measure how much data is captured from Twitter stream in each cycle. This factor

directly determines, in each cycle, how many triples are processed by the system and

how many triples are reasoned by the temporal reasoner. In this chapter, window size

is measured by seconds (s).

 35

• Rule Complexity: stands for the number of different properties appeared in one

reasoning rule set. Comparing to number of reasoning rules, this factor has more

influence on the performance since the Property Filter is based on number of

properties used in the rule set. In this chapter, the range of Rule Complexity is from 1

to 17 since 17 is the total number of properties each tweet has.

5.1.2 Metrics

To present a reasonable evaluation result of the performance improvements that our approach

achieved, several metrics are selected:

• Number of Triples: is the most intuitive metric to measure how many triples are

processed by the system and how many of them are deleted by the filter mechanisms.

Therefore, this is a very valuable metric to provide direct result of the system

performance.

• Memory Usage: is the most commonly used metric to measure system performance.

In addition, the result of this metric could be more valuable to other researchers as they

could easily compare their approach’s performance with ours. In this chapter, this

metric stands for the memory usage over the whole reasoning process and is measured

in kilobytes (KB).

• Reasoning Time: is another commonly used metric. Similar to Memory Usage, this

metric is also very valuable to other researchers to compare. In this chapter, Reasoning

Time stands for the reasoning time consumed over the whole reasoning process and is

measured in milliseconds (ms).

• Reasoning Accuracy: is a very quality metric especially for our system. Since we

implemented two filter mechanisms, it is essential to evaluate, apart from deleting the

uninterested data, if they also delete some interested data as well. This presents if the

filter mechanisms will affect the number of triples deduced. Equation 5.1 shows how

this metric is calculated.

 Reasoning Accuracy =
Number of triples deduced with filter on

Number of triples deduced without any filter
（5.1）

 36

5.2 Experiments

According to what we discussed in previous section, a number of experiments are designed

and conducted to evaluate the system performance from different aspects. Note that in this

chapter, every data value shown in the experiment result is the average value of 20 runs of the

same experiment.

5.2.1 Experiments about Number of Triples

5.2.1.1 Number of Triples vs Property Filter

Experiment Setup

This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60

seconds, and in each group, there are two values of Number of Triples metric. One is

collected with no filter on, and the other one is collected with only Property Filter on. In this

experiment, the Rule Complexity of the reasoning rule set is 7, which is a medium level and

longest time period is 10 seconds.

Results

Figure 5.1 shows the evaluation results of this experiment.

 Figure 5.1 Number of Triples vs Property Filter

 37

Findings

According to the result, we could find that Property Filter works well on reducing the total

number of triples to be reasoned. The improvement is proportional to Rule Complexity. As

shown in Figure 5.1, the Property Filter could reduce the number of triples by more 50% while

the Rule Complexity is set to 7, which is also nearly 50% of 17, the maximum value.

5.2.1.2 Number of Triples vs Deletion Policy

Experiment Setup

This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60

seconds, and in each group, there are two values of Number of Triples metric. One is

collected with no filter on, and the other one is collected with only Deletion Policy on. In this

experiment, the longest period time of the reasoning rule set is 10 seconds, which is a

reasonable level and the Rule Complexity is 7.

Results

Figure 5.2 shows the evaluation results of this experiment.

Figure 5.2 Number of Triples vs Deletion Policy

 38

Findings

According to the result, we could find that Deletion Policy works very well on maintaining

the total number of triples to be reasoned in very low level, even with an increasing window

size. The level of this flat line is determined by the longest period time of the rule set. When

the window size is smaller than this threshold, the Number of Triples should make no big

difference between these two conditions (Deletion Policy on or off). Once the window size is

greater than this threshold, the Number of Triples value for Deletion Policy off will still

increase, while the value for Deletion Policy on will stay in the previous low level.

5.2.1.3 Property Filter vs Deletion Policy on Number of Triples

Experiment Setup

This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60

seconds, and in each group, there are two values of Number of Triples metric. One is

collected with only Deletion Policy on, and the other one is collected with both Deletion

Policy and Property Filter are on. In this experiment, the longest period time of the

reasoning rule set is 10 seconds and the Rule Complexity is 7.

Results

Figure 5.3 shows the evaluation results of this experiment.

 Figure 5.3 Property Filter vs Deletion Policy on Number of Triples

 39

Findings

According to the result, we could find that Property Filter could make further improvements

even though the Deletion Policy is already on. This could be easily explained in theory as

these two filter mechanisms are designed from different perspectives. One is based on used

properties, and the other is based on longest time need to be reasoned. As shown in Figure 5.3,

the further improvements made by Property Filter is still proportional to Rule Complexity,

which is very reasonable.

5.2.1.4 Combined Results on Number of Triples

Figure 5.4 shows the combined results of four different conditions, both filters are off, only

Property Filter is on, only Deletion Policy is on, and both filters are on. We present all

groups of data in one diagram to provide readers an overall view of how much improvement

each filter could achieve, performance comparison between these two filters and different

specifics each filter has.

Figure 5.4 Combined Results on Number of Triples

 40

Findings Summary

In this series of experiments, the Rule Complexity of the rule set is 7 and longest time period

is 10 seconds. According to Figure 5.4, we could summarize our findings as:

• Property Filter can delete more than 50% triples, which is proportional to Rule

Complexity.

• Deletion Policy can maintain the total number of triples under a very low level even

with increasing window size. However, the level of this flat line is determined by the

longest time period of rule set.

• Property Filter could still make contribution to removing more triples even when

Deletion Policy is already on. The further improvement made is also proportional to

Rule Complexity.

5.2.2 Experiments about Reasoning Time

5.2.2.1 Reasoning Time vs Property Filter

Experiment Setup

This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60

seconds, and in each group, there are two values of Reasoning Time metric. One is collected

with no filter on, and the other one is collected with only Property Filter on. In this

experiment, the Rule Complexity of the reasoning rule set is 7, which is a medium level and

longest time period is 10 seconds.

 41

Results

Figure 5.5 shows the evaluation results of this experiment.

Findings

According to the result, we could find that Property Filter reduce the Reasoning Time around

25%, which is less than its affects on Number of Triples. This is because the Reasoning Time

also covers some processes that are not only affected by the Number of Triples, including

RETE network building [21], rule pattern matching and so on. Even though the inference is

not as big as it made on Number of Triples, 25% improvement is significant enough for a

filter mechanism.

5.2.2.2 Reasoning Time vs Deletion Policy

Experiment Setup

This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60

seconds, and in each group, there are two values of Reasoning Time metric. One is collected

with no filter on, and the other one is collected with only Deletion Policy on. In this

experiment, the longest period time of the reasoning rule set is 10 seconds, which is a

reasonable level and the Rule Complexity is 7.

Figure 5.5 Reasoning Time vs Property Filter

 42

Results

Figure 5.6 shows the evaluation results of this experiment.

Findings

According to the result, we could find that Deletion Policy makes even better improvements

on Reasoning Time comparing to Number of Triples. This is because the Reasoning Speed

decreases a lot as the total number of triples increases, in other words, the reasoner could

process much less triples per second if the total number of triples is getting larger. According

to our previous findings, Deletion Policy could maintain the Number of Triples in a very low

level, which as a consequence, resulting in maintaining the Reasoning Time in a much lower

level. In addition, the level of this flat line is still determined by the longest time period of the

rule set.

5.2.2.3 Property Filter vs Deletion Policy on Reasoning Time

Experiment Setup

This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60

seconds, and in each group, there are two values of Reasoning Time metric. One is collected

Figure 5.6 Reasoning Time vs Deletion Policy

 43

with only Deletion Policy on, and the other one is collected with both Deletion Policy and

Property Filter are on. In this experiment, the longest period time of the reasoning rule set is

10 seconds and the Rule Complexity is 7.

Results

Figure 5.7 shows the evaluation results of this experiment.

Findings

According to the result, we could find that Property Filter could make further improvements

even though the Deletion Policy is already on. The reason behind this is similar to previous

analysis, which is, Property Filter is based on used properties, and Deletion Policy is based

on longest time need to be reasoned.

5.2.2.4 Combined Results on Reasoning Time

Figure 5.8 shows the combined results of four different conditions, both filters are off, only

Property Filter is on, only Deletion Policy is on, and both filters are on. We present all

groups of data in one diagram to provide readers an overall view of how much improvement

each filter could achieve, performance comparison between these two filters and different

specifics each filter has.

Figure 5.7 Property Filter vs Deletion Policy on Reasoning Time

 44

Findings Summary

In this series of experiments, the Rule Complexity of the rule set is 7 and longest time period

is 10 seconds. According to Figure 5.8, we could summarize our findings as:

• Property Filter can reduce the reasoning time by around 25%.

• Reasoning Speed decreases a lot while window size or total number of triples

increases.

• Deletion Policy can maintain the Reasoning Time under a much lower level even

with increasing window size. In addition, the level of this flat line is still determined

by the longest time period of rule set.

• Property Filter could still make further improvements on Reasoning Time even the

Deletion Policy is already on.

Figure 5.8 Combined Results on Reasoning Time

 45

5.2.3 Experiments about Memory Usage

5.2.3.1 Memory Usage vs Property Filter

Experiment Setup

This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60

seconds, and in each group, there are two values of Memory Usage metric. One is collected

with no filter on, and the other one is collected with only Property Filter on. In this

experiment, the Rule Complexity of the reasoning rule set is 7, which is a medium level and

longest time period is 10 seconds.

Results

Figure 5.9 shows the evaluation results of this experiment.

Findings

According to the result, we could find that Property Filter reduce the Memory Usage around

20% to 25%, which is still less than its affects on Number of Triples. The reason behind this

is similar to previous analysis, which is because the Memory Usage also covers some other

processes that are not only affected by the Number of Triples, including RETE network

Figure 5.9 Memory Usage vs Property Filter

 46

building [21], intermediate results caching and so on. Even though the inference is not as big

as it made on Number of Triples, 20% to 25% improvement is significant enough for a filter

mechanism. In addition, we could find that the increase rate of Memory Usage is getting

smaller as the window size or total number of triples increases.

5.2.3.2 Memory Usage vs Deletion Policy

Experiment Setup

This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60

seconds, and in each group, there are two values of Memory Usage metric. One is collected

with no filter on, and the other one is collected with only Deletion Policy on. In this

experiment, the longest period time of the reasoning rule set is 10 seconds, which is a

reasonable level and the Rule Complexity is 7.

Results

Figure 5.10 shows the evaluation results of this experiment.

Figure 5.10 Memory Usage vs Deletion Policy

 47

Findings

According to the result, we could find that Deletion Policy makes similar improvements on

Memory Usage comparing to Reasoning Time. The reason behind is also similar. The

Deletion Policy could maintain the total number of triples under a vey low level, which results

in maintaining both the Reasoning Time and Memory Usage under a very low level as well.

Again, the level of this flat line is determined by the longest time period of the rule set.

5.2.3.3 Property Filter vs Deletion Policy on Memory Usage

Experiment Setup

This experiment collects 6 groups of data with increasing Window Size from 10 seconds to 60

seconds, and in each group, there are two values of Memory Usage metric. One is collected

with only Deletion Policy on, and the other one is collected with both Deletion Policy and

Property Filter are on. In this experiment, the longest period time of the reasoning rule set is

10 seconds and the Rule Complexity is 7.

Results

Figure 5.11 shows the evaluation results of this experiment.

Figure 5.11 Property Filter vs Deletion Policy on Memory Usage

 48

Findings

According to the result, we could find that Property Filter could still make further

improvements on Memory Usage even though the Deletion Policy is already on. The reason

behind this is similar to previous analysis, which is, Property Filter is based on used

properties, and Deletion Policy is based on longest time need to be reasoned.

5.2.3.4 Combined Results on Reasoning Time

Figure 5.12 shows the combined results of four different conditions, both filters are off, only

Property Filter is on, only Deletion Policy is on, and both filters are on. We present all

groups of data in one diagram to provide readers an overall view of how much improvement

each filter could achieve, performance comparison between these two filters and different

specifics each filter has.

Findings Summary

In this series of experiments, the Rule Complexity of the rule set is 7 and longest time period

is 10 seconds. According to Figure 5.12, we could summarize our findings as:

Figure 5.12 Combined Results on Memory Usage

 49

• Property Filter can reduce the reasoning time by around 20% to 25%.

• The increase rate of Memory Usage is getting smaller as the window size or total

number of triples increases.

• Deletion Policy can maintain the Memory Usage under a very low level even with

increasing window size and this level is determined by the longest time period of rule

set.

• Property Filter could still make further improvements on Memory Usage even the

Deletion Policy is already on.

5.2.4 Experiments about Rule Complexity

This series of experiments evaluates how Rule Complexity inferences on the improvements

that Property Filter made against, Number of Triples, Reasoning Time and Memory

Usage.

5.2.4.1 Rule Complexity vs Property Filter on Number of Triples

Experiment Setup

This experiment collects 9 groups of data with increasing Rule Complexity from 1 to 17, and

in each group, there are two values of Number of Triples metric. One is collected with no

filter on, and the other one is collected with only Property Filter on. In this experiment, the

Window Size is configured to 30 seconds.

 50

Results

Figure 5.13 shows the evaluation results of this experiment.

Findings

According to the result, it is very obvious that Rule Complexity has no inference on total

number of triples. Once the Property Filter is on, the Number of Triples increases

proportionally to Rule Complexity, because Rule Complexity has direct inference on

Number of Triples, just like what we discussed in the previous analyses.

5.2.4.2 Rule Complexity vs Property Filter on Reasoning Time

Experiment Setup

This experiment collects 9 groups of data with increasing Rule Complexity from 1 to 17, and

in each group, there are two values of Reasoning Time metric. One is collected with no filter

on, and the other one is collected with only Property Filter on. In this experiment, the

Window Size is configured to 30 seconds.

Figure 5.13 Rule Complexity vs Property Filter on Number of Triples

 51

Results

Figure 5.14 shows the evaluation results of this experiment.

Findings

According to the result, we could find that, when Rule Complexity is low, Property Filter

could reduce the Reasoning Time up to 50%. However, as the Rule Complexity increases,

fewer triples are removed by the Property Filter and more Reasoning Time is spent on

building more complex RETE network or matching more complex patterns. Therefore, the

Reasoning Time difference between these two lines are getting smaller, and finally, when the

Rule Complexity is 17, they reach the same point, where no triples are removed by the

Property Filter.

 In addition, this result diagram also provide strong support to our findings about

Reasoning Speed, which decreases a lot as total number of triples increases.

Figure 5.14 Rule Complexity vs Property Filter on Reasoning Time

 52

5.2.4.3 Rule Complexity vs Property Filter on Memory Usage

Experiment Setup

This experiment collects 9 groups of data with increasing Rule Complexity from 1 to 17, and

in each group, there are two values of Memory Usage metric. One is collected with no filter

on, and the other one is collected with only Property Filter on. In this experiment, the

Window Size is configured to 30 seconds.

Results

Figure 5.15 shows the evaluation results of this experiment.

Findings

According to the result, we could find that, when Rule Complexity is low, Property Filter

could reduce the Memory Usage up to 50%. However, as the Rule Complexity increases,

fewer triples are removed by the Property Filter and more Memory Usage is spent on

building more complex RETE network or caching more intermediate results. Therefore, the

Memory Usage difference between these two lines are getting smaller, and finally, when the

Figure 5.15 Rule Complexity vs Property Filter on Memory Usage

 53

Rule Complexity is 17, they reach the same point, where no triples are removed by the

Property Filter.

 In addition, this result diagram also provide strong support to our findings about the

increase rate of Memory Usage, which is getting smaller as the total number of triples

increases.

5.2.5 Experiments about Reasoning Accuracy

Reasoning Accuracy is a very important metric to make our filter mechanisms being trusted

and accepted by other researchers. No performance improvement is reasonable without the

guarantee of Reasoning Accuracy.

Experiment Setup

It is not proper to analyze Reasoning Accuracy which is collected based on real time Twitter

Stream, because even though we could make sure the window size stays the same across

different experiment, we can’t ensure the total number of triples and information contained in

these triples stay the same. Therefore, we decide to conduct experiments against the same and

static file with 30 seconds triples for 4 different configurations, including both filters are off,

only Property Filter is on, only Deletion Policy is on, and both filters are on. For each

experiment, we collect the total number of triples reasoned and total number of triples

deduced.

 In these experiments, the Rule Complexity of the rule set is 7. Moreover, in order to

ensure Temporal Functors and Deletion Policy are still working and could produce the same

result across different experiments, a static reference time is created to take place of dynamic

system time, so that the only factors that could affect reasoning accuracy left are the filters.

 54

Results

Table 5.1 shows the evaluation results of this experiment. Reasoning Accuracy is calculated
based on Equation 5.1

Configuration
Triples

Reasoned
Triples

Deduced
Reasoning
Accuracy

Both Filters Off 26878 1324 ------
Only Property Filter On 13294 1324 100%
Only Deletion Policy On 8327 1324 100%

Both Filters On 3619 1324 100%

Findings

According to the result, we can conclude that, no matter which filter mechanism is used, the

Reasoning Accuracy is not affected.

5.3 Key Findings and Limitations

In this section, we summarize all the key findings concluded from previous experiments and
also present the limitations of these filter mechanisms.

5.3.1 Key Findings

Property Filter Performance (Rule Complexity of rule set is 7)

• Property Filter can delete more than 50% triples, which is proportional to Rule

Complexity.

• Property Filter can reduce the Reasoning Time and Memory Usage by around

25%.

Table 5.1 Reasoning Accuracy vs Filters

 55

• Performance improvements made by Property Filter are negatively related to Rule

Complexity. More specifically, the improvement is getting smaller as Rule

Complexity increases.

Deletion Policy Performance (Longest Time Period of rule set is 10 seconds)

• Deletion Policy can maintain the total Number of Triples under a very low level with

increasing window size.

• Deletion Policy can maintain the Reasoning Time and Memory Usage under a much

lower level with increasing window size, comparing to Number of Triples.

• These levels are determined by the longest time period of the rule set.

Reasoner Performance

• Reasoning Speed decreases a lot as Window Size or total Number of Triples

increases.

• The increase rate of Memory Usage is getting smaller as Window Size or total

Number of Triples increases.

•

5.3.2 Limitations

Property Filter Limitation

According to our key findings, the improvements made by Property Filter are related to Rule

Complexity. Therefore, under some rare circumstances, the rule set could cover nearly all the

17 properties for each tweet, where the Property Filter could make very little contribution.

 56

Property Filter Limitation

According to our key findings, the performance level that Deletion Policy maintains is

determined by the longest time period of the rule set. Therefore, under very rare circumstances

where the longest time period is equal to or greater than the Window Size, Deletion Policy

could make no improvements at all.

5.4 Chapter Summary

In this chapter, we evaluated our system performance from different aspects, including

number of triples reasoned, reasoning time consumed and memory usage to show the

significant improvements we achieved from our novel filter mechanisms. In addition,

reasoning accuracy is also examined to provide more confidence for other researchers about

our system. Last but not the least, the limitation of our filter mechanisms are also presented

which inspires further research and development.

 57

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Social media, like Twitter, is gradually becoming an important source of knowledge,

which contains valuable information about a variety of industries. Semantic Web,

believed as the next generation of World Wide Web, is very powerful on processing

such high diversity data source.

 In this dissertation, we present our approach to perform temporal reasoning on

real time Twitter stream using Semantic Web Technologies. To achieve this, firstly,

we design and implement our Twitter stream processor to capture real time Twitter

data and convert it to RDF triples, which could be accepted by the semantic reasoner.

In addition, we extend the previous semantic reasoner with temporal functors so that

it can reason on time dimension data. Moreover, in order to process on Twitter’s

high-frequency and high-diversity data stream, we contribute two novel filter

mechanisms to remove uninterested data based on different rule set characteristics.

Last but not the least, we conduct a number of experiments to our system. According

to the result we provide, we can conclude that the performance improvement

achieved by these two filters is significant.

 58

6.2 Future work

6.2.1 Design and Implement Incremental Reasoning

At the beginning of each reasoning process, a RETE network is built by the rule engine

as the preparation for pattern matching algorithm. During the matching process, a huge

number of matched result nodes are cached in memory and they will be released after

the reasoner deduces the result.

 As mentioned in previous chapters, our stream processor is a window-based

approach. Therefore, each two adjacent windows have a certain period time of duplicate

data, which is already reasoned in the first cycle. Incremental reasoning is a very

powerful technology to solve this problem so that we could keep the intermediate

matched result in memory and when a new window of data comes, instead of building

the network again, only the expired data and its related matched result is removed from

the RETE network and new data is added.

 In theory, this should contribute very significant performance improvement.

Therefore, it is very worthy of further researching and developing.

6.2.2 Extend to Reason on Other Data stream

Apart from Twitter data stream, there are a number of interesting and valuable data

source that could be reason on. For example, Facebook. It is well worth extending our

approach to perform temporal reasoning on Facebook stream and implement some new

functors for specific scenarios. We are very interested to see how easy our approach

could be extended, how well it could perform on other data stream and how it could be

improved.

 59

Abbreviations

RDF Resource Description Framework. 1, 5, 6

URI Uniform resource identifier. 6

RIF Rule Interchange Format. 7

W3C World Wide Web Consortium. 7

OO Object Oriented. 8

DL Description Logic. 9

CEP Complex Event Processing. 11

JDBC Java Database Connectivity. 29

IDE Integrated Development Environment. 29

 60

Bibliography

[1] J. R. Hobbs and F. Pan, “An ontology of time for the semantic

web,” ACM Transactions on Asian Language Information

Processing, vol. 3, no. 1, pp. 66–85, Mar. 2004.

[2] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee, “Linked data on the web

(LDOW2008),” Proceeding of the 17th international conference on World

Wide Web - WWW ’08, pp. 1265–1266, 2008.

[3] N. Shadbolt, T. Berners-Lee, and W. Hall, “The Semantic Web Revisited,” IEEE

Intelligent Systems, vol. 21, no. 3, pp. 96–101, May 2006.

[4] J. R. Hobbs and F. Pan, “An ontology of time for the semantic web,” ACM

Transactions on Asian Language Information Processing, vol. 3, no. 1, pp. 66–

85, Mar. 2004.

[5] C. Gutierrez, C. Hurtado, and A. Vaisman, “Introducing Time into RDF,” IEEE

Transactions on Knowledge and Data Engineering, vol. 19, no. 2, pp. 207–218,

Feb. 2007.

[6] J. Bian, U. Topaloglu, and F. Yu, “Towards large-scale twitter mining for drug-

related adverse events,” Proceedings of the 2012 international workshop on

Smart health and wellbeing, pp. 25–32, 2012.

[7] M. G. Barbieri, Davide, Daniele Braga, Stefano Ceri, Emanuele Della Valle,,

“Stream reasoning: Where we got so far,” Proceedings of the 4th workshop on

new forms of reasoning for the Semantic Web: Scalable & dynamic, pp. 1–7,

2010.

 61

[8] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, “Stream reasoning and

complex event processing in ETALIS,” Semantic Web, IOS Press, vol. 1, pp. 1–

5, 2012.

[9] M. Kifer, H. Boley, “RIF Overview,” W3C Working Group, 2013.

[10] J. Carroll, I. Dickinson, and C. Dollin, “Jena: implementing the semantic web

recommendations,” Proceedings of the 13th international World Wide Web

conference on Alternate track papers & posters, pp. 74–83, 2004.

[11] G. Meditskos and N. Bassiliades, “A Rule-Based Object-Oriented OWL

Reasoner,” IEEE Transactions on Knowledge and Data Engineering, vol. 20,

no. 3, pp. 397–410, 2008.

[12] T. Kim, I. Park, S. J. Hyun, and D. Lee, “MiRE4OWL: Mobile Rule Engine for

OWL,” 2010 IEEE 34th Annual Computer Software and Applications

Conference Workshops, pp. 317–322, Jul. 2010.

[13] S. Ali and S. Kiefer, “µOR–A Micro OWL DL Reasoner for Ambient

Intelligent Devices,” Advances in Grid and Pervasive Computing, pp. 305–316,

2009.

[14] W. Tai, J. Keeney, and D. O’Sullivan, “COROR: a composable rule-entailment

owl reasoner for resource-constrained devices,” in Proceedings of The 5th

International Symposium on Rules: Research Based and Industry Focused

(RuleML’11), pp. 212–226, 2011.

[15] W. Tai, J. Keeney, and D. O’Sullivan, “Resource-Constrained Reasoning Using

a Reasoner Composition Approach,” semantic-web-journal.net, 2013.

[16] E. Della Valle, S. Ceri, P. Milano, F. Van Harmelen, and V. U. Amsterdam, “It

’ s a Streaming World  ! Reasoning upon Rapidly Changing Information,”

Intelligent Systems, IEEE, vol. 24, no. 6, pp. 83–89, 2009.

 62

[17] D. Barbieri, D. Braga, and S. Ceri, “Deductive and Inductive Stream Reasoning

for Semantic Social Media Analytics,” Intelligent Systems, IEEE, vol. 25, no. 6,

pp. 32–41, 2010.

[18] J. Keeney, C. Stevens, and D. O’Sullivan, “Extending a knowledge-based

network to support temporal event reasoning,” 2010 IEEE Network Operations

and Management Symposium - NOMS 2010, pp. 631–638, 2010.

[19] C. Gutierrez, C. Hurtado, and A. Vaisman, “Introducing Time into RDF,” IEEE

Transactions on Knowledge and Data Engineering, vol. 19, no. 2, pp. 207–218,

Feb. 2007.

[20] S. Batsakis, “SOWL  : Spatio-temporal Representation , Reasoning and

Querying over the Semantic Web Categories and Subject Descriptors,”

Proceedings of the 6th International Conference on Semantic Systems, pp. 1–9,

2010.

[21] K. Walzer, T. Breddin, and M. Groch, “Relative temporal constraints in the

Rete algorithm for complex event detection,” Proceedings of the second

international conference on Distributed event-based systems - DEBS ’08, p.

147, 2008.

[22] F. Heintz, J. Kvarnström, and P. Doherty, “Stream reasoning in dyknow: A

knowledge processing middleware system,” 1st Int’l Workshop Stream

Reasoning, pp. 83–89, 2009.

[23] J. C. Augusto, “Temporal reasoning for decision support in medicine.,”

Artificial intelligence in medicine, vol. 33, no. 1, pp. 1–24, Jan. 2005.

