
Augmented Annotation of Real-Time 

Video on a Mobile Phone 
 

 

 

Author: Chris Fenlon  

Supervisor: Dr. Kenneth Dawson-Howe 

 

 

 

A dissertation submitted to the University of Dublin, in partial 

fulfilment of the requirements for the degree of M.A.I (St.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Submitted to the University of Dublin, Trinity College, April, 2014 



i 

 

 

I, Chris Fenlon, declare that the following dissertation, except where otherwise stated, is entirely my 

own work; that it has not previously been submitted as an exercise for a degree, either in Trinity 

College Dublin, or in any other University; and that the library may lend or copy it or any part thereof 

on request. 

 

 

Signature: 

 

Date: 
 

  



ii 

 

Summary: 
 This project servers as a proof of concept for a larger application. The application is to be 

used on a mobile device with a camera, GPS module and mobile data connection. The application 

would allow a user to point the devices camera at a landmark, building, bus stop or other element of 

the urban environment and have useful information annotated onto the image on screen. This 

application would run solely on the mobile device with no back end system involved, using a publicly 

available database of images with labelled buildings, in the form of Google Street View. 

 This project examines the use of computer vision techniques to identify buildings in images 

and matching them between two images. The application takes the input image from the camera 

and a GPS coordinate as input. The GPS coordinate is used to download a Google Street View image 

of the current location. Buildings are then searched for in each image and any buildings found are 

compared. The chosen solution extracts the windows in the buildings present in the images. The 

layout of these windows is then used to describe the buildings layout. 

 To achieve this the reliability and accuracy of GPS coordinates from mobile devices and 

Google Street View are compared. After this the computer vision aspect of the application is 

considered. A window is defined as a roughly rectangular shape, subjected to perspective distortion. 

To extract these windows a new corner detector was developed to extract and classify corners of the 

four types that constitute a rectangle. The window extraction process then searches for groupings of 

these four corner types, in the correct ordering, that are linked together by edge pixels. These edge 

pixels mark the outline of the windows. Buildings are then described by the layout of the windows, 

based on grouping the windows into columns. The columns relative positions to one another is used 

to define a pattern. This pattern is then searched for in the second image. A score of how well two 

buildings match is calculated based on the aspect ratio and relative positions of the windows in each 

pair of matching columns. 

 The main findings of this report are considered in four sections; the GPS analysis, corner 

detection, window extraction and matching. The GPS tests indicated a number of potential issues. 

The GPS coordinates provided by different devices will be not match. The GPS coordinates provided 

by the device may not yield a Google Street View image at the same location. This can generally be 

rectified by downloading multiple Google Street View images at the same location, but with 

different orientations. The mobile devices GPS readings are susceptible to spurious outputs. This can 

be rectified by maintaining average GPS positions over time. 

 The corner detector method works quite successfully. The extraction method can struggle 

when there are two lines of edge pixels very close together. The window extraction method requires 

all four corners to be found and a, mainly, continuous line of edge pixels outlining the window. The 

method is very successful, but is reliant on results from the previous stage. The matching algorithm 

for comparing buildings in two separate performs quite well, provided the majority of the windows 

are found. If too few are found the application struggles to extract enough positional information to 

produce a reliable score. The biggest issue found was the stitching methods used by Google in 

creating the images for Google Street View. This stitching has the potential to distort the image and 

remove details such as windows. 

 Overall the project succeeded in analysing if the GPS on a mobile device is suitable for this 

application. It also successfully trialled the techniques above for describing and comparing buildings. 

The overall application is not implemented here as this project merely sought to prove certain 

aspects were possible. These have been proved, with some reservations about using Google Street 

View in its publicly available form. 

  



iii 

 

Acknowledgements: 
 

 I would like to thank my supervisor Dr. Kenneth Dawson-Howe for his support, guidance and 

direction throughout this project.  

 

 I would like to thank my family and friends for their support and encouragement throughout 

the duration of this project. A special word of thanks goes to my mother for all the hours spent proof 

reading this report. 

 

  



iv 

 

Contents 

Summary: ................................................................................................................................................ ii 

Acknowledgements:............................................................................................................................... iii 

1 Introduction .................................................................................................................................... 1 

1.1 Aims: ....................................................................................................................................... 1 

1.2 Motivation: ............................................................................................................................. 2 

1.3 Ethical Considerations:............................................................................................................ 4 

1.3.1 Data: ................................................................................................................................ 4 

1.3.2 Usage: .............................................................................................................................. 5 

1.3.3 Summary: ........................................................................................................................ 6 

2 Overview: ........................................................................................................................................ 8 

2.1 Overview of the Problem: ....................................................................................................... 8 

2.1.1 GPS: ................................................................................................................................. 8 

2.1.2 Descriptive Features: ...................................................................................................... 8 

2.1.3 Building Façade Description: ........................................................................................... 8 

2.1.4 Matching: ........................................................................................................................ 9 

2.1.5 Summary: ........................................................................................................................ 9 

2.2 Building identification ............................................................................................................. 9 

2.2.1 Existing Research: ........................................................................................................... 9 

2.2.2 Applicability to application: .......................................................................................... 12 

2.2.3 Algorithm Selection: ...................................................................................................... 12 

2.2.4 Summary ....................................................................................................................... 13 

3 Application Description: ................................................................................................................ 15 

3.1 Introduction: ......................................................................................................................... 15 

3.2 Inputs: ................................................................................................................................... 15 

3.3 Device requirements: ............................................................................................................ 15 

3.4 Application operation: .......................................................................................................... 16 

3.4.1 Pre-Processing: .............................................................................................................. 17 

3.4.2 Window Extraction:....................................................................................................... 17 

3.4.3 Building Description: ..................................................................................................... 17 

3.4.4 Matching: ...................................................................................................................... 17 

3.4.5 Annotating: ................................................................................................................... 17 

3.5 Conclusion: ............................................................................................................................ 17 

4 Implementation: ........................................................................................................................... 18 

4.1 GPS: ....................................................................................................................................... 18 



v 

 

4.1.1 Introduction: ................................................................................................................. 18 

4.1.2 Google Street View: ...................................................................................................... 18 

4.1.3 Mobile Devices: ............................................................................................................. 19 

4.2 Window Extraction................................................................................................................ 19 

4.2.1 Introduction: ................................................................................................................. 19 

4.2.2 Window Description: .................................................................................................... 19 

4.2.3 Edge Detection: ............................................................................................................. 20 

4.2.4 Corner Detection: .......................................................................................................... 23 

4.2.5 Extracting corners: ........................................................................................................ 23 

4.2.6 Window extraction: ...................................................................................................... 29 

4.2.7 Conclusion: .................................................................................................................... 30 

4.3 Façade Description: ............................................................................................................... 31 

4.3.1 Introduction: ................................................................................................................. 31 

4.3.2 Columns of windows: .................................................................................................... 31 

4.3.3 Conclusions: .................................................................................................................. 35 

4.4 Façade Matching ................................................................................................................... 36 

4.4.1 Introduction: ................................................................................................................. 36 

4.4.2 Matching Columns: ....................................................................................................... 36 

4.4.3 Matching Windows within Columns: ............................................................................ 39 

4.4.4 Overall score: ................................................................................................................ 40 

4.4.5 Conclusions: .................................................................................................................. 41 

4.5 Summary: .............................................................................................................................. 41 

5 Results and Testing: ...................................................................................................................... 43 

5.1 GPS ........................................................................................................................................ 43 

5.1.1 Test Case One:............................................................................................................... 43 

5.1.2 Test Case Two: .............................................................................................................. 45 

5.1.3 Conclusions: .................................................................................................................. 52 

5.2 Corner Detection:.................................................................................................................. 53 

5.2.1 Test Case One:............................................................................................................... 53 

5.2.2 Test Case Two: .............................................................................................................. 55 

5.2.3 Conclusions: .................................................................................................................. 57 

5.3 Window Extraction: .............................................................................................................. 57 

5.3.1 Test Case One:............................................................................................................... 57 

5.3.2 Test Case Two: .............................................................................................................. 58 

5.3.3 Conclusions: .................................................................................................................. 60 



vi 

 

5.4 Façade Matching: .................................................................................................................. 60 

5.4.1 Test Case One:............................................................................................................... 60 

5.4.2 Test Case Two: .............................................................................................................. 62 

5.4.3 Conclusion: .................................................................................................................... 66 

5.5 Conclusions: .......................................................................................................................... 66 

5.6 Limitations: ........................................................................................................................... 67 

6 Final Word: .................................................................................................................................... 69 

6.1 Future Work: ......................................................................................................................... 69 

6.2 Conclusions: .......................................................................................................................... 69 

7 Bibliography .................................................................................................................................. 71 

8 Appendix: ...................................................................................................................................... 72 

8.1 Appendix A: Alternative Approaches .................................................................................... 72 

8.1.1 Vanishing Points: ........................................................................................................... 72 

8.1.2 Line extraction: ............................................................................................................. 72 

8.1.3 Histogram of oriented gradients: .................................................................................. 75 

8.1.4 SIFT: ............................................................................................................................... 78 

8.1.5 FAST Features: ............................................................................................................... 78 

8.2 Appendix B: Supplementary Results data ............................................................................. 80 

8.2.1 Corner Detector and Window Extractor: ...................................................................... 80 

8.2.2 GPS Data ........................................................................................................................ 86 

  



1 

 

1 Introduction 
 Computer vision is the branch of computer science dealing with the analysis of images, to 

extract knowledge. Researchers strive to develop this field to such an extent that simulating the 

human vision system would be possible, but at present this is nowhere near a realistic goal. While 

simulating the full human vision system is unrealistic, solving specific problems is a realistic goal. This 

project aims to solve such a specific problem using computer vision. 

1.1 Aims: 

 This project aims to perform building identification on a mobile device. The identified 

building will then be annotated with useful information about the buildings function, such as contact 

details for the occupants, historical information about public landmarks and so forth. To achieve this, 

the goal is to compare the image taken with the on board camera, with images from a publically 

available database of images, Google Street View. Once the building has been identified the address 

will be extracted from Google Street View and this will allow the application to query a directory 

service or similar service to download information to annotate on the input image. 

 To illustrate this an example is considered below. Figure 1 below shows a person standing 

outside the Lloyd building in Trinity College Dublin. They are unfamiliar with the building and need 

more information about it. Using an application such as the one proposed in this project, they can be 

presented with an output such as that shown in Figure 2 below. 

 
Figure 1 A person standing outside the Lloyd Building in Trinity College Dublin. They are using their 

phone to view the building. 

 The output in Figure 2 below displays the name of the building, some information about the 

different departments in the building and where they are located. The information is presented 

superimposed on the building and can contain links to external sites. These external links allow the 

user to find more in depth information. 



2 

 

 
Figure 2 This image provides a view of the mobile device and the output displayed on the screen. 

1.2 Motivation: 

 Today most people have access to mobile devices such as tablet computers and 

smartphones. These devices have quality cameras, GPS capabilities, internet access and relatively 

good processing power for their size. The internet contains a large amount of information about the 

many buildings, landmarks, bus stops, pubs, restaurants, etc. that people see as they traverse an 

urban environment. People unfamiliar with the environment may constantly need to ask passers-by 

for this information or search the internet as they walk. 

 This project examines whether it is possible to present this information in a timely and 

intuitive manner, using only the camera, GPS and internet connection on a mobile device. Consider if 

Lloyd Institute, 

Trinity College 

Dublin 

DSG 

High Perform. Comp. 

TCIN 

Labs 

Computer Science 

CAG 

 Abbey Lodge, Celbridge 

Bar food served noon to 9, check out the menu 

Check out today’s specials 

 

Relax in this locally run and owned lounge, with 

good brew and good food, still not convinced? 

Why not check out what our other guests have 

said 

Figure 3 Sample information for a public establishment 



3 

 

you were a tourist in a city you had never been to, you are walking down a main street in the city 

and are passing many restaurants and you want to know the menus, the specials, the quality of the 

food and atmosphere. You could research each one individually online, visit each and read the 

menu, but what if you could just turn on your camera, on your mobile device and have the opening 

times, links to menus, reviews, specials, etc. superimposed on the image feed from the camera, such 

as that shown for a public establishment in Figure 3 above. 

 

 

Imagine you need to use 

the public transport 

system to explore the city, 

but you don’t know which 

buses, trams or trains go to 

which destination. You 

could trawl the internet, 

tourist information offices 

and friendly drivers asking 

for help. Or you could 

simply look at the bus stop 

or train station you are 

currently at through the 

camera on your mobile 

device and see the routes 

serving this stop, when the 

next bus or train will arrive, 

where it is going and have 

links to route maps and the 

transport operators 

webpage as shown in 

Figure 4.  

 As you traverse the 

city and visit the many 

landmarks, it would be 

nice to learn some of the 

history of that landmark 

and its significance. You 

could carry a city guide 

book and leaflets from the 

tourist information office, or look it up online, or simply use your mobile device and read the 

information, superimposed on the landmark in the video stream as in Figure 5 below. 

 Dublin Bus 
Stop 2378 

46a Dun Laoghaire 5min 

38   Damastown 6min 

40   Liffey Valley 8min 

46a Dun Laoghaire 9min 

Figure 4 A sample of the annotations possible for bus stops 



4 

 

 
Figure 5 A image of the old library in trinity College Dublin, tourists are attracted to the Book of Kells 

and the long room. 

 This allows for a swift and intuitive traversal of the environment. The application provides 

brief information with links to allow for further reading. The idea being to link the visual with the 

vast amount of information available online, but to do it in a way that allows a user to only get as 

much of that information as they wish. This idea of linking the visual with information would be 

beneficial to many different parties, residents of the city traversing new areas, commuters gathering 

information about their route home, tourists visiting landmarks, revellers trying to find the best 

party in town and many more. 

1.3 Ethical Considerations: 

 Research in general needs to be held to certain ethical standards. This includes the way in 

which experiments are carried out, the reporting of the results and acknowledging the work of 

others, where appropriate. On top of these considerations are specific ethical issues arising from the 

nature of the experiments carried out or the application being developed. 

 When considering this particular research project, there are a few key areas where ethical 

considerations need to be made. These key areas are; data collection of sample inputs for testing 

purposes and the ways in which the application could be used.  

1.3.1 Data: 
 Data collection is a key part of the experimental and testing aspect of this project. It is 

necessary to allow for the reporting of how successful the techniques and algorithms presented, 

perform with real data. When collecting data, photographs and videos are recorded in public 

locations. While this is necessary to give examples of the type of inputs the application would 

expect, there is also the potential to record people at the same time. This becomes an ethical issue if 

the person can be easily identified by some visual features (such as their face) being present in the 

image. The storage of this data becomes subject to legal standards as this can be classified as 

personally identifiable information (PII). There are two ways of handling this, the first is to store the 

 Trinity College 

Old Library 

Come in and see The Book of Kells 

Ticket Prices 

Group specials 

 

The Book of Kells is a 9th century gospel 

manuscript, famous throughout the world. 

Also see the long room, housing over 200,000 of 

the libraries oldest books 



5 

 

data in a secure manner which meets the required legal standard, and the second is to edit the 

images in such a way that the PII features have been removed. 

 The first option presented is complex and would require a lot of time to first understand the 

required standards and then to implement them. In the second option, when altering the image in 

any way, it 

needs to be 

considered if 

this will make 

the gathered 

data 

unsuitable 

for use in 

testing. 

Removal of 

the PII is 

achieved 

through 

blurring the 

image. The 

main PII that 

will be 

present in 

the data are 

people’s 

faces, car 

licence plates 

and features 

of a similar 

nature. Considering the application seeks to extract information about buildings, and the size of 

faces and licence plates in comparison to buildings, this blurring should not impact negatively on the 

performance of the application. This means the data with PII blurred out, will still be suitable for 

testing, as it is remains representative of real world input the application would expect. This is the 

strategy employed by Google Street View and can be seen in Figure 6 above, in the image it can be 

seen that the licence plate of the car on the left has been blurred out and the people on the 

footpath have had their faces blurred. Thus the second option is less complex than option one and is 

therefore the adopted approach for this research. 

1.3.2 Usage: 
 When this application is operational it is envisaged it will display information about the 

building(s) in view. This will include details about the occupants and their contact information, be 

they corporate or individual occupants. This information is publicly available through directory and 

internet services such as the Golden Pages. Thus there is nothing ethically wrong in gathering this 

information and presenting it to the public, it is after all publicly available. While the presentation of 

information in this new manner has many advantages, it should be considered if it could have 

negative implications. Some of the advantages and disadvantages of such an application are 

discussed below. 

 This application aims to gather information about the buildings and landmarks in view and 

present this in a timely and intuitive manner to the end user. This type of technology would useful to 

Figure 6 Google Street View image containing people and cars, note how the faces 

and licence plates have been blurred. 



6 

 

a multitude of different user, from commuters examining timetables, to tourists exploring the city. 

This information is readily available online, but can be difficult to access while on the move. Another 

benefit is that companies have a lot of information they make available to the public, but actually 

getting the information to the right people at the right time can be difficult. An application such as 

this, allows a new route for companies to provide information to potential clients and customers. 

 The gathering of this information and displaying it in this manner is open to potential abuse. 

The possibility exists for this information to be used by opportunistic thieves to achieve their goals. 

Presenting the name and phone numbers of the occupants, as shown in Figure 7 below, would allow 

a potential thief to try knocking on the door as well as phoning the residence to establish if it is 

empty or not. If the names could be used to find the occupants social media pages, this could be 

used to establish if the resident is away from home. Thus helping the thief establish if the residence 

is occupied or not. 

 Another consideration is the invasion of a person’s privacy. All of this information is publicly 

available and seems innocuous in isolation. The question is whether gathering all of this information 

together creates too substantive a profile of the individual involved? Linking all of these pieces of 

data together does not violate any laws, but is it socially acceptable to generate such a profile?  

 It is important to raise the issues highlighted above, but they would not deter from building 

such an application. The issue is comparable to the ethics of building a computer, computers have 

greatly enhanced the lives of millions of people the world over. Though a small proportion of people 

use this technology in an objectionable manner, the overwhelming positive effect of computers 

would mean it is ethical to build a computer. The ethical issue is with the user abusing the computer, 

not the manufacturer for building it. A similar conclusion can be attributed to this application. It has 

the potential to be used in a positive manner to greatly enhance a user’s experience of traversing 

the urban environment, especially in an unfamiliar environment. Issues such as those raised above 

need to be highlighted and considered, but would not lead to the abandonment of this technology. 

1.3.3 Summary: 
 After considering the above issues, it is clear that some ethical issues need to be addressed 

when implementing such an application. The main concern surrounds the types of data gathered; 

Joe Blogs 

 

01 624 2345 

John Doe 

 

01 624 1234 

Anne Anderson 

 

01 624 3456 

Figure 7 A mock-up of application output, using typical information found in a directory service 



7 

 

data collected and stored for testing purposes and data collected and displayed to the user. The 

issues surrounding the collected experimental data is that it may contain information which could 

personally identify an individual. To address this issue the collected data has all faces, licence plates 

and any other PII features blurred, as shown in Figure 6. The other potential issue is how this 

application could potentially be used. The application itself is not unethical, it only gathers publicly 

available data and its goal is to improve the user’s experience of traversing an urban environment. 

While it is important to highlight such risks, it is also important to note that they should not stop the 

development of such an application. The majority of users of such an application would greatly 

benefit from using it as intended.  

 

  



8 

 

2 Overview: 

2.1 Overview of the Problem: 

 This section of the report seeks to establish an overview of the main problems which need 

to be overcome in developing a solution for the proposed application. This section should provide a 

high level “road-map” of the project, with the aim of clarifying how different aspects of this project 

are linked together. While each section of this report is considered individually, it is important to 

remember the high level application and the requirements of that section. Considering each section 

with the broader application in mind, will allow assumptions to be made to simplify the processing 

techniques employed. 

 The main stages involved in the applications operation are listed below; 

 Extract the GPS coordinates of the mobile device and download the corresponding Google 

Street View Image. 

 Identify features to describe the buildings in the images. 

 Design a method of describing a building façade using these features. 

 Compare two images for similar buildings. 

A brief overview of the purpose of each step is provided below. 

2.1.1 GPS: 
 The application aims to compare an image from a mobile devices camera and the Google 

Street View image at that location. To download the Google Street View image the application 

requires a GPS coordinate.  

 There are a number of anticipated issues that may arise with regards the GPS coordinates 

and Google Street View. The first is inaccuracies in the GPS coordinates from mobile devices. Mobile 

devices are built with very different specifications and the same can be said about the GPS modules 

within the devices. This means it is not reasonable to expect to get the same GPS coordinates from 

two different devices used at the same location. There are also issues with regards Google Street 

Views data collection method. As the images are taken from on top of a car, the result is that images 

provided will all be at a high elevation and also from the middle of the road.  

 For the purposes of this project, these two issue will be examined. The goal is to get images 

that match to a satisfactory level to allow the application to identify the same building in the two 

images and match them.  

2.1.2 Descriptive Features: 
 To describe what a building looks like the application will need certain features, which it can 

extract and then use to match two buildings across two different images. The word features is a very 

broad term, for this application this simply means some form of characteristic of the building which 

can be described in a unique manner. There are a number of options available for this, some of the 

standard approaches would be the use of a feature detector like SIFT, template matching, colour 

based matching, shape based matching and many others. In latter sections a number of these are 

discussed and one method chosen. 

2.1.3 Building Façade Description: 
 Once the application has identified a number of characteristics of the building façade(s) in 

the image, a description of the entire façade is needed. This needs to contain information not just 

about the features of the building found, but how the building can be described when all of these 

features are grouped together to form a building façade. 



9 

 

2.1.4 Matching: 
 Up to this stage the two images have been processed in isolation, now the two images are 

compared with each other. The descriptions of the buildings contained within the images is used for 

this comparison. The application examines the description in one image and tries to find a similar 

description in the other. This comparison yields a score based on how well the two descriptions 

match and this score is used to indicate if the buildings match. 

2.1.5 Summary: 
 In this section a brief overview of the main sections of the application considered in this 

project are presented. The four main sections are; GPS extraction, finding descriptive features, 

façade description and matching across multiple images. 

 The application extracts the GPS coordinates of the mobile devices location. This is used to 

download a Google Street View image for the location. The Google Street View image and input 

image from the camera are then processed individually before being compared. The descriptive 

features are extracted and combined to form a description of the buildings in the images. The two 

images are then compared, based on these descriptions. 

2.2 Building identification 

In this section a number of examples of previously trialled building identification techniques are 

presented. Through examining these and considering their applicability to this application, a number 

of possible approaches will be identified. Once these approaches have been identified they are 

evaluated and a suitable algorithm chosen for implementation in this project. 

2.2.1 Existing Research: 
 There are many published works in the computer vision community which involve 

processing building façades. The majority of these works have focused on augmented reality 

navigation. This involves superimposing navigation supports, such as arrows, into a live video 

stream. As these applications intent to augment information onto the buildings they extract planar 

information about the buildings (Chen, et al., 2011) (McClean & McDonald, 2013) (Robertson & 

Cipolla, 2004). 

2.2.1.1 Extracting building façades: 

 The general approach taken by these authors is to find vanishing points associated with the 

plane(s) of the buildings in the image. The idea being to use these vanishing points to establish a 

coordinate system for the plane, which can then be aligned with the plane of the camera. This 

transformation from image plane to building plane is described with a matrix transformation, called 

a homography. A diagram illustrating how vanishing points are calculated and what they represent is 

shown below in Figure 8 below. 



10 

 

 
Figure 8 This image demonstrates how the horizontal vanishing points are extracted. The two 

facades for the building shown have individual horizontal vanishing points. A similar vertical 

vanishing point exists for the building. This is found by extending the vertical lines in a similar way to 

the horizontal lines shown. (Heaston, 2014) 

 (McClean & McDonald, 2013) describe the process of extracting the homography in five 

stages; 

1. Line segment extraction: the image is processed to extract line segments present in the 

image. These correspond to edges in the image such as those outlining the building, 

windows and other shapes of the façade. 

2. Tilt rectification: when a user takes a photo with a camera the camera is usually tilted 

upwards. This stage removes this tilt, so as to give an image where the camera is looking 

straight on at the building. 

3. Parallel line grouping: before examining the lines and finding vanishing points, they must be 

grouped together. Parallel lines are grouped together, as these groupings will yield the 

vanishing points. 

4. Layout extraction: it is in this stage that the vanishing points are found. Once they are found, 

they are used to assign directions to sub regions within the image. It is from this that each 

façade within the building can be extracted. 

5. Homography estimation: with the facades extracted the homography matrix can be 

estimated. This is achieved by calculating the transformation matrix between the façade 

plane and image plane. This transformation calculates the rotation and translations which 

transform points on the image plane onto the façade plane. 

(Robertson & Cipolla, 2004) used a simpler version of this which is illustrated in Figure 9 below. In 

this diagram the homography matrix has been applied to the original image. This transformation 

converts the image so it appears as if the photo was taken from directly in front of the building 

discovered. While (McClean & McDonald, 2013) developed a system which could identify multiple 

façades within an image, (Robertson & Cipolla, 2004) assume there is one dominant planar surface. 



11 

 

 
Figure 9 The leftmost images (a) show the original image with all the detected lines. The middle 

images (b) show only the lines which are associated with the horizontal and vertical vanishing points. 

The rightmost images (c) show the transformed output, where the homography matrix has been 

applied to the image. This transforms the image as if it were taken from a camera directly in from of 

the building. 

2.2.1.2 Database: 

 The systems proposed by (McClean & McDonald, 2013) and (Robertson & Cipolla, 2004) all 

use a database of images of the urban environment to compare a sample image against. This 

requires a huge overhead on the part of the researchers as they must gather all this information, 

create the database and in some cases, pre-process all of this data before it enters the database. 

 (Chen, et al., 2011) discuss in detail how such a system is constructed. They talk about the 

equipment needed for the gathering of data, which includes LIDAR, panoramic cameras, GPS and 

inertial measurement unit (IMU). They discuss how the panoramic view collected must be 

transformed to perspective views. These views are then processed to make future comparisons 

easier and then added to the database. To create a database for the city of San Francisco, 1.7 million 

perspective pictures were generated. 

 (McClean & McDonald, 2013) present a novel method of constructing the database. Their 

system analyses new data presented as input and searches for matches within the database. If no 

matches are found the plane in the new input image is added to the database. The novel aspect is 

that if the new plane overlaps with one plane in the database, the two are connected to form a 

larger plane in the database. If the input plane matches two different database planes then the 

three planes are joined together to form one large plane in the database. 

2.2.1.3 Matching across multiple images: 

 In all three projects presented the authors compare the input image with images from the 

database. (Robertson & Cipolla, 2004) find Harris features (Harris & Stephens, 1988) at multiple 

scales and compare features in one scale with features in all other scales to find the best match. 

Multiple scales refers to different levels of blurring applied to the image, to simulate the image being 

taken with a camera at a position further away from the building. 

 (McClean & McDonald, 2013) use a bag-of-words (Galvez-Lopez & Tardos, 2011) technique 

to match two images together. The bag-of-words technique divides the image into a number of 



12 

 

different features. A histogram is then created with one location for each feature, this histogram is 

then filled with values equal to the number of occurrences of each feature. This histogram is 

calculated for each image and the comparison is made on these histograms, the closer they match, 

the higher the probability of the two images containing the same building. (Chen, et al., 2011) use 

SIFT (Lowe, Object recognition from local scale-invariant features, 1999) features to describe the 

buildings. These descriptors are then matched across the two images to find matching buildings. 

They also discuss the how the database is searched in order to find images to compare with the 

input image. The search space is reduced by using the GPS coordinates of the input image. 

2.2.1.4 Analysis: 

 All of the systems described above do not perform any of the image processing or matching 

on the mobile device. In all of the above examples an image is taken on the mobile device and then 

sent to a remote server. This server then performs all of the image processing and matching with 

images from the database. The result is then prepared on the server and returned to the mobile 

device for display. 

 The systems presented above also use their own database of images to compare the input 

image with. This database contains images which have been pre-processed to aid performance and 

accuracy.  

 As a result the techniques presented above represent a good starting point for this 

application, but may not be suitable. They may not be suitable as the application will run all of the 

image processing on the mobile device and use a publically available database of images, Google 

Street View. These images have no pre-processing applied specifically for use with this application. 

2.2.2 Applicability to application: 
 For this project, applying transformations to the information which is superimposed on the 

building is not necessary. This assumption can be made based on the screen size of a mobile device. 

If the application is presenting text based information on a small screen, having it distorted would 

make it very hard to read. This means extracting the planar information for transforming the output 

onto the plane of the building façade is not necessary. 

 This application seeks to make use of Google Street View as the database of images. This will 

reduce performance when compared to the research presented. This is a result of the data in the 

database not having any pre-processing applied to aid the performance of this application. The 

application will perform all processing on the mobile device. This may have a limiting effect on the 

complexity of the algorithms that can be used.  

2.2.3 Algorithm Selection: 
 As a starting point, a vanishing point methodology similar to that presented by (McClean & 

McDonald, 2013) was trialled. The results and a discussion on this trial is presented in Appendix A: 

Alternative Approaches. This method was not successful as the line segments extracted were not 

suitable for finding the vanishing points. A sample of the results are show below in Figure 10 below, 

the issue is the lack of lines generated by the tops and bottoms of the windows. The other problem 

are the noisy lines generated at the footpaths edge. The end result was it was not feasible to extract 

the vanishing points for the building façade. 



13 

 

 
Figure 10 This image shows the lines extracted, left, and the lines used for vanishing point detection, 

right. 

 A number of other approaches were considered, for example using a regular feature 

detector such as SIFT (Lowe, Object recognition from local scale-invariant features, 1999), or FAST 

(Rosten & Drummond, Machine Learning for High-Speed Corner Detection, 2006) features. These 

methods proved unsuccessful and again are described in Appendix A: Alternative Approaches.  

 

 At this point a new approach was adopted. This approach has been implemented and is 

presented in this report. The method seeks to extract the windows within the image. Then extract 

the pattern of the windows and use this to describe the building. This approach was conceived after 

relative success in trialling the FAST feature detector, see Appendix A: Alternative Approaches for 

more details. This description is then used to compare buildings in multiple images. 

 

2.2.4 Summary 
 In the above discussions a number of previous works are discussed. Each of these have 

trialled varying approaches to building identification. A common theme amongst these works is the 

use of purpose built databases, with back end systems performing the image processing. This is 

where the application under consideration differs from those presented above. This application will 

use Google Street View as its database and all processing will be performed on the mobile device.  



14 

 

 Through experimentation it was found that the vanishing point approach was not going to 

work. A number of other techniques were trialled and are discussed in more detail in Appendix A: 

Alternative Approaches. The chosen method extracts the windows in the image and bases the 

description of the building on their layout. A more detailed explanation of the chosen approach 

follows in the next section. 

  



15 

 

3 Application Description: 

3.1 Introduction: 

 In this chapter the overall application is described. This project will act as a proof of concept 

of this application. The inputs the application requires and the demands this places on the mobile 

device are discussed. The application itself is then discussed, with the five main stages briefly 

introduced. These stages are; pre-processing, windows extraction, building description, matching 

and annotation. Each stage builds on the previous stage and how this progression from stage to 

stage is discussed.  

3.2 Inputs: 

 The application requires only three inputs, an image from a camera on the device, a GPS 

location and an orientation. To start identifying the building two images are required, one from the 

camera and one from Google Street View. The GPS and orientation information are used to 

download the correct Google Street View image. 

3.3 Device requirements: 

 For the application to successfully operate there are a number of demands placed on the 

device to be used. The four main elements required are a standard camera, a GPS receiver and a 

quality internet connection. 

 The device camera will provide the main image with which the Google Street View images 

will be compared. Google use high quality cameras when acquiring images for their Street View 

product. As identifying buildings will require the extraction of identifying features, the quality of the 

two images must be somewhat similar to allow for the extraction of similar features from both 

images. This relates to the resolution of the camera on the mobile device. 

 The mobile device will need a GPS receiver that is accurate to within a few meters. This is 

essential as to download one or more images from Google Street View requires a longitude, latitude 

and orientation. It will also improve performance if the extraction of orientation information is 

possible. While it is possible to download a number of images at the same location that would 

encompass a 3600 range, processing these extra images would affect performance. To counteract 

devices with poor GPS hardware, a number of extra images could be downloaded to examine 

locations “near” the presented GPS coordinates. 

 The mobile device will require a reliable internet connection as it will be necessary when 

downloading pictures from Google Street View. The images are downloaded one at a time, but 

depending on how accurate the GPS coordinates are a large number of image may need to be 

downloaded to achieve a satisfactory result. To reduce the bandwidth used, smaller images could be 

downloaded, but this will decrease the resolution of the image, which limits the features that can be 

extracted. Thus reducing image size produces a trade-off between speed and accuracy. 

  



16 

 

3.4 Application operation: 

 The application has a number of different stages, each of which build on the output of the 

last. The process starts by taking the inputs and processing the resulting images. These images are 

then compared to find matching building(s). If a match is found the input image is annotated and 

displayed to the user. If no match is found the GPS coordinates or orientation are adjusted and the 

process starts again. 

 

CameraOrientationGPS

Google Street 
View

Pre-Processing

Window Extraction

Building Description

Pre-Processing

Window Extraction

Building Description

Matching

No Match

Adjust GPS or 
Orientation

Matched Buildings

Annotation
Address Based 

Building 
information

Output Image

 
Figure 11 System diagram, note the two external information sources required and the iterative 

process which adjusts the GPS and/or orientation information. 

The application diagram, shown in Figure 11 above, illustrates the different stages involved and how 

the application adjusts the GPS and/or orientation information to allow for inaccuracies in the input 

data. Below the main functionality of each stage is described. 



17 

 

3.4.1 Pre-Processing: 
 The input images are subjected to a number of techniques to generate suitable inputs for 

the window extraction stage. The input image is converted to greyscale and subjected to a 2-D edge 

detector. This produces an edge image which contains the outline of the windows. This is used as 

input to the window extraction process. 

 

3.4.2 Window Extraction: 
 The window extraction process follows on from the pre-processing and uses the edge image 

produced by that stage. This stage has two main parts; corner detection and window extraction. The 

first part finds the corners which form part of the definition of a window. The window extraction is 

then performed using the detected corners and edge image. 

 

3.4.3 Building Description: 
 Before two images can be compared, the information about any buildings in the image must 

be described. The description must be designed in such a way as to allow comparisons across 

multiple images, captured in a variety of different conditions. The description of the building is based 

on the windows discovered, their relative size and their position relative to the other windows. 

 

3.4.4 Matching: 
 Once the two input images have been processed and described, the matching process can 

proceed. The Building description stage builds a description of how the buildings windows are laid 

out, both in terms of size and relative position. Comparing two images involves examining how 

similar the two descriptors are, and calculating a score based on this. This needs to be able to handle 

missing windows in one image and extra windows in another image. 

 

3.4.5 Annotating: 
 Once the buildings have been matched, the address needs to be extracted from Google 

Street View. Using this address a directory service will be queried to extract information about the 

occupants of the building, or the significance of the building. This information is then parsed and 

annotated onto the input image. This input image will then be displayed to the user. 

 

3.5 Conclusion: 

 The above section briefly introduces how the entire application operates and the different 

stages involved. Each stages takes the output of the previous as its input. The application takes only 

three inputs; an image, a GPS coordinate and an orientation. Based on this a Google Street View 

image is downloaded. The goal is then to compare buildings in the camera image and the Google 

Street View image. Before comparing these images a description of the buildings present is 

generated. This is based on the windows which make up the building’s facade, using the size of the 

windows and their relative positions. Based on this description the comparisons can be made and a 

score calculated to indicate how well the buildings in the images match. If a match is found, 

information about that building is downloaded from a directory service, parsed and annotated onto 

the input camera image. This is image then displayed on the mobile device for the user. 

  



18 

 

4 Implementation: 
 This section provides a detailed and in depth description of the implemented application. 

There are four main parts and each are presented individually. These are; GPS coordinates, window 

extraction, façade description and matching. In each section the potential issues are discussed along 

with a detailed explanation of the different stages involved. This is accompanied with an in depth 

explanation, with examples, of how the different stages achieve their goals. 

4.1 GPS: 

4.1.1 Introduction: 
 The application requires a Google Street View image to compare with the current camera 

image. To download this image a GPS coordinate is required, this is read from the GPS device on 

board the mobile device. An accurate GPS coordinate allows for an image to be downloaded from 

Google Street View, which will contain the building in the input camera image. Inaccurate GPS 

coordinates will result in the application having to adjust the GPS coordinates a number of times, 

until a suitable image is downloaded. This requires excessive bandwidth as extra data is downloaded 

and will also reduce performance as more images must be processed. 

 In this section the GPS devices on a number of mobile devices are tested. The aim is to 

evaluate the accuracy of the GPS devices and that of Google Street View and highlight any issues 

that may arise due to inaccuracies. 

4.1.2 Google Street View: 
 This short section aims to briefly introduce 

how Google create the Street View product and 

highlight some of the issues arising from the data 

collection method. 

 Google use cars similar to the one pictured in 

Figure 12, right. The car uses GPS systems, cameras, 

lasers, accelerometers and other sensors to gather 

the data for the Street View service. The GPS 

coordinates, speed and direction of the car are used 

to calculate where each image was taken and create 

the online database that is accessible via the google 

maps service or via a URL. When the images are 

taken, the following image has a small region of 

overlap with the previous image. This then allows 

Google to “stitch” the images together, after post 

processing Google claim the result is a “smooth 

transition” (Google, 2014).  

The URL access method allows a user to specify a 

locations longitude, latitude, field of view, heading, pitch and the size of the downloaded image. 

These field can be seen in the sample URL given below; 

 
 The manner in which Google gathers this data leaves the potential for errors to be 

introduced in the correlation between image location and GPS coordinate. Another issue is that 

Google take pictures at regular intervals as they drive along, thus in reality the images are taken at 

http://maps.googleapis.com/maps/api/streetview?size=800x800&location=53.33783,%20-

6.5385&fov=60&heading=345&pitch=10&sensor=false 

Figure 12 (Google, 2014) An example of a 

car used by Google to record images for 

their Street View service. Note the laser 

sensors and panoramic cameras and the 

height of the camera 



19 

 

finite locations. This means any image viewed in between these locations is an approximation, which 

further introduces the potential for errors. This also applies when querying Google Street View for 

an image at a specific location, the image returned will in a different position. This is because Google 

Street View will return the image taken at the location the vehicle took a photo from, which is 

closest to the given coordinates. This instantly means a photo taken from a footpath will not match 

perfectly to the Google Street View image, which is taken from the middle of the road.  

4.1.3 Mobile Devices: 
 Mobile devices come in many shapes, sizes and, most importantly, specifications. The key 

point is that various devices use a diverse range of GPS chips and will perform differently under 

similar circumstances. These differences will be illustrated in field testing, discussed later. The GPS 

device on a phone needs time to initialise, as it connects to more satellites. This means readings 

taken immediately after the GPS sensor is activated will be unreliable.  

 For this project it is necessary to ascertain if the accuracy of the GPS on a range of mobile 

devices is suitable for this application. The accuracy need not be absolutely perfect, but it will need 

to be accurate enough to allow for the gathering of suitable images from Google Street View. 

4.2 Window Extraction 

4.2.1 Introduction: 
 This section of the application takes in an image and extracts the windows that are present 

in the buildings in the image. The window extraction process involves a number of steps. The image 

is first processed to extract single pixel wide edges. After extracting the edges, the application 

searches for the four different types of corners that define a window. With all occurrences of these 

corners labelled according to which of the four types of corners they represent, the process of 

searching for actual windows can then occur. To find a single window the application searches for a 

group of corners which includes one of each type of corner, in the correct order/pattern, that are 

linked together by an edge. This edge would correspond to the top, bottom or sides of the window. 

4.2.2 Window Description: 
 Before examining how the windows are extracted, the definition of a window needs to be 

discussed. In the modern urban environment windows come in many shapes and sizes, some of 

which are illustrated in Figure 13. 

 
 To allow for the windows to be extracted programmatically, their shape needs to be 

precisely described. Examining the windows above it is clear that there is a lot of variation in the 

shape of a window. Some windows have a rectangular outline, some have curved outlines and most 

Figure 13 An illustration of a selection of different types of windows that may be found in the 

modern urban environment. 



20 

 

have added features around the edges, such as window sills. The internal window shape also has a 

lot of variation, with the window panes broken up by vertical and horizontal partitions.  

 For this project, with given time constraints, the description of a windows shape has been 

made quite simple. The window will be described as a roughly rectangular shape under the following 

conditions: 

 Four, roughly ninety degree, corners. The condition is not strictly ninety degrees as to allow 

for perspective distortion. 

 Each of the four corners are of a different shape, i.e. one top left corner, one top right 

corner, one bottom left corner and one bottom right corner. 

 The corners must be connected by the outline of the window. 

 The corners must be correctly located relative to one another. 

This description means that of the three windows presented in Figure 13 above, one of the windows 

would not be extracted. This is because the arched shape will fail the test of having four corners, 

which create a rectangle. A more complex description of windows would allow for more detailed 

matching of windows in different images. But this is left as future work, as this project seeks to act as 

a proof of concept on the larger application. 

4.2.3 Edge Detection: 
 Edge points occur at locations with a sudden change in brightness, and processing is 

generally performed on a single channel greyscale image, as opposed to a multi-channel coloured 

image. As edges represent areas of sudden change, they are considered as 2-D derivatives (rates of 

change). Edges contain two pieces of information, a gradient and an orientation. The gradient 

represents the rate of change and the orientation represents the direction in which the largest 

growth occurs or the direction orthogonal to this.  

 
Figure 14 The original image is shown, left, with the gradient and orientation information shown, 

right. The gradient is stronger on the white to dark grey transition than on the dark grey to black 

transition. (Dawson-Howe, 2012) 

 The diagram above shows an idealised edge detection, where the resulting edges are exactly 

one pixel wide and are located precisely on the edge of the shape. This is because the specific 

example is computer generated. When performing edge detection on real world images the edges 

detected will be more than one pixel wide. This is a result of the colour changing gradually over a 

number of pixels as opposed to the single pixel boundary seen in Figure 14. This means the extracted 

gradients will need to be post-processed to extract a single pixel wide edge image, with these edges 

correctly located. This is illustrated in Figure 15 below. 

 When reducing the initial edge image to single pixel wide edges, two techniques are used; 

thresholding and non-maxima suppression. Thresholding involves iterating through each pixel in the 



21 

 

edge image and examining its value. The pixels value is set to zero if its gradient value is less than a 

predefined threshold, according to the following equation; 

𝑝𝑖𝑥𝑒𝑙(𝑖, 𝑗) = {
𝑝𝑖𝑥𝑒𝑙(𝑖, 𝑗)        , 𝑝𝑖𝑥𝑒𝑙(𝑖, 𝑗) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0                        , 𝑝𝑖𝑥𝑒𝑙(𝑖, 𝑗) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

This removes faint edges such as those edges due to the brick work in Figure 15. This should leave 

only the strong edge responses, which will be further reduced in size by non-maxima suppression. 

 
Figure 15 The three images above show the edge extraction process in full. Edges are searched for in 

a greyscale image (left). The edges found (middle) are not noisy and wide. These edges are subjected 

to thresholding and non-maxima suppression to extract single width edge pixels (right) 

Non –maxima suppression is a widely used technique in computer vision. It is used when the 

processing applied to the image highlights regions of interest instead of a single point. This roughly 

equates to trying to find the peak in a surface. Non-maxima suppression works by iterating through 

each pixel in the image and examining the values of the eight pixels surrounding the current pixel. 

This is shown in Figure 16 below.  

     

 0 1 2  

 7 X 3  

 6 5 4  

     

Figure 16 Non-maxima suppression examines the eight pixels surrounding the current pixel, X. 

If the current pixel has the largest value compared to its eight neighbours, it is left unchanged, if it is 

not the largest value amongst the eight neighbours it is set to zero. Figure 17 below, shows an 



22 

 

example of non-maxima suppression. As the application iterates through each pixel the values 

around the central value of ten are all suppressed to zero. The issue now becomes how this can be 

applied to extract a line, with a width of one pixel, as opposed to a single point. To use non-maxima 

suppression to find a line, the application needs to examine the pixels only on both sides, and not 

those surrounding, the current pixel. This is where the orientation information becomes necessary. 

0 0 0 0 0  0 0 0 0 0 

0 3 5 3 0  0 0 0 0 0 

0 5 10 5 0 → 0 0 10 0 0 

0 3 5 3 0  0 0 0 0 0 

0 0 0 0 0  0 0 0 0 0 
Figure 17 An example of non-maxima suppression 

 Using non-maxima suppression, examining only the pixels that are perpendicular to the line, 

will give an edge line with a width of one pixel. The orientation of the edge at the pixel under 

consideration is used to decide which pixels values should be compared with the current pixel. For 

example in Figure 18 below, the pixel with a value of thirteen will have an orientation going 

upwards. This means when applying non-maxima suppression, the pixel above and the pixel below 

are compared with that pixels value, i.e. using the pixel in the direction of the orientation and the 

pixel in the opposite direction. 

0 9 6 7 9  0 0 0 0 0 

0 6 11 13 10  0 0 11 13 10 

0 5 10 5 6 → 0 0 10 0 0 

0 3 12 3 0  0 0 12 0 0 

0 4 11 7 0  0 0 11 0 0 
Figure 18 An example of non-maxima suppression applied to a line, in this case the pixels 

perpendicular to the line need to be examined. These are the pixels in the direction of the 

orientation of the edge. 

 In this section the edge extraction process has been discussed. The edges are extracted as 

they will be used in the following sections to find windows. The edge extraction process has a 

number of steps in order for the result to be single width edge pixels, representing strong edges 

found in the image. Firstly a 2-D edge detector is used to extract gradient and orientation 

information for each pixel in the image. These gradients are then subjected to thresholding to 

remove weak responses. This is then followed by non-maxima suppression, which reduces the width 

of the edges to a single pixel. After this processing, the result is the image on the far right in Figure 

15 above.  



23 

 

4.2.4 Corner Detection: 
 The window shape the application is seeking to extract is defined as a rectangle with four 

specific types of corners. The previous stage extracted the edges of the windows, thus giving an 

outline of the window. The next stage in processing the image is to search the edge image for 

corners that could correspond to one of the four corners of a window.  

 Corner detection is a standard problem in the computer vision community. Corners are 

usually described as features. When trying to match objects in two different images, features are 

extracted that will be easy to localise within an image. Corners are used instead of points on a line, 

as it is very difficult to define a point’s position on a line, but it is much easier to define the location 

of a corner, at the meeting of two lines of edge pixels. As a result of how common a problem this is, 

a number of corner/feature detectors exist today. Some examples of these include the SIFT and FAST 

feature detectors, both of which were tested for this 

application. The results of this experimentation can 

be seen in Appendix A: Alternative Approaches. The 

results of these standard approaches were not 

suitable for this application, thus a new approach was 

created. 

4.2.5 Extracting corners: 
 The method for extracting corners is 

designed around the type of corners that are being 

extracted. The windows have been defined as 

roughly rectangular regions, with four corners which 

are roughly ninety degree corners. These will be 

subject to perspective distortion and thus will not be 

exactly ninety degree angles. There are four types of 

corners, one corresponding to each of the four 

different corners that form a rectangle. To calculate if 

a corner of one of these types exists at a pixel 

location in the image, each pixel in the image needs 

to be iterated over and a score calculated at that 

location. To establish if a corner exists the application 

looks for lines of edge pixels that arrive at the point 

in the four primary directions; up, down, left and 

right. A corner then exists if there is a line in either - 

but not both - the up or down direction and a line in 

either - but not both - the left and right direction. 

After iterating across the entire image the corners 

found can be classified according to which of the four 

shapes they correspond to. 

4.2.5.1 Scoring: 

 The method works by using four counters 

and iterating over every pixel in the image. At each 

pixel, a measure of the cornerness of the pixel needs 

to be calculated. To calculate a measure of cornerness, the application searches for evidence of the 

current location being a corner. To do this the application looks for lines of edge pixels which go 

through the pixel in either the up, down, left or right directions.  

1 

2 

3 

4 



24 

 

 Each counter is used to track the amount if evidence for a line in the given direction. Thus 

each counter is labelled as the up, down, left and right counter.  

 To demonstrate how evidence is counted, 

the images, above and right, will examine a sample 

search for evidence of a line in the upward direction 

from a pixel. These images show a grid with black and 

white squares. The white squares represent edge 

pixels and the black represent areas with no edges. 

The images should be considered as a small part of a 

much larger picture, such as those above in Figure 15, 

where it has zoomed in on a 21 by 12 pixel region at a 

corner. In the top image it can be seen that the 

current pixel under consideration is marked with a 

red ‘X’. The next step is to iteratively search for 

evidence of a line of edge pixels in the upward 

direction, from this pixel. This involves examining the 

three pixels above the current pixel, the one directly 

above, above and one to the right and above and one 

to the left. These are labelled 0, 1 and 2 in the top 

image. The application is searching for an edge pixel 

in one of these three locations. Finding an edge pixel 

will increase the counter, as each edge pixel found is 

one piece of evidence of a line existing in the upward 

direction. In the first image there is an edge pixel in 

the pixel directly above the current pixel, whose 

cornerness score is being calculated. This is accepted 

as evidence of a line of edge pixels in the upward 

direction and the up counter is incremented. The 

application then moves onto the next iteration. For 

this iteration the pixels examined are the three above 

the pixel where evidence was found on the last 

iteration. This can be seen in the second image. In 

this image the pixel whose cornerness score is being 

calculated is indicated by a blue ‘X’, the location of 

the last piece of evidence is marked with a red ‘X’ and 

the three pixels being examined for further evidence 

are marked in red and number 0, 1 and 2. An edge 

pixel is again found at location 1. The counter is 

incremented and the process moves onto the next 

iteration. Image three shows the increase in the 

counter and the red and blue ‘X’s as before, but now 

the previous evidence is shown with a green ‘X’. The 

process continues as before, the only difference 

being the edge is found in location 0. As this process continues, the only unknown is the scenario in 

image seven, where there is no edge pixel in any of the locations 0, 1 or 2. The application needs to 

be capable of finding corners, even when continuous edges are not available. As a result of this the 

application needs to allow for the scenario where there is a break in the edge. To handle this the 

idea of a miss is introduced and a new counter used. Thus the application tracks the evidence and 

5 

6 

7 

8 

9 



25 

 

miss counters. To progress to the next iteration, the application behaves as if an edge pixel was 

found in the location directly above the current location, but does not increment the up counter. 

This can be seen in image eight right.  

 

This iterative process continues until one of the following three conditions have been met; 

 The edge of the image has been reach, 

 The miss counter has reached a predetermined threshold, 

 The maximum number of iterations allowed, has been reached. 

This same approach is used to calculate the down, right and left counter values. The process iterates 

through, looking at the three pixels in the direction under consideration. The final result of searching 

in all four directions is shown below in Figure 19. The main points to note are the counter values and 

how the application can handle lines that are not perfectly vertical or horizontal and how it can 

accommodate broken edges. 

 
Figure 19 The final result of the cornerness calculation for the pixel marked with a blue 'X'. The red 

'X's represent the misses that occurred and green 'X's marking the evidence found. Notice the final 

counter values in the top right corner. 

4.2.5.2 Corner Classification: 

 Once the four counter values have been calculated for the pixel in question, they need to be 

evaluated to classify if a corner has been found and if so, what type of corner has been found. Using 

the four counters there are a number of different shapes that can be defined, based on the counter 

values. In considering the counters the actual value is not hugely important, but what is of 

importance is the value when compared to the value of the counter for the opposite direction. This 

is because if there is a large counter value in one direction and a small counter value in the opposite 

direction, the current pixel is near the end of a line of edge pixels. In this section the many different 

shapes that can be constructed based on the counter values are discussed and the ones of interest 

highlighted. These results will be labelled and then used later when the application searches for 

windows. 

 Figure 20 below, shows the four corner types the application is searching for and how each 

can be described in terms of the four counter values. The corners can be summarised as having a 

very large counter value in one direction and a very low counter value in the opposite direction. The 



26 

 

corner can be localised with higher accuracy if a threshold is applied to the lower counters value. 

This means that a pixel will only be recognised as a corner if the one direction has a very small, e.g. 

less than two, counter value and a very large counter value in the opposite direction.  

 
Figure 20 The four corners that the application is trying to find, they can all be expressed in terms of 

the counter values. Note how the combination of these corners creates a rectangular region. 

 Figure 21 below, shows some of the other shapes that can be described by the combination 

of counter values. These shapes are four different types of T-junctions that can occur. They all occur 

when one pair of opposite counters, i.e. up and down or right and left, are equal and the other pair 

has one large and one small counter value. As these shapes do not feature in the description of a 

window, they are all rejected at this stage. 

 
Figure 21 The four T-junctions occur when one pair of opposite counters are equal or roughly equal. 

The application is not interested in these shapes. 



27 

 

 Figure 22 below, shows the two other combinations that are possible with the counters. The 

scenario where all the counter values are equal. This comes in two forms; where all counters are 

equal and greater than zero and where all counter value are equal to zero. In the first scenario the 

shape created by the edge pixels is a crossroads shape. The second scenario is where there is no 

evidence of any edge pixels around the current pixel. Both of these scenarios are not used in finding 

windows and thus, both are rejected. 

 
Figure 22 Shows the remaining two scenarios where all counters are equal and the result is a 

crossroad shape and when all the counters are zero and no cornered shape exists. 

 After examining the counter values and analysing the shapes implied by the relationships 

between the counters for opposite directions, it is possible to extract a number of different shapes. 

For this application four of these shapes are relevant, those in Figure 20 above. Thus when the 

application iterates through each pixel in the image, calculates the four counter values and then 

determines which type of shape exists at the location, the pixel can be labelled accordingly. The 

labelling application numbers the four desired corners as non-zero values, e.g. 1, 2, 3 and 4, and all 

other shapes are labelled as zero. This means that after iterating across the image, the resultant new 

output image has pixels with one of five values and based on these five values, it can be determined 

what, if any, corner was found at that location. 

4.2.5.3 Corner Localisation: 

 At this stage the output is a new image of the exact same size as the edge image. The 

difference being the new image has the pixels labelled as one of four different types of corner, or as 

not having a corner located at that pixel. The remaining issue is that this method does not determine 

the corner location to be at one pixel location, but that it could be located at any pixel in a small 

region around the corner. This is illustrated in Figure 23 below, where there is a small region of 

pixels, around the exact corner location, which have been labelled as corner points. To progress 

further with this and use these results to extract windows, the corners exact location needs to be 

localised to a much higher degree. Ideally the region of possible locations would be reduced to a 

single pixel.  

 A number of approaches could be taken to solve this problem. One such solution is to give a 

score to each pixel, based on the counter values. It is reasonable to assume the closer to the true 



28 

 

location of the edge pixel, the higher this score would be and the further away from the true corner 

location, the lower the score would be. The scoring application trialled was; 

𝑝𝑖𝑥𝑒𝑙 𝑠𝑐𝑜𝑟𝑒 = 𝑎𝑏𝑠(𝑢𝑝 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 − 𝑑𝑜𝑤𝑛 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) + 𝑎𝑏𝑠(𝑟𝑖𝑔ℎ𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 − 𝑙𝑒𝑓𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) 

This would then be suitable for non-maxima suppression, which, ideally, would reduce the region to 

a single point. Experimentally, it has been discovered that while this approach reduces the region 

size, it does not reduce the region to a single pixel. This is because the pixels surrounding the exact 

corner location, have the same score. Thus instead of having a peak, which non-maxima suppression 

can find, there is a plateau which non maxima suppression can find. The end result is simply a 

smaller region of possible corner location. 

 
Figure 23 A labelled output image. Notice how the corner is not localised to one point, but that a 

response has been detected across a region. The pixels are all labelled with the number one to 

indicate the type of corner detected. 

 This approach could be employed, but isn’t 100% suited to the needs of this application. A 

second method trialled is illustrated in Figure 24 below. The image in Figure 24 shows a mock-up of 

the edges which outline a window. The central image shows the regions around each corner, where 

corner scores have been detected. The rightmost figure in the image shows the proposed solution, 

which is discussed below. 

 The proposed method involves examining the region of possible corner locations and the 

pixels in this region, which are also edge pixels. Only pixels in the suggested corner region which are 

on an edge are accepted and all other responses are discarded and set to zero. This is illustrated in 

Figure 24, as the large region shown in the central illustration, is reduced to a much smaller region in 

the rightmost illustration. The advantage with this approach is that it lends itself very easily to the 

definition of a window, discussed at the start of this chapter. The definition is four corners, all 

connected by edge pixels. This means having the corners located on the edge itself will aid in the 

searching process. As another example, examining Figure 23 above, only four of the pixels labelled 

with a one, would be left. These are the four on the white squares, representing edges. 



29 

 

 
Figure 24 A mock-up of a window outline, showing the edges in white. The central window shows 

the region of possible corner locations, all colour coded by corner type. The rightmost window 

shows the result of only accepting corner pixels which are on edges. 

4.2.6 Window extraction: 
 In the previous section the process of extracting corners was discussed. That section 

highlighted the four different types of corners the application searches for. After the corner 

extraction stage, the labelled output corner image is used as input to the windows extraction stage. 

At the start of this chapter, the definition of a window was discussed, this section will look at how, 

using that definition and the corner image, windows can be extracted from the image.  

 To find a window the application needs to locate four corners, one of each type. These four 

corners then need to be positioned correctly relative to each other. Finally they must be joined by 

edge pixels, which mark the outline of the window. For the application to extract windows an 

algorithmic approach is taken. The algorithm goes through a number of steps and it is only if all of 

the steps and tests succeed, that it is determined a window has been found. The application iterates 

through each pixel in the image and follows the steps given below; 

1) The current pixel has been labelled as a bottom left corner. 

2) Follow the edge upward, similar to the up counter calculation above, until; 

a) Reach a pixel labelled as a top left corner, 

b) The vertical search limit has been reached, 

c) The maximum allowable missed edges has been reached. 

3) If the top left corner is located, follow the edge pixels to the right of this until; 

a) Reach a pixel labelled as a top right corner, 

b) The horizontal search limit has been reached, 

c) The maximum allowable missed edges has been reached. 

4) Return to the bottom left pixel from step one, follow the edge pixels to the left until; 

a) Reach a pixel labelled as a bottom right corner, 

b) The horizontal search limit has been reached, 

c) The maximum allowable missed edges has been reached. 



30 

 

5) Check that the difference between the x coordinates, columns, of the bottom right and 

top right corners is less than a predetermined threshold. This ensures the right hand 

corners of the window are roughly vertically aligned. 

If all six steps are successfully executed, the four corners are deemed to define a window. These 

steps are illustrated in the right hand side diagram in Figure 25 below. 

 
Figure 25 An example showing how the application searches an image to find a window. The light 

blue paths shows the application searching for corners, in the correct position relative to the other 

corners. 

Once the windows have been detected, they need to be stored. The windows are described by their 

four corners, using the x, y coordinates of these corners. The application creates a vector of OpenCV 

points, which will hold the four points in the following order; 

Vector Location  0 1 2 3 

Corner: Top Left Top Right Bottom Left Bottom Right 

To store all of the windows found within the image, all of these vectors are stored in another C++ 

vector. This allows easy access to all of the windows and in the next chapter these will be used to 

create a description of the building. 

4.2.7 Conclusion: 
 In this chapter the process of extracting windows was discussed. The overall application 

requires the windows of a building to be extracted, as they form the basis of how the application 

compares two buildings. The method for extracting the windows is broken into a number of 

different stages. Firstly the image is converted to greyscale, and an edge detector is used to find the 

edges in the image. These edges are then subject to thresholding and non-maxima suppression. This 

removes weak responses and gives edges that are one pixel wide. The goal here is to have the 

outline of the window clearly defined by edge pixels. Next the application begins searching for the 

corners that make up a window. The application uses four counters in order to calculate the 

evidence for a line of edge pixels going from the current pixel in the up, down, right and left 

directions. Based on the values stored in the four counters, each pixel can be classified by the shape 

discovered. There are many shapes possible, as shown above, but only four of these are of interest 



31 

 

for finding windows. These four types of shapes are labelled accordingly and all other shapes are 

removed. At this stage the application can search for the window itself. The window is defined by 

having one of each type of corner, a top left, top right, bottom right and bottom left corner. These 

corners must be joined by lines of edge pixels in the correct order. The application searches from 

any bottom left corner found and seeks to find the other three corners, by following the edge pixels 

which denote the outline of the window. 

 The result is a C++ vector which contains all the windows found, the windows are described 

by the x and y coordinates of their four corners. This is then passed on to the next stage in the 

overall application, building description. 

4.3 Façade Description: 

4.3.1 Introduction: 
 In the previous section the application extracted the windows present in the image. These 

windows were stored as four points, one for each corner of the rectangular region that defines a 

window. This section takes the extracted windows and builds a description of the building facade(s) 

present in the image. This description is based on the layout of the windows, how they are 

positioned relative to one another and their size. The description of a building is broken into two 

parts; the first is a description of the columns of windows in the image and the second is a 

description of each column. 

4.3.2 Columns of windows: 
 The first step in describing the building is to group all of the windows into columns. This 

involves identifying which windows are below other windows and vertically aligned with each other.  

4.3.2.1 Extracting Columns: 

 To form columns from the windows found, it is necessary to find the topmost window of 

each column and then find the other windows which belong to this column. This means all the other 

windows will be below the first window. Thus the first step is to identify the top most windows in 

the image. This means the vector containing the windows needs to be ordered so that the windows 

closest to the top of the image are first and the windows closest to the bottom of the image last. 

 With this ordering, the list of windows is iterated through until all windows have been 

assigned to a column. To assign windows to columns, the application needs to test if one window is 

below another and if they are vertically aligned. The strategy for creating columns is given by the 

following steps; 

1. Find the topmost window in the image and remove from the list. 

2. This is a new column. 

3. Iterate through all other windows and check if they are vertically aligned. 

a. If they are, add it to the column and remove it from the list. 

b. If not, leave them in the list. 

4. Find the next topmost window and remove it from the list 

5. This is a new column 

6. Iterate through all other windows and check if they are vertically aligned. 

a. If they are, add it to the column and remove it from the list. 

b. If not, leave them in the list. 

7. Repeat steps 4, 5 and 6 until all windows have been assigned to a column. 

 

The ordered list of windows now guarantees the windows at the top of the list are above all the 

windows that follow in the list. Provided the list is iterated through from start to finish, and only 



32 

 

windows after the current window are considered, it can be guaranteed that all windows considered 

are below the current window. 

 This leaves only the task of check vertical alignment. This means that the window being 

consider is not just below the top window, but vertically in line with the top window. To check for 

vertical alignment the slope of the side of the top window is calculated, this becomes the reference 

angle, 𝜃𝑅. Now the application iterates over all the other windows, which are below this top 

window. On each iteration a line is constructed between the centre point of the top window and the 

current window for this iteration. The slope of this line is calculated as 𝜃𝑇, the test angle. The angles 

𝜃𝑅 and 𝜃𝑇 are calculated using the following equation, which uses the two end points, p1 and p2, of 

the line; 

𝜃 = 𝑎𝑡𝑎𝑛2(𝑝1, 𝑝2) 

This returns a value in the range −1800  →  +1800 in radians. For the purposes of this application 

the range is ideally 00  →  3600. To achieve this, 2*Pi is added to any negative results, thus achieving 

a range of 00  →  3600. To calculate if the two windows are vertically aligned the two slope angles 

are compared. If their absolute difference is less than a predetermined threshold, the windows are 

deemed to be vertically aligned.  

 Figure 26 below, shows an example of this method. It shows only three of the tested 

windows and how the angles are calculated, in red. The blue angle represents the slope of the side 

of the topmost window. In this example it can be seen that only the window directly below will 

produce a 𝜃𝑇 value which is similar to 𝜃𝑅. 

The result of this is shown below in Figure 27 below. This highlights which windows belong to which 

column and these have been colour coded for illustration purposes. It should be noted that this 

𝜽𝑹 

𝜽𝑻 𝜽𝑻 𝜽𝑻 

Figure 26 An example of the vertical alignment test. Note the two theta values extracted for 

comparison. The reference angle is shown in blue and the test angles in red. 



33 

 

image is an idealised version of the type of window layout that would be expected. The image has no 

perspective distortion and all the windows are aligned perfectly into columns. The application needs 

to be capable of performing the same calculations on real world images with distortion and irregular 

window layouts. This is catered for by thresholding the absolute difference of the reference and test 

angles, instead of searching for perfect matches between the angles. 

 
Figure 27 The image highlights, in colour, which windows are grouped together into columns. 



34 

 

4.3.2.2 Column Description: 

 Once the columns have been extracted, a method for 

describing an individual column is needed. This needs to 

encompass information about the windows in the column and 

their relative positions with respect to one another.  

 The windows size needs to be described in a manner 

that is invariant to changes in perspective distortion. This 

means describing the size using an exact pixel measurement is 

not appropriate. Thus the approach used is to calculate the 

aspect ratio of the window, the ratio of the width to the 

height of the window. To describe the layout of the windows 

another ratio is used. This time the layout being describe is 

based on where the other windows are, relative to one 

window. The values compared are the distance between the 

windows and the height of the reference window. 

 Figure 28 right, shows an example of this, with the 

middle window being used as the reference window. The ratio 

to describe how far away window A is from window B is given 

by the following ratio; 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜𝐵𝐴 =
ℎ𝐵𝐴

ℎ𝐵
 

4.3.2.3 Layout Description:  

 With the windows grouped into columns, the next 

tasks is to build a description of what the building façade 

looks like. This description needs to be general, as to allow a 

similar description to be extracted from different images of 

the same scene. These different images may be subject to many distortions such as different lighting 

conditions and perspective distortion. 

 The goal is to describe the building in terms of the layout of the columns. This means that for 

each column, it is necessary to establish a standard method of describing how many columns are on 

either side of a particular column and roughly how far away from the current column they are. This 

requires a standard way of measuring the distance between the columns that will be constant, or 

roughly constant, across many different images. 

Figure 28 This image shows how the 

positioning of windows and the 

windows sizes are calculated 

ℎ𝐵𝐴 

ℎ𝐵𝐶  

ℎ𝐵 

A 

B 

C 



35 

 

 The simplest method would be to measure the distance between columns in pixels, e.g. 

column B is 10 pixels to the left of column A. The issue with this method is these distances can be 

elongated and contracted by perspective distortion and errors in the edge extraction techniques. 

The chosen method is to relate the distance between the columns to the width of the current 

column. This equates to saying column B is a distance of four times the width of column A to the left 

from column B. This is based on the idea these ratios will be more stable than fixed pixel lengths, 

when compared between images taken with different levels of perspective distortion. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜𝐶𝑜𝑙𝑢𝑚𝑛 𝐶 𝑎𝑛𝑑 𝑋 =  
𝑑𝐶𝐴

𝑤𝐶
 

4.3.3 Conclusions: 
 In this section three main elements of the application are discussed. The method of grouping 

windows into columns, describing the layout of the windows in each column and describing the 

layout of, all of the columns. The windows are grouped into columns based on vertical alignment. 

 

 

 

 

 

 

 

 

Figure 29 An example of how the columns are described in relation to one another. The example 

above shows how the layout of the columns relative to column C is described. 

 

E D C A B 

𝑑𝐶𝐵 𝑑𝐶𝐷 

𝑑𝐶𝐴 𝑑𝐶𝐸  
𝑤𝐶  



36 

 

The process of calculating this needs to be flexible to allow for minor deviations caused by 

perspective distortion. To describe the layout of the windows within a column two measures are 

used, the first is the aspect ratio of the windows. This gives a representation of the size of each 

window. The second measurement is a ratio of the vertical distance between two windows, divided 

by the height of the reference window. To describe the layout of the columns a width ratio is used. 

This is the ratio of the vertical distance between the windows divided by the width of the reference 

window. These methods give a defined way of describing these layouts and will be used in the next 

section to match buildings found in two different images. 

 Ratios are used because they should remain roughly constant under minor changes in 

perspective distortion. Based on the intended usage of this application, it is acceptable for the 

application to fall short when recognising buildings subjected to large perspective distortions. A user 

will not expect good performance when the building is not view roughly straight on, if the viewing 

angle is quite steep, it is acceptable for results not to be shown.  

4.4 Façade Matching 

4.4.1 Introduction: 
 In this section the process of comparing two images, to find matching buildings is discussed. 

The matching between images uses the description metric discussed in the previous section. The 

previous section discuss how the layout of the columns relative to one another is described and how 

the layout of windows within a column are described. This section uses these descriptions to 

calculate a score for two images, this score indicates the likelihood of the same building being in 

both images. 

 The strategy for calculating this score is broken into two parts. The first part seeks to identify 

which columns in image one, match to which columns in image two, based on column alignment. 

The second part seeks to measure how well the windows match, within the matched columns. To 

match the columns the application uses an iterative approach where each column in image one is 

matched to each column in image two. On each iteration evidence is gathered to support the 

possibility of the two columns matching. Gathering evidence involves searching for the other 

columns around the current column in image one and trying to find corresponding columns in image 

two, positioned relative to the current column in image two. To calculate a score of how well the 

windows in two columns match, all windows in the first column are matched against all the windows 

in the second column. The application compares them on aspect ratio and the spacing between the 

windows.  

4.4.2 Matching Columns: 
 In this section the goal is to determine which columns in image one match most closely, with 

which columns in image two. This equates to comparing the layout of the building in image one with 

the layout of the building in image two. The process works iteratively, over each iteration a column 

in image one is matched to a column in image two and evidence supporting this match is calculated. 

This is repeated until every column in image one has been matched against every column in image 

two. 

 On each of these iterations evidence is gathered, to discover how much supporting evidence 

exists to for the match under consideration. The process will be illustrated using the two images 

below as an example. These images are perfect copies of one another and offer an idealised scenario 

on which to demonstrate the process. The process iterates through the columns in image one, left. 

On each iteration the application compares the current column in image one, to every other column 

in image two, right.  



37 

 

 On each comparison of a column in image one with a column in image two, evidence is 

gathered for this match. The evidence is based on locating columns surrounding the column in image 

one, and finding corresponding columns in image two. The corresponding columns need to be in 

roughly the same location as those in image one, with respect to the column under consideration. 

For example, consider the case when comparing column one in image one with column one in image 

two. First the other columns in image one are considered individually. The first column considered is 

column two in image one. The distance ratio between column one and two is calculated. Then the 

columns in image two are considered. The application iterates through columns two, three, four and 

five and for each column calculates the distance ratio between column one and the other column. 

These four ratio values are compared with the ratio from image one and the ratio which most closely 

matches that from image two is selected, provided the difference between the two ratios is below a 

predefined threshold. The absolute difference between the ratios is added to the overall score. In 

this case the ratio corresponding to column two in image two would be selected. Then the 

application considers column one and three in image one, and calculates the distance ratio. Then the 

application searches image two again, examining the distance ratios for columns three, four and five 

(not two, as column two already has a match) in image two. The ratio most closely matching the 

ratio from image one is selected, provided the difference of the two ratios is less than the threshold. 

This absolute difference is then added to the overall score as before. The process continues until all 

columns in image one have been tried and either a match found for them, or not. 

 Once this completes a score for this iteration, column one in image one matching column 

one in image two, is calculated. This score is the sum of the absolute difference of the matching 

distance ratios, divided by the number of columns matched. This is where the overall score variable 

used above is needed, this contains the sum of the absolute difference between each of the 

accepted ratios. This is then divided by the number of matched columns, to normalise the score to 

an average score per column found. This score is then stored in an array of size N by M, where N is 

the number of columns in image one and M is the number of columns in image two. In this case the 

application was matching column one in image one with column one in image two, thus the result is 

stored at location (N-1, M-1), (0,0).  

  

5 4 3 1 2 5 4 3 1 2 

Figure 30 An idealised example of two images which are under comparison. The goal is to determine 

which columns in image one match to which columns in image two. 



38 

 

 
Column Two 

1 2 3 4 5 

Column 

One 

1 (0,0) (0,1) (0,2) (0,3) (0,4) 

2 (1,0) (1,1) (1,2) (1,3) (1,4) 

3 (2,0) (2,1) (2,2) (2,3) (2,4) 

4 (3,0) (3,1) (3,2) (3,3) (3,4) 

5 (4,0) (4,1) (4,2) (4,3) (4,4) 

Figure 31 This table shows how the scores for each possible match is stored, the score at location 

(X,Y) is the score for column X in image one, matching column Y in image two 

This iterative process of matching every column in image one to every column in image two, 

searching for evidence and building a score based on this evidence is repeated until the table above 

is full. The next step is to examine the table above and establish what match is best. 

 In this case the lower the score the better, as it indicates the distance ratios are very similar. 

Thus the application searches through the array for the location with the lowest score. This score is 

then accepted as a match between two columns. The lowest score occurs at a location (x, y) and this 

indicates that column x in image one matches to column y in image two. Once this match is 

accepted, there are now some impossible combinations in the array which need to be removed. For 

example if column three in image one matches to column three in image two, then column three in 

image one cannot match to another column. Thus the row in the array corresponding to column 

three in image one is removed and likewise with the column in the array corresponding to column 

three in image two. There are some more impossible combinations to discount. As the columns are 

numbered in order, this infers one column is to the left or right of the others. Thus it can be 

concluded that column three in image one matches column three in image two, it is impossible for 

column one or two in image one to match column four or five in image two. This is because the 

ordering means columns one and two are to the left of column three. This means the area of the 

array to the left and down of the match, and to the right and up of the match need to be removed. 

These are highlighted in the table below. 

 
Column Two 

1 2 3 4 5 

Column 

One 

1   X X X 

2   X X X 

3 X X MATCH X X 

4 X X X   

5 X X X   

 This reduces the remaining search space and to find further matches again the lowest value 

is found and accepted as a match. The new impossibilities are removed and the process continues 

until all spaces in the array are marked as either a match or an impossibility. At this point the 

matching columns between the two images have been identified. A final example table, based on 

the example above is shown below. 

 
Column Two 

1 2 3 4 5 

Column 

One 

1 MATCH X X X X 

2 X MATCH X X X 

3 X X MATCH X X 

4 X X X MATCH X 

5 X X X X MATCH 



39 

 

4.4.3 Matching Windows within Columns: 
 After the column matching stage above, the application knows which columns match 

between the two images. The next step is to calculate a measure of how well these two columns 

match. This measure will be based on the window sizes and the relative positions of the windows. 

 To calculate a score, the first step is to establish which windows in the two columns match. 

This is achieved by iteratively comparing every window in column one, with every window in column 

two. An N by M array is then constructed, where N is the number of windows in column one and M 

is the number of windows in column two. This array is then used in a similar manner as the one used 

to identify which columns in the two images match. The method for calculating the scores to fill this 

array is broken into two phases, the first sweep and the second sweep. For the first sweep there are 

no available matches, thus no positional information is available. This means the application cannot 

use the distance ratio between windows to calculate a score. Thus for the first sweep only the 

difference between the two aspect ratios is used to populate the array. This will yield one match and 

this match will then be accepted, providing it is below the threshold. The impossible options are 

then removed from the array. Finally the scores are recalculated, this time using the absolute 

difference of the aspect ratios summed with the absolute difference in the height ratio discussed 

above, using the first match as the reference window. This process of accepting matches, removing 

impossible options and recalculating scores is repeated until all options in the array are marked as 

either matched or impossible. From these matches a score is calculated based on the height ratio 

and aspect ratio.  

 To examine the window 

matching algorithm more 

closely, an example is 

provided below. Figure 33 and 

Figure 32 show a single 

column of windows. At this 

stage the application has 

identified that these two 

columns match, according to 

the layout of the columns. 

Now the application begins to 

examine how well the 

windows within the column 

match. 

 In this example there are 

three windows in the first 

column (N=3) and two in the 

second column (M=2). Thus 

the array will have three rows 

and two columns. The first 

sweep of the application 

compares window one in 

column one with windows one 

and two in column two, then 

compares window two in 

column one with windows one 

and two in column two and 

Figure 32 The first column for 

the example. Note the three 

windows on the building and 

their spacing. 

1 

2 

3 

Figure 33 The second column for 

the example. Note that the 

middle window was not found, 

this can occur and the 

application needs to be capable 

of allowing for this. 

1 

2 



40 

 

likewise for window three. The comparisons for the first sweep are made entirely based on the 

absolute difference of the aspect ratio. Thus each value in the array, for the first sweep the values in 

the score array are described by the following equation: 

𝑠𝑐𝑜𝑟𝑒[𝑋][𝑌] =  𝑎𝑏𝑠(𝐴𝑅𝑤𝑖𝑛𝑑𝑜𝑤 𝑋 𝑐𝑜𝑙𝑢𝑚𝑛 1 −  𝐴𝑅𝑤𝑖𝑛𝑑𝑜𝑤 𝑌 𝑐𝑜𝑙𝑢𝑚𝑛 2) 

After all iterations have completed the results table will be full and the matching process can begin. 

For this example assume the lowest score occurred at (0, 0), thus window one in column one is 

matched with window one in column two. The table after the matching and removal of impossible 

options is shown below; 

 
Column two 

Window 1 Window 2 

Column one 

Window 1 Match X 

Window 2 X  

Window 3 X  

 At this stage the second sweep can begin, in this sweep only the remaining options are 

considered. The score for matching windows is now based on two factors; the difference in aspect 

ratios and the difference in the distance ratio described in the last section. This means the score is 

based on the window sizes and positions. The values for the score array locations are given by the 

following equation; 

𝑠𝑐𝑜𝑟𝑒[𝑋][𝑌] =  𝑎𝑏𝑠(𝐴𝑅𝑤𝑖𝑛𝑑𝑜𝑤 𝑋 𝑐𝑜𝑙𝑢𝑚𝑛 1 −  𝐴𝑅𝑤𝑖𝑛𝑑𝑜𝑤 𝑌 𝑐𝑜𝑙𝑢𝑚𝑛 2) 

                                  + 𝑎𝑏𝑠(𝐷𝑅𝑤𝑖𝑛𝑑𝑜𝑤 𝑋 𝑐𝑜𝑙𝑢𝑚𝑛 1 −  𝐷𝑅𝑤𝑖𝑛𝑑𝑜𝑤 𝑌 𝑐𝑜𝑙𝑢𝑚𝑛 2) 

In this case the lowest score in the array will be at location (2, 1) in the score array. This means 

window three in column one is matched to window two in column two. The final score table is 

shown below; 

 
Column two 

Window 1 Window 2 

Column one 

Window 1 Match X 

Window 2 X X 

Window 3 X Match 

 After the above steps have been completed, all matches have been found and the final score 

can be calculated. The advantage of this technique where two separate sweeps are used, is 

illustrated in this example. There is a possibility that if the score was calculated purely on aspect 

ratio on the second sweep, that window two in column one would have been matched to window 

two in column two. Visually readers can see this is wrong, but to a computer using only aspect ratios 

for comparison, this could appear correct. Adding the relative position information into the 

calculation has helped to guarantee that window three in column one is matched to window two in 

column two, as window two in column one will have a very poor distance ratio score. This is due to 

the two ratios being very different. 

4.4.4 Overall score: 
 Upon reaching this step, the columns have been matched and the windows within the 

columns have been matched. The final task is to extract a percentage score which gives an indication 

of how well the buildings in the two images match. 

 Each pair of matching columns contribute an individual part to the overall score. The value 

contributed by a column is the sum of the scores in the “match” locations in the score array for the 

pair of columns, scaled by the number of windows matched. Thus in the example below, the pair of 



41 

 

columns would return a score equal to the sum of the scores at array locations (0, 0) and (2, 1). This 

value would then be scaled by a factor of 2/3 as only two of the three windows in the larger column 

have matches. This score is subtracted from one and then converted to a percentage. If the sum of 

scores times the scaling factor is greater than one, the percentage score is set to zero. 

𝐶𝑜𝑙𝑢𝑚𝑛 𝑆𝑐𝑜𝑟𝑒 =  [1 −
𝑁𝑜. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑

𝑁𝑜. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑖𝑛 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝐶𝑜𝑙𝑢𝑚𝑛
∗ ∑ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑠𝑐𝑜𝑟𝑒𝑠] ∗ 100 

 The scores for each column pair is summed together and divided by the difference between 

the number of columns in the image with least amount of columns, minus the number of columns 

matched. Thus giving a score based on the window layout, weighted in favour of layouts using more 

columns, i.e. using more evidence. The application can then use this score to judge if the buildings 

match or not. 

4.4.5 Conclusions: 
 In this section the matching algorithm is discussed. The method involves matching columns 

between the images based on finding similar layouts of columns in both images. After the columns 

are matched the windows within the columns are matched and a score calculated based on the 

distance ratio and aspect ratios of the windows. 

 The application uses the ratio based descriptors discussed in the previous section to 

compare windows and columns in different images. The first stage is to identify the columns in 

image one and their matching columns in image 2. The method chosen is to compare every column 

in image one with every image in column two and gather evidence for that potential match. The 

evidence to support a match is based on finding surrounding columns in image two, which 

correspond to the surrounding columns in image one. Once the columns have been matched, a 

score is extracted from each column pair based on the windows within the columns. The windows 

are matched based on aspect ratio and distance ratio. These two measures are used to calculate a 

score based on how closely the alignment and sizes of the windows match between the two 

columns. 

4.5 Summary: 

 This section describes the implemented application in detail. It examines the four main 

stages of the application; GPS extraction, windows extraction, façade description and façade 

matching.  

 The GPS data received is going to have errors present. These errors are generated by a 

number of different source. The GPS modules on different mobile devices will perform differently 

under the same conditions and the data collection methods employed by Google mean data is 

available at fixed intervals, not continuous locations. The extent of these sources of errors needs to 

be evaluated, to identify what (if any) rectifying steps need to be taken.  

 The window extraction process involves a number of stages. The first is a corner detector, 

specifically implemented for this application. The corner detector finds corners and classifies them 

by their shape. The next step looks for four corners, grouped together in the pattern of a rectangle. 

These corners must be joined by edge pixels, outlining the window. 

 The facades are described by the layout of the windows extracted. The windows are 

grouped into columns. The positioning of the columns relative to each other is used when comparing 

buildings across images. 

 The matching algorithm searches for the layout of columns in one image, in the other. Then 

a score is calculated based on the layout of the windows within matched columns. The comparisons 

are made using ratios to more accurately represent distances under perspective distortion. 



42 

 

 These techniques are untested and now need to be examined from a performance 

perspective. This examination and testing is carried out in the next chapter. 

  



43 

 

5 Results and Testing: 
 In this section the experimental results are presented for the application described above. 

The results are broken into four sections; GPS, the corner detector, the window extractor and façade 

matcher. As each section builds on the results of the previous section, the performance analysis 

needs to consider errors propagating through all stages.  

5.1 GPS 

 In this section two tests on GPS coordinates are presented. The first examines the variability 

in the GPS coordinates provided by a mobile device over time. The second test compares the image 

from the camera on the device and the Google Street View image at the corresponding location. The 

aims of these tests are to examine the stability of the GPS coordinates provided by a mobile device 

and compare the camera image to the Google Street View image. 

 The GPS coordinates provided by mobiles devices will differ from device to device. Google 

Street View has data at a series of points and returns data for the point closest to the actual 

coordinate given. These two facts raise a big issue around ground truth. Ideally when comparing the 

data from Google Street View and a number of mobile devices, the GPS coordinates returned would 

be compared with some ground truth values. This would allow for measureable errors to be 

presented, but such a ground truth is not easily acquired. 

 This means comparisons will have to be based on different criteria than the exact GPS 

coordinate. To establish this it is useful to consider the needs of the application. The application 

requires that the same buildings be present in the camera and Google Street View images. Thus 

when evaluating the performance of the devices and the Google Street View platform the contents 

of the images compared with each other will be the main factor. 

5.1.1 Test Case One: 

5.1.1.1 Method: 

 The goal of this test is to study the stability of the GPS signal from a number of different 

devices over time and establish any settling time issues. This test uses two locations and involves 

four mobile devices; a HTC One S, a Samsung Galaxy Tab, a Sony Xperia Tipo and an iPhone 4S. Each 

device is numbered one to four. Testing is performed by going to location one and taking six photos 

at the location. Each device is used in the prescribed order. This is repeated, using the same ordering 

at location two. To establish any issues with stabilisation of the GPS signal the tests are repeated 

using a different ordering as shown in the table below. Great care was taken to stand in as close to 

the exact same position on each iteration of the test, but inevitably a small error in the results could 

be attributed to this. 

Device number: Device: 

1 HTC One S 

2 Samsung Galaxy Tab 

3 Sony Xperia Tipo 

4 iPhone 4S 

Ordering of devices used for each test 

Test 1 Test 2 Test 3 Test 4 

1 2 3 4 

2 3 4 1 

3 4 1 2 

4 1 2 3 



44 

 

5.1.1.2 Evaluation of results: 

 The table below, shows the average values for longitude and latitude for each device at each 

location for the four tests. The value presented is the average value across the six photographs 

taken. Note that the longitude values are negative, but have been converted to positive values for 

presentation purposes. The values used in the graphs below are correct. 

Iphone HTC One S Sony Xperia Tipo Samsung Galaxy Tab 

Lat. Long. Lat. Long. Lat. Long. Lat. Long. 

Test Location One 

53.333680 6.5372027 53.333844 6.557181 53.333801 6.537262 53.333610 6.537036 

53.333881 6.5371259 53.333801 6.537195 53.334108 6.537462 53.333332 6.537222 

53.333700 6.5372425 53.333830 6.537246 53.334214 6.537367 53.333626 6.537246 

53.333936 6.5372055 53.334042 6.537496 53.333832 6.537336 53.333732 6.536953 

Test Location Two 

53.334067 6.5377449 53.333944 6.537501 53.333855 6.537672 53.333889 6.537499 

53.334110 6.537360 53.333817 6.537244 53.334203 6.537526 53.334029 6.537239 

53.334136 6.5373805 53.334705 6.537285 53.334116 6.537745 53.334028 6.537557 

53.334067 6.5375148 53.333917 6.537359 53.334030 6.537533 53.334103 6.537520 

 

 

 The above graphs shows the data for location one, with one data point for each of the four 

tests. It is interesting to see the main differences in the position of the data points is only in the 

latitude of the points. This could be due to the environmental conditions at location one. At this 

location there are houses directly behind and houses across the road in front. This could be 

restricting coordinates in a direction parallel to the road. 

 Another observation is that all of the devices scores are clustered around different points. 

Thus highlighting that different devices will produce different values. Interestingly the spurious 

result on the far left from the HTC One S occurred when it was the first device used. The Samsung 

galaxy Tab produced the spurious result at the bottom of the graph when it was first in the ordering. 

This seems to support the idea of a settling time for the GPS on the mobile device 

53.3332

53.3333

53.3334

53.3335

53.3336

53.3337

53.3338

53.3339

53.334

53.3341

53.3342

53.3343

-6.56 -6.555 -6.55 -6.545 -6.54 -6.535

La
ti

tu
d

e

Longitude

Averages from each test, location 1
iPhone

HTC One S

Sony Xperia Tipo

Samsung Galaxy
Tab



45 

 

 
 In this test the variability is clearly in both axes. This could be explained by the environment 

at location two. There is again a house behind this location, but this time there is a T-junction in 

front of the camera. Thus this more open environment seems to generate variability in both 

directions. In general three of the data points are clustered fairly close together with a fourth a 

larger distance away. In the case of the iPhone and the Sony, these occur when they are the first 

device used. It occurs when the HTC is fourth and the Samsung third. This suggests a settling time 

does exist, but there are other factors involved too. 

5.1.1.3 Conclusions: 

 This tests set out to establish if a settling time exists and if it the devices would produce a 

stable output. The results above, show that a settling time seems to exist, but it is not the only factor 

in generating spurious results. The test has highlighted the environmental conditions, such as 

surrounding buildings, appear to have an impact on the stability of the results. This is highlighted by 

the stability of the results in one axis at location one, but the instability in the results in both axes at 

location two. The results do seem to cluster around a central point in general. The minor differences 

could be attributed to a number of factors. These include errors in standing in exactly the same 

position for each iteration of the test and similar orientation changes. 

5.1.2 Test Case Two: 

5.1.2.1 Method: 

 The tests needs to examine how the GPS systems on mobile devices, perform in providing 

coordinates that allow for a suitable image to be downloaded from Google Street View. The goal is 

to study the stability and accuracy of the GPS coordinates provided by the devices over a three 

minute period. This will give representative data of the inputs the application would receive when 

accessed by a user. For this test two devices were used, a HTC One S and a Sony Xperia Tipo. The 

tests were conducted at two locations, which are familiar to the author in order for informed 

feedback to be provided. At each location a number of steps were performed to log the data in a 

consistent manner and are described below; 

 Move to position one. 

 Choose first device. 

53.3337

53.3338

53.3339

53.334

53.3341

53.3342

53.3343

53.3344

53.3345

53.3346

53.3347

53.3348

-6.5378 -6.5377 -6.5376 -6.5375 -6.5374 -6.5373 -6.5372

La
ti

tu
d

e

Longitude

Averages from each test, location 2
iPhone

HTC One S

Sony Xperia Tipo

Samsung Galaxy
Tab



46 

 

 Start the GPS system on the device. 

 Enter the camera application. 

 Wait until a GPS location is available. 

 Start a three minute timer (on a stopwatch). 

 Take a photograph every ten seconds. 

 Exit the camera application. 

 Turn off the GPS. 

 Repeat with second device. 

 Move to second location and repeat. 

The full data is provided in Appendix B: Supplementary Results data. In the next section an 

evaluation of the data is provided. 

5.1.2.2 Evaluation of Results: 

 The data points collected over the three minute interval for both devices are presented in 

the two graphs below. The first graph shows the recorded longitude and the second shows the 

recorded latitude. The results of the two devices are presented on the same graphs to allow for 

comparisons in the data to be made. 

 

 
 

-6.5376

-6.5374

-6.5372

-6.537

-6.5368

-6.5366

-6.5364

-6.5362

-6.536

-6.5358

1 6 11 16 21 26 31

Lo
n

gi
tu

d
e

Time step

Longitude Location 1

Sony Xperia Tipo HTC One S



47 

 

 
 

 
 

 

53.3337

53.33375

53.3338

53.33385

53.3339

53.33395

53.334

1 6 11 16 21 26 31

La
ti

tu
d

e

Time Step

Latitude Location 1

Sony Xperia Tipo HTC One S

-6.5377

-6.5376

-6.5375

-6.5374

-6.5373

-6.5372

-6.5371

1 6 11 16 21 26 31

Lo
n

gi
tu

d
e

Time Step

Longitude Location 2

Sony Xperia Tipo HTC One S

53.3336

53.3337

53.3338

53.3339

53.334

53.3341

53.3342

1 6 11 16 21 26 31

La
ti

tu
d

e

Time step

Latitude Location 2

Sony Xperia Tipo HTC One S



48 

 

 From the graphs above there are a few key findings to note. Firstly it is important to note 

that neither device provided a perfectly consistent reading across the three minute period. The HTC 

One S provided much more consistent readings than the Sony Xperia Tipo at location one, but this 

was reversed at location two. 

 This test has generated a number of data points, for each device at each location. This data 

now needs to be compared with Google Street View to establish if it is reliable and if the Google 

Street View image will contain the same buildings as the image taken with the camera. There are a 

few issues arising from the data presented. The huge variance seen between the two devices needs 

to be analysed, to see if the GPS coordinates at the extremes of this variance are acceptable for the 

application to run successfully. The other issue to examine is whether the GPS coordinates given, 

actually correspond to the same location on Google Street View. 

 Below are a series of images based on the GPS coordinates gathered in the test at the two 

locations. The camera image is shown and a number of images based on the GPS data gathered. 

There are four images downloaded from Google Street View. These images are using the mode GPS 

position, the median GPS position, the maximum longitude and latitude values seen and the 

minimum longitude and latitude values seen. These we chosen to illustrate the average behaviour 

and the behaviour at the absolute extremities of the variance in the data. The orientation 

information was not available so this was altered to produce the best result. 

HTC One S 

Location 

One 

 
Camera 

Image 

 

 
Mode 

 

 
Median 

 

 
Min 

 

 
Max 

 The above data highlights a discrepancy between the Google Street View locations and the 

camera location. The three that is just visible in the top left corner of the camera image is the tree 

visible in the Google Street View images. This gives an indication of how big the difference in 

location is. The saving grace in this example is that by changing the orientation it is possible to see 

the building in the camera image. 

  



49 

 

HTC One S 

Location 

Two 

 
Camera 

Image 

 

 
Mode 

 

 
Median 

 

 
Min 

 

 
Max 

 This set of images is much better than the images above, the mode and median results are 

almost identical to the Google Street View images. The maximum and minimum value do show 

significant variation from the actual camera position. The camera location of the minimum image is 

in front of the house, seen in the camera image and the maximum image has moved further down 

the side of the building. Again in both cases a change in orientation brings the building back into 

view. Thus it is possible to recover from these errors. 

 Overall the HTC One S has provided GPS coordinates that can be successfully used to get an 

image of the building in the camera image. The drawback is in some scenarios the orientation needs 

to be edited to achieve this. The interesting thing to note is that in the graphs presented above, the 

HTC One S provided the most stable coordinates, but it seems it is stable around a point which does 

not match Google Street Views coordinates correctly. 

  



50 

 

Sony Xperia Tipo 

Location 

One 

 
Camera 

Image 

 

 
Mode 

 

Median 

 

 
Min 

 

 
Max 

 These results are very interesting, the min, mode and median images are almost identical to 

the image taken by the camera. The discrepancy comes in the maximum image, the coordinates are 

on the wrong street. This image corresponds to a location on the next parallel street to the north of 

the camera location. This is a huge distance and no amount of changes to the orientation will give a 

view of the building photographed. As this happened at an extreme data point, it indicates that the 

application may need to ignore sudden jumps in the input data and ignore new readings until they 

stabilise again. 

  



51 

 

Sony Xperia Tipo 

Location 

Two 

 
Camera 

Image 

 

 
Mode 

 

 
Median 

 

 
Min 

 

 
Max 

 For this experiment the Sony Xperia performed very well. All of the images, including the 

extreme GPS coordinates, have given an image almost identical to the one taken by the camera. 

 

 From the data above the effect of the variance in the data can be clearly seen through the 

images representing the extremities of the data variance. The two devices performed very 

differently at the two different location. As a result it is necessary to examine the two different 

locations. The first location is at the side of a road on a straight road with tress on both sides and 

above the position of the camera. There are houses on both sides of the road. The second location is 

at a T-junction, looking down the road coming off the T-junction. This location has tree cover and 

houses behind it, but has much more open space in front of it. This is illustrated, along with the large 

discrepancy seen in the Sony Xeria Tipo, in Figure 34 below. 

 



52 

 

 
Figure 34 An image showing the area where the photos were taken. The two locations are 

highlighted and a third location is highlighted as it is where the major Sony Xperia Tipo discrepancy 

was located. This is displayed to show how large a jump this corresponds to. 

5.1.2.3 Conclusions: 

 After the above discussions and testing there are a few key points to highlight. There is a 

discrepancy between Google Street View and any mobile device as Google records images from the 

centre of the road and at a height, while pedestrians take photographs at head height on the 

footpath. This is the minimum discrepancy that will be visible. The other issue is no mobile device 

gives perfectly consistent data over time and this data is subject to severe jumps at times. The 

redeeming feature of this is the average over time provides a good approximation to the devices 

current location. This means the application may need to keep an average over a period of time and 

ignore sudden jumps in position until the position stabilises again. The other corrective measure that 

can be taken is to search across the whole 360 degree orientation space. As simply changing the 

orientation was enough to get an image with the same building present in it as is in the camera 

image. 

5.1.3 Conclusions: 
 In this section the aim was to establish the different sources of errors in the GPS data. 

Through the two tests above a number of these have been highlighted. The main errors investigated 

were; settling times, consistency of the data and errors in Google Street View. Through testing 

another issue was highlighted, the environmental conditions at the location.  

 The above testing has shown that a settling time seems to exist on most devices, but that 

this is not the only factor which generates spurious results. With regards stability the two tests have 

shown that the average value over times is a very good approximation to the current location. The 

Location 2 Location 1 
Error in Sony 

Xperia Tipo 

Location one 



53 

 

problem is instantaneous values may be inaccurate. Thus averaging the GPS coordinates over time 

seems a logical approach to handling this issue. 

 The Downloaded Google Street view data is generally, sufficiently accurate for the purposes 

of this application. For all of the cases presented above, where an average GPS coordinate value is 

used, a change in orientation will yield an image with the desired image present. This means the 

application should be able to function correctly if it downloads images to cover the full 360 degree 

range of orientations. 

 Overall the above results indicate that it is possible to get images from Google Street View 

that contain the same building as those in the camera image. This means the data for the following 

stages in the application can be gathered, but with the above considerations in mind. 

5.2 Corner Detection: 

 In the images presented below an input image and an ‘overlay’ image are provided. The 

overlay image shows the extracted edge pixels in green. The corners extracted are shown and are 

colour coded; 

 Red: bottom left corner 

 White: top left corner 

 Purple: top right corner 

 Blue: bottom right corner 

 The example below illustrates the corner extractor’s performance on only a few images. A 

larger set of examples is provided in Appendix B: Supplementary Results data. 

5.2.1 Test Case One: 
 Figure 35 and Figure 36 below, show a sample input image and its corresponding overlay 

image. This overlay image displays the corners detected and the edges extracted. When examining 

the input image there is clear distortion in the brickwork due to the camera used. This can be seen 

as a wave like effect on the entire image. When examining the windows in the input image, most 

have a bright illumination on the right hand side building. This is due to weather conditions on the 

day, it is interesting to note that five windows in this building are not illuminated in this manner; the 

four on the bottom row and leftmost window in the second row from the top of the building.  

 Examining the overlay image, these five windows have edges which are significantly less well 

defined than the others. This has led to some of the outline of these windows being omitted in the 

edge image. As a result it is much less likely that the application will successfully extract these 

window. 

 When examining the corners detected by the application the windows in the building to the 

left have had all the desired corners found for every window. On the building on the right hand side 

of the image, the corners of the windows have been found for all of the windows with the bright 

illumination. Of the five windows without this illumination only one has had the four corners of its 

outline extracted. This is the window third in from the left in the bottom row. The other four 

windows are missing edge pixels at the corners. Missing edge pixels will result in corners being lost. 

It is interesting to note in the second window from the right along the bottom, there is a small area if 

strong illumination on the window pane and this has artificially created an edge halfway through the 

pane in the overlay image.  

 While the results look very promising there are a number of incorrect corners found. For 

example a number of the illuminated windows have corners detected in the middle of the window, 

where the two panes of glass join. The corner detection method is designed to illuminate these, but 

the T-junction shape was not detected. There is one main reason for this, perspective distortion. In 

most cases these corners in the middle of the window are located where the upward or downward 



54 

 

search would miss the actual edge of window. This is as a result of the edge being a few pixels left or 

right of the pixel identified as a corner. This is due to the line being rotated, as a result of the 

perspective distortion and is not directly below the pixel. 

 At the bottom of the image on the left hand side, there are some spurious results. These 

results are generated by a series of straight lines which are very close together. This simply 

represents random corners detected in a noisy environment. Thankfully they are located away from 

most of the windows and should not interfere in the subsequent window extraction process. 

 
Figure 35 The input image to the corner detector. 

 
Figure 36 The overlay images for this location. Notice the corners, highlighted by colour. 



55 

 

5.2.2 Test Case Two: 
 Figure 37 and Figure 38 below, show a new set of input and overlay images. This input image 

was downloaded from Google Street View. The camera distortion seen in the first test case is not 

present in this image, but a much larger problem exists. At this location Google have stitched a 

number of images together. This has resulted in the top story of the building being shifted to the 

left. The stitching occurs across the second row of windows from the top and removes almost any 

chance of the application finding them. The image above the stitch line is blurred compared to the 

rest of the building, which may also effect performance of the application. 

 As can be seen in the overlay image below, the edges extracted from this image are quite 

noisy. There appears to be double edges detected, where the edge of the window consists of two 

edge lines with a gap between. This occurs as a result of the dark regions around the windows, 

which generate an edge where this region meets the wall and again where this region meets the 

window pane.  

 For the top three rows of windows the corner detector has found the corners according to 

the definition it is based on. The top row, or at least what parts of it remain, has had almost all of the 

corners present detected. The second and third rows have produced good corners, but have 

struggled with an unforeseen shape. At most of these corners where the double edges join, a 

rounded edge joining the two parallel lines has appeared. This produces a lot of edge pixels in a very 

small region and thus the counter values will potentially be high in every direction. As a result of this 

the corner detector has failed in some, but not all of these cases. These edges will not be suitable for 

window extraction as the line following algorithm will have too many misses or have too many 

option and not find the corner on the opposite side of the window. 

 The area of the image below the third row of windows is very noisy. The edge pixels 

generated are vague and indistinct. There are a number of reasons for this, firstly there are 

illumination changes in the windows. This is due to shadows from the flower baskets and the pillars 

beside the windows. The second issue are the flower baskets and the people. The flowers are 

irregularly shaped and cause a large amount of spurious edges. The people cause extra shadows and 

random edge pixels. The net result is a region of noisy edge pixels and the corner detectors 

performance is accordingly poor. This is to be expected as any system given poor inputs will produce 

poor results. 



56 

 

 
Figure 37 The input image, this image is taken from Google Street View, notice the effects of stitching on the image. Some 

windows have been shifted and blurred. 

 
Figure 38 The overlay image, the corners are highlighted along with the edges. Notice the effects of the stitching seen in the 

input image. 



57 

 

5.2.3 Conclusions: 
 The corner detector has performed very well according to the definition of a corner. Figure 

36 above, demonstrates how the corner detector can perform very well when presented with 

different types of windows. The corners of the windows that have noisy interiors were correctly 

extracted, such as those on the left hand side of the image. The only problem being the noise led to 

both very wide regions and very small regions for the corners. This could be troublesome in the next 

section. The second type of corners found were those for windows with very crisp edges, as seen on 

the right of Figure 36. The only issue here being the corners detected in the middle of the window, 

where the two panes meet. The major cause of failure in the corner detector is noisy edges. This was 

illustrated in Figure 38, where the bottom of the image has vague and random edges. Thus for the 

corner detector to succeed the pre-processing of the image needs to reduce the presence of noisy 

edges. 

5.3 Window Extraction: 

 Below are number of different pairs of images. Each pair of images show the corner image 

and an image displaying the successfully extracted windows. The image displaying the extracted 

windows is a mock up displaying the results. The actual application highlights the extracted windows 

by colouring the four corner pixels red and setting the pixel at the centre of the window to red. If the 

reader wishes to run the application, provided on the attached CD, this is how extracted windows 

are presented. For this section the windows extracted are shown in green with the remaining edges 

shown in white. 

5.3.1 Test Case One: 
 The image used is the same as that used for test one above. This test shows what windows 

have actually been extracted, based on the overlay image presented in Figure 36 above. The 

application found eighteen windows out of the twenty five windows present in the image. This 

represents a success rate of 72%. The other important observation is that no edges were deemed to 

be windows, which in reality are not windows. Thus the false positive rate is zero.  

 The four windows not extracted on the right hand side building, are the four windows with 

low illumination. These windows produced poor edge results and are missing some corners. Thus the 

failure of the application to extract them lies with the edge detection results. For the three windows 

not extracted on the left hand side building, there are two reasons for the failure. The two windows 

on the bottom row were not detected because the bottom right corner is not located along the line 

of the bottom of the window. They are located a short distance along the right hand side of the 

window. This would cause the horizontal search to miss the corner. The window top left of this 

building was not extracted as the top left corner was not extracted in the previous stage. This means 

the window extraction process has no chance of associating a window pattern with this group of 

edge pixels. 



58 

 

 
Figure 39 The extracted windows are coloured green with the other edges presented in white 

5.3.2 Test Case Two: 
 This section also uses the same input image as test case two above. This image shows how 

damaging Google Street Views use of stitching is to the end result. Two images are shown below, 

Figure 40 and Figure 41. Figure 40 is the same image as used in case study two above and Figure 41 

is an image taken on a mobile device of the same building. The contrast in the resulting number of 

windows extracted is used to highlight the effect of the stitching. 

 In Figure 40 below, there is only one window extracted from a building with twenty four 

windows. This is low enough to render the end result null and void. At this point the application 

would simply not have enough information to proceed to the matching stage. The reason for the 

failure to extract more windows was highlighted in test case two above. The corner detector failed 

to detect the four corners of most windows because of the distorted and blurred windows at the top 

of the image and the noisy windows at the bottom of the window. 

 To highlight the extent of the problem caused by the Google Street View stitching Figure 41 

below, offers a view of the same building but through a camera. This means the edges extracted for 

the windows in the top three rows are much clearer and well defined. The net result is that of the 

fifteen windows in the top three rows, eleven were successfully extracted, representing a 73% 

detection rate. The camera image only shows the top four rows of windows, omitting the bottom 

row. This yields an overall detection rate of twelve out of twenty windows, or 60% success rate. This 

includes the noisy windows which were discussed above. Again the application had no false positive 

detections. 



59 

 

 
Figure 40 The extracted windows are coloured green with the other edges presented in white 

 

 
Figure 41 A contrasting example to highlight the effects of the stitching employed by Google Street View 



60 

 

5.3.3 Conclusions: 
 The window extraction method is not perfect. Between the two tests the success rate in 

realistic condition was about 72%. But this is only representative of images which have single edges, 

with no noisy edge points along the outline of the window. The examples above show that this is not 

an unrealistic expectation.  

 The biggest problem with this section was Google Street Views stitching. It effectively 

removed ten windows from the building. This is because the stitching line went through them and 

blurred the remaining windows. This is a very serious issue, as it could render many other locations 

impossible to match, if the input image is as distorted as seen here. 

5.4 Façade Matching: 

 In this section the façade matching algorithm is put to the test. Two test cases are examined, 

but only one of these follows on from the test cases above. Test case one is continued but test case 

two is swapped for a new example as the data extracted was not sufficient to proceed any further. 

 The test data is broken into two parts, the column groupings and the subsequent window 

matching. The application highlights columns by displaying the centre point of the window with red 

centres at the top of the column and green for subsequent window. For illustration purposes these 

results have been converted to the images shown below. The end result and window matching is 

output in text format and have also been converted to the images below for illustrative purposes. 

5.4.1 Test Case One: 
 This test case has so far proved quite successful with eighteen of the twenty five windows 

present extracted. Figure 43 below, shows the image used up to this stage, the image from the 

camera. In Figure 43 the extracted windows are colour coded by column. There are seven different 

columns of windows in the image. Figure 44 below, is the corresponding Google Street View image. 

This image has been processed in the same manner as the camera image. In Figure 44 there are 

some issue from the stitching employed by Google Street View. This has had a very bad effect on 

one window, shifting the top to the left of the bottom half of the window. There is also an extra line 

of edge pixels in the green column. The columns are number zero to N from right to left, e.g. column 

zero is the red column, one the blue, two the green and so on. The images are labelled image one 

and image two in the output, the camera image, is image one and the Google Street View image, is 

image two. 

 

The result is given below in Figure 42. It can be seen that the columns have been matched correctly.  

 
Figure 42 The result at the end of the test. 

 



61 

 

 
Figure 43 Image from camera, the extracted windows are colour coded by column 

 
Figure 44 Image from Google Street View, colour coded by column 



62 

 

 
Figure 45 The image above displays the matching windows 

5.4.2 Test Case Two: 
 The image set used for the previous test case two example, was abandoned after it failed to 

yield sufficient extracted windows in the Google Street View image. As a result, for this example a 

new set of images will be used.  

 Figure 47 below, shows the camera image used, with extracted windows colour coded by 

column. Of the nine windows in the façade, eight have been successfully extracted, a success rate of 

88%. In Figure 48 below, another camera image is displayed. Again the extracted windows have 

been colour coded by column. The application extracted all nine of the windows and also the inner 

outline of the window in the bottom left of the image. This is because the inner outline conforms to 

the definition of a window, but since the two are overlapping it would be preferable if the inner 

window was discarded. In this case the window numbering of the columns has been reversed, due to 

the change in the direction of the perspective distortion. Thus the red column is column zero, the 

green number one and blue number three. 

 The result is shown below in Figure 46. The application has successfully matched the 

columns together. The windows matched are shown Figure 49, all windows found, with a 

corresponding window in the other image has been matched. The application extracted the bottom 

right window in the second image, thus it has no pair. Another point to note is how the bottom left 

window in image two has both the inner and outer outlines of the window classified as a window. 

When matching occurs the outer outline of the window is matched to the corresponding window in 

image 1. This test is very successful using two camera image, thus highlighting the method can 

handle a small amount of missing information and still produce correct results. 



63 

 

 
Figure 46 The result at the end of the test. The score matrix is displayed. It can be seen how the largest value is selected and 

set to 0 and all impossibilities set to -1. 

 

  
Figure 47 The camera image, with extracted windows colour coded by column. 



64 

 

  
Figure 48 The second camera image, with extracted windows colour coded by column. Notice how the bottom left window 

has the inner and outer edges identified as windows. Also note that the bottom right window has only the inner edges 
extracted as a window. 



65 

 

 

 

 

 

 

 

 

 

 

 A second examination is presented below. The first image below is also compared to a 

Google Street View image. This image has been significantly distorted by stitching and as a result 

significantly less windows have been discovered. The outcome is a successful match, but not with 

the level of certainty required. Note that in this case the Google Street View image has had its 

columns labelled zero, two and one from left to right, this is a result of the distortions through the 

centre column of windows. 

 

 

 

Figure 49 The above image colour codes the matching windows extracted in both images. Note the bottom left window in 
the second image. While the inner and outer outlines were classified as windows, only the out window generated a match 

with the outer window in the first image 



66 

 

 
Figure 50 The Google Street View image, with extracted windows colour coded by column 

 The result of this test is shown below; 

 

The application has matched the two leftmost columns and the two middle columns, but the overall 

score is very low. 

5.4.3 Conclusion: 
 The above test illustrates that the matching algorithm is very successful in matching when 

the majority of windows are found. In this case it was able to handle effectively two windows not 

having a match in the second image. One of these was caused by a window not being extracted and 

the second scenario involved an inner outline of a window being classed as a window. This 

represents a false positive in the window extraction process. Thus overlapping windows need to be 

removed, but care needs to be taken in removing the right windows when this occurs. 

 The last test in test case two has shown the penalty for missing windows in one image is 

quite severe. The algorithm needs to strike a better balance between highlighting the missing 

windows and showing how strongly the extracted windows match. Due to time constraints, this is 

left as future work.  

 The biggest problem in this and every other section is the stitching of images by Google. It 

distorts the images by shifting windows positions, introducing new edges, blurring details and 

distorting window shapes.  

5.5 Conclusions: 

 The three main stages in the building matching algorithm have been tested above. These are 

the corner detector, window extractor and façade matcher. There were a number of issues which 

caused problems at each stage and as each stage builds on the previous stage, errors propagate 

through the application and effect the end result.  

 The corner detector is very successful. It can reliably extract the corners, as defined, when 

presented with clean edges to work with. The errors associated with the corner detector arise from 



67 

 

two sources; perspective distortion and noisy inputs. The perspective distortion can stop the corner 

detector from finding pixels in a given direction. This then leads to T-junctions being interpreted as 

corners. The noisy input can have two effects, if the region is noisy and filled with random edges 

then the detector will find random corners. This is the expected behaviour. The issue arises when 

the window has more than one line defining its outline, with multiple lines running parallel. When 

these lines turn and join at the end, there is such a high concentration of edge pixels in the area, the 

corner detector can generate random results, or no results. 

 The window extraction process is limited by the quality of the corners detected and the edge 

pixels defining the outline of the window. This is an example of where the errors form an earlier part 

of the application can propagate through. If either the edge extraction or corner extraction 

processes have errors, they will affect the window extraction process. In the main, the window 

extraction process was very successful. It found 70%+ of windows in the regions it would be 

expected to succeed in. Although this number is not reliable as it only represents three tests, the 

results are encouraging. 

 The matching algorithm is not perfect, and it is again affected by errors propagating through 

from the previous stages. Overall it has proved quite successful in matching buildings where the 

majority of windows have successfully been extracted. The problems arise when there are very few 

windows extracted in one image compared to the other. The algorithm penalises missing windows 

quite severely. This penalty needs to be adjusted to place more emphasis on the windows actually 

present. The algorithm struggles to associate windows in matched columns if there are not very 

many of them. This is because of the lack of positional information available if there is only one. Thus 

it may be necessary to consider rows of windows as well as columns. This would provide extra 

positional information for use in score calculations. 

 Overall the corner detector and window extractor performed to a high standard. The 

matching algorithm is quite successful, but improvements could be made when handling missing 

windows. The testing has shown how errors occurring in the early stages of the application, have 

effects at all subsequent stages. The biggest problem across all three stages is the stitching methods 

employed by Google Street View. If this project was to be continued, it would be necessary to 

contact Google directly and see if access could be made available to the unstitched image data. This 

data would most likely only have views of buildings close to the camera, but removing the stitching 

issue would allow for better results to be garnered. While the above examples illustrate the 

successes and issues with the current implementation, more results are presented in Appendix B: 

Supplementary Results data for further examination. 

5.6 Limitations: 

 The application, in its present state, makes a number of assumptions, which limits its 

performance. The description of a window is the main limitation in this regard. The description of a 

window is quite basic and does not consider information about the shape or interior layout of the 

window. The shape defined, restricts the type of windows which can be found, for example windows 

with arched tops will not be extracted. The interior layout of windows differ quite significantly, some 

windows contain a single pane of glass, while other contain complex patterns with bars running 

vertically and horizontally through the window. Using this information in the description of a 

window would allow for more detailed comparisons and improve the matching process.  

 The overall building description method employed, reduces the application effectiveness on 

some buildings and landmarks. For example glass fronted buildings and landmarks with no windows 

will not be successfully extracted.  

 The edge detection methods used can fail to extract the outline of the windows in certain 

scenarios. If the outlines are not correctly extracted the corner detection and window extraction 



68 

 

stages will fail. Some of the reasons for these failures are; illumination, colour and obstruction. 

Illumination can cause brighter and darker regions within a single window pane, this can create 

artificial edges within the window. Dark regions can cause more problems than bright, as this can 

lead to the colour of the window pane matching the colour of the surrounding walls. This means the 

contrast in colour does not exist between the window pane and the wall, thus the edge detector will 

not extract the edges along the outline of the window. Obstructions such a street lighting, 

ornamental hanging flower baskets and people in the images generate extra edges within the image. 

If these edges overlap or interfere with the outlines of the windows, this has the potential to 

interfere with the corner detector and window extraction processes. 

 The limitations presented above can be broadly grouped into two categories; assumptions 

and environment variance. The application assumes buildings will have windows and these will 

conform to the definition of a window provided. This definition could be expanded to include more 

shapes and to include data about the interior layout of the window. Variability introduced by the 

environment can also have a negative impact on the application s performance. Changes in 

illumination across a window pane can introduce spurious edge pixels. As can obstacles in the scene 

such as people, cars and ornaments. While the limitations of the application due to assumptions can 

be addressed by changing the application, the environmental issues will always be present. 

  



69 

 

6 Final Word: 

6.1 Future Work: 

 The details presented above represent the stages of the application that have been 

implemented. Due to time constraints there are a few sections of the application, which are 

unimplemented. Examining the results above, some of the stages also need refinement before the 

application would be of a releasable standard. 

 Small refinements could be made to the corner extraction process. The process for 

identifying the exact corner location is not very accurate. The corner can be located on an edge near 

the corner, to give greater accuracy this should be reduced to locate the corner at the exact 

intersection point of the two lines. 

 The building matching algorithm needs refinement. The main issues seem to be the method 

of penalising missing windows and inaccuracies when a column has only a single window. There are 

a number of different approaches that could be made to improve these, but all require significant 

implementation and testing time. Currently the application scales the score of a column by the ratio 

of the number of windows matched to the total number of windows in the largest column. This 

means if a column with three windows matches a column with four windows, the maximum score 

possible is 75%. This penalty is too harsh and needs to be re-evaluated. To help with matching 

windows within columns with only one window, it may be helpful to examine the rows of windows 

as well. This approach gives the positional information that is missing, basing the positional 

information off windows in other columns. This would help to stop the case where a window near 

the top of the building in image one, matches a window near the bottom of the building in image 

two. 

 The application is not fully finished, the extraction of the address and the annotating of the 

input image for display to the user are as yet unfinished. These are the two final steps to be 

implemented in the application. Due to time constraints it was not possible to investigate these final 

steps. There are two main tasks involved in the final steps; identification of an address based 

database and filtering the data for display. A database or repository of information about buildings 

or landmarks based on addresses, needs to be identified. It is from such a repository that the 

information to be annotated onto the input image will be downloaded. Before the downloaded data 

is displayed, it will need to be parsed into a presentable format. This would include links to external 

sites and ranking the information in terms of importance. 

6.2 Conclusions: 

 The task of building identification in computer vision is not a new one. There are many 

applications where identifying a building can be key to the applications performance. The majority of 

these applications involve a user navigating an urban environment. This means the application needs 

to be able to traverse the environment with the user. Most previous attempts have used back end 

application s to perform the actual image analysis and a mobile device to provide input and display 

output. This project examines the feasibility of performing such image process on the mobile device 

and removing the need for the back end system. 

 To identify the building in a previously unseen image, it needs to be compared with an image 

containing a known building. This requires a database of images with labelled buildings, which can 

be used to compare with the unseen image. In previous systems this database was specifically 

generated by the owners of the system. It was constructed in such a way as to be stored in the most 

convenient manner for comparing with the input images. This required the system operators to 

collect the data, design and construct the database and perform the pre-processing on these images. 



70 

 

This project aims to remove this overhead by using a publically available source of images, Google 

Street View. 

 To match the buildings in two images, a description of what the building looks like is 

constructed. The method used in this project is to describe the building façade by the windows 

present in the façade. The façade is described by the size, shape and relative positioning of the 

windows. To achieve this, the process was broken down into a number of different stages; corner 

detection, window extraction and façade description and matching. 

 To extract the windows, the application is provided with a definition of what constitutes a 

window. This description is a rectangular region defined by four corners, which are linked by edge 

pixels. There are four different types of corners and these must be in the correct order. A corner 

detector has been developed to extract these four types of corners. It works by searching for lines of 

pixels in the vertical and horizontal direction which pass through a given pixel. This yields four 

counter values, one for each direction; up, down, left and right. Based on these counters the corner 

type can be defined. The process of extracting windows from an image after these corners are 

identified, is based on searching for a pattern of four corners (one of each type) linked by edge 

pixels, which outline the window. 

 To describe the building façade, the size, shape and positioning of the windows is used. The 

windows are grouped into columns .The windows are described by their aspect ratio and a distance 

ratio indicating how far away they are from other windows in the column. The columns are related 

by the distance ratio between them. To compare two buildings in different images, the above 

information is used. The matching process is divided into two stages, the first is column matching 

and the second is window matching. The first stage involves, searching for the layout of columns 

present in the first image, in the second image. This means finding groups of columns that are 

similarly positioned relative to one another. Once this layout has been extracted, the layout of the 

windows within the matched columns is examined. This is based on the aspect ratios of the windows 

and the distance ratio between them. 

 Through testing the different elements of the application a number of conclusions can be 

drawn about the suitability of the application. The corner detector has performed very strongly, but 

is depended on clean edges being detected. Noisy edges cause problems and if they are located near 

a window corner or outline, the corner detector is liable to miss the corner. The window extraction 

method proved quite successful in suitable conditions. The method requires single lines of edge 

pixels to join the corners together, if this is the case the performance is good. The matching of 

buildings between images was not as successful as the other sections.  

 The biggest problem seen was the distortion of the images by Google Street View. Google 

Street View stitch a number of images together to create Street View. During experimentation it was 

discovered that the algorithm used for this is imperfect. The image above the stitch can be blurred 

compared to the image below and the stitch line can shift upper section relative to the lower. The 

end result is that windows become distorted beyond recognition and are impossible to extract. This 

is the biggest issue facing this application into the future. 

 The results show that the corner detector and window detector are suitable for this 

application. The matching algorithm needs refinement but shows promise. The next step in taking 

this application further is to port the implementation to a mobile device, download address based 

information and display it, overlaid on the input image. 

  



71 

 

7 Bibliography 
Chen, D. M., Baatz, G., Koser, K., Tsai, S. S., Vedantham, R., Pylvanainen, T., . . . Grzeszczuk, R. (2011). 

City-Scale Landmark Identification on Mobile Devices. IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR). Providence, RI. 
Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. Conference on 

Computer Vision and Pattern Recognition, (pp. 886-893). 

Dawson-Howe, D. K. (2012, September). Edge Notes. Trinity COllege Dublin. Retrieved from 

mymodule.tcd.ie. 

Galvez-Lopez, D., & Tardos, J. D. (2011). Real-time detection with bags of binary words. IEEE/RSJ 

International Conference on Intelligent Robots and Systems (IROS), (pp. 51-58). 

Google. (2014, March 28). About Street View. Retrieved from Google Maps: 

https://www.google.ie/maps/about/behind-the-scenes/streetview/ 

Harris, C., & Stephens, M. (1988). A Combined Corner and Edge Detector. Alvey Vision Conference, 

(pp. 147-152). 

Heaston, P. (2014, March 29). 2-Point Perspective: Understanding SPace. Retrieved from craftsy: 

http://www.craftsy.com/blog/2013/06/2-point-perspective/ 

Hough, P. V. (1962). United States of America Patent No. US3069654 A.  

Lowe, D. G. (1999). Object recognition from local scale-invariant features. Computer vision, 1999. 

The proceedings of the seventh IEEE international conference on. Vol 2., (pp. 1150-1157). 

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal 

of Computer Vision, 60(2), 91-110. 

Matas, J., Galambos, C., & Kittler, J. (2000). Robust Detection of Lines Using the Progressive 

Probabilistic Hough Transform. Computer Vision and Image Understanding, 119-137. 

McClean, E., & McDonald, J. (2013). An Augmented Reality System for Urban Environments using a 

Planar Building Facade Model. Maynooth: NUI Maynooth. 

Robertson, D., & Cipolla, R. (2004). An Image-Based System for Urban Navigation. In IN BMVC (pp. 

819-828). 

Rosten, E., & Drummond, T. (2006). Machine Learning for High-Speed Corner Detection. In Computer 

Vision – ECCV 2006 (pp. 430-443). Austria. 

Rosten, E., Porter, R., & Drummond, T. (2010). Faster and better: a machine learning approach to 

corner detection. IEEE Trans. Pattern Analysis and Machine Intelligence, (pp. 105-119). 

 

  



72 

 

8 Appendix: 

8.1 Appendix A: Alternative Approaches 

8.1.1 Vanishing Points: 
 As the majority of the research presented relies on vanishing point detection as a starting 

point, this approach was the first explored. The advantage of this approach is the plane of the façade 

is identified and the façade outline can be extracted. To successfully extract the vanishing points 

associated with the façade planes requires accurate line detection and classification. The lines must 

be based on the regular linear features on building façade, such as roof line, window edges and door 

frames. 

8.1.2 Line extraction: 
 To extract the linear features within the image, as line detector is applied to the edge image. 

Two line detectors were trialled, the Hough Line detector (United States of America Patent No. 

US3069654 A, 1962) and the probabilistic Hough Line detector (Matas, Galambos, & Kittler, 2000). 

Both of these line detectors are implemented in the OpenCV library. 

 These lines are then grouped based on their orientation. Divide the range 0 ->2*π (0->360 

degrees) into N bins, N = 18 for this experiment. This means each bin covers a range of 20 degrees. 

 
Extract the vertical lines as lines with orientations in bins 0, 8, 9 and 17. Extract the horizontal lines 

as points in bins either 4 and 13 (strict policy) or 3, 4, 5, 12, 13 and 14 (relaxed policy), experiment to 

see which is better 

8.1.2.1 Vanishing Point Estimation: 

 To find a reasonable approximation to the most prominent vanishing point (VP) in an image 

the following method was trialled. This estimation was run on the horizontal and vertical line 

separately to extract two vanishing points, one for each group. The method takes the list of lines in 

either the horizontal or vertical direction and is described by the following steps; 

1. Pick two lines at random and calculate their point of intersection. This point of intersection 

is chosen as a candidate vanishing point. 

2. Calculate the score of this vanishing point with respect to all other lines. 

a. Firstly a score for each line (excluding the two chosen in 1, above) is calculated as: 

0 
1 

2 

3 

4 

5 

6 

7 
8 

14 

13 

12 

9 
10 

11 

15 

16 
17 



73 

 

𝐿𝑖𝑛𝑒_𝑆𝑐𝑜𝑟𝑒 = (𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑖𝑛𝑒) ∗
1

(𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑙𝑖𝑛𝑒 𝑡𝑜 𝑉𝑃)
 

b. This score is subject to a threshold to determine if the line is an inlier or outlier for 

this vanishing point. 

c. All scores of lines classified as inliers are summed. 

3. The estimated vanishing point is then given a score as; 

𝑉𝑃 𝑆𝑐𝑜𝑟𝑒 =  (
𝑁𝑜. 𝐼𝑛𝑙𝑖𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝐿𝑖𝑛𝑒𝑠
) ∗ ∑ 𝐼𝑛𝑙𝑖𝑒𝑟 𝐿𝑖𝑛𝑒_𝑆𝑐𝑜𝑟𝑒𝑠 

4. Steps 1 to 3 are repeated until the VP Score goes above a threshold, or the maximum 

number of iterations have occurred, at which point the VP with the best score is returned 

along with the set of lines classified as inliers. 

8.1.2.2 Vertical Vanishing Point Extraction: 

Using the vertical lines: 

 Threshold lines by length, disregard very short lines as noise. 

 Divide image into 13 horizontal segments 

 For each segment determine which line are in the segment (count lines that are both 

partially and fully within the segment) 

 For each segment find the most prominent vanishing point. 

 Combine these 13 vanishing points to extract the most prominent overall vanishing point. 

8.1.2.3 Horizontal Vanishing Point Extraction: 

Using the Horizontal lines: 

 Threshold lines by length, disregard very short lines as noise. 

 Divide image into 13 vertical segments 

 For each segment determine which line are in the segment (count lines that are both 

partially and fully within the segment) 

 For each segment find the most prominent vanishing point. 

 Combine these 13 vanishing points to extract the most prominent overall vanishing point. 

8.1.2.4 Results: 

 Below two sets of results are presented. In both cases the segmentation of the image into 

thirteen equal strips is shown. The output shows the vanishing points via a line from the centre of 

the image to the extracted vanishing point. The coordinates of all vanishing points and the overall 

vanishing point are shown in the console. The numbers printed at the top are the segment number, 

followed by the number of lines in that segment, if a segment has no lines, then no vanishing point 

can be extracted for that segment. 

  



74 

 

 
 

 
 

  



75 

 

 
 

 
8.1.2.5 Conclusions: 

 The vanishing points for the different segments are very unreliable, there is no consistency 

between the directions shown. Some segments find the vanishing point above the image and some 

below. The results shown above are simply not consistent or reliable enough to proceed with this 

approach.  

8.1.3 Histogram of oriented gradients: 
 The histogram of oriented gradients (Dalal & Triggs, 2005) approach uses the orientation of 

the pixels around a pixel to calculate a histogram for the current pixel. In this case a circular region 

around the current pixel is examined and the orientation of each pixel in the region is classified into 

one of eighteen bins. This is similar to the approach described above of classify lines into bins based 

on orientation. Once these histograms are calculated the total number of pixels in bins 0, 3, 4, 5, 8, 

9, 12, 13, 14 and 17 to summed the number of pixels in the vertical and horizontal directions. The 

idea was this would highlight region corresponding to the corners of the windows. The results are 

shown below, with the orientation, gradient, raw data and non-maxima suppressed images shown; 



76 

 

 

Figure 51 Orientation Image 

 
Figure 52 Non maxima suppressed edge pixels 



77 

 

 

Figure 53 HOG image, simply the number of pixels that are vertical or horizontal within a 80x80 pixel 

area around the pixel in question 

 
Figure 54 Non maxima suppressed version 

8.1.3.1 Conclusions: 

 The output data is not representative of the window layout. Ideally the non-maxima 

suppressed response would occur at corner locations, but this is not the case. Thus this approach 

was abandoned. 

 

 



78 

 

8.1.4 SIFT: 
 The SIFT technique was presented in 2004 by (Lowe, Distinctive Image Features from Scale-

Invariant Keypoints, 2004). This approach is the standard feature detector and was one of the first 

reliable detectors introduced. A number of improvements have been made over the years since it 

was first presented.  

 
 The results are presented above. There are a lot of points, circles, discovered. The matched 

points are generally quite good, but the issue is most are being generated in the scenery, trees, and 

not on the building. Thus this would require extra work to extract the building façade. Thus this 

approach may have been very successful if the vanishing point approach had proved successful in 

extracting the building facades from the larger image. 

8.1.5 FAST Features: 
 The FAST corner detector (Rosten & Drummond, Machine Learning for High-Speed Corner 

Detection, 2006) (Rosten, Porter, & Drummond, Faster and better: a machine learning approach to 

corner detection, 2010) considers a circle of sixteen pixels around the current pixel. If twelve 

contiguous pixels are above or below a threshold it is considered a corner. An alternative and faster 

approach is to examine four of these pixels, the 12, 3, 6 and 9 o’clock pixels. If three of these are less 

than or above the threshold, then a corner exists. 



79 

 

 

 The results of this testing is shown above and the results are quite promising. The only issue 

being the high corner response in the middle of the window where the pane is split in two. Ideally 

this would be removed. It was the result of this test which led to the approach presented in the main 

body of the report being pursued. The application presented in the main report examines the four 

directions, as FAST does, but tried to exclude the central corners detected. 

 

  



80 

 

8.2 Appendix B: Supplementary Results data 

8.2.1 Corner Detector and Window Extractor: 
 Below follows a number of other examples of input and overlay image pairs. The corners 

extracted are shown and are colour coded; 

 Red: bottom left corner 

 White: top left corner 

 Purple: top right corner 

 Blue: bottom right corner 

 

 
The extracted windows for the image sets above and below are shown in testing section. 

 
 



81 

 

 
 

 
 

 
 



82 

 

 
 

 
 



83 

 

 
 

 
 

 
 

 



84 

 

 
 

 
 



85 

 

 
 

 
 

  



86 

 

8.2.2 GPS Data 
The data below is related to test case two in the GPS testing section above. 

 Sony Xperia Tipo 

Time 
step(sec) Location 1 Location 2 

 Lat Long Lat Long 

0 53.333823 -6.537433 53.33403611 -6.537473611 

10 53.33381944 -6.537424167 53.33403611 -6.537473611 

20 53.33381944 -6.537424167 53.33403611 -6.537473611 

30 53.33381944 -6.537424167 53.33403611 -6.537473611 

40 53.33381944 -6.537424167 53.33403611 -6.537473611 

50 53.33381944 -6.537424167 53.33403611 -6.537473611 

60 53.33381944 -6.537424167 53.33403611 -6.537473611 

70 53.33381944 -6.537424167 53.33403611 -6.537473611 

80 53.33397 -6.536223333 53.33403611 -6.537473611 

90 53.33397 -6.536223333 53.33403611 -6.537473611 

100 53.33397 -6.536223333 53.33403611 -6.537473611 

110 53.33397 -6.536223333 53.33403611 -6.537473611 

120 53.33397 -6.536223333 53.33403611 -6.537473611 

130 53.33375583 -6.536681944 53.33403611 -6.537473611 

140 53.33375583 -6.536681944 53.33403611 -6.537473611 

150 53.33375583 -6.536681944 53.33403611 -6.537473611 

160 53.33375583 -6.536681944 53.33403611 -6.537473611 

170 53.33375583 -6.536681944 53.33403611 -6.537473611 

180 53.33375583 -6.536681944 53.33403611 -6.537473611 

190 53.3337475 -6.537285556 53.33403611 -6.537473611 

200 53.3337475 -6.537285556 53.33403611 -6.537473611 

210 53.3337475 -6.537285556 53.33403611 -6.537473611 

220 53.3337475 -6.537285556 53.33403611 -6.537473611 

230 53.3337475 -6.537285556 53.33403611 -6.537473611 

240 53.3337475 -6.537285556 53.33403611 -6.537473611 

250 53.3337475 -6.537285556 53.33403611 -6.537473611 

260 53.33383833 -6.537470278 53.33403611 -6.537473611 

270 53.33383833 -6.537470278 53.33403611 -6.537473611 

280 53.33383833 -6.537470278 53.33403611 -6.537473611 

290 53.33383833 -6.537470278 53.33403611 -6.537473611 

300 53.33383833 -6.537470278 53.33403611 -6.537473611 

     

     

Average: 53.33381833 -6.537063251 53.33403611 -6.537473611 

Median: 53.33381944 -6.537285556 53.33403611 -6.537473611 

Std Dev: 7.52637E-05 0.0004622 1.42109E-14 5.32907E-15 

Min 53.3337475 -6.537470278 53.33403611 -6.537473611 

Max 53.33397 -6.536223333 53.33403611 -6.537473611 

 



87 

 

 HTC One S 

Time 
step(sec) Location 1 Location 2 

 
Lat Long Lat Long 

0 53.33383558 -6.53730678 53.33383558 -6.53732775 

10 53.33383178 -6.53730822 53.33384322 -6.537331111 

20 53.33383178 -6.53730772 53.33384703 -6.537328194 

30 53.33383558 -6.53730722 53.33404922 -6.537517528 

40 53.33383558 -6.53730722 53.33412933 -6.537613861 

50 53.33383558 -6.53730722 53.33409881 -6.537476972 

60 53.33383558 -6.53730678 53.33402633 -6.537367806 

70 53.33383558 -6.53730633 53.33396528 -6.537472278 

80 53.33383558 -6.53730633 53.33408356 -6.537484611 

90 53.33383558 -6.53730633 53.33407972 -6.537514667 

100 53.33383558 -6.53730633 53.33406828 -6.537572333 

110 53.33383558 -6.53730633 53.33405303 -6.537483722 

120 53.33383558 -6.53730633 53.33407211 -6.537617222 

130 53.33383558 -6.53730722 53.33410261 -6.537599028 

140 53.33383558 -6.53730772 53.334095 -6.537579972 

150 53.33383558 -6.53730867 53.33408736 -6.537570944 

160 53.33383558 -6.53730867 53.33408736 -6.537571444 

170 53.33383558 -6.53730911 53.33408736 -6.537573806 

180 53.33383558 -6.53730911 53.33408736 -6.537573806 

190 53.33383558 -6.53730911 53.33409117 -6.537581889 

200 53.33383558 -6.53730867 53.33408736 -6.537580972 

210 53.33383558 -6.53730772 53.33409117 -6.537579528 



88 

 

220 53.33383558 -6.53730722 53.33408356 -6.537532806 

230 53.33383558 -6.53730722 53.33407972 -6.537509917 

240 53.33383178 -6.53730822 53.33407972 -6.537517028 

250 53.33383178 -6.53730867 53.33407972 -6.537517528 

260 53.33383178 -6.53730964 53.33407592 -6.5375085 

270 53.33383178 -6.53731014 53.33407592 -6.537509389 

280 53.33383178 -6.53731058 53.33407592 -6.537509917 

290 53.33383178 -6.53731153 53.33407592 -6.537511806 

300 53.33383178 -6.53731206 53.33407592 -6.537511806 

     

     

Average: 53.33383448 -6.53730808 53.33405389 -6.537514456 

Median: 53.33383558 -6.53730772 53.33407972 -6.537517028 

Std Dev: 1.72738E-06 1.52114E-06 7.42734E-05 7.87192E-05 

Min 53.33383178 -6.53731206 53.33383558 -6.537617222 

Max 53.33383558 -6.53730633 53.33412933 -6.53732775 

 

 

 

 

 

 

 

 


