In-memory Translation Spotting Using Big Data

Analysis

Author: Supervisor:

Jan Scherbaum Prof. Owen Conlan

Master in Computer Science

University of Dublin, Trinity College

Submitted to the University of Dublin, Trinity College, May, 2014

Declaration

I, Jan Scherbaum, declare that the following disserta-
tion, except where otherwise stated, is entirely my own
work; that it has not previously been submitted as an
exercise for a degree, either in Trinity College Dublin,
or in any other University; and that the library may lend

or copy it or any part thereof on request.

Signature:

Date:

11

Summary

Localisation service providers look for ways to minimise the time needed for translations.
Automated machine translation techniques do not provide quality of translations to make
them usable in professional translation services. As a result of imperfections of automatic
machine translation techniques, Translation memories are created. Translation memories
are databases of previous translations which are collected in an attempt to reuse previously
professionally translated segments of text.

Translation memory systems, however, pose a number of usability issues. Overwhelming
the user with potentially large segments of text is one of the main problems. Translation
spotting is a technique where given a segment of text, the corresponding segment is identified
in the translated sentence. This technique would allow to either return the translation of the
query itself, or to use it to highlight the most likely translation candidate in the original
text. Translation spotting thus offers a solution to some of the usability issues of translation
memory systems. Existing translation spotting techniques were using statistical translation
models.

With the emerging trend of in-memory databases, big data analysis becomes possible in
a very performant fashion. Additionally, many organisations such as the European Com-
mission publish large numbers of translated documents as translation memories, which are
freely available. This dissertation explores the extent to which in-memory computing can
be used to support real-time translation spotting. The objectives of the dissertation are to
design and implement an in-memory translation spotting system and evaluate it in terms of
extensibility, effectiveness and efficiency.

Action research was used as a methodology for this project. The system was developed
in an iterative manner. The results of each iteration were then analysed, reflected on and the
knowledge gained was used as feedback into the following iterations.

An in-memory translation spotting framework was designed and implemented. The
framework consists of tools and components necessary to build a translation spotting sys-
tem. These components contain libraries for connection into the vendor specific database
and tools for data ingestion. A number of algorithms to perform translation spotting were
then proposed and implemented on top of the proposed framework. These algorithms mostly
work by analysing the co-occurrence of patterns in order to identify translations of queries.

Both the translation memory framework and the translation spotting algorithms were

then evaluated in terms of extensibility, effectiveness and efficiency. The system was proven

il

v

to be easily extensible with further data. It was found, that the proposed single word algo-
rithms yield up to 94% of effectiveness, scale very well and are able to perform in real-time.
The proposed multi-word algorithms yield up to 76% effectiveness, even though their per-
formance varies greatly based on the query and size of the analysed data set. A number of
optimisations were made to make such analysis possible for multi-word queries. These im-
plementation details mean that the effectiveness is limited by the quality of translation of the
shortest ingested sentence containing the query. Additionally, the performance is decided by
the length of the shortest sentence containing the query along with the size of ingested data.
These results indicate that despite its limitations, the system could be used to bring value
to both research regarding translation spotting techniques and modern translation memory
systems.

A number of avenues for future work were then identified based on the limitations of
the implemented system. Techniques for improving the performance of the multi word algo-
rithms were suggested including the replacement of imperative features with set based logic,
analysing possible ways to limit the number of potential translation candidates, limit the
computational overhead by using categorisation tools and finally considering compression

techniques to allow for pre-computation of translation candidates.

Acknowledgements

Firstly, I would like to thank my supervisor Prof. Owen Conlan for his support and guidance

throughout this project.

Special thanks to Dr. Malte Kaufmann for supporting this dissertation and providing me with

access to SAP expertise and technology.

Thanks also to Prof. Dave Lewis for pointing out the available data sets, and to Austin

Devine for his technical support.

vi

Contents

1 Introduction

1.1 Motivation e e e e
1.2 Research Question e
1.3 Methodology
1.4 Thesis OVEIVIEW v v i i e e e e

2 State-of-the-art Review

2.1 Introduction L
2.2 Translation Memory Systemso
2.2.1 Commercially Available Systems
2.2.2 Translation Spotting Lo
2.3 In-memory Database Systems
2.3.1 Commercially Available In-memory Databases
2.3.2 Advantages of In-memory Databases
24 Summary e e e e e e e e e

3 Design and Implementation

3.1 Introduction
3.2 Influences from the State of the Art.
3.3 High Level System Overview
33.1 Design e
3.3.2 Implementation
3.4 Administrative Layer L
341 Design
342 Implementation Lo
3.5 In-memory Database System
351 Design e
3.5.2 Implementation L
3.6 Summary e e e e e

4 Evaluation
4.1 Introduction L

4.1.1 TestFramework.

vii

B B W = -

— 00 3 3 3

viil

CONTENTS

412 TestData 47

413 TestCases. . . . v v v v v i e e e e e 47

414 Testso e 48

42 Experiments e e e 48
4.2.1 Extensibility 49

422 Phase One Evaluation 49

423 Phase Two Evaluation 57

4.3 DiscussionoftheResults 63
4.3.1 Single Word Algorithms 63

4.3.2 Multi-word Algorithms 65
Conclusion 69
5.1 Motivation L L e e e e e e e 69
5.2 Dissertation Objectives 70
5.3 Achievements e e e 70
54 Limitations e e e e e e 72
5.5 FutureResearch 73
5.5.1 Replacement of Imperative Logic 73

5.5.2 “Smart” Optimisations of the Multi Word Algorithms 73

5.5.3 Use of Compression for Pre-generation of Translation Candidates . 74

5.5.4 Annotation of Documents with Thematic Categories 74
Czech to English Single Word Test Cases 75
English to Czech Single Word Test Cases 79
Czech to English Multi Word Test Cases 83
English to Czech Multi Word Test Cases 87

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

A.l

B.1

C.1

D.1

Extensibility of the system measurements
Phase One - Efficiency of Simple Co-occurrence Spotting
Phase One - Effectiveness of Simple Co-occurrence Spotting
Phase One - Efficiency of Single Occurrence Limit Spotting
Phase One - Effectiveness of Single Occurrence Limit Spotting
Phase One - Efficiency of Stop Words Co-occurrence Spotting
Phase One - Effectiveness of Stop Words Co-occurrence Spotting
Phase One - Efficiency of Stop Words & Single Occurrence Spotting
Phase One - Effectiveness of Stop Words & Single Occurrence Spotting . .
Phase One - Efficiency of Co-occurrence N-Gram Spotting
Phase One - Effectiveness of Co-occurrence N-Gram Spotting
Phase One - Efficiency of Co-occurrence with Dictionary Spotting
Phase One - Effectiveness of Co-occurrence with Dictionary Spotting

Phase Two - Efficiency of Simple Co-occurrence Spotting
Phase Two - Effectiveness of Simple Co-occurrence Spotting
Phase Two - Efficiency of Single Occurrence Limit Spotting
Phase Two - Effectiveness of Single Occurrence Limit Spotting
Phase Two - Efficiency of Stop Words Co-occurrence Spotting
Phase Two - Effectiveness of Stop Words Co-occurrence Spotting
Phase Two - Efficiency of Stop Words & Single Occurrence Spotting
Phase Two - Effectiveness of Stop Words & Single Occurrence Spotting . .
Phase Two - Efficiency of Co-occurrence N-Gram Spotting
Phase Two - Effectiveness of Co-occurrence N-Gram Spotting
Phase Two - Efficiency of Co-occurrence with Dictionary Spotting

Phase Two - Effectiveness of Co-occurrence with Dictionary Spotting

Czech to English single word testcases
English to Czech single word testcases
Czech to English Multi word testcases

English to Czech Multi word testcases

iX

LIST OF TABLES

List of Figures

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27

High level design of the system 18
Comparison between 3-tier and 2-tier architecture 20
Support tools class diagramo L oL 23
Design of the ingestion phase TM representation 25
Object oriented design of the test framework 26
Overview of the proposed database schemadesign. 28
Database schema definition oo 30
Table Definition L 31
Tables implemented in the system 31
Grant Select Privelege to System User 32
Text Analysis Index Definition 32
Simple Co-occurrence Spotting -Part 1 34
Simple Co-occurrence Spotting - Part2 34
Single Occurrence Limit Spotting 35
Stop Words Co-occurrence Spotting -Part 1 36
Stop Words Co-occurrence Spotting -Part2 36
Number of Words Procedure, 38
Co-occurrence N-Gram Spotting -Part 1 39
Co-occurrence N-Gram Spotting - Part2 39
Co-occurrence N-Gram Spotting - Part3 39
Co-occurrence N-Gram Spotting - Part4 40
Co-occurrence N-Gram Spotting -Part5 40
Split Words Dictionary Procedure 41
Co-occurrence with Dictionary Spotting-Part 1 42
Co-occurrence with Dictionary Spotting-Part2 42
Co-occurrence with Dictionary Spotting - Part3 42
Co-occurrence with Dictionary Spotting - Part4 43

xi

xii LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

Many organisations resolve to hire specialised companies - Localisation Service Providers
(LSP), for translations of their products or documents [16]. These companies employ trans-
lators, who are in many cases paid per translated unit (a sentence or a paragraph of text). It is
therefore understandable that these companies attempt to reuse existing translations as much
as possible or to develop automated translation techniques. The results of widely available
automatic machine translation techniques are still not satisfactory and generally require hu-
man input to fix syntactic or grammatical errors. Another way of LSPs trying to reduce the
amount of labour needed for their jobs is to keep all previous translations - create transla-
tion memories (TM). These are documents divided into a number of translation units (TU),
which are translated to a single or a number of other languages. Translation memories there-
fore create databases of previous translations aligned by translation units. By developing
translation memory systems, which are able to search through the translation memories in
order to find a match between currently translated piece of text and the same text that could
have been translated in the past, LSPs are attempting to reuse their previous translations.

Organisations such as the European Commission [27] and other parliamentary bodies
are required to produce transcripts of their proceedings or documents in all of the official
languages, some of which are published and freely available. This generates a large corpus
of aligned documents and sentences across a number of languages, with very high standards
of translations. There are even efforts to generate translation memories from multilingual
websites [7] [17], which result in larger scales of covered terminology and semantic areas
of documents. These efforts to archive and generate large corpora, covering many fields
of specialisation and levels of translation quality promote the use of translation memory
systems. These growing translation memories may be difficult to search and analyse locally
on the translators’ laptops or PCs due to their enormous scale.

It is the efficiency and effectiveness of the translation tools to help translators with their
jobs that is highly valued. Research [7] [8] even suggests that many translators use web

search engines such as Google to search for specialised terms. It takes them around two

2 CHAPTER 1. INTRODUCTION

minutes to identify a resource that contains the required term and offers a translation in
the target language. Since the translators are paid per the amount that they translate, it is
desirable that assistance in terms of locating previously translated term is fast and offers a
range of high quality translation candidates. There are a number of online concordancers,
which attempt to provide such functionality. These systems take an input in terms of the
required term or phrase, the source and target language and return a number of translated
sentences, within which the translator can attempt to identify the most relevant translation.
The returned results are often the whole translation unit in both the source and the target
language. It is then responsibility of the translator to process the information and identify the
relevant terminology that is of value. There were a number of attempts to produce techniques
for translation spotting [21] [25] [24], which based on the source and target translation units,
would attempt to identify fragments of the text that have the highest probability of matching
the translator’s query. These techniques are a computationally heavy task and it might not be
feasible to employ them at the scale of concordancers.

With the continuous development of technologies, such as large server grids, high perfor-
mance computing (HPC) and cloud computing, the resources needed to search and perform
analyses on such large scale corpora are becoming readily available. It is possible to perform
the search and real-time analysis on larger and larger quantities of data. This improvement
is additionally supported by the continuously increasing limits of main memory size in com-
puter systems. Modern workstations and servers are currently able to support in the order of
terabytes of main memory. This is therefore leading to development and increasing popular-
ity of in-memory databases and platforms. In-memory databases combined with parallelism
provided by multicore, multi-cpu and distributed systems offer huge performance increases.
These systems are even offering the potential for performing big data analytical tasks. Such
tasks could have previously taken days to execute on hard-drive based database systems.
Since the main memory offers access times which are orders of magnitude smaller than hard
drive access times, such tasks could now be performed within minutes, seconds or even
real-time.

The development of such parallel, in-memory computing creates new ways of consump-
tion and analysis of large-scale translation memories. Such architectures, leveraging modern
information technology paradigms could lead to novel approaches of translations retrieval.
The additional computing power could even provide potential for the development of dif-
ferent techniques of translation spotting or automatic machine translation. Large quantity
of aligned documents across a number of languages could now be searched and analysed
in real-time using the in-memory database technologies. This could lead to improving user
experience of translation memory systems, while being able to perform even more computa-

tionally heavy analytics and thus potentially improve the quality of translation candidates.

1.2. RESEARCH QUESTION 3

1.2 Research Question

The research question of this dissertation is to explore the extent to which in-memory com-
puting can be used to support real-time translation spotting.

Translation memories (TMs) are large databases of aligned sentences corresponding to
previously translated documents. Translation memories are made up of modular pieces of
text called translation units (TUs). These units are then given to translators for translations
into a number of languages creating translation unit variants (TUVs). Translation spotting
is a technique, which attempts to find a translation of a query using aligned sentences. If
the query is contained in one of the aligned sentences, the technique attempts to identify
translation of the query in the target language.

In-memory database is a type of database management engine. In-memory databases use
main memory as their main storage, unlike traditional databases, which use hard disk to store
data. In-memory databases use the disk only for back up and persistence layer purposes. As
such, they retrieve data and analyse it from the main memory which leads into potential
performance increases compared to traditional database systems.

State-of-the-art systems and techniques will be examined and analysed in the areas of
translation memory systems, translation spotting techniques, and in-memory databases and
platforms.

A framework will be implemented using an in-memory database to allow the storage
and efficient retrieval of relevant translation units from a large number of translation memo-
ries. The system will be designed in such a way, that translation spotting can be performed
runtime. It is important that the data does not need to be pre-processed prior to its ingestion
and the whole system does not need to be retrained when additional data is ingested. Based
on this framework, techniques will be developed to perform real-time translation spotting by
analysing co-occurence of terms.

The proposed framework will be evaluated in terms of:
e Extensibility - how easily can the system be extended with further data?

o Effectiveness - how accurate are the translation candidates proposed by the system?
Precision will be calculated for every algorithm implemented in terms of percentage

of correct results.

e Efficiency - Can the system perform in real-time even when adding more data? The
performance will be measured in terms of the time needed to perform the operation on

a given data set size and to transfer the result set to the client.

This work will also identify potential avenues for future research and potential improve-

ments of the proposed algorithms and the framework.

4 CHAPTER 1. INTRODUCTION

1.3 Methodology

Action Research [6] was used as a research methodology for this project. The author was in-
terested in the way the in-memory computing concept could be used to enhance the modern
translation tools. The state-of-the-art review showed that translation memory systems are
becoming increasingly popular and their use and distribution are being actively researched.
Namely, the translation spotting concept shows a great potential for improving user experi-
ence for these types of systems. Such processing, but performed in parallel and in-memory
presented a great potential for improvement. The author and his supervisor discussed the ini-
tial theories, which led into the design of first experiments. The framework was developed
in short cycles in an agile development manner. After each step, the framework was tested
and the author reflected back on the results. These reflections were used in deciding the next
steps of the research. In some cases they led to other theories, which, when implemented, in
fact improved the efficiency of the framework, while others helped to shape the underlying

understanding of the problem space.

1.4 Thesis Overview

This chapter has described the motivation behind this work, defined the research question and
challenges that are addressed by the thesis, and briefly described the methodology which was
used during the research.

Chapter 2 will describe the start-of-the-art of the translation memory systems as currently
used by the translation and localisation industry, identify the strengths and weaknesses of
these systems, and will relate this work to ongoing research in the area of translation spotting.
It will then focus on the latest shifts in computing paradigms that lead to the increasing
popularity of in-memory computing systems. It will consider currently available platforms
and will identify the in-memory database which will be used for the implementation of the
translation spotting system developed as a part of this dissertation.

Chapter 3 will describe the design and implementation of the proposed framework. The
high level description of the translation spotting system will be presented first. The admin-
istrative layer and the in-memory database sub-systems will then be described in detail, in
top-down manner. The blocking issues and coding challenges, which were mostly encoun-
tered during the implementation of the translation spotting logic, will be analysed in terms
of their impact on the solution design and performance of the implemented framework.

Chapter 4 will focus on how the system was evaluated in terms of test framework, tests
and test cases and the corpus used for the project. The evaluation chapter will then critically
evaluate the framework by presenting a number of experiments which were performed. The
system was tested in two phases, both of which will be presented. In each phase, all single
word and multi word algorithms will be evaluated. The evaluation will take into account the
performance of each algorithm and its quality of translations with respect to changing size
of the data set.

1.4. THESIS OVERVIEW 5

Chapter 5 will summarise the motivation and objectives of the disssertation. The achieve-
ments will be described mainly in terms of successful effectiveness measurements, well scal-
able single word algorithms and easy extensibility of the system. The feasibility of using
in-memory platforms to support the translation memory systems will be confirmed. Limi-
tations such as the poor scalability of the multi word algorithms will be described. These
limitations will then indicate avenues for future research, which mostly contain potential

ways of optimising the multi word translation spotting algorithms.

CHAPTER 1. INTRODUCTION

Chapter 2

State-of-the-art Review

2.1 Introduction

This chapter identifies the state-of-the-art products and research in the areas of both the
translation memory systems and the in-memory database systems.

To begin with, the reader will be presented with the idea of modern translation memory
systems in Section 2.2. The features of these systems are listed along with their advantages
and disadvantages. A number of research projects are then described to show how academic
research has been actively trying to improve these systems.

Section 2.3 explains the relevance and importance of in-memory databases along with
commercially available products that could be used for an implementation of a translation

memory system.

2.2 'Translation Memory Systems

There are a number of widely used translation memory systems. These systems differ in
functionality offered to the users as well as the internal mechanisms for performing such
functionality.

In most cases, translation memory systems offer a series of tools for creation, manage-
ment and use of translation memories. These systems often allow users to create local or
shared databases of translation memories by importing documents in various formats. Some
tools even work as plug-ins for popular office suite applications such Microsoft Office or
OpenOffice. These tools then perform various techniques to segment the texts into transla-
tion units, index the text and transform the documents into an internal format for storage in
the specified translation memory database.

Upon translating a document, these tools then allow for different types of search func-
tionalities among translation memories already existing in the database. If a match is found,
the system offers its users potential to reuse existing previously translated texts.

In addition to the basic functionality of the translation memory system, the latest ver-

sions of the most popular systems additionally offer features such as cloud-based translation

8 CHAPTER 2. STATE-OF-THE-ART REVIEW

memory database, user defined terminology dictionaries, machine translation plug-ins and

interoperability with other types of systems.

2.2.1 Commercially Available Systems

There are a large number of translation memory tools available. Based on the translation
memory survey [8], the most widely used translation systems are: TRADOS, WordFast and
Déja Vu.

The three of the most widely used tools were analysed based on their online presenta-
tions. It was found that these systems offer great variety of tools for increasing the produc-
tivity of translators. Many of these functionalities overlap, while others seem to be specific

to given systems.

SDL Trados Studio

SDL Trados Studio [3] is the latest translation memory system produced by SDL. It is a
successor of the SDL Trados and SDL Trados 2006, both of which appeared in the first three
most widely used translation memory products in the survey.

SDL Trados is offered in a number of versions, each of which offers different types of
functionality and is targeted at different types of translators. The fees for the software range
from €99 yearly subscriptions to €2595 for a perpetual licence (at the time of writing this
dissertation).

The basic features of SDL Trados Studio include the ability to use number of languages,
translate a single file at a time, unlimited size of a translation memory, batch tasks of file
preparations and creations of packages.

The more advanced features include creation of aligned translation memories, manual
annotation and tagging of translated text with user defined tags, real-time preview of the
document being translated, auto-suggest of written text and analysis of context of translation
memories.

Many of these features are very vaguely described in the web presentation of the product
and it is unclear what these features do and to what extent they improve the productivity of

translators.

Wordfast Translation Studio

Wordfast [5] is a producer of translation memory software. They offer a number of trans-
lation studio products, each of which is designed using different software development
paradigms. They offer Wf Classic which is an MS Word plugin, Wf Pro which is a stan-
dalone application, Wordfast Anywhere which is a web application, and W Server which is
built to run on a centralised server.

The Wf Classic and WT Pro products are priced at €400 for a three year licence (at the

time of writing this dissertation). The web based tool is free to use with limited functionality

2.2. TRANSLATION MEMORY SYSTEMS 9

under certain terms and conditions.

The Wf Server product acts as central translation memory database, which can be con-
nected to from the Wf Classic, Wf Pro and Wordfast Anywhere tools. It allows for sharing
the central corpus across the whole organisation, while offering security in terms of users’
permissions.

The WT Classic and Wf Pro promise a number of features including user defined macros,
terminology management in the form of user defined glossaries, interoperability with ex-
ternal tools such as dictionaries or machine translation engines, quality assurance features,
batch processing or sentence alignment modules.

Similarly to SDL Trados Studio, Wordfast claims that their products greatly improve the

productivity of translators.

Déja Vu X3

Déja Vu X3 [1] is another suite of applications, which were identified among the most widely
used by translators. Similarly to the other tools, Déja Vu X3 is also offered in a number of
varieties, which are targeted at different types of users and use cases. It is offered as three
different products DVX3 FREE, DVX3 Professional and DVX3 Workgroup.

The DVX3 FREE product is available for free, but provides very limited functionality.
The DVX3 Professional and DVX3 Workgroup are then priced at €420 and €1490 respec-
tively.

Both the DVX3 Professional and DVX3 Workgroup provide similar sets of features, with
the Workgroup version providing tools for collaboration and real-time sharing. Both versions
provide features such as inline formatting, spell checking, multiple file projects, number of
supported formats, multilingual projects, and databases among others. The AutoWrite fea-
ture uses analysis of existing translation memories in order to provide autocomplete function-
ality. A particularly interesting feature for this dissertation is a function called DeepMiner.
The company claims that the feature uses data mining functionality to analyse existing trans-
lation memories, which are then used for retrieving the most relevant translations. Further
details on the feature are not provided. It is not clear how DeepMiner feature works and what
sort of value it brings, but it is the first mention of using data mining techniques on existing

records in order to filter and improve retrieved records.

Advantages Offered by Translation Memory Tools

Based on the claims of vendors of translation memory software [3] [5] [1] and on the out-
comes of the translation memory survey [8] there seem to be a number of advantages in using
translation memory tools.

The basic advantages comprise of the functionality that these systems were built for,

namely:

e Searching for a given sentence in previously translated texts

10 CHAPTER 2. STATE-OF-THE-ART REVIEW

e Retrieval of previous translations based on the matched sentences

e Allow translators to reuse previous translations, especially in highly repetitive texts

(such as technical documents and financial or marketing content)

Translation memory systems often offer tools not only for reusing previous translations,
but also to build translation memories. These tools often take a document and process it
using techniques such as segmentation. Segmentation divides the document into translation
units (sentences or paragraphs), which are then to be translated into one or more languages.
Such an automatic segmentation saves time to divide the document into smaller pieces, but
also promotes the alignment of sentences as the document is translated.

The modern translation memory tools also claim to offer many other, more advanced

features to improve productivity of translators such as:
e User defined macros and dictionaries
e Interoperability with other tools such as spell checkers and machine translation tools
e Quality assurance tools

e Integration with text editors and office suite applications

Disadvantages of Translation Memory Tools

Despite many of the mentioned advantages of using translation memory systems, even the
most modern tools have a number of disadvantages.

Translation memory systems employ the use of fuzzy or exact matching in order to iden-
tify the most relevant translation unit, which offers the required translation. The translation
memory system then retrieves the original language sentence along with its translation in the
relevant language, which the translator can reuse. In the current translation memory systems,
the problem has been arising with the fact that the translation memory system would be try-
ing to search for the whole sentence in order to retrieve its translation. Even in the case of
highly repetitive texts, an occurrence of the whole translation units could be quite rare [21].
In fact, in the translation memory survey it was found that the reason why translators do not
use translation memory systems is the low frequency of occurrence of such translation units
[8].

When the translation memory system finds a translation unit, which matches the query
exactly, the whole translated sentence is returned. However, there is not much information
on how the documents are segmented when they enter the process of becoming translation
memories. Is the document being segmented based on sentences? Is the document being
segmented based on paragraphs? Such questions lead to the division of documents into
translation units. In many aligned corpora such as the translation memories produced by
the European Commission [27], the translation units can take up to whole paragraphs of

text. Returning a whole section of text could potentially overwhelm the user. It would take

2.2. TRANSLATION MEMORY SYSTEMS 11

additional amount of time in order for the translator to identify the relevant translation within
larger segments of text. This poses a usability issue on translation memory systems.

In addition to the success of matching and usability issues regarding the returned results,
the translation memory systems were identified to be relatively expensive. Even though
free versions of the systems exist, these versions are often very limited in functionality. It
is possible that such versions of the software could bring value to amateur translators, for
whom such software is an improvement compared to manual translations performed using
dictionaries. For experienced and professional translators, the features offered by the more
advanced versions of the software such as the spell checking, collaboration features or the
functionality within corporate networks would be more than desirable. The licences for such
versions of the available translation memory tools could be expensive. It was identified that
the professional versions of the translation memory systems could cost anywhere between
€420 and €2595 per licence.

The disadvantages of using commercially available translation memory systems, such as
the high cost and the usability issues, led into academic research attempting to resolve these
problems. Free to use online concordancers have been built in order to generate translation
memories to overcome high prices of translation memory systems. In addition to online
concordancers, there has been an active research in the areas of effective performamce of

translation spotting and consequent improvement of usability of such systems.

2.2.2 Translation Spotting

Translation Spotting is a technique, which attempts to find a segment of a sentence, which
corresponds to the literal translation of the corresponding segment in an aligned sentence
[24] [28].

Many techniques have been explored on how to align segmented sentences. During the
generation of translation memories, the text is first segmented and then aligned. The segmen-
tation divides the text into natural chunks of text such as sentences. It is then important to
match the corresponding segments of both the source language and translated language texts.
These techniques often use fuzzy matching [19], syntax trees, thesauri, neural networks or
part of speech tagging [21].

During the ARCADE project, which researched methods of performing such alignments,
word level alignment techniques were also considered [28]. The alignment on the word or
phrase level has been defined as translation spotting.

It has been proposed to perform matching of previously translated sentences based on its
segments. In the case where the exact match has not been found, using smaller segments of
the sentence could yield more matches [25]. Such an approach should improve the issues
related to poor frequency of matching a sentence. A translation of a sentence would be found
based on a part of the currently translated sentence rather than the full one. These segments
could be decided by the translators. It is possible that if the full sentence has not been found,

the translator may still look for a certain part of it. TransSearch [17] or WeBiText [7] are

12 CHAPTER 2. STATE-OF-THE-ART REVIEW

examples of such a system. They offer such a functionality as online systems, which are free
to use and offer aligned content collected from online resources. It allows the translators,
students, linguists and professional writers to search for a query, which is contained within
previously translated sentence. The user can then see and reuse the translation of the given
query.

Even though such an approach would help to solve the issue of rare matches, the fact that
the whole translated sentences could overwhelm the translator was still a problem. Therefore,
experiments on using translation spotting to identify the segment of the translated sentence
corresponding to the user’s query [25] [24] were carried out. The techniques proposed for
performing translation spotting in such systems used statistical translation models along with
a number of general natural language processing tasks. It was acknowledged that the perfor-
mance and precision of these techniques are only as good as those of the translation models
used.

Additionally, these statistical translation models offer language specific functionality. If
the system was to be used in a truly multi-lingual environment such as the European Union,

it would be necessary to provide these engines for possibly all official languages pairs.

2.3 In-memory Database Systems

Conventional relational database systems were designed to store data on the disk. Disks
are non-volatile storage media, which were always known to have large capacities. The
capacities of disks were much higher than those of the main memory. It is however a well
known fact, that the access times of disks are orders of magnitude slower than those of
main memory modules. This issue was often addressed by increasing sizes of caches and by
optimising the techniques and data-structures for use on disks. Based on experimentations
[15], it was found that even despite these optimisations, the main memory reads are still
around six times faster for sequential access and around million times faster for random
access.

An in-memory or main memory database is a concept, which has been known for a very
long time [11]. There were many thoughts on how to overcome issues related to insecurity
of data stored in the volatile storage such as logging and recovery techniques. In-memory
database would therefore still use disks, but mainly as a persistent data storage to avoid loss
of data.

One of the main reasons why in-memory databases were known, but not popular was
their limit on the size of data that could be supported. Main memory sizes were very limited
both in terms of manufacturing large modules and operating systems support.

The recent advances on both software and hardware meant that the interest in in-memory
databases re-appeared. The latest top of the range server systems support up to 12TB [2]
of main memory, while the latest operating systems are designed to support up to 1PB [4]

of main memory. These limits mean that in-memory databases could be realistically used

2.3. IN-MEMORY DATABASE SYSTEMS 13

today to store and process very large quantities of data. With their performance advantages
over the disk based database systems, in-memory databases could be used for both enterprise

applications and also for big data analysis tasks.

2.3.1 Commercially Available In-memory Databases

Even in early 1990s, there were a number implemented and available in-memory databases
[11]. At the time of writing this document, the concept of in-memory computing was be-
coming increasingly popular. Many database system vendors started introducing in-memory
add-ons or optimisations into their database engines. There were only a small number of
pure in-memory database systems, which were gaining on popularity.

SAP announced the release of SAP HANA in 2010 and was soon followed by Oracle
Exalytics. Later IBM released an in-memory optimisation to their DB2 called IBM Blu
Acceleration. When analysing these products, it was found that in general similar features

were offered.

Column-store

Most of in-memory database engines that are currently in the market promote the use of
columnar storage. Columnar storage of data is a type of internal representation of the tables
within the database. Conventional relational database engines would store the data organ-
ised by rows (row store). The column store on the other hand stores the data organised by
columns.

The column store organisation of data leads to much faster OLAP (Online Analytical
Processing) tasks [20]. In analytical tasks, there are often aggregations performed on a single
column. Using the column store means that such analysis can be carried out by accessing
data items, which are stored in a sequential manner. The column store is therefore designed
in a cache-conscious manner and can yield great performance improvements for OLAP tasks.

The reason for conventional database system using the row-store was better performance
in OLTP (Online Transactional Processing) tasks [10]. In such tasks, it is often the case that
new rows are inserted, deleted or many attributes are changed in a single record. All of the
described in-memory databases also support OLTP tasks. The choice to use either row store
or column store is often given to database developers. The tables which are expected to be
used exclusively for OLTP tasks can be declared to use row storage, while other tables can

be declared to use column store along with a number of OLTP optimisations.

Compression

Compression was another feature which was observed to be heavily used in modern in-
memory databases and platforms [20] [13] [14]. Often it was explicitly mentioned that
dictionary compression is the method for compressing data. This means, that non-integer

cells will be translated into integer values. A dictionary is therefore maintained, which keeps

14 CHAPTER 2. STATE-OF-THE-ART REVIEW

relations between the integer attributes and their original values. This approach can yield
space optimisations on columns, the values of which are often repetitive (such as names or
addresses).

If the space required to store the data is smaller, the operations on the large quantities
of such data are likely be faster. The number of records, which can be transferred into
the processor from main memory in a single read, is higher, thus minimising memory read

latencies.

Parallelisation

The increasing level of potential parallelism is another hardware advance that the computer
science and engineering community has seen in recent years. When the single-core CPUs
reached its limits in terms of increasing frequencies and hardware optimisations, it became
apparent that the future of computing is shifting towards parallelism. The trend has therefore
become to build low powered processors on lower frequencies, which are however equipped
with a number of fully functional cores. The modern server systems often consist of a number
of processors, each of which offers a number of cores.

In-memory databases seem to be perfect examples of how software architecture paradigm
shifts to leverage the parallelisation potential introduced by multi-cpu and multi-core sys-
tems. Most of the widely used and commercially available database systems claim to be

designed to perform high degrees of parallelism on all computations [13] [9] [10] [14].

Vendor Specific Features

Oracle Exalytics A marketing approach specific to Oracle Exalytics [13] [18] is that the
software is tailored to run on hardware designed and built by Oracle itself. Oracle claims
that running the Exalytics software on their own hardware ensures top compatibility and
hardware specific levels of optimisations.

There does not seem to be much information available on the architecture and feature
sets available by the Exalytics software. Based on the available information, the Exalytics
software consists of four main components. The OBIEE In-Memory Accelerator is a com-
ponent built exclusively for optimising business intelligence tables and infrastructure. The
Essbase In-Memory Accelerator then seems to be the actual in-memory database module of
the system. It’s responsibilities include parallelisation, distribution and storage level opera-
tions. Besides the standard SQL queries, the Essbase module enables the developer to use
performance enhanced MDX queries. The In-Memory Data Caching component then takes
care of a number of caching operations in order to speed up executions of queries. The Or-
acle BI Publisher Accelerator then consists of a number of tools, which allow the enterprise
clients to generate rich reports on the data and simple user interfaces. Oracle also claims
that the exalytics in-memory machine provides the ideal platform for Business Analytics

Consolidation.

2.3. IN-MEMORY DATABASE SYSTEMS 15

SAP HANA The main selling point specific to SAP HANA is the fact that it was designed
as a complete platform for data management and modern business applications [9]. To do
that, the architecture of SAP HANA offers a number of internal components. These compo-
nents are designed to provide a number of optimisations, but also a large number of domain
specific languages [10] to provide application expressiveness. Such an expressiveness allows
the developers to build any sort of business application directly in SAP HANA.

In order to satisfy the needs of both OLAP and OLTP tasks, SAP HANA provides means
of storing data organised in either rows or columns. To do that efficiently, it provides two data
store engines - row store and column store. The column store engine is the recommended
way of storing data within HANA and as such it provides a number of optimisations to make
OLTP tasks efficient even when using the columnar approach [23]. It keeps a number of delta
storages for OLTP tasks, which are read or write optimised. These deltas are then merged
to the main column-store engine using intelligent techniques for determining when the right
time to perform the delta merge would be.

In conjunction with data store engines, SAP HANA provides a number of domain spe-
cific engines. The graph engine allows for representing data as linked graphs. It allows for
traversal of data as graphs and to perform graph operations and calculations on data stored
in the graph engine. SAP HANA also provides a dedicated text engine, which was built to
store unstructured text, perform analysis on it and even allow for linking of structured data
with such an unstructured text. Spatial engine then offers means of storing geospatial infor-
mation and of performing spatial computations on such data. The XS engine is a built-in
HTTP server, which allows for exposing the business logic defined within the SAP HANA
application through REST APIs. It allows for server-side JavaScript processing of requests
and responses or definition of oData services.

Besides providing a number of native computational models and engines, SAP HANA
also offers a number of domain specific languages. It allows for the use of standard SQL.
Similarly to Oracle Exalytics it also provides the support of MDX. There are a number of
view types, which allow for definition of data flows through the application and different
levels of logic expressiveness directly within those views. Should the developer need addi-
tional features such as imperative logic, SQLScript language provides imperative extensions
to SQL. R is also supported within the database to carry out highly statistical tasks and com-
putations.

On top of the very rich feature set, the appliance also comes packaged with HTMLS5
based user interface framework called SAPUIS. SAPUIS allows for development of fast and
lightweight web applications native to SAP HANA.

Other In-memory Databases There are a number of other in-memory databases com-
mercially available. Many of these products have only very recently been released. It can
therefore be expected that these technologies are not as matured as Oracle Exalytics or SAP
HANA. Additionally, there is a lack of information published on their features or internal

architectures. These in-memory databases will therefore not be considered by this thesis.

16 CHAPTER 2. STATE-OF-THE-ART REVIEW

2.3.2 Advantages of In-memory Databases

Based on the state-of-the-art review, it seems that in-memory database systems offer a num-
ber of advantages, while previously identified disadvantages have already been overcome.

The main advantages relevant to this work include the following:

e Most in-memory databases offer optimisations for both OLAP and OLTP tasks rather
than just OLTP as in disk based databases

e Compression techniques allow to minimise the space needed for repetitive values

e Automatic parallelisation techniques used in main memory databases improve the per-
formance of in-memory applications without the need for explicit development of con-

currency within these applications

e Using main memory as the main data storage offers potential for performance im-

provements

2.4 Summary

This chapter summarised the state-of-the-art products and research in areas of both transla-
tion memory systems and in-memory databases.

Some of the commercially available and most widely used translation memory systems
were identified. For each of these systems, pricing information and productivity features
were described in order to gain a high level idea of the value brought to translators. With
such knowledge, the attempt was made to identify the advantages and disadvantages of these
systems. The literature was then consulted to find ways of how academic research is try-
ing to solve these problems by performing sentence and word level alignments (translation
spotting). It was found that there were a number of techniques proposed for performing
translation spotting mainly with the use of statistical translation models.

The history of in-memory databases was then studied and discussed. It was found that
the advantages of using in-memory databases were known for a long time. It was the case
that up until recently it was not very feasible to use them for many real-world tasks due
to hardware and software limits. With recent advances in both hardware and software, in-
memory databases started receiving attention. Modern computer systems allow to store very
large quantities of data in main memory and the analytical tasks on such data became much
faster. The availability of commercial in-memory databases was then discussed. The most
common and relevant features of modern in-memory systems were described along with
features specific to two leading in-memory database systems - Oracle Exalytics and SAP
HANA.

SAP HANA was chosen as the in-memory database of choice for this project. The pro-
posed translation spotting system will be designed and implemented using SAP HANA.

Chapter 3

Design and Implementation

3.1 Introduction

This chapter describes both the design and implementation of the proposed translation spot-
ting techniques. First, influences on the system from the state of the art are described. The
high level design and implementation overviews are then presented. The further sections then
drill down into the design and implementation of each of the components of the system in a
top-down manner. In each case, the design of the component is presented first, followed by
the implementation details, and where needed, code snippets for each of the subcomponents

and algorithms.

3.2 Influences from the State of the Art

The implemented system will provide the functionality listed as basic advantages of trans-
lation memory systems in Section 2.2.1. Namely, it will provide means of querying the
system for either a single word or a multi word query. The system will perform search for
the given query in previously translated sentences and allow for returning their translations,
thus allowing the translator to reuse previous translations.

The identified disadvantages of translation memory systems will be addressed. Firstly,
the matching rate will be improved by allowing the translator to specify the query, which will
then be matched based on a subsegment of any previously translated sentence. The usability
issues related to the length of the result will be addressed by performing translation spotting.
The user interface will then be able to highlight the most likely translation candidate of the
query in the original text.

The more advanced productivity features of modern translation memory systems are not
in the scope of this project. These features include integration with text editors, quality
assurance tools, user defined macros or dictionaries and interoperability with other systems.

In order to avoid the needs for pre-processing of the data and retraining the system, all
analyses will happen runtime. In order to achieve that the system performs in real-time,

all advantages of modern in-memory databases listed in Section 2.3.2 will be used. The

17

18 CHAPTER 3. DESIGN AND IMPLEMENTATION

In-memory Database

HTTF Server JDBC /ODBC

|

HTTP APl
[E— JDBC |[Connection Manager]|

m Translation Spotiing Logic [T]

|[Test Framework |

Web Application Ul Text Analysis Library Stored Procedures

Administration Layer

Database / Column Store

Figure 3.1: High level design of the system

tables will be using column store data representation in order to optimise the system both
for the OLAP and OLTP tasks. In regards of the implemented system, OLAP tasks are the
actual translation spotting techniques, while OLTP tasks include the ingestion of data. The
dictionary compression will be used implicitly by the database engine itself. The queries will
be designed in such a way as to promote the automatic parallelisation of the computations
(where possible), which will help to reach real-time performance of the system. Furthermore,
the use of an in-memory database for the implementation of such system will make such Big

Data analyses possible in the first place.

3.3 High Level System Overview

3.3.1 Design

The proposed system can be divided into three separate subsystems (see Figure 3.1):
1. User Interface
2. Administrative Layer

3. In-memory Database System

User Interface

The user interface could be designed for specific purposes. An organisation using the system
might prefer to develop a native desktop application, a mobile app, or a lightweight web-
application.

Based on the latest trends and paradigm shifts in software development, it would make
sense that the user interface for the system is built as a web application. Based on the chosen
technologies, the user interface might be cross-platform and even usable on mobile devices.
This would allow the translators to use the system in many settings, such as working from
home or while travelling. If hosted on a cloud platform, the system could even be accessible

and used from mobile devices or available to the general public.

3.3. HIGH LEVEL SYSTEM OVERVIEW 19

A sample user interface has been built as a proof of concept. The user interface was
built as a web application, using the HTMLS framework packaged with SAP HANA called
SAPUIS. The web application asynchronously communicates with the APIs exposed by the
HTTP server as a part of the database system.

Administrative Layer

The administrative layer is a software package, responsible for ingestion and management
of data as well as for testing the system. As part of this dissertation, these components are
designed to run on a laptop or a workstation of the system administrator. The connection
manager is a general component, which is used by other parts of the administrative layer.
The ingestion module provides applications for importing both data in terms of translation
memories as well as stop words for a particular language. The administrative layer could be
implemented using various technologies, the features of which should support connectivity
to the database and provide functionality to parse the stop words form a simple text file and

a number of provided XML based translation memory formats.

In-memory Database System

The main part of the project is the actual translation spotting system. This is a component,
which as a part of the proposed design resides on the database subsystem. Once the data
is imported, it performs the text analysis on the data and is able to perform the translation
spotting. The functionality of the system can be exposed to the front-end applications via
HTTP-based APIs or through database connectors.

To be able to execute the algorithms, which are described in this project, the text analysis
library should provide features to perform tokenization of text in a number of languages,
perform stemming and optionally part of speech analysis. The analysis should be performed
upon importing the translation memories and could be done either in the database itself, or

as a part of the administrative system in the ingestion phase applications.

3.3.2 Implementation
Adminitrative Layer

The administration layer was implemented in Java. Java offers the features required for the
administrative layer such a number of built-in tools for parsing and processing XML based
documents. The data set used in this dissertation offers translation memories in one of the
standard XML based formats called Translation Memory eXchange (TMX). Additionally,
connecting to relational database engines is easy using widely accessible JDBC and ODBC

libraries.

20 CHAPTER 3. DESIGN AND IMPLEMENTATION

3-Tier Architecture 2-Tier Architecture

Client-Side Client-Side

HTTP Request
HTTP Regquest
Middle-Tier
Database
JDBC / ODBC
Database

Figure 3.2: Comparison between 3-tier and 2-tier architecture

In-memory Database System

As an in-memory database engine for this project, SAP HANA was chosen. HANA is a
column-store, in-memory database and platform. Column-store database engines are well
known for their performance in highly analytical (OLAP) tasks [20] [23], which, combined
with the in-memory storage of the data, promises sufficient performance for real-time trans-
lation spotting.

The in-memory database system is represented solely by an SAP HANA instance. The
database schema uses the column-store engine to store the ingested stop words and transla-
tion memories. HANA itself provides a text analysis library, which performs tokenization,
stemming, normalisation and part-of-speech analysis for a large number of languages. The
logic of the translation spotting is then defined directly within the database engine itself in
the form of stored procedures. These procedures are then made available for consumption
by the front-end application via the built-in HTTP server called the XS Engine.

SAP HANA promotes the use of 2-tier systems (see Figure 3.2). In general, with enter-
prise applications it was common to design large-scale systems using the 3-tier architecture.
Such systems would consist of user interface running at the client-side, a middle layer (writ-
ten in Java or other language), and the underlying database management system. The client
side was merely designed to contact the middle layer with queries resulting from user inter-
action with the user interface components. The middle layer would then contact the database
system, retrieve the data needed for the given query, analyse it and return the result to the
user interface. Such moving of potentially large quantities of data between the database and
the middle layer could pose a network bandwidth overhead, potentially slowing down the
execution of the query. To minimise such overhead, SAP HANA offers a number of engines
to provide the application programmer with expressiveness needed to write their business

logic directly within the database. Such functionality was used within this project, namely

3.4. ADMINISTRATIVE LAYER 21

the text analysis library and SQLScript stored procedures.

The text analysis library provides means of performing many natural language processing
tasks. It gives the user a chance to specify the desired level of functionality when creating
a fulltext index on a column in a table. The text analysis library will then perform language
specific tasks such as tokenization or part-of-speech analysis. Such processing can be done
either synchronously or asynchronously upon inserting data into the table. The library then
creates a text analysis table exclusive to the given text analysis index. This functionality
is used in all of the translation spotting algorithms described in this dissertation. The text
analysis library satisfies the text analysis functional requirements set out by the design of the

system.

3.4 Administrative Layer

3.4.1 Design

The administrative layer is a system, which is not directly related to the end user. It should
contain applications that include mechanisms for importing further corpora into the system,
managing and importing stop words, and a test framework. The subsystem is designed as a
suite of applications to run locally on a laptop or a workstation of the system administrator.
It should contain a number of supporting tools and applications. The administrative layer
should:

1. Define single support tools module defined for connecting to the specific database

engine and linking the administrative data structures with database schema.

2. Offer a way to allow the administrators of the system to easily develop and add parsers

for different formats of translations memories.

3. Provide the ingestion phase framework, which will actually import a given data set

into the database.

4. Provide a test framework to allow the evaluation of implemented algorithms and mon-

itoring of the system.

Support Tools

The support tools component defines a number of helper classes that can be used throughout
the application.

The connection manager is a support tool used for defining connection details to a database
engine instance used in the current implementation. It should then take care of ensuring that
there is an active connection to the database engine and distribute it among other compo-

nents.

22 CHAPTER 3. DESIGN AND IMPLEMENTATION

The data access objects are then used to bridge the gap between the internal data structure
of the administrative layer and the database engine. It could be used to retrieve data from
the database, but also to translate the internal administrative layer objects into structures that

will be compatible with the database engine for importing data.

Parsers

To satisfy the extensibility property, which was identified as a crucial non-functional re-
quirement of a successful system, the administrative framework should provide a number of
modular parsing mechanisms. Being able to plug in a parser for a new format of translation
memories or even being able to determine the type of a file and selecting the correct parser
runtime would be an asset to the system. Each parser should extract a translation memory
from a file and produce its representation in an in-memory data structure provided by the
framework. The in-memory representation of the translation memory can then be translated

into SQL statements by an implementation specific data access object (DAO).

Ingestion Phase Framework

The ingestion phase applications will then allow the administrators to specify a single file or a
directory with translation memories and using the parser components retrieve an in-memory
representation of the translations, which can then be imported into the database system using

the common connection facilities in the administrative layer.

Test Framework

The test framework is a part of the system, which allows the developers of the system to
evaluate their implementation and possibly help administrators of the system to monitor the
performance and precision of the system on the given corpus at any point in time. To do
that, the framework should provide logging facilities and the ability to automatically execute
defined tests for particular parts of the system, each of which can have a desirable number
of test cases. The administrators could therefore develop a whole suite of tests, each testing
a different part of the system to ensure that it can perform under required time and precision
constraints. Automatic execution of tests could indicate to the administrators of the system
that importing a new data set to the system changed the precision of translation spotting or
produced too high computational overhead. An implementation of a test framework for a

translation spotting system should offer the following features:
1. allow the user to define and reuse a number of test cases

2. allow each test case to accept a number of possible answers and be able to verify or

refute a potential translation

3. allow the user to test for single word or n-gram queries with an acceptable level fuzzi-

ness in the n-gram matching

3.4. ADMINISTRATIVE LAYER 23

IngestionPhaseDAO ConnectionManager
- dbConn: Connection - connection: Connection
- dbHostname: String
+ storeTranslationMemory: void 0.n i1 |- dblnstanceNumber: Siring
+ storeStopWords: void [————— " |-dbUsername: Siring
+ cleanThe TiiState: void - dbPassward: String
+ cleanTheStopWordsState: void + dbPackage: String
+ dbSchema: String
+ getConnection: Connection

Figure 3.3: Support tools class diagram

4. allow the user to create a test with a number of test cases associated with it

5. report the results of the tests by writing the performance and precision information to

alog file
6. allow the test case developer to debug the test cases by reporting the refused solutions

A test framework offering these features may be used to support evaluation of the imple-

mented system.

3.4.2 Implementation

The administrative layer was implemented in Java. Java was the language of choice as it
provides easy to use utilities for XML parsing (SAX and DOM). Additionally, the connection
to the SAP HANA database is programmatically possible using the JDBC driver provided as
a part of the SAP HANA Client. Java is also a widely used, cross-platform object oriented

language, which allows easy and modular development of parsing extensions to the system.

Support Tools

Support tools (see Figure 3.3) are classes to be used internally within the administrative
framework. The purpose of these classes is to modularise the common functionality that is
expected to be used throughout the administrative framework. In the current implementation,
support tools consist of a connection manager class and ingestion phase data access object
(DAO).

Connection Manager The connection manager is a class, which ensures that there is an
active connection to the configured SAP HANA instance and that there is only a single
instance of the connection object existing at any point in time. Any application or class as a
part of the administrative layer then uses the connection manager to get the connection object
that facilitates communication with the backend system. The connection manager therefore

checks that there is an existing active connection every time a connection object is requested

24 CHAPTER 3. DESIGN AND IMPLEMENTATION

by any part of the administrative system. If there was no connection to the database created
at that stage or if the connection has been closed or reset for some reason, the connection
manager takes care of opening a new connection, which is then passed back to the requester.
The new connection is opened using the SAP HANA JDBC driver, which comes packaged
with the database client software and is correctly included in the build path of the project.
This is done in a single public, static method called getConnection.

The current implementation of the connection manager also stores database connection
details, such as the address of the database, instance number, username, and password. Based
on the deployment frequency and security considerations, these credentials could be taken
from the user upon starting any application within the component, or could be stored in a
secure storage. The connection manager fulfills the design requirement of providing a single
module, specifying the access to the in-memory database which will be used throughout the

administrative layer system.

Ingestion Phase DAO Closely tied to the connection manager is the data access object.
This is a class, which is used for translating existing in-memory objects into the SQL state-
ments. These statements are then sent via the JDBC connection acquired from the connection
manager to the database engine. It is a component providing simple APIs for the communi-
cation with the back-end to the rest of the system.

The DAO allows other components and applications in the system to clean the state of
the database by deleting all of the stop words, translation memories and their correspond-
ing TU and TUV records. This functionality might not be useful to an administrator of
the system, but was used often while developing the ingestion phase software. The corre-
sponding in-memory database system can be cleaned by calling the cleanTheTMState and
cleanTheStopWordsState methods on an existing DAO instance.

Besides cleaning the state of the in-memory database system, the ingestion phase DAO
was built to allow for easier ingestion of existing translation memories into the database
system. The storeTranslationMemory method takes an in-memory representation of a trans-
lation memory and translates it into a number of SQL statements. These statements are then
executed using the JDBC connection object. To support the extensibility requirement of the
system, the method uses batch insert statements for translation unit variants (the translation
unit string translated into a number of languages). This means that the translation memory
record is created, followed by a single batch statement of its translation units, each of which
also has a single batch insert statement inserting all of its variants at once. Such an approach
was taken to minimise the network delay produced by large numbers of round-trips, should

each of the inserts be sent as a separate statement.

Ingestion Phase Framework

The ingestion phase software is a component, which is solely responsible for parsing and

importing data into the SAP HANA database. Easy extensibility of the corpus by new docu-

3.4. ADMINISTRATIVE LAYER 25

TranslationMemory TranslationUnit

- docld: String 0.n |- translations: TranslationUnitVariant]]
- srcLang: String
- transUnits: TranslationUnit]] + addTUV: void

+ gefTranslations: TranslationUnitVariant]]

+ getSrclang: Sfring
+ setSrcLang: void 0.1
+ getDocld: String
+ setDocld: void
+ addTransUnit: void 0.n
+ gefTUs: TranslationUnit[]
+ 1oString: Siring

TranslationUnitVariant

- lang: String
- text: String

+ getlLang: Sfring
+ gefText: String
+ sefText: void

Figure 3.4: Design of the ingestion phase TM representation

ments or documents from a different source is a desired feature of the system. The ingestion
phase mechanism has therefore been designed in such a way to allow for import of a number
of widely accessible formats of translation memories into the analytical system. It provides
an interface describing a parser with an API that the system expects to use. As a part of the
implementation, a parser for the widely used TMX format has been provided. The admin-
istrator of the system should be able to supply additional parsers for importing translation
memories that are in a non-standard format or in a format that has not previously been used.
The strategy design pattern could be especially useful to perform choice of the desired parser
runtime based on the extension of the translation memory file or based on an optional user
input. This allows the parsers written for each of the formats to be simply “plugged” into the
system.

While stop words are represented simply as an array of strings, the module also includes
a collection of java classes that are used as in-memory data structures for storing the parsed
translation memories (see Figure 3.4). The parsing module creates the in-memory repre-
sentation of a single translation memory. The structure of these classes is designed closely
based on the TMX format, which is one of the standard formats for the exchange of trans-
lation memories. Each file therefore represents a single document (translation memory),
which is divided into a number of separate sentences (or paragraphs) called translation units.
Translation unit is the smallest piece of a translation job for a translator. Each translation
unit then has a number of translation unit variants, which are the translations of the transla-
tion unit into desired languages. Each translation unit variant contains information about the
language that it represents and the text of the translation.

The import applications use all of the aforementioned components, combining their func-
tionality to perform ingestion of data specified by the user. The applications for importing

translation memories (user interfaces which are not in scope of the project) simply open a

26 CHAPTER 3. DESIGN AND IMPLEMENTATION

Test TestCase
+ comment: String - guery: String
+ srcLang: String - answers: String(]
+fgtLang: String 0n 0.n +ACCEPT_NGRAM_OVERHEADED: int
+ cases: TesiCase]] | = |
+ prac: Siring + isCorrect: boolean
- isMGram: boolean + isCorrectMGram: boolean

+ getQuery: String

+ addTestCase: void
+ addTestCases: void
+ executeTests: int

Figure 3.5: Object oriented design of the test framework

file (or a folder) specified by the user. For each file in the specified folder, reference to the
file (or the current file in case of the folder) is then passed to the parser, which returns the
in-memory representation of the contents. As the system is extended with additional corpora
of documents, the application should be rewritten to inspect the type of the file and choose
the correct parser provided in the system. The obtained translation memory object is then
passed into the IngestionPhaseDAO, which translates the structure into corresponding SQL
statements, which are then imported into the in-memory database system. The application
for importing stop words works in a similar fashion. It opens a single file specified by the
user, uses a standard stop word parser (stop words are represented by a text file storing the
stop words for a single language delimited by a newline character), which returns an array
of strings. These stop words which are then passed to the IngestionPhaseDAO object to be

translated into a number of SQL insert statements, which are sent to the database system.

Test Framework

The test framework has been developed as a part of the administrative layer. It is not semanti-
cally related to the translation spotting, rather it provides a way of evaluating and monitoring
the implemented translation spotting system.

The test framework is implemented as a collection of classes (see Figure 3.5), which
allow the developers or system administrators to define a number of tests. Each of these tests
could test different aspects of the system such as measuring the performance and precision
of different algorithms provided by the system under the currently imported corpus.

The test case class represents a single value to be tested against a number of possible
acceptable answers. A single test case allows to test for either a single word with an exact
match or an n-gram with a certain level of fuzziness. This is implemented by the means
of providing two different methods isCorrect and isCorrectNGram. The isCorrect method
should be called on tests of the single word algorithms, which require exact (case insensitive)
verification of a potential result, i.e. the result has to match one of the defined allowable
answers. The isCorrectNGram then uses a predefined constant for acceptable overhead. This

method verifies the result, if it is a substring of any acceptable answer and does not have a

3.5. IN-MEMORY DATABASE SYSTEM 27

word overhead of more than the predefined number of words. It should be the case, that if
the desired translation is produced, with an addition of two or three words, it will still be
useful for the translator.

The test class represents a single test. A single test can be thought of testing a single
procedure or a piece of functionality and passing a number of different values (test cases) to it
as an input. When calling the executeTests method, the class iterates over the list of specified
test cases, calling the tested procedure for every single one. It then uses the functionality
provided by the TestCase class to determine whether the answer obtained from the tested
translation spotting procedure is an acceptable result. For each test case the method keeps
a number of records - the time needed to execute the query, whether it was correct or not
and the number of cases executed up to that point. The test object also takes in a reference
to a log file, to which it appends test information at the start of the test execution, such as
description of the test, source and target languages and the current time of the test execution.
If a test case fails, the wrong and the expected values are also appended to the log to allow for
debugging of the test cases. At the end of the test execution, the method logs the test results
in terms of percentage success rate, number of successful attempts and the total number of
attempts and average query execution time.

As a part of the evaluation of the translation spotting system, a test application has been
created for each of the separate algorithms described in the following sections. Each of
these applications then creates two test objects calling the same procedure in the translation
spotting system - one for translation from a given language to another and vice versa. The
application then adds predefined test cases (which might be shared with other tests), opens a

log file which is then used by the Test and executes both tests.

3.5 In-memory Database System

3.5.1 Design

In order for an in-memory database system to be able to perform translation spotting as

described in this dissertation, it should:
1. Store the translation memories in a predefined schema
2. Be able to perform the required text analysis tasks on imported data

3. Define application logic within the database engine

Database Schema

The in-memory database engine of choice should allow the user to define a certain database
schema. The schema of the database defines the structure, in which the imported data will

be stored.

28 CHAPTER 3. DESIGN AND IMPLEMENTATION

Translation Memory

Fii}
Translation Unit Stop Words

.
Translation Unit Variant

Figure 3.6: Overview of the proposed database schema design

The database schema of the proposed system (see Figure 3.6) is again closely modelled
on the TMX format and the object oriented data structure that was used for parsing the doc-
uments. The top level entity is a translation memory, which is the representation of a single
document. Each translation memory may have a number of translation units. Translation
unit is an atomic segment of text separated out from the document for translation. Trans-
lation unit could be a title, sentence or a whole paragraph. Each translation unit then may
have a number of language variants. In each of the variants, the text of the translation unit is
either in the original language or translated into another language. Stop words entity is then

independent entity, which simply stores the stop words for any single language.

Text Analysis

In the proposed system, the text analysis tasks are carried out on all data imported into the
system asynchronously upon insertion. This means that the ingestion applications do not
get stalled by the text analysis during the import and yet, once analysed, the data is ready
to be used. The text analysis tasks currently used in the proposed algorithms comprise of
tokenization and stemming, with potential to extend the algorithms to perform the analyses
with regards to part-of-speech types.

The tokenization, also known as segmentation, is a technique, in which the text is divided
into its elements [22]. In the case of an English sentence, the input is divided into separate
words. Stemming is a technique, in which a word’s stem is identified. Stems are base
dictionary forms.

Part-of-speech tagging means annotating each word within a sentence with the role it
plays in that sentence. Based on the rules of any given language, a word can be a verb,
subject, object, preposition. Part-of-speech tagging then annotates each word in a sentence
with these roles.

Once the text analysis tasks are finished, the text library should be able to store the result
of the analysis in the database itself for real-time processing. These records should also
be annotated with the link to the original translation memory and translation unit to ensure

that the algorithms will be able to create relations between the obtained information and the

3.5. IN-MEMORY DATABASE SYSTEM 29

original unstructured text.

Application Logic

The reason of using an in-memory database to perform big data analysis is that the data stored
in main memory can be accessed and processed much faster than in disk-based database
systems. An average access time for a main memory read is orders of magnitude faster
than a read from the disk. This offers a great potential to speed up analytical tasks. To
avoid introducing additional latency in transferring the data from the database system to a
processing engine, it is crucial that the application/business logic is defined directly within
the database system.

It depends on the database system of choice how the application logic can be defined
in the database engine. Most in-memory databases should however offer some means of
relating data through views or defining imperative logic through SQL extensions as stored
procedures.

Development of novel techniques for real-time translation spotting through big data anal-
ysis was one of the main goals of the project. As such, it was found important that the whole
corpus of available data is analysed in order to make proper use of the data available to the
system. While the existing techniques of translation spotting use word alignment techniques
and statistical translation models in an attempt to perform translation spotting on a pair of
translated sentences, this project will attempt to spot and analyse common patterns on the
whole corpus of text. To achieve such analysis, the proposed algorithms will attempt to iden-

tify co-occurrences of words or phrases across translation memories that include the required

query.

3.5.2 Implementation

The in-memory database chosen for the implementation of the system is SAP HANA. HANA
is an in-memory database, but also offers a number of components, which make it usable as
a whole platform. HANA offers text analysis library, which includes all of the functionality
that the design of the system requires. The features provided by the text analysis library
include tokenization, stemming, but also additionally features such as part-of-speech tagging
or sentiment analysis features.

SAP HANA also offers a number of engines and languages to allow developers to define
the business logic of applications directly within the core of the database engine. One can
define many types of views, but SAP HANA also offers imperative extensions to SQL, which
allow for the creation of the user defined functions and stored procedures.

The logic, which is defined within the core of the database engine can then be exposed
via JDBC connections or through REST APIs using the built-in XS engine. The JDBC con-
nections allow applications written in high level languages such as Java to execute any SQL

queries - this functionality is described in section 3.4.2 dealing with the database connectivity

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

of the administrative layer. The XS engine is a type of HTTP server, which is closely tied to
the database. It allows the definition of APIs in server-side JavaScript, which can then query
or manipulate the database through SQL queries or by calling relevant stored procedures.
At the time of implementation, HANA offered XSJS or XSODATA, where XSJS allows for
programmatic execution and retrieval of data in any desired format, while XSODATA was

designed to link the APIs to the database with the use of OpenData protocol.

Database Schema

In SAP HANA, on a single database instance, there can be a number of database schemas.
Database schema is an equivalent to databases or projects in other database systems. A
schema defines a namespace. Each schema can then have a number of tables, indexes, views
and procedures.

There are a number of ways of defining database objects such as schemas and tables - they
can be defined dynamically using SQL queries, or they can be defined using so called design
time artifacts. These are definition files, which once committed to the database repository
and activated, are actually created in the database. This makes them easily transferrable to
other systems, which is the reason why it is the best practise to use design time artifacts

where possible.

Schema Creating a schema within SAP HANA is a simple task. A file TRANSSPOT-
TING2.hdbschema was created (see Figure 3.7) After activating the file into the database
repository, a schema called TRANSSPOTTING? is created within the database.

schema name="TRANSSPOTTING2" ;

Figure 3.7: Database schema definition

Tables The tables within the database were built to satisfy the database schema design (see
Figure 3.6). Each translation memory (representing a single document) is separated into a
number of translation units (usually at a sentence level). Each translation memory is then
further separated into a number of translation unit variants (TUVs), each of which represents
the translation unit translated to a given language.

The tables are created by defining hdbtable files. Each file creates a table, name of which
corresponds to the name of the file. Within the definition, properties of the table are de-
fined such as the schema to which the table belongs, type of storage (row store or column
store), columns definitions and primary key. The code snippet in Figure 3.8 is an example of
the table definition, namely the TRANSLATION_UNIT_VARIANT.hdbtable. This defini-
tion file creates a table called TRANSLATION_UNIT_VARIANT. The table belongs to the
TRANSSPOTTING?2 schema. It has five columns with the specified types, optionality and

comments. The table will use columnar storage as its internal data representation.

3.5. IN-MEMORY DATABASE SYSTEM 31

table .schemaName = "TRANSSPOTTING2";
table .tableType = COLUMNSTORE;

3| table . columns = [

{name = "ID"; sqlType = INTEGER; nullable = false; comment = "ID of
the translation unit variant";},
{name = "TUID"; sqlType = INTEGER; nullable = false; comment = "Id
of the translation wunit that this variant belongs to";},
{name = "lang"; sqlType = VARCHAR; length = 10; nullable = false;
comment = "Language of this variant";},
{name = "text"; sqlType = NCLOB; nullable = false; comment = "Text
of this translation";},
{name = "ACTIVE"; sqlType = INTEGER; defaultValue = "1";}
I
table . primaryKey . pkcolumns = ["ID"];

Figure 3.8: Table Definition

Translation Memory Stop Words |
docld: VARCHAR word: VARCHAR
srcLang: VARCHAR lang: VARCHAR
' | year: INTEGER
0..n

Transiation Unit ‘ : Translation Unit Variant

1ID: INTEGER ID: INTEGER
docld: VARCHAR TUID: INTEGER
lang: VARCHAR

o | ExtNCLOB
ACTICE: INTEGER

Figure 3.9: Tables implemented in the system

Column-store is the recommended way of storing data within SAP HANA. While row-
store is well suited to transactional operations (OLTP), in which data is often read in chunks
of whole rows and is often updated, the column-store should offer better performance in
highly analytical (OLAP) tasks [20] [23]. Since this system is being built to perform transla-
tion spotting using big data analysis, all tables within the system will be using the HANA'’s
column-store engine. The rest of the tables (see Figure 3.9) are implemented in similar

fashion.

Privileges The installation of SAP HANA instance provides a user called SYSTEM by
default. This user was used for the purposes of development and testing. By default, users
do not have any privileges on newly activated content. Once tables have been developed, it
is important to grant SQL privileges to the user that would be used for further development.
The following SQL statement (Figure 3.10) grants the SELECT privilege on TRANSSPOT-
TING2 schema to the user SYSTEM. Should the system be used in production, it would be
desirable to create further users. Based on business rules of the system, users would be as-
signed roles. Based on the roles and subroles, different types of privileges would be assigned

to the newly created users. The required privileges were stored in a SQL file and executed

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

manually.

call SYS_REPO.GRANT_SCHEMA_PRIVILEGE_ON_ACTIVATED_CONTENT(’select ’,
"TRANSSPOTTING2’ , °SYSTEM) ;

Figure 3.10: Grant Select Privelege to System User

Text Analysis

To utilise the functionality built into SAP HANA, namely the text engine, there is a fulltext
index created for the texts of the TUVs with the text analysis library enabled. This means
that upon the ingestion of data, the database engine indexes the data asynchronously as ex-
pected. It also additionally performs text analysis on the data, which includes tokenization,
stemming, and part-of-speech analysis. For storing all of the analysis outputs, another table
is created. The text analysis functionality itself offers great benefit and greatly simplifies the

implementation of translation spotting.

Definition The functionality of the text analysis library is declared dynamically through
the use of SQL.

The full-text index is created on the TRANSLATION_UNIT_VARIANT table, namely
the text column (see Figure 3.11). The index includes fuzzy search capabilities and turns
on the text analysis library with the full linguistic analysis configuration. The text analysis
library is then provided the name of the column, which specifies the language - this feature
is especially useful when dealing with a multiple language data set such as the one published
by the European Commission.

To ensure that entries in the table produced by the text analysis library correspond to the
state of the translation memories imported even after update or deletion, a foreign key with
the cascade option is defined. The foreign key is linking the ID of an entry in the output table
to the ID of the unit variant it corresponds to. If the given variant is deleted, the referential
engine within the database will take care of deleting any corresponding entries in the text

analysis output table.

CREATE FULLTEXT INDEX TUV_INDEX ON "TRANSSPOTTING2"."sap.tcd.
dissertation2 .tables :: TRANSLATION_UNIT_VARIANT" ("text")
FUZZY SEARCH INDEX ON
TEXT ANALYSIS ON
CONFIGURATION °’LINGANALYSIS_FULL’

LANGUAGE COLUMN "lang"
ASYNC;

ALTER TABLE "TRANSSPOTTING2"."S$STA_TUV_INDEX" ADD CONSTRAINT ALTER_COMMAND
FOREIGN KEY("ID") REFERENCES "TRANSSPOTTING2"."sap.tcd.dissertation?2 .
tables :: TRANSLATION_UNIT_VARIANT" ("ID") ON DELETE CASCADE;

Figure 3.11: Text Analysis Index Definition

3.5. IN-MEMORY DATABASE SYSTEM 33

Output Representation The output of each fulltext index with the option of text analysis
enabled produces a new table in the system, which represents the output of the text analysis
on that table and attribute. The table representing the output of the text analysis is structured
in a way to provide as much information as possible per token in the text. The entries in
the table can be identified by matching the on the ID value, which corresponds to the ID
of the text column being analysed. Each word in the text is then annotated with information
including the index of the word within the text, the token itself, language of the token, its part-
of-speech type, normalised version of the word (without special characters and diacritics),
the stem of word (if available), and the number of the sentence and paragraph that the token
belongs to. Additionally, there is metadata associated with each token such as the timestamp

of when the text analysis was performed and its character offset within the sentence.

Stored Procedures

Stored procedures are used as a technique to represent the application logic directly within
the database engine. As a part of SAP HANA, stored procedures can be defined using lan-
guages called SQLScript or R. R is a language, which can be used for statistical calculations
within procedures. The described implementation is using the SQLScript language, which is
a superset of standard SQL and allows for definition of declarative, but also imperative logic
within the database engine.

As described in the application logic design section (3.5.1) of this chapter, to ensure the
use of the whole available corpus, it is proposed to perform analysis of phrase co-occurrence
across the corpus. Based on the output of the text analysis library, it was clear that the
implementation of such mechanism for single word queries will be relatively straightforward.
The text analysis library produces single word tokens, the occurrences of which can then be
counted in the matching translation units. It was becoming clear, that the logic of the n-gram
or multi-word queries will need additional calculations in order to generate the possible
substrings of matched text, which would then be evaluated.

Due to such additional operations required for the n-gram queries it was decided that
these use cases will be implemented as separate algorithms. The iterative implementation
started with the most basic procedure for the single word translation spotting, the result of
which was evaluated and fed into the design and implementation of the next iterations. The
following sections describe the algorithms and their implementation for both the single word

and n-gram algorithms.

Single Word Translation Spotting Single word algorithms are relatively simple to un-
derstand and perform well. These algorithms generally don’t require the use of any of the
imperative constructs of SQLScript. When using mostly set based logic, the HANA engine is
able to automatically perform optimisations of the queries and parallelisation of any required
processing.

The most basic algorithm that was initially implemented is the simple co-occurrence

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

algorithm.

Simple Co-occurrence Spotting The simple co-occurrence spotting algorithm was the
first and most naive algorithm that was implemented as a part of the system.

First, the algorithm uses the fulltext index and its text search capabilities to identify
the translation units, which contain the relevant translation (see Figure 3.12). Identifying
the relevant translation units is done by executing SQL full join query, where TRANS-
LATION_UNIT_VARIANT table is joined on itself based on the translation unit ID. This
generates a number of combinations between the translations of the given translation units.
These combinations are then filtered out using the WHERE statement. The condition of the
filter is that source language text contains the queried text, the language of source table is the
language specified as the source language parameter of the procedure, while the language of

the target table is target language. In simpler terms, the snippet of code generates a list of

TUs = SELECT tgt.ID FROM
"TRANSSPOTTING2" . "sap .tcd . dissertation2 . tables ::
TRANSLATION_UNIT_VARIANT" as src
FULL JOIN "TRANSSPOTTING2"."sap.tcd.dissertation2 .tables ::
TRANSLATION_UNIT_VARIANT" as tgt
ON src.TUID = tgt.TUID
WHERE src."lang" LIKE :srcLang
AND tgt."lang" = :targetLang AND contains(src."text", :inQuery);

Figure 3.12: Simple Co-occurrence Spotting - Part 1

translation unit variant IDs, which contain the translation of the specified text in the target
language. The inQuery is a parameter, which specifies the searched text, the srcLang is a
parameter specifying the source language and the targetLang specifies the target language.
Once translation unit variants which are known to contain the required translation are
obtained, the output of the text analysis library is analysed with respect to these variants.
The analysis attempts to spot the words, which are occurring across the identified sentences

most frequently. The code in Figure 3.13 selects each word from the text analysis output. It

res = SELECT IFNULL(TA_STEM, TA _TOKEN) as "token", COUNT(x) as "score"
FROM "TRANSSPOTTING2"."$TA_TUV_INDEX2" WHERE TA_TYPE != ’punctuation’
AND ID IN(SELECT ID FROM :TUs) GROUP BY IFNULL(TA_STEM, TA_TOKEN)
ORDER BY "score" DESC;

Figure 3.13: Simple Co-occurrence Spotting - Part 2

attempts to prioritise the stems of the words. Since these are single word queries, it makes
sense that a stem of the query is also a valid translation and an experienced translator should
be able to change the form of the word to obtain syntactically and grammatically correct
translation in the given context. If the stem is not available (possibly due to imperfections in
the stemming functionality of the text library), the token itself is used. These words are then
counted, with using the SQL count function and grouping by either the stem or the token. To

ensure, that this operation only takes the desired translation unit variants into account, the

3.5. IN-MEMORY DATABASE SYSTEM 35

IDs of the text analysis output are filtered to only count the IDs, which were found to contain
the translation. Finally the entries are ordered by the count in descending order, which acts
as a score for the translation candidate.

The filter on the TA_TYPE column of the text analysis output table was introduced as
a fix for an issue discovered during the phase one of the evaluation (see Section 4.2.2). It
was found that after an update of SAP HANA to a newer version, the punctuation token type
was a new feature. This caused issues in the results of most implemented algorithms and the
decision was made to introduce a fix. This filter therefore filters out all tokens, which are of

type punctuation. The fix was also implemented across all of the following algorithms.

Single Occurrence Limit Spotting During manual testing and evaluation of the simple
co-occurrence spotting algorithm, it was found that in almost all cases the required results
were present in the result set, but not in the top positions. If the approach is to be usable and
bring value to translators, it is desirable that the correct translation is the one with the highest
score. It was found that in most cases, the most common stop words in the given language
would take up the highest score positions in the result set.

It is understandable that stop words in any given language are the most frequently used
terms in any text. It was therefore attempted to limit the number of stop words that will be
counted in the score of the translation candidate. To limit the occurrences of stop words it
was decided to limit the maximum added score of any single word per translation unit variant
to one. This means, that if a single word occurs twice, it will not be counted twice in the
score, but only once.

The occurrence limitation was implemented by using the DISTINCT functionality of
SQL. The algorithm therefore only selects one stem or token per translation unit variant ID.
As such, when counting the number of occurrences across the whole corpus, a single trans-

lation candidate will only be counted once per sentence. This functionality is implemented

resFilter = SELECT DISTINCT IFNULL(TA_STEM, TA_TOKEN) as "token", ID
FROM "TRANSSPOTTING2" . "$TA_TUV_INDEX2"

3/ WHERE ID TA_TYPE != ’punctuation’ AND IN(SELECT ID FROM :TUs);
res = SELECT "token", COUNT(x) as "score"

s FROM :resFilter GROUP BY "token"

ORDER BY "score" DESC;

Figure 3.14: Single Occurrence Limit Spotting

by performing one additional query to filter out any duplicate words in any one sentence (see
Figure 3.14). Only the output of this query is then fed into another query, which similarly
to the simple occurrence algorithm uses the count functionality to assign a score to each of
translation candidates.

It was found, that this approach decreases the impact of stop words on the result set, but

does not fully eliminate it.

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

Stop Words Co-occurrence Spotting As an approach to eliminate the impact of stop
words, it was considered to identify and filter-out any stop words from the result set com-
pletely. It could be the case that the user’s query is a stop word itself, in which case, if
the corresponding translation is also a stop word, this algorithm could yield wrong results.
This has been taken into account and the algorithm has been designed with two assumptions.
Firstly, the algorithm assumes that there are lists of stop words for each language in the trans-
lation memories. Secondly, there is an assumption that if a word is marked as a stop word in
a given language, its translations will be marked as stop words in the other languages.

The algorithm starts off as the previous algorithms by identifying the translation unit
variants in the target language that do contain the relevant translation. The rest of the analysis

is based on whether the query is a stop word or not. A query is therefore executed to retrieve

SELECT count(x) INTO countStop
FROM "TRANSSPOTTING2"."sap.tcd.dissertation2 . tables ::STOP_WORDS"
WHERE "word" = :inQuery;

Figure 3.15: Stop Words Co-occurrence Spotting - Part 1

the number of stop words from the STOP_WORDS table (see Figure 3.15), which are same

as the query. The count of such stop words is stored in an integer variable. Based on whether

if (: countStop > 0)
THEN
res = SELECT IFNULL(TA_STEM, TA _TOKEN) as "token", COUNT(x) as "score"
FROM "TRANSSPOTTING2" . "$TA_TUV_INDEX2"
WHERE TA_TYPE != ’punctuation’ AND ID IN(SELECT ID FROM :TUs)
GROUP BY IFNULL(TA_STEM, TA_TOKEN) ORDER BY "score" DESC;
ELSE
stopWord = SELECT "word" from
"TRANSSPOTTING2" . "sap.tcd . dissertation2 . tables :: STOP_WORDS" ;
resTmp = SELECT IFNULL(TA_STEM, TA_TOKEN) as "token", COUNT(x) as "

score"
FROM "TRANSSPOTTING2"."$TA_TUV_INDEX2"
WHERE TA_TYPE != ’punctuation’ AND ID IN (SELECT ID FROM :TUs)

GROUP BY IFNULL(TA_STEM, TA_TOKEN) ORDER BY "score" DESC;
res= SELECT % FROM :resTmp WHERE ("token" NOT IN (SELECT "word" from
stopWord)) ;
END IF;

Figure 3.16: Stop Words Co-occurrence Spotting - Part 2

the count of stop words is greater than zero or not, a decision is made on the type of algorithm
that will be used (see Figure 3.16). If there were stop words, which matched the query, the
simple co-occurrence algorithm is executed and the results of that analysis are returned. In
case of the number of stop words being zero, meaning that the current query is very likely
not a stop word, a slight modification of the co-occurrence algorithm is executed. First, all of
the stop words are stored in a local result set. The matching and ranking of co-occurrences
is then carried out in a similar fashion as it happens in the simple co-occurrence algorithm,
but the result is only stored in a local result set. A final query is then executed, which filters

the retrieved stop words from the ranked translation candidates and returns the result.

3.5. IN-MEMORY DATABASE SYSTEM 37

Based on manual preliminary testing, this algorithm was found to be effectively filtering

the stop words out of the ranked list of translation candidates.

Stop Words & Single Occurrence Spotting Both the single occurrence limit and stop
words filtering algorithms showed improved results. It was the case, that both performed
better in different scenarios. It was therefore worth trying to combine the two algorithms.
If the query is a stop word, then using the single occurrence algorithm as a fallback option
should improve the results by limiting the scoring of other stop words, which could affect
the overall position of the correct translation. In the case, where the query is not marked as
stop word, the precision of the translation spotting could be improved if the query really is
stop word, which is missing in the stop words lists.

The implementation corresponds to the stop words filtering algorithm, with the addition
of the extra filter query. The filter query uses the DISTINCT functionality of SQL to filter
out duplicates of tokens within a single sentence. This filtering mechanism is applied both
in the case of the query being a stop word and not.

This algorithm was found to be by far superior in terms of its precision, but was found to

be less performant than the other algorithms described.

N-Gram Translation Spotting Algorithms The n-gram algorithm implementation was
identified to be different from the aforementioned single word techniques. The implementa-
tion of the single word translation spotting was made possible with little development over-
head due to the text analysis library. The output of the text analysis allowed for analysing
co-occurrences of single words across large quantities of unstructured text. This was pos-
sible simply by combining a number built-in SQL features such as joins and count. It was
considered to use the single word algorithms to translate multi word queries word by word.
This approach would however not be realistic. Different languages have different sentence
structures and word orderings. Additionally, the linguistic techniques such as declension
would result in grammatically wrong translations. It was therefore decided to use similar ap-
proach to the single word queries and analyse co-occurrences of multi word phrases. At the
time of the implementation of the project, there seemed to be no functionality built-in into
the query language or the text analysis library, which would allow for matching of substrings
across unstructured text.

A number of potential ways of implementing such functionality were considered. The
abilities of different types of views available in SAP HANA offer great potential when
dealing with analytical and computational tasks on data and defining data flows within the
database. These views however didn’t offer potential for combination of tokens from the
text analysis output table to generate all of the possible substrings of the identified transla-
tion unit variants. It was therefore decided to resolve to using the imperative features of the
SQLScript language. Since the text analysis produces all of the tokens from the analysed
text, and their location within the original sentence, it is possible to imperatively build all of

the substrings of a given sentence.

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

Using such imperative functionality prevents the optimisation components of the database
engine to perform automatic parallelisation of the queries and could lead to performance is-
sues. It is therefore unfeasible to perform such an operation on all of the identified translation
units. Instead, the proposed n-gram algorithms suggest to identify the relevant translation
units and only select one from which translation candidates will be generated. Since the cor-
responding source language variants contain the searched queries, it is assumed that all of the
identified target language variants will contain the desired translation. All of the substrings
of the selected sentence will therefore be generated and for all of them it should be a matter
of employing the same techniques of analysing co-occurrence that were successfully used in
the single word algorithms.

Two algorithms for multi-word translation spotting were proposed, implemented and
evaluated. The first one is a simple Co-occurence N-Gram Spotting, which is inspired by
the simplest of the single word algorithms. The second algorithm is the Co-occurence with
Dictionary Spotting, which is using the existing single word translation spotting procedures
to improve the scoring mechanism by identifying common keywords in both the query and

the suggested translation candidates.

Co-occurrence N-Gram Spotting The first and simplest algorithm is the Co-Occurence
N-Gram spotting algorithm. As previously described, this algorithm selects a single sentence
from the identified translation unit variants and uses that sentence to build a list of all poten-
tial translation candidates. This is done by generating a list of all substrings of the sentence,
which are then assigned scores based on the co-occurrence in the identified sentences and
the differences in their lengths and the length of the query.

First, the algorithm executes the same query as in previous algorithms to identify the list
of translation unit variant IDs, which do contain the relevant translation.

The algorithm then calls another procedure, which is responsible for counting the number
of words in the query. The number of words is going to be used when calculating the score
of potential translation candidates. The numWords procedure is very simple (see 3.17), it
uses a while loop to iterate over all of the tokens, counting each word until the remaining

input is an empty string. The spotting algorithm retrieves the count from output parameter

while (: input <> *7) DO

cnt := :cnt + 1;
3 input := SUBSTR_AFTER(:input, ° ’);
END WHILE;

res := :cnt;

Figure 3.17: Number of Words Procedure

of the count procedure, which will later be used for scoring of translation candidates (see
Figure 3.18). The algorithm then chooses a (semi)random sentence from the identified set
of sentences that are known to contain the translation of the query (see Figure 3.19). Since

all of the sentences are assumed to contain the translation, the selection decision should not

3.5. IN-MEMORY DATABASE SYSTEM 39

call "TRANSSPOTTING2"."sap.tcd.dissertation2.procedures :: numOfWords" (:
inQuery, :input_length);

Figure 3.18: Co-occurrence N-Gram Spotting - Part 1

affect the functionality of the algorithm. The length of the selected sentence in terms of the
number of words will affect the performance of the system. The longer the sentence, the
more substrings there are, the more potential translation candidates will be identified and the
more computational effort is needed to identify co-occurrences of these candidates across
the potentially large subset of the corpus. To minimise such effort, the shortest sentence in
terms of the number of words is selected using the ORDER BY functionality, selecting the
top row. The number of words in the selected sentence is represented by the count of words

and is stored in a local variable. The tokens that represent the words of the sentence are

— select (semi)random row with a translation

orderedCandidates = SELECT COUNT(*) AS CNT, ID FROM "TRANSSPOTTING2"."
$TA_TUV_INDEX2" WHERE TA_TYPE != ’punctuation’ AND ID IN(SELECT ID
FROM :TUs) GROUP BY ID ORDER BY CNT;

SELECT TOP 1 ID INTO id FROM :orderedCandidates;

SELECT TOP 1 CNT INTO length FROM :orderedCandidates;

Figure 3.19: Co-occurrence N-Gram Spotting - Part 2

then selected from the text analysis output table into a local result set (see Figure 3.20). The
result set is then converted into the array type, ordering the tokens by their position within

the original sentence. The translation candidates are then generated using nested for loops

toks = SELECT TA_TOKEN, TA COUNTER FROM "TRANSSPOTTING2"."$TA_TUV_INDEX2"
WHERE TA_TYPE != ’punctuation’ AND ID = :id;

3sl— convert the tokens of the selected translation into an array

tokens := ARRAY AGG(:toks.TA_ TOKEN ORDER BY TA_COUNTER) ;

Figure 3.20: Co-occurrence N-Gram Spotting - Part 3

(see Figure 3.21). The outer for loop index 1 represents the starting position of the currently
generated substring, while the inner for loop index j represents the ending position of the
current substring in the original sentence. At each iteration of the outer loop, the current
sentence variable is initialised to an empty string, which is then built-up to contain up to
the rest of the sentence. In each iteration of the inner loop then, the current sentence is
evaluated using the scoring formula based on its length compared to the query and its co-
occurrence across the identified translation units. Each of these evaluated sentences along
with their corresponding scores is then stored in parallel arrays. There have been a number
of experiments in order to identify the ideal formula of scoring based on the number of co-
occurrences and lengths of the original query and the current sentence. Both the current

sentence and its score are stored in corresponding indices of two parallel arrays.

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

FOR i IN 1 .. :length DO
DECLARE currSentence VARCHAR(2048) := ’’;
FOR j IN :i .. :length DO
SELECT CONCAT(CONCAT(: currSentence , ° ') , :tokens[:j]) INTO
currSentence FROM DUMMY;
call "TRANSSPOTTING2"."sap.tcd.dissertation2 .procedures :: numOfWords"
(:currSentence , :curr_length);
SELECT COUNT (%) *(1000—(ABS(:input_length — :curr_length)+1)*10) INTO
score FROM "TRANSSPOTTING2"."sap.tcd.dissertation2 .tables ::
TRANSLATION_UNIT_VARIANT" WHERE ID IN(SELECT ID FROM :TUs) AND

CONTAINS("text", :currSentence);
sentences [:id] := :currSentence;
scores[:id] := :score;
id := :id + 1;
END FOR;
END FOR;

Figure 3.21: Co-occurrence N-Gram Spotting - Part 4

The formula, which was empirically found to perform the best, is score = o * (1000 —
|(gl —cl) + 1] x 10) where o is the number of occurrences of the current candidate across the
number identified TUVs, gl is the number of words within the query and cl is the number of
words of the current translation candidate.

This formula ensures, that the score increases with growing number of co-occurrences,
while decreasing with larger differences in length between the query and the current sen-

tence. The two parallel arrays representing the translation candidates and their correspond-

resl = UNNEST (:sentences, :scores) AS ("token", "score");
res = SELECT % FROM :resl ORDER BY "score" DESC;

Figure 3.22: Co-occurrence N-Gram Spotting - Part 5

ing scores are then combined into a table representation (see Figure 3.22). The table is then
sorted in the decreasing order of their scores.

During the manual evaluation of the algorithm, it was found that the algorithm suffers
problems, which are similar to the problems encountered in the simple single word co-
occurrence spotting. The main issues are caused by the stop words. It is the case, that
combinations of stop words would occur possibly across all of the identified sentences. N-
Grams such as "of the" or "and the" would occur many times and their occurrences would
beat the negative score produced by the length difference. Stop words can be a valid part of a
multi-word query; filtering them out of the translation candidates was not a feasible solution.
It was desirable to find means of identifying translation candidates, which are more relevant
to the query.

Co-occurrence with Dictionary Spotting The problems with stop words in the n-
gram translation spotting were partially solved with the use of dictionary techniques. The
theory behind this approach was, that if it was possible to spot common keywords across

sentences, it would make scoring of translation candidates more precise. For example if

o

10

3.5. IN-MEMORY DATABASE SYSTEM 41

words “European” and “Commission” appeared in both the query and a given translation
candidate, and the translation candidate occurs across a number of identified sentences, while
the difference in length is not major, it is very likely that the given candidate is the right
translation.

Since not having to include language specific mechanisms in translation spotting systems
is a desirable property, the algorithm should not rely on language specific dictionaries. The
single word translation spotting algorithms showed reasonable efficiency. It was therefore
decided to use these single word procedures instead of importing language specific dictio-
naries.

This algorithm therefore uses a single word translation spotting procedure in order to
translate words (namely keywords) into the target language. To perform the operation, an-
other procedure was created (see Figure 3.23). It uses similar pattern to the one used in the
word count procedure. A while loop is used to iterate over the words in the query. Addition-
ally, for each word encountered, the procedure checks if it is a stop word. If it is not a stop
word, the Stop word & Single Occurrence procedure is called, trying to translate the current
word from the source to the target language. The top result of the single word spotting is
then stored in an array containing the translated keywords. The array is converted into a table

result set and returned to the output parameter of the procedure. Once the spotting procedure

while (: input <>) DO

toSpot := SUBSTR_BEFORE(:input, ~ ’);
if (:toSpot =)
THEN
toSpot := :input;
END IF;

SELECT count(x) INTO isStop FROM "TRANSSPOTTING2"."sap.tcd.
dissertation2 .tables ::STOP_WORDS" WHERE "word" = :toSpot;
if (:isStop = 0) THEN
call "TRANSSPOTTING2"."sap.tcd.dissertation2 .procedures/
spotSingleOccurenceSW " (:tgtLang , :srcLang, :toSpot,spot);
SELECT COUNT (%) INTO numSpot FROM :spot;
IF (: numSpot > 0) THEN
SELECT TOP 1 "token" INTO spott FROM :spot;

words [:cnt] := :spott;
cnt = :cnt + 1;
END IF;
END IF;
input := SUBSTR_AFTER(:input, ° ’);
END WHILE;

res = UNNEST(: words) AS ("WORD") ;

Figure 3.23: Split Words Dictionary Procedure

obtained the translated words of the query, it calls the numOfWords procedure to determine
the size of the query (see Figure 3.24). Similarly to all the other procedures, the relevant
translation unit variant IDs are retrieved and the shortest sentence is selected. Nested for

loops are used to generate the list of substrings of the selected shortest sentence. The scoring

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

— Attempt to translate each word in the sentence

ol call "TRANSSPOTTING2"."sap.tcd.dissertation2 .procedures/splitWords" (:

inQuery , :targetLang, :srcLang, dict);
call "TRANSSPOTTING2"."sap.tcd.dissertation2 .procedures :: numOfWords" (:
inQuery , :input_length);

Figure 3.24: Co-occurrence with Dictionary Spotting - Part 1

technique, which is performed on each of these translation candidates then differs slightly
from the previous algorithm. Firstly, the stem of the word that the inner loops is currently
looking at is retrieved from the translation analysis output table (see Figure 3.25). The stem
is not related to any particular sentences in the text analysis table, instead the most commonly

appearing stem for the given token is used. If a stem for the current token exists, the most

stem := :tokens[:j];
stem_res = SELECT TA_STEM, COUNT(x) AS STEMCNT FROM "TRANSSPOTTING2"."
$TA_TUV_INDEX2" WHERE TA_TYPE != ’punctuation’ AND TA_TOKEN LIKE :stem

AND TA LANGUAGE = lower (:targetLang) AND TA STEM IS NOT NULL GROUP BY
TA_STEM ORDER BY STEMCNT DESC;

Figure 3.25: Co-occurrence with Dictionary Spotting - Part 2

commonly appearing stem is converted into a local string variable. A query then examines
the occurrences of the stem in the dictionary entries produced when translating the words
of the input query (see Figure 3.26). If any matches are found, the score is incremented by
one to ensure that each match is not counted more than once. This means the the current
translation candidate includes a word with the same meaning as a word, which was spotted

in the query. The algorithm also takes into account the number of occurrences of the cur-

SELECT COUNT (%) INTO matchCnt FROM :stem_res;
IF (matchCnt > 0) THEN
SELECT TOP 1 TA_STEM INTO stem FROM :stem_res;
END IF;
SELECT COUNT(x) INTO matchCnt FROM :dict WHERE WORD LIKE :stem OR WORD
LIKE :tokens[:j];

IF (: matchCnt > 0) THEN
sc = :sc + 1;
END IF;

Figure 3.26: Co-occurrence with Dictionary Spotting - Part 3

rent translation candidate across the identified set of translation unit variants. The count of
matches of the translation candidate is then also stored in a local variable (see Figure 3.27).
Once having all the components of the score, the sentences array is updated with the cur-
rent translation candidate and the score is stored in the corresponding position of the scores
array. Similarly to the previous algorithm, a number of scoring formulae were empirically
evaluated by observing the precision of the algorithm based on a number of queries and the
positions of the desirable translation in the result set. After careful consideration, score in

this algorithm is being calculated based on the number of matched keywords, the number of

3.6. SUMMARY 43

cooccur := 0;
IF((:j—:1)+1 >= 2) THEN
SELECT COUNT (%) INTO cooccur FROM "TRANSSPOTTING2"."sap.tcd.
dissertation2 .tables :: TRANSLATION_UNIT_VARIANT" WHERE ID IN(SELECT ID
FROM :TUs) AND CONTAINS("text", :currSentence);
END IF;

Figure 3.27: Co-occurrence with Dictionary Spotting - Part 4

occurrences in the identified translation variants as well as the difference in length between
the input query and the translation candidate.

The formula is: score = m?> + /(n) — (|(gl — cl)|) where m is the amount of matched
keywords, n is the number of matched occurrences of the translation candidate across the
identified TUVs, while the gl and cl are the query and translation candidate lengths respec-
tively.

This ensures that the matched keywords have the highest weighting in the score, while
also taking the number of occurrences and differences in length into account.

This algorithm was found to be the least efficient in terms of performance. This can be
explained by the fact that the single word spotting procedures can be called as many times
as there are words in the source query. The number of analytical operations for identifying
co-occurrence across the corpus is dependent on the shortest identified TUV. The algorithm
also delivers the highest precision in n-gram translation spotting compared to other proposed

algorithms.

3.6 Summary

This chapter described the design and implementation of all components of the proposed
translation spotting system. The whole system was first described along with high level im-
plementation details. The design and implementation of each component was then described
in more detail.

A brief suggestion on how a user interface could be built using different software paradigms
was given along with a short description of the user interface built for the implemented sys-
tem.

The design and implementation of the administrative layer was presented. No major
problems or findings were observed during the development of the administrative layer. Its
components are designed and built to be easily extensible to support different file formats
and even different database engines. The test framework was designed to allow for automatic
testing of the system and reporting of the results. The test framework implemented as part
of this dissertation was used throughout the evaluation of the system.

The translation spotting logic was designed to use as much functionality provided by
SAP HANA as possible. The text engine of the database provided features, which be-
came crucial for the implementation of the translation spotting logic such as tokenization

or stemming. Additionally, the translation spotting procedures were implemented using the

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

expressive power of SQLScript, thus providing all of the application logic directly within the
in-memory database. The translation spotting algorithms were implemented in two phases.
First, a number of single word algorithms were proposed, which were later extended to sup-
port multi-word queries.

The single word algorithms were designed to be simple. The text analysis library output
provides the tokens, which are linked to the unstructured text of the TUVs. No complex
logic was therefore needed to implement the single word procedures. The results of each
of the procedures were analysed and reflected on, which led to the development of more
advanced algorithms. The Simple Co-occurrence Spotting has shown that stop words will
pose a problem. The Single Occurrence Limit Spotting algorithm was therefore developed
in an attempt to limit the effect of stop words on the analysis. The effect of stop words
was successfully scaled down even though it did not solve the problem fully. Stop Words
Co-occurrence Spotting was then designed to explicitly filter out stop words where possible.
This yielded improved precision. The Stop Words & Single Occurrence Spotting was the
last and most effective algorithm, which is a combination of the Single Occurrence Limit
Spotting and the Stop Words Co-occurrence Spotting algorithms.

Using the single word algorithms was considered to perform word-by-word translations
of multi word queries. It was decided that due to different sentence structures in each lan-
guage, such an approach would not be feasible. Additionally, even though the precision of
the single word algorithms was promising, it was not flawless. If used for every word of the
sentence, the imprecisions would add up producing results, which might not make sense. It
was decided to use an approach similar to the single word algorithms - attempt to identify
co-occurrences of phrases. The simple Co-occurrence N-Gram Spotting was implemented,
which used the length differences between the query and each translation candidate along
with its co-occurrence across the identified sentences as the method for ranking the candi-
dates. It was found that the focus was shifted more towards the candidates, which contained
stop words. It would not be a solution to simply filter out stop words from the multi word
translations just like the single word algorithms do. It was considered to use dictionaries
in order to identify the most relevant candidates. The language specific dictionaries were
however, not available and thus the Co-occurrence with Dictionary Spotting used the single
word algorithms in order to identify candidates, which contained most keywords common in
both the query and the translation candidate.

In conclusion, a useful framework for translation spotting systems was implemented us-
ing an in-memory database. A number of translation spotting algorithms were then con-
sidered for both single and multi word queries offering differing levels of precisions and

execution times.

Chapter 4

Evaluation

4.1 Introduction

This chapter will walk the reader through the testing and evaluation of the implemented
system. Section 4.1.1 will describe the functionality of the test framework. Section 4.1.2
will then provide the background information on the data that was used for the implementa-
tion and evaluation of the system. Section 4.1.3 will explain how the test cases used in the
experiments were selected. The description of different tests is then given section 4.1.4.

All the different tests and their results are then presented and interpreted in section 4.2

under the categories of’:

o Extensibility - how easily can the system be extended with further data?

o Effectiveness - how accurate are the translation candidates proposed by the system?
Precision will be calculated for every algorithm implemented in terms of percentage

of correct results.

e Efficiency - Can the system perform in real-time even when adding more data? The
performance will be measured in terms of the time needed to perform the operation on

a given data set size and to transfer the result set to the client.

Finally, the Discussion of the Results section (4.3) of this chapter will summarise findings
and interpret them. Additionally, an attempt will be made to identify real world use cases, in

which a system such as the one developed in this work could be used.

4.1.1 Test Framework

Test framework has been designed and implemented to allow the developers and adminis-
trators to perform automatic testing of the system, namely of its precision and performance
on the current data set. As mentioned in the Design and Implementation chapter, the test
framework is available as a part of the administrative subsystem.

The framework allows for testing of stored procedures in the system and as such, it

can be used to evaluate each of the implemented translation spotting algorithms. Such test

45

46 CHAPTER 4. EVALUATION

functionality can be defined through the implementation of tests. Each test is related to a
single stored procedure with a number of parameters. A number of test definitions were
therefore combined in test applications. Each application defines two tests, each of which
evaluates the same stored procedure / translation spotting algorithm in translating text from
one language to another and vice versa.

Each test then contains a list of test cases. Each test case contains a word, which rep-
resents the translation query and a number of acceptable answers. The test case class also
includes the functionality for verifying an answer. This is used with the top result from the
procedure. If the result is a correct translation of the query within the test case, the result is
verified and accepted. The test case includes two ways of verifying a potential result. One is
used in tests which evaluate single word procedures, while the other is used when testing the
n-gram translation spotting procedure.

It is important to distinguish between the single word and the n-gram result verification.
While the single word translation spotting procedures attempt to return the most likely trans-
lation candidate as the stem of the word, the n-gram procedures attempt to find the most likely
candidate as it appears across the TUVs. In single word queries, it is very likely the case,
that the translator is only looking for a specialised term either as a reminder or to produce a
consistent translation with the most of other translations in the corpus. A qualified translator
should therefore be able to change the word into a form, which makes its placement in the
target sentence syntactically and grammatically correct. When it comes to n-gram queries,
it could be the case that the returned phrase would be hard to understand if all of the words
were changed to their stemmed version. It is therefore desirable that the single word queries
are verified against a number of acceptable answers, where the result has to match (in case
insensitive manner) exactly. For n-gram queries on the other hand, it is desirable to match an
acceptable answer on a part of the result. In other words, the translation candidate should still
be valid and useful to the translator if the acceptable answer is contained within the result,
with a certain level of overhead. If there are additional prepositions or conjunctions before
the start or after the end of the acceptable answer, the translator will be able to identify the
required part without being overwhelmed by the whole paragraph of text. The acceptable
overhead of a translation was defined to three words during the execution of tests as part of
the evaluation of the system. Each Test is defined to be either single word, or n-gram based
on the procedure it is evaluating. It then automatically makes a decision, which verification
method is going to be called in each of the test cases.

The application / deployment specific test framework should consist of a number of test
applications. Each of these applications contains a number of tests, each of which in turn
contains a number of test cases. The test applications could potentially decide which tests
will report their outcomes to different files, which could be used by automatic monitoring
and reporting tools.

As a part of the evaluation of the system, a test application was defined for each of the

implemented procedures.

4.1. INTRODUCTION 47

4.1.2 Test Data

A data set used for the implementation of the system was produced by the European Com-
mission. This data set contains translation memories of legal documents and proceedings
transcripts, which were published and translated between 2004 and 2012. In 2011 statis-
tics on the corpus [27], there were over 38 million translation units in the 22 official EU
languages.

During the development and evaluation of the system, translation units in two languages
were imported into the database - Czech and English. This decision was made as the author
of the work is a native Czech speaker with business proficiency in English. The manual
development of test cases between the two languages therefore did not require the use of
dictionaries or translation tools, which could produce inconsistencies or mistakes in the test
cases.

The development of the system initially started with the documents from year 2004,
imported into the system and further data was imported additionally during the evaluation to

ensure that the evaluation metrics are collected for data sets of different sizes.

4.1.3 Test Cases

There were four sets of test cases defined for the evaluation of the system. These include
the 100 cases defined for single word queries from Czech to English, 100 cases for single
word queries from English to Czech, 100 cases for n-gram queries from English to Czech
and finally 100 cases for n-gram queries from Czech to English.

Single word queries were selected manually from existing EU documents. The words
selected were mainly (though not exclusively) keywords, which could appear across docu-
ments such as the ones imported into the database. These single word test cases have the
structure of the searched query, and a number of acceptable translations. An example of

single word test cases from English to Czech are:

Search Query | Acceptable Answers

transfer prevod, prevést

understanding | porozuméni

Examples of single word test cases from Czech to English are:

Search Query | Acceptable Answers
PROHLASENT | declaration

spravedlnost justice

Some of the test cases are uppercase. Even though the matching mechanism is case insen-
sitive, these words were copied directly from the documents and left the way they appeared
in these documents. Such an approach could be taken if the system was used as a part of
an automated translation mechanism. Certain acceptable answers also have a vertical bar

character at the end. It was found during debugging of the test cases, that as a side effect

48 CHAPTER 4. EVALUATION

G‘I”

of stemming in the text analysis library, some produced stems have “I” character appended
to the end. This seems to be an issue with the implementation of the text analysis library of
SAP HANA, as no formal mention about such feature was found in the documentation.
Based on the statistics collected from online concordancers [7], most of the searched
queries are between 2 and 3 words in length. The n-gram test cases take this fact into account.
Even though not all of the cases are between 2 and 3 words, most of them are. Similarly to
single word queries, the n-gram queries were designed in such a way, as to contain mostly
keyword phrases. It did not seem plausible that qualified translators would need to use
translation spotting systems in order to identify common phrases made up purely out of stop

words. Examples of English to Czech n-gram test cases are:

Search Query Acceptable Answers

constitutional requirements | Ustavnépravni pozadavky

European Economic Area | Evropsky hospodarsky prostor

Examples of n-gram Czech to English test cases are:

Search Query Acceptable Answers

elektronickych komunikacnich sitich | electronic communication networks

ochrané osobnich ddaja data protection

A full list of the test cases used during the evaluation of the system can be found in Appen-

dices A to D of this dissertation.

4.1.4 Tests

A number of tests were defined and executed on the system containing different sizes of
data. Each of these tests corresponded to testing a single feature or algorithm of the system,
such as a test for the Simple Co-occurrence Spotting algorithm. The results of these tests are
described and interpreted in the Experiments section (4.2).

The tests always contained the same test cases for both single word, or n-gram pro-
cedures, while testing the system with different portions of the data set imported into the

system.

4.2 Experiments

The evaluation of the system was carried out in two phases (except for extensibility measure-
ments). The initial evaluation has shown irregularities in the results, which were caused by
migration to a different version of SAP HANA between the initial implementation and the
first test executions. The translation spotting system was moved by SAP staff to a different
physical server within SAP’s infrastructure due to maintenance reasons. While moving the
system, the version of HANA was also updated. New features in the text analysis library in

the new version of HANA caused a number of issues, which were observed during the phase

4.2. EXPERIMENTS 49

Measure / Year 2004 2005 2006 2007 2008 2009 2010 2011 2012
Time taken 2776s | 3856s | 5591s | 3947s | 4566s | 3332s |2968s | 4391s 8 040s
No. of documents | 2 155 3405 3293 2656 2560 1906 1651 2449 3765
Number of TUs 195179 | 333421 | 451809 | 320286 | 430619 | 276 173 | 274794 | 322377 | 538949

Table 4.1: Extensibility of the system measurements

one evaluation. Minor changes were then made to the algorithms to minimise the effect that
the new features have on the results. In phase two, the system was evaluated again with the

implemented changes.

4.2.1 Extensibility

Extensibility of the system has been measured mainly as the amount of time required to
import data into the system (see Table 4.1). The evaluations of the algorithms were carried
out for a number of different data set sizes. The European Commission corpus has been
ingested into the system in chunks of documents grouped by the years they were published in.
During the ingestion of data, time taken for the ingestion along with a number of documents
was collected.

It is important to note, that the ingestion happens in batch statements per document.
The data has been ingested from a laptop at home connection speeds through SAP’s corpo-
rate VPN (connections are routed from Ireland to the VPN proxy in Germany and back to
Ireland). At the time of ingestion, the average round-trip time was measured to be approxi-
mately 100-150ms, this time is therefore included in time needed for the ingestion of every
single document. It is expected that if ingestion was carried out geographically locally to the

server, the execution would perform faster.

4.2.2 Phase One Evaluation

Phase one evaluation was the first official testing of the system. The test cases were executed
based on two different sizes of the data set and the test results were analysed. Based on the
analysis, it was found that the results show what appeared to be an error in the implementa-
tion, which has not previously been observed. The problem was analysed and minor changes
in the implementation were made, leading to phase two of the system evaluation.

This section will describe the tests executed and the test results observed during the initial
phase of the evaluation. It should be noted that all execution times presented in this section
include the network latency produced by the communication through SAP’s Germany based

VPN, which at the time of the test execution was on average approximately 100ms.

Single Word Translation Spotting

Simple Co-occurrence Spotting The Simple Co-occurrence Spotting algorithm is the eas-
iest and performance-wise the most efficient. The tests have shown that precision of the al-

gorithm is not great and this algorithm would very likely not be very usable in real-world use

50 CHAPTER 4. EVALUATION

Test / Year 2004 | 2004-2005
Czech to English | 200ms | 320ms
English to Czech | 220ms | 390ms

Table 4.2: Phase One - Efficiency of Simple Co-occurrence Spotting

Test / Year 2004 | 2004-2005
Czech to English | 1% 1%
English to Czech | 4% | 4%

Table 4.3: Phase One - Effectiveness of Simple Co-occurrence Spotting

cases.

Efficiency Table 4.2 represents the average time taken for the execution of a test case
based on the size of the data set. These results show that the Simple Co-Occurrence algorithm
performs in real-time (in sub-second times) and promises to be scalable. The scalability of
this algorithm is promised by the simplicity of the algorithm, which meant that no imperative
constructs needed to be used in its implementation. With the use of set based logic, SAP
HANA is able to perform automatic optimisations of the queries and parallelise many of the

computations.

Effectiveness Table 4.3 represents the effectiveness of the algorithm as a percentage
of successfully spotted translations. The analysis of the test results showed a number of
interesting facts, which led to development of more advanced techniques.

In the Czech to English test, only 1% of test cases yielded correct result. Looking at the
log files, it became obvious that stop words do cause the low effectiveness of the algorithm -
98% of test cases returned the result “the”, while 1% returned “a” in both data sets.

The first notice of the aforementioned irregularities in the test results was shown in the
results of the English to Czech test. Even though 4% effectiveness is slightly better than the
one of the Czech to English test, most of the failed test cases returned the result of “,” and a
small number of prepositions “v”. Prepositions would be expected in the result set, as these
are stop words, which were already identified to produce poor results. The comma character
was however never observed in the manual testing previously. This indicated that there may
have been an error introduced into the implementation. At the stage of analysing the outputs

of this experiment, this irregularity did not seem very relevant.

Single Occurrence Limit Spotting The Single Occurrence Limit Spotting algorithm is
closely modelled on the Simple Co-occurrence Spotting algorithm, but adds extra logic in
an attempt to minimise the effect that the stop words have on the effectiveness. This is done
by limiting the score of an occurrence of a given translation candidate to one per a single
translation unit. The logic behind this is that stop words are probably very often going to

appear more than once in a sentence, while it is likely that a searched keyword might only

4.2. EXPERIMENTS 51

Test / Year 2004 | 2004-2005
Czech to English | 230ms | 390ms
English to Czech | 230ms | 440ms

Table 4.4: Phase One - Efficiency of Single Occurrence Limit Spotting

Test / Year 2004 | 2004-2005
Czech to English | 19% | 20%
English to Czech | 49% | 46%

Table 4.5: Phase One - Effectiveness of Single Occurrence Limit Spotting

appear once. It would then be case that the unwanted stop words in form of prepositions or
articles would be weighted more than the required phrase. Limiting their co-occurrence per

translation unit is therefore an attempt to limit the scope of the problem.

Efficiency As depicted in Table 4.4, the performance of the Single Occurrence Limit
Spotting algorithm is still very promising. It is slightly less performant than the Simple Co-
occurrence algorithm, which is due to the extra filtering of duplicate entries. This algorithm
is also promising to be well scalable due to the lack of imperative features in its implemen-

tation.

Effectiveness The percentage precision of this algorithm (see Table 4.5) is showing
improvements compared to the previous algorithm. Both Czech to English and English to
Czech tests increased in precision. English to Czech precision seems to be significantly
better than the one of the Czech to English test. When analysing the results of the tests, the
failed test cases indicate what the reason behind this trend is. Most of the English to Czech
failed test cases still yielded the result of “the”. The article “the” is very common in English,
in fact more common than any single stop word used in Czech. Based on the analytical tools
provided by SAP HANA, the word “the” is the most common (non punctuation) word in the
corpora of 2004-2005 documents, accounting for 6.9% of all words. The Czech to English

failed results are still mainly punctuation.

Stop Words Co-occurrence Spotting The Stop Words Co-occurrence Spotting was de-
veloped as a solution to all of the stop words problems, which were mentioned in previous
sections. The algorithm uses language specific stop word lists, which were imported to the
system. The stop words are then filtered out based on their occurrence in the stop words lists.
To solve the irregularities observed with the punctuations in the results, the most common

punctuation characters were added to the stop word lists.

Efficiency The performance of the Stop Words Co-occurrence Spotting algorithm (see
Table 4.6) is again slightly worse than performance achieved by the less complex algorithms.
The stop words filtering adds extra computational overhead. Additionally, a small amount

of imperative logic is used to determine whether the query is a stop word itself in the source

52 CHAPTER 4. EVALUATION

Test / Year 2004 | 2004-2005
Czech to English | 370ms | 700ms
English to Czech | 400ms | 760ms

Table 4.6: Phase One - Efficiency of Stop Words Co-occurrence Spotting

Test / Year 2004 | 2004-2005
Czech to English | 73% | 77%
English to Czech | 78% | 84%

Table 4.7: Phase One - Effectiveness of Stop Words Co-occurrence Spotting

language. In a case where it is, it would not be desirable to filter out stop words from the
translation candidates, since one of them could potentially be the correct translation. In
the case, where the query is a stop word, the Single Occurrence Spotting algorithm is used
instead. This imperative feature is negatively reflected on the scalability of the algorithm.
The increase in execution times based on the size of the data set is more drastic than in the

previous tests.

Effectiveness The effectiveness of this algorithm (see Table 4.7) was expected to beat
the precisions observed in other single word algorithms since the main problem previously
observed (i.e. stop words) is being explicitly filtered out. That indeed turned out to be the
case. The effectiveness is similar in translating from Czech to English and English to Czech
without such drastic gaps that were previously observed.

This algorithm also shows a visible improvement in the effectiveness with increased size
of the data set. An improvement in effectiveness with increased corpus size was an expected
property in such a translation spotting system as there should be more co-occurrences of the

matched as a pattern across the identified translation units.

Stop Words & Single Occurrence Spotting Once observing an improvement in quality
of spotted translations in both the Single Occurrence Limit Spotting and the Stop Words
Co-occurrence Spotting algorithms, it seemed feasible to combine the functionality of both

algorithms in an attempt to increase the effectiveness even further.

Efficiency Since both approaches of limiting the occurrences and filtering out the stop
words added an extra complexity into the algorithm, it was to be expected that the perfor-
mance of the combination algorithm (see Table 4.8) will also be hit. With two years of

imported documents in the system, the execution of this algorithm exceeds 1 second.

Test / Year 2004 | 2004-2005
Czech to English | 530ms | 940ms
English to Czech | 630ms | 1.1s

Table 4.8: Phase One - Efficiency of Stop Words & Single Occurrence Spotting

4.2. EXPERIMENTS 53

Test / Year 2004 | 2004-2005
Czech to English | 88% | 87%
English to Czech | 87% | 88%

Table 4.9: Phase One - Effectiveness of Stop Words & Single Occurrence Spotting

Effectiveness Despite the lower performance of this algorithm, its precision (see Table
4.9) is the best one yet observed. There are no significant differences between translation
from one language to the other or vice versa and there seems to be no major difference in the
effectiveness with different sizes of the data set. This could mean potential improvements in

performance by only using subset of available data without the loss of precision.

N-Gram Translation Spotting Algorithms

Even though the observed irregularities in terms of the punctuation characters in the results
were successfully hidden the single word algorithms by marking them as stop words, the
problem has appeared again when analysing the output of the multi-word algorithms. As
described in the Design & Implementation chapter, filtering stop words out of the multi-
word results did not seem feasible. Filtering out articles or prepositions out of the running
text could make the text hard to understand and could not bring any value to the translator.

The scoring mechanisms for the n-gram algorithms work on a number of techniques,
mainly the difference in lengths between the translation candidate and the source query, and
the number of co-occurrences matched across the identified translation units. If a punctuation
character such as a comma was counted as a word, this could negatively affect the scoring
of the translation candidate. Similarly, if brackets were identified as a token (or a word), the
possible substrings would contain *“ (““ with additional text appended or prepended. Since a
bracketed expression in the text could be local to only a small number of translation units, the
co-occurrence count would also be affected. Thus, the n-gram algorithms with the presence
of punctuation tokens in the output of the text analysis were problematic.

It was identified, that there was no error in the implementation of the algorithms as such.
Instead, the database instance was moved from one physical machine to another, and while
doing so the version of the database was updated. The punctuation tokens were a feature of
the new version of the text analysis library, which had not been encountered during the initial
development stages.

The following sections describe the test results with the presence of punctuation marks

in the text analysis output before a fix was implemented in the phase two of the evaluation.

Co-occurrence N-Gram Spotting Translating the n-gram queries word by word using the
implemented single word translation spotting algorithms would very likely not result in a
usable solution. Different languages have different word orderings and sentence structuring.
The sentences, which would be produced by simply translating a multi-word query word by

word would very likely be syntactically and grammatically incorrect. Furthermore, some

54 CHAPTER 4. EVALUATION

Test / Year 2004 | 2004-2005
Czech to English | 6.3s | 22s
English to Czech | 8.7s | 26s

Table 4.10: Phase One - Efficiency of Co-occurrence N-Gram Spotting

Test / Year 2004 | 2004-2005
Czech to English | 19% | 25%
English to Czech | 8% | 4%

Table 4.11: Phase One - Effectiveness of Co-occurrence N-Gram Spotting

languages use declension to change the form of words to indicate plurality and gender, while
others do not. The test cases used in the evaluation of this project would be a perfect example
- Czech uses declension, while English does not.

The Co-occurrence N-Gram Spotting algorithm is therefore an n-gram equivalent of the
single word Simple Co-occurrence Spotting algorithm. It attempts to identify the whole
phrases from the translated sentences, which correspond to translations of the whole query.
As such, it is promising that the word orderings and declension of these results could be
correct. The implementation is complex as it requires to generate all possible substrings out
of an identified translation units - i.e. all of the possible translation candidates. Once the set
of all possible answers is generated, the answers are then scored based on the differences in
length between the query and translation candidate as well as the degree of co-occurrence

across the identified translation units.

Efficiency Similarly to some of the more advanced single word algorithms, this algo-
rithm makes use of the available imperative constructs within the database engine. During
the initial development, it was seen as the only option to generate all of the possible sub-
strings and therefore a number of for and while loops are used in the implementation. This
fact makes it impossible for the optimisation tools to parallelise the computation. Analysing
the results, it makes it clear that the n-gram spotting will not be possible to carry out in times
that could be considered real-time.

Interesting observation in the results is, that the execution times largely vary based on the
query. The execution times range from sub-second times for some queries, while reaching
the order of minutes for others. The positive fact is, that most of the queries are executed rea-
sonably fast, while small number of queries take extremely long, which affects the statistical
measures such as the average figures listed in Table 4.10.

Such performance differences are caused by the optimisation of always generating the
possible translation candidates from sentences, which contain the least number of words.
The shortest sentences will also yield the smallest possible number of its substrings. The
smaller the number is, the smaller computational overhead related to both generating the

translation candidates as well as calculating scores for them.

4.2. EXPERIMENTS 55

Test / Year 2004 | 2004-2005
Czech to English | 11s | 25s
English to Czech | 15s | 33s

Table 4.12: Phase One - Efficiency of Co-occurrence with Dictionary Spotting

Effectiveness In order to verify a result as a correct translation, the full translation of
the query needs to be included in the result. There is a small allowable overhead in terms of
additional word (for this evaluation 3), which is tolerated to allow for cases where there is
a stop word returned at the beginning or the end of the translation. Such a small number of
additional words should not overwhelm the translator, who should be able to quickly identify
the relevant part of the result.

In the failed test cases in this experiment, it was found that often a part of the actual
translation is returned with a missing word. In cases, where the translator is only using the
tool for a reminder, such results could also be useful.

In terms of the result verification mechanism developed in the test framework, the effec-
tiveness results of this algorithm (see Table 4.11) are not particularly good.

In addition to the observation regarding the partially present translations, the punctuation
would further distort the translation candidates. The top candidate for a two word query,

could contain the second word and a full stop instead of the two translated words.

Co-occurrence with Dictionary Spotting The Co-occurrence with Dictionary Spotting
algorithm was implemented after seeing the poor effectiveness results of the Co-occurrence
N-Gram Spotting algorithm. As previously mentioned, it was observed that often the re-
quired translation was partially present in the top translation candidate. By analysing the
trends in these results, it became apparent that taking the length differences between the
query and the translation candidate into account is a good idea. It often shifts the focus of
the translation candidate towards one side (mostly the side which contained a number of
stop words). This meant, that the translation candidate, which contains part of the translation
along a number of stop words at the beginning or the end of the string would gain more focus
in the result set.

The use of dictionary (in this case the single word spotting procedures) to identify key-
words in both the query and their corresponding translations in the translation candidate
seemed to promise that the focus of the translation candidate would shift towards the right

direction.

Efficiency In addition to performing massive computation of generating all of the pos-
sible substrings and then ranking them as translation candidates, this algorithm performs an
analysis on the query. It tokenizes the query and on each of the words, it calls the Stop
Words & Single Occurrence Spotting algorithm in an attempt to identify the translations of

keywords in the query.

56 CHAPTER 4. EVALUATION

Test / Year 2004 | 2004-2005
Czech to English | 69% | 58%
English to Czech | 62% | 38%

Table 4.13: Phase One - Effectiveness of Co-occurrence with Dictionary Spotting

The performance of this version of the n-gram translation spotting (see Table 4.12) is
therefore not very impressive and does not seem to scale very well.
Similarly to the Co-occurrence N-Gram Spotting algorithm, the execution times for dif-

ferent queries vary greatly based on the shortest sentence containing the query.

Effectiveness Based on the metrics presented in Table 4.13, the Co-occurrence with
Dictionary Spotting algorithm improved the effectiveness of the multi-word translation spot-
ting. Based on the manual testing during the development, it was expected that the effective-
ness would be better.

Upon looking closer at the test results and the failed test cases, it became apparent that the
punctuation tokens produced by the new version of the text analysis library posed a problem

which needed to be addressed.

Phase One Summary

The analysis of results from phase one of the evaluation showed a number of interesting
observations.

Firstly, the punctuation marks appearing as translation candidates across all single word
procedures and as words in multi word results indicated an error in the implementation. After
closer analysis it turned out to be a side effect produced by a new feature in the text analysis
library of SAP HANA. The effects this had on the results of the tests were considered too
radical and the decision was made to implement a fix for this issue.

It is interesting to see the trend of increasing execution times with the increasingly com-
plex logic of the single word procedures. The times almost tripled in the Stop Words &
Single Occurrence Spotting compared to the Simple Co-occurrence Spotting. Both tech-
niques, the filtering of stop words and limiting of the translation candidate occurrence to one
per translation unit add extra computation to the algorithm. The opposite trend can be ob-
served when it comes to effectiveness. With the additional logic, the effectiveness of the Stop
Words & Single Occurrence Spotting reach to up 88% compared to the 4% effectiveness of
the Simple Co-occurrence Spotting algorithm.

Another interesting observation made in the test results of the single word algorithms
is the difference in effectiveness between the Czech to English and English to Czech tests
of the Single Occurrence Limit Spotting. This algorithm is attempting to reduce the effect
that the stop words have on the results, but does not completely eliminate it. There is a
30% difference in effectiveness between the two tests. After analysing the failed test cases it

became obvious that the definite article "the" in English is the problem. The token "the" was

4.2. EXPERIMENTS 57

responsible for vast majority of the failed test cases, while the wrong candidates in Czech
were more equally distributed among different stop words. The article "the" is the most often
used word in the English texts, thus having such a serious effect on the effectiveness of this
algorithm.

The effectiveness has improved greatly in the Co-occurrence with Dictionary Spotting
algorithm compared to the Co-occurrence N-Gram Spotting, improving from 25% to 69%.
It was expected to observe massive differences in performance of the multi word algorithms
compared to that of the single word algorithms. The multi word algorithms produced average
execution times of up to 33s. It should be noted that individual execution times vary greatly.
Some queries were observed to perform in sub-second intervals, while others would take
very long to execute. This can be explained by the fact that the translation candidates are
generated out of the shortest identified sentence. For certain queries, the shortest sentence
can still be very long. This produces a computational overhead of generating all possible

substrings and additional overhead of calculating the degree of co-occurrence for each.

4.2.3 Phase Two Evaluation

After executing tests in the phase one of the evaluation, it became apparent that it will not
be sufficient to simply hide the problems produced by the punctuation tokens in the output
of the text analysis library. A fix was therefore implemented across all of the implemented
procedures. In every procedure, when retrieving any data from the output table of the text
analysis library, the algorithm filters out all tokens, which are of type punctuation. This
means that for the purposes of the pattern co-occurrence analysis, such entries will simply
be ignored. The solution therefore simulates the functionality, which was provided by the
text analysis library before the database engine was upgraded.

This section will present the results of the same tests as those presented in phase one,
except that phase two was executed after implementing the aforementioned fix.

Similarly to phase one evaluation, it should be noted that the reported times of execution
include the network latency produced by using the SAP’s Germany based VPN, which at the
time of execution of the tests were around 100-150ms.

Single Word Translation Spotting

The single word algorithms have been evaluated extensively during the phase two evaluation.
Most of these algorithms proved to scale relatively well and therefore it was possible to run

the tests on nine different sizes of the data set.

Simple Co-occurrence Spotting

Efficiency It was previously mentioned that the Simple Co-occurrence Spotting algo-

rithm out of all of the implemented algorithms has the greatest potential for scalability due

58 CHAPTER 4. EVALUATION

Test / Year 2004 | ’04-°05 | 04-°06 | °04-°07 | °04-°08 | °04-°09 | °04-’10 | °04-°11 | *04->12
Czech to English | 230ms | 390ms | 530ms | 530ms | 630ms | 690ms | 770ms | 840ms | 1.04s
English to Czech | 260ms | 430ms | 600ms | 610ms | 740ms | 820ms | 920ms | 1.03s 1.22s

Table 4.14: Phase Two - Efficiency of Simple Co-occurrence Spotting

Test / Year 2004 | °04-°05 | ’04-°06 | °04-°07 | °04-°08 | °04-°09 | ’04-’10 | °04-°11 | °04-’12
Czech to English | 1% 1% 1% 1% 1% 1% 1% 1% 1%
English to Czech | 20% | 20% 18% 17% 18% 20% 22% 22% 20%

Table 4.15: Phase Two - Effectiveness of Simple Co-occurrence Spotting

to its simplicity. The performance measurements presented in Table 4.14 prove that it re-
ally scales well even while performing analysis on very large data sets, which contain whole
years of documents published by European Commission, the algorithm is still able to remain

subsecond execution times (in most cases).

Effectiveness It is important to note the difference in effectiveness of the English to
Czech queries between the results of phase one and phase two (see Table 4.15) of the evalua-
tion. The effectiveness achieved in the previous test was up to 4%, while the same algorithm
on the same data set size was able to produce up to 22% effectiveness after implementing
the punctuation token type filter into the algorithm.

An interesting fact is, that similar increase in efficiency is not observed in the Czech to
English test cases. When analysing the distribution of tokens in the English texts, it was
found that the token “the” appears more often than the most frequent punctuation mark. The
stop words in Czech texts were more equally distributed.

For Czech to English tests this algorithm does not bring much value even after fixing the

issue with the punctuation token types.

Single Occurrence Limit Spotting

Efficiency The Single Occurrence Limit Spotting algorithm performs slightly worse
than the Simple Co-Occurrence Spotting. The measures collected over a variety of data set
sizes (see Table 4.16) show, that the scalability makes the algorithm usable even with massive
amounts of data imported into the system.

This algorithm is still considered to scale well and perform the analysis in real-time.

Effectiveness Similar observation regarding the distribution of stop words is apparent
in the Single Occurrence Limit Spotting algorithm. While the English to Czech cases yield

precision of over 60%, the Czech to English cases remain at around 20% (see Table 4.17).

Test / Year 2004 | ’04-°05 | °04-°06 | °04-°07 | ’04-°08 | °04-°09 | °04-’10 | ’04-’11 | °04-’12
Czech to English | 260ms | 410ms | 570ms | 560ms | 680ms | 750ms | 830ms | 910ms | 1.12s
English to Czech | 280ms | 460ms | 660ms | 680ms | 820ms | 880ms | 1.0s 1.08s 1.34s

Table 4.16: Phase Two - Efficiency of Single Occurrence Limit Spotting

4.2. EXPERIMENTS 59

Test / Year 2004 | ’04-°05 | °04-°06 | 04-°07 | ’04-°08 | °04-°09 | °04-’10 | °04-’11 | °04-’12
Czech to English | 18% | 24% 23% 23% 25% 22% 21% 25% 25%
English to Czech | 63% | 67% 62% 62% 64% 65% 64% 64% 65%

Table 4.17: Phase Two - Effectiveness of Single Occurrence Limit Spotting

Test / Year 2004 | ’04-°05 | °04-°06 | °04-°07 | ’04-°08 | °04-°09 | °04-’10 | ’04-°11 | °04-°12
Czech to English | 400ms | 720ms | 1.15s 1.45s 1.82s 2.07s 2.4s 6.37s 3.32s
English to Czech | 420ms | 780ms | 1.27s 1.59s 2.0s 2.27s 2.64s 2.96s 3.65s

Table 4.18: Phase Two - Efficiency of Stop Words Co-occurrence Spotting

Upon analysing the failed test cases, it became obvious that the article “the” is still caus-
ing the issue, while in the English to Czech there were a number of prepositions, which
happen to appear often in Czech texts.

The English to Czech precision has increased from values around 45% to values around
65% after filtering out the punctuation characters from the tokens. This improvement moves

this algorithm slightly closer to bringing value to a translator.

Stop Words Co-occurrence Spotting

Efficiency The efficiency of the Stop Words Co-occurrence algorithm (see Table 4.18)
is again slightly worse than the efficiency of the Single Occurrence Limit Spotting algorithm.

The execution times also seem to grow more rapidly with the increasing data set. This
could indicate than with much larger corpora, this algorithm could pose performance prob-
lems.

In the metrics collected in this evaluation, the times of execution, which are in the order
of seconds rather than milliseconds are still acceptable and should be usable for development
of applications, which would use such services.

The fact that this algorithm scales slightly worse than the previous ones can be explained
by the additional computational logic, which filters out stop words, but also the imperative
logic which dynamically chooses the algorithm to be executed based on the fact whether the
query is a stop word itself.

Interesting value was observed in the Czech to English test under the years of documents
between 2004 and 2011. 6.37s as the average execution time of a test case seems to be
an outlier and does not fit well into the other observed measurements. This could be due
to temporary network problems (such as a lossy connection) or possibly due an internal

administrative task happening within the database engine (such as delta store merge).

Test / Year 2004 | °04-°05 | °04-°06 | °04-°07 | °04-°08 | °04-°09 | °04-’10 | °04-’11 | *04-’12
Czech to English | 72% | 78% 86% 86% 88% 89% 87% 87% 85%
English to Czech | 78% | 84% 86% 86% 87% 83% 83% 82% 81%

Table 4.19: Phase Two - Effectiveness of Stop Words Co-occurrence Spotting

60 CHAPTER 4. EVALUATION

Test / Year 2004 | ’04-°05 | 04-°06 | °04-°07 | °04-°08 | °04-°09 | °04-’10 | °04-°11 | *04->12
Czech to English | 550ms | 980ms | 1.48s 1.68s 2.26s 2.54s 2.66s 2.98s 3.52s
English to Czech | 630ms | 1.16s 1.75s 2.05s 2.72s 3.05s 3.23s 3.6s 4.27s

Table 4.20: Phase Two - Efficiency of Stop Words & Single Occurrence Spotting

Test / Year 2004 | °04-°05 | ’04-°06 | °04-°07 | °04-°08 | °04-°09 | ’04-’10 | °04-°11 | °04-’12
Czech to English | 88% | 87% 92% 92% 93% 93% 94% 94% 93%
English to Czech | 85% | 87% 87% 88% 91% 91% 91% 91% 91%

Table 4.21: Phase Two - Effectiveness of Stop Words & Single Occurrence Spotting

Effectiveness Despite the lower performance of this algorithm, the effectiveness (see
Table 4.19) reaches the levels, which could be imagined to be useful in computer assisted
translation systems. The precision levels reach similar qualities both ways of translations

(due to filtering out “the”) and these values reach up to 89% success rate.

Stop Words & Single Occurrence Spotting

Efficiency The efficiency of the Stop Words & Single Occurrence Spotting algorithm
(see Table 4.20) is similar to the efficiency achieved by the Stop Words filtering algorithm.
The logic for dynamic selection of algorithm based on the query does seem to be the reason
for slightly decreased scalability of the algorithm.

It should be noted that despite the metrics showing worse performance, the test execu-
tions on this algorithms seemed fast enough for a human perception and should be acceptable
waiting times for a response of an application, which is communicating with a remote sys-

tem.

Effectiveness The effectiveness of the Stop Words & Single Occurrence Spotting algo-
rithm was identified as the best so far observed even in the phase one of the evaluation. The
measures presented in Table 4.21 do support that statement. The effectiveness does seem to
be very stable over the varying sizes of the data set and perform very well even with small
quantities of data.

Additionally, the algorithm’s precision seems to be growing with the increasing size of
the data set, which was a property expected to be observed in such a type of translation

spotting system.

N-Gram Translation Spotting Algorithms

Even though nine different data set sizes were imported into the system for evaluation of the
algorithms, the N-Gram translation spotting techniques have only been evaluated under four
different sizes of the data.

Based on the design and implementation of these algorithms, which required the use of

many imperative constructs, it was expected that the N-Gram spotting algorithms would not

4.2. EXPERIMENTS 61

Test / Year 2004 | 2004-2005 | 2004-2006 | 2004-2007
Czech to English | 6.75s | 18s 36s 48s
English to Czech | 7.8s | 20s 42s 68s

Table 4.22: Phase Two - Efficiency of Co-occurrence N-Gram Spotting

Test / Year 2004 | 2004-2005 | 2004-2006 | 2004-2007
Czech to English | 22% | 29% 24% 19%
English to Czech | 11% | 8% 8% 8%

Table 4.23: Phase Two - Effectiveness of Co-occurrence N-Gram Spotting

scale very well. This expectation was confirmed when the test results were analysed in the
phase one evaluation.

During the execution of tests on increasing size of ingested data on the N-Gram algo-
rithms, it became apparent that the execution of such a number of test cases with decreasing
performance is becoming infeasible. The N-Gram translation spotting algorithms have there-

fore only been evaluated on four different sizes of the ingested data.

Co-occurrence N-Gram Spotting

Efficiency The poor performance of the Co-occurrence N-Gram Spotting algorithm
(see Table 4.22) can be associated with the massive computational tasks which are being
executed. Another important reason for the poor performance is the lack of parallelism due
to the methods employed in the implementation. The implementation uses large number of
imperative constructs in SAP HANA, which prevent the optimisation mechanisms to auto-
matically parallelise the computation.

Slightly positive observation regarding the performance of the N-Gram algorithms is that
the increase in performance could be directly related to the increase of the ingested data
size. The number of translation unit has doubled between 2004 and 2005, it almost doubled
between 2005 and 2006 and then increased by factor of approximately 1.5 between 2006 and
2007. Increases in execution time of the algorithm are of similar factors, which means that

the algorithm performs under a linear time complexity.

Effectiveness The effectiveness of this algorithm has been identified to be poor in the
phase one of the evaluation. The precision measures presented in Table 4.23 are similar to
those identified in the phase one.

It has been found that many of the results failed because of not containing the required
translation fully. In general, the focus of the result candidate would shift towards the trans-
lation candidates which contained more stop words and would be more likely to generate
higher score due to co-occurrence.

Even though the precision results are not very promising, the manual inspection of the
failed test cases has shown, that most of the returned results could be useful to the translator

to a certain extent.

62

CHAPTER 4. EVALUATION

Test / Year 2004 | 2004-2005 | 2004-2006 | 2004-2007
Czech to English | 11s 21s 37s 50s
English to Czech | 16.9s | 26s 50s 74s

Table 4.24: Phase Two - Efficiency of Co-occurrence with Dictionary Spotting

Test / Year 2004 | 2004-2005 | 2004-2006 | 2004-2007
Czech to English | 74% | 70% 70% 70%
English to Czech | 76% | 75% 1% 69%

Table 4.25: Phase Two - Effectiveness of Co-occurrence with Dictionary Spotting

Co-occurrence with Dictionary Spotting

Efficiency The Co-occurrence with Dictionary Spotting uses the Stop Word & Single
Occurrence single word algorithm in addition to all of the imperative logic that was used
in the Co-occurrence N-Gram Spotting algorithm. It would therefore be expected that the
performance of this algorithm (see Table 4.24) would be slightly worse. This is indeed the
case.

Similarly to the Co-occurrence N-Gram Spotting algorithm, based on the observations of
the performance and the size of the ingested data, it was found that this algorithm performs

in linear time complexity with respect to data size.

Effectiveness An interesting fact about the effectiveness (see Table 4.25) is, that it does
not seem to change significantly with the changing scale of the ingested data. The scoring
mechanism takes three measures into account, namely the difference of length between the
translation candidate and the query, the number of keywords matched between them and the
degree of co-occurrence of the translation candidate in the identified TUs.

The co-occurrence factor is therefore only a part of the scoring mechanism. Additionally,
the translation candidates are all generated out of the single shortest sentence. This ensures
that the computational overhead of generating the substrings and subsequently calculating
ranks for them is kept to a minimum. The fact that all translation candidates are generated
from a single sentence means, that the quality of the translations are always dictated by the
quality of the translation of the shortest sentence. If it is the case that the shortest sentence
does not translate literally into the target language, it might be impossible to find the perfect
translation of the query. One way in which ingesting further data could help the effectiveness
is if the new shortest sentence is part of the newly ingested data and its translation is of a
higher quality. Similarly, it can be the case that the newly added translation of the shortest
sentence could be of bad quality, resulting in a poorer result. Such a trend can be observed
in the precision of the algorithm between the test on documents published 2004-2005 and
2004-2006. The documents published in 2006 contained shorter sentences, which contained
some of the queries. It seems that the translations of these new sentences might not contain

the literal translation of the query and this results into the drop of effectiveness.

4.3. DISCUSSION OF THE RESULTS 63

4.3 Discussion of the Results

A number of algorithms were implemented and empirically evaluated for both the single
word and n-gram queries. The results were analysed and an attempt was made to interpret

the messages they portray.

4.3.1 Single Word Algorithms
Stop Words

Stop words were found to pose major issues when attempting to perform co-occurrence
analysis on large unstructured texts. Both ingested languages - English and Czech had large
numbers of common stop words, which kept affecting the results of the analyses.

In the Simple Co-occurrence Spotting and Single occurrence Limit algorithms, the re-
sults showed a clear gap between the effectiveness of translating from Czech to English and
English to Czech. When analysing the test results, it was found that in all cases, the English
article “the” would make it to the top of the results as most frequently occurring word. Many
of the failed cases in the translations from English to Czech returned the conjunction “a”
(and).

The analytical tools in SAP HANA were then used to verify, that these words really occur
so often. It was found that “the” was indeed the most occurring non-punctuation token and
accounts for 7.1% of all tokens in the ingested data. This explains why the algorithms, which
do not filter out stop words perform poorly on the translations from Czech to English.

Similar trend was observed in translations from English to Czech before limiting the
punctuation characters from the queries retrieving data from the text analysis output table.
In Czech, the comma character was acting as the most frequently occurring stop word. A
major improvement of the effectiveness was observed in such translations after implementing

the fix to remove the punctuation tokens from the analysis.

Effectiveness with Respect to Data Size

During the design and the implementation stage, it was expected that the effectiveness of the
algorithms would increase with the increasing size of the ingested data. The results do not
offer any conclusive proof that such a property would hold.

In the single word spotting algorithms, which do not filter out stop words, the effective-
ness rises and drops when importing different data into the system. The different stop words
distributions in these chunks of the corpus could play a role. It was not determined precisely
why there is no significant difference in efficiency with growing size of the data.

In the stop words filtering algorithms there is some overall growth in the effectiveness ob-
served with the growing size of the data set. The precision of the Stop Words Co-occurrence
spotting algorithm for example grows from 72% and 78% (for Czech to English and English

to Czech respectively) to 89% and 83% with 6 years of documents ingested into the system.

64 CHAPTER 4. EVALUATION

The effectiveness then drops again to 85% and 81% as additional 3 years of documents were
ingested. Even though this growth is slightly more significant, the tests should be executed
on larger samples of translations to prove a statistically significant difference. It is possible
that a number of test cases which kept failing in all of the algorithms were poorly chosen.
Among a larger number of executed tests these test cases’ effects would not be as significant

and a real improvement of the precision with growing data size could be observed.

Scalability

The scalability of the different algorithms varies greatly. This is due to the differences in
complexity and computational overhead in these algorithms. Some of the implementations
required the use of imperative rather than set based logic within SQLScript, which meant the
database engine might not be able to parallelise the computations performed on the data well
enough or not at all.

The size of the data has grown from 195179 TUs in 2004 to 3143607 TUs with the
years of 2004 to 2012 ingested. That is approximately 16 times larger data set. The simple
algorithms have proven to scale quite well - the execution time needed for the Simple Co-
occurrence Spotting algorithm for example has risen just over 4 times despite executing on
16 times larger data set. The execution time of the Stop Words & Single Occurrence Spotting
algorithm still only increases 6 times despite the 16 fold increase of data size.

This proves than SAP HANA is indeed able to parallelise some of the operations despite
the imperative logic. It is not entirely known how optimisations techniques of SAP HANA
work internally. Based on the analysis of the results, it seems that the database engine is
able to optimise certain parts of a procedure even though it contains parts, which are using

imperative constructs.

Potential Uses

The proposed algorithms produced different levels of precision and performance. This sug-
gests, that based on the use cases, some of these algorithms could be used in different envi-
ronments, offering more or less value to the users.

The Simple Co-occurrence Spotting and Single Occurrence Limit Spotting algorithms
were implemented mainly as a proof of concept algorithms and led into developing further
and more advanced algorithms. Their efficiency is however very promising. While these
algorithms may not bring much value in computer assisted translation software packages,
let alone automatic machine translations, their outputs could be used for analyses of exist-
ing translations. Their outputs have led into interesting insights into distributions of words
between Czech and English. It was interesting to observe that the very same algorithm can
yield up to 20% difference in effectiveness between performing translation spotting from one
language to the other and vice versa. It is not entirely clear how such insights could help in
other research, but if there was any significance in the results, these algorithms were clearly

able to report it.

4.3. DISCUSSION OF THE RESULTS 65

The results obtained from the Stop Words Co-occurrence Spotting and Stop Words &
Single Occurrence Limit Spotting algorithms were more promising towards the use in ac-
tual computer assisted translation or translation memory systems. One can imagine how
effectiveness of up to 94% could bring certain amount of value to the translators. Despite
the limitation of only being able to translate single words queries, these algorithms could
be used as dictionaries or as thesaurus software. These algorithms could also be used in
more advanced pieces of software, just as they were used in the N-Gram Co-occurrence with

Dictionary algorithm in this dissertation.

4.3.2 Multi-word Algorithms

The main difference between the single world and multi world translation spotting algo-
rithms is the technique used in the implementation. The tokens representing single words
are generated and provided as the output of the text analysis library. The single word algo-
rithms then only have to rank the translation candidates. The translation candidates however
had to be generated programmatically in the multi word algorithms and only then ranked.
This resembles the NP complete [12] problems, where it may be fast to verify a solution, but
there is no simple way to generate it in the first place. These problems then might have to
generate all of the possible solutions and use the verification techniques to find the right one.

It was considered to use the single word algorithms to translate the multi word queries
word by word. It was decided that such an algorithm would not provide much value to the
translator. Firstly, there are different sentence structures in different languages, meaning that
the resulting translation may not make much sense. Secondly, certain languages use linguis-
tic techniques such as declension, shaping the words to express plurality or gender. Finally,
the single word algorithms do not offer perfect effectiveness. Even a small percentage of

imprecision would add up when using it to translate a number of words in a sentence.

Effectiveness Based on the Shortest Sentence

Even though certain values did indicate the property of increasing effectiveness with increas-
ing size of the ingested data in the single word results, this is apparently not the case in the
multi-word algorithms. If anything, the effectiveness values seemed to be dropping with
increasing size of the data in n-gram queries. The fact that generating all of the possible
substrings from all of the identified sentences was infeasible even in the world of in-memory
computing led to a different approach. Only one sentence was to be selected, out of which
the substrings were generated and subsequently ranked based on the number of measures.
This sentence could be selected randomly, as there are no clear indicators of which one
could contain the most relevant translation or translation of the highest quality. Since the
heavy use of imperative logic meant poor performance and scalability of these algorithms,
it was found that selecting the shortest sentence offers an optimisation. This means that the

quality of the translation candidates produced by these n-gram algorithms is affected by the

66 CHAPTER 4. EVALUATION

quality of the translation of the shortest sentence. If the translated sentence does not contain
the literal translation of the query (possibly due to context of the sentence), the translation
candidates generated from it will not contain the literal translation either. The effectiveness
of this algorithm is therefore very unlikely to grow with the increasing size of the ingested
data.

Performance

The fact that the multi word algorithms are similar to known NP complete algorithms does
indicate that it will not be computationally efficient. The verification of a potential solution is
done in a polynomial time. The occurrence of translation candidate would be counted across
all identified sentences. The time needed for the verification is therefore linear with respect
to the number of sentences in which the query appears. If it was possible to parallelise the
solution generation well enough, the algorithm would have potential to scale much better.

Parallelisation was identified to be one of the common features of modern in-memory
databases. The use of imperative constructs within the stored procedures limits the auto-
matic optimisation, which could be done in any in-memory database. This means that the
generation of potential results is very likely performed in sequential manner.

A number of optimisation techniques could be attempted such as limiting the size of
potential solutions set. This could be done by analysing the position of the query within the
selected sentences and only generating translation candidates from the similar position.

The main optimisation would be to rewrite the algorithm in such a way as to limit the
use of imperative constructs in the multi word procedures. This would allow for automatic

parallelisation of the solution generation.

Potential Uses

In the Design & Implementation chapter, it was suggested that a system like the one imple-
mented could provide a user interface designed as a web application. The execution time
measures of the multi-word algorithms were not very promising due to the poor scalability
of their implementations. The measures obtained with the limited size of the data such as one
or two years of documents could indicate that there could be a realistic real-world use even
for these algorithms. Performing the analysis on larger sizes of the data does not yield any
visible improvements. It could therefore be the case that only a subset of the data could be
selected to perform the n-gram analysis on. Such an optimisation could bring the execution
times into the order of seconds. It could be reasonable to make the user wait for a couple of
seconds. The translation system could even retrieve a number of matching translations just
as the online concordancers do and at the same time, asynchronously perform the translation
spotting analysis. The results of such analysis could then be used for annotating or highlight-
ing segments of the already retrieved texts. Additionally, the choice of the algorithm to be
executed could be dynamically decided based on the user’s query or the load of the system.

It could always be the case that the user only needs to translate a single word query, while

4.3. DISCUSSION OF THE RESULTS 67

needing to see the context of the translation. In this case, a number of the original and trans-
lated sentences could be returned, while executing one of the fast single word algorithms.
Only when needed, the user interface or additional logic on the database side could decide

whether a multi-word translation spotting algorithm has to be executed.

68

CHAPTER 4. EVALUATION

Chapter 5
Conclusion

Section 5.1 of this chapter summarises the motivation behind this work. The objectives of the
dissertation are then reiterated in Section 5.2. The reader is presented with the achievements
of the project in Section 5.3 followed by list of limitations in Section 5.4. Finally, Section

5.5 outlines the potential avenues for future research.

5.1 Motivation

Many international companies and multi-lingual organisations have to translate their docu-
ments and products into a number of languages. These organisations often hire localisation
service providers to perform such translations. The LSPs then in turn hire translators and
pay them per unit of translated text. The drive for cost reductions led towards exploring
options such as automated machine translation techniques and reusing previous translations.
Machine translation engines are constantly evolving, but still do not produce results which
could be directly used in the world of professional localisation. Means of storing and reusing
previous translations were developed by building translation memories and translation mem-
ory systems.

The translation memory systems often help to improve the productivity of translators.
This is done by searching the translation memories to find sentences which match the cur-
rently translated one or those, which are similar. The previous translations of these sentences
are then returned to the translator, who can make use of them.

It was found that modern translation memory systems suffer with a number of problems,
which limit their value proposition to translators. Firstly, the attempts to match the whole
sentence often fail. There is an infinite number of different sentences which could occur in
a single language. The probability of a single sentence being repeated is very small. The
translation memory systems attempt to resolve such problem by performing fuzzy matching,
which can often yield a match on the sentence, which might not be useful. The solution to the
problem was offered by academic research suggesting that translators could select queries
of any length, which the translation system would look for. Second problem is regarding

the usability of such systems. Since translation units retrieved by the translation memory

69

70 CHAPTER 5. CONCLUSION

systems could be large segments of text, the translators could become overwhelmed with
the translations. They would then have to manually crawl through the text to find the part
relevant to them. It was suggested that this problem is solved by performing translation
spotting in order to suggest the relevant piece of translated text only.

Previously explored means of translation spotting would work on a single pair of aligned
sentences. Techniques such as the use of statistical translation models, syntactic trees, glos-
saries, and part of speech analysis were suggested.

Recent development in both software and hardware meant that in-memory databases
became a realistic technology. The large capacities of main memory available in modern
computer systems and theoretical capacities supported by operating system vendors mean
that even very large data can be stored and processed by such databases. The in-memory
computing yields significant performance improvements compared to disk based database
systems. The performance promised by such databases means that very large quantities of
data could be analysed very quickly.

This dissertation considers the use of in-memory databases to analyse co-occurring pat-

terns across large quantities of aligned sentences in order to perform translation spotting.

5.2 Dissertation Objectives

The research question of this dissertation was to explore the extent to which in-memory
computing can be used to support real-time translation spotting.

A framework for an in-memory system was to be designed and implemented using an
in-memory database. A number of techniques of performing translation spotting using the
implemented framework were to be suggested.

The implemented system was to be evaluated in terms of extensibility, effectiveness and

efficiency.

5.3 Achievements

The objectives set out at the start of the project were successfully achieved. SAP HANA
was selected as the in-memory database of choice for this project and an in-memory frame-
work was designed and developed for translation spotting. A number of translation spotting
algorithms were proposed and implemented using the framework.

The translation spotting framework in terms of both the database schema and the admin-
istrative layer software was built and actively used throughout all stages of the project. The
schema was proven to be well designed without posing additional implementation or perfor-
mance difficulties. The administrative framework was built in such a manner as to make the
ingestion of data easy, fast and allow for support of additional data formats. All data used
during the initial implementation of the system and during the evaluation were ingested with

the use of the administrative framework. The administrative framework was also designed

5.3. ACHIEVEMENTS 71

to provide a number of testing tools, which were used heavily during the evaluation of the
system. Testing was carried out in an automated manner allowing for empirically evaluating
the system under many different conditions and collecting precise metrics related to executed
tests.

A number of single word translation spotting algorithms were proposed as the func-
tionality using the translation spotting framework. These algorithms were developed in an
iterative way, where the results of each algorithm were analysed and observations made were
fed into the design of the subsequent algorithms. Such observations included the effects that
generic stop words have on effectiveness of co-occurrence translation spotting, and led to the
development of ways to limit such effects.

To make the translation spotting useful to potential use in translation memory systems
or online translation tools, the functionality was then extended to provide support for multi
word queries. The development methodology was again iterative. A very simple, naive
algorithm was developed. Latter algorithms were developed using similar concept, but were
enhanced with further logic in order to avoid the problems which were encountered during
manual testing of the simple algorithm.

The evaluation of the system was carried out in two phases. The phase one of the evalua-
tion has shown a previously unseen issue related to migration of the system to a new version
of the database engine. Once the results were interpreted, it became clear that most of the
proposed algorithms were affected by the change and the collected metrics do not reflect the
actual potential of the system. A fix of the issue was therefore implemented and the second
phase of the evaluation tested the newest versions of the algorithms. A number of differences
were observed in the test results between the phase one and the phase two of the evaluation.

The empirical evaluation of the system has shown a number of interesting facts:

e analysing co-occurrence of patterns across large number of aligned sentences is a valid
way of performing translation spotting (the precision of the single word algorithms

reached up to 94%, while the multi word algorithm would yield up to 76% precision)

e the single word algorithms have proven to be well scalable and perform in real-time

fashion

e the efficiency of the of the multi word algorithms is hardly predictable and depends
greatly on both the query and the matched translation units (some queries would per-

form in sub-second fashion, while others would take in the order of minutes to execute)

e the translation spotting system is easily extensible with further data (based on the size
of ingested data, a year of published documents could take between 30 and 75 minutes

to be ingested and ready to use)

The results of the empirical evaluation of the system are considered a success. The results
show how co-occurrence translation spotting could enhance the modern translation memory

systems or give rise to new generation of translation tools. Furthermore, the measurements

72 CHAPTER 5. CONCLUSION

show how such big data analyses are not only possible but also performant with the use of
in-memory databases. Certain implementation techniques used in the system pose a number

of limitations on how the implemented system could be used in practice.

5.4 Limitations

The translation spotting algorithms which were implemented as a part of this project are
divided into two categories - the single word and multi word algorithms. The single word
algorithms show very high levels of efficiency and effectiveness. It would make sense to dy-
namically choose the algorithm to be executed based on the query - only execute single word
algorithms for single word queries and the multi word algorithms for multi word queries.
Both the single word and the multi word algorithms have a number of limitations.

Firstly, the single word translation spotting algorithms assume that a single word query
in the source language would translate into a single word in the target language. This is not
always the case. An example of a translation, where a single word is translated into a multi
word phrase is the word “citizen” in English translated into Czech “statni prislusnik”. Such
cases would not be handled in the current implementation of the single word algorithms,
even though they would be handled well by the multi word algorithms.

Secondly, the multi word algorithms have proven to be extremely computationally chal-
lenging even for in-memory computing. In the ideal scenario, it would be possible to gener-
ate all possible substring of all possible sentences which are identified to contain the transla-
tion translation of the query, and then rank them based on co-occurrence. This is a massive
computational task and thus the multi word algorithms consider only the translation can-
didates generated from the shortest sentence. This poses a limitation on the quality of the
translations. The translation candidates would be only as good as the quality of the shortest
translated sentence. Furthermore, the performance of the multi word algorithm is greatly
dependent on the length of the sentences in which the given query occurs. In cases, where
the query occurs in very large sentences, which could in the original text occupy a whole
paragraph, the number of potential translation candidates can be very large. The computa-
tion of generating all of the potential candidates is itself a challenging task and then all of
these candidates have to be ranked against the identified list of sentences. There could even
be a very large number of these matched sentences. While the execution times of multi word
procedures could be in sub-second intervals for certain queries, other queries could take in
the orders of tens of seconds or even minutes to execute. This poses a usability issue for the
multi word algorithms.

These limitations lay the groundwork for potential further research.

5.5. FUTURE RESEARCH 73

5.5 Future Research

There are many potential areas of future research. The limitations mentioned in this chapter

provide a basic outline of what would be the most pressing improvements.

5.5.1 Replacement of Imperative Logic

It was previously mentioned that the use of imperative logic within the stored procedures of
SAP HANA prevents a number of automatic optimisation techniques. The most important is
the fact that automatic parallelisation techniques will not work within imperative constructs.
Any computation, which is therefore happening within the imperative features of SQLScript,
will very likely not be parallelised.

The imperative features such as if statements, for and while loops should be replaced by
set based logic with the use of SQL where possible. The places where such replacements
could be performed should be analysed across the number of implemented procedures.

In cases, where it would not be possible to simply exchange the imperative constructs
for SQL operations, the definitions of user defined functions should be considered. If it
was possible to encapsulate the imperative logic in a user defined function, these functions
could be used simply in SQL statements and it would be more likely that the optimisation
techniques built into SAP HANA would be able to significantly improve the performance.

The imperative logic is used heavily mainly in the implementation of multi word algo-
rithms, but also appears in some of the single word procedures. It would be desirable to
analyse the potential of reducing the amount of imperative constructs used in the implemen-

tation and thus optimise the performance of the system.

5.5.2 “Smart” Optimisations of the Multi Word Algorithms

The behaviour of the multi word translation spotting techniques should be analysed further
in an attempt to identify additional optimisations. The initial optimisation was to choose the
shortest sentence from which the translation candidates are generated. This yielded great
improvement in performance in some queries.

Similar means of optimisations should be explored. An example could be a way to limit
the number of translation candidates which are generated from a sentence. It could be worth
considering only generating the substrings from the words, which are positioned similarly to
the position of the query in the original language sentence.

The single word algorithms are used in the dictionary approach in order to increase the
effectiveness of the multi word translation spotting. Similar technique could be used to
identify the position range of words from the sentence, which are used to generate translation
candidates. If the keywords identified in the original sentence only appear between the words
x and y of the sentence, it is possible that these positions could indicate potential position of

the translation.

74 CHAPTER 5. CONCLUSION

5.5.3 Use of Compression for Pre-generation of Translation Candidates

If the translation candidates could be pre-computed possibly at the time of ingestion of the
data, the n-gram translation spotting would become as simple, efficient and possibly even as
effective as the single word translation spotting algorithms.

The problem with pre-computing all of the possible substrings from all of the ingested
sentences is clear - the memory requirements for such a system would be huge and such
approach would be infeasible.

It could be explored how much memory overhead would be generated if a compression
technique was used. Many of the commercially available in-memory database systems use
compression techniques on columns to limit the size of data and speed up the analytical
tasks. If the potential substrings were stored as sequences of integers with the use of dic-
tionary compression techniques, the overhead produced by storing pre-computed translation
candidates would not be so massive.

Analysing the cost of the compressed pre-computed translation candidates could provide

insights into how feasible such technique would be.

5.5.4 Annotation of Documents with Thematic Categories

The existing document categorisation tools such as the JRC JEX [26] could be used to cat-
egorise documents and annotate the ingested translation memories with thematic categories.
These categories could then be used to filter down the data selected for the co-occurrence
analysis based on the categories of the query.

The use of these filters could yield potential improvements in both the effectiveness and
the efficiency. In regards to the effectiveness, it could be the case that the co-occurrence
of terms in documents, which, are semantically related to the query could produce more
relevant results. Additionally, the amount of data to be analysed would be limited, which
especially in cases where the translation memory database is very large, could have positive
effects on the performance.

The effects of annotating the documents with thematic categories should be explored
further.

Appendix A

Czech to English Single Word Test Cases

Table A.1: Czech to English single word test cases

Search Query Acceptable Answers
Clének Article
ESVO EFTA
PROHLASENT] | declaration
spravedInost Justice
mechanismu mechanism
finan¢niho financial
norského Norwegian
oblasti area
porozuméni Understanding
Memoranda Memorandum
Zasady principle
postupy procedure
EHP EEA
pravidla rule
udajt data
Prehled overview, review, summary
Zpravy report
Tabulky table
stata states, state
Clenskych member
odbornici expert
diive previously, early
Spolecenstvi Spolecenstvi, Community
prijatého adopt, receive
Continued on next page

75

76

APPENDIX A. CZECH TO ENGLISH SINGLE WORD TEST CASES

Table A.1 — continued from previous page

Search Query Acceptable Answers
seznam list

vyznam importance
navrhy proposal
oznacil identify
predpist regulation
pravnich law, legal
oznameni notification
ocekdvanych expected
rozhodnut{ decision
Statistického statistical
databédze database

¢islo number
Podvybory subcommittee
Staly standing
Pfipominky comment
prijaly adopt

instituce institution
Néstroje instrument, tool
programy program
Poradniho advisory
protokolt protocol

priloh Annexes, annex
Konsolidované | consolidated
tajemnik secretary
Predseda president
souvisejici relate
ZVEREINENI | publication
URCENE intend

cervna June

adinnosti effectiveness, effect, efficiency
prezkouma review
reprodukovat reproduce
osoby person
omezuje limit

rejstiiku registry, register
vypracovan draw

Continued on next page

Table A.1 — continued from previous page

Search Query Acceptable Answers
dorucit deliver

datum date

obsah content

referencni reference

obCaniim citizen

zpisobem manner

Odkazy reference

Zadosti application, request
zakladé basis

pozadovany required, require
Zadateli applicant
povinnost obligation

splnit meet

zdarma free

elektronické electronic

pristup access

A4 A4

formétu format

stran party, parties
porizeni acquisition

kopie copy

naklady cost

zaslani send

zaslat send

skutecné actual, actually
poplatek fee, charge
sluzebni staff, Staff
Oznaceni indication, designation
uvedenim state, provide
pisemné write, written
zamitnuta reject

Castecné partially, partly, part
uplné complete, full
zamitnuti refusal

neprodlené immediately
odpovéd’ reply

Continued on next page

77

APPENDIX A. CZECH TO ENGLISH SINGLE WORD TEST CASES

Table A.1 — continued from previous page

Search Query Acceptable Answers
pracovnich working

poucen inform

pifimétrené reasonable

neformalné informally

Appendix B

English to Czech Single Word Test Cases

Table B.1: English to Czech single word test cases

Search Query Acceptable Answers
rectification oprava, vymaz
effect ucinek
diplomatic diplomaticky
decision rozhodnutil
pursuant podle, soulad
transfer prevod, prevést
amended pozménény, ménit
published zvetejnét
turnover obrat

processing zpracovanil
regard ohled

indicated uvedeny
mechanism mechanismus
financial finan¢ni
Norwegian norsky
understanding | porozuménil
guidelines pokyn

procedures postup

rules pravidlo, nafizenil
EEA EHP

press tisk, stiskaci
states stat

experts odbornik

EFTA ESVO

Continued on next page

79

80

APPENDIX B. ENGLISH TO CZECH SINGLE WORD TEST CASES

Table B.1 — continued from previous page

Search Query Acceptable Answers
relevant piislusny

already JiZ

acquis acquis

marked oznacit, oznaceny, oznacenil
EC ES

adopted pfijmout

list seznam

sheet LIST, list

fact skutecnost

numbers Cislo, pocet

requirements | poZadavek, nafizenil
constitutional | dstavny, dstavnépravni, dstavni
committee vybor

joint smiSeny, spole¢ny
subcommittee | podvybor, vybor

legislation predpis

proposals navrh

notifications oznamenil

awaited ocekdvany

office trad

statistical statisticky

produced vyréabét, vyrobek, vyrobeny, vyrabény
statistics statistika, statistik

programme program, Program

working pracovni

chair predseda, predsedat, predsednictvo, predsednictvi
reports zprava

agreement dohoda

annual ro¢ni, vyro¢ni

documents dokument, doklad

information informace, udaj

conclusions zavera, zaver

consultative poradni, poradny
parliamentary | parlamentni

states stat

standing staly

Continued on next page

Table B.1 — continued from previous page

Search Query Acceptable Answers
groups skupina

comment vyjadrit, pfipominka
opinions stanovisko

version verze, znénil
consolidated konsolidovany
resolutions rezoluce, usnesenil
institutions instituce, organ
annexes priloha

surveillance kontrolni

court dvur, soudni
original pavodni, original
internet internet, internetovy
public vefejny, vefejnost
available dispozice, dostupny
general generdlni, obecny, vSeobecny
secretary tajemnik

Brussels Brusel

article ¢lanek

year rok

review prezkum

subject podléhat, vztahovat, predmét
October fijen

journal véstnik

supplement dodatek

section oddil

repealed zruSovat, zrusit
released uvolnit

right pravo

limit lhiita, limit

existing stavajici

access pristup

citizens obcan

assistance pomoc, podpora
secretariat sekretariat

interests zajem

protection ochrana

Continued on next page

81

APPENDIX B. ENGLISH TO CZECH SINGLE WORD TEST CASES

Table B.1 — continued from previous page

Search Query Acceptable Answers
undermine narus$it, rozhodnutil

manner zpusob

register rejstiik

received obdrzet, obdrzeny

Appendix C

Czech to English Multi Word Test Cases

Table C.1: Czech to English Multi word test cases

Search Query

Acceptable Answers

byla provedena

being carried out

ohledem na dohodu

regard to the Agreement

Evropském hospodaiském prostoru

European Economic Area

Spojenymi staty americkymi

United States of America

SMISENY VYBOR EHP

EEA JOINT COMMITTEE

Slovenské republiky

Slovak Republic

Ustavni poZadavky nebyly ozndmeny

No constitutional requirements indicated

Technické predpisy

Technical regulations

kosmetickych prostredkitl

cosmetic products

islandském a norském jazyce

Icelandic and Norwegian

vnitiniho trhu

internal market

Clenskymi staty

Member States

SPOLECNE PROHLASENI

JOINT DECLARATION

volnému pohybu zboZ{

free movement of goods

Financ¢ni sluzby

Financial services

Evropského parlamentu

European Parliament

cennych papirt

securities

informaci o misté volajiciho

caller location information

elektronickych komunikacnich sitich

electronic communication networks

ochrané osobnich tdaji

data protection, Protection of personal
data

dopravni politiky

transport policy

norského financniho mechanismu

Norwegian Financial Mechanism

Statistického uradu

Statistical Office

Continued on next page

83

84

APPENDIX C. CZECH TO ENGLISH MULTI WORD TEST CASES

Table C.1 - continued from previous page

Search Query

Acceptable Answers

Vyro¢ni zprava

Annual report

Usneseni Poradniho vyboru

Consultative Committee resolutions

Kontrolniho aradu

Surveillance Authority

Konsolidované znéni

Consolidated Version

autorskych prav

copyright

piistup k dokumentiim

Access to documents

referencni ¢islo

Reference number

Seznam dokumenti

List of documents

elektronické formé

computerised form, electronic form

Staly vybor statd ESVO

STANDING COMMITTEE OF THE
EFTA

15 pracovnich dnid

15 working days

zbyvajici ¢asti dokumentu

being carried out

vefejny zdjem

public interests, Public interest

tfetich osob

third parties, third party

dusSevniho vlastnictvi

IPR, Intellectual property

fyzické nebo pravnické osoby

natural or legal person

verejnou bezpecnost

public security

Generalni tajemnik

Secretary General

finan¢niho fizeni

financial management

zéaruky nezévislosti

guarantees of independence

vodniho hospodérstvi

Water Management

letecké sluzby

Air Navigation Services

hospodarské soutéze

competition

Bezpecnost letectvi

Aviation Safety

Spojené krélovstvi Velké Britanie a Sev-

erniho Irska

United Kingdom of Great Britain and
Northern Ireland

fixniho kapitdlu fixed capital
dopravni politika transport policy
internetovych strankdch website

rezervacnich systémi

reservation systems

spole¢nych pravidlech

common rules

protipravni podpora

unlawful aid, illegal aid

verejnych zakazek

PROCUREMENT

nizkou hustotou obyvatelstva

low density population, low population
density

Continued on next page

Table C.1 - continued from previous page

85

Search Query

Acceptable Answers

anglickém jazyce

English

s ruCenim omezenym

limited company, Limited Liability Com-
pany

Ministerstvo spravedInosti

Ministry of Justice

Soudnim dvoru

Court

urokové sazby

interest rate

OhlaSovaci povinnost

notification duty, Notification require-
ment, REPORTING OBLIGATIONS

hospodarskych ¢innosti

economic activities

pfirodnimi katastrofami

natural disasters

smluvnimi stranami

contracting parties

dcefinou spolecnosti

subsidiary

Evropskou komis{

European Commission

Pruzkum trhu

market survey, Market research

licen¢ni poplatek

licence fee

investi¢ni projekty

INVESTMENT PROJECTS

dosud nezvefejnéno

Not yet published

upadkového fizeni

insolvency proceedings

podpory na restrukturalizaci

restructuring aid

regiondlniho rozvoje

Regional Development

Oblast plisobnosti

Scope

nezbytné minimum

minimum necessary

platebni neschopnosti

insolvent, insolvency

vratnd pomoc

reversible assistance

Statisticka klasifikace

Statistical classification

roc¢ni obrat

Annual turnover

statni intervence

State interventions

Zjednoduseny postup

Simplified procedure, Simplified ap-
proach

celkova vyse

overall amount

skuteCné platby

actual payments, Paid actually

danové ztraty

tax losses

presnd Cisla

precise figures

narodni méné

national currency

vzdélavani a zaméstnanost

training and employment

Konec platnosti

Expiry

Continued on next page

86

APPENDIX C. CZECH TO ENGLISH MULTI WORD TEST CASES

Table C.1 - continued from previous page

Search Query Acceptable Answers
malym a stfednim podnikiim SME
Doba trvani Duration
Celkovy rozpocet Total Budget
OZNAMOVACI FORMULAR NOTIFICATION FORM

dodatecné informace

Additional information

blokova vyjimka

block exemption

ekonomickych ¢innosti

economic activities, Economic activity

vyzkum a vyvoj

Research and development, RESEARCH
DEVELOPMENT

audiovizualnich d€l

audiovisual work

Zelezni¢niho vozového parku

railway rolling stock, railway stock,

rolling stock

pracovni faktor

labour factor

Appendix D

English to Czech Multi Word Test Cases

Table D.1: English to Czech Multi word test cases

Search Query

Acceptable Answers

in order to guarantee

Zarucit

constitutional requirements

Ustavnépravni pozadavky

European Economic Area

Evropsky hospodafsky prostor

amended by the Protocol

EEA Joint Committee

SMISENY VYBOR EHP

transitional periods

prechodného obdobi, Pfechodna obdobi

European Health Insurance Card

evropského prikazu zdravotniho po-
jisténi, Evropsky priikaz zdravotniho po-

jisténi

incorporated into the Agreement

zaclenéni do Dohody

replacement and discontinuance

nahradé a zruSeni

Icelandic and Norwegian languages

islandském a norském jazyce, jazyce is-

landském a norském

Official Journal of the European Union

Ufednim véstniku Evropské, véstniku

Evropské unie

No constitutional requirements indicated

Ustavnéprdavni pozadavky neuvedeny

Decision of the EEA Joint Committee

Rozhodnuti SmiSeného vyboru EHP

Technical regulations

Technické predpisy

attesting the conformity

oveérovani shody

wood flooring

dfevéné podlahy, podlahy, Dievéna pod-

lahovina

industrial products

prumyslové zpracovani

specific fields outside the four freedoms

nékterych oblastech mimo Ctyfi svobody

Press release

Tiskové zpravy

Continued on next page

87

88

APPENDIX D. ENGLISH TO CZECH MULTI WORD TEST CASES

Table D.1 - continued from previous page

Search Query

Acceptable Answers

Contracting Parties

smluvnich stran, SMLUVNI STRANY

terms and conditions

Zéakladni podminky

Republic of Lithuania Litevské republiky, LITEVSKA REPUB-
LIKA
Republic of Malta Malté, Malta

EEA Enlargement Agreement

dohodou o rozsifeni EHP, Dohoda o

rozsifeni EHP

internal market

Vnitini trh

provisional basis

prozatimné

Republic of Slovenia

Slovinské republiky, Republiky Slovin-
sko, REPUBLIKA SLOVINSKO

remain unaffected

zustat nedotceny, neni dotéeno

provisional application

prozatimni provadéni, Prozatimni up-

latnovani

professional qualifications

odborné zpu-
odbornych kvalifikaci,
odborné kvalifikaci, Odborna kvali-
fikace, ODBORNE KVALIFIKACE

odbornou zpusobilost,

sobilosti,

Mutual recognition

vzdjemné uznavani, Vzdjemné uznani

Transitional arrangements

Prechodnd opatfeni, Pfechodnd us-

tanoveni

Technical regulations, standards, testing

and certification

Technické ptfedpisy normy zkouSeni a
certifikace

cosmetic products

kosmetické prostredky

free movement of goods

Volny pohyb zboZzi

EFTA STATES STATU ESVO, Stity ESVO
JOINT DECLARATION SPOLECNE PROHLASENI

medical devices

pfistroji vyvinutych pro 1ékatské ucely,

Zdravotnické prostredky

Constitutional requirements indicated

Ustavnépravni pozadavky uvedeny

processing of caller location information

zpracovavani informaci o misté vola-

jiciho

electronic communication networks

elektronickych komunikaénich sitich,

elektronické komunikacni sité

emergency call services

sluzeb tisnového volani

heavy goods vehicles

tézka nakladni vozidla, t€zkymi ndklad-

nimi vozidly, ndkladnich vozidel

Continued on next page

Table D.1 - continued from previous page

89

Search Query

Acceptable Answers

repeals and replaces

zruSuje a nahrazuje

Community-wide turnover

obrat v rdmci celého Spolecenstvi, obratu

ve SpoleCenstvi

common market

spoleénym trhem

first sentence

Prvni véta, prvni pododstavec

Community residents

rezidenti Spolecenstvi

gross premiums

hrubé pojistné

credit institutions

uvérovych instituci, dvérové instituce

interest income

urokové vynosy

commissions receivable

splatné provize

operating income

provozni ptijem, Provozni vysledky

insurance contracts

Pojistné smlouvy

surveillance authorities

KONTROLNIMI URADY

effective competition uc¢innd hospodédrska soutéz, ucinné
hospodarské soutéze

EC Advisory Committee PORADNI VYBOR ES

Court of Justice of the European Commu- | SOUDNI DVUR EVROPSKYCH

nities SPOLECENSTV]

Public security

vefejnd bezpeCnost, verejnou bezpecnost

supply information

dopliiuyjici informace, podavat informace

PROFESSIONAL SECRECY

SLUZEBNI TAJEMSTVI,

tajemstvi

Profesni

official languages

urednich jazycich, ufednich jazyki

OTHER PROCEDURAL QUESTIONS

DALSI PROCESNI OTAZKY

after their finalization

po jejich dokonceni

Common Procurement Vocabulary

spolecném slovniku pro vetfejné zakazky,

spole¢ny slovnik pro vetfejné zakazky

waste electrical and electronic equipment

odpadnich elektrickych a elektronickych
zafizenich, odpadni elektricka a elektron-

icka zafizeni

survey characteristics

ukazatelem zjist ovani, Ukazatele

Zjist ovéni

United Kingdom

Britanie

statistics on income and living conditions

statistice SpoleCenstvi v oblasti pfijmi a

Zivotnich podminek

consumer policy

spotrebitelské politiky

Continued on next page

90

APPENDIX D. ENGLISH TO CZECH MULTI WORD TEST CASES

Table D.1 - continued from previous page

Search Query

Acceptable Answers

veterinary checks

veterinarni kontroly

swine fever

mor prasat

Veterinary and phytosanitary matters

Veterinarni a rostlinolékarské predpisy

domestic animals

chovného skotu, Domaci zvitrata

salmonella for consignments

salmonelézy u zasilek, salmonely na

zasilky

narcotic drugs and psychotropic sub-

stances

omamnych a psychotropnich latek,

omamnymi a psychotropnimi latkami

blood components

lidské krve

marine radio communication equipment

namorni radiokomunikacéni zarizeni

stabilisation of financial instruments

stabilizace finan¢nich nastrojt

Fact Sheet

Prehled udaja

European Parliament

Evropsky parlament

financial collateral arrangements

dohodéch o financnim zajisténi

Prevention of Pollution from Ships

zabranéni znecisSt’ ovani z lodi, znecisténi

ropnymi latkami z lodi

information society

INFORMACNI SPOLECNOSTI, Infor-

macni spolecnost

self-employed workers

pracovniky nebo osoby samostatné

vydélecné

equal treatment for men and women

rovného zachazeni s muzi a Zenami

vocational training

odborného vzdélavani, Odborné

vzdélavani

professional careers

profesni kariéfe

young people

mladi lidé, MLADYCH LIDI

financial year

Finan¢ni rok

cultural matters

kulturnich otazkach

transport by rail

Zelezni¢ni prepravy, Zelezniéni pieprava,
ZELEZNICNI DOPRAVA

text of adaptation

Znéni upravy

shall be deleted

se zrusuje

Review clause

Dolozka o prezkumu

CONCERNING THE COOPERATION | O SPOLUPRACI

GENERAL PRINCIPLES OBECNE ZASADY

INITIAL PHASE POCATECNI FAZE

30 working days 30 pracovnich dni

MAKE OBSERVATIONS PREDKLADAT PRIPOMINKY

91

92

APPENDIX D. ENGLISH TO CZECH MULTI WORD TEST CASES

Bibliography

[1]

[10]

[11]

[12]

Discover Déja Vu X3. http://www.atril.com/content/
discover—-déja-vu—-x3. Accessed: 10/05/2014.

IBM x86 enterprise servers. http://www—03.1ibm.com/systems/x/
hardware/enterprise/. Accessed: 10/05/2014.

SDL Trados Studio. http://www.translationzone.com/products/
sdl-trados-studio/. Accessed: 10/05/2014.

SUSE Linux Enterprise Server for System z. https://www.suse.com/
products/systemz/technical-information/. Accessed: 10/05/2014.

Wordfast PRO. http://www.wordfast.com/products_wordfast_pro.
html. Accessed: 10/05/2014.

AVISON, D. E., LAU, F., MYERS, M. D., AND NIELSEN, P. A. Action research.
Communications of the ACM 42, 1 (Jan. 1999), 94-97.

DESILETS, A., FARLEY, B., STOJANOVIC, M., URDININEA, F., AND AD, A. B. Us-
ing WeBiText to Search Multilingual Web Sites Using WeBiText to Search Multilingual
Web Sites. NRC Publications Archive (2010).

ELINA LAGOUDAKI. Key findings of the TM Survey 2006 carried out during July and
August 2006.

FARBER, F., CHA, S. K., PRIMSCH, J., BORNHOVD, C., SIGG, S., AND LEHNER,
W. SAP HANA Database - Data Management for Modern Business Applications. ACM
SIGMOD Record 40, 4 (2011), 45-51.

FrRANZ, F., MAY, N., AND LEHNER, W. The SAP HANA Database — An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 1-6.

GARCIA-MOLINA, H., AND SALEM, K. Main memory database systems: An

overview. IEEE Transactions on Knowledge and Data Engineering 4, 6 (1992), 509—
516.

GAREY, M., AND JOHNSON, D. S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. 1979.

93

http://www.atril.com/content/discover-d�j�-vu-x3
http://www.atril.com/content/discover-d�j�-vu-x3
http://www-03.ibm.com/systems/x/hardware/enterprise/
http://www-03.ibm.com/systems/x/hardware/enterprise/
http://www.translationzone.com/products/sdl-trados-studio/
http://www.translationzone.com/products/sdl-trados-studio/
https://www.suse.com/products/systemz/technical-information/
https://www.suse.com/products/systemz/technical-information/
http://www.wordfast.com/products_wordfast_pro.html
http://www.wordfast.com/products_wordfast_pro.html

94 BIBLIOGRAPHY

[13] GLIGOR, G., AND TEODORU, S. Oracle Exalytics: Engineered for Speed-of-Thought
Analytics. 3-8.

[14] IBM. BLU Acceleration changes the game, 2013.

[15] JAcoBS, A. The Pathologies of Big Data. Communications of the ACM 52, 8 (2009),
36-44.

[16] LEwIS, D., AND CONNOR, A. O. On Using Linked Data for Language Resource
Sharing in the Long Tail of the Localisation Market Resource Sharing via Linked Data

Language Data Resource Sharing in the.

[17] MACKLOVITCH, E., SIMARD, M., AND LANGLAIS, P. TransSearch : A Free Trans-
lation Memory on the World Wide Web. LREC (2000).

[18] MURTHY, V., DESHPANDE, P., LEE, A., GRANHOLM, D., AND CHEUNG, S. ORA-
CLE EXALYTICS IN-MEMORY MACHINE : A BRIEF INTRODUCTION, 2014.

[19] NEVADO, F., CASACUBERTA, F., AND Y, J. L. Translation memories enrichment by
statistical bilingual segmentation. LREC (2004), 335-338.

[20] PLATTNER, H. A common database approach for OLTP and OLAP using an in-
memory column database. Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of data. (2009), 1-2.

[21] RAPP, R. A Part-of-Speech-Based Search Algorithm for Translation Memories. LREC
(2002), 466-472.

[22] SAP. SAP HANA Developer Guide. 2013.

[23] SIKKA, V., FARBER, F., LEHNER, W., AND PEH, T. Efficient Transaction Processing
in SAP HANA Database — The End of a Column Store Myth. Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data (2012), 731-741.

[24] SIMARD, M. Translation spotting for translation memories. Proceedings of the HLT-
NAACL 2003 Workshop on Building and using parallel texts: data driven machine
translation and beyond 3 (2003), 65-72.

[25] SIMARD, M., AND LANGLAIS, P. Sub-sentential Exploitation of Translation Memo-
ries. Machine Translation Summit VIII (2001).

[26] STEINBERGER, R., EBRAHIM, M., AND TURCHI, M. JRC EuroVoc Indexer JEX — A

freely available multi-label categorisation tool. 798-805.

[27] STEINBERGER, R., EISELE, A., KLOCEK, S., PILOS, S., AND SCHLUTER, P. DGT-
TM : A freely Available Translation Memory in 22 Languages. arXiv preprint arXiv
(2013).

BIBLIOGRAPHY 95

[28] VERONIS, J., AND LANGLAIS, P. Evaluation of parallel text alignment systems. Par-
allel text processing. Springer Netherlands (2000), 369-388.

	Introduction
	Motivation
	Research Question
	Methodology
	Thesis Overview

	State-of-the-art Review
	Introduction
	Translation Memory Systems
	Commercially Available Systems
	Translation Spotting

	In-memory Database Systems
	Commercially Available In-memory Databases
	Advantages of In-memory Databases

	Summary

	Design and Implementation
	Introduction
	Influences from the State of the Art
	High Level System Overview
	Design
	Implementation

	Administrative Layer
	Design
	Implementation

	In-memory Database System
	Design
	Implementation

	Summary

	Evaluation
	Introduction
	Test Framework
	Test Data
	Test Cases
	Tests

	Experiments
	Extensibility
	Phase One Evaluation
	Phase Two Evaluation

	Discussion of the Results
	Single Word Algorithms
	Multi-word Algorithms

	Conclusion
	Motivation
	Dissertation Objectives
	Achievements
	Limitations
	Future Research
	Replacement of Imperative Logic
	“Smart” Optimisations of the Multi Word Algorithms
	Use of Compression for Pre-generation of Translation Candidates
	Annotation of Documents with Thematic Categories

	Czech to English Single Word Test Cases
	English to Czech Single Word Test Cases
	Czech to English Multi Word Test Cases
	English to Czech Multi Word Test Cases

