
An Implementation and Evaluation of a
Co-rotational Finite Element Method on Mobile

Architectures

by

Giovanni Campo, B.Eng.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

(Interactive Entertainment Technologies)

University of Dublin, Trinity College

September 2015

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Giovanni Campo

August 30, 2015

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Giovanni Campo

August 30, 2015

Acknowledgments

I would like to express my sincere gratitude to my supervisor Dr. Michael Manzke for

taking me on this dissertation and for providing me with all the necessary facilities for

the research.

I also wish to express my deepest appreciation and gratitude to my friends, Antonio

Nikolov, Sarah Noonan, Patrick O’Halloran and Tony Cullen, for their invaluable help

throughout the Masters.

Words cannot express my appreciation and love for my Mom for giving me constant

support and encouragement.

Last but not least I am extremely thankful to my friend Darren Caulfield, for

his constant support and help, for sharing with me his immense knowledge and for

generously proofreading this dissertation.

Giovanni Campo

University of Dublin, Trinity College
September 2015

iv

An Implementation and Evaluation of a
Co-rotational Finite Element Method on Mobile

Architectures

Giovanni Campo

University of Dublin, Trinity College, 2015

Supervisor: Dr. Michael Manzke

Finite element methods (FEM) have been an active area of research for physical

simulations over the last 30 years. FEM is mainly used to simulate deformation and

fractures of solid objects. Its application is of particular interest in engineering and

scientific fields, where accuracy is more important than plausibility. However, due

to its complexity, it is only suitable for offline simulations. Notwithstanding these

limitations, FEM can be used for interactive applications. Earlier work has shown the

feasibility to run FEM in real-time contexts, on limited console hardware, using linear

tensors. Instability problems, which arose from the use of linear approximations, were

successfully addressed using a co-rotational formulation.

This dissertation explores the viability of achieving a robust and real-time FEM

implementation on mobile architectures. A co-rotational FEM is fully implemented

on both CPU and GPU hardware. Experiments are conducted to benchmark and to

evaluate the efficiency of memory hierarchy on the Tegra architecture. The results are

promising, showing interactive frame rates on both CPU and GPU implementations.

v

.

vi

Contents

Acknowledgments iv

Abstract v

List of Figures ix

Chapter 1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3

Chapter 2 State of the Art 4
2.1 Soft-Body Simulation . 4
2.2 Mass-Spring Systems . 5
2.3 Position-Based Dynamics . 6
2.4 Force-Based vs Geometry-Based Methods 7
2.5 Continuum Mechanics . 8
2.6 Finite Element Analysis . 9

2.6.1 Finite Differences Method . 9
2.6.2 Finite Element Method . 10

Chapter 3 Experiments 19
3.1 Overview . 19
3.2 Target Architectures . 20

3.2.1 CPU Architecture . 20
3.2.2 Kepler GK110 Architecture . 22
3.2.3 Kepler GK20A Architecture . 24

vii

3.3 CUDA Framework . 26

Chapter 4 Implementation 29
4.1 Pipeline . 29

4.1.1 Mesh Preparation . 30
4.1.2 Mesh Partitioning . 32
4.1.3 Co-rotational Formulation . 32
4.1.4 Compute Forces . 36
4.1.5 Integration Method . 37
4.1.6 Conjugate Gradient . 37
4.1.7 Mesh Mapping . 39

4.2 Libraries Used . 39

Chapter 5 Results 40
5.1 Experiment 1 . 40

5.1.1 CPU Comparison . 41
5.1.2 Memory Analysis . 42

5.2 Experiment 2 . 43
5.2.1 GPU Comparison . 44
5.2.2 Memory Analysis . 45

Chapter 6 Conclusions 53
6.1 Future Work . 54

Appendices 55

Bibliography 55

viii

List of Figures

2.1 Tetrahedralized rectangle. The internal structure is shown. 10
2.2 Voronoi diagram. 13
2.3 Delaunay triangulation . 14
2.4 A Delaunay tetrahedralization example. 15
2.5 A tetrahedron. 15
2.6 Rigid-body motion separated from the deformational motion 17
2.7 Example of QR decomposition. x is chosen to be on the first edge ab

while z is orthogonal to the first plane composed by the vectors ab and
ac. The last axis y is obtained by construction of an orthonormal frame. 18

3.1 Cortex A15 diagram block . 22
3.2 Kepler GK110 Full chip block diagram from [1] 23
3.3 SMX: 192 single-precision CUDA cores, 64 double-precision units, 32

special function units (SFU), and 32 load/store units (LD/ST) from [1] 24
3.4 Each Kepler SMX contains 4 warp schedulers, each with dual Instruction

Dispatch Units [1] . 25
3.5 Full Kepler GPU (left) and Kepler SMX Unit (right) in Tegra K1 [2] . 26
3.6 CUDA grids, blocks and threads [3] . 27

4.1 Pipeline implementation overview . 30
4.2 Surface mesh left and simulation mesh right generated with NetGen . . 31
4.3 An octree representation . 32
4.4 Deformations are calculated in a local rotated coordinate system. . . . 34

5.1 CPU FEM Implementation. Performance comparison. 42

ix

5.2 CPU thread and core utilisation . 44
5.3 GPU FEM Implementation. Performance comparison. 45
5.4 Warp issue efficiency. a) Number of active warps per SM, b) eligible

warps per cycle and c) causes of warp stall 47
5.5 Memory statistics. 48
5.6 Cache utilisation. 48
5.7 Branch efficiency . 49
5.8 Branch efficiency . 51
5.9 Memory bandwidth efficiency . 51

x

Chapter 1

Introduction

1.1 Motivation

Real-world phenomena are very complex to model, both mathematically and physically.
Ordinary or partial differential equations are used to describe these physical events.
Solving a differential equation can be an expensive task, especially for partial differ-
ential equations. In computer graphics it is possible to run simulations either using a
physical simulation approach or a physically based animation approach. Typically, the
latter is only a close approximation to real physics, where the goals are plausibility and
visual appeal. This method is more suitable for real-time, e.g., interactive, environ-
ments. In contrast, physical simulations aim for accuracy, with the intent of recreating
a physical system that is as close as possible to the real physics model, and are of
particular interest in engineering and scientific fields. In recent years, there has been
a breakthrough in research that has made possible the use of algorithms from physical
simulations, specifically finite element methods (FEM), in real-time contexts. This
goal was achieved using a simpler analytical representation of the real-world phenom-
ena to model, e.g., by adopting linear approximations and solving partial differential
equations of the first order. Previous work [4, 5, 6] addressed the instability problems
that arose with the adoption of linear Cauchy strain tensors, which were successfully
addressed by using a co-rotational formulation.

Parker et al. [7] were the first to develop a system to model deformation and fracture

1

of rigid bodies in real time using the co-rotational FEM. The system was successfully
used in the Xbox 360, Playstation 3 and PC versions of the video game Star Wars: The
Force Unleashed published by LucasArts. Their algorithm was robust and fast enough
to provide a real time simulation of deformable materials that the user can interact
with.

Their work was remarkable: the complexity of a whole system comprising a FEM
formulation, time integration, fracture, collision detection and response was efficiently
implemented on limited console hardware from 2005.

Nonetheless, the Xbox 360 architecture was unique in its genre at the time. It
employed the first chip multiprocessor (CMP) and used more than 2 cores (3 in fact),
being the first console with a unified shader architecture [8]. Although it was a revolu-
tionary console in 2005, today’s chips are significantly faster: CPUs contain more than
4 cores with a more efficient MIPS-per-watt ratio. As an example, the new Tegra X1
NVIDIA mobile processor released in 2015 is based on Maxwell GPU architecture and
has 256 streaming processors (192 more than the Xbox 360). Despite it being a mobile
processor, it outperforms previous generation console architectures (Playstation 3 and
Xbox 360) in terms of computational power and energy efficiency. Its predecessor, the
chip Tegra K1, is based on the Kepler GPU architecture. Although less powerful than
the Tegra X1, it still outperforms Playstation 3 and Xbox 360 with its 192 stream-
ing processors (SPs). Those mobile architectures are extremely powerful and flexible.
They are currently used by NVIDIA for deep learning, automotive visual computing
and computer vision.

Recent work by Muller et al. [9] proposed an alternative approach that models de-
structions using a novel method based on a volumetric approximate convex decomposi-
tions. Although this approach avoids the cost of stress analysis and crack propagation,
and is fast enough to be used in gaming contexts, it cannot model deformation of solid
objects.

Very little previous work has been done in the area of evaluating and implementing
complex algorithms using mobile architectures. Nikolov [10] investigated the perfor-
mance of ray-casting volume rendering on mobile devices using OpenGL ES shaders
and CUDA. Results showed that the CUDA implementation performed significantly
slower than its shader equivalent. Nonetheless, real time performance was achieved.

2

Applications of FEM, although not fully exploited in games, are found in many
scientific fields. With the advent of high-performance processors on mobile and em-
bedded platforms it is worth analysing whether or not it is possible to run complex
algorithms (e.g. soft body simulation, volume rendering, large parallel tasks, etc.) in
real time.

1.2 Objectives

The main aim of this dissertation is to benchmark and to evaluate the performance
of a co-rotational FEM algorithm for isotropic materials on mobile architectures. The
NVIDIA Shield Tegra, and the Jetson TK1 based on the Kepler architecture, are the
first mobile and embedded solutions to employ a full GPU architecture. We therefore
use to evaluate the experiments.

It is also of interest to perform an analysis of the memory hierarchy, the influence of
the memory access pattern and the impact of the register pressure, which are of great
importance for achieving a better understanding of how a mobile GPU architecture
reacts under stress.

Ultimately, the goal is to explore the viability of running soft-body simulations of
medium-complexity scenes at interactive frame-rates.

3

Chapter 2

State of the Art

2.1 Soft-Body Simulation

In general, to simulate motion and physics dynamics there exist two central methods:
rigid-body and soft-body simulation.

Soft-body simulation has been studied for more than three decades [11]. Deformable
models simulate non-solid objects such as cloth, hair, elastics and liquids in computer
graphics, and are used for special effects in movies and video games. In soft-body
simulations the relative distance of two points in a deformable model is variable. Vertex
rearrangement during collisions with the environment makes soft-body simulation more
complex than rigid body-simulation [12].

In real time environments, soft-body simulation, due to its complexity, is an ap-
proximation of the real physics model, providing only visually plausible results. The
choice is to adopt models that appear plausible instead of being strictly accurate. The
idea is to trick the observer, who can be easily fooled if the simulation looks convinc-
ing. The goal is to achieve at the right experience and not the correct physics. While
plausibility is acceptable in video games or special effects, it is usually not sufficient for
accurate scientific/engineering simulations like structural analysis, surgery simulations,
etc. In contrast to computational sciences where the main focus is on accuracy, the
main issues are stability, robustness and speed, while the results should still remain

4

visually plausible [13].

2.2 Mass-Spring Systems

There exist a variety of techniques to run simulations of soft bodies. Mass-spring
systems, for example, have been used widely to efficiently model deformable objects
in real time. A volume mesh consisting of a collection of point masses connected by
springs in a lattice structure is produced to represent an object [11].

Objects of soft bodies using mass-spring systems can be discretised into volume
meshes using a 2D grid structure, in the case of cloth simulation, for example, or
a 3D structure. The volume mesh can be triangular, rectangular, or a tetrahedral
representation where each point has its own properties such as mass, velocity, force
and position [11].

Mass-spring systems are computationally less expensive compared to continuous
models and finite element analysis and are suitable for processing large amount of data
or large volumes of objects. In particular, they can be used in cloth [14] and hair
animation, facial animation [15] and interactive surgery applications [16].

These systems are not a panacea and thus have some drawbacks. The discrete model
is only an approximation of the physics that occurs in a continuous body [11]. The
spring connections are usually not derived from material properties and proper values
for these constants are not accurate. Moreover, a mass-spring system with explicit
integration, e.g. Euler or Runge-Kutta, cannot handle increased stiffness1 under large
spring constants. Stiffness causes poor stability and requires the adoption of small time
steps in the integration method.

Although explicit integration methods are faster than implicit methods, when they
are applied to stiff systems they show instability and thus are not robust [17]. Therefore,
using explicit solvers results in an unreliable simulation.

There exist different approaches to tackling the problems discussed so far. One is
using implicit solvers, e.g. Verlet integration. Verlet integration is a numerical method

1An ODE is stiff when certain numerical methods for solving the equation are numerically unstable,
unless the step size is taken to be extremely small.

5

to integrate Newton’s equation of motion, used since the 1960s to model molecular
dynamics. Verlet is numerically stable and computationally cheap to calculate and is
different to explicit integration. It uses a velocity-less representation and a different
integration scheme. Instead of storing position and velocity, it stores current position
x and its previous position x∗.

This methodology was firstly introduced in physical-based modeling by a mathe-
matician and programmer named Thomas Jakobsen. His work was used for the first
time in the IO Interactive’s game Hitman: Codename 47, published by Eidos Interac-
tive in the year 2000.

2.3 Position-Based Dynamics

A more reliable and robust method to run simulation of dynamic systems is by using
position-based dynamic frameworks. They base their concept on implicit integration
and are more stable than mass-spring systems. They allow for the easily resolution
of collision constraints while resolving penetration violations completely by projecting
intersecting points to valid locations. They use the current and previous position of
particles or vertices of a mesh, e.g., a Verlet-based integrator, which bypasses the force
and velocity layers and directly modifies the positions. The mass-spring model is then
converted into a system of constraints and considered a mass-less particle system [18].

A non-linear Gauss-Siedel solver is used to compute constraints one by one. In spite
of the approach being simple and unconditionally stable, and providing a high level
of control over the simulation process, it suffers from the drawback of propagating
the information slowly through a mesh. The slow convergence lets soft bodies look
“stretchy” producing undesirable effects, i.e., visual artefacts [18].

Convergence can be increased by using global solvers. The Newton-Raphson solver
is a method to solve non-linear systems of equations but it is both computationally very
expensive and complex to code. Therefore, it is not practical for real time applications
[18].

Position-based methods are not as accurate as force-based methods in general,
where positions evolve through numerical integration of accelerations and velocities.
However, they provide visual plausibility. Therefore, applications of these approaches

6

still remain popular in virtual reality, computer games and special effects [19].

2.4 Force-Based vs Geometry-Based Methods

To summarise the two techniques discussed so far, for deformable object simulation-
mass-spring systems and position-based dynamic frameworks-it can be said that force-
based methods are based on Newton’s second law of motion, and they remain the most
popular approach in computer graphics. They are computationally cheap to compute
but they suffer from stability problems [19]. It is very difficult to tune the spring
constants, and in combination with a poorly designed spring network set-up it can be
hard to achieve the desired behaviour of the object. Moreover, mass-spring networks
cannot capture volumetric effects directly, such as volume conservation or prevention
of volume inversions [19].

In contrast, geometry-based methods omit the velocity layer operating on the po-
sitions. The main advantages of a position-based approach are its controllability, un-
conditional stability, robustness and speed [19]. These methods are mainly used in
interactive applications, where the aforementioned properties are more important than
accuracy, e.g., for cloth and fluid simulation, as well as soft-body dynamics. There
exist a variety of alternatives in the literature that go beyond plausible simulations,
allowing physically accurate simulations. Applications of position-based methods are
interactive surgical simulation, where Wang et al. [20] introduced a mass-spring model
based on a surface mesh to simulate deformable bodies in real time. The surface model
is coupled with a rigid core by using spring forces. This rigid core is simulated using
shape matching, which results in a fast and stable simulation [19, 20].

Rungjiratananon et al. [21] proposed an approach based on Lattice Shape Matching,
originally introduced by Rivers and James [22], to simulate complex hairstyles using
a shape-matching approach. A chain of particles, subdivided in overlapping chain
regions, represents each hair strand. A position-based strain is applied to each strand
after shape matching, which moves the particles in the direction of their root. To
realise different hairstyles, initial configurations are used and region sizes of a chain are
modified.

7

A wide range of physics frameworks including PhysX, Havok Cloth, Maya nCloth
and Bullet, implement position-based dynamics. While predominantly used in real-time
applications, position-based dynamic is also often used in offline simulation. However,
the desirable qualities of PBD comes at the cost of limited accuracy because the method
is not rigorously derived from continuum mechanical principles [23].

2.5 Continuum Mechanics

There exist more-accurate physical models to deal with soft-body simulation. Viewing
the system as a continuum is one of them. Unlike the discrete mass-spring models,
continuum models are derived from equations of continuum mechanics.

The continuum model of a deformable object considers the equilibrium of a general
body acted on by external forces. The object deformation is a function of these forces
and the object’s material properties. The object reaches equilibrium when its potential
energy is at a minimum [11].

Π = U −W (2.1)

Equation 2.1 denotes the total potential energy of a deformable system, where U
is the total strain energy of the deformable object, and W is the sum of the external
forces acting on it. When forces are applied on a soft body, an energy, i.e, the strain
energy is stored in the body as material deformation. The strain energy is the energy
stored in the body as material deformation. The load acting on the system, e.g., the
external forces are due to three sources [11]:

• Concentrated loads applied at discrete points

• Forces acting on the body, as gravitational forces

• Forces distributed over the surface of the object, such as pressure forces

To find a solution to the partial differential equation 2.1, a numerical method is
needed, such as Finite Element Methods (FEM), Finite Differences Methods (FDM),
or Finite Volume Methods (FVM).

8

2.6 Finite Element Analysis

Finite element analysis (FEA) originated from the need to solve complex elasticity and
structural problems in civil and aeronautical engineering. The mesh discretisation of a
continuous model into a set of discrete sub-domains, called elements and connected at
discrete points called nodes, is the principal characteristic of FEA.

FEA consists of three main steps:

1. Preprocessing: The geometry of a model is tessellated into a number of elements
connected to nodes. There exist two types for these elements: tetrahedra or
hexahedra.

2. Analysis: The elements produced in the previous step are used as input to the
finite element implementation, which constructs and solves a system of linear or
nonlinear equations.

Kijuj = fi (2.2)

u and f are respectively the displacements and externally applied forces at the
nodal points while K is the stiffness matrix.

3. Postprocessing: Displacements of the simulation mesh are mapped back to the
original geometry to reflect topological changes.

2.6.1 Finite Differences Method

The finite-differences methods (FDM) are numerical methods for approximating the so-
lutions to differential equations using finite-difference equations to approximate deriva-
tives. Partial differential equations (PDEs) differ from ordinary differential equations
(ODEs) in that they have two or more independent variables.

There exist several numerical approaches to approximate solutions of PDEs. PDEs
are approximated by discretising the spatial dimension and they are successively con-
verted into ODEs. ODEs can either be solved by other methods such as Runge-Kutta
or solved by Euler integration methods.

Specifically, the spacial dimension of the material is divided into a regular lattice
and then numerical differencing is used to approximate the spatial derivatives required

9

to compute the strain and strain tensors. However, irregular structures makes his ap-
proach too complicated and thus it suited mainly for problems with a regular structure
[24].

The same approach taken to derive a numerical approximation for ordinary differ-
ential equations can be applied to partial differential equations.

2.6.2 Finite Element Method

A finite element method (FEM) is characterized by a variational formulation, which
is a discretisation strategy, one or more solution algorithms and post-processing pro-
cedures. The discretisation strategy subdivides the continuum of the material into
distinct elements as shown in figure 2.1. Within each element, a local function, which
is also called a shape function, describes the material. These shape functions associate
the elements with the vertices they contain within. Adjacent elements will have nodes
in common, so that the mesh defines a piecewise function over the entire material
domain [24].

Figure 2.1: Tetrahedralized rectangle. The internal structure is shown.

Examples of variational formulation are the Galerkin method, the discontinuous
Galerkin method, mixed methods, and so on. Discretisation transforms the partial
differential equation of motion into a system of ordinary differential equations which
are easier, to some extent, to solve.

10

FEM has been an active area of graphic research over the last decade, for both real
time and offline applications and specifically in the context of fracture and deforma-
tion. Key concepts in the area of physically-based dynamics of flexible materials were
originally introduced by Terzopoulous et al. [25] using finite difference approxima-
tion, while in the area of fractures O’Brien et al. [24, 26] simulate ductile and brittle
fracture propagation based on a stress map derived using the finite element method.

FEM is physically more accurate than mass-spring models or position-based dy-
namics. The object’s deformation behavior can be specified using material properties,
which can be looked up in textbooks instead of tweaking spring constants, and the
force coupling between mass elements is defined throughout the volume rather than
according to the spring network.

Nevertheless FEM is computationally more expensive. However, FEM methods
have been used in real-time applications by discretising 3D meshes, typically with
polyhedral elements, assuming isotropic surfaces and linear elasticity.

While not suitable for engineering analysis, such models are sufficient to obtain
visually plausible results [5]. Such first-order approximation for FEM is cheap and
thus feasible in real time due to the lower cost of a linear strain measure. However, it
is only applicable for modelling small deformations accurately.

One important feature of the linear approach is that the stiffness matrix of the
system is constant and numerically well conditioned, yielding fast and stable simula-
tions. However, the linear model is not rotationally invariant. The linear model is only
a first-order approximation at the undeformed state and therefore under large defor-
mation objects increase unnaturally in volume [5]. To solve this problem accurately,
non-linear elasticity could be taken into account. However, the stiffness matrix is no
longer constant; therefore it needs to be recalculated at every step as the Jacobian
of the non-linear function that describes the internal elastic forces. Such a matrix is
non-trivial to calculate as its dimension can reach 81 elastic constants that are indepen-
dent of stress or strain [27]. Thus, in real-time systems large deformations are usually
avoided in favour of small displacements.

11

Muller et al. [5] describe a method for decomposing deformation into separate rigid-
body and strain components. By warping the constant stiffness matrix of the system
along with a rotational field it is possible to use a linear approach, thus permitting
the use of fast solutions in context of large deformations. However their node-centric
decomposition produced undesirable ghost forces [7].

Tetrahedral Geometry

An often-used tesselation for volumes is a tetrahedral mesh. This type of discretisation
approach is very common in the graphics literature, and can be found in several papers:
[5, 24, 26, 7]. The elements in the FEM are represented by tetrahedra; thus when a
mesh is generated, the domain of the original mesh is sub-divided into tetrahedral finite
elements. Tetrahedra are in general a good approach to approximate arbitrary volumes,
especially when this formulation is used to generate fractures. When tetrahedra are
split along a fracture plane, the resulting pieces can be decomposed exactly into more
tetrahedra [24].

The process of partitioning the space into regions, in the 2D case, is called a Voronoi
diagram. The main condition is that in each region Rk, the distance (which can be
either the Euclidean or Manhattan distance) of each point X, contained in Rk, to the
Voronoi center Pk is less than the distance to any other Voronoi vertex Pj for j different
from k (see figure 2.2. There exist several algorithms to generate a Voronoi diagram:

12

Figure 2.2: Voronoi diagram.

• Divide-and-conquer O(n3) worse-case

• Sweep Plane O(n3) worst-case

• Incremental Insertion O(n2) worst-case

All of the aforementioned algorithms have a O(n2) complexity which can be quite
slow in some scenarios when the geometry being processed is particularly complex.
Fortune [28] presented in his paper a novel method based on a sweepline technique
that runs in O(nlog(n)).

A 2D Voronoi diagram can be extended to three dimensions. Higher-order diagrams
can be generated recursively based on the (i−1)th order. However 3D Voronoi diagrams
are not suitable in case of concave or irregular shapes. The main reason is the reliability
of the visual appearance of filling the holes once the mesh has been split. There is
another technique, the Delaunay triangulation, which triangulates the space based on
the conditions that a set of points P in a plane must lie on the perimeter of the circum-
circle of any triangle i.e., they must not be contained in any triangle. (See figure 2.3)

The Delaunay triangulation of a point set P corresponds to the dual graph of the
Voronoi diagram for P . Vertices of a Delaunay triangulation are the centers of each

13

Figure 2.3: Delaunay triangulation

cell in a Voronoi diagram.
Delaunay triangulation works quite well in 2D space, although for usage in real-

time applications a 3D implementation is required. Tetrahedra can be generated using
the high-order Delaunay tetrahedralisation. The Delaunay tetrahedralisation is the 3D
equivalent of triangulation. Instead of generating triangles, it generates tetrahedra.
A given polytope is decomposed into non-overlapping tetrahedra, where the vertices
of the tetrahedra must be vertices of the original polytope. The condition that must
be satisfied is that the four points of each tetrahedron must lie on the perimeter of a
circumsphere.

Often, give the mesh geometry, the domain boundaries are not respected, e.g., in-
consistencies are caused by co-planar vertices so the Delaunay condition is not satisfied.
These inconsistencies are removed by facet re-meshing and Steiner point insertions (e.g.
introducing additional vertices). There is not a large amount of literature about De-
launay tetrahedralization (DT). The problem in 3D is far from being solved. There are
several algorithms that solve the problem but only one that has square complexity in
the worst-case scenario: Incremental insertion [29]. With this algorithm, each point is

14

inserted one at a time in a valid Delaunay triangulation and the tetrahedralisation is
updated, with respect to the Delaunay criterion, between each insertion [29]. However,
the discretization step is usually performed offline to save computational time.

Figure 2.4: A Delaunay tetrahedralization example.

A tetrahedra is defined by four nodes, labelled 1, 2, 3 and 4, with reference position
~X1, ~X2, ~X3, ~X4 (see figure 2.5), a position in the world coordinates, p, and a velocity
in world coordinates, v.

Figure 2.5: A tetrahedron.

15

Among volumetric geometry representations, tetrahedral meshes are the most used.
The simple interpolation methods that tetrahedral discretisation imply, make them the
most convenient to use. Thus, the reconstructed deformation map φ̂ can be defined
to be a piecewise linear function over each tetrahedron. In each tetrahedron φ̂ can be
defined as follows [30]:

φ̂(~X) = Ai
~X +~bi ∀ ~X ε Ti

The interpolation scheme implied by the equation above is a barycentric inter-
polation on every element. The differentiation, with respect to ~X, reveals that the
deformation gradient F = ∂φ̂/∂ ~X = Ai is constant on each element and as a conse-
quence any discrete strain measure and stress tensor is constant too. Linear tetrahedral
elements are also referred to as constant strain tetrahedra [30].

Co-rotational FEM

There are several methods to achieve real-time performance using FEM. A very com-
mon approach is to adopt a linear stress tensor, or Cauchy’s tensor. Although a linear
approximation is cheaper to compute it is not rotationally invariant. When elements
undergo large deformations or rotations, artefacts are produced which make the el-
ement artificially inflate leading to unrealistic results. A non-linear Green’s strain
tensor, which is rotationally invariant, would solve this problem but it would lead to
a non-linear algebraic system needing to be solved, making the FEM unsuitable for
real-time contexts.

Muller et al. [5, 4] were the first to introduce the FEM to computer graphics
and to address these instabilities. They formulated a geometric approach to separate,
on a per-vertex basis in [5] and on a per-element basis in [4], rigid-body and strain
components. In general, in the finite element literature, the basic notion of separating
out rotation from the rigid body motion is called a co-rotational formulation:

A co-rotational method factors out the rotation on a per-element (i.e., per-tetrahedral
node) basis. Two configurations are considered: the base configuration u0 and the co-
rotated configuration ur. The former is the origin of displacements and will not change
during the simulation. The latter varies from element to element and is obtained

16

Figure 2.6: Rigid-body motion separated from the deformational motion

through a rigid-body motion of the element from the base configuration. Element
displacements ur − u0 are calculated with respect to the co-rotated configuration [31].

The co-rotational formulation is a good trade-off between the Cauchy and the full
non-linear Green’s strain tensor. It is a linear approximation and it accounts for the
geometric non-linearity by respecting per-element rotations in the strain computation
[32]. There are several approaches to extracting the rigid-body motions of tetrahedral
elements.

Other approaches are the polar and the QR decomposition, which operates on a per-
element basis. QR decomposition has been developed by Nesme et al. [6] but introduces
vertex-ordering dependent-anisotropies [32]. With the adoption of a QR decomposition
in the co-rotational FEM it is possible to achieve a quasi-stable simulation. The QR
decomposition is based on the Gram-Schmidt orthogonalization algorithm2.

The FEM formulation implemented for this work uses the geometric per-element
approach described in [4].

2It is the decomposition of a matrix A into a product A = QR.

17

Figure 2.7: Example of QR decomposition. x is chosen to be on the first edge ab while
z is orthogonal to the first plane composed by the vectors ab and ac. The last axis y
is obtained by construction of an orthonormal frame.

18

Chapter 3

Experiments

3.1 Overview

In all of the experiments carried out in this work the raptor model represented in figure
4.2 has been used to simulate deformations. As already mentioned in previous chapters,
two meshes are used to run FEM: the surface mesh, i.e. the visual representation of the
model, and the simulation mesh. The surface mesh has approximately 78k triangles,
while the simulation mesh is coarser with only 8431 tetrahedra elements. Each profiling
session was recorded over 800 frames.

In the scene there is also a plane represented by a flat surface with a simple texture.
Gravity is applied as a base force with an acceleration of 9.8m/s2. In order to stress
the hardware and cache, every 200 frames an external force of random intensity is
applied to a random particle on the simulation mesh. Self-collisions are not taken into
account. However, the simulation mesh can collide with the plane where the main
model lies. Some fixed particles are applied to the feet of the raptor, meaning that the
corresponding tetrahedra will not be affected by the physical deformation. This was
done to keep the model in a specific point at the scene.

To evaluate the performance, three core FEM functions were monitored:

• Displacement mapping: this is the barycentric interpolation of tetrahedra coor-
dinates to surface mesh vertices. This step is necessary to map the tetrahedra
deformation to the vertices of the surface mesh.

19

• Compute and add forces: in this step all the internal forces and the product of
their stiffness with a position change are computed.

• Conjugate gradient solver: it is an iterative method to find a solution of systems
of linear equation. This method solves the differential equation that relates stiff-
ness matrix, forces, position change and deformations of the solid object. An
acceptable value for the maximum number of iterations in the conjugate gradient
is a number between 30 and 100 [27]. However, it is possible to achieve plausible
simulations with lower values, e.g., between 10 and 25. The conjugate gradient
is explained in detail in chapter 4.1.6 at page 37.

A set of methods was implemented and adapted to perform an implicit and explicit
finite element solver on two different platforms: Windows and Android. The reference
implementation is based on the work of Allard et al. [27]. It uses a Cauchy linear
tensor and adopts a co-rotational formulation. Experiments are run using CUDA on
the GPU and a full serial implementation on the CPU.

3.2 Target Architectures

The FEM has been implemented for both CPU and GPU using CUDA. Experiments
were conducted running simulations on four different architectures. (See table 3.2 for
details).

3.2.1 CPU Architecture

The NVIDIA Shield employs an ARM Cortex A15, a Reduced Instruction Set Computer
(RISC) architecture, which is comprised of four cores with a maximum clock speed of
2.5GHz, 32KB of L1 instruction and data cache per core for a total of 64KB L1 cache.
See figure 3.1. The L2 cache is 16-way set-associative of configurable size with the
Snoop Control Unit SCU. The SCU is clocked synchronously and at the same frequency
as the processors. It maintains coherency between the individual data caches in the
processor. The SCU contains buffers that can handle direct cache-to-cache transfers
between processors without having to read or write any data to the external memory
system [33].

20

Architecture Parameter Desktop Mobile

CPU Name Intel i7 4930k Tegra ARMv7 Cortex-A15

Clock Speed 3.4 GHz 2.5 GHz

of Cores 6 4

of Threads 12 4

L1 Cache Size 64 KB 64 KB

L2 Cache Size 2 MB 512 KB - 4 MB

L3 Cache Size 12 MB N.A.

Instruction Set 64 bit 64 bit

Max Power Consumption 130W 0.35W

RAM 16 GB 2 GB

GPU Name Kepler GK110A Kepler GK20A

CUDA Cores 2880 192

Clock Speed 1.25 GHz 0.85 GHz

Memory Size 3 GB 2 GB Shared Memory

Max Power Consumption 250W 2W

CUDA 6.0 6.0

OpenGL 4.4 4.4

Table 3.1: CPU and GPU architecture comparison

21

Figure 3.1: Cortex A15 diagram block

The ARM A15 supports a Single Instruction Multiple Data (SIMD) instruction set,
which is referred to as NEON engine, for integer and single-precision floating-point
vector operations on double word and quad word [33].

3.2.2 Kepler GK110 Architecture

The CUDA FEM implementation has been evaluated using the GeForce 780ti as the
desktop reference. Its GPU is based on the Kepler GK110 architecture. It is comprised
of 7.1 billion transistors, for a total of 2880 streaming processors (or CUDA cores in
NVIDIA jargon) laid out in 15 streaming multiprocessors (SMX)- see figure 3.2. It

22

has a power consumption of approximately 17W per SMX for a total consumption of
250W.

Figure 3.2: Kepler GK110 Full chip block diagram from [1]

The mobile Kepler Tegra GK20A architecture is very similar to the Kepler GK110,
which is why we have chosen it as the desktop reference version. Tegra employs the
same memory hierarchy of GK110 with two exceptions: the absence of 48KB read-only
cache for each SMX accessible by the Texture Unit (see figure 3.3 and figure 3.5) and
the absence of 64 double precision floating-point units.

Double precision floating-point calculations are only used in scientific computing
applications like fluid dynamics, molecular dynamics, model fitting and data analysis.
64-bit data uses twice as many bits as single precision; therefore, it uses twice as
much RAM, cache, and bandwidth, thereby reducing the overall system performance.
However, single precision only is used to run the tests. In our tests we use only single-
precision operations.

23

Figure 3.3: SMX: 192 single-precision CUDA cores, 64 double-precision units, 32
special function units (SFU), and 32 load/store units (LD/ST) from [1]

Warp scheduler

The SMX schedules threads in groups of 32 parallel threads called warps. Each SMX
features four warp schedulers and eight instruction dispatch units, allowing four warps
to be issued and executed concurrently (see figure 3.4). Kepler’s quad warp scheduler
selects four warps, and two independent instructions per warp can be dispatched for
cycle [1].

3.2.3 Kepler GK20A Architecture

The Kepler GK20A architecture utilizes 192 CUDA cores laid out in a single SMX.
The main differences with the desktop version were discussed in section 3.2.2.

The GK20A GPU is organized in Graphics Processing Clusters (GPC), SMXs, and
memory controllers. It consists of one GPC, one SMX unit and a memory interface.
It also includes four Raster Operation Processors (ROPs) and has a 128KB L2 cache
between the ROPs and the memory interface (see figure 3.5).

24

Figure 3.4: Each Kepler SMX contains 4 warp schedulers, each with dual Instruction
Dispatch Units [1]

Xbox 360 Playstation 3 Tegra K1
GPU Features DX9 DX9 DX11
GPU Horsepower 240 192 365
CPU Horsepower 3600 1200 5612
Power 100W 100W 5W

Table 3.2: Performance comparison between consoles and Tegra K1 [2]

This architecture, despite being a mobile solution, delivers higher peak shader
GFLOPs and higher total CPU throughput than older generation consoles like Xbox
360 and PS3. A performance comparison can be found in table 3.2.3. GPU through-
put is based on peak fragment shader GFLOPS of each platform. CPU throughput
is instead calculated as the estimated SPECint20001 performance multiplied by the
number of CPUs [2]. It is interesting to note the power efficiency, which is 95W less
(and ~12W per SMX) than the desktop Kepler GPU.

1It is part of a standardised set of benchmarks that can be applied to any hardware.

25

Figure 3.5: Full Kepler GPU (left) and Kepler SMX Unit (right) in Tegra K1 [2]

3.3 CUDA Framework

One of the two FEM implementations uses the CUDA framework on the GPU. CUDA,
(Computer Unified Device Architecture), is a parallel computing application program-
ming interface model created by NVIDIA. It enables the execution of general-purpose
code on the GPU in tasks where a high degree of parallelism can be exploited. The
CUDA platform is designed to work with programming languages such as C, C++ and
Fortran. The graphics programming model executes in parallel shader threads inde-
pendently, while parallel-computing, in order to efficiently compute a result, requires
that parallel threads synchronize, communicate, share data, and co-operate [34]. A
result data array can be partitioned into blocks and each block into elements, so that
the result blocks can be computed independently in parallel, and the elements within
each block can be computed co-operatively in parallel.

The CUDA programming language has two main function definitions: global and
device functions. The former are launched by the CPU and then they are run by the
GPU. Global functions are also known as kernels. The latter are GPU functions and
they can be called only from within a kernel, e.g. from the GPU.

26

Three levels of parallelism are offered: grids, blocks, and threads. A number of
threads and blocks can be defined when a kernel is launched. Figure 3.6 shows the
different concepts: threads, blocks and grids. Threads have access to a local memory,
while threads in a block can access a shared memory to co-operate. A global memory
is available and accessible from all threads in different blocks and grids. Specifically,
in the GPU hardware threads are executed in parallel by the SPs, while each block is
assigned to a SMX. Memories have different speeds. Global memory, which is the main
memory of the GPU has two orders of magnitude more latency than on-chip memory.
For this reason and because of obvious synchronisation problems it is important to avoid
accessing global memory often. Shared memory is much faster than global memory but
its bandwidth is considerably lower than that of registers. It can be used as a user-
managed cache to reduce the number of slow global memory accesses, communication
between several threads within a group so they can collaborate in a given task, or
simply to temporally store data and reduce register pressure. Registers are used to
store value types, declared within a kernel, or passed as arguments. Warps, which were
discussed in the previous section, can run up to 32 threads concurrently.

Figure 3.6: CUDA grids, blocks and threads [3]

The main goal in any CUDA implementation is to keep the GPU occupied fully

27

at all times in order to achieve good performance. Other important key factors are:
branching, warp occupancy, race conditions and cache reuse. A Single Instruction
Multiple Thread (SIMT) processor realizes full efficiency and performance when all
available threads of a warp take the same execution path [34]. Thus, the use of con-
ditional instructions in a kernel is generally not a good idea. If threads of a warp
diverge, the warp serially executes each branch path taken, disabling threads that are
not on that path. When the diverged paths complete, the threads re-converge to the
original execution path [34]. Having sleeping threads in a warp decreases the warp
occupancy, bringing down the overall performance. Race conditions, in multi-threaded
programming as well as in GPU parallel programming, occur when a common resource
is accessed concurrently by multiple threads. Fortunately, CUDA offers a set of atomic
instructions that guarantee locked read/write operations.

In chapter 5, which is about the evaluation of the experiments, all of the afore-
mentioned aspects are taken into account, to assess the performance and the memory
hierarchy of the CUDA implementation.

28

Chapter 4

Implementation

As discussed in chapter 3, a set of methods were implemented for an implicit finite
element solver based on the work of Allard et al. A significant amount of effort was
expended to adapt the algorithm to work on both Windows and Android platforms.

4.1 Pipeline

Figure 4.1 shows the high-level architectural diagram of the designed pipeline that
was designed for the FEM. The workflow on the left represents the mesh preparation
process. A library called NetGen [35] was used to discretise the surface mesh. This
process is performed offline as it requires a considerable amount of time to be completed.
Details are given in section 4.1.1. Once the tetrahedral mesh has been calculated it is
saved into a text file. The workflow on the right represents the main physical simulation.
Surface and tetrahedral meshes of a given solid object are read and loaded into memory.
The tetrahedral mesh is partitioned using an octree data structure and a displacement
map is created to associate vertices to tetrahedra. After the mesh is fully mapped the
simulation starts. There are four main functions:

• compute the internal forces that act upon the elemets.

• run the conjugate gradient to solve Newton’s equation of motionM~a+D~v+K~u in
order to find the tetrahedral displacement ~u for each tetrahedron in the simulation
mesh.

29

• apply an Euler implicit time integration step to update velocities and positions.

• map the new displacements back to the vertices; the formula used is explained
in section 4.1.7.

These four steps are explained in detail in the following sections.

Generate
Tetrahedral Mesh

Start

Read Surface
Mesh

Write
Tetrahedral

Mesh

End

Start

End

Read Surface
Mesh

Read
Tetrahedral

Mesh

Tetrahedral Mesh
Partition

Surface Mesh
Mapping

Simulation StartCompute Forces

Conjugate Gradient

Time Integration
Displacement

Mapping

Loop

Figure 4.1: Pipeline implementation overview

4.1.1 Mesh Preparation

Mesh preparation is the first step needed before running the simulation. To solve
the partial differential equation associated with the dynamic-system description of a

30

deformable body, the domain needs to be tessellated. This process subdivides the sur-
face mesh into a finite set of adjacent and non-overlapping sub-domains, which are
either four-node tetrahedra or eight-node hexahedra. The displacement fields of the
continuum matter within elements are mapped to their vertices, approximating the
associated equations of the object using the displacements of their nodes [36]. Repre-
senting a mesh with hexahedra is more accurate. Although objects can be subdivided
using fewer elements, hexahedra require greater memory resources (24 DOF versus 12
DOF of a tetrahedra) and thus are computationally more expensive. In this specific
implementation the entire surface mesh was fully partitioned using tetrahedra.

With the use of linear tetrahedra, as explained in chapter 2, it is possible to replace
the continuous displacement field with the displacement of the tetrahedra. Such dis-
placement maps are called shape functions and are used to map a tetrahedron to its
vertices. In this specific case, a shape function is based on the linear interpolation of
the tetrahedron’s barycentric coordinates.

Tetrahedra are obtained by performing a Delaunay tetrahedralisation, which is a
non-trivial task; thus, external libraries were used. Mesh mapping is the last step in
the pipeline and it is performed in real-time.

Figure 4.2: Surface mesh left and simulation mesh right generated with NetGen

Figure 4.2 shows the original model used, and its tetrahedral representation.

31

4.1.2 Mesh Partitioning

The simulation mesh is partitioned using an octree data structure—a tree data struc-
ture in which each internal node has exactly eight children (see figure 4.3). Octrees
are used to partition a three-dimensional space by recursively subdividing the space
into eight octants. The reasons for using an accelerated data structure is to avoid
performing a brute-force search and using a fast depth-first search instead in order to
find the correct tetrahedra—vertex mapping.

Figure 4.3: An octree representation

4.1.3 Co-rotational Formulation

When an elastic object is subject to a force that deforms its original shape by stretching
or compressing it, another internal energy is produced that tries to restore the object
to its rest shape. The work, exerted by forces applied on the object, is transformed into
strain energy. The definition of elastic energy was given in equation 2.1 in chapter 2.
U is the strain energy and W is the work done by external forces, and the relationship
can be expressed formalizing the following equation [27]:

W = ~ue
T ~fext

U = 1
2

∫
vole

~εT~σdV

~fext = Ke ~ue

32

~fext are the external forces applied onto the tetrahedron while ~ue are the displace-
ments of the nodes. ~ε and ~σ are respectively the strain and the stress vectors. The
relationship between stress and strain is expressed by the following equality known as
linear elasticity:

~σ = De~ε (4.1)

De is the elasticity tensor and it relates the Young’s modulus and the Poisson’s
ratio. The strain energy is calculated by integrating strain and stress De over the
volume (vole) of the finite element, i.e., the tetrahedron. The matrix Ke is the stiffness
matrix, which represents the system of linear equations that must be solved in order
to calculate a solution to the differential equation. Ke can be expressed as follows:

Ke = ST
e DeSe (4.2)

De is the elasticity matrix, which is a 6× 6 matrix given by:

De =

γ + µ γ γ 0 0 0
γ γ + µ γ 0 0 0
γ γ γ + µ 0 0 0
0 0 0 µ/2 0 0
0 0 0 0 µ/2 0
0 0 0 0 0 µ/2

where γ and µ are defined as:

γ = 1
36Ve

Eν

(1 + ν)(1− 2ν)

µ = 1
36Ve

E

1 + ν

Ve = 1
6b · (c× d)

b, c and d will be defined shortly. E is the Young’s modulus, which is a mechanical
property of linear elastic solid materials. It measures the force (per unit area) that is
needed to stretch or compress a tetrahedral element and it represents the material’s

33

stiffness. The Poisson’s ratio ν is related to volume conservation and is the fraction of
expansion divided by the fraction of compression. It is usually a dimensionless value
between 0 and 0.5 for isotropic materials.

Figure 4.4: Deformations are calculated in a local rotated coordinate system.

Se is the deformation—displacement matrix. For the co-rotational formulation, this
matrix is calculated in the local frame of the element. The linear elasticity formulation
is based on the Cauchy strain tensor, which is not rotationally invariant. Thus, for
large deformations artefacts and instabilities are introduced into the system, making
the simulation inaccurate. (see section 2.6.2. Se is constant throughout the whole
simulation unless the topology of the surface mesh changes, e.g., in case of fractures.
Since this implementations does not take into account fractures, Se can indeed be
considered constant. This assumption is possible because of the adoption of linear
elastic materials. The displacement vectors are always calculated using the rest position
of the tetrahedra and not the history of displacements. Se can be formulated as follows
[27]:

34

Se =

−px(bcd) 0 0 −py(bcd) 0 −pz(bcd)
0 −py(bcd) 0 −px(bcd) −pz(bcd) 0
0 0 −pz(bcd) 0 −py(bcd) −px(bcd)

px(cda) 0 0 py(cda) 0 pz(cda)
0 py(cda) 0 px(cda) pz(cda) 0
0 0 pz(cda) 0 py(cda) px(cda)

−px(dab) 0 0 −py(dab) 0 −pz(dab)
0 −py(dab) 0 −px(dab) −pz(dab) 0
0 0 −pz(dab) 0 −py(dab) −px(dab)

px(abc) 0 0 py(abc) 0 pz(abc)
0 py(abc) 0 px(abc) pz(abc) 0
0 0 pz(abc) 0 py(abc) px(abc)

where p(uvw) = u× v + v × w + w × u.

The elements a, b, c, d are the precomputed un-deformed vertex positions in the
rotated frame:

a = RT
e (p0 − p0) =

(
0 0 0

)T

b = RT
e (p1 − p0) =

(
bx 0 0

)T

c = RT
e (p2 − p0) =

(
cx cy 0

)T

d = RT
e (p3 − p0) =

(
dx dy dz

)T

The rotation matrix Re = [r0 r1 r2], which is used to calculate the vertices in the
rotated frame, is defined as:

35

r0 = p1 − p0

‖ p1 − p0 ‖

r2 = (p1 − p0)× (p2 − p0)
‖ (p1 − p0)× (p2 − p0) ‖

r1 = r2 × r0

4.1.4 Compute Forces

In this step, forces applied to each element and a change in the force, due to vertex
displacements, are calculated. Using the co-rotational formulation, introduced in the
previous section, expanding ~fext and d ~fext

dt
leads to:

~fe = ReS
T
e DeSe(RT

e ~u− ~u0)

d~fe

dt
= ReS

T
e DeSeR

T
e ~ue

~u and ~u0 are, respectively, the displacement in the deformed and the un-deformed
state. This formulation is not sufficient to solve the dynamic deformation of the tetra-
hedra. The differential equation 4.3 is incomplete and thus far from being solved.

M ~̈u+ D~̇u+ K~u (4.3)

M is the mass and D is the damping; both matrices are constant. K , the stiffness
matrix is the same as in equation 4.2. The vector ~u, as before, is the difference between
the deformed and the rest position ~u − ~u0. It is possible to solve equation 4.3 using
several integration techniques. The most viable is the implicit integration scheme.
Although the explicit Euler integration is faster than the implicit scheme, it is also
less robust and it suffers from conditional stability. Thus, there exists a critical time
step size beyond which numerical instabilities appear. The implicit integration scheme
adopted will be explained in detail in section 4.1.5.

36

4.1.5 Integration Method

The implicit backward Euler’s integration method provides a faster numerical solution
and is more robust than explicit methods. It can be formulated as follows:

~x(t+ h) = ~x(t) + h ~v(t+ h) (4.4)

h is the time-step of the physics simulation. For consistency the simulation has a
fixed time step of 0.04 seconds. This value has been made adjustable in the simula-
tion parameters. The adoption of different time-steps for physics calculation and for
rendering updates is usually a good practice: it gives a coherent behaviour on differ-
ent platforms where the CPU’s clock speed is different. The time between frames is
variable and in some cases, especially on slower hardware, it might lead to large time
steps, introducing instabilities and error in the simulation.

The position at time t + h, using the implicit formulation, can be computed from
the velocity at the same time step t+ h. Equation 4.3 can be rewritten as follows:

M ~̈v(t+ h) = M~v + h M ~̇v(t+ h)
M ~̈v(t+ h) = M~v + h [−D~v(t+ h)−K(~u(t+ h)− ~u0) + fext)]

Thus, by substituting the first equation into the second, the final linear system of
equations is obtained :

[M + hD + h2K]~v(t+ h) = M~v + h [K(~u(t)− ~u0)− fext)] (4.5)

In order to solve for ~v(t+h) in equation 4.5, the matrix [M +hD +h2K] must be
inverted, and both side of the equation must be multiplied by this inverse. The linear
system obtained must be solved at every step of the simulation.

4.1.6 Conjugate Gradient

The linear system in equation 4.5 is in the form A~x = ~b, where the matrix A is defined
as symmetric, positive definite and sparse. In this case the conjugate gradient (CG)

37

method can be adopted. Conjugate gradient performs well if the matrix is sparse, i.e.,
having most of its elements set to zero. This speeds up matrix—matrix and matrix—
vector multiplications considerably. However, under some conditions, the inversion of a
sparse matrix can result in a dense matrix requiring more memory and computational
time. The conjugate gradient is an iterative algorithm, where a given initial solution is
refined until an optimum is reached. It runs in N iterations, where N is the dimension
of A. For this implementation N is set to 25. As it is part of the simulation param-
eters, the iteration number can be changed; however, good plausible simulations are
achieved using 10 to 25 iterations only. See listing 1 for the pseudo-code of the CG
implementation.

Data: N: number of iterations,
d = f0 + hKv,
δ0 = d · d: the initial error
while i != N and δi > ε2δ0 do

Calculate delta force:
dforce = Kd;
q = Md− h2dforce;
Calculate error:
α = δi−1/(d · q);
a = a+ αd;
r = r − αq;
δi = r · r;
β = δi/δi−1;
d = r + βd;

end
Algorithm 1: Conjugate gradient pseudo-code

The iterative solver accepts three arguments as input parameters: a number N of
iterations, which is chosen during the simulation initialisation; the initial displacement
vector product d; and an initial error δ0, which is calculated as the dot product of d with
itself. On every iteration the error is compared with a threshold ε to decide whether or
not to quit the loop. There are two main steps in the body of the loop: delta force and
error calculation. The former is the delta force of the displacement, while the latter

38

combines the data from all objects in order to calculate the error. Forces evaluation
and delta force calculation are the most expensive tasks in the algorithm, as will be
shown in later in the results section.

4.1.7 Mesh Mapping

The last step performed in the pipeline is the displacement mapping or mesh mapping.
The displacement field over the tetrahedron ~u = [ux, uy, uz] can be obtained by linear
interpolation of the tetrahedron nodal displacements:

~u = ξ1~u1 + ξ2~u2 + ξ3~u3 + ξ4~u4 (4.6)

where ξi are the shape functions and ~ui are the displacements of the four nodes of
the tetrahedron. The associated vertices of each tetrahedron are found by an optimised
search using the octree calculated during the simulation initialisation.

4.2 Libraries Used

There are two main libraries used for this project: SOFA framework [37] and NetGen
[35]. The former is a framework to run soft dynamics and is frequantly used to simulate
medical scenarios. It contains several convenient data structures that maximise cache
reuse and helper methods with fast matrix and vector operations. NetGen is a mesh
tetrahedralisation tool and was used to generate the simulation mesh of the model used
for the experiments.

39

Chapter 5

Results

In this chapter we present the results of our experiments on two groups of four graphs
are shown for each experiment. A group contains the results of the particular archi-
tecture targeted and tested. Three of the four graphs compare the FEM functions
described in the pipeline in section 4.1. The comparison is performed on two different
architectures: i7 and ARM for the CPUs, and GK110A and GK20A for the GPUs. The
plot shown on the bottom right of each group of graph compares the average frame
rate of the whole algorithm.

The simulation parameters used are listed in table 5. The parameters that affect
the speed of the simulation are: time step, CG max iteration and tolerance. The other
parameters are mechanical properties of the elastic material and affect the visual aspect
of the simulation only.

5.1 Experiment 1

The goal of the first experiment is to benchmark and to evaluate the CPU implemen-
tation of the FEM on both desktop and mobile. The desktop CPU reference is an Intel
i7 4930k 3.4 GHz with 6 cores and 12 threads. The FEM implementation on the CPU
is fully serial: neither multi-threading nor Single Instruction Multiple Data (SIMD)
instructions are employed. Thus, results relate to a single core.

The two CPUs show similar results in terms of frame rate and time spent per func-
tion. By analysing the trends of the mean and the standard deviation it is possible to

40

Parameter Value

Time step 0.04

CG Max Iteration 25

Rayleigh Stiffness 0.01

Rayleigh Mass 0.01

Tolerance 10−3

Young Modulus 106

Poisson Ratio 0.4

Gravity -9.8

Mass Density 0.01

ODE Solver EulerImplicit

Table 5.1: Simulation parameters.

identify two different behaviours. However, it was not possible to read cache utilisation
on the ARM; therefore, cache misses and hits are not given. (The tool available in the
NVIDIA development kit for Tegra1 does not provide this information). As an alterna-
tive, perf , which is a Linux command-line tool, can be used to read cache utilisation.
Unfortunately perf is not compatible with Android.

5.1.1 CPU Comparison

Figure 5.1 shows the time spent, in milliseconds per frame, in the three main functions
of the FEM algorithm. The conjugate gradient, as expected, was the most expensive,
taking a total of 27.4 ms on the ARM and 16.3 ms on the i7. An average of 1.096
ms is spent per iteration, where the maximum number of iterations is set to 25 (see
table 5). It is interesting to notice that the ARM shows two different trends across
all of the graphs, the first before and second after the 450th frame. After the 450th
frame the values become more regular, suggesting better cache reuse. For each core
L1 and L2 cache sizes are similar in size and configuration on both Intel and ARM

1Tegra System Profiler

41

architectures. The only difference is the presence of a Snoop Control Unit (SCU) in
the ARM architecture, which maintains data cache coherency between the cores of the
CPU.

The frame rate is relatively high on both CPUs, typically 40 to 50 frame per second.
Although the ARM shows lower performance, the FEM implementation is more stable
in term of peaks and frame rate drops. Table 5.2 summarizes the results.

i7: 3.06 ms

ARM: 1.56 ms

200 400 600 800

2

4

6

8

10

12

Displacement Mapping

i7: 1.47 ms

ARM: 2.89 ms

200 400 600 800

2

4

6

8

10

Compute Forces

i7: 16.3 ms

ARM: 27.4 ms

200 400 600 800

10

20

30

40

50

Conjugate Gradient

i7: 50.6 Fps

ARM: 31.8 Fps

200 400 600 800

20

40

60

80

Average FPS

Figure 5.1: CPU FEM Implementation. Performance comparison.

5.1.2 Memory Analysis

In spite of the ARM CPU yielding a lower frame rate in the simulation, it is evident that
the conjugate gradient trend is steadier some time after the beginning of the simulation.
The lower standard deviation value confirms this result (see table 5.2). The reasons for
this difference are unknown and understanding the cause would require a lower-level

42

Architecture Mean Std. deviation Min Max

Displacement Mapping
i7 3.06 0.861 2.7 8.13

ARM 1.51 0.329 1.33 8.84

Compute Forces
i7 1.47 0.612 1.11 5.28

ARM 2.8 0.478 2.35 6.87

Conjugate Gradient
i7 16.3 4.7 13.4 36.6

ARM 26.5 2.86 23.1 52.4

Table 5.2: CPU statistics comparison. Values are expressed in milliseconds.

analysis to read cache L1 and L2 hit and misses on the ARM, which was not possible
as it requires specific tools.

Despite this limitation (see figure 5.2), it was possible to analyse the thread effi-
ciency. The total CPU utilisation is only 25%. Only two out of the four cores available
are involved in the computation. This information suggests that there is scope for
optimisation on the CPU, as long as the algorithm is re-designed to use multi-core and
SIMD instructions.

The current FEM implementation uses only part of the total throughput of the
CPU. Without optimising the FEM implementation to support multi-threading a frame
rate of approximately 42 FPS was successfully achieved. It is remarkable that maxi-
mum power consumption of only 0.35W was used to produce this result.

5.2 Experiment 2

The second experiment performs the same tests as in experiment 1. The simulation
parameters and conditions are the same as those of experiment 1. The reference GPU
used is the GeForce 780ti (GK110A), which employs the same Kepler architecture as the
Shield Tegra (GK20A). Differences between the two GPUs are highlighted in chapter
3.2. In summary, the two architectures are very similar but with some differences:

• The GK110A has 15 SMXs for a total of 2880 SPs while the GK20A has only
one SMX with 192 SPs.

43

Figure 5.2: CPU thread and core utilisation

• The GK20A employs a unified memory architecture, which means that the mem-
ory is shared between GPU and CPU.

Unfortunately there was insufficient time to adapt the algorithm to four different
architectures (CPU and GPU). Thus, the GPU Shield implementation will not benefit
from the usage of unified shared memory.

5.2.1 GPU Comparison

Figure 5.3 shows the performance comparison of the FEM implementation on the
GPU for both architectures, desktop and mobile. Unexpectedly, the GPU Tegra im-
plementation shows no major improvement, performing an average of just 40 FPS. The
displacement mapping graph on the top left in figure 5.3 shows similar timings to the
same graph in figure 5.1. This is evidence of inefficiency in the CUDA implementation,
which will be addressed in the memory analysis in section 5.2.2.

44

GK110A: 1.32 ms

GK20A: 7.72 ms

200 400 600 800

5

10

15

Displacement Mapping

GK110A: 0.387 ms

GK20A: 2.06 ms

200 400 600 800

2

4

6

8

10

Compute Forces

GK110A: 4.92 ms

GK20A: 20.8 ms

200 400 600 800

10

20

30

40

50

Conjugate Gradient

GK110A: 155. Fps

GK20A: 33.1 Fps

200 400 600 800
0

50

100

150

200

Average FPS

Figure 5.3: GPU FEM Implementation. Performance comparison.

5.2.2 Memory Analysis

To address the performance problems mentioned in the previous section, tests were
performed on the memory hierarchy to analyse bottlenecks, warp and memory efficiency
issues. For this analysis two tools were used:

• NSight Visual Studio profiler

• Nvprof

The former is a graphical profiling tool, which we used to analyse and profile data
from the CUDA implementation run on the GK110A. As of now there are no graphical
tools to profile a CUDA application from an APK, i.e., a package file format used
to distribute and install application software onto Google’s Android operating system.
Nvprof is a command-line tool and it was used to record profiling sessions on the Shield.

45

Architecture Mean Std. Deviation Min Max

Displacement Mapping
GK110A 1.33 0.341 1.12 5.12

GK20A 7.78 0.505 6.83 12.5

Compute Forces
GK110A 0.386 0.155 0.185 2.15

GK20A 2.1 0.811 1.06 15.2

Conjugate Gradient
GK110A 4.96 1.04 4.25 10.5

GK20A 21.2 4.09 17.1 56.9

Table 5.3: GPU statistics comparison. Values are expressed in milliseconds.

Dimension Allocated per Block

Kernel Grid Blocks Duration(µs)
Registers

per Thread
Warps Registers S. Memory

% Achieved

Occupancy

% Branch

Efficiency

CalculateForce 188 64 19.488 15 2 1024 768 B 0.233 0.821

CalculateDForce 132 64 8.288 42 2 3072 3328 KB 0.248 1

Plane_AddForce 47 64 5.056 10 2 1024 768 B 0.093 1

Plane_AddDForce 47 64 4.928 11 2 1024 768 B 0.093 1

AddMDx 141 64 4.032 8 2 512 0 0.244 1

Calculate_vDot 71 128 3.968 10 4 2048 512 B 0.240 0.999

Table 5.4: GK110A results

GK110A

Table 5.4 summarizes the results of the experiments carried out in running the kernels in
the CUDA FEM implementation. In the table, we show the grid and block dimensions.
The grid number is determined using the following formula:

threadsPerBlock = 64
gridSize = (inputSize+ threadsPerBlock − 1)/threadsPerBlock

Blocks use the global constant threadsPerBlock. For this experiment it was set to
64 threads per block. For each function the average duration in picoseconds is reported.
A number of registers per thread are used to store local variables and function argument

46

values. Table 5.4 also shows the total allocated warps, registers and shared memory per
block. In addition to these values, we reported values to determine the warp efficiency:
achieved occupancy and branch efficiency. Warp occupancy is defined as the ratio of
active warps on an streaming multiprocessor to the maximum number of active warps
supported by the SM. Occupancy varies over time as warps begin and end, and can be
different for each SM [38]. During the time threads in a warp begin executing to the
time when all threads in the warp have exited from the kernel, a warp is considered
active. Achieved occupancy is very low overall, approximately 25%, which translates
to circa 14 active warps out of the theoretical total 32 per block. Low occupancy
indicates instruction issue efficiency, because there are not enough eligible warps to
hide latency between dependent instructions [38]. Figure 5.4 provides an insight into
these inefficiencies and it highlights where stalls are generated. As is evident from
graph c) the main cause for low occupancy and warp efficiency is memory dependency.
Memory dependency stalls are caused by required resources not being available or fully
utilised. This is a dependency on data being loaded from memory which has not yet
arrived, and indicates that performance is being limited due to memory latency. It is
also clear that the cache is not fully utilised. Figure 5.5 shows the memory statistics
for the function CalculateForce.

Figure 5.4: Warp issue efficiency. a) Number of active warps per SM, b) eligible warps
per cycle and c) causes of warp stall

Surprisingly, the L1 cache has no hits while the greatest accesses are to the L2 cache,
shared and device (global) memory. This explains the reason to memory dependency:

47

latencies to retrieve data from shared and global memory are too high. Thus, a warp
must wait until the memory becomes available for each of its threads. Stores and loads
between L1 and L2 cache are shown in figure 5.6. L2 utilisation is good overall (75%)
but again L1 is not hit at all. These aspects can be mitigated by optimizing memory
alignment and access patterns.

Figure 5.5: Memory statistics.

Figure 5.6: Cache utilisation.

Another important aspect of the analysis is branch efficiency, which measures the
ratio between flow control decisions over all executed branch instructions. Branch
divergence occurs when threads of a warp are forced to take different executions path.
If this happens, the different execution paths must be serialised, since all of the threads

48

of a warp share a program counter; this increases the total number of instructions
executed for the warp [38]. In this case, the diverged threads are put to sleep until
they converge back to the original branch.

Branching is caused by loops and flow control instructions. However, almost all of
the kernels in table 5.4 achieve 100% branch efficiency. CalculateForce, on the other
hand, has a lower value of 82.1%.

Figure 5.7: Branch efficiency

Figure 5.7 shows the branch efficiency statistics. Graph a) shows two metrics for
evaluating the impact of flow control: branch and flow control efficiency. The former
represents branch efficiency per SM (the bars), while the latter represents an average
over all SMs (the branch line). Higher values are better, and indicate that warps take
a uniform execution path. The kernel CalculateForce has a good branch efficiency of
82.10%, as shown in graph a) of figure 5.7. Control flow is worse at only 68.71%.

Graph b) shows the average count of executed branch instructions per warp per
SM. It contains three metrics: not taken, taken and diverged. Taken and not taken
are the average number of executed branch instructions with a uniform control flow
decision per warp, i.e., the active threads of a warp that either take or do not take
the branch. Diverged is the average number of executed branch instructions per warp
for which the conditional resulted in different outcomes across the threads of the warp
[38]. This graph explains why the kernel has a low control flow efficiency (see graph

49

Dimension Allocated per Block

Kernel Grid Block Duration (µs)
Register

per thread
Warps Registers S. Memory

% Achieved

Occupancy

% Branch

Efficiency

CalculateForce 188 64 148.511 13 2 1024 768 B 0.468 0.624

CalculateDForce 188 64 112.701 38 2 2560 3.25 KB 0.417 1

Plane_AddForce 47 64 20.791 12 2 1024 768 B 0.454 1

Plane_AddDForce 47 64 18.199 11 2 1024 768 B 0.449 1

AddMDx 141 64 15.783 8 2 512 0 B 0.441 1

Calculate_vDot 71 128 16.035 9 2 2048 512 B 0.712 1

Table 5.5: GK20A results

a). Higher values of taken, with lower values of not taken and diverged, indicate that
the warp is not branching or stalling by taking different execution paths.

GK20A

Table 5.5 shows the results obtained from profiling the CUDA kernel using the GPU
GK20A on the Tegra device. The same kernel functions of table 5.4 are listed, as they
proved to be computationally the most expensive. As expected, the overall execution
time, per kernel, is higher compared to its desktop reference. However, it is of more
interest to study resource utilisation, warp and instruction efficiency. The function Cal-
culateForce, which is the most expensive kernel, is taken as a reference to analyse warp
and instruction efficiency, resource utilisation, and memory bandwidth and utilisation.

Surprisingly, the achieved occupancy is approximately 48%, which is 25% higher
than the device GK110A. However, occupancy is still not optimal as there remains 65%
of the warp not being utilised. The kernel has a block size of 64 threads. This size is
likely preventing the kernel from fully utilising the GPU. The device can simultaneously
execute up to 16 blocks on each SM. Because each block uses 2 warps to execute
the block’s 64 threads, the kernel is using only 32 warps on each SM. Increasing the
number of threads in each block can increase the amount of warps that can execute
on each SM. However, increasing the occupancy in a kernel that is subject to branch
divergence would also increase the number of divergent threads, raising the overall
branching inefficiency. In fact, branch efficiency reported in table 5.5 is 20% lower
than its corresponding execution on the GK110 device (see table 5.4).

50

The kernel ComputeForce exhibits low compute throughput and memory bandwidth
utilisation relative to the peak performance of the GK20A device. These utilisation
levels indicate that the performance of the kernel is most likely limited by the latency
of arithmetic or memory operations. Achieved compute throughput and/or memory
bandwidth below 60% of peak typically indicates latency issues. (see figure 5.8).

Figure 5.8: Branch efficiency

The result shown in figure 5.8 reveals the same memory dependency issue, which is
the cause of stalls. The kernel’s warp execution efficiency of 62.4% is less than 100%
due to divergent branches and control flow instructions.

Figure 5.9: Memory bandwidth efficiency

Figure 5.9 shows the memory bandwidth used by the kernel for the various types
of memory on the device. The table also shows the utilisation of each memory type
relative to the maximum throughput supported by the memory. The result shows that
the kernel is limited by the bandwidth available to the L2 cache. Unfortunately, the

51

profiling tool on Android does not provide any information about L1 cache utilisation.
Register pressure can prevent the kernel from fully utilising the GPU. However, this
kernel does not exhibit much register usage, as only 1024 registers are allocated per
block (13 allocated registers per thread).

52

Chapter 6

Conclusions

The main goal of developing an interactive FEM implementation has been achieved
with all of the four experiments. A cross-platform OpenGL ES 3.0 FEM was developed
using CUDA (compute capability 3.2) for parallel calculations on the GPU.

Results were obtained and compared on four different architectures: Intel i7 4930k
and ARM Cortex A15 for the CPUs and Kepler architecture, desktop and mobile, for
the GPUs.

The ARM CPU single core implementation on the Tegra exhibited similar perfor-
mances to the GPU implementation. The CPU converges to a steadier frame rate some
time after the beginning of the simulation. Unfortunately the causes of this behaviour
are unknown, but the presence of a Snoop Control Unit in the ARM processors, which
guarantees cache-to-cache data transfer between cores, is a plausible explanation. How-
ever, a lower-level analysis is required to proof this hypothesis because it is necessary
to read cache hits and misses on the ARM.

An analysis on the memory hierarchy of the GPU revealed that warp and branch-
ing inefficiencies are the main bottlenecks for the simulation. These limitations are
addressed in chapter 5, and causes are proved to be in thread-to-thread memory de-
pendencies and low cache reuse. Moreover, unified memory architecture was not fully
exploited in the provided CUDA implementation, creating a duplication of the memory
footprint.

The ARM CPU is better suited for running soft-body deformation on mobile plat-
forms. The ARM exhibited lower performance but higher stability. This makes the

53

CPU ideal for running visually plausible physics simulations. Moreover, CPU reached
only 25% of usage during the whole simulation, which is a large margin to run other
aspects of a system (e.g., AI, collision detection and response with other rigid/soft
objects, etc.).

6.1 Future Work

The use of the conjugate gradient is computationally expensive. There exists other
solvers for finding solutions to the linear system of equation in the FEM, e.g., direct
methods, Cholesky factorization, etc. These solvers could be implemented to study the
impact they have on performance and on the memory hierarchy.

Fractures could be an interesting addition as well as adding more physical objects
to the scene, in order to perform collision detection and calculate responses.

A lower-level analysis of the ARM CPU cache could be performed. Unfortunately,
the Shield Tegra employs an Android operating system, which is a limited version of
the Linux kernel. Thus, tools to analyse the memory hierarchy, e.g., perf, are not
available. The embedded board Jetson TK1 could be a good alternative because is
based on the Kepler architecture.

Using unified memory on the Shield could improve the overall performance and
address the memory dependency and efficiency issues reported in chapter 5.

54

Bibliography

[1] NVIDIA, “Nvidia® kepler gk110,” pp. 1–24, NVIDIA Corporation, 2013.

[2] NVIDIA, “Nvidia® tegra® k1,” pp. 1–26, NVIDIA Corporation, 2014.

[3] NVIDIA, “Cuda c programming guide,” 2015.

[4] M. Müller and M. Gross, “Interactive virtual materials,” in Proceedings of Graph-
ics Interface 2004, GI ’04, (School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada), pp. 239–246, Canadian Human-Computer Commu-
nications Society, 2004.

[5] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler, “Stable real-time
deformations,” in Proceedings of the 2002 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, pp. 49–54, ACM, 2002.

[6] M. Nesme, Y. Payan, and F. Faure, “Efficient, physically plausible finite elements,”
in Eurographics 2005, Short papers, August, 2005 (J. Dingliana and F. Ganovelli,
eds.), (Trinity College, Dublin, Irlande), 2005.

[7] E. G. Parker and J. F. O’Brien, “Real-time deformation and fracture in a game
environment,” in Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA ’09, (New York, NY, USA), pp. 165–175,
ACM, 2009.

[8] N. B. J. Andrews, “Xbox360 architecture,” pp. 25–37, IEEE Computer Society,
2006. 0272-1732/06/20.00.

55

[9] M. Müller, N. Chentanez, and T.-Y. Kim, “Real time dynamic fracture with vol-
umetric approximate convex decompositions,” ACM Trans. Graph., pp. 115–115,
2013.

[10] A. Nikolov, “Volume rendering optimisations for mobile devices,” Master’s thesis,
Trinity College of Dublin, 2015.

[11] S. F. F. Gibson and B. Mirtich, “A survey of deformable modeling in computer
graphics,” tech. rep., 1997.

[12] J. Mesit, Modeling and Simulation of Soft Bodies. PhD thesis, University of Cen-
tral Florida Orlando, Florida, 2010.

[13] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based dynamics,”
J. Vis. Comun. Image Represent., vol. 18, pp. 109–118, Apr. 2007.

[14] X. P. Institut and X. Provot, “Deformation constraints in a mass-spring model to
describe rigid cloth behavior,” in In Graphics Interface, pp. 147–154, 1996.

[15] C. Garre and A. Pérez, “A simple mass-spring system for character animation,”

[16] S. Xu, X. Liu, H. Zhang, and L. Hu, “An improved realistic mass-spring model for
surgery simulation,” in Haptic Audio-Visual Environments and Games (HAVE),
2010 IEEE International Symposium on, pp. 1–6, Oct 2010.

[17] T. Liu, A. W. Bargteil, J. F. O’Brien, and L. Kavan, “Fast simulation of mass-
spring systems,” ACM Trans. Graph., vol. 32, pp. 214:1–214:7, Nov. 2013.

[18] M. Müller, “Hierarchical position based dynamics,” 2008.

[19] J. Bender, M. Müller, M. A. Otaduy, and M. Teschner, “Position-based methods
for the simulation of solid objects in computer graphics,” EUROGRAPHICS 2013
State of the Art Reports, 2013.

[20] Y. Wang, Y. Xiong, K. Xu, K. Tan, and G. Guo, “A mass-spring model for surface
mesh deformation based on shape matching.,” in GRAPHITE, vol. 6, pp. 375–380,
2006.

56

[21] W. Rungjiratananon, Y. Kanamori, and T. Nishita, “Chain shape matching for
simulating complex hairstyles,” in Computer graphics forum, vol. 29, pp. 2438–
2446, Wiley Online Library, 2010.

[22] A. R. Rivers and D. L. James, “Fastlsm: fast lattice shape matching for robust
real-time deformation,” in ACM Transactions on Graphics (TOG), vol. 26, p. 82,
ACM, 2007.

[23] S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly, “Projective dynamics:
fusing constraint projections for fast simulation,” ACM Transactions on Graphics
(TOG), vol. 33, no. 4, p. 154, 2014.

[24] J. F. O’Brien and J. K. Hodgins, “Graphical modeling and animation of brittle
fracture,” in Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’99, (New York, NY, USA), pp. 137–146,
ACM Press/Addison-Wesley Publishing Co., 1999.

[25] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically deformable mod-
els,” SIGGRAPH Comput. Graph., vol. 21, pp. 205–214, Aug. 1987.

[26] J. F. O’Brien, A. W. Bargteil, and J. K. Hodgins, “Graphical modeling and ani-
mation of ductile fracture,” ACM Trans. Graph., vol. 21, pp. 291–294, July 2002.

[27] J. Allard, H. Courtecuisse, and F. Faure, “Implicit FEM Solver on GPU for Inter-
active Deformation Simulation,” in GPU Computing Gems Jade Edition (W. mei
W. Hwu, ed.), Applications of GPU Computing Series, pp. 281–294, Elsevier, Nov.
2011.

[28] S. Fortune, “A sweepline algorithm for voronoi diagrams,” in Proceedings of the
Second Annual Symposium on Computational Geometry, SCG ’86, (New York,
NY, USA), pp. 313–322, ACM, 1986.

[29] H. Ledoux, “Computing the 3d voronoi diagram robustly: An easy explanation,” in
Voronoi Diagrams in Science and Engineering, 2007. ISVD ’07. 4th International
Symposium on, pp. 117–129, July 2007.

57

[30] FEM Simulation of 3D Deformable Solids: A practitioner’s guide to theory, dis-
cretization and model reduction. Part One: The classical FEM method and dis-
cretization methodology. SIGGRAPH ’12: ACM SIGGRAPH 2012 Courses., 2012.

[31] C. Felippa and B. Haugen, “A unified formulation of small-strain corotational finite
elements: I. theory,” Computer Methods in Applied Mechanics and Engineering,
vol. 194, no. 21–24, pp. 2285 – 2335, 2005. Computational Methods for Shells.

[32] J. Georgii and R. Westermann, “Corotated Finite Elements Made Fast and Sta-
ble,” pp. 11–19, 2008.

[33] ARM, “Arm® architecture reference manual - armv7-a and armv7-r edition,”
pp. 1–2736, ARM, 2015.

[34] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A unified
graphics and computing architecture,” IEEE micro, no. 2, pp. 39–55, 2008.

[35] N. Arnold, “Netgen/ngsolve manual,” 2013.

[36] Game physics pearls, ch. Soft Bodies Using Finite Elements, pp. 217–248. Natick,
Mass: A.K. Peters, 2010.

[37] J. Allard, S. Cotin, F. Faure, P. j. Bensoussan, F. Poyer, C. Duriez, H. Delingette,
and L. G. B, “Sofa – an open source framework for medical simulation,” in In
Medicine Meets Virtual Reality (MMVR 15, 2007.

[38] NVIDIA, “Nvidia nsight visual studio edition user guide,” 2015.

58

	Acknowledgments
	Abstract
	List of Figures
	Chapter Introduction
	Motivation
	Objectives

	Chapter State of the Art
	Soft-Body Simulation
	Mass-Spring Systems
	Position-Based Dynamics
	Force-Based vs Geometry-Based Methods
	Continuum Mechanics
	Finite Element Analysis
	Finite Differences Method
	Finite Element Method

	Chapter Experiments
	Overview
	Target Architectures
	CPU Architecture
	Kepler GK110 Architecture
	Kepler GK20A Architecture

	CUDA Framework

	Chapter Implementation
	Pipeline
	Mesh Preparation
	Mesh Partitioning
	Co-rotational Formulation
	Compute Forces
	Integration Method
	Conjugate Gradient
	Mesh Mapping

	Libraries Used

	Chapter Results
	Experiment 1
	CPU Comparison
	Memory Analysis

	Experiment 2
	GPU Comparison
	Memory Analysis

	Chapter Conclusions
	Future Work

	Appendices
	Bibliography

