
Building Dynamic & Interactive Natural Game

Worlds

by

Jeremiah Dunn, BSci

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

August 2015

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Jeremiah Dunn

August 29, 2015

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Jeremiah Dunn

August 29, 2015

Acknowledgments

I would like to thank Lucy Bofin for her support during the duration of my masters,

my family and my supervisor, Mads Haahr.

Jeremiah Dunn

University of Dublin, Trinity College

August 2015

iv

Building Dynamic & Interactive Natural Game

Worlds

Jeremiah Dunn

University of Dublin, Trinity College, 2015

Supervisor: Mads Haahr

Dynamic game worlds are game worlds which change over time according to a given

rule set. Interactive game worlds allow for users to modify the state of the game world

in some way. Combining these two concepts together can result in more immersive

and believable game worlds. It can also lend itself to the creation of new game play

mechanics.

This project will look at how natural processes can be modelled to create believable,

macro-scale dynamic game worlds with high levels of user interaction. It will discuss

the different components that make a natural dynamic world and explore how they

can be modelled.

A prototype combining these systems together will be designed and then implemented.

v

It will demonstrate how the different components of the dynamic world will work

together. The prototype will be highly interactive, allowing the user to actively interact

with these systems in real time and discuss the potential applications of such a system.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Dynamic, Interactive Game Worlds . 1

1.2 Motivation . 3

1.3 Objectives . 4

1.4 Dissertation Outline . 5

Chapter 2 Background Research 6

2.1 Fluid Simulation Techniques . 6

2.1.1 Eulerian Method . 6

2.1.2 Semi-Lagrangian, Eulerian Method 8

2.1.3 Lagrangian Method . 10

2.2 Water & Hydraulic Erosion Simulation 10

2.3 Atmospheric Modelling . 12

2.4 Vegetation . 13

Chapter 3 Design 15

3.1 Fluid Simulation . 15

3.2 Terrain Representation . 18

vii

3.2.1 Soil . 18

3.2.2 Water . 18

3.3 Hydrolic Erosion . 19

3.4 Vegetation . 20

3.5 Atmosphere Modelling . 21

3.5.1 Evaporation . 21

3.5.2 Wind Simulation . 21

3.5.3 Rain Simulation . 22

Chapter 4 Implementation 23

4.1 Overview . 23

4.2 Dynamic World Architecture . 23

4.2.1 Required Data Structures . 23

4.2.2 Organising Data-Structures . 24

4.2.3 Organising Dynamic Component Logic 25

4.3 Integrating With Unity . 28

4.3.1 Visualisation . 28

4.3.2 Connecting The Dynamic World & The Visualisation 29

4.3.3 Handling User Interaction . 29

Chapter 5 Evaluation 32

5.1 Suitability of Design For Parallel & Multi-Threaded Implementation . . 32

5.2 Prototype . 33

5.2.1 Interaction Between Different Components 33

5.2.2 Potential Applications . 36

5.2.3 Performance . 37

Chapter 6 Conclusions 38

6.1 Contributions . 38

6.2 Future Work . 39

6.2.1 Performance & Resolution . 39

6.2.2 Other Dynamic Components . 39

6.2.3 Different World Formats . 39

viii

6.2.4 Uncoupling The Dynamic Component Simulation From The Pro-

gram Refresh Rate . 40

Appendix A Appendix 41

A.1 Other Potential Systems . 41

A.1.1 Wildlife . 41

A.1.2 Snow & Ice . 41

A.2 Accompanying Documents . 42

Appendices 41

Bibliography 43

ix

List of Tables

2.1 Average evaporation values for canopies from different forest types. [11] 13

4.1 Functions in DynamicTerrain . 26

4.2 Functions in DynamicWeather . 27

4.3 Functions in DynamicVegetation . 28

x

List of Figures

1.1 A comparison of interactivity and the dynamic nature of different games. 2

2.1 Pipe model with direct neighbours. 7

2.2 The point shown by the dot is found by tracing backwards along the

velocity of the cell marked by the X by one time-step. [18] 9

2.3 Top: the velocity field is equal to the sum of the incompressible field

and the gradient field. Bottom: rearranging these to obtain the incom-

pressible field. [18] . 9

3.1 Water simulation using outflow thresholds to prevent oscillations. . . . 16

3.2 Initial simulation state. 16

3.3 Simulation using hard thresholds. 17

3.4 soft threshold, t = 0.3s. 18

3.5 soft threshold, t = 1.0s. 18

4.1 Naive object orientated approach. 30

4.2 Improved hierarchy design. 31

5.1 A river forming as a result of adding water above the land barrier. . . . 34

5.2 A landslide on a steep slope caused by a chain reaction of soil slip de-

stroying vegetation. 35

5.3 clouds moving from bodies of water up slopes where different atmosphere

conditions cause them to release their stored water vapour as rain. . . . 35

5.4 A simple Perlin noise landscape changed by only the weather simulation. 36

xi

Chapter 1

Introduction

Natural game worlds are frequent in video games. Both Unity and Unreal Engine 4

have built in tools for creating them. [4] [5] Procedural generation is also used quite

reguraly to aid in the creation of large natural game worlds. This paper will discuss the

creation of game worlds that are both interactive and dynamic, opposed to the largely

static game worlds that the previous methods usually produce. Before discussing these

terms further, they will be defined in the following section.

1.1 Dynamic, Interactive Game Worlds

An interactive game world is one that the player can interact with and influence.

Games have varying levels of interactivity rather than being purely interactive or non-

interactive. For example, many narrative focused games will limit the player’s inter-

action with the game world in order to tell a set linear story while god games usually

focus on player interactions with the game world or characters in that game world.

It is worth noting that while the term dynamic is often used when describing procedural

generation, this paper is discussing continually changing dynamic elements of a game

world and not dynamic generation of game worlds. A dynamic game world, in the

context of this paper, is one which adheres to a set of rules and can change over time

1

2

without necessarily relying on input from the player. This is opposed to a non-dynamic

or static game world, which does not change after it is initially created.

To better understand how these terms relate to current game worlds, figure 1.1 was

created to show the degree to which different games fit into these definitions.

Figure 1.1: A comparison of interactivity and the dynamic nature of different games.

Game worlds which are purely static fall into the non-dynamic, non-interactive section

of the chart in figure 1.1. Games such as Call of Duty would fall into this catagory.

The terrain in the Sim City series could be defined as an interactive, non-dynamic

system. It allows for terraforming by the player but do not have any sort of actively

changing terrain. Half-Life 2 has a non-dynamic game world, but some interactive

physics objects are littered throughout it. Non-interactive, dynamic games include

Microsoft Flight Simulator that has a dynamic weather system. This downloads real

weather data and uses it in the game. Many fighting games including the Street Fighter

3

series take place in non-interactive, non-dynamic game worlds, the entirety of the game

is built around two character fighting in a static environment.

The interactive, dynamic game worlds section of the chart is the area this paper will be

focusing on in this paper. Minecraft is an extremely interactive world where anything

can be created and destroyed by the player but the dynamic nature of the game world

is extremely limited, some blocks can fall straight down and there are some very simple

fluid simulations. Spintires, an off-road driving simulator, has a lot of dynamic elements

at play such as dynamic soil and mud deformation and dynamic water. The player can

interact with these systems by driving on the terrain. From Dust, a god game about

helping villagers traverse small islands, has a highly interactive game world, allowing

players to pick up and drop soil and water. The dynamic elements of the game world

are limited to the fluid simulation.

1.2 Motivation

Highly interactive and dynamic game worlds are not very common due to hardware

constraints and the difficulty of scaling interactive, dynamic environments. Making

these game worlds more interactive can have numerous advantages. It can help build

more believable and immersive worlds for players. It can be used to create new game-

play mechanics, from the simple destructible worlds in older games such as Artillery

or Scorched Earth to modern games including the god-game From Dust [7].

There is also the potential for interactive environment simulations to be used as tools

by level designers. Having the core of the creation tools adhere a physical simulation

can increase the believability and geographical coherent of the resulting game worlds.

The prevalence of multi-core CPUs and the growing trend towards GPU based physics

simulations, such as Nvidia’s PhysX [22], parallel computing is now used occasionally

for more general computations in games. Previously it was rarely used in game engines

outside of rendering. Leveraging this, more complicated interactions and dynamic

elements can scale up more easily.

4

1.3 Objectives

The main goal of the project is to explore creating believable, dynamic and interactive

natural worlds. There are many different processes that could make up a dynamic

world simulation. This paper will focus on the following ones:

• Soil

• Water & hydrolic erosion

• Vegetation

• Wind

• Evaporation & rain

This will be achieved by completing these objectives:

• Develop models for the different processes;

• Design a system that combine these models together;

• Implement a prototype game world using this design;

• And add interactive elements to the prototype.

Other components such as wild life, snow and ice modelling were considered but were

ultimately dropped due to time constraints and their contribution to the model com-

pared to other potential processes. These are discussed more in section A.1 of the

appendix.

The model must be designed in such a fashion that the algorithms driving the differ-

ent processes could be easily implemented using multiple threads or using a parallel

architecture.

The prototype can be used to further evaluate the project. The prototype must show

how the different components can interact with each other in a meaningful way to

justify simulating each of them. The prototype should demonstrate some of the uses

of an interactive dynamic game world, either as a tool for level designers or a system

5

that could be used as part of a game. While the prototype will be a proof of concept of

for these models rather than a prototype focusing purely on optimising these models,

it still needs to be capable of running at a reasonable speed and terrain resolution to

demonstrate these models and it’s potential applications.

By completing these objectives, a prototype showing the potential of such a system

will be created and the complexity and scalability of such simulation can be observed.

1.4 Dissertation Outline

Chapter 2 discusses relevant research in the area of dynamic game worlds and real world

research. The different potential fluid simulations, that are used extensively in this

project, are also discussed. Chapter 3 discusses the chosen fluid simulation and the high

level design of each of the components which make up the system. Chapter 4 discusses

the implementation of each of these components and the design of the prototype.

Chapter 5 evaluates the design and prototype. Capter 6 concludes the project and

discusses future work.

Chapter 2

Background Research

2.1 Fluid Simulation Techniques

Fluid simulations will be used to drive some of the components of the game world.

These simulations fall into one of three main categories: Eulerian fluid simulations,

semi-Lagrangian, Eularian fluid simulations and Lagrangian fluid simulations.

2.1.1 Eulerian Method

Eulerian fluid simulations represent velocities and densities in discrete space as a grid

of cells. The exact method used is the column model, where a two dimensional grid is

used to represent columns of fluid densities. This model is often used in shallow water

fluid simulations due to it’s simplicity. [14] [13]

This model connects the neighbouring four cells using virtual pipes. Each cell has four

out-flow pipes leading out into neighbouring cells and four more pipes leading in from

each of it’s neighbours as shown in figure 2.1.

Over each time step the outflow for each cell is updated. The outflow rate change is

dictated by the difference in height, h between neighbouring cells, the length, l, and

6

7

Figure 2.1: Pipe model with direct neighbours.

cross sectional area, A of the virtual pipes and gravity, g. Equation 2.1 shows the

outflow calculation from cell a to b.

Oa,b = g(ha − hb)
A

l
∆t (2.1)

This value is then added to the current outflow rate. The outflow is always kept above

zero as the virtual pipes are thought to be one-directional. After the outflow rate is

calculated for each direction OL, OR, OT and OB a scaling factor, K is calculated as

shown in equation 2.2. [12]

K =
hl2

(OL +OR +OT +OB)∆t
(2.2)

8

If K is less than one, the outflow in each direction is scaled by K. The new heights

of the cells are updated according to the outflow from the cell and the inflow from

neighbouring cells. The scaling factor, K prevents the total outflow from being greater

than the height of each cell so that it can never be less than zero.

This method can be implemented with O(n2) time complexity where n is the width of

the two dimensional square grid. While the performance and complexity of this method

is favourable, it has the disadvantage of being unstable. If the outflow rate is too high

or the time step is too large, oscillations can occur within the model. Some measures

need to be taken to prevent this from happening, such as limiting the maximum flow

rate.

2.1.2 Semi-Lagrangian, Eulerian Method

Jos Stam proposed a stable Semi-Lagrangian, Eulerian method for fluid simulation. [17]

This method also uses a grid representation but treats the movement of densities and

velocities like particles to overcome the instabilities of the purely Eulerian approach.

The algorithms required for Stam’s approach can be split up into three catagories:

diffusion, advection and a mass conserving step.

For a stable model, diffusion has to be capable of working over time steps where a fluid

can diffuse farther than a single cell. To achieve this, simply swapping densities between

neighbours is not sufficient. Instead, a linear solver, typically using the Gauss-Seidel

method [20], is used.

Advection is used to move densities and velocities. This step uses a semi-Lagrangian

method as it is not merely passing densities and velocities from one cell to another.

Instead, the current velocities are used to back-trace to the position where the velocity

or density came from, as shown in figure 2.2. This position is not in discrete space

so this method is thought of as being semi-Lagrangian. Using this position, a value is

found by interpolating between the nearest cells.

The mass conserving step addresses the errors that velocity advection and diffusion

adds to the simulation. Unfortunately advection of velocity is not mass conserving so

9

Figure 2.2: The point shown by the dot is found by tracing backwards along the velocity
of the cell marked by the X by one time-step. [18]

this extra step is required. Figure 2.3 shows how to calculate this. The incompressible

field is known but the gradient field needs to be calculated. This involves solving a linear

system described by a Poisson equation [21] using the Guass-Seidel method discussed

before. Once this gradient field is calculated, it is subtracted from the velocity field to

find the mass conserving velocity field.

Figure 2.3: Top: the velocity field is equal to the sum of the incompressible field and
the gradient field. Bottom: rearranging these to obtain the incompressible field. [18]

At the beginning of each timestep external forces are collected. The velocity step occurs

10

first. The velocity step consists of adding new velocities and a diffusion and advection

step each followed by a mass conserving step. The density step then occurs. The

density step consists of adding new densities to the simulation followed by a diffusion

and advection step.

This method has the advantage of being stable over large time steps. Unfortunately it

has a time complexity of O(n2k), where n is the width of the two dimensional square

grid and k is the complexity of the linear solver.

2.1.3 Lagrangian Method

Unlike Eulerian fluid simulations, Lagrangian fluid simulations represent bodies of

water using particles. The fluid simulation is driven by interactions between these

particles. These interactions describe the mass, momentum and energy conservation

equations.

These models can be useful to believably simulate small volumes of water. They have

the advantage of not requiring spatial connectivity information which Eulerian methods

require. [15]

For our model, spatial connectivity will be important to tie the different components

together. The macro-scale of the model means that small scale accuracy is not a

primary concern. For use in a water simulation across a 3D terrain, a full 3D Lagrangian

simulation would be required. A 2D shallow water simulation could be implemented

using other methods for this purpose. It would be far less resource intensive. For these

reasons, a pure Lagrangian method will not be considered for this project.

2.2 Water & Hydraulic Erosion Simulation

Two-dimensional shallow water fluid simulations can be expanded to describe water

flow over a height map. The individual cells describe the height of water. In a semi-

Lagrangian, Eulerian simulations, as described in section 2.1.2, gradients in the terrain

and water heights can be used to add velocities to the simulation. With a pure Eulerian

11

method, as described in section 2.1.1, terrain heights are simply added to the water

heights when calculating each cell’s outflow.

In the paper Fast Hydraulic Erosion Simulation and Visualization on GPU [12], erosion

and deposition is dictated by the sediment transport capacity of the flow. This value

is determined by equation 2.3 where Ci,j is the sediment carrying capacity, αi,j is the

gradient, ~vi,j is the velocity and Kc is the carrying capacity constant.

Ci,j = Kc. sin(αi,j).|~vi,j| (2.3)

On flat terrains the value for α can be very low. To avoid this, a user defined threshold

prevents it from dropping below a certain amount.

Equation 2.4 and equation 2.5 show how deposition and erosion is calculated for each

cell. h is the height of the cell, st is the sediment currently suspended and sn is the new

sediment value. Ks is sediment capacity constant and Kd is the deposition constant.

The value for C is calculated by equation 2.3. If C is greater than st equation 2.4 is

carried our, representing erosion. Otherwise equation 2.5 is carried out representing

deposition.

ht+∆t = ht+∆t −Ks(C − st)

sn = st +Ks(C − st)
(2.4)

ht+∆t = ht+∆t −Kd(st − C)

sn = st +Kd(st − C)
(2.5)

12

2.3 Atmospheric Modelling

Simulating the effects of the atmosphere in games is not an area that has been greatly

explored in the past. Dwarf Fortress is one of the few games to feature any form

of weather simulation. Unfortunately it’s inner workings are not well documented

publicly. [1]

The primitive equations which drive atmospheric modelling are well documented and

have been estimated using Eulerian and Semi-Langarian fluid simulations as described

in section 2.1. [16]

Our atmosphere model will focus on the evaporation, advection and precipitation com-

ponents of the water cycle.

Evapotranspiration is the total evaporation and plant transpiration that occurs on

Earth over land, oceans and other bodies of water.

Over bodies of water, water molecules need to gain enough kinetic energy to evapo-

rate. Factors such as wind speed, humidity and temperature will dictate the rate of

evaporation. Equation 2.6 shows a method for calculating the evaporation of a body

of water where gs is the amount of water evaporated per second, Θ is the evaporation

constant, A is the surface area, xs is the maximum air humidity ratio and x is the

actual humidity ratio in the air. Θ is given as 25 + 19v over water where v is the air

speed. [2]

gs = ΘA
(xs − x)

3600
(2.6)

Over land, evaporation is mostly brought about by transpiration from vegetation taking

water out of the soil and releasing it through their leaves. The type of vegetation will

dictate the level of evaporation. Much of the information about evaporation rates for

different types of forests and crops is collected through rigorous studies of specific types

of vegetation under different conditions. Table 2.1 shows some of the different average

evaporation rates from different types of forests.

Movement of water vapour is brought about by wind advection. This could be described

13

type mm
hr

Coniferous Forest

Scots pine
0.19

Monterey pine
0.21

Sitka Spruce
0.18

Douglas fir
0.15

Broad-Leafed Forest

Common beech
0.45

Southern beeches
0.37

Table 2.1: Average evaporation values for canopies from different forest types. [11]

by the advection step of the fluid simulation described in section 2.1.2.

Precipitation is caused by vapour condensing back into water. Condensation generally

occurs when air with a high water vapour density cools. Cooling is usually caused by

rising air. [8]

2.4 Vegetation

Vegetation models are sometimes used in games, though usually in a very simple

form. The game From Dust uses cellular automata to decide whether vegetation grows,

spreads or dies. [7]

More advanced models exist outside of the game space which also use cellular automata

but use it in more advanced ways. In A Model Based on Cellular Automata for the

Simulation of the Dynamics of Plant Populations, a more realistic model is proposed.

Information about plant types, resources, plant size, fruit and seed creation, size infor-

14

mation for trunk roots and leaves is all stored. More advanced rules such as sustenance,

reproduction, resource production and resource flow is built into the model. [6] With

more information such as altitude and rainfall from the other components of the model,

a more believable vegetation model should be possible.

There are many other ways in which vegetation could interact with the rest of the

model as well. The roots of plants and trees are capable of reinforcing soil, causing

steeper slopes to form. [19] They can also reduce the amount of soil lost to wind and

water erosion. [10] Finally landslides and soil slip can uproot and destroy vegetation.

Chapter 3

Design

3.1 Fluid Simulation

A semi-Lagrangian, Eulerian fluid simulation can be suitable for a multi-threaded or

parallel implementations but in order to maximise the resolution of the prototype a

Eulerian fluid simulation will be used.

This means that the simulation will need some way of dealing with potential oscilla-

tions. The most noticeable and damaging to the believability of the model are high-

frequency, low-magnitude oscillations. They cause small, visually repetitive waves to

appear in the simulation.

The naive approach to prevent these oscillations occurring is to limit the maximum

outflow that each cell can have. With certain threshold parameters this can eliminate

these oscillations. Unfortunately, it can result in unrealistic behaviour when cells with

large height differences are put side by side.

Figure 3.1 shows this scenario occurring when a large volume of water is added beside

a lower volume. The volume of water on the right slowly reduces and spreads out. A

visible step between the two volumes forms and stays in place until the water level in

the two regions equalises.

15

16

Figure 3.1: Water simulation using outflow thresholds to prevent oscillations.

To find a good solution to this problem, a simple one dimensional model was created

with the aid of Matlab. The initial height values of this simulation are shown in

figure 3.2.

Figure 3.2: Initial simulation state.

Figure 3.3 shows the height values of the simulation using hard outflow thresholds after

one second. Visible steps form throughout the simulation where there are large height

differences.

17

Figure 3.3: Simulation using hard thresholds.

Instead a soft outflow threshold can be created that takes into account the height

differences between cells. Equation 3.1 shows how this threshold is calculated for an

outflow from cell a to cell b where Omin is the minimum outflow threshold and sO is

the outflow scaling factor. This equation dampens low magnitude oscillations, while

allowing for large volume differences to quickly and believably dissipate.

Oab = Omin + sO|ha − hb| (3.1)

Figure 3.4 shows the height values after 0.3 seconds. After one second, the height

values have equalised as shown in figure 3.5. Small fluctuations appear on the surface

but there are no visible, repetitive, low-magnitude oscillations.

18

Figure 3.4: soft threshold, t = 0.3s. Figure 3.5: soft threshold, t = 1.0s.

3.2 Terrain Representation

3.2.1 Soil

The terrain is represented as a two dimensional matrix of soil height values. At each

time step the gradient of the terrain is calculated. The gradient values are compared

against a gradient threshold. If the values are higher than this threshold, some soil is

transferred to the neighbouring cells. This process gives the impression of soil slip or

even landslides.

3.2.2 Water

A two dimensional matrix is used to track water height values. The water simulation

is driven by the fluid simulation from section 3.1. The soil height and water height

matrices are added together. This results in height values for the fluid simulation that

take the shape of the terrain into account.

19

3.3 Hydrolic Erosion

Since the fluid simulation uses a pure Eulerian implementation, information about the

water velocity is not explicitly stored. To remedy this, water velocity is implicitly

calculated using the height difference between neighbouring cells. Doing this produces

two velocity matrices, one for horizontal velocity and another for vertical velocity. [12]

The dissolved sediment is represented by a 2D matrix. Using equation 2.3 the carrying

capacity of the water is calculated and equations 2.4 and 2.5 are used in conjunction

with the sediment matrix to calculate the amount of erosion or deposition if water is

present.

Sediment transport is handled using a semi-Langarian method. As shown in figure 2.2,

the velocity field is used to back-trace where sediment has come from. This is similar

to the semi-Lagrangian step in a semi-Lagrangian, Eulerian fluid simulation. [12] For

each point on the velocity matrix, this back-tracing occurs and a new array of sediment

values is obtained.

Unfortunately, this method is not mass conserving and the total amount of sediment

in the new array is not equal to the total amount of sediment in the old array. A

linear-solver, as in the semi-Lagrangian, Eulerian fluid simulation, could be used. This

would mean that the current O(n2) solution would become an O(n3) solution.

Instead a more simple mass conservation method is used. The total mass of the sed-

iment in the matrix before sediment transport and after transport, m1 and m2 is

calculated by summing each matrix. A scaling value k is then found where k = m1

m2
.

The values in the after-transport matrix are then scaled by k. This method is not as

accurate as using a linear solver would be but for the sake of calculating the movement

of sediment, it is good enough.

Finally, if there are cells which no longer contain water but have some sediment, the

sediment is added back into the soil matrix.

20

3.4 Vegetation

The vegetation model used in the game world will not be as complicated as those

discussed in the background research. The primary use of vegetation in the prototype

will be demonstrating how it can interact with other game systems. This is opposed

to an in-depth simulation of different types of vegetation types interacting with each

other. A matrix is used to track the amount of vegetation in the model, a value between

zero and one is used to signify the vegetation density of each point.

There are several driving mechanisms for the vegetation model. The first is water

absorption and spreading. Water is removed from the water matrix and added to

another matrix representing the absorbed or ground water within the vegetation. If

there is sufficient water in a cell of the vegetation matrix, it can pass some of it on to

neighbouring cells. This is similar to the method of resource transport used in in the

paper A model based on cellular automata for the simulation of the dynamics of plant

populations. [6]

The vegetation also has mechanisms for spreading, growing and dying off. If a cell

has sufficient levels of water and a sufficient vegetation density, it is capable of seeding

neighbouring empty cells. Some of the water is passed over to this new cell and the

vegetation density is incremented by the growth rate for that time delta. Growth is

dictated by a preset growth rate and requires the absorbed water in that cell to be

above a certain user defined threshold. If the water falls to zero, the vegetation density

starts to decrease. Another method for decreasing vegetation is through suffocation,

once the water matrix goes above a certain height the vegetation dies off. This allows

small amounts of water from rain to be harmless to the vegetation while allowing rivers

and large other large water flows to destroy vegetation.

Interaction between the vegetation and the terrain occurs in three distinct ways that

roughly model the interactions described in section2.4. The first is the prevention of

soil slip. The more vegetation a cell has, the more that cell resists soil slip in the terrain

simulation. This is achieved by linearly increasing the soil slip gradient threshold with

the amount of vegetation present. The second is erosion prevention. This is achieved

by linearly reducing the soil absorption rate of the hydraulic erosion model with the

21

amount of vegetation present. Finally soil slip from the terrain model reduces the

amount of vegetation in cells where it occurs.

3.5 Atmosphere Modelling

3.5.1 Evaporation

The amount of water vapour that has been evaporated is tracked using another matrix.

Evaporation happens either from water in the vegetation model or water in terrain

model.

Over bodies of water, evaporation happens in accordance to equation 2.6. The value

for area is taken from the area of each cell in the model. The maximum vapour capacity

of the liquid is determined by the altitude and air pressure as dictated by the wind

simulation. The actual humidity is dictated by water vapour matrix. The evaporation

constant is varied according to the velocity values in the wind simulation.

Given that the vegetation simulation is using a simplified model, the evaporation rate

is determined by the amount of water present in the vegetation model and a minimum

evaporation threshold. There are no different types of vegetation so there is no need

to have a bunch of different evaporation rates. This loosely models the variation of

canopy evaporation with canopy humidity. [11]

3.5.2 Wind Simulation

The wind simulation is driven by the same fluid simulation as the water simulation.

Heights in the fluid simulation represent air pressure in the wind simulation. To create

more believable behaviour of wind-flow around mountains and other physical barriers,

a small modification is made to the fluid simulation. The virtual-pipe cross-sectional

area is varied according to the gradient of the terrain. Uphill gradients result in smaller

cross-sectional areas, while flats and downwards gradients result in larger cross-sectional

areas.

22

A prevailing wind is added by removing air pressure from one side and adding it to

the other. Velocity matrices are calculated as in section 3.3 for the sediment transport.

The same method of transport and mass conservation is also used.

3.5.3 Rain Simulation

Rainfall occurs when the maximum carrying air-humidity ratio is less than the total air-

vapour ratio. This value is varied by temperature and pressure. Pressure information

can be taken from the wind simulation and temperature can be implicitly calculated

based on the height of the terrain.

Chapter 4

Implementation

4.1 Overview

Unity was chosen as the platform to be used for creating the game world prototype.

Because of it’s ease of use and the wide array of built in functionality, it is a useful

prototyping tool. The code driving the prototype will be written using C#, Unity’s

preferred programming language.

4.2 Dynamic World Architecture

4.2.1 Required Data Structures

As described in chapter 3, the prototype uses several two-dimensional matrices to store

information about the different dynamic components. The terrain will need matrices for

the soil height, the water height, the suspended sediment, the water outflow in all four

directions and the velocity in the horizontal and vertical directions. The atmosphere

model will need matrices for the air density or air pressure, water vapour, air outflow

in all four directions and velocity in both directions. The vegetation model just needs

matrices for the vegetation density and the water stored by the vegetation.

23

24

Individual cells in the outflow matrices, the sediment matrix, the water matrix from

the vegetation model and the water vapour matrix are all updated according to both

the current values in their matrix’s previous state and other exterior values. Because

there is a reliance on the previous state, two matrices are needed for each set of these

parameters, one to store the old values and one to write new values to. In the proto-

type’s C# implementation each set of values is represented by a float[2][N,N] array,

where N is the width of each matrix. Two integer values are stored which point to the

old matrix and one to the new matrix. There is a swap function that can be called in

order to switch the two values.

Cells in the other matrices are updated in accordance to the cell’s previous value and

and other values outside of that matrix. Since they only rely on the value of that cell

and not the entire matrix, only one matrix is needed for each of the these parameters.

In a C++ implementation this could addressed by referencing each matrix with a

pointer and having a simple macro to swap pointers.

4.2.2 Organising Data-Structures

The different components of the model, the terrain, the atmosphere and the vegeta-

tion are split up into individual classes: DynamicTerrain, DynamicAtmosphere and

DynamicVegitation. A parent class, DynamicWolrd, is used to manage and combine

these systems.

The naive object orientated approach to designing this system would be to put all the

different data structures into their relevant classes as shown in figure 4.1.

There are many weaknesses that will result from this design. For example, the Dy-

namicVegetation class has functions that need access to waterHeight array from the

DynamicTerrain class. This would result in violations of the open-close rule and be a

somewhat sloppy design.

Instead, all the data structures are stored in the parent class. Figure 4.2 shows how

the arrays are all stored with this structure.

25

4.2.3 Organising Dynamic Component Logic

Child classes, shown in figure 4.2, are comprised of static functions that are used to

perform the algorithms required to simulate the dynamic game world. The inputs to

these functions are either references to arrays which will be modified or values which

will be used to perform calculations but remain unchanged. All the functions have void

return types as they are designed to modify existing data sets not compute new data

sets.

DynamicTerrain

The DynamicTerrain class contains function which handle the soil, water and hydraulic

erosion components of the game-world. Table 4.1 shows these functions, listed in the

order they are called by during the terrain update step of the simulation.

The first function called is ComputeOutflow. It uses the water height and soil height

values to calculate the outflow values in all four directions and update the current

outflow values accordingly.

The ComputeWaterVolume function is then used to calculate the updated water height

in each cell by summing the outflows and inflows together.

The ComputeVelocities function then uses updated water heights to implicitly calculate

the velocities which the ComputeErosionAndDeposition and ComputeSedimentTrans-

port functions can use to perform the hydraulic erosion calculations.

Finally the ComputeSoilSlip function is called. This uses the current soil values to

calculate the new soil values. The integer values which point to the old and new

buffers in the terrain parameters are swapped here so that the correct values can be

read and written to by other components.

26

function inputs

ComputeOutflow
float[,] outflowLeft, float[,] outflowRight, float[,] out-
flowTop, float[,] outFlowBottom, float[,] waterHeights,
float[,] soilHeights, float deltaTime

ComputeWaterVolume
float[,] outflowLeft, float[,] outflowRight, float[,] outflow-
Top, float[,] outFlowBottom, float[,] waterHeights, float
deltaTime

ComputeVelocities
float[,] outflowLeft, float[,] outflowRight, float[,] outflow-
Top, float[,] outFlowBottom, float[,] velocityX, float[,]
velocityY

ComputeErosionAndDeposition
float[,] velocityX, float[,] velocityY, float[,] soilHeights,
float[,] sedimentOld, float[,] sedimentNew, float delta-
Time

ComputeSedimentTransport
float[,] outflowLeft, float[,] outflowRight, float[,] out-
flowTop, float[,] outFlowBottom, float[,] waterHeights,
float[,] soilHeights, float[,] sediment

ComputeSoilSlip
float[,] soilHeightsOld, float[,] soilHeightsNew, float[,]
soilHeights, float deltaTime

Table 4.1: Functions in DynamicTerrain

DynamicWeather

The DynamicWeather class contains function for simulating evaporation, wind and rain

in the game world. Table 4.2 shows the different functions called during the weather

update step.

The ComputeOutflow, ComputeAirPressure, ComputeVelocities and ComputeVapour-

Transport carry out the same parts of the fluid simulation as their counterparts do in

the DynamicTerrain class. There are small differences in the atmosphere and water

simulations so either a generalised fluid simulation class or two separate fluid simula-

tions need to be used. Generalised solutions do not perform as well as more tailored

solutions and, while generalised solutions are usually favourable, a faster tailored solu-

27

function inputs

ComputeOutflow
float[,] outflowLeft, float[,] outflowRight, float[,] outflowTop,
float[,] outFlowBottom, float[,] terrainHeights, float[,] air-
Pressure, float deltaTime

ComputeAirPressure
float[,] outflowLeft, float[,] outflowRight, float[,] outflowTop,
float[,] outFlowBottom, float[,] airPressure, float deltaTime

ComputeVelocities
float[,] outflowLeft, float[,] outflowRight, float[,] outflowTop,
float[,] outFlowBottom

ComputeVapourTransport
float[,] outflowLeft, float[,] outflowRight, float[,] outflowTop,
float[,] outFlowBottom, float[,] waterHeights, float[,] soil-
Heights, float[,] vapour

AddPrevailingWind float[,]airPressure, V ector2 direction, float deltaTime

Table 4.2: Functions in DynamicWeather

tion is more appropriate here.

The AddPrevailingWind function adds and removes pressure from either side of the

simulation in order to create a pressure difference. This gives rise to an airflow favouring

one direction. The integer values that point to the old and new buffers in the weather

parameters are swapped at this point.

DynamicVegetation

The DynamicVegetation class contains functions for simulating evaporation, wind and

rain in the game world. Table 4.2 shows the different functions called during the

weather update step.

The ComputeVegetationWaterAbsorbtion function handles taking water from the ter-

rain simulation and absorbing into the vegetation simulation. The ComputeGrowthAnd-

Spread function handles the growth and spread aspects of the vegetation simulation.

28

function inputs

ComputeVegetationWaterAbsorption
float[,] waterStored, float[,] vegetationDensity,
float[,] waterHeights, float deltaTime

ComputeGrowthAndSpread
float[,] waterStored, float[,] vegetationDensity, float
deltaTime

Table 4.3: Functions in DynamicVegetation

4.3 Integrating With Unity

All the systems written so far do not use any Unity specific functionality outside of

some maths libraries. To complete the prototype a suitable visualisation is required,

the dynamic world needs to be integrated with the visualisation and the prototype

needs to handle interaction with the dynamic world.

4.3.1 Visualisation

A SquareMesh class was created to help visualise different components of the dynamic

world. It can be attached to Unity GameObjects and interacted with in different ways.

On initialisation, a square grid of vertices is created and connected as a mesh. Their

position along the grid is fixed but their height can be modified. A texture whose

resolution matches that of the number of vertices is also created. Three different

functions allow the class to be fed with different values from the DynamicWorld class.

The first function allows the square mesh to represent the solid land. Vegetation density

values and soil heights are given as inputs. The heights are updated in accordance to

the soil heights. The colour of the landscape varies from green to brown to represent

the amount of vegetation present.

The second function allows the square mesh to represent the water. Water height and

soil height values are given as inputs. The combined soil and water height is used to

set the height of the vertices and the water content is used to vary the alpha values of

29

the texture.

The final function is used for representing water vapour. Water vapour values are

given as an input and the alpha values and the brightness of the texture are modified

to represent water vapour in the air.

4.3.2 Connecting The Dynamic World & The Visualisation

Another class for managing the DynamicWorld class and integrating it with the differ-

ent SquareMesh game objects is required. This is the DynamicController class and it

inherits from Unity’s MonoBehaviour class so that it can be used with Unity’s Editor.

From the editor the different game objects that have SquareMesh classes attached can

be associated with it.

Unity’s Update function is called once per frame and the DynamicControler class calls

the DynamicWorld ’s Update function at this point with a time delta equal to the time

from the last frame.

4.3.3 Handling User Interaction

The DynamicController also monitors for user input whenever the Update function is

called. Using Unity’s built in user input handlers, the DynamicController can process

movement inputs as well as raycast mouse clicks to positions in game world coordinates.

This can be used to add or remove soil and water to exact points in the simulation or

to increase and decrease the amount of vegetation.

30

Figure 4.1: Naive object orientated approach.

31

Figure 4.2: Improved hierarchy design.

Chapter 5

Evaluation

As discussed in section 1.3, the design of the systems and the prototype will be used

to evaluate the project.

5.1 Suitability of Design For Parallel & Multi-Threaded

Implementation

One of the design goals of our system was to create algorithms tnat would lend them-

selves well to parallel or multi-threaded implementations.

For a multi-threaded implementation, the matrices that make up each component of the

simulation could be split into a number of smaller sub-matrices equal to the number of

available threads. A final step to deal with the boundaries between sub-matrices would

need to be completed. This would run in O(n) time so it would not add significant

overhead. All of the O(n2) operations, which are the bottleneck of our prototype, can

be solved in this manner.

For a parallel implementation, all of the 2D matrices can be expressed as textures.

In OpenGL the relevant algorithms are all capable of being expressed in glsl which

can be executed in the fragment shader rather than the nested loops used in the CPU

32

33

implementation. Compute shaders are supported in Unity which could be implemented

with this method. [3]

5.2 Prototype

As discussed in section 1.3, our prototype needs to implement the soil, water, hydraulic

erosion, vegetation, wind and evaporation and rain models. These models should

interact with each other in believable and meaningful ways. The prototype must also

demonstrate the potential for these models to be used as a development tool or game.

5.2.1 Interaction Between Different Components

The interactions between the different models is what drives the game world and as

such it is important that they are believable and meaningful. This section will discus

some of the different interactions that occur.

Figure 5.1 shows the formation of a river through hydraulic erosion. The top image

shows the initial terrain. Water is added above the land barrier, between the existing

two volumes of water. As the water begins to flow over the lowest point of the land

barrier, hydraulic erosion, caused by the movement of water results soil erosion. As

more water flows, the erosion increases and the river widens. Soil slip causes movement

of soil towards the river which is continually eroded by it. Vegetation is killed off by

the soil slip. The eroded material is deposited in the lower water volume.

Figure 5.2 shows how landslides can occur in this model. Steeper slopes can be cre-

ated using vegetation that increases the soil slip gradient threshold. By removing a

small amount of vegetation near the top, the soil slip gradient threshold decreases.

This causes soil to move down the slope killing vegetation in the process. This has a

cascading effect down the slope giving the appearance of a landslide.

Figure 5.3 shows the formation and movement of a rain cloud. Most of the evaporation

takes place over land. The prevailing wind moves it over the mountains, where changes

34

Figure 5.1: A river forming as a result of adding water above the land barrier.

in the atmosphere and elevation of the terrain model cause rain. Some of the water

released can be seen in the left of the image.

Figure 5.4 shows the effect of leaving all these systems to interact with each other with

no input from the user. The level of evaporation and condensation has been increased

for effect. The image on the left shows the initial landscape, created using some

Perlin noise. The landscape on the right shows signs of erosion, soil slip, redistributed

water from the evaporation and rain and vegetation growth and death. The resulting

landscape looks radically different from the initial terrain and the geographic features

are more believable.

As discussed, all the different systems have their own important impact on the game

world and each other. The prototype can therefore be said to fulfil the goal of simulating

the different components in a believable and meaningful way.

35

Figure 5.2: A landslide on a steep slope caused by a chain reaction of soil slip destroying
vegetation.

Figure 5.3: clouds moving from bodies of water up slopes where different atmosphere
conditions cause them to release their stored water vapour as rain.

36

Figure 5.4: A simple Perlin noise landscape changed by only the weather simulation.

5.2.2 Potential Applications

Interactions with the game world in the prototype focus on its potential to be used as

a tool for level designers.

The prototype is operated similarly to the interface of a real-time strategy game, the

user can pan around the game world looking down from above and can click on the

game world to interact with it. Interactions include placing and removing soil, water

and vegetation. The amount of each material the user adds and the radius and size

brush that is used to place each can be modified to allow for fine or coarse control.

A free camera mode is also available to view the terrain more closely or reposition the

camera for interacting with the environment.

With these interactions, the prototype can be used as a tool to create landscapes. Since

all the data comprising the world is stored in two dimensional matrices, game worlds

could easily be exported for use elsewhere or loaded into our model.

The rain model could also be left to run to produce different game worlds as shown in

figure 5.4.

37

For use in a game, the macro-scale world view and ability to manipulate the environ-

ment could lend itself well to god games, real-time strategy games or to city and town

building games. The highly interactive nature and believable interactions between all

the systems, discussed in section 5.2.1, could lend themselves well to an educational

tool for demonstrating erosion, the effect of terrain on wind and rain and vice versa

and the how vegetation interacts with the world.

5.2.3 Performance

The prototype is CPU limited. Multi-threading, while possible with the current design,

was not implemented as priority was given to developing the different dynamic models.

With that said the prototype is capable of running at 30 frames per second with a

game world size of 110 by 110 cells on a 2012 model MacBook Air with a 1.8GHz Intel

i5 processor.

This frame rate is acceptable for running a tool or game. The 12,100 individual cells

allowed for the different dynamic systems to be simulated at an adequate level of detail.

With improvements such as multi-threading and moving away from C# to a more

performance orientated implementation in a language such as C++k the performance

and resolution of the system could be greatly improved.

Chapter 6

Conclusions

6.1 Contributions

The design was built using an existing fluid simulation model, soil-slip model, hydraulic

erosion model and vegetation simulation model.

The soil-slip model used in other research was expanded to interact with the vegeta-

tion model, allowing for more types of behaviour including cascading landslide effects.

The hydraulic erosion model was also expanded to take vegetation into account as a

preventative measure of erosion.

A method for preventing oscillations from occurring in the fluid simulation was put for-

ward that filtered out repeating small fluctuations while allowing for large movements

of fluid.

An atmosphere model was proposed and implemented using the existing fluid simula-

tion. The model used existing equations and research to simulate evapotranspiration.

It used the terrain data and air pressure information to effect how wind flows. Altitude

and air pressure was used to calculate the amount of condensation.

A prototype was created that combined all these models together. It was capable of

believably simulating a natural game world. The prototype featured heavy user interac-

38

39

tion, conveying the potential applications of such a simulation as a game development

tool, game component or piece of educational software.

6.2 Future Work

6.2.1 Performance & Resolution

As previously discussed, the algorithms driving the prototype can be implemented with

multi-threading or using a parallel implementation. This could greatly improve the

resolution and performance of the system. Porting the project to C++ and making code

optimisations which are not possible in C# could also bring about large performance

benefits.

6.2.2 Other Dynamic Components

The model contains dynamic components that are core to creating a dynamic world

but many more could be added. Snow, ice, wildlife and more could be added to make

a more intricate simulation. Appendix A.1 discusses some systems that fell outside of

the scope of this project.

6.2.3 Different World Formats

The prototype simulates a square patch of terrain. It uses Cartesian coordinates to

directly map world space back to the two dimensional matrices that hold all of the data

from the different dynamic systems. An evenly spaced spherical coordinate system

could be used to represent an icosphere, which is a spherical shape made up of evenly

sized triangles. If these coordinates were mapped to an arbitrary array a spherical

game world could be created using the same dynamic systems discussed in this paper.

By having a spherical game world, night and day could be simulated. The angle to the

sun would also vary with each cell’s position. The wind system could be driven by the

40

different conditions around the game world instead of artificially creating a prevailing

wind as we have to do with our square prototype.

6.2.4 Uncoupling The Dynamic Component Simulation From

The Program Refresh Rate

The current implementation of the prototype directly ties the simulation of the game

world to the frame rate of the program. However, this need not be the case. The last

two states of the game could be stored in two buffers. These would be filled new game

world states as they come out of the game world simulation. Interpolating from the

oldest buffer to the newest, the game world could appear to be changing from frame

to frame while being simulated at a slower refresh rate in the background.

There would be some delay between recognising a users input and it being reflected in

the simulation. This could be overcome by responding visually to the users input. For

example a user input to increase the height of an area could be reacted to by changing

the values being interpolated to. The same values would then be added to a queue of

inputs for the next simulation cycle update. The user would then still perceive their

input without extra input lag and the simulation would not have to recognise it until

the next update.

Changing the implementation in this way would allow for the simulation to be run on

a wider array of devices with more acceptable frame rates.

Appendix A

Appendix

A.1 Other Potential Systems

A.1.1 Wildlife

Cellular automata have been used to model biological systems. The paper, Cellular-

automata-based ecological and ecohydraulics modelling [9], explores the use of cellular

automata to simulate a predator-prey model.

The vegetation model would act as a resource input to herbivore wildlife which act as

the resource for the carnivore wildlife.

A.1.2 Snow & Ice

Temperature can be implicitly calculating using altitude in our simulation. When

water from the atmosphere model condenses it could be modelled as snow rather than

rain. The snow could be represented in a similar fashion to soil and added on top of

the soil in the terrain model. Temperature variations could cause snow melt, adding

water back into the terrain model. Heights of soil above a certain amount could lead

to the formation of ice which could be represented by another layer.

41

42

A.2 Accompanying Documents

Attached is a disk containing the source code of the prototype and a short video of the

simulation.

Bibliography

[1] Dwarf frotress wiki: Weather. http://dwarffortresswiki.org/index.php/v0.

34:Weather. Accessed: 20-08-2015.

[2] Evaporation from water surfaces. http://www.engineeringtoolbox.com/

evaporation-water-surface-d_690.html. Accessed: 20-08-2015.

[3] Unity documentation: Compute shaders. http://docs.unity3d.com/Manual/

ComputeShaders.html. Accessed: 24-08-2015.

[4] Unity documentation: Terrain engine. http://docs.unity3d.com/Manual/

script-Terrain.html. Accessed: 17-08-2015.

[5] Unreal engine 4 documentation: Landscape outdoor terrain. http://www3.geosc.

psu.edu/~dmb53/DaveSTELLA/Water/global%20water/global_water.htm. Ac-

cessed: 17-08-2015.

[6] Bandini, S., and Pavesi, G. A model based on cellular automata for the

simulation of the dynamics of plant populations. In Proceedings of the Interna-

tional Conference on Environmental Modelling and Software Society (iEMSs)–14-

17 June 2004 University of Osnabruck (2004), Citeseer, pp. 277–282.

[7] Bel, R., and Vimont, B. Developing the interactive dynamic natural world of

from dust. In ACM SIGGRAPH 2011 Talks (2011), ACM, p. 22.

[8] Bice, D. Modeling the global water cycle. http://www3.geosc.psu.edu/

~dmb53/DaveSTELLA/Water/global%20water/global_water.htm. Accessed: 13-

05-2015.

43

http://dwarffortresswiki.org/index.php/v0.34:Weather
http://dwarffortresswiki.org/index.php/v0.34:Weather
http://www.engineeringtoolbox.com/evaporation-water-surface-d_690.html
http://www.engineeringtoolbox.com/evaporation-water-surface-d_690.html
http://docs.unity3d.com/Manual/ComputeShaders.html
http://docs.unity3d.com/Manual/ComputeShaders.html
http://docs.unity3d.com/Manual/script-Terrain.html
http://docs.unity3d.com/Manual/script-Terrain.html
http://www3.geosc.psu.edu/~dmb53/DaveSTELLA/Water/global%20water/global_water.htm
http://www3.geosc.psu.edu/~dmb53/DaveSTELLA/Water/global%20water/global_water.htm
http://www3.geosc.psu.edu/~dmb53/DaveSTELLA/Water/global%20water/global_water.htm
http://www3.geosc.psu.edu/~dmb53/DaveSTELLA/Water/global%20water/global_water.htm

44

[9] Chen, Q., Ye, F., and Li, W. Cellular-automata-based ecological and ecohy-

draulics modelling. Journal of Hydroinformatics 11, 3-4 (2009), 252–265.

[10] Gao, Q., Ci, L., and Yu, M. Modeling wind and water erosion in northern

china under climate and land use changes. Journal of Soil and Water Conservation

57, 1 (2002), 46–55.

[11] Kozlowski, T. Additional Woody Crop Plants. No. v. 7. Elsevier Science, 2012.

[12] Mei, X., Decaudin, P., and Hu, B. Fast hydraulic erosion simulation and

visualization on gpu. In Pacific Graphics (2007).

[13] Müller-Fischer, M. Fast water simulation for games using height fields.

[14] O’Brien, J. F., and Hodgins, J. K. Dynamic simulation of splashing fluids.

In Proceedings of the Computer Animation (Washington, DC, USA, 1995), CA

’95, IEEE Computer Society, pp. 198–.

[15] Premžoe, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker,

R. T. Particle-based simulation of fluids. In Computer Graphics Forum (2003),

vol. 22, Wiley Online Library, pp. 401–410.

[16] Smolarkiewicz, P. K., and Margolin, L. G. On forward-in-time differencing

for fluids: an eulerian/semi-lagrangian non-hydrostatic model for stratified flows.

Atmosphere-Ocean 35, sup1 (1997), 127–152.

[17] Stam, J. Stable fluids. In Proceedings of the 26th Annual Conference on Computer

Graphics and Interactive Techniques (New York, NY, USA, 1999), SIGGRAPH

’99, ACM Press/Addison-Wesley Publishing Co., pp. 121–128.

[18] Stam, J. Real-time fluid dynamics for games. In Proceedings of the game developer

conference (2003), vol. 18, p. 25.

[19] Van Beek, L., Wint, J., Cammeraat, L., and Edwards, J. Observation

and simulation of root reinforcement on abandoned mediterranean slopes. In Eco-

and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability.

Springer, 2007, pp. 91–109.

45

[20] Weisstein, E. W. Gauss-seidel method.

[21] Weisstein, E. W. Poisson’s equation.

[22] Wittenbrink, C. M., Kilgariff, E., and Prabhu, A. Fermi gf100 gpu

architecture. IEEE Micro, 2 (2011), 50–59.

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Dynamic, Interactive Game Worlds
	Motivation
	Objectives
	Dissertation Outline

	Chapter Background Research
	Fluid Simulation Techniques
	Eulerian Method
	Semi-Lagrangian, Eulerian Method
	Lagrangian Method

	Water & Hydraulic Erosion Simulation
	Atmospheric Modelling
	Vegetation

	Chapter Design
	Fluid Simulation
	Terrain Representation
	Soil
	Water

	Hydrolic Erosion
	Vegetation
	Atmosphere Modelling
	Evaporation
	Wind Simulation
	Rain Simulation

	Chapter Implementation
	Overview
	Dynamic World Architecture
	Required Data Structures
	Organising Data-Structures
	Organising Dynamic Component Logic

	Integrating With Unity
	Visualisation
	Connecting The Dynamic World & The Visualisation
	Handling User Interaction

	Chapter Evaluation
	Suitability of Design For Parallel & Multi-Threaded Implementation
	Prototype
	Interaction Between Different Components
	Potential Applications
	Performance

	Chapter Conclusions
	Contributions
	Future Work
	Performance & Resolution
	Other Dynamic Components
	Different World Formats
	Uncoupling The Dynamic Component Simulation From The Program Refresh Rate

	Appendices
	Appendix Appendix
	Other Potential Systems
	Wildlife
	Snow & Ice

	Accompanying Documents

	Bibliography

