
Side Quest Generation

using Interactive Storytelling

for Open World Role Playing Games

by

Sarah Noonan, B.A.I.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

(Interactive Entertainment Technology)

University of Dublin, Trinity College

September 2015

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Sarah Noonan

August 30, 2015

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Sarah Noonan

August 30, 2015

Acknowledgments

First, I would like to thank my supervisor Mads Haahr, for providing valuable advice

and assistance throughout the duration of this dissertation. I would also like to thank

him, and the IET course, for allowing me the opportunity to work and research in such

an interesting area, and inspiring a love of game AI and interactive storytelling.

I would also like to thank my friends Tony, Gio, and Clementine, for supporting me

throughout what has been a stressful year.

I’d like to thank Jean and Daniel, for their invaluable proof reading skills.

And finally I’d like to thank my parents, for being there for me throughout my entire

time in education. Without your unwavering support I would have given up a long

time ago.

Thank you all.

Sarah Noonan

University of Dublin, Trinity College

September 2015

iv

Side Quest Generation

using Interactive Storytelling

for Open World Role Playing Games

Sarah Noonan

University of Dublin, Trinity College, 2015

Supervisor: Mads Haahr

This dissertation aims to explore the use of interactive storytelling techniques in the

procedural generation of side quests for open world role playing games.

Side quests can play a vital role in providing players with a non-linear feeling during

open world games. They do this while also providing goals, tasks, and rewards to

keep players invested in the game. However, the prohibitive cost of designing and

implementing a sufficient number of side quests to populate a large open world game

often requires that the majority of such quests be overly simple and cheap to produce

(such as the ever unpopular “fetch quests”).

v

Interactive storytelling has been used to control the pacing and difficulty of commercial

games, however its full narrative potential has so far mostly been confined to academic

and text-based games.

This dissertation presents a model that integrates interactive storytelling with procedu-

ral quest generation, allowing for the generation of engaging quests that have relevance

to both the state of the game world, and the overall narrative.

The implementation of this model shows definite potential for the use of interactive

storytelling in the procedural generation of quests for games in the future, in order to

create more enjoyable, believable, and interactive experiences for players.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Dissertation Roadmap . 4

Chapter 2 State of the Art 5

2.1 Believability of NPCs . 5

2.1.1 Believability vs. Realism . 5

2.1.2 Modelling Human Behaviour . 6

2.1.3 Player Replacements vs. NPCs 7

2.1.4 Believable Agents . 7

2.2 Interactive Storytelling . 10

2.2.1 Patterns in Storytelling . 11

2.2.2 Drama-Management Based Interactive Storytelling 12

2.2.3 Character Based Interactive Storytelling 12

2.2.4 Multi-Solution Levels . 14

2.3 AI Architectures . 15

vii

2.3.1 Requirements . 15

2.3.2 Finite State Machines . 15

2.3.3 Behaviour Trees . 16

2.3.4 AI Planners . 17

2.4 NPCs in Games . 18

2.4.1 Companions . 18

2.4.2 Performance Issues . 19

2.5 Side Quests in Open World Games . 20

2.5.1 Definition and Purpose . 20

2.5.2 Quest Generation . 21

2.6 Conclusion . 23

Chapter 3 Design 24

3.1 Influences . 24

3.2 Defining the Model . 25

3.2.1 Quest System . 25

3.2.2 Character Modelling . 26

3.2.3 Drama Management . 29

3.3 Illustrating the Model . 31

3.3.1 Example Plot Fragment: The Jealous Suitor 31

3.4 Procedural Content Generation . 34

3.5 Conclusion . 35

Chapter 4 Implementation 36

4.1 Platform and Existing Code Base . 36

4.1.1 Unity Game Engine . 36

4.1.2 Existing Code Base . 36

4.2 Character Modelling . 37

4.3 Quest System . 39

4.4 Plot Fragments . 42

4.5 Drama Management . 43

4.6 Conclusion . 44

Chapter 5 Evaluation 45

viii

5.1 Character Modelling . 45

5.1.1 Mental/Physical State . 45

5.1.2 Relationships and Relationship Traits 46

5.1.3 Character Traits . 46

5.1.4 Procedural Generation of Characters 47

5.2 Procedural Generation of Quests using Interactive Storytelling 47

5.2.1 Quest System . 47

5.2.2 Plot Fragments . 48

5.2.3 Drama Management . 48

5.3 Extensibility and Ability to Integrate with Other Systems 49

5.4 Effcient Implementation . 50

Chapter 6 Conclusion 51

6.1 Main Contributions . 51

6.2 Limitations & Future Work . 52

6.2.1 Limited Prototype . 52

6.2.2 Integration . 53

6.2.3 Events System . 53

6.2.4 UI/Scripting Support for Non-Programmers 53

6.3 Final Thoughts . 54

Bibliography 55

ix

List of Tables

2.1 Level-of-Detail(LOD) Levels in Neverwinter Nights [7] 19

3.1 States - Ranges and Meanings [20] . 27

3.2 Relationship Traits - Ranges and Meanings 28

3.3 Traits - Ranges and Meanings . 29

x

List of Figures

2.1 Freytag’s Pyramid . 13

2.2 An example plot fragment from UNIVERSE [33]. This plot fragment

attempts to achieve the author goal of making a married couple unhappy. 14

2.3 Example Behaviour Tree [58] . 16

2.4 The SQUEGE process [47] . 21

3.1 The plot fragment selection process of the drama manager. 30

3.2 The character constraints of the “Jealous Suitor” subplot. 33

4.1 Open quest log displaying an active quest. 40

4.2 Quest star to indicate the NPC has a quest for the player. 41

5.1 Unity’s profiler showing McNulty’s implementation. The performance

shows a computation spike, which adversely affects the frame rate. This

corresponds to 10am in-game time, when all NPCs go and eat breakfast.

Other than this, performance is steady. 49

5.2 A performance snapshot of the implementation taken in the Unity pro-

filer. There is no single large performance spike, as NPCs do not have

specific routines to follow and so do not all change activities at once.

However, performance is less steady overall, as NPCs are changing tasks

more frequently and at irregular intervals. 50

xi

Chapter 1

Introduction

This dissertation explores the use of interactive storytelling techniques in the procedural

generation of side quests for open world role playing games (RPGs). This project

proposes a hypothesis that incorporating interactive storytelling techniques, such as

author goals and sub-plot preconditions, into quest generation would create quests

relevant to the NPCs, resulting in a more interesting and immersive player experience.

This could also serve the purpose of weaving an underlying narrative that emerges

organically as the player progresses through the game.

The hypothesis is tested through the creation of a prototype that demonstrates such a

system. It is intended that this prototype will demonstrate the system’s potential to

produce side quests that are interesting and enjoyable for the player, while reducing

the development time which would usually be necessary for the manual creation of side

quests. It is expected that the model will remain versatile enough to be applicable to

a wide variety of open world role playing games.

1.1 Motivation

Open world games, or “sandbox” games, are games with large scale, non-linear worlds

that the player is free to explore. Open world role playing games typically take place

1

in an environment that is populated with a sequence of quests that the player must

complete in order to progress through the game’s story. Along with these main quests,

the player is given the opportunity to take on various side quests, which provide the

player freedom to gain extra rewards and experience in the game without adhering to

a linear storyline [47].

With the larger worlds and increased playtime demanded of recent open world role

playing games, the number of side quests can grow to over a hundred[64][30]. The

designing, writing, and scripting of these quests consumes a significant amount of

development resources. This results in the need for cost saving measures, such as the

reliance on a large number of “fetch quests”, quests which merely involve fetching an

item for an NPC. These quests are quick to develop, but can be boring for the player,

and fail to reflect the state of the game world or the point in the storyline.

Interactive storytelling has been used in commercial games (such as Left 4 Dead [61]

and Far Cry 2 [43]) to control the pacing and difficulty[33]. However, the potential of

interactive storytelling to control the narrative of the game has mostly been confined

to academic and text-based games (such as Façade [2] and Galatea [57]).

1.2 Objectives

The main objectives of this dissertation are to:

1. Create a generalised character modelling system, on which interactive storytelling

can be based.

2. Create a system which employs interactive storytelling to procedurally generate

interesting and relevant side quests at run time.

3. Ensure system is extensible and can be integrated with other systems.

4. Provide an efficient implementation of such a system that does not have a signif-

icant impact on performance or memory consumption.

2

Character Modelling

Character modelling is not the main focus of this dissertation, however, it is necessary

for the interactive storytelling objective, given that unique and interesting characters

are required in order to generate a narrative. Therefore, some model needs to exist to

represent each NPC’s unique personality, and their relationships with each other. In

order to support the generation of a large number of NPCs, this character modelling

should support procedural generation.

Procedural Generation of Quests using Interactive Storytelling

The main objective of this dissertation is to research and develop a system to proce-

durally generate side quests at run time. This would reduce the development burden

for side quest generation for large scale open world role playing games.

Rather than relying on repetitive fetch quests, it is hoped to integrate interactive

storytelling techniques into the quest generation system, in order to create interesting

and relevant quests.

Extensibility and Ability to Integrate with Other Systems

If the system is to be versatile and suitable for use in a wide variety of games, it must

be able to be used alongside other AI and NPC systems, such as activity selection and

relationship systems. Additionally, it must be extensible, to support the generation of

quests for different genres of open world role playing games.

Efficient Implementation

AI is typically afforded a low budget for performance and memory in games, compared

with other systems such as rendering and physics simulation. Millington et al [42] state

that on previous generation hardware (Playstation 3 and Xbox 360), AI was typically

afforded only 8MB of memory, out of a total of 512MB available. Therefore a model

3

will be more likely to be used in a variety of applications if it remains light-weight and

efficient.

1.3 Dissertation Roadmap

In chapter 2, the state of the art in the industry will be reviewed, including the be-

lievability of NPCs, interactive storytelling, and methods for reducing the footprint of

generating large numbers of side quests.

Chapter 3 will outline the design of the model in general terms, along with how it was

influenced by the current state of the art.

Chapter 4 will describe the specifics of the prototypes implementation. Specifically,

how the character modelling and quest generation components were developed.

In chapter 5 the prototype will be evaluated by how well it has fulfilled the objectives

outlined in the previous section.

Chapter 6 will draw conclusions about the merits and limitations of the model, as well

as possible future improvements.

4

Chapter 2

State of the Art

In this chapter, a review of the state of the art of the industry will be presented.

Research was conducted into the areas of believability of NPCs, interactive storytelling,

and side quest generation.

2.1 Believability of NPCs

NPCs are a staple in any open world role playing game. In order for a world to feel alive

and interesting, it must be populated with believable NPCs. In this section, research

on the believability of NPCs will be reviewed.

2.1.1 Believability vs. Realism

In the casual discussion of games, the quality of the physics or rendering is often

measured in terms of how “realistic” it is. However, it is important to make a distinction

between the terms “believability” and “realism”. Realism refers to how close something

is to real life, while believability refers to how plausible something is for the given

situation. For example, it would not be realistic for a human agent to have to ability

to fly. However, if the agent was framed as a mage or wizard, it may be believable

5

for them to be able to fly, within the context of the game. For agents, the goal is

believability, not necessarily realism.

2.1.2 Modelling Human Behaviour

It is impossible to create believable human agents that emulate human behaviour with-

out first defining and modelling this behaviour.

McCrae et. al [38] outlines the Five Factor Model, a model that describes personality

according to 5 properties.

Openness to Experience A person’s curiosity, and their appreciation for art, emo-

tion or adventure.

Conscientiousness A person’s tendency to be organised or dependable, self-disciplined,

to prefer planned behaviour over spontaneous.

Extraversion A person’s energy levels, sociability, tendency to seek the company of

others.

Agreeableness A person’s tendency towards compassion and cooperation. Also de-

scribes how well-tempered and trusting they tend to be.

Neuroticism A person’s tendency to experience unpleasant emotions easily, such as

anger or anxiety. Also refers to the degree of emotional stability and impulse con-

trol.

6

2.1.3 Player Replacements vs. NPCs

Agents in games may be intended to act as either a player replacement or an NPC.

A player replacement is an agent that is designed to emulate a real human playing

the game. These tend to be used in multiplayer games, for example Dota 2 [14],

to take the place of human players in the case of no internet connection, or if the

player merely wishes to practice. Creating believable player replacements was the

subject of the BotPrize competition [28], which aimed to create agents to play the

game Unreal Tournament 2004 [23] that were indistinguishable from human players.

Player replacements are not the subject of this dissertation.

In contrast to player replacements, NPCs are not intended to act as if a human was

controlling them, but instead act as if they are their own living entity within the game

world. This allows the agents to act in ways that are not necessarily plausible for a

human player to perform, as the player has a willingness to suspend disbelief in order

to immerse themselves in the game world.

2.1.4 Believable Agents

Unlike most areas of AI, agents for games do not need to able to accomplish useful

tasks, or be effective problem solvers. Instead, their main purpose is to be believable,

as real characters within the game world.

Loyall [36] outlines the properties required for believable agents. He draws on work

from character artists, such as animators [63] and writers [19].

Personality Personality is regarded as the single most important requirement for

believable agents [36].

“For a character to be that real, he must have a personality, and, preferably,

an interesting one.” - Thomas, Johnston. The illusion of life : Disney

animation.[63]

7

Personality can be described as the characteristics that define an agent as an individual,

and that brings them to life.

According to Egri [19], convincing characters must be “tridimensional”; they must be

specified along three dimensions: physiology, sociology and psychology.

Emotion Believable agents must have emotional reactions, and be able to express

these emotions. The emotions of an agent can be viewed as an extension of their

personality, and so the expression of these emotions must be true to this.

Self-Motivation An agent must be self-motivated, acting of its own accord, rather

than solely responding to external stimuli.

For example, a person that is reading does not merely sit silently until interrupted,

but may move position periodically, or go and pursue another activity if they grow

bored.

Self-motivation ensures that agents are seen as having their own thought process.

An common example of self-motivation used in games are barks. Barks are utterances

from companion NPCs during idle time, such as grunts, sighs, or comments. They

ensure that the companions do not seem lifeless when not directly involved in combat

or dialogue.

Change In order for an agent to be believable, it should grow and change with

time. Again, these changes must not be arbitrary, but must be in line with the agent’s

established personality.

An example of change could be an agent growing to like or dislike the player, depending

on their actions (and how the agent’s personality views these actions).

Social Relationships Humans are social animals, so human agents must interact

with other agents. These interactions should be influenced by their relationship, and

in turn this relationship should be influenced by their interactions.

8

Relationships can not merely be described in simple terms such as “friends” or “en-

emies”. Just as every personality is different, so must every relationship be differ-

ent.

Consistency of Expression Humans have a number of ways of expressing thoughts

or feelings, such as words, facial expression, posture, movement, etc. In order for an

agent to be believable, all of these must be consistent with each other.

Illusion of Life This last requirement of believable agents that Loyall outlines is

actually a collection of requirements. These include properties that may be taken for

granted in other art forms (for example, in acting, it is taken for granted that characters

can walk and talk at the same time because the human actor can), but for the creation

of agents must be explicitly stated.

Appearance of Goals

Agents must appear to be working towards a goal or goals.

Concurrent Pursuit of Goals

Agents must be capable of pursuing multiple goals at once, rather than just

one at a time.

Parallel Action

Agents must be able to do two things at once (for example, walking and

talking).

Reactive and Responsive

Agents must react to stimuli and respond at reasonable rates.

Situated

Agents must seem to be aware of their environment and adapt to the current

situation.

Exist in a Social Context

Agents must be aware of the social context and act in accordance with

social and cultural conventions.

9

Broadly Capable

Broadly capable means that agents should be capable of all actions that a

real human is, such as thinking, sensing, talking, listening, etc.

Well Integrated (Capabilities and Behaviours)

Often in the creation of agents, different capabilities of the agent are han-

dled by separate components, for example there might be a separate sensing

component, a locomotion controller, etc. If these components are not well

integrated with each other, there may be a noticeable pause or abrupt

change when an agent changes from performing on action to another. It is

therefore required that all capabilities and behaviours of an agent are well

integrated with each other in order to appear natural and believable.

2.2 Interactive Storytelling

Typically, story-driven games follow a linear storyline, for example Bioshock: Infinite

[24] and The Last of Us [17]. Kline refers to these games as “rollercoaster” games, as

the story is a journey to be experienced by the player, but they can have no influence on

it [33]. The story is limited to cut-scenes, with pre-recorded dialogue and no input from

the player. This allows the writers to have full control of the narrative, and produce a

high quality story, but limits interactivity, as the player has no impact on the story of

the game, even though they are playing as the main character. This can also introduce

a disparity between the actions of main character when it is controlled by the player,

and when it is in a cut-scene This is referred to as ludonarrative dissonance [29] and

leads to a reduction in believability.

Interactive storytelling involves creating stories that can be changed and influenced by

the player. This increases interactivity and immersion. It also improves re-playability,

as different actions taken by the player will influence the story and possibly result in a

different outcome. However, since the writer does not have full control of the story, it

can result in low quality stories. Also, creating a story with multiple outcomes and con-

sequences increases the writing and programming time required in development.

10

2.2.1 Patterns in Storytelling

In the study of narrative and narrative structure, it has been observed that stories

can often be found to adhere to specific patterns. These patterns can be found in

stories across multiple storytelling mediums. A notable example of this is the “Hero’s

Journey” [9]. This pattern consists of 17 stages, and involves a hero going on an

adventure, overcoming an obstacle or enemy, before returning home victorious. The

“Hero’s Journey” has been identified in stories throughout history, from Moby Dick

[41] to Star Wars [37].

Event Patterns In Morphology of the Folktale [54], Vladimir Propp decomposes

Russian folktales into patterns. He outlines 25 “functions” (patterns), which describe

the main events of the story in terms of interchangeable variables such as characters,

objects, locations, etc.

For example, the “absentation” function: “One of the members of a family absents

himself from the home.” This function, in practice, could take many forms. The family

member could be a parent, a sibling, or child, while the type of “absentation” could

be going travelling, or to work, or even death.

Propp also describes the various sequences of these functions that are commonly

used.

Plot Patterns While Morphology of the Folktale deals with patterns that describe

the events in the story, in The Seven Basic Plots: Why we tell stories [5], Booker

outlines patterns that describe the overarching plot of the story as a whole‘, for example,

“Voyage and Return” as well as the classic “Comedy” and “Tragedy”. These plot

patterns are outlined as a series of events, which in turn take the form of event patterns,

such as those described by Propp.

11

2.2.2 Drama-Management Based Interactive Storytelling

In order to allow the game designer to retain control during interactive storytelling,

the story can be controlled by a drama manager. During development, the designer

can specify a “policy”, or a desired story plan. The drama manager can then monitor

the progress of the interactive story at runtime, and can use “story moves” to attempt

to direct the story towards the specified policy [33].

Left 4 Dead In combat games with enemies spawning in waves, typically these

spawns are location dependent, ie. they are triggered when the player reaches the

area. However, in Left 4 Dead [61], the enemy spawns are instead controlled by a

drama manager. In this case, the policy is the desired tension and difficulty of the

game. The story moves used to alter the tension and difficulty to attempt to adhere

to the policy are enemy spawns and equipment drops.

For example, if there has not been any enemy spawns in some time, the drama manager

may try to increase the tension by spawning enemies. Similarly, if the difficulty is above

that specified in the policy, equipment drops may be triggered.

Façade The drama manager in Façade uses a policy that specifies a desired ten-

sion arc. This arc is based on Freytag’s Pyramid [22] (Fig. 2.1), a pattern of ten-

sion observed in classic literature. A story that follows Freytag’s pyramid consists of

tension gradually rising until it reaches a climax, and then decreasing as the story

resolves.

The story moves used by Façade’s drama manager are “beats”. These beats are minor

actions or conversation topics that the NPCs in the game can introduce. For example,

if the drama manager wishes to increase tension, it could select a beat that introduces

a controversial topic of conversation, to create tension between the characters.

12

Figure 2.1: Freytag’s Pyramid

2.2.3 Character Based Interactive Storytelling

Character based interactive storytelling involves modelling NPCs, and the emergent

events that occur form the story. TALE-SPIN [40] was an early interactive storytelling

application that implemented this approach, along with a world model, in its text-based

environment. Cavazza et al. [11] also implemented this approach in a more modern

engine, and added user interactivity.

This emergent approach creates opportunity for great interactivity, and also increases

believability, as the NPCs are following their own goals and the world changes based

on the actions they take.

However, unlike the drama manager based approach, the game designer has little con-

trol over the story as it evolves at runtime. This can lead to emerging stories that have

no structure, and are uninteresting [33].

Author Modelling Author modelling extends character based interactive story-

telling by adding author goals and plans.

Author goals are goals that exist to add dramatic interest to the story of the world.

They may not be rational goals for the characters themselves to have. For example,

an author goal may be for a character to be unhappy, while it is not rational for a

character to wish unhappiness on himself.

13

Author plans are plot fragments that can be used to achieve the author goals.

UNIVERSE [34] was a system that used this approach to create “soap-opera” type

stories (Fig. 2.2).

Figure 2.2: An example plot fragment from UNIVERSE [33]. This plot fragment
attempts to achieve the author goal of making a married couple unhappy.

2.2.4 Multi-Solution Levels

Many open world games such as the Assassin’s Creed series [44], the Hitman series [31],

and the Metal Gear Solid series [32] have quests that may have multiple solutions, often

with different solutions to the same quest having different consequences. This form of

interactive storytelling allows the player to be more creative and original, rather than

following a predetermined path to the solution to the quest.

However, these multi-solution levels can be complicated and difficult for level designers

to balance. For example, a level may be designed to be difficult, however there may be

easier solutions than the designers planned, and all these solutions must be discovered

and evaluated.

14

Pizzi et al. [51] propose a method that uses heuristic search planning to generate level

solutions, and presents them as a storyboard for ease of understanding. The system

also allows level designers to alter the world state of the game as well as existing

level constraints, and observe the consequences on the level’s solutions. The system

was tested on levels from the game Hitman: Blood Money [31], and generated similar

solutions to those found in online walkthroughs and by the level designers. This method

allows multi-solution levels to be created by designers with a greatly lessened overhead

on testing and evaluation.

2.3 AI Architectures

NPCs can be controlled by a number of different AI architectures. In this section the

requirements for an AI architecture for NPCs will be outlined, and the architectures

commonly used will be reviewed.

2.3.1 Requirements

According to Cutumisu et al [16], suitable AI architectures for game NPCs must be

able to support behaviours that exhibit the following properties:

• Responsive – can react quickly to the environment,

• Interruptible – can be suspended by other behaviours or events,

• Resumable – can be continued after interruption,

• Collaborative – can initiate and participate in joint behaviours with other

agents,

• Generative – are easy to create and implement by non-programmers.

15

2.3.2 Finite State Machines

Finite State Machines (FSMs) are the most common architecture for AI in games [26].

An FSM consists of a number of states, to represent actions, that an agent may be in.

States may have a number of transition criteria, which control when the agent should

switch from one state to another. An agent may only be in one state at a time.

FSMs have a number of advantages [8]. They are quick and easy to implement, as

well as being easy to debug. They are efficient, intuitive and easy to understand, and

flexible.

However, FSMs also have a number of drawbacks [12]. They are not resumable, do

not work well with concurrency, and scale poorly. Additionally, the nature of fixed

states with fixed transitions means that NPCs that use FSMs can become easy to

predict.

Variations on FSMs FSMs have been altered in an attempt to support more com-

plex behaviours. Some examples are Stack-based FSMs, which are able to support

resumable behaviours, and Hierarchichal FSMs, which use super-states to share and

reuse state transitions.

2.3.3 Behaviour Trees

Behaviour Trees (BTs) are trees of hierarchical nodes, each representing a behaviour.

The behaviours are in the tree according to priority, so to find the most appropriate

behaviour, the tree is traversed, and the first valid behaviour is executed.

To illustrate, see Figure 2.3. For any nodes marked “Sequence”, all child nodes are

executed one after another, from left to right. For any nodes marked “Selector”, only

one child node is to be executed: the left most valid child node.

So for this tree, the agent first walks to the door. Then, it either opens the door, unlocks

the door and then opens the door, or smashes the door, whichever is the first possible

action. Then the agent walks through the door, and finally closes the door.

16

Figure 2.3: Example Behaviour Tree [58]

Behaviour trees have been used for the NPCs in Project Zomboid [59] [58].

2.3.4 AI Planners

AI planners are an architecture that more accurately reflect the human thought process.

Two different AI planners are described here.

STRIPS

The STanford Research Institute Problem Solver (STRIPS) is an AI planner that was

originally proposed in 1971, to aid in problem solving for robots [21].

STRIPS involves defining the relevant properties of any moment in time as a “world

model”, and any possible actions as “operators”. Operators are defined by their nec-

essary requirements in the world model, as well as their effect on the current world

model.

To plan the best actions to reach the desired goal, the goal state as well as the current

conditions are expressed as world models. Working backwards from the goal world

17

model, a heuristic search algorithm is carried out on possible operators in an attempt

to reach the current world model.

GOAP

Goal Oriented Action Planner (GOAP) [50][49] is an AI planner first used in the game

F.E.A.R. [53].

Similar to STRIPS, possible actions are defined, as well as the desired goal, and a

search is performed to find the best sequence of actions for the scenario.

More recently GOAP was used in the game Tomb Raider [18][13].

2.4 NPCs in Games

An NPC refers to any character that is not controlled by the player. This includes

enemies, companions, and background characters.

Enemies Enemies are technically classified as NPCs, but are mostly not referred to

as such. This dissertation is not concerned with enemy NPCs.

2.4.1 Companions

Companion NPCs are NPCs that accompany the player as they move through the game

world.

In the past, companion NPCs have had a history of being “annoying” [35]. Players are

forced to complete “escort missions”, where they must escort an NPC to safety. Often

these NPCs are helpless, and have poor AI that results in them running into enemies

or into the line of fire. An example of these types of companion NPCs are Ashley

Graham from Resident Evil 4 [10] and Natalya from GoldenEye 007 [55].

18

Even when companion NPCs are designed to be helpful to the player, rather than

a hindrance, there can still be shortcomings. In Skyrim [60] the companions have

weapons and abilities that aid the player in battle, but can often crowd the player and

obstruct their path. The extent if this problem is evidenced by the fact that “Move it

Dammit!” [52], a user-created mod that attempts to minimise this problem, has over

300,000 downloads.

Elizabeth from Bioshock Infinite [24] and Ellie from The Last of Us [17] are recent

examples of successful companion NPCs. They are designed carefully to be likeable

companions, rather than burdens [1]. To achieve this, they have use to the player

in combat (Elizabeth can point out enemy snipers and loot drops, Ellie can shoot

enemies), stay out of the player’s line of fire, and provide conversation during non-

combat periods.

2.4.2 Performance Issues

In large scale open world games, the large number of NPCs required to populate the

world can have significant performance costs. In order to reduce computation costs, of-

ten the world is segmented into areas, with the NPCs in an unused area being “switched

off”. This can cause significant loading times when the player wishes to move between

areas. In Baldur’s Gate [3], all players in the multiplayer party had to assemble in order

to move between areas together. This made it impossible for individual exploration,

and is regarded as one the games most hated features [7].

For Neverwinter Nights [4], Bioware (also the developers of Baldur’s Gate attempted

to mitigate this problem by introducing level-of-detail into the NPC AI behaviour [7].

Level-of-detail is a common optimisation technique used in rendering or physics, where

the model or simulations are simplified when far away or out of sight of the viewer. In

Neverwinter Nights, it was used by altering the processing frequency, pathfinding, and

combat rules of NPCs according to their proximity to the player.

The level-of-detail(LOD) is discretised into five different levels (Table 2.1).

For LODs 1, 2 and 3 (ie. every character that visible to a player), full pathfinding

19

Table 2.1: Level-of-Detail(LOD) Levels in Neverwinter Nights [7]

LOD Classification

1 Player Characters (PCs)
2 NPCs fighting or interacting with a PC
3 NPCs in view of a PC
4 NPCs out of view of a PC
5 NPCs in an area with no PCs

(IDA*) is performed.

For LOD 4, the NPCs are out of view of the player, so full pathfinding is unnecessary.

However, since they are still in the same area as the player, the paths they take can

not be completely ignored. Since the terrain is split into tiles, a path can be found

between the tiles (inter-tile pathfinding), and the NPCs are merely jumped tile to tile,

without having to navigate within the tiles themselves (intra-tile pathfinding). This

resulted in an over 90% decrease in computation time for the pathfinding of LOD 4

NPCs.

For LOD 5, the NPCs are in an area where there are no players, so their actual paths

do not matter. They are transported from place to place with a delay corresponding

to the direct distance, to simulate travel time.

Due to advancements in hardware and optimisation, it is now possible to have large

scale open worlds populated with NPCs, that require no inter-area loading screens. An

example of this is The Witcher 3: Wild Hunt [56] [27].

2.5 Side Quests in Open World Games

In this section, the purpose of side quests in open world role playing games will be

explored, as well as methods to ease the generation of side quests.

20

2.5.1 Definition and Purpose

In open world RPGs, the player is generally not guided from place to place. Instead,

they are presented an open environment to explore. Throughout the environment, they

may encounter tasks to complete, in return for rewards such as gold or equipment, or

merely to forward the story. These tasks are referred to as quests.

Often these quests are unrelated to the main storyline of the game. These are called

side quests.

According to Onuczko et al [47], side quests serve four main purposes:

• to promote an open-world feeling,

• to provide opportunities to gain rewards and experience,

• to add interest and back story to the game (without over-complicating the main

storyline),

• to reward exploration.

2.5.2 Quest Generation

It is not uncommon for large scale open world games to include dozens, if not hundreds,

of side quests. This poses a major problem for developers. Each individual quest must

be designed, programmed, have dialogue written and voice acting recorded for, etc.

The amount of time and resources required to be spent on side quests can adversely

affect the main storyline or other aspects of the game.

A number of attempts have been made to ease the side quest generation process.

SQUEGE

SQUEGE (Side-QUEst GEnerator tool) is a tool, created by Onuczko et al [47][48], to

aid level designers in side quest generation. The designer creates “patterns”, activities

21

Figure 2.4: The SQUEGE process [47]

to be completed with placeholders, as well as specifying game objects that can be used

in these placeholders.

For example, a designer may create an “Acquire Item” pattern, which requires NPC,

item, and item location placeholders. The designer then must specify a list of possible

NPCs, items, and item locations that can be used within this pattern.

Patterns and game objects need only be specified once, but then can be reused across

multiple quests.

Once all patterns and game objects have been setup, the SQUEGE system generates

side quests be assembling patterns and game objects together (either randomly, or

according to specified constraints). The designer than then accept, reject of modify

the generated quest outline, and proceed to add story content (such as dialogue).

Scripts can then be created by a programmer or script generator, and the quest can be

added to the game. This process is summarised in figure 2.4.

SQUEGE is only capable of generating side quest outlines, and so there is still work

required to produce a fully implemented side quest. However, it does ease the game

design process. The system can result in quests that are of similar quality to manually

scripted quests, as shown from user tests [47].

Radiant Story

For Skyrim [60], Bethesda developed the Radiant Story [45] system. This system had

a number of functions, including enabling NPCs to respond to a variety player actions,

but also aided in the generation and flexibility of side quests.

22

Radiant quests would not have detail defined explicitly. Instead, similar to SQUEGE,

there would be a pattern to be followed, with placeholders for game objects. In Radiant

Story, these placeholders were referred to as aliases.

Radiant quests can be used in two different ways. Firstly, if an important person in

a scripted quest becomes unavailable (eg. dies), this person can be swapped out for

another person so that the quest can continue. Secondly, it provides an easy way to

implement “job” quests, ie. standard quests associated with an in-game guild that

always follow a specific pattern (eg. the assassin’s guild has job quests that involve

killing specific NPCs). Using Radiant Story, NPCs, items, and locations can easily

be swapped into the job quests to provide a limitless number of quests, with no extra

development time.

Unlike SQUEGE, which is a design tool to be used during game development, Radiant

Story generates quests at run time. This is an advantage in many ways. Development

time is further decreased, and the randomness introduced to the game provides re-

playability and limitless side quests. However, the inability for a designer to reject or

modify the generated Radiant quests means that some quests can be incohesive with

the rest of the game.

2.6 Conclusion

In this chapter, a review of research that has been conducted in the areas of NPC

believability, interactive storytelling, and side quest generation has been conducted. It

is clear from this research that there is still opportunity for advancements to be made

in these areas.

23

Chapter 3

Design

In this chapter, the main influences on the model will outlined, before detailing the

design. The model will then be illustrated with an example.

3.1 Influences

The initial influence on this dissertation came from the quest fallback system found

in McNulty’s residual memory model [39]. Other influences include Fallon’s men-

tal/physical states model [20], Onuczko’s SQUEGE [48], and Lebowitz’s UNIVERSE

[34].

McNulty’s quest fallback system was an extension of his memory/goals model. For

example, if an NPC requires a hammer, but cannot find one, he creates a quest for the

player, to find a hammer and bring it to him. McNulty’s model is described in more

detail in section 4.1.2.

Fallon’s mental/physical states model is a system that attempts to model an NPC’s

current state of mind and physical status using a multidimensional approach. NPC’s

are not merely happy or sad, but can have multiple feelings at once, such as happy

and angry, or sad and excited. Fallon’s model is described in more detail in section

3.2.2.

24

SQUEGE is a design tool that can be used to decrease the amount of time it would

take to design a large number of side quests, as was described in section 2.5.2.

UNIVERSE was a system that used both plot-based and character-based interactive

storytelling techniques to attempt to create a soap-opera-style narrative. This was

achieved through the use of author goals, as described in section 2.2.3.

3.2 Defining the Model

In this section, the components of the model will be explained in detail.

3.2.1 Quest System

The core components of the quest system of this model was originally based on the

SQUEGE system [48]. Quests are defined by patterns and points, as described in the

next sections.

Quest Patterns

Quest patterns are reusable outlines that describe the encounters and actions that must

be completed in order to complete a quest. They consist of a a quest giver, as well as

a number of quest points.

Quest Points

A quest point is a single, low-level objective of a quest (for example, “Acquire Item”).

A quest point can be in one of three states: inactive, active, or completed. A quest

point can only be completed when it is active.

25

Each quest point has a list of enablers, which are other quest points in the same quest

pattern that must be completed to activate that quest point. The enablers for each

quest point are specified in the quest pattern.

While a SQUEGE based system is a design tool used during the development cycle of

a game to create quest patterns from defined quest points automatically (see section

2.5.2), in this model quest patterns must be defined in terms of quest points manu-

ally.

3.2.2 Character Modelling

Character modelling is necessary for the interactive storytelling component of the quest

generation system. This is because unique and interesting characters are necessary in

order to create a narrative around them.

For the current model, character modelling includes NPC’s current mental/physical

state, relationships between NPCs and the traits of these relationships, as well as

character traits of individual NPCs.

Mental/Physical State

The mental and physical state of NPCs is modelled according to the model described

in Fallon’s research [20]. This is a multidimensional approach that describes various

aspects of a characters mental/physical state using a state vector. This is a number of

values, each of which represents a mental or physical state. An example of the states

that could be used in a state vector, as well as the possible ranges, are shown in figure

3.1.

26

-10.0 State +10.0

Sad MOOD Happy

Tired ENERGY Rested

Hungry SATEDNESS Full

Table 3.1: States - Ranges and Meanings [20]

Each NPC has a state vector. The values in the state vector are modified by state

modification vectors. A state modification vector is made up of a number of values,

which serve to modify the core state vector. Each NPC has a state modification vector

associated with each activity. The state vector is modified by the associated state

modification vector whenever the NPC performs an activity.

Along with modelling the current mental and physical state of an NPC, the state vector

system affects the decisions NPCs. Along with the current state vector, each NPC has

a state threshold vector, which store values that below which are deemed unsatisfactory

for that state. For example, if an NPC’s current “Energy” state is below the threshold,

that NPC is tired.

The delta of a state is the amount by which the current value is below the threshold.

The delta sum is the sum of the deltas for every state in a state vector.

If a state is at an unsatisfactory level, ie. the delta sum is greater than zero, the activity

selection manager of the NPC selects a task that will increase the level of that state.

For example, if an NPC is tired, they may select the “Sleep” activity, as it will raise

their “Energy” state value.

This process is summarised in algorithm 1.

Relationships

Each NPC has a relationship manager which maintains their relationships. This in-

cludes storing direct family connections (for example, parents, children, current spouse,

27

Algorithm 1 Activity Selection

if every state in state vector is above threshold then
apply state modification vector for current activity to state vector

return

for each activity do
activity state vector = current state vector + activity state modification vector
calculate activity delta sum for activity state vector

assign activity with minimum activity delta sum as new activity

former spouses), as well as a relationship vector for every NPC they know. This rela-

tionship vector stores the NPC’s familiarity with the other NPC, as well as values for

a number of relationship traits (Table 3.2).

-10.0 Relationship Trait +10.0

Enemy FRIENDSHIP Close Friend

Repulsed By ATTRACTION Attracted To

Table 3.2: Relationship Traits - Ranges and Meanings

For every relationship, two relationship vectors are stored (NPC A stores a relationship

vector for NPC B, and NPC B stores a relationship vector for NPC A). This allows for

two NPCs to have an asynchronous relationship, which can lead to interesting scenarios

such as unrequited love (NPC A would have a high attraction value for NPC B, while

NPC B would have a low attraction value for NPC A).

Traits

A number of character traits can be used to represent an NPC’s personality and physical

characteristics. These traits are chosen by the architect of the given system. An

28

example of traits is shown in table 3.3. These traits are taken from those used in

UNIVERSE [34] which is set in a soap-opera scenario. New traits can be added or

traits can be taken away to reflect the needs of the desired scenario (for example, in a

game that involves combat, NPCs may have a “Toughness” trait, which describes how

much they are harmed by attacks).

-10.0 Trait +10.0

Submissive AGGRESSIVENESS Violent

Mean NICENESS Pleasant

Ugly APPEARANCE Attractive

Prudish PROMISCUITY Promiscuous

Poor WEALTH Rich

Stupid INTELLIGENCE Smart

Table 3.3: Traits - Ranges and Meanings

3.2.3 Drama Management

The drama management system of this model was inspired by that used in UNIVERSE

[34]. The drama manager chooses an author goals, and selects a plot fragment that both

satisfies that author goal and has constraints that are satisfied (see section 2.2.3). The

main difference between the drama management in this model and UNIVERSE is that

in UNIVERSE plot fragments contain a number of actions for characters to perform

if that plot fragment is activated, while in this system, plot fragments contain a quest

for the player to complete, that is activated when the plot fragment is activated.

The components of drama management that will be described in this section are plot

fragments, and the drama manager itself.

29

Figure 3.1: The plot fragment selection process of the drama manager.

Plot Fragments

Plot fragments are made up of three main components: author goals, constraints, and

a quest pattern.

The author goals of a plot fragment are the author goals that the plot fragment satisfies

(for example, a plot fragment which include a “Kill NPC” quest would satisfy the

“Violence” author goal). The uses and purpose of author goals will be described in

more detail in the next section.

The character constraints of a plot fragment are the conditions that must be satisfied

in order for the plot fragment to take place. This provides context and relevancy

to the quests of the plot fragments. Contraints include the necessary characters, the

current mental/physical state of these characters, their traits, and the relationships

between them. For example, a plot fragment that involves an NPC A wishing to

cheer up NPC B, may have a constraints that NPC A has a relationship with NPC B

that has a positive “Friendship” value, NPC A has a high “Niceness” value in their

character traits, and NPC B currently has a low “Mood” state in their current state

vector. If any of these constraints were not fulfilled, the quest would not be relevant

or believable.

The quest pattern is the quest that is activated when the plot fragment is selected.

Quests patterns have been described in detail in section 3.2.1.

Drama Manager

The role of the drama manager is to select author goals, and select plot fragments to

satisfy these goals.

Author goals can be general (for example, to cause violence, for the player to perform

good deeds), or can be specific (for example, to cause the death of a specific character).

30

Algorithm 2 Plot Fragment Selection

choose an author goal

for each plot fragment do
if current plot fragment
satisfies author goal and constraints are satisfied then

add plot fragment to potential plot fragments

activate a potential plot fragment

Author goals can be used to control the trajectory of the game’s dramatic arc. However,

actual management of drama and tension in the narrative through selection of author

goals was decided not a priority for this implementation, and was instead left as a

possible avenue for future expansion.

Once an author goal has been chosen, an appropriate plot fragment must be selected.

Firstly, a list is compiled of all available plot fragments that satisfy the current author

goal. For each plot fragment in this list, the constraints are evaluated. Then a final plot

fragment is selected from the plot fragments whose constraints are satisfied. Finally,

the quest of this plot fragment is activated and assigned to the appropriate quest giver.

This process is summarised in algorithm 2 and figure 3.1.

3.3 Illustrating the Model

In this section, the model that was outlined in the previous section will be illustrated

using an example.

3.3.1 Example Plot Fragment: The Jealous Suitor

“The Jealous Suitor” is an example plot fragment designed to demonstrate the quest

generation.

31

This plot fragment is designed to convey a narrative of a character (the eponymous

“suitor”) who has an unrequited infatuation with another character (the “love inter-

est”). Due to a period of sadness, as well as their aggressive personality, the suitor

decides to hire a hitman to kill their love interest’s spouse (the “victim”). This hitman

is the player.

The specific components of this plot fragment are detailed here.

Author Goals

The general author goals for this plot fragment are evil, death, and violence. The evil

author goal reflects the player performing evil deed (in this case, the murder of an

innocent NPC). This could be useful if the game involves a moral element, such as that

used in Fable [6]. The death and violence author goals reflect the attack and murder

of an NPC.

The specific author goals for this plot fragment are the death of the victim NPC. This

author goal could be used if the main narrative of the game required a character to be

dead, or for the purposes of population control.

Constraints

The constraints of this plot fragment are detailed in this section, and summarised in

figure 3.2.

There are three characters necessary for this plot fragment: the suitor, the love interest,

and the victim.

Mental/physical state constraints:

The suitor must be sad (ie. have a mood state vector value below the satisfactory

threshold).

Character traits constraints:

The suitor must be aggressive (in this implementation, an NPC is deemed to be

aggressive if their aggressiveness character trait is above 5).

32

Figure 3.2: The character constraints of the “Jealous Suitor” subplot.

Relationship constraints:

The suitor must be attracted to the love interest (the suitor must have a relationship

vector stored for the love interest, and this relationship vector must have a high at-

traction value). The love interest and the victim must be spouses. The suitor must

know the victem, but they must not be friends (the suitor must have a relationship

vector stored for the victim, but this relationship vector must not have a friendship

value above neutral).

Quest

The quest pattern for this plot fragment has the suitor as the quest giver, and is made

from the following quest points:

Kill victim. Talk to suitor.

33

3.4 Procedural Content Generation

Procedural content generation is necessary for the generation of NPCs, as in a large

scaled open world game, a large number of NPCs are necessary in order to populated

it, and it would take a huge amount of time and resources to manually design each

NPC.

Character Traits and Relationships Traits, relationships, and relationship traits

can be randomly generated. This is advantageous as it can generate a large number of

NPCs with unique characteristic and existing relationships quickly.

Mental/Physical State Each NPC’s initial state vector can be randomly gener-

ated, as can their state threshold vector, which enables NPCs to have varying levels

of satisfaction for states (for examples, some NPCs may have a higher “Satedness”

threshold, and so will need to eat more food to feel full than others).

State modification vectors can also be randomly generated for each activity, and for

each NPC. This enables NPCs to have different reactions to different activities, to

reflect different personalities (for example, one NPC’s mood may increase while fishing,

implying they enjoy fishing, while another NPC’s mood may decrease while fishing,

implying they dislike fishing). However, it is possible to put restrictions in place on the

modification of specific states by specific activities. For this model, the “Satedness”

state must receive a positive modification from the “Eat” task, while it must receive

a neutral or negative modification from all other activities. Similarly, the “Energy”

state must receive a positive modification from the “Sleep” and “Eat” tasks, and would

generally receive a neutral or negative modification by all other tasks. These restrictions

must be put in place to maintain believability (for example, it would not be believable

for an NPC’s “Satedness” to decreased while they are eating).

34

3.5 Conclusion

In this chapter, the main design of the model has been described in detail, including

character modelling, quest generation, and drama management. The opportunities for

procedural content generation have also been identified.

In the next chapter, the specifics of the implementation of the prototype of this model

will be explain.

35

Chapter 4

Implementation

In this chapter, the implementation of the prototype of the model will be described.

4.1 Platform and Existing Code Base

This section will outline the platform on which the prototype will be implemented, as

well as the existing code base that was used.

4.1.1 Unity Game Engine

The Unity game engine [62] is a framework that is well suited to the quick generation

of prototypes. Code is written in C#, while there is also an extensive editor that allows

the user to quickly drag and drop components in a scene.

4.1.2 Existing Code Base

In order to maximise time spent on the model, it was decided to work on the existing

code base from Tiernán McNulty’s dissertation [39]. This model included a “village”

environment, populated with items, buildings, and NPCs already in place.

36

McNulty’s memory model involves each NPC having memories. They can create mem-

ories when they encounter new objects and characters, and memories fade over time.

The model also includes a goals system. Each NPC is assigned with a routine of high

level goals (for example, eat at 12pm, work at 1pm, drink at 5pm, etc.). These high

level goals are split into smaller intermediate goals to be completed (for example, the

“sleep” high level goal would be split into: go to bed, sleep). The combination of the

memory model and goals model creates a village of NPCs that are autonomous in their

actions. This is useful as a baseline for this prototype as it shows how the proposed

model could be used with an AI system that controls the behaviour of NPCs.

4.2 Character Modelling

The design for the character modelling used in this implementation is outlined in section

3.2.2.

Mental/Physical State

State vectors, state threshold vectors, and state modification vectors for each activity,

are randomly generated for each NPC. The specific states used for this implementation

are listed in table 3.1.

State modification vectors are only assigned to final activities, such as sleeping, eating

and working, and not interim activities, such as walking to a location or talking to an

encountered NPC. This is to avoid scenarios where the journey necessary to partake in

an activity could have unwanted and unplanned effects on the NPCs state vector. For

example, an NPC is tired and so selects the “Sleep” activity. However, the “Walking”

activity required to get to his bed decreases his energy further, and so it seems that

sleep is not the best activity. This problem could be solved in more detail using an

AI planner such as STRIPS (see section 2.3.4), however this is outside of the scope

of the dissertation, and so the walking activity is simply not taken into account when

generating state modification vectors.

37

For activity selection, each NPC is assigned an update frequency. This is the frequency

at which the NPC checks their current state vector, and decides whether to select a new

activity. NPCs are also assigned a give up time. This is the amount of time an NPC

will try to accomplish their desired activity, before giving up and selecting the next

best activity. This prevents an NPC getting stuck in a situation where their desired

activity is impossible (for example, they desire to work at the blacksmiths, but there

is not blacksmithing hammer available).

Traits

The character traits for each NPC are stored as a series of randomly generated values

between -10 and 10.

The traits used for this prototype are outlined taken from the UNIVERSE model, and

are listed in table 3.3.

Relationships

It was originally planned to create a relationship system that took advantage of the

memory cue system in place in the McNulty’s original model, such that when an NPC

encountered a new NPC it would form a new relationship, meeting that NPC again

would reinforce the relationship, and not seeing the NPC for a period of time would

decay the relationship. However, it was decided that a relationship model of this

complexity was outside the scope of this dissertation, and so a simpler model was

created.

In this simple model, relationships between NPCs are generated randomly at the start

of the program, and do not change over time. Each relationship has a random familiar-

ity value between 0 and 10, and a relationship vector with random values between -10

and 10 for each relationship trait. The relationship traits used for this implementation

are listed in table 3.2. Each relationship formed also has a chance to be a connection,

ie. to be a parent, child, spouse, or former spouse relationship.

38

4.3 Quest System

The model for the quest system is described in section 3.2.1.

Quest Completion Data

In order to check if quests have been completed, whenever a player performs a signif-

icant action (such as killing an NPC, or picking up an item), quest completion data

is created with the details of this action, and is checked against the player’s current

active quests to check if that action has fulfilled a quest objective.

Quest Points

Each quest point has the following main functionality:

• Attempt Activation: This involves checking if all the enablers for this quest point

are completed, and it they are, activating the quest point.

• Attempt Completion: This involves checking quest completion data against this

quest point to check if the objective of the quest point has been achieved.

• Attempt Immediate Completion: When a quest point is first activated, it is

checked for immediate completion. Immediate completion is only possible for

certain quest points (for example, the “Acquire Item” quest point would be im-

mediately completed if the player already had the item in their inventory).

• Ensure Possibility : Some quest points may become impossible to complete (for

example, the “Talk to NPC” quest point would no longer be possible if the target

NPC has died). Therefore, active quest points must be periodically checked to

ensure that they are still possible to complete, and if not, the quest is failed.

The following quest points are currently implemented in the model prototype:

• Talk to NPC

39

Figure 4.1: Open quest log displaying an active quest.

• Acquire Item

• Give Item to NPC

• Kill NPC

Quest Patterns

Each quest pattern has functionality to cycle through all its quest points and carry out

the quest point functionality detailed in the Quest Point section.

The following quest patterns (made up of the listed quest points) are currently imple-

mented in the model prototype:

40

Figure 4.2: Quest star to indicate the NPC has a quest for the player.

• Give Item to NPC

– Acquire Item

– Give Item to NPC

• Kill NPC and Report to NPC

– Kill NPC

– Talk to NPC

Quest Manager

The quest manager is responsible for managing all active quest patterns that the player

has available. It takes in quest completion data and cycles it through all active quest

41

patterns to implement the functionality listed in the quest pattern section.

User Interface

In order to keep track of their active quests, the player has a quest log that they can

use to view each of their active quests, as well as the active quest points of these quests

(Figure 4.1).

In order to facilitate this quest log, each quest point and quest pattern has a description

attached to it.

Quest Givers

When an NPC has an available quest for the player, they become a quest giver, and

have a visual cue (Figure 4.2). The player is then able to talk to the NPC in order to

add that quest to their active quests.

4.4 Plot Fragments

Plot fragments are created manually using scripts. When a plot fragment is created,

the following must be specified:

• Author Goals : Each plot fragment must store a list of the author goals that it

fulfils.

• Plot Details : The plot details of a plot fragment contain the parameters specific

to the quest of the plot fragment, such as the necessary characters, items, and

locations.

• Constraints : The constraints for each plot fragment must be specified, in terms

of character traits, relationships and relationship traits, and the mental/physical

state of the characters involved.

42

• Quest Pattern: A quest pattern for the player to complete must be set for each

plot fragment. An existing quest pattern can be used, or a new quest pattern

can be created from the existing quest points.

Plot fragments have the following functionality:

• Compare Author Goals : This involves checking if the the plot fragment fulfils the

current author goal selected by the drama manager.

• Check Constraints Fulfilled : If the plot fragment fulfils the current author goal,

it is checked to see if there the constraints can be fulfilled. Any combination of

characters that fulfil these constraints are stored as possible plot details. If there

are more than one possible plot details, one is chosen at random to be the actual

plot details that are used in the quest pattern for the plot fragment.

4.5 Drama Management

As discussed in section 3.2.3, controlling author goal selection in order to maintain a

desired dramatic arc was not implemented in this model. Additionally, author goals

have been restricted to be general, describing the general theme for the desired plot

fragment, rather than specific, such killing specific NPCs or for the player to visit

specific locations. For the purposes of this prototype, the drama manager randomly

selects from a list of general author goals at a specified time interval. The possible

author goals in this prototype are:

• Good

• Evil

• Violence

• Death

Once the current author goal has been chosen, a plot fragment must be selected. This

43

involves comparing author goals, and then checking the constraints of plot fragments,

as described in section 4.4. If more than one suitable plot fragment exists, a random

plot fragment is selected. The quest of the selected plot fragment is then added to the

appropriate quest giver (if they do not already have a quest).

4.6 Conclusion

This chapter has outlined the details of the implementation of the prototype. In the

next chapter, this prototype, as well as the model outlined in the previous chapter, will

evaluated on how well they satisfy the objectives outlined in chapter 1.

44

Chapter 5

Evaluation

In this chapter, the model, and the implementation of the model, will be evaluated,

according to how well the objectives outlined in chapter 1 have been satisfied.

5.1 Character Modelling

5.1.1 Mental/Physical State

Fallon’s state vector model [20] is a promising multidimensional approach to represent-

ing an NPC’s current mental and physical state. The use of personalised state threshold

vectors and state modification vectors for each individual NPC helps to convincingly

create unique NPCs with individual preferences and interests.

Using state vectors for activity selection, rather than following a routine (as seen in

McNulty’s model [39]), allows for a visible representation of each NPCs uniqueness

through their behaviours. It also helps to combat performance dips that may occur at

certain times of the day (for example, at lunch or dinner time) when the vast majority

of NPCs attempt to change their activities simultaneously.

A potential weakness of this approach, however, is that it does lead to NPCs performing

activities at unconventional times, for example sleeping during the day. This could be

45

acceptable for a small number of NPCs, however it would be far more believable for

the majority of NPCs to perform certain activities such as sleeping or eating at more

conventional times. This could potentially be achieved by attaching a timing multiplier

to state modification vectors. Such an addition would allow for the introduction of more

convincing temporal behaviour among NPCs.

5.1.2 Relationships and Relationship Traits

The relationship system (described in section 3.2.2) is extremely effective at represent-

ing the relationships between NPCs. The use of familiarity and relationship vectors

allows for multidimensional relationships to be stored, which allows for more complex

and believable interactions between NPCs. Having two relationship vectors stored per

association allows for asynchronous relationships to be represented, such as unrequited

love, which can lead to the generation of far more believable and engaging stories.

One limitation of the relationship vector implementation, however, is that it does

not evolve over time, and relationships are not currently reflected in the actions of

NPCs, though this is merely a limitation of the current implementation, rather than

of the model itself. The relationship vector model could be used to drive and influence

NPC actions and behaviour in the future, but such work is beyond the scope of this

dissertation.

The relationship vector system as implemented serves its main purpose of providing

character constraints on which plot fragments can be based.

5.1.3 Character Traits

The character traits system is a an effective way of representing multiple different

aspects of an NPC’s personality, physical appearance, etc. As with the relationship

system, its current implementation is somewhat limited in that character traits have

no effect on an NPC’s actions, but it does provide a basic model that can be used as

character constraints for plot fragments.

46

5.1.4 Procedural Generation of Characters

Support is provided for procedural generation throughout the character modelling sys-

tem. The nature of the NPC model described lends itself very well to being partially

or completely procedurally generated.

Mental/Physical State The state vector for each NPC can be randomly generated

at the start of the program. This provides each NPC with a varying initial mood, energy

level, etc. Additionally, the state threshold vector can also be randomly generated. This

gives unique tolerances for certain states. Finally, the state modification vectors for

each activity can be randomly generated for each NPC. This generates NPCs that react

to different activities in different ways, and develop preferences for certain activities,

which is reflected in their actions.

Relationships At the start of the program, relationships between NPCs can be

randomly generated. This includes random familiarity, as well as random relation-

ship vectors. Additionally, connections such as spouse-spouse, parent-child, etc. can

be randomly generated. This automatically generates a family tree within the game

world.

Character Traits The character traits for each NPC can also be randomly gener-

ated, giving each NPC a unique personality and physical characteristics.

5.2 Procedural Generation of Quests using Inter-

active Storytelling

5.2.1 Quest System

As previously outlined in section 3.2.1, the quest system is based on the research

of SQUEGE [48] and is an effective way of creating quests of any size using single

47

objectives. Patterns can be created from any number of quest points in any order, can

be linear or non-linear, involve any number of NPCs, etc. It is worth noting however

that the current implementation of the system does not allow for multi-solution levels.

Such an extension was explored in SQUEGE [48], and a similar solution could be

applied to this system in future work.

5.2.2 Plot Fragments

As described in section 3.2.3, the plot fragment and drama management model is based

on the research of UNIVERSE [34]. The plot fragment model is what distinguishes this

dissertation from the work of Skyrim’s Radiant Story [60][45]. Rather than just quests

being generated independently, they are generated as part of a plot fragment.

The plot fragment encapsulates author goals that the quest will satisfy, which allows

generation of quests congruous to the narrative of the game. The plot fragment also

include constraints, which act as preconditions for the quest to take place. This gives

quests relevance in the game world. Currently the constraints are limited to character

constraints, but this could be extended in the future.

5.2.3 Drama Management

Using a drama manager for quest generation allows for the state of the game to be

monitored, and for the pacing and narrative of the game to be controlled using author

goals. These author goals could be used to mirror the main narrative of the game

through the various side quests. The frequency at which quests are generated, as well

as their relative intensity, can be altered to achieve the desired flow and emotional arc

of the game. Author goals could also be used to affect other elements of the game,

such as population control.

48

Figure 5.1: Unity’s profiler showing McNulty’s implementation. The performance
shows a computation spike, which adversely affects the frame rate. This corresponds to
10am in-game time, when all NPCs go and eat breakfast. Other than this, performance
is steady.

5.3 Extensibility and Ability to Integrate with Other

Systems

The described model has been created with extensibility in mind. The quest system

can be extended by adding more quest points, or by assembling them into patterns.

Plot fragments can also be created quickly and easily. Technically, these components

have been created generically, so the creation of new components does not require any

additional developmental overhead.

The core quest generation model has already been integrated with a number of different

systems in this implementation; McNulty’s existing memory model [39], and Fallon’s

state vector model [20]. A logical next step would be to implement it with O’ Connor’s

more sophisticated relationship model [46], however this was not possible due to time

constraints.

49

Figure 5.2: A performance snapshot of the implementation taken in the Unity profiler.
There is no single large performance spike, as NPCs do not have specific routines to
follow and so do not all change activities at once. However, performance is less steady
overall, as NPCs are changing tasks more frequently and at irregular intervals.

5.4 Effcient Implementation

The current implementation is a prototype of how the model could be used, so and so

is not a definitive reflection on the model’s potential efficiency were it to be used for

larger scale, more sophisticated projects. However, conclusions that have been drawn

thus far do strongly indicate that the model does not adversely affect performance by

a noticeable level.

Due to McNulty’s model using a routine system, where NPCs would change tasks at

specific times during the day, performance would dip significantly when the majority

of NPCs would all change their current activity at once (Figure. 5.1). Migrating

from this routine-based system to activity selection based on state vectors results in

more frequent, but smaller and manageable performance spikes, as NPCs change tasks

independently and more frequently (Figure 5.2). This is preferred over one single large

spike, as the smaller spikes still keep the frame rate within an acceptable range, while

the previous large spike caused noticeable lag when it occurred.

50

Chapter 6

Conclusion

This chapter draws conclusions on the dissertation by outlining the main contributions,

the limitations of the existing implementation, as well as the possible future work to

address these limitations, and final thoughts.

6.1 Main Contributions

The use of interactive storytelling techniques is an effective approach to procedural

side quest generation. Similar to the commercial example of Skyrim’s Radiant Story

[45](see section 2.5.2), it is capable of generating a theoretically limitless number of side

quests, a task which would be impossible were they to be manually scripted. However,

while quests generated with Radiant Story are unrelated to the state of the game world

and the current state of the narrative, the quests generated with this current system

are given purpose and relevancy through the use of author goals and constraints. The

quest system used of patterns and points (see section 3.2.1) allows quests to be created

quickly and easily during development.

Although the character modelling component of the system was not the main focus of

this dissertation, and was merely a necessity for the interactive storytelling aspect of

the main quest generation model to create a narrative, it does provide a method to

51

create a large number of unique and interesting NPCs quickly. The mental/physical

state modelling serves as a near-full implementation of Fallon’s research [20], in a more

general form than in his own dissertation, as his prototype was implemented in Skyrim’s

modding engine. The use of this method for NPC activity selection also addresses the

“Future Work” in McNulty’s dissertation, which outlined the need for a more flexible

model of activity selection rather than relying on set routines [39].

An efficient implementation of the model has been created in the form of a high fidelity

prototype. Profiling the prototype has shown that the implementation is light-weight

and should not have a significant impact on performance. This is of importance because

of the low computation and memory budget typically afforded to AI in commercial

games [42].

This dissertation is based on and integrates research from both interactive storytelling

and quest generation, two areas which when merged show potential for the procedural

generation of interesting quests that has not been largely explored to this date. It is

hoped that this dissertation can provide sources and foundation for future research into

this area.

6.2 Limitations & Future Work

In this section, some limitations of the model will be outlined, as well as future work

that could address these limitations.

6.2.1 Limited Prototype

As the current implementation is a prototype and has various limitations, the system’s

potential uses and functionality have not yet been fully explored. The prototype has

currently only four fully implemented quest points and two plot fragments, and while in

theory it should be easily able to support a larger number, further experimentation is

required to monitor the behaviour of the model, as well as the effect of a large number

of quest components and plot fragments on efficiency.

52

6.2.2 Integration

The current system has been integrated successfully with McNulty’s memory model [39]

and Fallon’s state vector model [20]. It was also hoped to integrate with O’ Connor’s

relationship model [46] and Cullen’s environment and temporal model [15], however

due to time constraints this was not possible.

Integration with a more sophisticated author goal selection system, such as the drama

managers used in Façade [2] and Left 4 Dead [61], would also be useful to showcase

how the model can help with the pacing and narrative of a game.

6.2.3 Events System

McNulty’s model [39] included an events system, that affected the memories of the

NPCs. It was originally hoped to integrate this system with the actions of the player,

so that NPCs would be aware of the player and their relationship with the player would

be affected based on their interactions. However, this, as well as a more sophisticated

relationship model and traits model that change over time, was decided to be outside

of the scope of the dissertation, and is left to future work.

6.2.4 UI/Scripting Support for Non-Programmers

While new quest points, patterns, and plot fragments can be created quickly and

easily in the model, they are must be specified in code. This requires the user to be

familiar with programming. Typically, writers and designers would be responsible for

quest design, so requiring a programmer to implement these specifications is a waste

of resources.

Developing a user interface or simple scripting system that could be used by writers

or designers to create quests and plot fragments themselves could further save devel-

opment time and resources.

53

6.3 Final Thoughts

As open world role playing games grow, both in popularity, and in size, the desire

and necessity for an alternative to manual side quest generation increases. Procedural

side quest generation has been used commercially in Skyrim [60], however the resulting

quests were repetitive and disliked among many players.

The use of interactive storytelling has been limited in commercial games. Drama

management has been used to great effect to control pacing and difficulty (as used in

Far Cry 2 [43] and Left 4 Dead [61] [33]), however interactive narrative is rare. Games

that rely on a narrative experience (such as The Walking Dead [25]) often rely on a

few yes-or-no choices from the player, which don’t have more than a cosmetic effect on

the narrative or gameplay.

This dissertation has proposed a model of using concepts from interactive storytelling

to improve the side quest generation process. This is an area that has been largely un-

explored to date. It is hoped that this dissertation demonstrates that using interactive

storytelling in the procedural generation of quests is a viable option for the development

of games in the future to create enjoyable interactive experiences for players.

54

Bibliography

[1] John Abercrombie. Bringing BrioShock Infinte’s Elizabeth to Life: An

AI Devlopment Postmortem. http://www.gdcvault.com/play/1020831/

Bringing-BioShock-Infinite-s-Elizabeth, 3 2014 (Accessed May 14, 2015).

Talk at Game Developer’s Conference AI Summit.

[2] Procedural Arts. Façade. [Download], 2005.

[3] Bioware. Baldur’s Gate. [CD-ROM, Download], 1998.

[4] Bioware. Neverwinter Nights. [CD-ROM, Download], 2002.

[5] Christopher Booker. The Seven Basic Plots: Why We Tell Stories. Continuum,

2005.

[6] Big Blue Box. Fable. [CD-ROM, DVD], 2004.

[7] Mark Brockington. Level-Of-Detail AI for a Large Role-Playing Game. In Steve

Rabin, editor, AI Game Programming Wisdom, pages 419–425. Charles River

Media, Inc., Rockland, MA, USA, 2002.

[8] Mat Buckland. Programming Game AI By Example (Wordware Game Developers

Library). Jones & Bartlett Learning, 2004.

[9] Joseph Campbell. The Hero with a Thousand Faces (The Collected Works of

Joseph Campbell). New World Library, 2008.

[10] Capcom. Resident Evil 4. [DVD, Download], 2005.

55

[11] MO Cavazza, Fred Charles, and Steven J Mead. Character-based interactive

storytelling. IEEE Intelligent systems, 2002.

[12] Alex J. Champandard. 10 Reasons the Age of Finite State Machines is Over. http:

//aigamedev.com/open/article/fsm-age-is-over/, 2007 (Accessed May 19,

2015.

[13] Chris Conway. Goal-Oriented Action Planning: Ten Years Old and No Fear! http:

//www.gdcvault.com/play/1022020/Goal-Oriented-Action-Planning-Ten,

20015 (Accessed June 10, 2015). Talk at Game Developer’s Conference.

[14] Valve Corporation. Dota 2. [Download], 2013.

[15] Tony Cullen. Modelling Environmental and Temporal Factors on Background

Characters in Open World Games. Master’s thesis, University of Dublin, Trinity

College, Ireland, 2015.

[16] Maria Cutumisu and Duane Szafron. An Architecture for Game Behavior AI:

Behavior Multi-Queues. In Christian Darken and G. Michael Youngblood, editors,

AIIDE. The AAAI Press, 2009.

[17] Naughty Dog. The Last of Us. [DVD, Download], 2013.

[18] Crystal Dynamics. Tomb Raider. [DVD, Download], 2013.

[19] L. Egri. The Art of Dramatic Writing: Its Basis in the Creative Interpretation of

Human Motives. Touchstone, 1972.

[20] John Fallon. Believable Behaviour of Background Characters in Open World

Games. Master’s thesis, University of Dublin, Trinity College, Ireland, 2013.

[21] Richard E. Fikes and Nils J. Nilsson. STRIPS: A New Approach to the Application

of Theorem Proving to Problem Solving. In Proceedings of the 2Nd International

Joint Conference on Artificial Intelligence, IJCAI’71, pages 608–620, San Fran-

cisco, CA, USA, 1971. Morgan Kaufmann Publishers Inc.

[22] Gustav Freytag. Die Technik des Dramas. 1863. (in German).

[23] Epic Games. Unreal Tournament 2004. [CD-ROM, DVD, Download], 2004.

56

[24] Irrational Games. BioShock Infinite. [DVD, Download], 2013.

[25] Telltale Games. The Walking Dead: Season One. [DVD, Download], 2012.

[26] M. Gonzalo and M.A. Gómez-Mart́ın. Artificial Intelligence for Computer Games.

SpringerLink : Bücher. Springer New York, 2011.

[27] Justin Haywald. Roam if you want to. http://www.gamespot.com/articles/

the-witcher-3-is-an-open-world-with-no-loading-tim/1100-6426896/,

2015 (Accessed May 16, 2015). Interview with The Witcher 3 developer.

[28] Philip Hingston. The 2K BotPrize. http://botprize.org/, 2013 (Accessed May

5, 2015).

[29] Clint Hocking. Ludonarrative Dissonance in Bioshock. http://clicknothing.

typepad.com/click_nothing/2007/10/ludonarrative-d.html, 2007 (Accessed

August 28, 2015).

[30] IGN. List of Side Quests in The Witcher 3. http://ie.ign.com/wikis/

the-witcher-3-wild-hunt/Side_Quests, 2015 (Accessed August 28, 2015).

[31] IO Interactive. Hitman: Bloody Money. [CD-ROM, DVD, Download], 2006.

[32] Konami Computer Entertainment Japan. Metal Gear Solid. [CD-ROM], 1998.

[33] Daniel Kline, Micheal Mateas, and Emily Short. An AI Assist to Interactive Sto-

rytelling: Bringing Interactive Storytelling to Industry. http://www.gdcvault.

com/play/1013459/Three-States-and-a-Plan, 2010 (Accessed June 10, 2015).

Talk at Game Developer’s Conference, AI Summit.

[34] Michael Lebowitz. Creating characters in a story-telling universe. Poetics,

13(3):171–194, 1984.

[35] Tim Lovett. The 15 Most Annoying Video Game Characters (From

Otherwise Great Games). http://www.cracked.com/article_15902_

the-15-most-annoying-video-game-characters-from-otherwise-great-games.

html, 2008 (Accessed May 15, 2015).

57

[36] Aaron Bryan Loyall. Believable Agents: Building Interactive Personalities. PhD

thesis, Pittsburgh, PA, USA, 1997.

[37] George Lucas. Star Wars, 1977.

[38] Robert R McCrae and Oliver P John. An introduction to the five-factor model

and its applications. Journal of personality, 60(2):175–215, 1992.

[39] Tiernan McNulty. Residual Memory for Background Characers in Complex

Enivronments. Master’s thesis, University of Dublin, Trinity College, Ireland,

2014.

[40] James R. Meehan. TALE-SPIN, An Interactive Program that Writes Stories. In In

Proceedings of the Fifth International Joint Conference on Artificial Intelligence,

pages 91–98, 1977.

[41] Herman Melville. Moby-Dick. Richard Bentley, 1851.

[42] I. Millington and J. Funge. Artificial Intelligence for Games. CRC Press, 2009.

[43] Ubisoft Montreal. Far Cry 2. [DVD, Download], 2008.

[44] Ubisoft Montreal. Assassin’s Creed IV: Black Flag. [DVD, Download], 2013.

[45] Bruce Nesmith. Radiant Story. https://www.youtube.com/watch?v=

Ou6SB8dWKjw, 2012 (Accessed May 18, 2015). Talk at Game Design Expo, Van-

couver Film School.

[46] Brendan O’ Connor. A Relationship Model for Believable Social Dynamics of

Characters in Games. Master’s thesis, University of Dublin, Trinity College, Ire-

land, 2015.

[47] Curtis Onuczko, Duane Szafron, and Jonathan Schaeffer. Stop Getting Side-

Tracked by Side-Quests. In S. Rabin, editor, AI Game Programming Wisdom 4,

AI Game Programming Wisdom, pages 513–527. Charles River Media, 2014.

[48] Curtis Onuczko, Duane Szafron, Jonathan Schaeffer, Maria Cutumisu, Jeff Siegel,

Kevin Waugh, and Allan Schumacher. A Demonstration of SQUEGE: A CRPG

58

Sub-Quest Generator. In Proceedings of the Third Artificial Intelligence and In-

teractive Digital Entertainment Conference, June 6-8, 2007, Stanford, California,

USA., pages 110–111, 2007.

[49] Jeff Orkin. Three States and a Plan: The AI of F.E.A.R. [AUDIO ONLY]. http://

www.gdcvault.com/play/1013282/Three-States-and-a-Plan, 2006 (Accessed

June 10, 2015). Talk at Game Developer’s Conference.

[50] Jeff Orkin. Three States and a Plan: The AI of F.E.A.R. [SLIDES ONLY]. http:

//www.gdcvault.com/play/1013459/Three-States-and-a-Plan, 2006 (Ac-

cessed June 10, 2015). Talk at Game Developer’s Conference.

[51] D. Pizzi, J.-L. Lugrin, A. Whittaker, and M. Cavazza. Automatic Generation

of Game Level Solutions as Storyboards. Computational Intelligence and AI in

Games, IEEE Transactions on, 2(3):149–161, Sept 2010.

[52] Pogee777. Move it Dammit! http://www.nexusmods.com/skyrim/mods/4020/?,

2011 (Accessed May 14, 2015). User mod created for Skyrim.

[53] Monolith Productions. F.E.A.R. First Encounter Assault Recon. [DVD, Down-

load], 2005.

[54] V.IA. Propp. Morphology of the Folk Tale. University of Texas Press, 1968.

[55] Rare. GoldenEye 007. [CD-ROM], 1997.

[56] CD Projekt RED. The Witcher 3: Wild Hunt. [DVD, Blu-Ray Disc, Download],

2015.

[57] Emily Short. Galatea. [Web, Download], 2000.

[58] Chris Simpson. Behavior trees for AI: How they work, 2014 (Accessed May 19,

2015).

[59] The Indie Stone. Project Zomboid. [Download], 2013 (Early Access).

[60] Bethesda Game Studios. The Elder Scrolls V: Skyrim. [DVD, Download], 2011.

[61] Turtle Rock Studios. Left 4 Dead. [CD-ROM, DVD, Download], 2008.

59

[62] Unity Technologies. Unity Game Engine, v5.1.2f1. [Download], 2015.

[63] Frank Thomas and Ollie Johnston. The illusion of life : Disney animation. Disney

Editions, New York, 1981.

[64] Elder Scrolls Wiki. List of Side Quests in Skyrim. http://elderscrolls.wikia.

com/wiki/Side_Quests_(Skyrim), 2011 (Accessed August 28, 2015).

60

