
A Relationship Model for Believable Social

Dynamics of Characters in Games

by

Brendan O’Connor, BBIT. (Hons.)

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

August 2015

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Brendan O’Connor

August 31, 2015

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Brendan O’Connor

August 31, 2015

Acknowledgments

First and foremost I would like to thank my supervisor Dr. Mads Haahr for his advice

and support throughout the duration of this dissertation. Dr. Haahr offered valuable

insights and direction which helped to improve the quality of work produced here.

I would also like to give thanks to Sarah Noonan and Tony Cullen for their advice,

feedback, ideas and overall camaraderie during the course of the project.

Finally, I would like to thank my family and friends for their incredible support,

encouragement and belief in me. I would not have found the courage to continue

charging forward without all of you.

Brendan O’Connor

University of Dublin, Trinity College

August 2015

iv

A Relationship Model for Believable Social

Dynamics of Characters in Games

Brendan O’Connor

University of Dublin, Trinity College, 2015

Supervisor: Dr. Mads Haahr

This dissertation investigates believable social dynamics based on a relationship model

between Non-Player Characters (NPCs) in games. The majority of interactions be-

tween characters in games is rigidly defined; with limited scope for character relation-

ships that change as a result of interactions with each other or other factors. This

limited ability hinders player immersion and believability in their interactions with the

characters. This dissertation presents a model which can be easily applied to NPCs to

provide them with relationship awareness. The model supports characters that store

their own ”assumed knowledge” of other characters relationships, in addition to their

own direct relationships with other characters in their environment. This allows the

characters awareness of not just their own relationships to other characters (e.g. to a

sibling or child character), but also awareness of the relationships between other char-

acters (e.g. that two other characters may be enemies). This knowledge can be treated

v

as an assumption; allowing characters to be provided with misleading information -

the results of which are left up to extended implementations of the model. A messag-

ing system is also implemented that allows the characters to communicate with one

another directly as well as through their relationships (e.g. passing a message to all

members of a group). The model has been implemented with a generic interface that

allows other types of information to be tracked between NPCs as extensions to the basic

relationships between characters. This provides for advanced implementations such as

characters that ”remember” previous relationship states with other NPCs. The model

is tested and evaluated within a prototype environment within the Unity game engine.

The implementation showcases a model with promising potential where characters act

upon, learn and communicate about relationships they are aware of.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Roadmap . 3

Chapter 2 State of the Art 4

2.1 Social Dynamics . 4

2.1.1 Generating a concrete model . 4

2.2 Social Psychology . 6

2.2.1 Individual Characteristics and the Social Situation 6

2.2.2 Self-Concern . 7

2.2.3 Other-Concern . 7

2.2.4 Social Situations creating powerful Social Influence 8

2.2.5 Social Influence creates Social Norms 8

2.2.6 Cultures influence Social Norms 9

2.3 Social Networks . 9

2.4 Group Dynamics . 10

2.5 Social Relationships in Games . 11

vii

2.5.1 Prom Week (2012) . 12

2.5.2 The Sims (2000-2015) . 13

2.5.3 Façade (2005) . 14

2.6 Social Dynamics in Games . 15

2.6.1 Fable (2004) . 15

2.6.2 Shadow of Mordor (2014) . 17

2.6.3 Halo (2001) . 17

2.7 Current Decision Making Architectures 18

2.7.1 Finite State Machines . 18

2.7.2 Behaviour Trees . 18

2.7.3 AI Planners . 19

2.7.4 Utility Systems . 19

2.7.5 Scripted Events . 20

2.8 Conclusion . 20

Chapter 3 Design 22

3.1 Model Definition . 22

3.1.1 Representing Relationships . 23

3.1.2 Graph Interface . 28

3.2 Group Behaviour . 29

3.2.1 Applications of group behaviour 30

3.3 Messaging System . 32

3.3.1 Learning support . 32

3.4 Illustrating the Model . 33

3.4.1 The Trader . 34

3.4.2 The Mob . 34

3.5 Model Architecture . 35

3.6 Conclusion . 36

Chapter 4 Implementation 37

4.1 Platform Selection . 37

4.2 Graph Implementation . 38

4.2.1 Graph . 38

viii

4.2.2 Relationships . 39

4.2.3 Entities (Nodes) . 40

4.2.4 Connections (Edges) . 42

4.3 Messaging System . 43

4.3.1 Broadcast messages . 44

4.4 Learning Systems . 44

4.4.1 Relationship Evaluation . 45

4.4.2 Adopting new Relationships . 45

4.5 Model Visualisation . 45

4.5.1 Sphere Demo . 46

4.5.2 Bob the Guard . 46

Chapter 5 Evaluation 48

5.1 Believable Social Behaviour . 48

5.2 Complexity Analysis . 51

5.3 Performance . 52

5.3.1 Memory . 52

5.3.2 Processing . 54

5.4 Shortcomings & Challenges . 56

Chapter 6 Conclusion 58

6.1 Contributions . 58

6.2 Future Work . 60

6.2.1 Improved Learning System . 60

6.2.2 Misleading Characters . 60

6.2.3 Optimizations . 60

6.2.4 Connection and Relationship Decay 61

6.2.5 Integration . 61

6.2.6 WideEdge . 61

6.3 Final Thoughts . 62

Appendices 63

Bibliography 64

ix

List of Tables

5.1 Complexity analysis of common relationship graph methods. E are the

number of Edges or Connections in the graph, N are the number of

Nodes, R are the number of Relationships. 51

5.2 Memory usage with different combinations of entities (nodes), connec-

tions (edges) and relationships. The number of relationships captured

by the graph is significantly affected by the number of connections and

entities e.g. 5 entities each storing 5 connections, with each connection

storing 10 relationships would result in 250 (5*5*10) relationships. . . . 54

5.3 Computation performance of the Relationship Graph using different

quantities of Entities, Connections and Relationship. 56

x

List of Figures

2.1 Aristotelian story tension value arc. 14

3.1 Representation of how Nodes, Edges and Relationships are captured in

the RelationshipGraph model. Nodes represent Entities, Edges represent

Connections from one character to another, and Relationships represent

the bond between two characters. Relationships are treated as a distinct

component of an Edge and can be assigned to different connections. The

directed nature of the graph allows for nodes that have both unidirec-

tional relationships (such as those from node A to node B and to node

C) and for bidirectional relationships (such as those between node’s B

and C). 24

3.2 Representation of a simple RelationshipGraph. Each Node represents

a character (or group). The edge’s represent inter-relationships. An

indirect edge is defined as an observed edge between two other nodes,

represented here by the red dashed line that points to the edge from

node C to node B. 27

xi

3.3 Representation of how grouping can be captured in the model. Each

Node can represents a character or group, in this diagram the Node

”G” represents a group and other Nodes specify that they belong to

the group ”G” by specifying the ”MEMBER” relationship to it. In this

example, the Nodes ”M1”, ”M2” and ”M3” are ”MEMBER”’s of the

Group represented by Node ”G”. Node ”G” identifies the Node ”O”

as an ”ENEMY” of the Group, all ”MEMBER”’s of the Group ”G”

can inherit this relationship due to their association with the Group i.e.

as ”O” is an enemy of the group ”G”, it is therefore the enemy of all

members of that group. 31

3.4 Representation of how simple learning works at a high level, a connection

is passed to the destination Entity as the payload of a message. The

receiving Entity evaluates this Connection and discards or adopts it to

its Connection list . 33

4.1 All Graph implementations in the prototype are extensions of a base

Graph type that implements the IDictionary¡TKey, TValue¿ interface,

and a DeepGraph class that extends the Graph with support for multiple

TValues per TKey - this is how multiple connections are stored per entity

within the graph. 38

4.2 IRelationship Interface used in implementations of Relationship classes.

The Equals method is used to identify a unique Relationship and is used

when traversing the graph. 39

4.3 INode Interface used to implement Entities. The Equals method is

used to identify a unique Relationship and is used when traversing the

graph. The HandleMessage method is used to handle messages passed

to the Entity. 40

4.4 IEdge Interface used to implement Connections. The ”From” method

defines the source of the Connection, ”To” defines the destination Entity

and the Relationship method defines a relationship between between the

two Entities. When a comparison is made between two Connections, the

graph relies on the implementation of the Equals methods of the INode

and IRelationship interfaces . 42

xii

4.5 The IMessage Interface is used in the implementations of Message

classes that are passed to Entities through the HandleMessage method

of INode implementations. 43

4.6 Representation of how broadcast messages are implemented in the Graph.

A message is sent from Entity ”O” to the Group Entity ”G”. This in

turn ”Broadcasts” the message to each of its members i.e. those Entities

that have a ”MEMBER” relationship to the group Entity 44

4.7 Screenshot of Bob the Guard. The player can use the interface to com-

municate with the character. They can send text messages to Bob using

the input on the top right, or a Connection message constructed from

the options on the left and submitted with the Send Connection button.

Questions about Bob’s relationships to other characters can be submit-

ted using the other available buttons and his responses are demonstrated

in the screenshots above. 47

6.1 Screenshot of the Guard demo. 59

xiii

Chapter 1

Introduction

This dissertation investigates believable social dynamics based on a relationship model

between Non Player Characters (NPC’s) and the player’s character. The focus is on

NPC’s that the player interacts with directly, allowing the nature of the relationships

between characters to develop over time based on the actions of the parties to one

another.

The hypothesis proposes that the creation of a relationship model or simulated

social network would enhance the believability of the NPC’s behaviour by providing

motivations for their actions based on their connections to other NPC’s or to the

player. Testing this hypothesis would be performed by the creation of a demonstration

environment where NPC’s interact with one another and with the player allowing for

the model to be observed and compared to existing models.

The model aims to be generic enough to encapsulate simple relationships between a

few NPC’s and more complex interactions in larger groups, and also to act as a reference

for other systems in the game. It is hoped that this will create more believable and

immersive gameplay experiences for the player.

1.1 Motivation

All too often, interactions between characters in games that share some form of re-

lationship with one another, whether those relationships are familial (such as those

between Alyx in Half-Life 2 and her father, or the conversations between Joel and

1

Ellie in The Last of Us) or more strict relationships (such as those between a captain

and his crew-mates, or of a soldier and their commanding officer) are often hard coded

into the games AI or are scripted events. And the growth of these relationships over

time are often dependent on the story of the game and not between actual interactions

between the player and the NPC’s - which can lead to conflicting behaviour; for exam-

ple, the player attacking a friendly NPC but that NPC continuing to trust the player

implicitly due to the requirements of the story.

In games, the goal of Artificial Intelligence (AI) is to build believably intelligent

entities for the player to interact with. More recently there have been efforts at emer-

gent player driven stories and narratives that evolve from the interactions with the

AI system, such as in the Nemesis System of Shadow of Mordor [7]. Game AI has

to work with limited resources as the processing time and memory must be shared

with other processes that are also important to generating a believable and immersive

experience for the player such as graphics, physics, audio and other items. However,

the importance of the role of quality AI should not be underestimated as it must also

be entertaining in their interactions with the player.

Artificial Intelligence attempts not just to understand but to build intelligent enti-

ties. Definitions of AI vary along two main dimensions: those concerned with replicat-

ing thought processes and reasoning and those that address behaviour [12]. According

to Buckland, artificial intelligence can be split into these two broad camps of strong and

weak AI [13]. Where strong AI concerns itself with the creation of systems that mimic

the human thought process and the field of weak AI is concerned with the application

of AI techniques to the solution of real-world problems [13].

The player often comes into direct contact with NPC’s, thus the NPC’s affect the

immersion of the player in the virtual environment. Unrealistic behaviour of NPC’s

can break this immersion and pull the player out of the experience damaging their

connection to the game. Believable behaviour such as the grunts that flee in the Halo

franchise when their numerical or tactical advantage is lost are much more believable

than even more recent games such as the Assassins Creed series where enemies all

behave similarly and take turns to engage the player in combat instead of forcing their

advantage.

2

1.2 Objectives

The aim of this dissertation is to design a relationship model to improve the believability

of Non-Player Characters in games. This model will then be implemented and evaluated

to determine if they offer an improvement over existing solutions. The dissertation will

aim to meet the following objectives:

1. Offer a tangible improvement over current solutions

2. Support generation of believable actions based on relationships with other NPC’s

3. Provide an efficient and generic implementation for use in a wide range of sup-

port for static and dynamic systems (e.g. generating a relationship model for

procedurally generated bandits)

4. Efficient reference model for use in game by other systems

5. Flexible Model for use in different genres of games

1.3 Roadmap

Chapter 2 reviews the current state of the art of NPC inter-relationships in games and

a review of sociological and psychological models of relationships and social interac-

tions. Chapter 3 discusses the design of the Relationship model, describing the design

choices made as well as illustrating how the model can be used to create believable

characters. Chapter 4 describes the implementation of the model by detailing each of

the main components of the model and how they work together, and some advanced

behaviours that were implemented based on these components. Chapter 5 evaluates

the performance of the model as well as offering a comparative analysis to an existing

system and demonstrating how the other system can be implemented more effectively

using the model. Finally, Chapter 6 offers a summary of the contributions made by

the project, final remarks and potential future work that can improve on the current

model.

3

Chapter 2

State of the Art

The purpose of this chapter is to provide background on the relevant areas and prior

work done on the modeling of social dynamics and human inter-relationships in sociol-

ogy and in games. First, a discussion of some basic sociology and psychological research

on human relationships and interactions including an example of a social dynamics

model. This is followed by a discussion of Artificial Intelligence (AI) implementations

of social dynamics and character relationships in games. Lastly, we review techniques

used in the video games industry to try and simulate believable social dynamics.

2.1 Social Dynamics

Durlauf et al. define Social Dynamics as the explicit study of the interactions linking

individual behaviour and group outcomes [3]. They state that the study begins with

the assumption that the actions and choices of individuals affect others around them.

As these actions and choices happen sequentially, a feedback loop arises where the

past actions of some individuals affect the future behaviour of others. The resulting

dynamical system from these interactions is the focus of the study of social dynamics.

2.1.1 Generating a concrete model

Durlauf and Young make note of some methodological ”questions” that must be ad-

dressed to generate a concrete model [2]:

4

• Individuality The Individuality of the agents or subjects must be maintained at

all times. Behavioural rules must apply to individuals rather than representatives

(such as aggregates)

• Randomness Some allowance for random perturbations arising from variations

in the environment, errors in transmission of information, and the diversity of

individual responses.

• Properties Identification of the aggregate properties of the model that should

be captured (or studied). Aggregate properties are important due to the main-

tenance of individuality and heterogeneity of the agents/characters - which may

result in a large and unwieldy state space.

• Responsiveness There must be an understanding of how individuals respond

to their beliefs concerning the characteristics and behaviours of others.

• Absorption How beliefs are formed must be specified. This is a function of the

ability of individuals to learn, reason and process information.

Social Dynamics studies the aggregated properties of the resulting stochastic dy-

namical system of these diverse elements. However, this resulting stochasticity is an

element that would lend itself well to games and other interactive models - to provide

an element of unpredictability to the virtual environment.

Durlauf, et al., provide a demonstration of how these insights could be embedded

in a formal model [3]; consider that we have I agents situated in a social or geographic

space that determines lines of communication and degrees of social influence. If we

suppose that each agent is situated at the vertex of a directed graph, that each edge

(i, j) is weighted by its importance, dij which is taken as non-negative. If we also

suppose that each agent has a finite number of actions X that are observable by others

and a state of the system that is a collection of actions by each agent ωt = (ω1,t, ..., ωI,t),

where ωi,t is agent i’s action at t. Each agent i is affected by the actions of others, so

it is useful to define ω−i,t = ω1,t, ..., ωi−1,t, ωi+1,t, ..., ωI,t). Over time agents reconsider

what they are doing in the light of current circumstances and have the opportunity to

alter their actions. Agent i’s choice of actions is governed by i’s personal preferences

concerning actions, independent of what others are doing, plus the actions of others,

weighted by their importance to i.

5

Formally, this may be represented as follows; let θi denote a vector of charac-

teristics of i that influence that agent’s payoff from each possible action. In choos-

ing an action ω ∈ X, agent i receives a private payoff v(ωi,t, θi) plus a social payoff∑
j 6=i di,js(ωi,t, ωj,t, θi). Therefore each actor will make a choice in order to maximise:

Ui(ωi,t, ω−i,t, θi) = v(ωi,t, θi) +
∑
j 6=i

di,js(ωi,t, ωj,t, θi)

assuming each individuals choice is perfectly predicted from this maximisation prob-

lem [3].

2.2 Social Psychology

According to Charles Stangor, social psychology is the study of the dynamic relation-

ship between individuals and the people around them. Each individual has their own

characteristics, including personality traits, desires, motivations and emotions - all of

which have an important impact on our social behaviour [1].

2.2.1 Individual Characteristics and the Social Situation

Charles Stangor states that there is an acceptance that behaviour is influenced by

context or the social situation [1]. The social situation refers to the ”others” that

individuals interact with every day including friends and family, religious groups, and

other individuals observed on television or read about or interacted with on the web.

There are also other individuals that are thought about, remembered or even imagined.

Social psychology studies social influence - the process through which others change

an individual’s thoughts, feelings and behavious and vice-versa.

Kurt Lewin formalized the joint influence of an individual’s characteristics and the

situational variables with the following equation [1]:

behaviour = f(indivudialcharacteristics, socialsituation)

Indicating that the behaviour of individuals at any given point is a function of

the characteristics of the individual and the influence of the social situation they find

themselves in.

6

According to Vansteenkiste and Ryan, ”In the current research, grounded in self

determination theory, ... evidence that both peoples healthy tendencies toward growth

and integrity and their vulnerabilities to ill-being and psychopathology can to a sig-

nificant degree be explained by a single underlying principle. Stated simply, basic

psychological need satisfaction and frustration can substantially account for both the

’dark’ and ’bright’ side of peoples functioning” [33]. The frustration of the needs by

the social situation can lead to negative individual behaviour, while a satisfaction of

the needs leads to a positive or neutral individual behaviour.

Stangor says that evolutionary adaption has driven two fundamental motivations

that guide individuals [1], these are self-concern and other-concern:

2.2.2 Self-Concern

The most basic tendency of all living organisms is the desire to protect and enhance

one’s own life and the lives of those closest to us. This is what drives humans to find

shelter or food as doing so is necessary is fundamental for one’s own survival. This

desire to maintain and enhance the self extends to relatives - those genetically related

to us. Humans exhibit kin selection - strategies favoring the reproductive success of

one’s relatives. In addition to kin, humans aim to protect and improve the well-group

of our in-group - those whom we view as similar and important to us and with whom

social connections are shared, even if they aren’t genetically related.

2.2.3 Other-Concern

Despite a primary concern with the survival of our selves, our kin and our ingroup, there

is also a desire to connect and be accepted by others - other-concern. This is reflected

by living in communities, working and worshiping in groups, playing together in teams.

These interactions facilitate a fundamental goal of finding a romantic partner. These

connections facilitate other opportunities that may not be performed by the individual

alone e.g. a carpenter to build a house, or a teacher to learn new skills/knowledge.

Affiliation is also enjoyable as is being a part of a social group.

The other-concern motivation demonstrates that part of being human involves car-

ing for, assisting, and cooperating with other people. The primary motivations of

survival may be selfish, but the survival of our own genes may be improved by the

7

assistance of those not related to us. This results in moral behaviour between humans.

Individuals understand it is wrong to harm each other without a good reason to do

so as it works against our own self interests. This results in negative behaviours to-

wards others being viewed as unusual, unexpected and socially disapproved. Negative

behaviours may still arise based on the social situation, however the fundamental mo-

tivation of other concern results in negative behaviour being an exception rather than

the norm.

The goals of self-concern and other-concern may go hand-in-hand or may conflict

based on the individuals characteristics. For example, a connection with another indi-

vidual in a loving relationship results in an individual feeling good about themselves

as well sharing a concern for the other. However, when observing another person being

attacked the desire to help the other and the desire for self-preservation results in a

conflict between self- and other-concern, and the individual must make a decision on

whether or not to intervene.

2.2.4 Social Situations creating powerful Social Influence

An important principle of social psychology is that although individuals’ characteristics

matter, the social situation can often be a stronger determinant of behavior than

an individuals’ personality. In addition to the people with whom we are currently

interacting, we are influenced by people who are not physically present but who are

nevertheless part of our thoughts and feelings [1].

2.2.5 Social Influence creates Social Norms

Social influence can occur passively, without any obvious intent of one individual to

influence the other, such as when we learn about and adopt the beliefs and behaviors of

the people around us, often without really being aware that we are doing so. An exam-

ple of this occurs when a child adopts the beliefs and values of their parents. In other

instances, it is not as subtle and individuals may actively attempt to change the beliefs

or behaviours of others, for example with advertising by popular individuals. Social

Norms are ways of thinking, feeling or behaving that are shared by group members

and perceived by them as appropriate - norms include customs, traditions, standards

and rules as well as general values of the group (e.g. timeliness, tidiness, etc.) [1].

8

2.2.6 Cultures influence Social Norms

A culture represents a group of people, normally living within a given geographical re-

gion, who share a common set of social norms, including religious and family values and

moral beliefs. The culture in which we live affects our thoughts, feelings, and behavior

through teaching, imitation, and other forms of social transmission. Cultural differ-

ences for example, with individualistic (self-concern) versus collectivistic orientations

(other-concern) guide our everyday behavior [1].

2.3 Social Networks

A social network is a structure of relationships that ties actors to one another. Ac-

cording to Wasserman and Faust, ”the unit of analysis ... is not the individual, but

an entity consisting of a collection of individuals and the linkages among them” [26].

The network methods focus on dyads (ties between two actors), triads (between three

actors) or larger systems (groups, organisations, etc.). There is a clear link between

networks and the social structures and social interactions that are sociology’s central

concerns [24].

A brief summation of the principles that underline the social network perspective,

according to Pescosolido [25], include:

1. Network interactions influence beliefs and attitudes as well as behaviour, action

and outcomes.

2. Individuals are neither puppets of the social structure nor purely rational, calcu-

lating individuals.

3. Abstract influences can be understood by looking at the set of social interactions

that occur within them.

4. Social networks have 3 distinct characteristics: structure (the dimensions of the

network ties e.g. size, density), content (what flows across network ties) and

function (outcomes of the interactions).

5. Network influence requires the consideration of interactions among these three

aspects.

9

6. Networks may be in sync or in conflict with one another.

7. Social interactions can be positive or negative, helpful or harmful.

8. More is not necessarily better with regard to social ties. Stronger ties are not

necessarily more optimal than weak ties due to the opportunities that may be

afforded by the weaker ties.

9. Networks across all levels are dynamic, not static, structures and processes.

10. A network perspective allows for, and even calls for, multi-method approaches.

11. Socio-demographic characteristics are potential factors shaping the boundaries of

social networks but provide, at best, poor measures of social interaction.

12. Individuals form ties under contextual constraints and interact given social psy-

chological and neurological capacities.

Social Network Analysis is the application of methods and models for the analysis

of social network data. In social network analysis the observed attributes of social

actors are understood in terms of patterns or structures of ties among the units[26].

Scott states that ”Social network analysis is appropriate for for relational data and

that techniques developed for the analysis of other types of data are likely to be of only

limited value for research that generates data of this kind” [27].

2.4 Group Dynamics

Forsyth [18] states that ”Group dynamics are the influential interpersonal process that

take place in groups” and ”All but an occasional recluse or exile belong to groups, and

those who insist on living their lives apart from others, refusing to join any groups,

are considered curiosities, eccentrics, or even mentally unsettled” [19] [17]. Kurt Lewin

used the term group dynamics to stress the powerful, fluid and active impact of these

complex social processes on group members [18]. A group is formed by two or more

individuals who are connected to one another by social relationships.

Groups can be planned or emergent. Emergent group norms are sustained by a

common set of group level processes. Forsyth and Elliot state that, ”Informational

10

influence occurs when the group provides members with information that they can use

to make decisions and form opinions” [19].

Groups have differing levels of influence psychologically; with primary groups (close-

knit groups such as families, close friendships, neighbourhoods, etc.) having a stronger

influence than secondary groups. However secondary groups still have an influence

over an individual’s place in society. Both of these types of groups provide members

with their attitudes, values and identities and teach their members the skills they

need to contribute to the group, provide them with the opportunity to discover and

internalize their behaviour in response to social norms and others’ requirements, thus

groups socialize individual members [19].

Some of the core assumptions about groups include [18]:

• Groups Are Real:

• Group Processes Are Real

• Groups are more than the Sum of their Parts

• Groups are living systems

• Groups are influential

• Groups shape society

Individuals within a group interact with one another on the task at hand. Groups

create interdependence among the members of the group and the interaction within a

group is determined by the group structure which defines the roles, norms and inter-

personal relations within the group. Group cohesion determines the unity of the group

[18].

2.5 Social Relationships in Games

This section reviews the state of the art implementations of social relationships in

games. These are typically games with social relationships as part of their core game-

play and are much rarer than other types of action oriented games due to limitations

on speed and memory requirements, but see deeper and more experimental projects

into modeling social dynamics.

11

2.5.1 Prom Week (2012)

Prom Week is a game that revolves around the social lives of eighteen characters.

According to the paper by McCoy et al. [9], the player is given a set of goals to

complete during the week before the prom e.g. getting a date to the prom. These goals

are attained by discovering solutions through interactions with the characters and social

states. The player works towards these goals by initiating social exchanges with each

character. These social exchanges are multi-character social interactions that modify

the social state connected to the participants. Which social exchanges are available

and how each changes the social state are determined by the games AI system Comme

il Faut (CiF) [9]. The player chooses from an ordered list generated by CiF based on

the social state and the character models. The system also determines whether or not

a character will respond positively or negatively to a social exchange. This response

is emergent from the underlying social simulation rather than from pre-determined

scripted content.

Prom week introduces the concept of Social physics [9], what the authors describe

as ”...a simulation of social dynamics specifically crafted for a targeted experience ... an

enjoyable simplification tuned for gameplay...” just as platform games don’t reproduce

realistic physics of the real world. Prom Week’s AI system provides a knowledge

representation and processes that models social interactions to make an ambitious goal

of simulation of a large space of contexts and social interactions an attainable one.

These social physics are based on a set of over 5,000 socio-cultural considerations

based on ethnographic analysis of pertinent media sources [9]. The analysis of social

norms and behaviours in a particular cultural setting, or social biases, prejudices or

other patterns of social interaction can also be incorporated into the model. These con-

siderations are used as rules to influence character desires, each adding either a positive

or negative numerical weight to the desirability of each potential social exchange.

CiF operates by iterating through a set of processes over a given social state to

determine what characters are interested in doing and how they may respond to the

other characters taking these social actions with them - this is desire formation. This

iterative process results in all the characters having a weighted determination to pursue

certain social exchanges with every other character. The player then selects a social

exchange for one character to perform with another and this results in an initiator intent

12

(a character’s desired social change) and three roles: an initiator, a responder and a

potential third party. If a third party is involved, CiF selects the character with whom

the most influence rules pertaining to a third party were true. CiF then determines

how a responder reacts based on the social context by calculating a sum for true rules

that pertain to responding to the social exchange - if this sum is zero or greater the

game responder accepts the intent otherwise it is rejected. The system uses effects as

a means of narrating the outcome of a social exchange based on the social state of

the participants and whether the exchange was accepted or rejected. Each of these

effects is associated with a performance realization instantiation. Each instantiation

is a set template based dialogue acts and animations. After these instantiations are

realized the social state change associated with the chosen effect is applied, including

placing an entry into a social facts database to track the exchange for future reference

in other social exchanges. Lastly trigger rules are executed over the new social state to

account for social changes arising from multiple social exchanges and other elements

of the social state [9].

2.5.2 The Sims (2000-2015)

The Sims is a sandbox god-game that simulates the life of a human-like family. The

game is recognized as having one of the most influential AIs in the game industry.

The AI in the game handles lower level actions such as path-finding but also default

behaviour for the NPC’s when they are not in interaction with the player [4]. As the

characters could survive and behave independently of the player actions, this led to,

according to Yoann Bourse, ”automatic generation of game narration” [4] where the

narrative was an emergent result of the social interactions of the game characters.

Yoann Bourse also states that the social interactions in The Sims are based on a

score between each pair of Sim characters [4]. The relationship between each pair of

characters depends on this score e.g., enemies, friends, etc. which result in different

possible actions. A precise rule system determines the outcomes of these social inter-

actions, resulting in negative or positive results based on the mood, personality, the

circumstances or sometimes a plain variable.

This is similar to the model described by Kurt Lewin that formalized the joint

influence of an individuals’ characteristics and the situational variables to determine

13

Figure 2.1: Aristotelian story tension value arc.

the character’s behaviour.

2.5.3 Façade (2005)

Façade is a short game that ”attempted to create a real-time 3D animated experience

akin to being on stage with two live actors who are motivated to make a dramatic

situation happen”, according to authors Michael Mateas and Andrew Stern [22]. The

game approached this by developing an architecture that merged drama management,

believable agents and natural language processing. Drama management was imple-

mented by providing architectural support for authoring drama beats, which combines

aspects of character story.

Drama management in Façade is handled by breaking down a narrative into beats

and using a beat sequencer to select the next beat in a story based the previous

interaction history. A Beat Sequencing Language was developed for Façade where

the author/developer may annotate each beat with selection knowledge, can define the

actions that are performed at various stages in the beat selection process and can define

the beats that are accessible by all the tests and actions within a beat [22]. Given a

collection of beats, the beat sequencer selects beats for sequencing and a sequencing

decision is initiated when the current beat successfully stops. These beats are then

scored according to the Aristotelian story tension value arc [22] (see Figure 1.).

Façade also utilises A Behaviour Language (ABL) - a reactive planning language

that supports sequential and parallel behaviours as well as joint behaviours to allow

14

the NPC’s to react to player behaviour as well as to perform actions - sometimes

simultaneously [21]. This allows for believable agent behaviour whereby they multitask

(e.g. watch the player perform an action such as looking at a painting while conversing

with another agent) and react realistically (e.g. stopping mid-sentence if the player

performs an action that draws their attention).

However, while Façade provides an interesting approach to modeling interactions

between NPC’s, the approach is limited for a number of reasons. First, the rela-

tionship moves through scripted beats and a set overall narrative rather than being

emergent behaviour from the characteristics of the agents. Secondly, the approach is

time-consuming to develop and set up. For even the short scenario that plays out in

the game which can last for about twenty minutes, hundreds of actions and behaviours

must be specified and linked between story beats - something that would be better as

a result of the interactions rather than painstakingly implemented manually.

2.6 Social Dynamics in Games

This section investigates implementations of social dynamics in games that results in

believable behaviour by agents. These are games that incorporate social behaviour

in the behaviour of enemies and other NPC’s over and above the typical situational

awareness or quest giving.

2.6.1 Fable (2004)

Fable is a series of games developed by Lionhead Studios. They are renowned for their

implementation of opinionated AI systems where NPC’s react to player actions and

appearance and develop opinions of them. The games are set in a fantasy world where

the player must set out on a quest to achieve their goals either through good deeds or

evil deeds - with the player’s character and the NPC’s reflective those choices.

Fable allows players to craft their own avatars, however it focuses on the lifetime

change of the characters’ social reputation rather than just the initial choice of the

character. To this end the game utilises an opinion system, by which individual NPC’s

form their own personal opinions of the players character based on observed behaviour.

This opinion system was restricted to a subset of the overall gameplay separating it

15

from conventional RPG quest scripting. This is a popular approach also utilised in

games such as Elder Scrolls V: Skyrim where random bandits are generated to combat

the player as well as having persistent NPC’s that live in towns. Fable’s opinion system

revolves around the player, this means that the NPC’s do not have opinions of each

other - only of the player.

Fable’s opinion system works on a basis of opinion states that describe an instan-

teneous evaluation of the player’s social persona by the NPC [20]. It does not carry

any historical context - the NPC has no knowledge of what prior actions led up to

the current observed behaviour nor any record of previous expressions of opinion to-

ward the players character. Fable uses a multidimensional opinion system that uses

several values to describe an opinion state including morality, renown, scariness (of

appearance), agreeableness, and attractiveness. A hybrid model of opinions in society

is utilised to both present a single overall opinion status to the player as well to have a

model that implements the propagation of knowledge in the game world from character

to character. The opinion of the player is modeled as a function of the NPC’s relative

opinion of the player and the players own data that tracks the players own activity

that may happen away from observable NPC’s and these two sets are combined to form

an absolute individual opinion of the player [20]:

individualopinion = f(playeractivity, relativeopinion)

The game also includes a village opinion that is used to approximate the propagation

of information between villages as opposed to between individuals. This means that

the individuals communicate with the village opinion in certain circumstances and this

propagates to others and this village opinion is then included as part of the absolute

opinion the NPC forms of the player. This allows the NPC’s to form an opinion of

the player if the have not yet formed one - an approximation of group dynamics, social

norms and inherited bias or prejudice [20]:

opinion = CombinedOpinion(individualopinion, villageopinion)

16

2.6.2 Shadow of Mordor (2014)

Shadow of Mordor is a game developed by Monolith studios (of F.E.A.R. fame). It is an

open-world action game set in the world of Middle Earth from the Lord of the Rings

franchise. The game implements an AI system called the Nemesis System that has

received plaudits in the games industry. This system was a result of the development

team ”..targeting our efforts on having the NPC’s react and respond to the player, the

environment and each other.” according Michael de Plater of Monolith studios [7].

de Plater and his team used psychological theories as a reference for identifying

and satisfying player needs through Shadow of Mordor. Shadow of Mordor sought to

satisfy the three elemental needs identified in one of the applied theories; the theory of

self-determination that states that humans have three fundamental needs [7]:

1. Competence - a need to feel effective in the environment

2. Autonomy - a need to control the course of their lives

3. Relatedness - a need to have relationships with others.

de Plater also references Player Experience of Need Satisfaction and GNS Theory as

instrumental in the development of the Nemesis System [7]. de Plater also referenced

sports as an established system that generates stories from a system based on pre-

defined rules, with stories emerging from the interaction of the teams and players and

other parties. In this systems, the sport offers the framework for the story and the

parties fill in the details - which was an approach attempted in Shadow of Mordor. The

game utilised a memory system to track the player’s actions and indicate them to the

player in the narrative [7].

2.6.3 Halo (2001)

The Halo games are a series of first person shooter games developed by Bungie and

currently by 343 Industries for Microsoft. The games pit the player in the role of a super

soldier that must battle alien forces. Alien forces in the games are not one single class of

agent but instead are a ”covenant” of alien races that have their own inter-relationships

based on hierarchy within their society. This affects how different enemies behave when

in the presence of other agents, for example, grunts are the weakest enemies and will

17

usually attack the player with a numerical advantage or when accompanied by a senior

elite agent. This behaviour changes when they lose their numerical advantage or their

leader is defeated and they instead try to run away from the player.

The Halo games implemented this using a hierarchical finite state machine (HFSM)

or more specifically a behavior directed acyclic graph (DAG) [5], since a single be-

haviour or behaviour sub-tree can occupy several locations in the graph. They make

a distinction between leaf nodes and non-leaf nodes (branches) in that the role of leaf

nodes is to perform an action while the role of non-leaf nodes is to make decisions -

with decisions being made based on custom code or on the competition of children

nodes with a parent making a final decision based on the child behaviours desire to

run or relevancy. They also utilise behaviour impulses to circumvent scenarios where

certain behaviours have priority over other behaviours. The developers of the AI also

took significant effort to ensure the system was flexible enough for workarounds and

for level designers to work with in order to get the desired behaviour [5].

2.7 Current Decision Making Architectures

2.7.1 Finite State Machines

Finite State Machines (FSM) have been common in game development due to their

flexibility, simplicity to implement and debug, minor computational cost and their

intuitiveness [14]. Traditional FSMs do not scale due to the logic not being reusable

as-is; a state cannot be treated as a modular block and referenced from a different

context. A new state must be created with different transitions specifically for that

new context [16].

This led to the development of Hierarchical Finite State Machines that allow for

some reuse of logic. This was done by grouping together states into super-states to

share generalized transitions [28].

2.7.2 Behaviour Trees

Behaviour trees improve on FSMs primarily by scaling better due to the removal of

transitions to external states for self-contained states - as these states no longer have

18

transitions they can no longer be referred to as ”states” they’re just behaviours [29].

When branches are ordered by their desirability, they allow the AI to make use of

fallback tactics should a particular behaviour fail [10]. Most recently This War of

Mine, a smaller title released by Ubisoft, utilises behaviour trees for all its AI [8]. The

Halo 2 AI also implements a hierarchical finite state machine/behaviour tree hybrid

[5].

2.7.3 AI Planners

Automated planning is an approach that has recently achieved success with applications

as diverse as the Mars rovers, planned sheet-metal bending operations and in games

as well [31]. Planning is a formalized process of searching for a sequence of actions to

satisfy a goal - this is a process known as plan formulation. Hierarchical task network

(HTN) planners do not have an objective defined as a set of goal states but instead

as a collection of tasks to perform. HTN planners work by reducing the problem into

sub-tasks: they decompose tasks into sub-tasks, and sub-tasks into further sub-sub-

tasks and so on until primitive tasks that can be performed by planning operators.

The planner utilises a set of methods to determine how to decompose non-primitive

tasks into sub-tasks [34].

A Simple Hierarchical Ordered Planner (SHOP) are based on ordered task decom-

position a type of HTN planning - they plan for tasks in the same order that they will

be executed [30]. This reduces the complexity of reasoning by removing a great deal of

uncertainty about the world, and allows the use of expressive domain representations.

The Killzone video games make use of HTN planners inspired by SHOP [30]. STRIPS

is a planning algorithm that searches through the world state by applying operators,

and is typically done backwards from the goal state to the world state for performance

reasons. F.E.A.R. is well known for its use of STRIPS [30].

2.7.4 Utility Systems

A utility system is a voting/scoring system and are often applied to game sub-systems

for object or position selection based on a calculation. The Sims franchise of games is

well known for its use of utility systems, even though this has had less focus in more

recent releases [30]. Objects in the game world of The Sims correspond to threads and

19

contain the scripts required to follow for the different actions written in the EDITH

custom script language. The object also advertises itself to the characters in the games

by broadcasting what it can offer [4].

2.7.5 Scripted Events

Scripted events in games were popularized by the Half-Life series and have seen a

particular resurgence in recent blockbuster games such as the Call of Duty, Battlefield

and Bioshock franchises which rely heavily on scripted events to engage the player with

spectacle - even to the extent of directing the player or insisting they follow an NPC

along a set path. Scripted events in games handled the dissonant nature of cutscenes

in older game titles, as instead of showing the player a pre-captured directed scene the

player maintained ”control” during the exposition of the story i.e. it happened as you

played [11]. These events however happen at the same time, in the same way, with

the same characters every time the player encounters. This means that these moments

lose their impact after the first time they are experienced as the each time the actions

are repeated the player is thrown out of their immersion. Jaimie Kuroiwa suggests

implementing semi-randomised scripted events to engage the player [11]. Some games

do this on different difficulties (e.g., in Halo the soldier companions state different

dialogue based on different settings). However, these still remain scripted events with

no actual AI driving the interactions except for basic path finding around a scene in

some cases.

2.8 Conclusion

This chapter reviewed some basic sociological and psychological approaches and mod-

els for the analysis of social dynamics, social psychology, social networks and group

dynamics. The goal was to have an overall concept of a few broad ideas with regards to

these concepts. The fields of sociology and psychology cover a vast and diverse array

of fields of study and limiting the scope of the research done to just high level broad

concepts was important to have a limited model for implementation in an AI system.

This was followed by a review of approaches made by different games in their goals

of generating believable behaviour from their NPC’s. This was split into a review social

20

relationships that have been directly modelled as part of the gameplay such as Prom

Week and other games that use social dynamics to add variety to existing gameplay

such as Fable and Shadow of Mordor.

Finally there was a review of current decision making architectures in the games

industry. This section focused on the different ways games present an NPC in the

world making a decision, either through complex structures such as behaviour trees

and AI planners or through scripted events.

21

Chapter 3

Design

This chapter presents the design of the RelationshipGraph, a model that aims to sup-

port the creation of believable characters in games based on relationships. This Rela-

tionshipGraph will be used to drive social interactions among game characters. First,

a high level definition of the model is offered, detailing the representation of each of

the main components of the model. Next is a description of how group behaviours,

an important aspect of social dynamics, is supported by the model by building upon

previous components. Following this is a description of the Messaging System and how

it can be used with the core components of the graph to implement a simple learn-

ing behaviour. An illustration of how the RelationshipGraph can be used to create

interesting characters is then provided. Finally the model Architecture is described.

3.1 Model Definition

Many interactions occur as a result of the connections between entities. These con-

nections define relationships that can be utilised in decision making or other systems.

As described in sections 2.1 and 2.2, relationships between individuals and groups are

complex and based on a variety of influences, situations and the characteristics of each

individual. Additionally, relationships do not exist in a vacuum and there is a need

to grant entities awareness of the inter-relationships among other entities; thus allow-

ing for more complex behaviour to emerge naturally based on what relationships exist

within the larger social network.

22

Explicitly defining a specific implementation of relationships would limit the appli-

cation and extensibility of the model. With this consideration in mind, the model does

not offer a definition of what attributes define a relationship, but instead abstracts

the concept of a relationship and leaves its specific implementation to the domain of

use. This allows the model to focus on the storage, update and retrieval of these rela-

tionships between characters. For example, one system could base relationships on an

opinion system similar to that found in the Fable [20] games or on the strength of the

relationships between characters, the approach taken in this project.

The storage of the characters and their inter-relationships is best suited to a directed

graph, with nodes and edges in the graphs representing characters and the connections

between those characters respectively. The actual relationships between characters are

stored in the model as an attribute of the connections. This allows for the creation of

complex graphs by implementing more advanced implementations in either the nodes,

edges or relationships of the graph. For example, graphs can be created that track

prior relationship values by storing them in an edge that manages a history of relation-

ship values between two nodes over time. This decoupling significantly improves the

potential of the model to handle a large array of applications and requirements..

3.1.1 Representing Relationships

Every node within the graph represents a unique Entity such as an individual character

or a group of characters. This concept can be extended to facilitate other types of

entities such as locations or items that characters have relationships with. For example,

a religious character may have a relationship to their place of worship or sacrifice; a

warrior character may be a ”Fan” of a particular weapon or amour.

An important point here is that we use the term ”Entity” instead of ”Character”

when referring to the nodes of the RelationshipGraph model. This is because an Entity

may be either a group or an individual character, so the term ”Entity” acts as a catch-

all for both types.

The graph allows for the support of these different types of Entities by keeping the

nodes generic. The only requirement when creating an implementation of a node is a

method that offers the graph a way to look up a unique Entity.

The edges between nodes represent Connections and they capture a link from one

23

Figure 3.1: Representation of how Nodes, Edges and Relationships are captured in
the RelationshipGraph model. Nodes represent Entities, Edges represent Connections
from one character to another, and Relationships represent the bond between two
characters. Relationships are treated as a distinct component of an Edge and can be
assigned to different connections. The directed nature of the graph allows for nodes
that have both unidirectional relationships (such as those from node A to node B and
to node C) and for bidirectional relationships (such as those between node’s B and C).

24

Entity to another. The RelationshipGraph only supports directed edges; each Connec-

tion must specify source and destination Entities and also a Relationship attribute.

An important distinction in the model is that a relationship is not an edge. A

relationship value is stored instead as an attribute of an edge, indicating what the

current relationship is from the source Entity to the destination Entity. This means

that updating the relationship status is simply a matter of finding the relevant Con-

nection and updating it’s relationship attribute. The contents of the Relationship has

no bearing on the operation of the Connection. The manner of the storage and man-

agement of this relationship attribute is open to the system requirements, allowing for

custom graph implementations that can operate with the similar or derived Relation-

ships types. One example of this presented in this project in Section 4.2.4. is the

HistoryEdge or DeepEdge, that stores a list of Relationships that have been set on the

edge over time and that can be inspected to observe the progression of the Relationship

between the Entities on the edge over time.

The model also makes a distinction between the storage of direct and indirect

edges. Direct edges store direct connections between two nodes. Indirect edges store a

connection between two other nodes. See Figure 3.1., for an illustration of this, this is

explained in more detail in the following section.

The RelationshipGraph supports generic nodes and relationships. This grants the

storage of different types of relationships and nodes that can be created based on re-

quirements. For example, a node may represent a character, location or group, and a

relationship may define opinions or actions characters have to each other. The graph

only requires that the generic types implement certain interfaces for them to work prop-

erly, otherwise their implementation is left to system requirements. The consequence

of this is the model is not capable of optimizing based on specific implementations.

Another consequence is that the model makes no explicit requirements for how unique

nodes and relationships may be identified. The models interfaces for nodes and re-

lationships require the implementation of a method that performs this, however the

model has no control over how ”correct” this is implemented.

25

Direct and Indirect Edges

When capturing information about relationships, it must be noted that relationships do

not exist in a vacuum. Other parties may be aware of the relationships between others.

In addition to this, this 3rd party awareness is not always accurate. For example, there

may exist a relationship between two characters, Woody and Buzz that indicates that

Woody considers Buzz to be his best friend. A third character may also be aware

that Woody and Buzz are friends, but may have a different scale for the strength of

that friendship (e.g. acquaintances vs best friends) or may have a completely different

observation (e.g. may think Buzz and Woody are Rivals).

The model makes consideration for this requirement for awareness of not only a

nodes edge’s to other neighbouring nodes, but also for the need to store the edges of

other nodes, by supporting the concept of direct and indirect edges:

• A direct edge in this respect is an edge that originates from one node to other

neighbouring nodes within the graph. Hence, they ”directly” connect an Entity

to another Entity i.e. the Source or ”From” attribute of the edge is the same as

the node that is storing the edge.

• An indirect edge in contrast, is an edge that is not originating from the current

node i.e. the Source or ”From” attribute of the edge is different from the node

that is storing the edge.

This allows for edge’s to be stored in one data structure together by using the Source

attribute of the edge to distinguish between the two types. The RelationshipGraph

makes no requirement that an indirect edge match the true direct edge between two

other nodes in value i.e. if the direct edge from node A to node C indicates a relationship

value of ”FRIEND”, another node B storing an indirect edge from node A to node C

is allowed to have a different value for the relationship attribute. See Figure 3.2., for a

visual representation of the concept of direct and indirect edges that a node may track.

To clarify this further, consider a Relationship that carries a type and a strength

value (e.g. a relationship of [”ENEMY,10”]) and 3 character entities: Alice, Tom

and Charles. A relationship of [”FRIENDS,4”] may exist from Tom to Charles. This

reflects that Tom considers Charles to be a friend, with the strength of that relationship

being ”4”. This relationship is stored in an edge that leads from Tom to Charles and

26

Figure 3.2: Representation of a simple RelationshipGraph. Each Node represents
a character (or group). The edge’s represent inter-relationships. An indirect edge is
defined as an observed edge between two other nodes, represented here by the red
dashed line that points to the edge from node C to node B.

is considered a direct relationship as the source of the edge (Tom) is the same as

the owner of that edge (Tom). Now consider Alice, who also stores a relationship of

[”RIVALS,3”] from Tom to Charles. The edge would indicate that the source is Tom

and indicates a connection from Tom to Charles, however the owner of the edge is

Alice. This indicates that according to Alice, Tom considers Charles as a rival - with

the strength of that relationship being ”3”. This is clearly not the same as the true

relationship between Tom and Charles is [”FRIENDS,4”] and not [”RIVALS,3”], but

the model permits this as the value stored is an assumption of the relationship between

Tom and Charles on the part of Alice.

This means that the model makes it possible for characters to be mislead about

the relationships of others or just the strengths of those relationships - leading to more

complex interactions than if we just carried direct references to the true relationship

values.

27

3.1.2 Graph Interface

It is important to have a robust API for requesting information from the model, as

well as to update the model. The RelationshipGraph provides an extensive series of

functions that allow Entities to update and retrieve their Relationships to other entities.

The graph operates on the assumption of certain interfaces being implemented

by nodes, edges and relationships for them to be compatible with the graph. The

actual implementation of these interfaces is separate from the implementation of the

graph, but will ensure that the components work properly. Nodes and relationships

must implement an identification method that is used to compare two nodes or two

relationships to see if they are a match - for example, this identification operation can

be implemented using unique identifiers for each node based on the number of nodes,

or a by using a enumerated type flag for relationship types.

There is no strict requirement from the graph on how to implement this identifi-

cation method. Each edge however, relies on these interfaces to implemented. Edge’s

also make a requirement for source and destination nodes to be provided as well as a

relationship value. As with nodes and relationships, there is no requirement for how

these interfaces are implemented. For example, the project offers two implementations

of the edge interface: one is a simple edge that stores a single relationship value, while

another stores a list of values as a log of previous relationship states that can also be

queried, with the most recent relationship being directly accessible.

How the graph stores, manages and queries the data is transparent to the compo-

nents. If an Entity wants to know what its relationship is to another Entity, it makes

a request through one of the available methods exposed by the RelationshipGraph.

The graph can rely both on the Entity’s direct Relationship to other Entities as well

as by checking what the requesting Entity ”knows” about other Entities Relationships

(indirect Relationships). For example, a blacksmith may offer a discount to a buyer not

because it has any direct relationship to the buyer (indeed, the blacksmith may have

never met the buyer before), but because it ”knows” the buyer is a regular customer

of another blacksmith based on an indirect relationship (possibly obtained via obser-

vation of an interaction between the buyer and another blacksmith) that is had stored

for itself. (As a quick note, considering the previous description of how the model

supports deception of Entities, the Blacksmith may have an incorrect ”knowledge” of

28

the buyers relationship with the rival Blacksmith - and in this case acts against its own

interests.)

The following pseudocode provides an outline of how the RelationshipGraph may

provide an interface to determine if one Entity has a Relationship with another i.e. a

direct edge exists from one node to another node:
Data: source and destination entities

Result: boolean of connection existence between entities

initialization;

while not at end of source’s connections do

read current;

if current source and destination match entities provided then

return true boolean value;

else

go to next connection;

end

end

return a false boolean value;
Algorithm 1: Basic algorithm to find if a connection from one entity to another

exists

3.2 Group Behaviour

As noted in section 2.4, groups are an important aspect of relationships between in-

dividuals. Group dynamics may be supported in the model by implementing nodes

as representative of groups. This is possible due to the generic nature of the nodes.

Entity types that differentiate group nodes from individual nodes and special relation-

ships such as ”MEMBER” or ”FOLLOWER” that define connections to those groups

makes this a straightforward extension of the basic structure. In addition, another way

to define a group type is by making them a derivation of the standard Entity type and

overriding the standard behaviour with custom group-like behaviours. See Figure 3.3.

for an illustration of how groups are captured by the model.

Custom group behaviours such as broadcasting messages to members of a group,

or having individuals make decisions based on their group associations, are all possible

by building on the atomic operations made available by the core graph functions.

29

Sending a broadcast message to all members of a group involves passing the message

to the group entity, which would in turn pass it on to all those entities that have

a ”MEMBER” relationship to it by requesting those entities from the graph. Or,

considering the blacksmith example again, the blacksmith may decide to refuse to offer

services to a buyer if that buyer has poor relations with a guild that the blacksmith

may be a ”MEMBER” of. This leverages the existing model’s support for relationships

without the need for extra definitions and memory allocations within the model. An

entity could make it’s decisions based on the relationships its parent group has with

other entities - essentially creating a sort of collective consciousness that all members

share and refer to. It also allows other entities to maintain their own relationship with

a group instead of with each member of that group, further reducing complexity by

using groups as clusters of nodes or as hubs.

3.2.1 Applications of group behaviour

Efficiency

Group behaviour can be used in the creation of smaller graphs by having characters

that act based on their group affiliations are instead of their individual relationships.

If a character has no individual relationships, then that character could store a ref-

erence or identifier to a group that they are members of and use those identifiers to

request information from the graph instead of storing many individual characters that

all ultimately share the same behaviour that can be defined in a group. This would be

ideal for character interactions similar those found in action games where enemies are

organised into factions and share behaviours and common targets and objects.

Extensions

An extension of this grouping concept is that other types of nodes may be defined

with their own special relationships as needed depending on the system. For example,

defining locations as an entity type allows characters to have relationships to certain

areas, or even types of areas, in the game world (such as a church, monastery or home);

having items as another type allows characters to have bonds with their favourite

vehicle, weapon or other items. At a high and abstract level you could even have

30

Figure 3.3: Representation of how grouping can be captured in the model. Each
Node can represents a character or group, in this diagram the Node ”G” represents a
group and other Nodes specify that they belong to the group ”G” by specifying the
”MEMBER” relationship to it. In this example, the Nodes ”M1”, ”M2” and ”M3” are
”MEMBER”’s of the Group represented by Node ”G”. Node ”G” identifies the Node
”O” as an ”ENEMY” of the Group, all ”MEMBER”’s of the Group ”G” can inherit
this relationship due to their association with the Group i.e. as ”O” is an enemy of
the group ”G”, it is therefore the enemy of all members of that group.

31

entities with relationships to ideologies or brands.

3.3 Messaging System

The model offers a basic messaging system for sending messages from one node to

others using on the graph. At the core of the messaging system is simple node to node

delivery of messages. Each node must implement a HandleMessage method to accept

messages sent to it. All messages must implement the message Interface. As with the

node and relationships, the contents of this message are not defined by the model.

The intention of this design choice is for the messaging system to act as a simple

but solid foundation for more complex systems and functionality. For example, the

graph is capable of broadcasting messages based on relationships to and from an entity

by combining this basic messaging system with the graph interface mentioned earlier.

The graph can also allow entities to update their relationships based on information

gained from messages.

3.3.1 Learning support

Relationships are not static and evolve over time. A method for supporting the adop-

tion of new relationships and connections means that the graph is capable of supporting

dynamic and complex inter-relationships that change over the course of multiple inter-

actions between entities. The model (and the graph) achieves this by combining the

use of the messaging system and the graph query functions to enable entities to update

their own relationships.

An example approach taken within this project is to make use of a Relationship

that defines a relationship type and a corresponding strength value (e.g. [”RIVALS”,

4]). By passing a Connection that defines source and destination entities as well as a

Relationship in a custom message, we can define an implementation for the HandleMes-

sage method that accepts this message and makes a choice of what to do with the new

information after evaluating it. For example, given a Connection that states that the

relationship between two Entities Bob and Charlie is [”RIVALS”,4] and sending this

in a message to the Entity Alice, the entity can compare the given Connection to what

is in the graph. If Alice agrees with the connection information provided, they may

32

Figure 3.4: Representation of how simple learning works at a high level, a connection
is passed to the destination Entity as the payload of a message. The receiving Entity
evaluates this Connection and discards or adopts it to its Connection list

choose to reinforce their knowledge by adopting the new strength value. If the entity

finds that the information provided conflicts with it’s pre-existing values, then it may

choose to ignore or adopt the new values based on other analysis (e.g. does it trust the

source of the information? Does it have a gullible character trait?).

See Figure 3.4 for a basic illustration of how messages and connections can be used

to implement simple learning.

3.4 Illustrating the Model

In many games the relationships between characters are static and often don’t reflect

or adapt to events occurring in the environment and between other characters. These

static relationships are often initially realistic and believable, with characters inter-

acting with one another based on their relationships and desires such as rival gangs

attacking each other or fighting over disputed territory. However, the suspension of

belief often breaks down when characters retain their relationships irrespective of what

occurs within the game, indicating that the characters are scripted or are waiting for

a predetermined action to take place before changing their behaviour. This leads to

repetitive and obvious behaviour that is not engaging for the player to interact with

without extensive, detailed investment in a wide scope of possible interactions that

may cause changes in relationships. Without behaviour resulting from dynamic rela-

tionships the characters break the illusion of intelligence. Some examples of characters

that can benefit from a relationship model to diversify their behaviours are described

next.

33

3.4.1 The Trader

The Trader is an NPC archetype often encountered in games, that allows the player

to sell and buy items that they find and use in the game. These NPC’s are often

confined to their stores, only awaking when prompted by the player. In other games,

the NPC’s have traits and objectives that determine where they will be within the game

environment at a given time, possibly travelling from village to village to buy and sell

their wares. Other variations on this archetype are the Blacksmith that often operates

similarly to a trader but specializes in buying and selling weaponry and armours.

When players interact with a Trader character, the prices of items, and the be-

haviour of the traders to the player are often rigidly defined. Players learn to identify

which trader has the best deals for certain items, and plan their interactions accord-

ingly. Some incentives may be scripted into certain traders, such as discounts or gift

items based on ”loyalty” but these are not real relationships and the predictability of

their behaviour limits true interaction with the NPC. This often leads to tediousness as

the interactions are rote, and players treating Traders as objects rather than characters.

By applying the relationship model more interesting scenarios can be easily gener-

ated. A trader can be created that increases discounts as a function of the strength of

the relationship between the player and the trader. This strength could be reinforced

based on how often the player purchases from the trader. If the trader is aware of the

player’s relationships with another character they could offer different items for sale

(e.g. black market weapons if the player has an antagonistic relationship with local

law enforcement), or certain items could be removed based on other interactions based

on unforeseen consequences (e.g. killing a farmer that supplied the trader). Or the

player may inform the trader of their connections to certain other important characters

(whether or not this information is true or not is another matter). The trader may also

avoid selling their goods at certain locations or to groups based on their relationships

to the those entities, and may change their offers based on changing relationships to

these entities based on what happens dynamically in the game.

3.4.2 The Mob

In games characters often act in groups and behave based on their relationships with

other groups and also on the hierarchy within their groups. For example, in the Halo [5]

34

games, enemies have certain behaviours based on their groups (type) and the hierarchy

within and between those groups. Grunts act courageous with superior numbers or

with stronger support, and flee otherwise. Brutes attack in packs but are antagonistic

towards Elites. Brutes and Elites also have hierarchies within their groups with Brute

Chieftains at the top of the pyramid often waiting after lower ranked Brutes have

engaged the player before attacking.

Not only is it possible to replicate such behaviour using the RelationshipGraph, but

it is also possible to extend it further by having individuals combine their individual

and group relationships to determine how to act. For example, an individual within

the group may change their relationship to the player if they are saved from death from

a common enemy, and choose to not target them. In addition the higher level NPC’s

can issue instructions and orders to lower level NPC’s using the messaging system and

broadcasting through the group support or communicating directly to one another and

choosing what information to provide or leave out based on their relationships e.g.

informing a ”rival” NPC to attack when it is detrimental to do so.

3.5 Model Architecture

The high-level architecture of the model can be defined based on the requirements

identified. Entities each store their own Connections that they are aware of and each of

these Connections stores at least one Relationship value for each Connection. Messages

can be passed from Entity to Entity by passing the message through the graphs message

handler that routes messages to the destination Entity’s HandleMessage method. An

Entity can update the graph and retrieve information to make decisions by looking

up their Connections using an identifier method that must be implemented by the

Entity. This identifier method is used to look up the Entity. The usage of the identifier

is transparent to the Entity, they only implement this method to uniquely identify a

specific Entity. A similar method is also used to uniquely identify Relationships.

In order to create an efficient model, all the elements of the graph are stored in

one data structure. Direct and Indirect edges make use of the same Edge structure

and can be stored together. In addition the implementation of the Relationships,

Connections and the Entities is not defined in the model, so any attributes that are

used to capture these are not constraints on the use of the model. If keeping track

35

of previous relationship values is required, that can be captured with a custom Edge

implementation. The graph at it’s core also works primarily with interfaces, so long as

those interfaces are implemented then the model will function. While indirect edges

are an important feature of the graph, they also have some more expensive functions.

However there is no requirement for the use of indirect edges - the graph can still operate

as a standard graph. Messages have no constraint other than the implementation of

an interface that the graph uses to pass messages from one Entity to another. This

allows the messaging to work with other pre-existing messaging systems.

3.6 Conclusion

The high level design for the model has been presented, demonstrating how the concept

of a graph can be extended to take consideration for the needs of indirect edges in the

model. The model’s architecture explains how the model could be implemented in a

single data structure that would allow for efficient querying of information without

having to generate large nodes with complex requirements for implementation.

36

Chapter 4

Implementation

This chapter presents the implementation of the RelationshipGraph. First, the choice

is platform is presented, followed by an in-depth description of how the different com-

ponents of the graph were implemented. Finally, the visualisation of the model is

presented.

4.1 Platform Selection

Unity [35] was chosen as the platform for the implementation of the prototype. The

engine supports quick iterative development as well as an asset store with hundreds

of freely available resources that would be instrumental in the development of the

prototype [36]. A previous student, Tiarnan McNulty, had previously worked on a

project using the Unity engine [37]. This allowed for a ready made environment for

testing the model.

The Unity game engine natively supports 2 languages [40] and these can be used

to create custom components for use within a game. The first is UnityScript, a flavour

of JavaScript designed specifically for use with the Unity. The second, the C# lan-

guage, was chosen for the implementation of the model; the C# language is a strongly

typed language with support for many traditional object oriented programming fea-

tures important for the implementation of the model (such as interfaces, generics and

inheritance), as well as a strong support for data structures in its collections library

that can be used as a foundation and extended [41].

37

Figure 4.1: All Graph implementations in the prototype are extensions of a base Graph
type that implements the IDictionary¡TKey, TValue¿ interface, and a DeepGraph class
that extends the Graph with support for multiple TValues per TKey - this is how
multiple connections are stored per entity within the graph.

For the purposes of the prototypes generated to test the graph the resources that

came with Unity were sufficient. The conversation demo utilises a free model [42]

available from the Unity Asset Store that provided some pre-created gestures to provide

feedback when querying the character.

4.2 Graph Implementation

The implementation of the graph was split into four main components. Relationships,

Entities (Nodes), Connections (Edges), and the Graph itself. Each of these is imple-

ments an interface that the other components can use with confidence.

4.2.1 Graph

The graph is treated as an extension of the generic IDictionary¡TKey, TValue¿ in-

terface [43]. This represents a generic collection of Key/Value pairs. TKey and TValue

specify the types of the keys and values. For the purposes of the prototype, TKey

38

Figure 4.2: IRelationship Interface used in implementations of Relationship classes.
The Equals method is used to identify a unique Relationship and is used when travers-
ing the graph.

are Node types that implement an INode interface (discussed in section 4.2.3) and

TValue are Edge types that implement an IEdge¡INode, IRelationship¿ interface

(discussed in section 4.2.4) which in turn depend on node and relationship interfaces.

Internally the graph stores all the nodes, edges and relationships of the graph in this

dictionary implementation. The support for generics is maintained in the implemen-

tation allowing for use of custom types with the graph.

The IDictionary interface requires certain methods to be implemented and this

are handled in a base ”Graph” class. This base Graph class is then extended to a

”DeepGraph” class that manages multiple TValue’s per TNode. This separates the

concerns of implementing the required methods and properties of the IDictionary

interface to the Graph class, and the special extensions to that underlying structure

that allow for a graph with multiple edge’s per node. This DeepGraph class is then

used directly or as a foundation for other graphs. This is illustrated in Figure 4.1.

4.2.2 Relationships

Relationships implement an IRelationship interface specifically defined for the project.

The IRelationship interface only requires one method to be implemented that is used

to identify unique Relationships. This method is used when traversing the graph to

find edges or nodes that match a given relationship.

The model, and by extension the graph, make no requirement on how this distinc-

tion between Relationships is defined. For the purposes of the prototype the following

examples were created:

• Enumerated Relationships : these rely on an enum RelationshipType value to

39

Figure 4.3: INode Interface used to implement Entities. The Equals method is
used to identify a unique Relationship and is used when traversing the graph. The
HandleMessage method is used to handle messages passed to the Entity.

identify relationships. For example, there are relationships such as ”FRIEND”,

”ENEMY”, ”MEMBER”, ”BROTHER”, ”LEADER”, ”CRUSH”, etc. The method

compares these enumerations to see if they are the same.

• Weighted Relationships : these are an extension of the Enumerated Relationships

that add a weight value to indicate the strength of the relationship. However,

this weight is not used in the required method implementation.

• Cue: this was created as an example of using the IRelationship interface to define

another type of data that maybe of use within a graph. In this case Cues represent

actions that occur in the game world (e.g. one character attacking another) that

characters may track.

4.2.3 Entities (Nodes)

Entities are objects that implement the INode interface. This interface is virtually

identical to the IRelationship interface that has a method that must be implemented

that is used to uniquely identify Entities. This method, as with the Relationship

method, is used when making queries to the graph. Also, as with Relationships, there

is no requirement on how this is achieved.

The following are examples of Entities that were created for the purposes of the

prototype:

40

• Entity : a basic version that sets a unique integer identifier for each Entity which

is then used in comparisons

• MonoEntity : a special version that derives from Unity’s MonoBehaviour class.

This provides the Entity with all the methods available from the Unity class.

• GroupEntity : an extension of the standard Entity type that has special Group-

like behaviours such as broadcasting messages.

Groups

To support Group Behaviour two approaches were tested: a GroupEntity class and

an Entity class with an EntityType attribute. The GroupEntity class is an extension

of the standard Entity class that overrides the default Entity behaviour to implement

behaviour specific to Groups such broadcasting messages to members of that group.

The prototypes used the second approach, which involved defining an EntityType that

would be used to identify an Entity as either a Group or a single Entity and choose

the appropriate behaviour. The EntityType defines only two values: ”GROUP” and

”SINGLE”. Regardless of approach however, this allows the graph to store Entities of

whichever type within a single graph. This was important to the design of the model

to provide for compactness and to allow all relationships to be stored in one area for

efficient queries. However, it is also possible to have group types stored in their own

graph as well if required.

Other Node Types

These two approaches demonstrate the capacity for the Nodes of the graph to repre-

sent much more than just Entities and Groups. A Node may be used to represent a

location or an item that the character has a relationship with. Using the EntityType

attribute allows these new types to be added quickly for testing, and an extension like

the GroupEntity demonstrates that more specific implementations are possible (e.g.

LocationEntity, ItemEntity).

41

Figure 4.4: IEdge Interface used to implement Connections. The ”From” method
defines the source of the Connection, ”To” defines the destination Entity and the
Relationship method defines a relationship between between the two Entities. When a
comparison is made between two Connections, the graph relies on the implementation
of the Equals methods of the INode and IRelationship interfaces

4.2.4 Connections (Edges)

Connections are objects that implement the IEdge interface. This interface requires

source and destination Entities (nodes) and an accessor to a Relationship to be defined.

Each of these Connections is stored in a list for each Entity in the graph class. If the

source Entity of the Connection is the same as the Entity it is stored with then that

is defined as a direct Connection from the source Entity to the destination Entity,

otherwise it is defined as an indirect Connection that the Entity is aware of.

The Graph has no requirement to how the Entities nor the Relationship are man-

aged internally by the Connection, only that it accept data passed or requested of

it. This allows the Connections to manage this information in as much complexity

as possible, one example of this is the HistoryEdge type which stores a history of

Relationships.

HistoryEdge/DeepEdge

When a Relationship value is set on the HistoryEdge it is added to a list of Relation-

ships. This allows the HistoryEdge structure to monitor the changes of the Relationship

between the Source and Destination Entities over time. The Graph expects just a sin-

gle Relationship value when it makes a request to a Connection and the HistoryEdge

42

Figure 4.5: The IMessage Interface is used in the implementations of Message classes
that are passed to Entities through the HandleMessage method of INode implemen-
tations.

returns the most recent Relationship value, but also offers other methods that allow the

previous states to be queried - allowing the Entities to be aware of their Relationship

history with other Entities.

4.3 Messaging System

The graph allows messages to be sent to one or more Entities based on the relationships

between those Entities. Fundamentally, this relies on a basic Entity to Entity messaging

functionality that is combined with the methods that expose Connections between

Entities.

A Message is an implementation of the IMessage interface (See Figure 4.5). This

is an empty interface with no requirements on what the contents of the message will

be. A message is passed to the HandleMessage method that is a part of the INode

interface and is required to be implemented by every Entity. The node can then act

based on the message received.

The prototype used two implementations of the IMessage interface:

• StringMessage: carries a simple string payload.

• ConnectionMessage: carries a Connection as its payload. This can be used by the

recipient of the message for activities such as learning new relationship (covered

in section 4.4).

43

Figure 4.6: Representation of how broadcast messages are implemented in the Graph.
A message is sent from Entity ”O” to the Group Entity ”G”. This in turn ”Broad-
casts” the message to each of its members i.e. those Entities that have a ”MEMBER”
relationship to the group Entity

4.3.1 Broadcast messages

Broadcasting messages to the members of a group, or to a set of Entities with a

common Relationship (for example, sending a message to support in a combat scenario)

is achieved by querying the graph for the Entities that match the given relationship

and passing the message to each Entity’s HandleMessage method. An illustration of

this can be seen in Figure 4.2.

4.4 Learning Systems

The prototype offers a simple Learning System as an example of a combination of all

the components of the graph to offer some complex behaviours as a result of rela-

tionships between entities. A Connection about two Entities is defined with a certain

Relationship, this relationship is passed to an Entity using a ConnectionMessage. The

Entity compares the Connection in the message to its known connections by querying

the Graph. The Entity may then choose to adopt this new connection data into its

known connections, or ignore it.

44

4.4.1 Relationship Evaluation

When a Connection is received by an Entity, it will query the Graph for a Connection

that is a match. A match is considered another Connection with the same Source and

Destination values. These matches are determined using the mandatory method that

is defined in the INode interface.

If a pre-existing Connection is found, the next step is to compare the Relationship

types and weights. If the Relationship values are the same then the two Connection’s

match, if they differ then there is a conflict between the Connection data provided and

the Entity’s pre-existing knowledge. For example, Relationship.RelationshipType.FRIEND

== Relationship.RelationshipType.FRIEND is considered a match whereas Relation-

ship.RelationshipType.FRIEND == Relationship.RelationshipType.ENEMY would be

considered a conflict.

4.4.2 Adopting new Relationships

To resolve a conflict, the Entities in the prototype compare the weights of the two

differing Relationships and adopts the Relationship with a greater value. This is a

gross simplification; however, it is ideal as a demonstration of how an Entity can

”learn” about a new Relationship.

If a matching Connection doesn’t exist in the graph (i.e. the Entity has no Con-

nection stored with a matching Source and Destination Entity), the Entity for the

purposes of the prototype (and to keep things simple) will adopt the new Connection

data. However, we can see that this adoption could be extended to be based on the

traits of the Entity (is it gullible?), or how much it trusts the source of the Message

(which in turn may be based on the Relationship the Entity has to the source of the

message e.g. believe a friend, ignore an enemy).

4.5 Model Visualisation

Two demo’s were created to demonstrate the potential of the graph. The Sphere demo

is used to demonstrate the graph working with a large number of characters, as a

reference for each character to determine their behaviour and to demonstrate basic

messaging. The second demo, Bob the Guard, is used to demonstrate more advanced

45

functionality such as storing previous relationship values, the learning system, messages

and group behaviour.

4.5.1 Sphere Demo

The Sphere demo is an environment with 200 character spheres with randomly specified

relationships to a player controlled character sphere. The character sphere’s have

certain steering behaviours based on those in Buckland [15], with the character spheres

choosing steering behaviours when they come into range of the player character. The

choice of steering behaviour is based on the Relationship to the player character and

is determined at the beginning of the demo. When the player comes within range

of another character, a query is made to the Relationship Graph to determine the

Relationship and a behaviour (PURSUIT or EVADE, with colours to demonstrate

either behaviour) is chosen based on this.

In addition, at the beginning of the demo, characters that are close to each other

will share their Relationship to the player character with another adopting new Re-

lationships. This communication and adoption is demonstrated using by characters

changing their colours to yellow when they have adopted a new behaviour.

4.5.2 Bob the Guard

Bob the Guard is a demo that features a character that the player can interact with by

sending messages and asking questions through an on screen interface as demonstrated

in Figure 4.7.

The Bob character stores his relationships to other characters in the Relationship-

Graph. Even though the other characters are not displayed on screen, they exist as

characters within the graph. Relationships among these characters is also captured in

the graph.

When a ConnectionMessage is sent to Bob, he performs a learning behaviour as de-

scribed in Section 4.4. In addition to this, Bob can analyse previous relationship states

when queried using the ”History With?” button by comparing the selected character

and selected relationship type to it’s internal model. Group behaviour is demonstrate

by asking Bob what their relationship is with other Character’s - one character is not

in Bob’s model (he has no knowledge of the existence of the other character), however

46

Figure 4.7: Screenshot of Bob the Guard. The player can use the interface to com-
municate with the character. They can send text messages to Bob using the input on
the top right, or a Connection message constructed from the options on the left and
submitted with the Send Connection button. Questions about Bob’s relationships to
other characters can be submitted using the other available buttons and his responses
are demonstrated in the screenshots above.

Bob will identify that character as having a certain relationship based on the relation-

ship on of his groups has with that character i.e. if a character is an enemy of the

group Bob belongs to, then that character is Bob’s enemy.

47

Chapter 5

Evaluation

This chapter presents an evaluation of the project. First, is an assessment of the rela-

tionship model in the portrayal of believable social behaviour among game characters

successfully, as well as how successful the prototype is to meeting the objectives of the

project offered in Section 1.2. Following this is a comparative analysis to other design

approaches from other games as well as discussions on how these other systems could

be implemented using the relationship model. Following this is an examination of the

performance of the prototype, with suggestions on how to tune the implementation.

Finally the major shortcomings of the implementation are discussed.

5.1 Believable Social Behaviour

Relationships between characters provides a foundation for the creation of behaviours

that is often only possible with scripted behaviours or highly customized systems.

Complex behaviours are made possibly by taking advantage of the generic storage of

information by the graph and by combining components offered by the core function-

alities of the graph. Characters use the graph to determine how to behave based on

current or previous relationships, or how to communicate information to each other

These behaviours not easily possible with scripted behaviours and are not as dynamic.

The complexity of the relationships is only limited by the types of connections and

relationship defined.

A direct comparison is made with the Comme il Faut (CiF) AI system implemented

48

in the social simulation game Prom Week [9]. The CiF system has high level com-

ponents that include: Relationships, Social Networks, Statuses, Traits, a Social Fact

Database and a Cultural Knowledge Base. The Relationship component offers ”binary,

reciprocal and public connections between characters”, with the three relationships

being ”friends”, ”dating” and ”enemies”. The Social Network component comprises

”scalar, non-reciprocal and private feelings from one character toward another”, these

three networks are identified as ”Buddy”, ”Romance” and ”Cool”. Statuses are used

to reflect a characters ”feelings”, or to represent internal and external states such as

embarrassment or popularity, and Traits are used to define a characters personality us-

ing permanent attributes such as ”Competitiveness” or ”Attractiveness”. The Social

Fact Database stores a history of interactions between characters, while the Cultural

Knowledge Base provides relationships each character has to objects in the social world

that each has a ”popular” opinion associated with it e.g. ”lame” objects [9].

The following example is used to demonstrate the components in Prom Week : two

characters Simon and Naomi may have a relationship of ”friends”. Naomi has a trait of

attractiveness, and Simon a status of a ”crush” on Naomi resulting in high ”romance”

network values for Simon towards Naomi, with the Cultural Knowledge Base indicating

that Simon likes ”lame” objects (like calculators) and Naomi prefers ”cool” objects

(like footballs). The Social Fact Database stores an embarrassing previous encounter

between Simon and Naomi. This shows how the components of the CiF system can

be used to create social situations with a potential for drama.

However, this complexity of this system is reflected by the number of components

that must each be kept up to date when characters interact with another or with social

items. This complexity can be reduced by using the RelationshipGraph to capture

this information in one structure. Graph Nodes can be defined as either representing

an item or a character. Character nodes can store traits and statuses in a similar

manner to the CiF system, and item nodes can store their cultural significance (i.e.

its popular opinion) in a similar fashion to the Cultural Knowledge Base. So we shall

focus instead on how the Relationships, Social networks and and Social Fact Database

can be implemented using the RelationshipGraph.

Relationships are a simple conversion as they already denote relationships from

one character to another such as ”friends”. However, similar relationships can also

be defined for characters towards items - this covers the other feature of the Cultural

49

Knowledge Base that also tracks characters relationships towards social objects e.g. a

character can be a ”FAN” of a calculator object indicating that they like that object.

This allows use to store all the relationships, items and characters in one structure.

Social Networks values are used to track private feelings to other characters that are

not reciprocated back, this means that the feelings are in one direction leading from one

character to the next but not back again. This is a functionality immediately offered by

the graph being a directed graph - allowing unidirectional connections between nodes.

This observation demonstrates that Relationships according to the CiF system are

bidirectional connections between nodes i.e. ”Friendship” between Simon and Naomi

is a ”Friend” relationship leading from Simon to Naomi, and from Naomi to Simon.

While a Social network value is unidirectional i.e. ”Romance” is a relationship from

Simon to Naomi, that Naomi is unaware of. This break down of the two demonstrates

how both can be captured in the RelationshipGraph.

The Social Fact Database is a repository of previous encounters between two char-

acters. These are stored as events such as ”Simon misundertood Naomi asking for help

on homework as a romantic advance” [9]. There are two approaches that can be made

to capture similar information in the RelationshipGraph. The first is to extend the

connections between two characters to store this additional information along with the

relationship value. The second is to ignore the information, and instead focus on stor-

ing the consequences of these actions - which is typically a change in the relationship

value using a HistoryEdge. Characters are more likely to remember that they ”used to

be friends” than the exact event that caused the change in the relationship. However,

both of these approaches could be used together as well.

The CiF system also makes use of so called social games that are used to create

social effects. For example, if a character plays a game called ”Share Interest” with

another, the resulting effect could be the two characters both liking a ”cool” or ”lame”

object and bonding over a common interest [9]. This can also be captured by the

RelationshipGraph by making use of the Message system to share messages about

other items in the graph and relationships to those items (and since the items are also

nodes, a structure such as a ConnectionMessage may be used for this purpose) and

updating those characters states and relationships as effects of receiving this messages.

These social games have 3 roles: an initiator, a responder and a possible third party

or observer. This can also be captured by the message system by having ”public

50

messages” that can be observed by nearby characters or by having the responder or

recipient passing the information on to third parties.

This demonstrates that the CiF system can be replicated using the Relationship-

Graph. By taking advantage of the other features of the graph, other advanced social

behaviours could be added such as having characters that operate in cliques by using

the grouping features, or having characters that can spread rumours or gossip with mis-

leading relationship information by using indirect edges. In fact, a direct improvement

is with the Relationships of the Comme il Faut system. CiF assumes that relationships

that are bidirectional are the same from one character to another, when in reality char-

acters may be friends but the social hierarchy of those friendships differs from character

to character. In other words, Simon and Naomi may be friends but Simon may value

that friendship with Naomi ”more” than Naomi may reciprocate it.

5.2 Complexity Analysis

Function Size Worst Case Complexity

GetConnections # of Edges 1

AddConnection 1 Edge 1

RemoveConnection # of Edges E

GetDirectConnections # of Edges E

GetInDirectConnections # of Edges E

FindByRelationship # of Edges E

FindByRelationshipToOther # of Edges E

FindByRelationshipHistory # of Edges E * R

SendMessage 1 Message 1

BroadcastMessage # of Edges E * N

Table 5.1: Complexity analysis of common relationship graph methods. E are the
number of Edges or Connections in the graph, N are the number of Nodes, R are the
number of Relationships.

Table 5.1 shows the complexity analysis of the RelationshipGraph most common

methods. In this table, E represents the number of Edge’s or Connections in the graph,

R represents the number of Relationships and N represents the number of Nodes or

51

Entities. GetConnections performs a retrieval of all the Connections using the given

Node as an index. In contrast all other retrieval methods for Direct and Indirect Edge’s

or based on relationship values requires a traversal of all the Edge’s for each Node to

check the attributes of each Edge - in a worst case scenario all the edge’s of the graph

may be stored for just one node. When checking the relationship history, we must also

traverse through the set of stored relationship values at each edge. Sending Messages is

handled by directly passing the message to the destination node, however Broadcasting

messages requires a combination of one of the previous retrieval methods followed by

a submission to each node.

5.3 Performance

The Unity Profiler [45] was used to evaluate the performance of the graph in terms

of CPU usage and memory allocation within the Unity Engine. The efficiency of the

model was on of the primary objectives of the model and to meet this the model would

require a small memory and computational footprint.

An empty scene was used as the benchmark for the tests and increases to the num-

ber of relationships, entities and connections were made to examine the performance of

the graph against this benchmark. As each connection may have multiple relationships

(Using the HistoryEdge described in section 3.1.1), and an entity may have multiple

connections large increases in memory can be expected with for example: 100 entities,

with 100 connections each and each connection storing 100 relationships will result in

100*100*100 = 1,000,000 relationships and 10,000 connections stored in the relation-

ships which is a highly unlikely scenario to occur in actual use and is presented as an

outlier.

5.3.1 Memory

Unity reserves memory pools and then manages allocations of memory within these

pools to reduce frequent queries of the underlying operating system for memory. This

means that the total amount of reserved memory rarely changes. However, the Unity

profiler does offer feedback on the used memory from the reserve pools and this is

used to determine how the graph affects the memory of the prototype. As this value

52

fluctuates during the running of the prototype, an average over the first 20 frames of

the scene is calculated. Table 5.2 presents the memory usage captured by using the

Unity profiler.

An important consequence of the design of the model is that large numbers of

Entities and Connections affect the number of Relationships. In Table 5.2. a row

indicating that there are 100 Entities, 50 Connections and 10 Relationships in reality

means that there are 10 Relationships stored for each Connection, and 50 Connections

stored for each Entity, resulting in 50000 (100 x 50 x 10) Relationship being stored by

the graph. The consequence of this is evident with extremely large numbers of Entities

that can cause memory to balloon in size with even just a small number of Relationships

per connection. Otherwise, it can be observed that the size of memory required grows

linearly with increasing numbers of Entities, Connections and Relationships.

In practice the number of Relationships will not likely exceed 4-5 per Connection

and Connections themselves would rarely be expected to exceed 50 per entity. This

is due to characters generally having memorable interactions with other characters in

smaller areas, a game with an excess of 1000 characters would not require each character

to each capture 999 connections to every other character in the game world. Instead,

the character would have a smaller set of characters that they interact with frequently

based on their environment. Connections to other characters are also only added to the

model on demand. This means that if two characters never meet, or never establish

a relationship then the model does not capture a ”STRANGER” relationship, the

connection is simply never stored. This would mean a realistic expectation of memory

usage around 5-6MB which is more than adequate when taking into consideration the

number of other systems that could make use of the graph data.

Other steps can be added to limit the number of Connections and Relationships

each character stores by implementing functionality to ”forget” connections and older

relationship values if they are not refreshed by frequent interaction with other charac-

ters. For example, two characters may be established as friends that were once enemies.

The previous relationship status of ”ENEMY” can be eventually removed over time

as the two characters ”forget” they were ever enemies before unless this value is rein-

forced. If the two characters never interact ever again, the entire Connection between

the two may be removed from the graph entirely.

53

Entities Connections Relationships Average Allocated Memory

100 1 10 0.1 MB

100 10 10 0.56 MB

100 25 10 1.38 MB

100 50 10 2.69 MB

100 100 10 5.28 MB

200 100 10 10.52 MB

500 100 10 20.51 MB

1000 100 10 45.78 MB

5000 100 10 213.55 MB

10000 100 10 488.45 MB

100 100 1 1.71 MB

100 100 10 5.34 MB

100 100 50 19.35 MB

100 100 100 30.55 MB

100 100 200 61 MB

Table 5.2: Memory usage with different combinations of entities (nodes), connections
(edges) and relationships. The number of relationships captured by the graph is signif-
icantly affected by the number of connections and entities e.g. 5 entities each storing 5
connections, with each connection storing 10 relationships would result in 250 (5*5*10)
relationships.

5.3.2 Processing

CPU usage was also tested using the Unity profiler. A simple script responds to input

and makes a request from the graph, each of these spikes in CPU usage is logged by the

profiler and the speed of the execution and what percentage of the total processing time

was consumed are captured in the profiler. Samplings from this log are then averaged

and used as the results of the analysis presented in Table 5.3 for different combinations

of entities, connections and relationships.

The tests were performed by first populating the graph with data and then making

a query of that data. The query chosen for these tests is the most computationally

intensive method in the graph as it must traverse the entire graph checking each Entities

54

connections. The method returns all entities in the graph that have had or currently

have a particular relationship to a given Entity. This means that the query not only

looks at all connections stored for each entity to check their destination attributes,

but also checks the historical values stored in HistoryEdge extensions that are used

as Connections by the graph i.e. the iterates over all the Connections in the graph

checking each one’s destination attribute, and then iterates through each matching

connections relationship history for a matching relationship value. Each matching

connection has a reference to their source attribute stored in a list that is the return

value of the method. To ensure the test is suitably demanding, all entities were defined

as having the same Relationships with each other - with the requested relationship

value always stored as the oldest possible relationship state; this forces the method to

check every relationship in every connection for every entity that is using the graph.

As to be expected, the computation time and frame time percentage increases with

more entities and connections. However, even with ever increasing demands still re-

mains at a manageable level for real-time interaction. The large frame time percentage

for large combinations of entities and connections is of concern, however, in practice

the number of connections per entity would rarely get as large as 50 unless the graph

nodes were also used to track different types of items. Increasing numbers of Relation-

ships do not appear to affect the performance of the traversal of the graph too severely

with performance remaining below 5 percent.

Some steps may be taken to improve the performance of the graph. For example, if

the data in the graph is not required immediately in the current frame it can be run in

a separate thread (or in Unity in a Coroutine) and returning the result after processing

is complete. Another step is to use multiple graphs for capturing different types of

relationships, for example having one graph handle relationships to other characters

and another to groups or items or locations. In a typical game, the number of characters

involved in a request are not typically all the characters that exist in the game world

but those in the immediate environment which reduces the length of the processing

considerably.

Taking consideration that these results, while growing large in some scenarios, are

worst case results arising when making a request of the most computationally de-

manding query offered by the graph; the RelationshipGraph can be said to meet the

performance objectives of the project.

55

Table 5.3: Computation performance of the Relationship Graph using different quan-
tities of Entities, Connections and Relationship.

Entities Connections Relationships Avg. Query Time Avg. % of Frame Time

5 5 5 0.042 ms 0.28%

10 5 5 0.078 ms 0.9%

50 5 5 0.422 ms 4.52%

100 5 5 1.266 ms 8.98%

50 1 5 0.256 ms 2.42%

50 5 5 0.41 ms 3.12%

50 10 5 0.602 ms 5.02%

50 20 5 1.008 ms 6.36%

50 50 5 2.094 ms 14.34%

10 10 1 0.08 ms 0.62%

10 10 5 0.116 ms 0.9%

10 10 10 0.138 ms 1.2%

10 10 50 0.352 ms 2.44%

10 10 100 0.668 ms 4.78%

5.4 Shortcomings & Challenges

The graph has a number of shortcomings in its implementation. These are all directly

related to the manner in which the graph stores edges for each node. Internally the

graph uses a Dictionary data structure to store a list of edges for each node - using the

nodes as Keys, these edge lists are quickly retrievable. However, searching these lists

for a matching value results in significantly poor performance as many of the query

methods exposed by the Graph internally iterate over these list items at least once,

and in some cases may iterate over edges of multiple nodes (as is the case with the

method used in the processing performance tests in section 5.3.2).

To further affect the efficiency of the graph in searching for matching terms; the

HistoryEdge stores previous Relationship values in a list as well. This leads to some

methods with a complexity of O(n2). The approach taken in the implementation of

56

the model was to create a working prototype first and then attempt to find more

efficient algorithms for the traversal of the graph, as well as determine more efficient

data storage. However this was not successful.

The graph stores references to objects - this can lead to a graph with significant

memory requirements if the objects are sufficiently large. This is due to the use of

generics in the implementation of the graph. A better approach maybe to use objects

that only implement an interface, and have the interface explicitly require the imple-

mentation of a more efficient value that can be stored in lieu of a whole object i.e.

storing unique identifiers to nodes and relationships instead of whole objects. In fact

early prototypes of the graph worked with Identifiers before moving to wholly generic

objects.

At the beginning of the project, there was a challenge to explicitly define what a

”Relationship” was with regards to the model and for the purposes of implementation.

For some time Relationships were treated more like Opinions as can be found in the

Fable games. Making the observation that Relationships are a state between two

Entities was important to the design choice to separate the implementation of the

Relationships from that of the Edge’s. Once this distinction was made, the model was

able to gel and handle even greater complexity with ease.

The current implementation of Relationships and Nodes relies on the IEquatable¡T¿

interface for efficient use of the Dictionary and List data structures offered by C#

Collections. This was ultimately a poor decision as it interferes with extensions of

the Nodes and Relationships that may want to implement that interface for their own

comparisons. Having a custom method with similar functionality that can also be used

as an Identifier would be better suited for the graph.

57

Chapter 6

Conclusion

The purpose of this chapter is to summarise the contributions made by the dissertation,

present some potential future work and finally end with some closing remarks.

6.1 Contributions

Though future work can make numerous improvements, the following contributions

can be identified from the work done so far.

Concerning the area of believability of social behaviour based on relationship among

characters, the project presents a working prototype that was fully implemented both in

Unity and as a standalone C# project for use in other environments. The Relationship

Graph grants characters the capacity to make decisions based on their current and past

relationships to one another. The prototype also demonstrates advanced concepts such

as group behaviour, basic learning and adoption of new relationships, and messaging

functionality that are built on the core components of the model.

The Guard demo as seeing Figure 6.1, demonstrates all the primary working fea-

tures of the model working within Unity including: handling different message types,

learning new messages, querying the graph about current and previous relationships,

and determining relationships with other characters based on group associations. The

Sphere demo demonstrates how the model can be used as a reference to quickly create

simple gameplay prototypes by defining relationships among game characters. These

two demonstrations offer operational proof of the relationship model functioning within

58

Figure 6.1: Screenshot of the Guard demo.

a game environment.

The main contribution of the model is in an efficient manner of storing knowledge

of a characters relationships. Relationships to other characters were broken down into

two primary types: direct and indirect types. Here a direct relationship represents

an immediate relationship from one character to another. For example, a character

”knows” that they are related to their brother directly. An indirect relationship rep-

resents knowledge of the relationship between two other characters. For example, a

character ”knows” that his son has a friend. However, that information may be impre-

cise, that relationship between the son and the friend may no longer exist as a direct

relationship but continues to exist within a characters indirect relationships - in this

case the character assumes that the son has a friend. Intentionally falsifying this in-

formation allows us to mislead characters. Although this aspect of the model was not

adequately implemented, it remains a promising and interesting path for interactions

with AI characters.

The improvements and practicality of the relationship model over other approaches

is demonstrated in Section 5.1 where the relationship model is compared favourably to

59

the Comme il Faut system used in the game Prom Week.

6.2 Future Work

The following are some possible areas for the extension and improvement of the model.

6.2.1 Improved Learning System

The learning system implemented in the project is extremely simple. As described

Section 4.4.2, a better approach would involve evaluating the Relationship with the

source of the information to determine if it is trustworthy, or incorporating personality

traits that would define a character as ”gullible” and there more willing to accept new

information.

6.2.2 Misleading Characters

While possible, this functionality was not investigated more. The possibility to provide

an agent with false information is an activity not easily found in many modern games.

While stealth games offer this as a mechanic (make noise at one area lead the NPC

there while sneaking around another way), this is typically a scripted behaviour and

more complex ”lies” such as tricking a rival or strong opponent into a compromising

situation is not. For example, if a player must defeat an opponent to claim a guarded

prize, the player could avoid a physical confrontation by convincing their opponent that

their brother has died and they must go attend the funeral while graciously offering to

protect the prize until they return. Such interactions would be possible by using the

graph as foundation for these relationships.

6.2.3 Optimizations

As described in Section 5.4, the graph was not implemented optimally. Many of the

methods require long iterations of almost the entire graph, and this increases in com-

plexity with the use of edges that store a history of Relationships. Completely replacing

the list with another dictionary or hash data structure that offers quick lookups is rec-

ommended.

60

Additionally, replacing the extension of the IEquatable Interface’s Equals method

with a custom version would allow this interface to still be available for custom im-

plementations or derivations of the components that would like to override the Equals

and ”==” operators.

To reduce the memory requirement, replacing generic objects with interfaces would

allow for more efficient lookups to the Dictionary structure. This would mean that

the internal data structure could work with an interface that implements an interface

with a unique Identifier method and stores this Identifier as the key instead of a whole

generic object.

6.2.4 Connection and Relationship Decay

Having Connections and Relationships that decay in value and are eventually removed

at some threshold was an unmet desirable for the project. This is a feature that would

allow for not just efficient memory use by removing old an unreferenced data, but also

improve the believability of the model. Relationships evolve over time, for example,

some friendships are lost due to lack of interaction with another person leading to a

loss of familiarity.

6.2.5 Integration

The relationship model can work well as a reference for other game systems, such as

the side quest generator by Sarah Noonan [38] or Tony Cullen’s project on temporal

factors [39]. Requesting the family members to generate a quest to save one of them,

or determining a characters that would naturally group together at night or during a

storm or for periodic ceremonies based on lunar cycles are all possible.

6.2.6 WideEdge

The project implemented the concept of a HistoryEdge which maintained a history

of changes to the Relationship between two entities. This can also be observed to be

a ”DeepEdge” in that Relationship values are stored one after the other in a list. It

may also be possible to turn this on its side and store multiple Relationship values

61

at once resulting in a ”WideEdge” and use a function to combine them all into one

representative value, or just leave them directly accessible.

6.3 Final Thoughts

The relationship model proposed in this dissertation has potential for use in a wide

range of games. It can be used not just as a reference structure for game systems, but

also as a high level definition for how game characters interact with one another.

Advanced functionality such as learning systems, group behaviour and broadcasting

messages were demonstrated to be possible by combining the basic components of

the model together into a whole greater than its constituent parts. The underlying

graph model has further capabilities that naturally emerge, such as characters that are

presumptuous or may carry incomplete or inconsistent knowledge.

While further work is required to improve its efficiency and implementation, the

model was shown to be capable of creating believable character behaviour based on

relationships between characters and of knowledge of other characters relationships.

62

Appendix

1. Reference Materials: A disc with all the project files (e.g. Unity project,

RelationshipGraph project, models, etc.) used in the creation of this project is

attached to the back of this dissertation.

2. Source code: The source code for the RelationshipGraph is also available on

Github: https://github.com/pandaboy/RelationshipGraph

63

Bibliography

[1] Stangor, Charles ”Defining Social Psychology: History and Principles”, Princi-

ples of Social Psychology, v. 1.0, http://catalog.flatworldknowledge.com/

bookhub/2105?e=stangorsocial_1.0-ch01_s01, retrieved 10th May 2015

[2] Durlauf, Steven N. and Young, H. Peyton ”Social Dynamics”, The New Social

Economics

[3] Durlauf, Steven N. and Young, H. Peyton ”Social Dynamics”, The New Social

Economics, p3-5

[4] Bourse, Yoann ”Artificial Intelligence in The Sims series”, http://www.

yoannbourse.com/ressources/docs/ens/sims-rapport.pdf, retrieved 13th

May 2015

[5] Damian, Isla ”GDC 2005 Proceeding: Handling Complexity in the

Halo 2 AI”, http://www.gamasutra.com/view/feature/130663/gdc_2005_

proceeding_handling_.php, retrieved 13th May 2015

[6] de Plater, Michael ”Postmortem: Monolith Productions’ Middle-earth: Shadow

of Mordor”, http://www.gamasutra.com/view/news/234421/Postmortem_

Monolith_Productions_Middleearth_Shadow_of_Mordor.php, retrieved

13th May 2015

[7] Graft, Kris ”Designing Shadow of Mordor’s Nemesis system”,

http://www.gamasutra.com/view/news/235777/Designing_Shadow_of_

Mordors_Nemesis_system.php, retrieved 13th May 2015

64

[8] Alexander, Leigh ”Road to the IGF: 11Bit studios’ This War of

Mine”, http://www.gamasutra.com/view/news/236554/Road_to_the_IGF_

11Bit_studios_This_War_of_Mine.php, retrieved 15th May 2015

[9] Josh McCoy, Mike Treanor, Ben Samuel, Aaron A. Reed, Michael Mateas,

Noah Wardrip-Fruin, ”Prom Week: Designing past the game/story dilemma”,

University of California Santa Cruz, Expressive Intelligence Studio

[10] Simpson, Chris ”Behavior trees for AI: How they work”, http:

//www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_

trees_for_AI_How_they_work.php, retrieved 15th May 2015

[11] Kuroiwa, Jaimie ”Unscripting the Scripted Event” http://www.gamasutra.

com/blogs/JaimeKuroiwa/20090515/83949/Unscripting_The_Scripted_

Event.php retrieved 15th May 2015

[12] Russell, S and Norvig P. ”Artificial Intelligence A Modern Approach”, What

is AI?,

[13] Buckland, Mat ” Programming Game AI By Example”, Introduction

[14] Buckland, Mat ”Programming Game AI By Example”, State-Driven Agent

Design

[15] Buckland, Mat ”Programming Game AI By Example”, How to Create Au-

tonomously Moving Game Agents

[16] Champandard, Alex J. ”On Finite State Machines and Reusability”,

AiGameDev.com http://aigamedev.com/open/article/fsm-reusable/, re-

trieved 13th May 2015

[17] Storr A. ”Solitude: A Return to the Self”,

[18] Forsyth, Donelson R. ”Introduction to Group Dynamics”, Group Dynamics

[19] Forsyth, Donelson R. and Elliott, Timothy R. ”Group Dynamics and Psycho-

logical Well-Being: The Impact of Groups on Adjustment and Dysfunction”,

Group Dynamics

65

[20] Russell, A. ”Opinion Systems”, Ai Programming Wisdom 3

[21] Mateas M., Stern A. ”Procedural Authorship: A Case-Study Of the Interactive

Drama Facade”,

[22] Mateas M., Stern A. ”Facade: An Experiment in Building a Fully-Realized

Interactive Drama”,

[23] Pescosolido, Bernice A., Bryant, Clifton D. and Peck, Dennis L. ”The Sociology

of Social Networks”, 21st Century Sociology

[24] Pescosolido, Bernice A., Bryant, Clifton D. and Peck, Dennis L. ”The Sociology

of Social Networks”, 21st Century Sociology, 208

[25] Pescosolido, Bernice A., Bryant, Clifton D. and Peck, Dennis L. ”The Sociology

of Social Networks”, 21st Century Sociology, 210-212

[26] Wasserman S, Faust K. ”Social Network Analysis in the Social and Behavioral

Sciences”, Social Network Analysis: Methods and Applications

[27] Scott J, ”Relations and Attributes”, Social Network Analysis, 3

[28] Champandard, Alex J. ”The Gist of Hierarchical FSM”, AiGameDev.com

http://aigamedev.com/open/article/hfsm-gist/, retrieved 13th May 2015

[29] Champandard, Alex J. ”Understanding Behavior Trees”, AiGameDev.com

http://aigamedev.com/open/article/bt-overview/, retrieved 13th May

2015

[30] Champandard, Alex J. ”Planning in Games: An Overview and Lessons

Learned” AiGameDev.com http://aigamedev.com/open/review/

planning-in-games/, retrieved 13th May 2015

[31] Nau, Dana S. ”Current Trends in Automated Planning” American As-

sociation for Artificial Intelligence. http://www.cs.umd.edu/~nau/papers/

nau2007current.pdf, retrieved 14th May 2015

66

[32] Nau, Dana S., Cao, Y., Lotem A., and Munoz-Avila H. ”SHOP: Sim-

ple Hierarchical Ordered Planner” http://www.cs.umd.edu/~nau/papers/

nau1999shop.pdf, retrieved 15th May 2015

[33] Vansteenkiste M., Ryan M. R. ”On Psychological Growth and Vulnerabil-

ity: Basic Psychological Need Satisfaction and Need Frustration as a Uni-

fying Principle”, http://www.selfdeterminationtheory.org/wp-content/

uploads/2014/07/2013_VansteenkisteRyan_JOPI2.pdf, retrieved 15th May

2015

[34] ”Description of the SHOP Project” http://www.cs.umd.edu/projects/

shop/description.html, retrieved 15th May 2015

[35] ”Unity3D” http://unity3d.com/, retrieved 22nd August 2015

[36] ”THE BEST DEVELOPMENT PLATFORM FOR CREATING GAMES”

http://unity3d.com/unity, retrieved 22nd August 2015

[37] Tiarnan McNulty ”Residual Memory for Background Characters in Complex

Environments”, University of Dublin, Trinity College, September 2014

[38] Sarah Noonan ”Side Quest Generation using Interactive Storytelling for Open

World Role Playing Games”, University of Dublin, Trinity College, August

2014

[39] Tony Cullen ”Modelling Environmental and Temporal Factors on Background

Characters in Open World Games”, University of Dublin, Trinity College, Au-

gust 2015

[40] ”Creating and Using Scripts” http://docs.unity3d.com/Manual/

CreatingAndUsingScripts.html, retrieved 22nd August 2015

[41] ”Collections (C# and Visual Basic)” https://msdn.microsoft.com/en-us/

library/ybcx56wz.aspx, Microsoft Developer Network, retrieved 22nd Au-

gust 2015

[42] ”Basic Gesture Motion” https://www.assetstore.unity3d.com/en/#!

/content/25852, Unity Asset Store

67

[43] ”IDictionary¡TKey, TValue¿ Interface” https://msdn.microsoft.com/

en-us/library/s4ys34ea.aspx, Microsoft Developer Network, retrieved 23rd

August 2015

[44] ”IEquatable¡T¿ Interface” https://msdn.microsoft.com/en-us/library/

ms131187(v=vs.110).aspx, Microsoft Developer Network, retrieved 30th Au-

gust 2015

[45] ”Profiler” http://docs.unity3d.com/Manual/Profiler.html, retrieved

29th August 2015

68

