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Abstract  
Large numbers of messages keep distracting people from current tasks and interests. 

Also, messages take up valuable resources of devices and deteriorate performance. This 

thesis aims to explore the combination of rule-based approach and personal ontology to 

mitigate these issues. 

 

Two types of information are identified: one from messages, user profiles and context. 

This information is semantically uplifted into ontological instances for further 

processing. However, it poses a number of issues as messages are dynamic, and context 

and user interests can be fickle. These problems will be mitigated by proposing personal 

ontologies. The other information is from domain knowledge, intended to form into rules 

for logical reasoning and taking actions.  

 

Two use cases are created that contain interrelated messages, dynamic context, and 

interrelated persons, etc. Two corresponding research objectives in the thesis are 1) 

exploring the effectiveness of rule-based approach, by comparing rule languages and 

employing complex rules derived from use cases; 2) combining static keyword lists and 

dynamic personal ontologies, to semantically match message-message, message-context, 

and message-interest.  

 

In response to novel messages and novel senders without historical reference, the thesis 

designed rules to automatically learn and test the result of this rule-based approach.  

Another key challenge of the system is how to deal with large numbers of messages. The 

thesis proposed a chaining, distributed approach to making the phased operational 

decision on pending messages. Another challenge is how users can give feedback and 

involve into scrutiny. To meet the requirement of scrutability, the system asserted rules 

to changing the level of user interest. The current approach combined the research in the 

area of semantic uplift, ontology modelling, personalisation, rule-based system, etc. to 

face the addressed challenges. Afterwards, the application are evaluated iteratively to 

validate the goals of the research.  

 

An experimental rule system called message assistant is designed and implemented with 

contextual information, and user interests. A Java message simulation was implemented 

to generate controllable numbers of metadata messages of selected time period as 

required.  

 

In summary, from the system’s point view, messages are handled with a dynamic 

personalised ontology, chaining rules, keyword lists. Such combination are detailed 

illustrated in following sections. From a research view, rules transform semantic 

information, determine operations at differing stages, however, rule-based approach has 

limitations in the situation of limited knowledge, which will be discussed in the future 

work. 
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 INTRODUCTION 

MOTIVATION 

Diverse messages are pushed to people at any time, no matter what they are doing. Not only 

does it distract people from current tasks but also takes up valuable resources of devices and 

deteriorate performance. It stimulates the demand to research an intelligent system to deliver 

urgent messages, or messages of use interests to people immediately, send less important ones 

later and delete spams, acting like a message assistant.   

Personalisation and adaptivity technologies are novel and efficient. Past applications and 

research put much effort on filtering messages depending on messages and applying content-

awareness rules. Alternatively, some traditional filtering methodologies, like collaborative 

filtering, attempt to improve user experience by exploring common preferences among many 

users. Currently, research surrounding personalisation and context-awareness prove 

problematic and difficult, because context, user interests and messages are dynamic.  It is 

required to purpose ontologies as a means of achieving dynamic precise matching using rules 

and ontologies. 

The rule-based approach has been used as a novel way to manipulate domain knowledge 

to leverage information. It has been used in business areas, artificial intelligence, semantic web 

and adaptive computing. As surveys shows [22, 23], many start-up companies adopt rule-based 

approaches as rule-based applications are lightweight and flexible. Rule-based system, using 

script language and easy to transplant, displays many benefits, but it has many limitations. 

Moreover, different rules engine has different working process and features. It makes necessary 

to compare rule engines and rule-system architectures, explore the efficiency and effectiveness 

of rules and rule-based system.    

The thesis aims to explore rule-based approaches and personalised ontologies which 

integrate user interests and dynamic user current context. In addition, this thesis compares the 

completeness and reasoning capability of current technologies for representing information, 

the efficiency and effectiveness of rule languages and rule engine, as well as architectures. 

 

RESEARCH SIGNIFICANT AND OBJECTIVES  

The research aims to provide and evaluate a personal and adaptive approach based on rules in 

handling messages intelligently. 
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Research Significant: 

- Compare technologies in information representation. 

- Investigate applications of ontologies in semantically bridging the gap between ever 

shifting user interests and messages. 

- Compare rule language, rule engine and rule-based system. 

- Analyse architectures to handle large numbers of messages and increasing numbers of 

rules. 

- Explore the effectiveness of rules, especially combining complex context, and dynamic 

user interests. 

- Evaluate rule-based applications to explore the feasibility and flexibility of rules, 

especially when there is limited knowledge base, using an iterative method in 

development and control-variable method in experimentation. 

 

Five objectives are listed here: 

     Objective 1: Find out similar approaches to categorising and operating messages from 

the state of the art, and investigating issues surrounding rule-handling approach, and 

ontology modelling, etc.  

     Objective 2: Design and implement the information representation based on two stated 

two use cases, and evaluate this approach. 

     Objective 3: Design and implement the rule-based approach to handling incoming 

messages based on the two use cases. Then, evaluation and comparison based on the 

current approaches should be given. 

     Objective 4: In order to face the issue of massive messages, design and improve the 

general architecture, and evaluate the architecture. 

      Objective 5: Follow an iterative approach to evaluating and validating the design and 

implementation of the design and implementation. 

RESEARCH QUESTION 

The system comprises three key components; they are metadata (consisting messages, context 

and user interests), ontologies and rules. In order to produce dynamic personalised and rule-

based system, a number of issues are posed when reviewing the state of the art.  

Here are some potential options before the research: in which method can system format 

information into metadata precisely; how to achieve precision between user interests and 

messages; how to classify and markup individual messages using ontology reasoning; how to 
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build adaptive ontologies in handling dynamic information to facilitate personalisation; how to 

scale system to deal with large numbers; how to choose and design rules; how to visualise user 

scrutiny.  

Many research issues as listed above can be delved. However, in this thesis, only some 

vital are selected and put into priority.  

     Major Research questions: 

• To what extent can a rule-based approach that also integrates a context model 

and personal ontologies be leveraged to manage incoming messages  

• Evaluate this high-level framework.  

    Minor Research questions: 

• Propose applications of ontologies to match dynamic messages and changing 

context, messages and interests, in order to let users be presented with either 

urgent or interested messages immediately. 

 

RESEARCH PROCESS AND METHODOLOGY  

Centred on research focus and research objectives, the process started with surveys on current 

research and applications, and comparing strengths and limitations of these technologies from 

theoretical perspective view.  Key findings are concluded surrounding disordered rules and 

facts, personalised ontologies in handling dynamic metadata and context-awareness. 

Specifically, a system was designed and implemented based on the rule and personal 

ontology approach, following an iterative methodology. The development was conducted with 

simple rules centred on use cases. With the increasing complexity of rules, the system proved 

to be feasible to make ontology reasoning even though some other ontology technologies like 

OWL exerted better capability in some scenarios.  

Worth noting is that the thesis designed both a centralised system architecture and a 

distributed architecture. Specifically, a detailed analysis was made on both architectures, from 

functional analysis to performance, load-balance, security, etc.  

In evaluation part, a three-stage experimentation was given. First stage centred on use case 

was to test the feasibility and performance of the test system; in second stage, to test the 

scalability of the system and effectiveness of separate rules, a message simulator generated 

controllable amounts of metadata messages. It used control variable methods to take 

experiment and EXCEL to make regression analysis; last stage focused on the capability of 

handling novel messages, with a message generator retrieving emails.  
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In summary, the research process is: theoretical comparison -> use case –> complex rules 

–> large numbers of messages-> novel messages.  

Research methodologies are iterative development, control variable methods, and 

regression analysis. 

 

CONTRIBUTION 

Several contributions are identified.  

Contribution One(Major): The thesis provides a novel, efficiency approach in 

handling messages; Message assistant system is a test-oriented, light-weight, efficient and 

intelligent one based a rule-based approach, integrating context, and user interest ontology. 

Moreover, this approach contributes to the state of the art by offering a distributed 

architecture. 

Contribution Two: Explore the feasibility, simplicity, scalability, and flexibility of a 

rule-based system. Design and implement a series of applications (Message simulator, 

message generator, etc.) to evaluate the effectiveness of such approach.  

Contribution Three: Propose and realise personal ontologies as a meaning of 

achieving precision between dynamic messages and context, messages and interest, 

messages and messages. 

Contribution Four: The system was using iterative development and three-stage 

experimentation, which carried on series of experimental and analytical tests on 

performance, scalability and load balance from perspectives of a system.   

 

THESIS OVERVIEW 

The thesis consists of seven chapters. 

Chapter Two provides analysis on the start of the art. This part summarises current 

research and applications on rule-based approach, personal ontology. In order to develop 

feasible application, the start of the art also explores some other areas related to such topic, 

which aims to make system scale, increase accuracy of personalisation and every operation 

decision, tolerance fault even though there are limited knowledge available. 

Chapter Three demonstrates two use cases as well as key challenges. Then it outlines the 

requirements for this research. 
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Chapter Four illustrates the design of such system. It begins with analysis on two possible 

architectures from the perspective of performance, security, feasibility and scalability. Then it 

describes a detailed design for ontological modelling and rule design to meet the requirements 

derived from Chapter Three. 

Chapter Five describes an iterative implementation on rule-based approach. For the 

purpose of evaluation, this section starts with an implementation of message simulator to 

generate conditional messages. Worth-noting is that it implemented a simple OWL to compare 

Owl and ontology.    

Chapter Six presents three-stage evaluations on both functional and non-functional 

experiments. Ranging from use cases to a large number of messages to novel messages, the 

rule-based approach presents its advantages while reveals its disadvantages. 

Chapter Seven concludes this thesis. Future work of this system and main contributions 

are discussed at the end. 
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   STATE OF THE ART 

The research focuses on message uplift and reasoning by using rule-based methods, integrating 

personalised information that meets user’s interests and context[3], (a similar approach is raised 

is in [2]). 

The main research objective is to explore the effectiveness of rule languages, rule engines 

under various situations: messages from heterogeneous sources,   interrelated messages, or 

dynamic personality as well as changing context, novel messages.  

Several surveys will also be reviewed to find solutions of the issues when handling a large 

volume of messages and novel messages, dynamic and complex context. More surveys will be 

analysed in terms of the scalability of architectures [4], adaptivity via machine learning and   

feedback [1, 5-9], system scrutability [6, 8, 10] as well as context awareness [11]. 

 

INTRODUCTION 

According to the goals illustrated at the beginning part of the session, this session will begin 

with exploring the issues with addressing the principle of rules, comparing three formats of 

information representations and defining the context.  

After the initial start of the art was concluded on the theoretical comparing in rule 

languages and information representations, more systems were investigated and given analysis 

of corresponding architectures, approaches to handle rules, personal ontologies and context 

ontologies. Then, this leads to extending the research on context-awareness integration, 

distributed system design in regards to massive messages, and user-involved scrutability. So 

more systems and research are carried out and analysed in order to solve these issues.  

The literature review focusing on functional and non-functional comparison will assist in 

understanding of the challenges in this area and bringing out the strengths/weaknesses among 

existing systems and approaches.  

 

INFORMATION REPRESENTATION  

 

In the research, two kinds of information are identified: information from heterogeneous 

messages, dynamic contexts and user interests; information from domain knowledge which 
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formed into rules to take actions to messages. To represent information, semantic web 

techniques are adopted to generate both human and machine understand forms of information. 

Ontologies, RDF[12] and OWL[13] are suitable for the purpose of the research, but all of them 

have features, benefits and weaknesses. 

Ontologies, frequently using extensible and markup language (XML) to model a domain 

in a structured, semantically rich way. It includes classes, inheritance, and relationships 

between classes and instances. The main benefit of ontologies is that it provides reasoning over 

relationship defined in the ontologies and connecting instance to abstract types. In this thesis, 

we could reason that Mary (an instance) is a Person (class) interested in music (an instance of 

class interest), Mary is a family of (a relationship) John. 

RDF (Resource Description Framework) [12]. Given that metadata has the highly 

variable and highly extensible characters, RDF is recommended as a metadata model to 

describe and model concepts and their relationship on the web in a variety of syntax format.  

The underlying structure in RDF is Subject-Predicate-Object triples. RDF statements can 

be displayed in a labelled, directed multi-graph, and is designed to describe knowledge, rather 

than data, in that it focuses more on data relationships and reasoning from data to date.  Thus, 

an RDF-based metadata model suits describing knowledge than ontological models and 

relational models [12, 14].  

However, the drawback of RDF is its informality; not only is the set of predicates defined 

in an inform way but also it is easy to pre-suppose human languages and some common 

understanding which is incorrect in different contexts. Another drawback is also about 

imprecise, which means some words are open to misinterpretation if it is defined without 

contexts. Currently, W3C adopt XML namespace (URL) to avoid ambiguity[15].  

OWL (Web Ontology language) [13, 14, 16]extends many web standards like XML and 

RDF, and much more formally specified than RDF to represent knowledge of diverse domains 

and various. 

OWL is built upon RDF, but provides a mechanism to process and reason via using formal 

semantics and RDF/XML serialisations. Moreover, it supports semantics in a well-defined 

way, formal properties which reducing the steps of decidability, known reasoning algorithms 

and many implemented systems.  

Last but not least, OWL is able to cooperate with SPARQL [17] and other semantic web 

techniques. OWL is used to model human knowledge into ontologies, generating a set of 

ontologies classes, constraints and properties [14]. 
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Conclusion:  

Besides, the comparison among RDF, and OWL gives us a basic knowledge about the 

effectiveness of information representation. The triples of OWL language extends the capacity 

of information description and reasoning. 

Even though some definition languages, such as OWL and RDF are able to present 

information, we still choose ontologies in this research because it is easy to maintain and 

lightweight ontologies make this feasible enough.  

 

Related tools for ontologies. 

Apache Jena [14] is a java system for manipulating RDF models, building semantic web 

applications. Jena includes many APIs to interact with persistence storage and process RDF 

data.  

Protégé is developed in Stanford University. It is a free, open-source platform, an ontology 

editor. Not only does it have a graphic user interface to establish ontologies, but also provide 

reasoning and inference engine to validate the models and infer new information based on the 

user-defined rules and analysis of existing ontologies. Protégé is written in Java and has good 

compatibility with Java. 

Protégé supports working with many rule languages in Protégé-OWL [18, 19]. 

SWRLTab is a development environment for defining and running SWRL rules which 

include sets of libraries to work with XML files, RDFS, etc. 

 JessTab [20] [21]is a Jess development environment to work with Jess. With JessTab, 

Protégé knowledge bases are directly managed by Jess rules and protégé also extend Mata 

classes to be mapped to facts.  

 

Conclusion: 

Ontologies are feasible enough to help solve research questions even though OWL has more 

advantages in describing the domain and reasoning. It is able and effective to use tools such as 

Protégé and Jena, to make manual maintenance and updating ontologies easily. When needed, 

users or system can add or edit classes, relationships and instances. 

RULE AND RULE-BASED SYSTEM 

2.3.1   RULE-BASED LANGUAGE AND RULE ENGINE 

This session will compare some rule languages as well as effectiveness and limitations of these 

rules languages. 
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2.3.1.1   Rule Definition 

Rules as defined in normal life describes effects which have an association with causes, 

actions, and conclusions [22-25]. Thus, rules are frequently leveraged to represent processes, 

logics and grammars. The rule engine is used to choose an appropriate rule in reacting to 

differing conditions in running cycle, which makes the system is flexible to interact with rule-

based database system [26, 27]. Therefore, rules constitute a part of modules to compute and 

are aggregated with other rule bases and rule base modules.  

Another worthy noting features of rules are that some special implications in rule bases has 

the same effect as taxonomic in ontologies; that is, rules provide ways to transform query and 

extend ontologies.[23]  

   

2.3.1.2   Rule-based Language 

Jess 

Jess[26, 27] is a light rule engine for Java platform which can be run as a standalone program 

or embedded into java applications. In Jess, working memory stores data that can be 

transformed by dynamic rules. With Jess, Java software is equipped with the capacity to reason 

using knowledge in a form of declarative rules. Jess is an effective, light scripting language 

which is able to interact with all of java interfaces.  

The features of Jess: access to all of java interface; Apply dynamic knowledge to data in 

working memories effectively; has consistency checking. 

 

RuleML (The Rule Markup Language)  

RuleML[28] is an XML-based rule language which spans across industrially relevant kinds of 

web rules. It acts as a bridge to connect comic logic. Therefore, RuleML is a translator as an 

interchange language; it realises internal mapping between sublanguages, presentation 

syntaxes, and external mapping between RuleML and other languages.   

 

Semantic Web Rule Language (SWRL) and BaseVISor 

OWL [13] The Web Ontology Language has the capability to realise automatically reasoning 

with the help of its rich classes and properties. However, OWL has the limitation in rule 

reasoning because of its limited expression when properties are composed of other properties. 

 SWRL[16, 29] is a rule languages combining OWL DL and OWL Lite sublanguages of 

the OWL with unary/binary datalog RuleML sublanguages of the RuleML (Rule Markup 



10 
 

Language), which extends OWL with Horn-like rules.   The known limitation exists in that 

SWRL is undecidable and has few reasoning engines. In order to support complex logical 

conditions and a set of DL constructs, BaseVISor[30] is a rule language, based on Rete network 

to auto-process triples, using XML syntax to define facts. BaseVISor creates rules and issue 

queries including a forward-chaining inference engine to process RuleML rules and also it 

incorporates consistency rules. In the experiment, the BaseVISor is able to process over 300 

classes and many properties within a few seconds. But it remains to be determined exactly the 

effectiveness of the intersectionof rules [28, 30, 31].  

 

Comparing BaseVISor and Jess[16, 31]: 

Jess has already existed for a couple of years. Many legacy codes exist in Jess codes to support 

LISP-like list structures that CLIPS supported. However, in semantic web, RDF/OWL only 

contains triples which made the codes redundant and increase the overhead. In comparison, 

BaseVISor only deals with triples, however, Jess works a lot with internals while BaseVISor 

prevents developers from going into more details of the internals because of its limited space.  

 

2.3.2   RULE-BASED SYSTEM 

Theoretical research forms the basis analysis to meet the research goals. This section will focus 

on current rules research and applications, giving readers the borders of rule-based systems. It 

highlights the importance of the research on rule-based approach. The fundamental rule-based 

approach can be applied to large numbers of other applications and areas. 

From the author’s research[22, 23], rule studies has three main interrelated branches: 

Business rules [36] and automatically processes, Rules and semantic web, personalization and 

rule-based event processing, learning. These focuses reflect the role of rules in many 

application areas: processing Semantic Web data, reasoning over actions and events as well as 

specifying automatically business process and policies. IBM, in particular, has contributed 

many pieces of research at this area. 

The cutting-age research on rules include: 1) Pragmatic web, the next version of the web 

after semantic web, takes web as a platform to communicate and coordinate by putting context 

and rules together [37].2) mapping the relational database to knowledge bases, the challenge 

of this lies in using rules to map primary-keys, foreign-keys constricts to knowledge bases 

[38].3) translating Business Process Model Notation (BPMN), a business process model into 

semantics business rules, making it easy to understand, like graphical representation [36].  
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A trend for a rule-based system is real-time, heterogeneous, distributed using rules. As to 

real time, a production system using Event Calculus[39] presented in [40]is a forward-chaining 

rule-based system, adapting the declarative semantics of the logic knowledge, solving the 

problem of retrieving and reasoning knowledge about change and causality in dynamic domain 

. In regards of heterogeneities, given that service oriented architectures and event driven has 

become trend, the paper from [41] presented a semantic approach called Hiddent Algebra 

approach to realise mapping between RuleML and Behavioural Algebraic Specification 

Language, which provides better automated reasoning capabilities. From the paper, Rule works 

as a translator to overcome the problem of multiple languages and automate these processes. 

Similar to prolog language, the Event Calculus performs temporal prediction and monitoring 

using rules to join many paradigms. Rules are also helpful in agent processing domains. The 

paper from [42] developed DALI, a logic agent-oriented language that equipped with “event-

condition-action” rules. DALI makes internal conditions as events which can be defined by the 

programmer, in this way,   enabling choosing actions to undertake in response to complex 

preference and also based on sets of past events.  

 

2.3.3   SUMMARY 

In this part. The effectiveness of rule languages is compared as well as the efficiency of rule 

engines. The limitation in one rule-language can be the benefits of other languages. It suits to 

different situations. When going back to use case, 1) it is required to generate the reasoning 

process, Jess is better than RuleML and SWRL in that it goes into details of reasoning 

procedure, 2) it is required to category messages based on sender-receiver relationship, and 

message-relationship, SWRL and RuleML is better than Jess in that it adapts OWL and rich 

classes to describe and reason these relationships. To conclude, rules can extend knowledge, 

semantic information. But has different limitations. 

 

CONTEXT 

In order to meet the main research objective which applies dynamic rules to incoming 

messages, context should be briefly described here to form the basis for the analysis. 

The definition of context from[32] is  
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“Context is any information that can be used to characterise the situation of an entity. 

An entity is a person, place, or object that is considered relevant to the interaction 

between a user and an application, including the user and application themselves. “ 

From the definition, it is apparent that context information is difficult to put into a general 

form and quantify. Given that current research focus on semantic web and knowledge bases, 

context information will be unified into RDF/OWL. Thus, the state of the art of context here 

focuses on ontological context.  

The challenge of context information is to unify heterogeneous context information and 

combine them in a sharable, uniform format. 

Many systems [2, 33-35] provide approaches to track heterogeneous context information 

into a unified format. Worth noting is that the thesis from O’Connor[11] mentioned a novel 

way to integrate contextual information. The thesis uses SWRL to establish common concepts 

in different ontologies. The framework developed a novel way to exchange information without 

creating an integrated model of context in advance. The enrichment of the target application to 

include both schematic knowledge enrichment. It adopts a rich, flexible representation to 

represent a relationship between separate concepts. In this way, the system represents good 

performance as the evaluation displayed. A context mediator is envisaged as being at the heart 

of an informing environment.  

 

Conclusion: 

The thesis provides good architecture as well as theoretical background to represent contextual 

information in an integrated way. Given that the research focus is not in context-integration, 

the thesis will not study this area deeply. However, the complexity of context and how to 

compose this information into a unified form pose many problems which will be discussed in 

future work of this thesis.  

 

PERSONALITY 

A Personalized Location Information System (PLIS) in [43] sends personalized, 

contextualized information to users with the help of rule-based policies. PLIS provides a 

connection between point of interest (POI) owners (for instance shops), and users. POI has 

general rule-based policies like some marketing strategy. User’s preference and contextual 

information can be   combined together depending on the rules fired.  Another feature of the 

system lies that it is XSLT technology to transform RuleML format to Jess rules [43]. 
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Figure 1: The Framework of PLIS 

      The Figure 1 shows the general design of the system. User data and  Buiness data(POI) is 

collected by Jess Rule engines. Jess rule engine uses the asserted facts to update the POI 

attributes value depending on the user’s context. At last, data is delivered to a user and 

performed for visualization. 

 

Strengths and Weaknesses in the system 

The system provides personalised and contextualized location information to users. Just as the 

experimental testing result shows this rule-based method enhance the power of displaying 

location information about shops. 

       However, the system can be improved in various ways. First, The POI and user information 

can be represented in RDF/OWL format for better flexibility and self-reasoning. Second, 

because the user interests are statically added at the beginning, it made the system hard to adapt 

to pragmatic situation that user interests can get transformed. It is recommended to consider 

user involvement in decision making or consider machine learning based on user feedback; last 

but not least, this centralized design fails to take scalability or increasing shops into account. 

 

Conclusion 

A rule-based system can offer a boost to the quality of required information by embedding user 

profiles, contextual information and business policies. 

 

Adaptive locator system [3] is implemented which adopting ontology language and 

knowledge-driven filtering. This essay provides a well-defined framework for personalized 
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ontological reasoning. It presents a three-level abstract PERSONAF framework to meet key 

demands of ontological reasoning. The three levels are displayed here: 

- Middle building ontology. Using the Web Ontology Language, OWL,8 using Protégé 

- An application ontology represents a particular building 

- The novel part of PECO is the accretion ontology 

      So the adaptive locator makes use of the ontology to deliver personalized information about 

the people in a smart building. In addition, the essay demonstrates the power of implemented 

framework and evaluates scrutability based on the user study.  

Benefits and weaknesses 

Three-layered framework, considering ontology and dynamic context is very clear structured. 

Other benefits of the system lie that it reduces the possibility of mistakes by taking account of 

user feedback and the decision is visible to users.  

     The weakness of the system is that it takes consideration limited number of information, 

and the reasoning is weak: it generates decision from many different methods and lets users 

choose, so it depends on the historic logs of choice. 

Conclusion: 

The three-layered architecture is reasonable in the dissertation, semantic uplift, ontologies 

(context, message and user interests).  

The dissertation will adopt the rule-based expert system shell to enhance the ability to 

reason from ontologies. 

 

As to personality, many similar systems [5, 43] purposed approaches or framework similar to 

the systems listed above. 

 

INCREASING MESSAGES: PERFORMANCE VS. SCALABILITY 

With the increase of messages and increasingly complex knowledge management, it is clear 

that single server is not enough to deal with large volume of data at the same time. In the part, 

some existing distributed message systems are analysed. It can also give some hints for future 

work. 

Minerva [4] is a storage, inference and querying system for large-scale OWL ontologies 

by using relational databases. The benefits of the system lie that it meets the scalabilities 

requirements and also has high query performance. Minerva is developed by IBM integrated 

Ontology Development Toolkit (IODT). It combines DL reasoned for the TBox inference with 
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logic rules for inference. Then, mapping between describing logic and logic programs is 

enforced. The components of Minerva are Import Module which consists OWL parser and two 

translators; Inference Module which includes rule engine and DL reasoned; and Storage 

Module which stores inferred assertions by the DL reasoned and rule inference engine; Query 

module which is supported by SPARQL via directly retrieving from database using SQL 

statement. The high performance is owning to this part because the inference has already done 

at the time of loading data and no need to enforce inferring at this stage. It is expected to 

improve the response time. 

 

USER SCRUTINY 

User involvement can be implicit or explicit. For current system, it is of importance to design 

an adaptive system to meet user’s current needs, knowledge and preference.  

The mentioned system in [3, 7, 8, 44] has already taken implicit adaptive user involvement 

into account, by showing users the decision process and asking for user feedback. Some details 

about scrutability are derived from the systems listed below. 

An item recommendation system [8] is illustrated in the paper, it combines content and 

critique-based meal recommendations with scrutability and user feedback. Weighting in the 

recommendation algorithm was heuristically derived. 

 

Weakness: 

It is a simple implementation system that adopts existing recommendation algorithm based on 

XML-content and give visible scrutability. But the system is fairly simple but it gives basic 

design thought. 

The paper [6] defines the meaning of scrutability. In the paper, a system called PLUS 

designed an active user models which are able to react dynamic user Interests. In PLUS, the 

novel user will begin with user modelling processes from long term user models. With the 

system adaptive learning by collecting evidence, the user model will be built. PLUS is based 

on accretion/resolution approach to managing the long-term user models. In particular, 

accretion is responsible for evidence collection while the resolution will interpret evidence and 

confers much flexibility. 

 

Benefits and weakness 
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The system explains scrutability in details from many aspects. Essential for adaptive 

scrutability is at all aspects. Another benefit of the system is that it adapts ontologies to explain 

to users about the component in the user models. 

 

RULE-BASED SYSTEM VS. HEURISTIC-BASED SYSTEM 

 

Human reasoning has been accounted into two complementary categories. That is, one is 

analytical, logical and reason oriented, cited as rule-based processing; the other is experimental, 

affective and associatistic. It is similar to decision-making in automatic computing system[25]. 

The paper [45]gives a detailed comparison between rule-based processing and heuristic-

based processing. However, a rule-based system has its limitations.  In some cases, when 

adapting rule-based, the long decision needs complex mathematic and logical reasoning but the 

rules to be selected is predetermined. Also, the effortful rule-based system is required to make 

a difficult decision when a novel event happens. The paper recommends integrating rule-based 

and heuristic-based processing. 
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   REQUIREMENT 

INTRODUCTION 

In order to explore the feasibility and effectiveness of the rule-based approach in information 

filtering and reasoning, a message assistant system is designed for later experimentations at 

this section.  

The system is an experimental system to help users filter, uplift, classify and operate 

(delete, pending, deliver) incoming messages from messages and apps, based on user 

preferences and current context. 

Two use cases are designed. Use case 1-john focus on context ontology, categorising 

messages based on content and handling group message. Use case 2- Anna centred on personal 

profiles, matching messages with user interests. The use cases contains increasingly complex 

scenarios, which the system needs implement complex rules. And many corresponding design 

schemes about ontology design and writing rules to implement the scenarios are raised. In 

illustrating use cases, system requirements are generated, ranging from simple ones to general 

cases with hundreds of rules and messages. 

 

USE CASE 

Use cases should be designed as complex as possible, which helps to explore the completeness 

of semantic ontologies and effectiveness of rule system. 

Even though use cases simulate the particular example and have limited numbers of 

scenarios, it is able to extend to more general examples. The use cases give space to face the 

challenges of various messages by second, dynamic contexts by minute, changeable user 

preference by day. 

 

3.2.1   USE CASE 1-JOHN 

The first use case centres on white-collar people, who needs the system to help them improve 

work efficiency. People worked in the office need to keep focus. 

 General Description: 

John works as a HR. In daily life, he needs to attend meetings when he does not to receive 

unrelated messages, appoint with interviewees and co-works which he needs all these pending 
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messages about the person to be delivered immediately. During work, he needs to go to coffee 

shop to do some business. So for him, coffee shop can be a work context which needs to pay 

particular attention. 

After work, John likes football and chats with friends in a coffee shop. He is free to be 

called by close friends, notified by apps and football events. 

Attention: Some messages from diverse source imply the urgent of messages. So pending 

ones should be upgraded to delivered, deleted ones should be pended or delivered. 

A coffee shop can be a sign of work location or a resting location, depending on the time. 

The particular experiment for John in a day is illustrated here:    

 Summary: 

Context: 

Work time: 1:00 p.m. - 3:00 p.m. he does not want to receive friend invitations as well as 

advertisements. 

Free time: 3:00 p.m. - 5:00 p.m. he would like to receive advertisements messages about 

football.  

Simulated Messages:  

1) 1:00 email from Mary (wife) about banquet tonight at 9 p.m.  

// pended until 3 p.m. 

2) 1:10 text from a co-worker (Sue) about company news. 

/delivered. From co-worker about company information 

3) 2:00 email about urgent meeting (from secretory) right now for 20 min. 

//deliver 

4) 2:10 text from friends (Sunday afternoon). 

//pending until 3 p.m. 

5) 2:10 text from co-works about new work plan. 

//pending until 2:20  

6) 2:30 text from Mary about banquet tonight at 9 p.m. 

//delivered. The message is upgraded 

7) 3:10 Facebook about friend request. 

//deleted 

8) 3:20 Facebook about a football game.  

//delivered, meet with user interests 

9) 3:30 Facebook about music events 

//pending. 
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In addition. At four o’clock, John checked the pending list, and he found that music events 

are in the state of pending. Actually, he likes it. So he upgraded the interest level about music 

and increases the keyword for music.  

 Rules 

Complex rules are distilled from use case 2: 

I. Group of similar messages should be upgraded.  

It is required that logical reasoning to identify the similarity of messages. 

The challenge exists in discovering the similarity of incoming messages, 

removing duplicates, and upgrade the messages. 

II. Identify messages from family and messages from a single related person. 

It is required that the system can identify the categories of the incoming 

messages from the sender information.  

III. Categories messages based on content 

IV. Complex context events 

For example, someone is approaching to an office. 

 

3.2.2   USE CASE 2-ANNA 

The second use case focus on young people with multiple, shifting interests, and flexible 

working hours. 

 General Description: 

Anna is a student. Her work time is flexible. Her activities in a day include doing research, 

as well as engaging her interests. It is assumed that lab room is a major sign of doing research. 

When she is doing research, less important messages should be pending.  

 Summary 

Context: 

11:00 a.m. to 1:00 p.m. At laboratory. 

1:00 a.m.-2:00 p.m. Home. Cooking. 

2:00 p.m. – 3:00 p.m. Tennis square. 

Interests:  

Cooking, swimming. But after playing tennis, Anna begins liking tennis 

Simulated Messages:  

1) 11:00 Facebook messages about tennis events.  
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// deleted 

2) 11:01 software update messages.  

// pending 

3) 11:03 text messages from close friends about catch-up.  

// pending 

4) 11:05 Facebook messages from close friends about catch-up. 

// delivered. 

5) 12:01 Facebook messages about cooking tips.  

// pending 

6) 1: 30 Facebook messages from friends.  

// delivered 

7) 2:03 email from her boss about catch-up meeting. 

//delivered 

8) Facebook message about tennis events. 

//delivered. 

 

 Rules 

Complex rules are distilled from use case 2: 

- Achieve precision between interests and message itself. 

- Upgrade the level of interests. 

 

REQUIREMENT ANALYSIS 

The requirements of the system generated from user cases are listed here: 

1) Different types of messages should be uplifted into a uniform and sharable format. 

The importance of different messages should be quantified. From the value, the system 

can give an operational decision to this message. 

In general, the order of the importance of messages from domain knowledge should be: 

text > email > facebook > software message. 

2) The content and subject of messages influence the importance of the processing 

messages. 

In the system, it can be processed by importing the library of word list to help determine 

the meaning of content and subject. However, the library can be user-approved and 

system-defined. It has personalised, changeable library influenced by rules.   
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3) Categorised the messages 

It is necessary to categorise the message into different groups for further treatment. (i.e. 

John considers messages from family is more important than messages from friends in 

this case) 

4) Related messages to a particular person 

Given that Mary’s approaching to an office, it is necessary to pull all the messages 

related to Mary. It is to explore the relationship between ontology and rules. 

5) Shifting interests 

About user scrutability, it is necessary for users to see the reasoning procedure and 

change the decisions. 

6) Set the priority of rules. 

For a stable, high-performance system, it is necessary that the rules are executed in a 

reasonable order. 

7) Large amount of messages 

In the real case, it can have a large volume of rules and messages, so it should have a 

simulator software to simulate an increasing number of messages in order to test the 

extensibility and scalability of the system. 

The system should have the capability to handle with a large amount of messages with 

acceptable performance. 

8) The reasonable framework is required  

Given that Jess rule engine executes rules in a random order, it is recommended to build 

a system that can avoid iterate all the rules, which can reduce the cost and response 

time.  
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 DESIGN 

The rule-based approach builds the foundation of message assistant system. It is a feasibility 

test system integrating personal ontologies and dynamic contextual ontologies. To do this, we 

need an effective architectural design to match ontological facts with rules effectively. 

INTRODUCTION 

After analysing the requirements of the system, this section will start with the abstract 

architecture design. Essentially, this system is based on rule-based approach, thus, the 

architecture is designed centred on improving the performances of matching rules and 

messages. Two architectures (centralised one and phrased-process, distributed one) are 

compared which have different weaknesses as well strengths.   

Then, take the first use case as an example, detailed designs are given in the following part 

of this section. The designs are composed of two parts: one is designing ontological models, 

which contains models for raw-message uplift, models for matching dynamic user preference, 

as well as fast changing contextual models, aiming to interact with internal rule engines as well 

as external environment and user; the other is rule reasoning by giving examples and discussing 

the potential value of jess rule engine and backward chaining. 

The final part will discuss some challenges in the current design. As a conclusion, some 

possible solutions and analysis to meet these challenges. 

In summary, personalised, personalised, rule-based approach laid the function for the 

current application - message assistant system. Both centralised and distributed rule system has 

the strengths in executing rules which are illustrated in section 3.2.2. In section 3.2.3, a detailed 

design consideration for ontology representation is given. Many design challenges about 

ontology model are raised and solved. Section 3.2.4 focuses on backward chaining in Jess rules 

by giving several reasoning examples. In section 3.3, an overall analysis about the message 

assistant is described. 

 

ARCHITECTURE DESIGN 

In this part, two type of architectures to meet the requirements of message assistant system is 

illustrated and compared. One is centralised while the other is distributed chaining. Both of 

them has advantages and disadvantages. 
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4.2.1   GENERAL DESIGN 

Underneath the high-level architecture, the process of handling messages is same listed as 

followed(see Figure 2): generate messages formed in metadata; message uplift (matching 

keyword list, remove redundancies and uplift persons); give the initial score of the message 

depending on the message ontology.( type, subject, sender, etc. );increase the score of the 

matched message depending on the user interests and context descriptions; category the 

message; increasing the score of the matched message, in according to incoming context event, 

changing personal preference trigger event. The system will calculate the score of every 

message in run-time.  

 

Figure 2: Message Handling Process 

Conclusion: Three main ontologies are identified here; they are context, personal (user 

input), message ontologies and three of them support runtime fact transformation and fact 

assentation. After matching rules to facts in the working memory, the system will make 

corresponding operations on messages based on the importance (score) attributes in the 

messages. Importantly, the score is monotonic increased when the match rules are triggered. 

So if the score of messages is higher than delivered value during the routing procedure, the 

messages will be delivered; otherwise, the messages will be pended or deleted along the route. 

The following part will compare the two designs from scalability, performance, load 

balance, fault-tolerance and security. 

4.2.2   ARCHITECTURE 1-CENTRALISED DESIGN 

4.2.2.1   Description 
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This architecture is centralised. All the rules and keywords library are imported into working 

memory to form into facts. 

 

 

Figure 3: Architecture 1-Centralised Design. Knowledge and Ontologies Are Stored and Processed In 

the Working Memories 

The process of the handling is (as Figure 3): Java simulator generates messages. These 

messages come to the main logic system where we use the development tool, protégé. Matched 

rules with message facts to increase scores. Then the system makes operation to message based 

on the scores with the messages in any stage. 

To begin with, matched rules with message facts to do the initial operation. Afterwards, 

context facts and personal facts will be matched to increase the score of messages facts in 

working memories. 

 

Five main and basic rules in the system are listed here:  

(Note: In order to display the features of rule engines which can execute matched rules in any 

order, we list rules the order randomly) 

 Categories A: Transforming the score of messages based on user interests: 

- Rule 1: If the message is from an important person, the score of the matched messages 

increases. 

- Rule 2: If the messages are about user interests, the score of the matched messages 

increases. 

 Categories B: Transforming the score depending on context information: 
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- Rule 3: If the user is during working state and in the office, messages from work 

increase the scores. 

- Rule 4: If someone approaching, all the messages related to the person increase the 

scores. 

- Categories C: Transforming the score of the messages, depending on messages: 

- Rule 5: Messages of different type influence the scores. Text > email, etc. 

- Rules 6: If messages contain important string, the score will be increased. 

- Rule 7: If some messages state similar content, the messages will be grouped together 

and the score will be added as well.  

The execution of rules looks like Figure 4. 

 

Figure 4: Execution of Rules. Facts are stored in the working memory 

 

4.2.2.2   Analysis and Discussion 

 Performance:  

Response time of the system is random for the given rule. But the average time is half 

of whole processing time of all the facts in the memory. 

Jess rule engine will decide what rules to fire and when. However, the pattern 

matcher will search the millions of rules which satisfy the rules, even though the rule 

contains only two or three premises. To make it more random, as to the priority of rules, 

different rule engines have different approaches to deciding which rule will be fired 

first. 

In this case, the optimistic result is that only one rule is fired. In the worst situation, 

all of the rules are fired, the messages are still in a pending state to wait for a trigger 

event. 
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 Cost: 

However, when rules are fired, all the facts in the memories will be matched repeatedly. 

The weakness is obvious that the cost of the system is high. 

One positive side of using rules is that rule-based systems are declarative programs 

which are light, requires some other runtime system to control flows. 

 Fault tolerance: 

Because all the facts in working memories will be executed for a given rule, such all-

effort will guarantee the correctness of executing the result of messages.  

 Security: 

Just as every centralised system, the security is better than distributed one. However, 

the system needs much more complex security consideration. 

For example, the working memory store use-defined keyword list, as well as system 

default keyword list. Once the library information that user-defined is stolen by a bad-

intended organization. It will cause many problems. A better way to resolve the issue 

is to authorize user’s access and secure the fact base and rule base. 

4.2.3   ARCHITECTURE 2- DISTRIBUTED DESIGN 

4.2.3.1   Description 

Distributed architecture will focus on avoiding the problem of randomness in centralised 

architecture, which helps to reduce expensive cost on the system. Besides, like all the 

distributed system, this architecture will bring other benefits, 1) loading the balance of the 

system, 2) extending to handle large numbers of messages and rules. 

      The architecture is displayed in Figure 5. 
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Figure 5: Distributed Design 

The system is composed of three units. They are messages subsystem, context subsystem, 

and personal subsystem.  

Every subsystem only contains related facts, rules and word libraries. Every subsystem can 

make operational decisions (delivered and deleted) upon the incoming message facts. It 

supports scrutiny of users and dynamic context. 

General Description: 

Several messages (metadata) first come into message subsystem, where matched the rules and 

person facts. After executed in the rule engine, messages are attached with phrased scores. If 

the score is high than the delivered value or lower than deleted value, the message will be 

removed from working memories, create a result set and be deleted/delivered. Once the score 

is between delete and deliver value, message subsystem cannot make a decision on this 

message. Then subsystem will flag the message and transfer the message facts to the context 

subsystem, and if the result is still unsure, then it will be transferred to the personal subsystem. 

Context subsystem and personal subsystem will execute similar operation like messages 

subsystem.  

If some event is triggered (for instance, context changes), the message’s score get increased 

in a particular subsystem (in this case, context subsystem can execute the final operation to the 

message facts). Then this subsystem will make an operation to the message and notify the score 

of the facts and the current state of the message fact to other subsystems. In the end, other 

subsystems will remove such message facts from working memories.   

Several features of this system are listed： 
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In every subsystem, only related facts and rules are imported into the working memories. 

For instance, context subsystem has context facts and pending message facts. The benefits of 

such design is that not only it decrease the all-effort search time through the whole working 

memory, and response time in further step, but also reduce the cost of storing and matching all 

the facts in the expensive working memory.   

Every subsystem can make an independent decision (delete or delivery) based on the 

current score of the message facts. It speeds up the response time and reduce pattern match in 

the following subsystems. 

In response to intermediate event happened on pended message facts, the current working 

subsystem will notify the updated score and message state to all other subsystems. If the 

subsystem realised that the message has operated, the facts will be removed from working 

memory; otherwise, this message fact will be updated. 

 

4.2.3.2   Analysis and Discussion 

 

Essentially, it overcomes the problem of the centralised one. It categories facts and rules, which 

avoids complete search in working memory in the centralised architecture. However, if the 

message is in a pending state, waiting for a trigger event, the cost of the system is still 

unrealistic because it has to synchronise all subsystems and easy to make fault in the procedure. 

 Performance:  

Just as mentioned in this section, two parts contribute to shorter response time than 

architecture 1. One is going through facts in subsystem rather than matching all facts in 

the whole system when a rule is fired; the other is subsystem can make operational 

decisions on current message facts, cutting down on time on pattern matcher.    

Another benefit in performance is decreased system cost. The explanation of this 

benefit is similar to that of reduced response time. A subsystem is responsible for part 

of facts matching. 

However, there are slight disadvantages compared with architecture 1. Facts of 

Pended message can be copied to subsystem more than once, increasing the memory 

cost and also lengthening the response time due to the time spent on transferring facts. 

 

 Load balance: 
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The balanced load reflects on rule repository, keyword base, working memory. Due to 

this fact and rule distribution design, the system becomes able to take more tasks which 

increase system performance. 

 

 Scalability  

More capable of handling large numbers of messages and rules than a centralised 

system. In addition, if new situation is required, such as dealing with video messages, 

a new subsystem focus on video can be added after the message subsystem, bring the 

benefits of extensibility and scalability. 

 

 Fault tolerance 

The system has not given enough consideration to faults. But generally speaking, 

distributed design is easy to make more fault than the centralised one, because 

distributed system has high possibility to lose connection and lose packets.  

 

 Security:  

The distributed design needs security consideration because keyword library and rule 

repository are easy to be exposed. In order to guarantee the security of user access, the 

system can adopt public key mechanism.    

 

      In summary, both centralised and decentralised architecture have advantages and 

disadvantages. From the point that the system needs to be scalable enough to handle large 

numbers of messages, architecture 2- distributed one is ideal than the centralised one.  

 

ONTOLOGICAL MODELLING 

To seek the common understanding of different types of information, the semantic ontological 

models should be shared by many applications. In addition, the design of ontological model 

should consider the complete, self-reasoning capability. In this section, four main ontologies 

are identified. In the design of each ontology, key challenges are identified. In the last part of 

the section, ontology and OWL to reason personal relationship in order to compare the 

reasoning ability, information completeness of the two ontology languages. 

      The overall ontologies are formed into the following graph: 
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Figure 6: The Ontology Graph 

4.3.1   MESSAGE ONTOLOGY 

The requirement of this ontology is to uplift information which helps to make an operational 

decision, set score attribute to determine the decision. 

The ontology should be reusable, which receives fast changing messages quickly. 

Two main ontologies related message handling are designed. They are 

MessageOrigin.class which generates facts from metadata messages, and Message which 

uplifts key information and person from MessageOrigin.class as well as set score attributes 

onto facts. 

a) Challenge 1: The way to uplift key information is to match contents of message     

with a keyword list. However, some important keywords may not pre-exist in the 

keyword list. 

Solution: user can check the reasoning process and assert user-defined keyword 

into the working memory;  

b) Challenge 2: Person may appear in the system at the first time, it is necessary to 

assert new person facts into the system. 

Solution: use rules to add a new person into the working memory as well as 

initialise some properties and attributes of the person.  

 

4.3.2   PERSON ONTOLOGY 

The requirement of person ontology is to record personal profile information, personal 

relationship including work people list, family people list. 

Key challenge: Referred to user case 1, John put more propriety to messages from family, 

so it is necessary for the system to reason whether the sender is from family or work.  
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Solution: in protégé ontology, it can use multi-slot to put a person from the family into 

family slot list. However, such object-based way has its limitation to express the relationship 

between people. Another solution is using OWL, this language supports rich reasoning syntax 

to make ontological reasoning effectively. 

Compare protégé ontology and OWL in exploring the personal relationship. 

In protégé ontology, we can assign person related to the user into a correct group, using 

multi-slot.  

However, in OWL, the family relationship can be reasoned from SWRL rules, combining 

properties and class. The detailed design and implementation of OWL is illustrated in section 

5.3.4 

 

Note: The person ontology records sender’s information and relationship with the user. So 

personal ontology does not contain information about user information. 

 

4.3.3   INTEREST ONTOLOGY 

This ontology aims to quantify user’s preference. So it has an importance property to mark the 

importance of the state interest.    

       In addition, interest ontology should be reused, and able to deal with dynamic user 

interests. 

 

4.3.4   CONTEXT ONTOLOGY 

Context includes current state information, such as location, time, etc. The dynamic contextual 

ontology represents series of events. 

The requirements of context ontology are to represent a various type of context 

information, link event participants to corresponding person ontology. 

The key challenge is how to connect event participant to person ontology. 

Solution: it will leverage rules to link current facts to other facts in working memory.  

In addition to these ontologies, the working memory is also imported Keyword library to 

help uplift important String and set scores to messages.  

     

RULE 
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The rule-based system adapts forward chaining. In forward chaining, all the rules which can 

fire do fire. Forward chaining can lead to breadth-first search which wastes lots of costs and 

increase the response time. The benefit is that user can see the process of rule handling which 

is necessary for message assistant to scrutinise the routing path of rules. 

Even though the system uses forward chaining, the design analysis can use the approach 

of backward chaining.  

!_

__

__

__

delivervaluedeliveredScore

addscoreInterestMeet

addscorematchContext

addScorematchKeyword

 














                          (1) 

So In order to meet the high-level objective of operating messages, we need message uplift 

and keyword match and calculate the score of messages. Finally, the system operates the 

messages based on the score. 

Several rules are identified as followed. Among them, three of them are challenging than 

others, giving detailed design explanations. 

 

Rule 1: add new person 

Description. If the sender did not exist in the working memory, the sender information will be 

added. 

R 1: If PersonSender make- instance of Person (sender).                                               (2) 

 

Rule 2: message uplift 

Description. After receiving raw messages, match the sender with person facts, and match 

contents with message facts.  

R 2: If, 








listKeywordContent

personsender

_
 make-instance of message                                            (3) 

 

 

Rule 3: give initial score of message facts 

Description: Based on content, type and urgent, give the phrase score of the messages.   

R3: If 














trueurgent

appemailtextfacebooktype

normalspamcontentfamilyworkcontent

///

//

 slot-set: importance                      (4)   
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Rule 4: category the messages. 

Description: category the message into family and work group, and set the score of the 

messages. 

R4: If

















scoresetslot

lationshippersonalsetslot

nillationshippersonal

listfamilysender

:

Re:

Re

_
                         (5) 

 

Rule 5: content event influence the score of message facts. 

Description: messages imply work (from the time, location) or resting will increase the score 

of message facts. Work and resting will increase the score by different values. 

R5: if 














evidenceother

restworktime

restworklocation

_

/

/

  slot-set: importance                                                           (6)   

 

Rule 6: Context- someone approaching user  

Description: When someone is approaching, the messages related to the person will be 

delivered. 

R6: If 








 )_(

_

persongapproachinMessage

Personpersongapproachin
slot-set: importance                                     (7) 

Rule 7: Upgrade similar messages 

Description: a message of similar content will upgrade the score of message facts and remove 

duplicates. 

R7: If 








)(2

)(1

contentmessagem

contentmessagem









1:tan

:

mceinsremove

scoresetslot
                                            (8) 

Rule 8: upgrade messages 

Description: If the message contains keywords about user’s current interests, the importance 

of the message will be upgraded. 

R8: If 








InterestsInterest

InterestContent
 slot-set: importance                                                               (9) 

The figure illustrates the detailed implementation of rules handling interests. The steps are 

identifying interests, and upgrade the importance of messages. 

 

Rule 9: Transform the standard of importance 
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Description: In order to let system adapt to user’s current interest and habit, the value of weight 

standard should transform. 

R9: Transform weighing values. 
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 IMPLEMENTATION 

INTRODUCTION 

The previous section gives the detailed design of the message assistant system using 

personalised, rule-based approach in handling overflowed messages. The design is derived 

from the state of the art, comparing and discussing the novel and solution to challenges in 

current research and applications. The research questions and key challenges raised in section 

1 will be solved in this section. This section will implement the message assistant system in an 

iterative development way, concentrating on the effectiveness of rules and information 

representation. The following sections will evaluate the approach by conducting several 

experiments. In the last section of the thesis, some discussions on the current work as well as 

future work are illustrated. 

The major research goal is to explore the feasibility of rules in handling messages, taking 

account of user preference and context. In response to the requirement, evolving rules 

developed iteratively are tested with test cases and proved that it is feasible and efficient to 

adapt rule-based approach.   

The following section will be divided into two implementation scenarios, corresponding 

to two user cases. Different focuses are put on the two cases. The first user case centred on 

rules processing facts from the same class, for example, accumulating similar messages. It also 

focuses on interrelated facts of differing classes, for instance, a complex context which a person 

approaching users will trigger all the message sent from the person. However, in the second 

user case, rules take an effort to handle dynamic facts, for example, users is able to inspect and 

change the priority of interests. The order of fired rules will be kept watching as well as the 

number and order of influenced facts. 

A set of experiments are conducted to test the rule-based approach centred on two user 

cases, and evaluations when extending to large numbers of messages. In addition, there is an 

extra experiment that writing a simple version implemented using OWL based on user case 1, 

intended to compare effectiveness and efficiency between OWL and protégé instance. 

The experiments timeline is given in Table 1. 
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Table 1: Experimentation and Implementation  

 Description Message 

simulator 

Message 

generator 

Ontology 

model 

Rule engine 

Stage 1-1 

 

Implementation 

- Use case 1 

None  None Implemented Implemented 

- Exp. A  

 

Rule 1,2,3  

 

None 

 

 

None 

 

 

 

 

- Exp. B 

 

Rule 4,5,6 

 

- Exp. C Rule 7 

Stage 1-2 Implementation 

- Use case 2 

None. None Implemented Implemented 

- Exp. 

A,B,C  

 

Dynamic 

Interests. 

Rule 8,9 

None None   

Stage 2 

Large 

numbers 

Further 

implementation-

Use case 1 

Implemented  None Improved  Improved 

- Exp. A  

 

Rule 5 

 

Implemented None   

- Exp. B 

 

Rule 4 

 

Implemented None   

- Exp. C All rules 

 

Implemented None   

Stage 3- 

Novel 

messages 

Further 

implementation 

–Use case 1 

None Implemented Improved  Improved  

  

The next section will begin with message simulator, a Java application. The major 

requirement of the simulator is to generate conditional messages after filling in the total number 

of messages, time period, the urgent number as well as the number from family.   

Part 5.3 will give a detailed implementation of user case 1, and general description on 

experiment A. In this section, some challenges and the level of completeness are listed. The 
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process and architecture are given at first. Followed by employed technology description, 

implementations of information representation and uplift using ontological models are detailed 

illustrated. This section will end with implementing evolving rules.      

Part 5.4 followed the similar pattern of part 5.3. However, the rules and ontological models 

are different from those in part 5.3. The detailed implementation will be given in that part. 

 

MESSAGE SIMULATOR  

In order to explore the effectiveness of the message assistant system, a message simulator 

which generates various messages is required.  

 

5.2.1   REQUIREMENT  

The high-level goal of the simulator is to generate random messages from messages or apps in 

metadata form. 

The detailed goal of the simulator is that the simulator can generate different types of 

messages in a different time period, etc. It is used for testing the effectiveness of particular 

rules. 

The requirements are derived from the goal. 

R1: To conduct evaluations, these messages should have conditions to limit types and the 

number. 

The parameters of the simulator are listed as followed: 

 The number of messages 

 The urgent number of messages 

 The number of messages from family 

 The time period of sent time 

R2: In order to test the fault tolerant of the message assistant system, random novel 

messages should be generated. 

 R3: support messages from family.  

In order to support selecting messages from family, given that the simulator cannot figure 

out whether senders are from family or not, the system can establish data bases for family 

messages.   

  

5.2.2   DESIGN 
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Based on the requirement analysis, the simulator has three main components: 

Message base (normal, family, novel), Graphic user interface (GUI), generating engine, output 

to protégé.  

Components: 

The message base stores the message in general form. The storage can be databases, XML, etc. 

Graphic user interface (GUI) is used for providing an interface for testers to fill in filter 

conditions for messages. 

Generating engine is responsible for reading messages from message base, receiving 

parameters from GUI components, and output messages in standard form.  

Output to protégé supports transferring messages to rule development environment, 

protégé. 

Timeline: 

The process of the java application: After receiving the parameters, generating engine will 

connect the base to execute filter algorithms to obtain messages matching the conditions. Then 

the engine will transfer the format of messages and send to Protégé. 

   

5.2.3   IMPLEMENTATION 

From the class descriptions, the important functions of these class are listed as followed: 

The GUI receives the parameters and the graphic is display in Figure 7. 

 

Figure 7: The User Interface of the Message Simulator. A sample input is given 

  

The running result is in Figure 8 and 9. As shown, XX new messages are exported to protégé. 
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So the test environment is partly built. 

 

Figure 8: Console-Running Result of the Message Simulator.  

 

Figure 9: Protégé-Running Result. Fengjao_Class10012005 is A New Message Instance Generated 

by Message Simulator 

IMPLEMENTATION OF USE CASE 1-JOHN 

This part will give a detailed implementation of user case 1, and general description on 

experiment A. In this section, some challenges and the level of completeness are listed. The 

process and architecture are given at first. Followed by employed technology description, 

implementations of information representation and uplift using ontological models are detailed 

illustrated. This section will end with implementing evolving rules. 

5.3.1   CHALLENGES REVIEW OF USE CASE 1 

The first user case concentrated on white-collar people, who need the system to help them 

priority incoming messages. People worked in the office has the need to keep focus. 

The implementation of this use case followed the research objectives and design 

requirements. The objectives of this case is listed as followed: 

- Implement a high-level system to make an operational decision (including delete, deliver, 

or pending until conditions are satisfied) on incoming messages.  
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- Implement ontology models for context, person, and message information as well as 

knowledge. 

- Implement a rule-based approach for combining working facts and rules 

- Implement an architecture to test the performance when there are large numbers of 

messages. 

According to goals list above, the challenges for Use case 1 are summarised in the 

following: 

Summary of the challenges for use case 1 

 

 Descriptions of challenges: Completion: 

1 Complete ontology models Partly completed 

2 Reason personal relationship Completed. 

3 Handling group messages Completed 

4 Handling novel messages Partly completed. 

5 Category messages Completed. 

  

Integrating user and context ontology, the facts of messages can be filtered and operated 

in a personal way. Whether ontology models are complete is the first major challenges for any 

effective information system. The depth of the ontology tree and data type of every slot are 

related to the completeness of ontology models. In use case, John is only interested in whether 

messages from work, or from family. It is a simple requirement by assigning sender into slot 

lists. In some complex examples in the real world, this level of completeness is not enough. 

For example, John is interested in from co-workers, but a message from co-workers’ co-worker 

may raise his interest as well. Because this message can be about work in high possibility. The 

level of completeness depends on the complexity of use case. In this message assistant, the 

ontology model is able to cover all necessary information and information relationship.  

The second major challenge is the ability to handling novel information, and similar 

information. These metadata from messages are uncertain. It is necessary to category message 

based on content as well as handling novel ones. 

According to the goals and challenges of message assistant, the implementation in 

Experiment-Stage-1 aims to investigate the rule-based approach stated in design chapter. In the 

experiment, the process includes messages import, messages uplift, personal relationship 

identification, message category, context and interests match, and message operation. The 
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novel message handling as well as dynamic context handling will be stated in further 

experiment of Experiment-Stage-2 & 3. 

  

5.3.2   TECHNOLOGIES EMPLOYED 

This section will give an overview of employed technologies as well as corresponding analysis. 

Protégé  

Protégé is a development environment for ontology modelling, developed by Stanford 

University. Protégé has many open plugins to support OWL, Jess, Visualisation, etc. 

In particular, OWL plugin is used to edit OWL ontologies and SWEL rules 

JessTab is leveraged to edit and process Jess rules. 

Ontoviz, graphicviz, etc. are used to display graphic ontologies. 

Protégé ontology: Class, instance 

A basic protégé ontology contains class and subclass to describe objects. Inside of the class, 

slots/multi-slots are created to set attributes of the object. Instances are data in a knowledge 

base. In general, instances are created/entered after the class and slot structure has been built. 

 

Jess and Jess rules 

Jess is short for Java Expert System Shell, a rule system written in Java. Jess is an efficient, 

lightweight rule engine to process rules and solve many-many matching problems with Rete 

algorithm. In addition, Jess script is also compatible with CLIPS. 

JessTab is also a plugin for Protégé to link Jess engine to Protégé. Particularly, it increases 

functions that enable mapping protégé information bases to Jess facts, instances. In addition, it 

supports manage protégé classes and instances.   

  

5.3.3   IMPLEMENTATION OF ONTOLOGICAL MODELLING 

As the design chapter illustrated, three main types of ontologies are implemented and described 

in detail. 

      The overview of these ontologies is displayed in Figure 10. 
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Figure 10: The Structure of Ontologies, Including Inheritance 

All the ontologies are inherited from Class: Thing. 

MessageOrgin.class describing original messages will be uplifted to Message.class, and 

the sender string will be matched to Person.class.   

In Person.class, three subclasses are used to divide people related to the use into three 

categories. They are Family.class, Work.class and Other/Unknow.class.  

In order to focus on the implementation process and key features of implementation, we 

will take MessageOrigin.class as an example to illustrate the detailed codes. The detailed codes 

about other ontologies will not be mentioned. 

  

 

Figure 11: Implementation Details of MessageOrigin.class 
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Figure 12: Graphic View of MessageOrigin.class, Including Its Attributes and Relations 

The ontology view is displayed in Figure 12. The subject and content are multi-slot lists, 

containing many string lists from original messages. Worth noting is that if the message is 

urgent, String “urgent” will be filled into the content list. However, it can bring other issues 

that senders state that the message is urgent, but the message does not belong to urgent one. 

1) Message 

Message.class is uplifted from MessageOrigin.class by matching keywords, which reduce 

the size of the incoming messages. 

 

Figure 13: Graphic View of Message.class, Including Its Attributes and Relations 
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Before and after 

  

Before            After 

   

Figure 14: A Message before Uplifted          Figure 15: A Message after Being Uplifted 

  

There are some changes from MessageOrigin.class to Message.class. Strings of content 

and subject are transferred and uplifted from MessageOrigin.class to Message. The context 

default information about the messages is imported into the message in order to track the 

context change. “HasAction” is used to detect another context event, when a person approaches 

the user. Importance of the message here is vital to decide in runtime whether the message can 

be delivered or deleted. In addition, sender and receiver information also transformed from 

string to person type after executing rule: message-uplift which match a string to an instance 

of person.    

Besides, if the working memory fails to match an instance of person to the string of sender, 

another rule: new Person will be executed to create a new instance.  

  

2) Person and Interests 

Person.class is used to illustrate sender’s information and sender’s relationship with the 

user. However, Interests.class stores user’s interests and preference of the interest.  
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Figure 16: Graphic View of Person.class, Including Its Attributes and Relations 

Person.class has slots to describe the basic information about the person and relationship 

information with other person stored in multi-slot lists (for example, Family_List). In the 

following section, there will be rules to match relationship in two related person facts. For 

instance, if A is in the Family_List of B, then B is in the Family_List of A.  

 

Figure 17: Protégé-John (An Instance of Person). Mary Is In The Family List of John. 
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Figure 18: Protégé-John (An Instance of Person). Symmetrically, John Is In The Family List Of 

Mary. 

3) Static base 

The static base contains two types of static knowledge. First is Library.class which contains 

keywords list to category content and context (divided into three categories: Free_Location, 

Work_Location, Words_List). The other is weight. Class which contains value list about how 

to increase the importance of message. 

 

Figure 19: Graphic View of Library. Class, Including Its Attributes and Relations 
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Figure 20: A Sample Example of the Instance of Work_Location 

  

 

Figure 21: A Sample Example of the Instance of Free_Location 

  

 

Figure 22: A Sample Example of the Instance of Words_List 
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Figure 23: Importance Standard- weightInstance (An Instance of Weight.class) 

  

 

5.3.4   IMPLEMENTATION OF RULE ENGINE 

Circled on key challenges, this part will focus on generating scores during rule developments. 

Rule approaches follow an iterative development.  

Some challenged requirements and solutions of rules are listed in the table. 

 

Table 2: Some Requirements and Solutions in Implementing Rules 

Description Solution 

The system should be able to handle 

situations when there are novel people and 

novel messages. 

When detecting new people, information 

about this person will be added into working 

memories. 

The operational decision should partly 

depend on the importance of messages. The 

system should identify the importance of the 

incoming messages. 

When there are incoming messages, the 

initial importance of the message will be 

calculated based on content and type of these 

messages.  

To meet the requirement that messages from 

family should have higher priority, the 

system should group messages to know if 

they are from family or other categories. 

Categorise messages into family and work 

group. The categorisation will base on two 

pieces of information: sender if it belongs to 

family list and personal relationship. 

The operational decision is also related to 

current context. The system should 

Context can be added into working 

memories. One particular context is that 
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dynamically asset context into working 

memory and increase the importance of 

messages if these conditions of context 

matches some messages. 

when a person is approaching, messages 

related to the person will be delivered. It 

poses another challenge that the context 

instance should match person instance in 

run-time. 

To meet the requirements of use case 1, 

another complexity is how to upgrade similar 

messages. It is required that similar messages 

should be combined, upgraded, and removed 

duplicates from working memory. 

When a messages comes, the system will 

detect the working memory if there are some 

messages containing similar words. Then the 

incoming messages will increase its 

importance, and other pending and similar 

messages will be removed from the working 

memory. 

  

  

5.3.4.1   Key features1- Adapt to novel messages 

  

 Rule 1: Add new person 

Description: 

If the name of the sender does not exist in the working memory, an instance of the sender will 

be created and added into working memory. 

R 1: If  personsender make- instance of Person (sender).  

The implementation of R1 is displayed in Fig 24. 

 

Figure 24: Detailed Implementation of Rule 1 - Asserting Novel Person 

  

Executing result: 
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Figure 25: Compilation and Execution: Fact 177 Is Activated During Compiling Because Of No Such 

Person In Working Memory. 

  

 

Figure 26:  The Content of Fact 177 in Working Memory, Highlighting New Person Called 

“Bonnie22” 
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Figure 27: The Final Executing Result- New Instance of Person.class 

Explanation: 

As shown in Figure 25, f-177 is activated and fired because it contains a name string (bonnie22) 

that has not existed before. The rule 1 is fired and system inserts a new instance of Person.class 

into the working memory as Figure 27. 

  

 Rule 2: Message uplift 

Description: 

After receiving raw messages, it will match the sender with person facts, and match contents 

with message facts.  

R 2: If 








listKeywordContent

personsender

_
, make-instance of message 

The implementation of R1 is displayed in Figure 28. 

 

Figure 28: Detailed Implementation of Rule 2 - Uplifting Messages  
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 Rule 3: Give initial score of message facts 

Description:  

Based on content, type and urgent, it will give the phrase importance (score) of the messages.   

R3: If 














trueurgent

appemailtextfacebooktype

normalspamcontentfamilyworkcontent

///

//

 slot-set: importance   

The implementation of R1 is displayed in Figure 29. 

 

Figure 29: Detailed Implementation of Rule 3 - Initialising Messages by Type 

 Rule 4: Categorise the messages. 

Description:  

Categorise the message into family and work group, and set the importance (score) of the 

messages. 

R4: If

















scoresetslot

lationshippersonalsetslot

nillationshippersonal

listfamilysender

:

Re:

Re

_
 

 

Figure 30: Detailed Implementation of Rule 4 - Categorising Messages by Sender into Family Group 

5.3.4.2   Key features2 - Context event 

 Rule 5: Content event influence the score of message facts. 
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Description: 

Messages that imply work (from time, location) or resting will influence the importance (score) 

of messages. The importance will be increased by different values depending on work or resting. 

R5: if 














evidenceother

restworktime

restworklocation

_

/

/

  slot-set: importance  

 

Figure 31: Detailed Implementation of Rule 5 - Categorising Messages by Its Content 

  

  

 Rule 6: Context- someone approaching the user  

Description: 

When someone is approaching, the messages related to the person will be delivered. 

R6: If 








 )_(

_

persongapproachinMessage

Personpersongapproachin
slot-set: importance 

 

Figure 32: Detailed Implementation of Rule 6 - Context Event - Someone Approaching 

  

5.3.4.3   Key features3 - Handling messages of similar contents   
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 Rule 7: Upgrade similar messages 

Description: 

Messages of similar content will upgrade the importance (score) of message facts and remove 

duplicates. 

R7: If 








)(2

)(1

contentmessagem

contentmessagem









1:tan

:

mceinsremove

scoresetslot
 

 

Figure 33: Detailed Implementation of Rule 7 - Upgrading Similar Messages  

Executing and process of rules 

This section will detect the process of activating facts and firing rules. Protégé provides tools 

to watch the detailed process of rules. We will demonstrate the implementation from overview 

to detailed ones. 

The working memory includes all facts during run-time, where novel facts can be asserted 

and old facts can be transformed.  

Facts in working memory are shown in Figure 34: 

 

Figure 34: Screenshot from Protégé-All the Facts in the Working Memory 
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As we can see, there are large numbers of facts. However, even a single rule has to match 

every facts in the working memory. For the purpose of improved performance, it is 

recommended to adopt architecture 2 to divide facts. 

 

Figure 35: Screenshot from Protégé- All the Rules in the System 

Figure 35 above demonstrates rule list related to use case 1 

The executing process can be watched by watching rules via protégé as it shows in Fig 36. 

 

Figure 36: The Order of Processing Message A.  Watching Facts In Compiling And Executing After 

All The Rules Are Added In The System.  
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Figure 37: The Order of Processing Message B.  Watching Facts In Compiling And Executing After 

All The Rules Are Added In The System. 

From Figure 36 & 37. It is evident that system randomly chooses rules to fire. Fig 36 fires 

rules in such order as facebook-intial, new person and message uplift while Fig 37 chooses a 

different order. Given a second thought, the approach can be improved by firing important rules 

at the first by giving priorities. For example, messages from boss are definitely delivered, so 

this rule can be fired at first then other rules about identifying contents or contexts will not be 

fired because the operation has already been determined.  

 

Figure 38: The Final Result after Executing Message A. Because The Value Is 40, Less Than 60, The 

Message Will Be Pending. 

The running result is shown on Figure 38 where the content of messages is “banquet”, 

belonging to normal content, from family and text messages. It is an important message. 

However, the user is working now, the message will be in pending state until the context state 

get changed. 
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5.3.5   COMPARE OWL AND ONTOLOGY 

This part will compare the reasoning capability between OWL with Jess and Protégé class with 

Jess. Owl and ontologies are different in many aspects, however, we will focus on reasoning 

aspect and take reasoning on personal relationship as an example. 

As mentioned in the earlier section. In Protégé class, the personal relationship is object-

based. If a person is a member of family, the person will be added into the family list of the 

user using multi-slot. The reasoning process is also accomplished by searching such person in 

the family list. 

In comparison, OWL has rich library and better reasoning capacity, which provides a tree-

like mechanism similar to object oriented. This part will implement a simple version of 

message assistant which is used to reason if a person is from family. With this example, we 

can compare OWL and ontology. 

5.3.5.1   Design and Implementation of OWL 

Protégé OWL plugin has been used to define an OWL ontology describing the class, Person, 

interests and contexts, and relationships, isFamily and isWork as shown in figure 40 and 41. 

In order to reason that a person is from family, a SWRL rule will represent some dependencies 

edited with the Protégé OWL plugin.  

        PersonisFamilyFamily :   

Owl codes VS Ontology codes 

    

Figure 39: Owl-Family design Vs Ontology-Family design 
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Figure 40:   OWL-class                                        Figure 41: OWL-properties 

5.3.5.2   The Comparison Between OWL and Ontology 

OWL is well suited to represent “structured” knowledge by classes, properties, and taxonomies. 

SWRL is suited to deduce knowledge by rules composed of atoms. From this example, the 

family relationship is easy to reason by SWRL. 

In comparison, reasoning with ontology in this application, relies on keyword list. Jess 

engine searches the family members list which requires update the family_list in run-time. The 

drawback is a waste of storage and matching time. 

Besides, as we can see Figure 39. Ontology is simpler than owl but one family list has to 

be redesigned for every person ontology. 

IMPLEMENTATION OF USER CASE 2 - ANNA 

Even though use case 2 is different from use case 1 in many aspects, the internal challenges are 

similar. For instance, message categories and context handling, etc. The standard of the 

importance of messages will be transformed depending on user preference.  

This part will give a review of use case 2 and identify the key challenge as well. Then it 

will describe the handling process of use case 2 as well as rules. Given that many challenge has 

been solved in the use case 1. Use case 2 will focus on handling dynamic user interests.   

5.4.1   CHALLENDGES REVIEW OF USE CASE 2 

Anna is a research student. Her work time is flexible. Her activities in a day include doing 

research, as well as engaging her interests. Her feature is dynamic interests and flexible 

working time. It is assumed that the place she stayed is major sign of doing research. 

Key challenges 

Given that many challenges have been solved in the use case 1. Use case 2 will focus on 

handling dynamic user interests.   
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The user is able to transform the importance of interests and assert novel interests into the 

working memory. 

In addition, the importance of such interests can be changed with user involvement. 

  

5.4.2   IMPLEMENTATION OF ONTOLOGICAL MODELLING- 

INTEREST 

Interest is a class to describe the interest that the user hold, it has values to present the level of 

the interest. Most importantly, the value of interest level can be transformed. The 

implementation detail of related rules will be described in the use case 2. 

 

Figure 42: Graphic View of Interests and Interest 

  

 

Figure 43: Protégé-An Instance of Interests.class Is Interest.class 

  

 

Figure 44: Protégé - An Instance of Interest Contains Preference Value and Interest Name 
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Fig 43&44 illustrates the instance of Interests. Two instances are detected and both of them 

contains a slot of interest type. For an interest instance as shown in Fig 44, the interest of hiking 

keeps a changeable value. 

5.4.3   IMPLEMENTATION OF RULE ENGINE 

Rule 8: Upgrade messages 

Description:  

If the message contains keywords about user’s current interests, the importance of the message 

will be upgraded. 

R8: If 








InterestsInterest

InterestContent
 slot-set: importance 

 

Figure 45: Implementation Detail of a Rule Which Is To Upgrade a Message Containing User's 

Interests 

  

 

Figure 46: Assert the Rule into Protégé 

  

The Figure 45&46 illustrates the detailed implementation of rules handling interests. The steps 

are identifying interests, and upgrade the importance of messages. 

 Rule 9: Transform the standard of importance 

Description: 

In order to let system leverage user’s current interest and habit, the value of weight standard 

should transform. 
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R9 

 

Figure 47: Rules for Updating Importance Standard 

The running result in Fig 47: 

 

Figure 48: The Screenshot for Updating Weights/Importance Standard 
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   EVALUATION 

INTRODUCTION 

The design and implementation of the system are in an iterative process distributed in the 

following experiments and they are all needed to be evaluated from different aspects, like 

performance, feasibility, functionality, etc. This chapter describes the overall evaluation to 

examine the effectiveness of the rule-based approach, limitation and boundary of the research 

in this dissertation.  

  

EVALUATION STRATEGY 

The evaluation strategy intends to validate the personalised ontology and rule-based approach 

applied on the message assistant, as well as the effectiveness of ontological information 

representation and rules.  

The iterative evaluation experiments described in this chapter are used to provide evidence 

that rule-based approach has the limitations and advantages from the perspective of 

functionality, performance, and fault tolerance to handle messages. In addition, architectures 

are evaluated as well to compare the facts involved, activated, and rules fired from the 

perspective of performance, load balance, etc. 

The system has two use case containing messages description, context description and user 

profile description. We put forward series experiments to evaluate the system from limited 

facts and rules centred on use cases, to large numbers of facts and rules generated by the 

message simulator, to novel messages generated by Java Mail API. Three main experiments 

require comparison on activation numbers and rules fired order during compilation and 

execution. For the purpose of evaluation, the correctness, load, and performance were analysed. 

The experiments are listed as followed in session 6.3.   

ITERATIVE EXPERIMENTS 

From the general overview, the experiments were divided into three stages refer to Figure 49.  

The first stage is centred on use case described before. This stage will make a detailed analysis 

on the executing process. Take use case 1 as an example, in Architecture 1. We analyse the 

incoming messages, and context, user profile as well. Factors contributed to the operational 
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decisions are extracted. We will use logic algorithms to analyse the expected results and actual 

results.  

As to architecture comparison, we will compare the numbers of facts, the fact activation, 

and rules. As it turned out, the result is corresponding to theoretical analysis in chapter 3. At 

the end of this part, a new architecture is raised and given theoretical analysis.  

The second case focuses on testing the scalability and correctness of this system. Thus, a 

message simulator which can generate conditional messages is required. This java application 

will access messages stored in XML file and send to protégé system like the picture - stage 2; 

 

Figure 49: Evaluation Process- Three Stages 

 

This stage will follow the similar evaluation pattern like stage 1. But it will carry on 

operation correctness evaluation (if the message will get the correct operations, 

delete/deliver/pending) because it is unnecessary to compare the correctness of importance of 

messages. 

Stage 3 will focus on evaluating whether the system can handle novel messages, and novel 

people and enlarge the library of the system; that is the flexibility and fault tolerance of the 

system. 

To conclude, the evaluation plan is listed in table 1. This procedure can be summarised as 

a performance evaluation to see if rule-based approach is a feasible approach.  
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Table 3: Purposes and Employed Architectures of the Evaluation Process 

 Experiment Message Source Architecture Evaluation focus 

Stage 1 Exp. A.1 Protégé (use case) Architecture 1 Functionality 

Exp. A.2 

Exp. A.3 

Stage 2 Exp. A.1 Java application 

(Message simulator) 

Architecture 1 Scalability 

performance Exp. A.2 

Exp. A.3 

Stage 3 Exp. A.1 Java application 

(Java Mail API) 

Architecture 1 Fault- 

tolerance(novel 

messages) 

flexibility 

Exp. A.2 

Exp. A.3 

 

ITERATIVE EXPERIMENT – STAGE 1 

Stage 1 centred on use case, with limited numbers of messages, context information, and 

limited user interests. This section will test the functionality of the system, and evaluate the 

correctness using mathematic statistic tools. To begin with, six messages are analysed and 

given the importance score based on importance standard. Then the process of rule execution 

will be given by flow chart with detailed descriptions about performance and cost during 

runtime. In the last part of this section, a mathematic analysis is given which explained the 

feasibility and effectiveness of the rule-based approach in handling messages. 

 

6.4.1   NINE MESSAGES AND THEIR EXPECTED RESULTS  

Context:  

 Work 1:00 p.m. – 3:00 p.m. 

 Resting 3:00 p.m.-5:00 p.m. 

Personal Interests: 

 Football 

Message 

 Message 1: 1:00 email from Mary (wife) about banquet tonight at 9 p.m.  

 Message 2: 1:10 text from a co-worker (sue) about company news. 

 Message 3: 2:00 email about urgent meeting (from secretory) right now for 20 min. 
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 Message 4: 2:10 text from friends (Sunday afternoon). 

 Message 5: 2:10 text from co-works about a work plan. 

 Message 6: 2:30 text from Mary about banquet tonight at 9 p.m. 

 Message 7: 3:10 Facebook about friend request. 

 Message 8: 3:20 Facebook about a football game.  

 Message 9: 3:30 Facebook about music events. 

Weighing Standard.  

Note: the importance standard can be transformed to fit user’s preference. This one is system 

default. 

 

Figure 50: Default Weight Standard 

Referred to Figure 50, weighting is listed in the table. When someone approaches, the current 

importance of the message increased by 30. When the user is at work, the messages will get 

increased by 30 as well. However, worth noting is that if the message contains spam work, the 

message’s importance will be less than 0. Thus, it is deleted directly. 

Table 4: Analysis of Messages 

 Work sender content Urgent? Similar Interest Actual 

   (Y) 

Expected 

(Ye) 

m1 Y family normal N N N 40(0) 40(0) 

m2 Y work work N N N 60(1) 70(1) 

m3 Y work urgent Y N N 60(1) 70(1) 

m4 Y friend normal N N N 30(0) 30(0) 

m5 Y work work N N N 60(1) 60(1) 

m6 Y family normal N Y N 60(1) 60(1) 

m7 N unknown spam N N N -90(-1) -90(-1) 

m8 N unknown normal N N Y 70(1) 70(1) 

m9 N unknown normal N N N 40(0) 40(0) 
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Note: In the expected column, 1 means the message should be delivered, 0 means pended until 

context event happened, -1 means that message should be deleted. 

The standard set that if the importance of messages is less than 0, the message will be 

deleted; if the importance of the messages is more than 60, the message will be delivered in no 

time. 

The procedure of rule handling is displayed in Figure 51: 

 

Figure 51: Detailed Procedure of Handling Rules. However, The Order Of Processed Rule Is 

Random Depending On Rule Engine. 

In Fig 51, the process of handling message is given. However, the order of firing rules not 

necessarily follows the order as it shown in the Figure 48. For every rule, some facts (or 

instance) are activated in any order. One of the intentions of evaluation is to analyse the 

number, and order of activated facts and fired rules. 

These facts are activated following a random order. The result are “watched” with the help 

of protégé.  

 R1: 17 facts are activated in compilation, rule are fired once in execution.  

Total: 166 facts.  

 R2: 27 facts are activated in compilation, rules are fired 9 times in execution.  

Total: 241 facts. 

 R3: 9 facts are activated in compilation, rules are fired 9 times in execution.  
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Total: 241 facts. (R3 combines 3 sub-rules, email-initial/facebook-intial/text-initial) 

 R4: 10 facts are activated in compilation, rules are fired 5 times in execution.  

Total: 285 facts. 

 R7: 4 facts are activated in compilation, rule are fired once in execution.  

Total: 369 facts. 

 

In total, 379 facts are activated and 7 rules are fired. The usage of memory is the expected 

number of activated facts are, relevant to the number of incoming messages.  

The running result compared with expected result are analysed using regression analysis: 
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SUMMARY OUTPUT        

         

Regression Statistics        

Multiple R 0.996618        

R Square 0.993246        

Adjusted R 
Square 0.992121        

Standard 
Error 4.802124        

Observations 8        

         

ANOVA         

  df SS MS F 
Significance 

F    

Regression 1 20349.14 20349.14 882.4281 9.65E-08    

Residual 6 138.3623 23.06039      

Total 7 20487.5          

         

         

RESIDUAL OUTPUT        

         

Observation 
Predicted 

40 Residuals       

1 63.08188 6.918117       

2 63.08188 6.918117       

3 32.34687 -2.34687       

4 63.08188 -3.08188       

5 63.08188 -3.08188       

6 -90.5932 0.593166       

7 73.32689 -3.32689       

8 42.59188 -2.59188       

 

Conclusion: as we can see from the table, the R square is above 95%. So the experiment result 

is highly acceptable. It means that rules can help give precise operations on incoming messages. 
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ITERATIVE EXPERIMENT – STAGE 2 

After the analysis in Stage 1, it is clear that even a single rule can influence all the facts in the 

working library, even though only a small number of facts are activated in a random order.  

When the system is scale to handle a large number of messages, and complex context 

information, performance, accuracy and system load can get worse or keep stable like stage 1. 

This section will analyse many situations where the number of messages changes, urgent 

number transforms, and other selection conditions changes. 

This stage will use message simulator, a java-based application to generate message 

meeting the selected conditions.    

The experiments are conducted to test the effectiveness of rules 

 

6.5.1   EXPERIMENT B    

Test rule 4: The effectiveness of rule 5 which handles messages from family when the number 

of family ones get changed. 

Description: The total number of messages, the time period, and the urgent number keep 

unchanged while the number from family is changed from 20, 50 to 100. 

The randomness of messages can be get from changing the Start_time and End_time of 

messages. 

The values in the test are in table 7 &8: 

Table 5: Experiment 2.Stage 2 - Parameters Table 

Total number: 200 

From family: X 

Start time: variable 

End time: variable 

Urgent number: 20 

 

Table 6: Experiment 2.Stage 2 - Experimental Result 

Family(X) expected actual facts rules 

20(200) 20(125) 20 1234 164 

50(200) 50(154) 42 1290 168 

100(200) 100(108) 44 1010 136 
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The correctness’s level shows in Fig 52-54: 

       

Figure 52: The Family Number Is 20, Before Employing Rules And After Employing Rules 

      

Figure 53: The Family Number Is 50, Fired Facts Which Belong To Family Is 44 

 

       

Figure 54: The family Number is 100(200), however, only 92 messages were inserted while 44 

belongs to family. 

      

 

To conclude, as we can see from the Figure 52-54, the correctness of the system is not 

good, while the performance is basically acceptable. Many memories get waste under this 

architecture.  
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6.5.2   EXPERIMENT C 

Test whole rules when the whole number of messages from family get changed. 

Description: The urgent number of messages, the time period, and the number from family 

keep unchanged while the whole number is changed from 50, 100 to 200. Rule 2 and rule 7 are 

fired. The correctness should be that the number of non-replicate message is 23 no matter how 

many messages are imported into the system.  

The randomness of messages can be obtained from changing the start_time and end_time 

of messages. 

The values in the test are shown in Table 9&10: 

 

Table 7: Experiment 3.Stage 2 - Parameters Table 

Total number: X 

From family: 20 

Start time: variable 

End time: variable 

Urgent time: 20 

 

Table 8: Experiment 3.Stage 2- Experimental Result 

Total(X) expected actual Initial facts  facts Fire rule 

50 50 41 206 663 93 

100 100 69 259 998 143 

200 200 133 316 1645 291 

 

The correctness’s level shows in Figure 55-56: 
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Figure 55: Total number is 50 when only 41 messages are inserted but the running result is correct.  

The analysis of Fig 55: As we can see, the number of messages changes from 41 to 23, it 

is correct. But not all the messages are scanned and executed. 

        

Figure 56: Total number is 200 when only 133 messages are inserted but the running result is correct. 

The analysis of Figure 56: As we can see from, the number of messages changes from 131 

to 23, it is correct. But not all the messages are scanned and executed. 
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Figure 57: The number of facts in the working memory is huge 

The response time of system is acceptable when there is a large number of messages. 

However, many facts exist in the working memory which increases the response time and cost. 

To conclude, as we can see from the figure, the correctness of the system is comparably 

reasonable as well while the performance is not good. Many memories get waste under this 

architecture.  

 

ITERATIVE EXPERIMENT – STAGE 3 

After the experiments in stage 2 focusing on scalability and performance test of these rules, 

this part will evaluate the fault tolerance of the system when there are novel messages. 

In order to generate novel messages, we designed and implemented a java application using 

JavaMail API, generating emails from the mailbox.  

6.6.1   NOVEL MESSAGE GENERATOR 

This generator aims to retrieve emails from the mailbox using Java Mail API and then uplift 

emails into metadata form. Importantly, it is necessary to uplift keyword list from subject and 

content of messages. For example. “I want an apple” will be uplifted into “apple”. 

Given the challenge, we will design a wordhandler.class to uplift sentences.  

 

Design of the message generator 
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Figure 58: UML Class 

1) ReadingEmail is responsible for retrieving raw email from mailbox.  

2) Wordhandler focuses on extract keywords list from content and subject of emails. 

Thus, the incoming messages from the mailbox, which can be composed of different contents,   

has lots of uncertainties. Thus, using mailbox meets our requirements of generating novel 

emails. 

 

Implementation of Java Mail 

With the help of JavaMail.API, message generator is able to connect mailbox supporting IMAP 

protocol and authenticate Gmail account and its password.  

The executing result is displayed in Figure 59. 

 

Figure 59: Generating Novel Messages 

 

6.6.2   EXPERIMENT 

With that, we choose three novel message is imported into protégé system. 
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 Message 1: From HostelWorld.com, an email about asking for their service.  

 Message 2: From Convip, booking ticket to Stockholm via Ybuss. 

The expected result should be that message 2 is delivered or pended because the content is 

important about confirming; message 2 should be deleted, because of unimportant 

advertisement;  

 

Table 9: Experiment. Stage 3 - Experimental Result 

 Expected 

Importance 

Expected 

operation 

Actual 

Importance 

Actual 

operation 

Message 1 <0 -1 20 0 

Message 2 30 1 or 0 20 0 

 

The running result are displayed in Figure 60-61: 

 

Figure 60: Creating New Users 
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Figure 61: Generating Scores For Every Messages 

Analysis: Because the keyword list fails to contain all the novel information. In this case, the 

system fails to identify the review as a sign of advertisement. So it takes every word that has 

not appeared before as normal word. It is a drawback of this method. The possible solution is 

to increase user scrutiny. 

SUMMARY  

In summary, the message assistant based on rule-based approach is able to fulfil functional 

requirements stated in chapter 1. However, the system fails to display good performance due 

to the inefficiency of Jess rule engine. With the increase of the message, operational decision 

becomes inaccuracy.   
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 CONCLUSION 

The chapter presents the conclusion of the thesis. To start with, it illustrates an assessment of 

the extent to which the objectives of the thesis have been filled and the contributions that the 

thesis has made. Followed by the evaluation, the thesis discusses the limitations and future 

work. 

 

ACHIEVEMENTS FOR RESEARCH OBJECTIVES 

This thesis hypothesized that rule-based approach could be used to filter or hang incoming 

messages. To pursue this, a research question was set out as: 

The research explores how and to what extend rule-based approach can be leveraged to 

make an operational decision on incoming messages, integrating context and user preference. 

Five objectives listed in Chapter 1 are identified and solved: 

Objective 1: Find out similar approaches to categorising and operating messages from 

the state of the art, and investigating issues surrounding rule-handling approach, and 

ontology modelling, etc.  

Objective 2: Design and implement the information representation based on two stated 

two use cases, and evaluate this approach. 

Objective 3: Design and implement the rule-based approach to handling incoming 

messages based on the two use cases. Then, evaluation and comparison based on the current 

approaches should be given. 

Objective 4: In order to face the issue of massive messages, design and improve the 

general architecture and evaluate the architecture. 

Objective 5: Follow an iterative approach to evaluating and validating the design and 

implementation of the design and implementation. 

The state of the art reviews the current research about the rule-based approaches.  Many 

existing pieces of research are addressed about information representations, semantic 

techniques and rule-based approaches. The discussion reveals that the current challenges are 

integrating dynamic context, user profile information with messages using rule reasoning. The 

state of the also illustrates some ways to reason based on limited knowledge, by combing 

heuristic-based approach with rule-based approach. Objective 1 is fulfilled here. 
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In Chapter Four, two architectures are described and analysed. Both of the architecture 

have advantages and disadvantages based on rule approaches and Jess engine. In particular, 

architecture 2 contains three subsystems, each of which focuses on handling related rules and 

related facts, improving the performance and cost of the system compared to architecture 1. 

Based on the analysis of Jess rule engine, architecture 2 can be improved, the improved 

architecture will be described in future work (see section 7.3.4). Objective 3 is fulfilled here. 

Chapter Four and chapter Five gives detailed design and implementation. As it turns out, 

rule-based approach has the capability to decide operations on messages. Thus, it achieves the 

Objective 4. 

Chapter Six is the evaluation and Objective 2 and 5 is fulfilled. The evaluation is 

approached as an iterative process during three experiments. The performance evaluation is 

accompanied with accuracy evaluation on a different data set. As it turns out, the current system 

fulfils the requirements. However, it has space to get improved. 

 

CONTRIBUTION 

The main contribution of this thesis is a rule-based approach, integrating dynamic context, and 

dynamic user preferences ontologies. This approach contributes to the state of the art by 

offering a distributed architecture and open-to-inspect system. Another contribution is that the 

system has realised some complex rules like upgrading similar messages, matching-

content/interests precisely, etc. The other minor contribution of this system is the design and 

implementation of message assistant, a test-based applications to evaluate the effectiveness of 

such approach.  

 

FUTURE WORK 

From information representation to rule reasoning, from detailed implementation to 

architecture, there are numbers of practical and research issues in which there is potential for 

extensions and improvement to current work. The performance of the rule-based approach 

could be improved from following aspects. 

 

7.3.1   INCREASE COMPLEXITY 

Message complexity: In the current stage of information explosion, there are diverse 

communications via the Internet, like video, voice, ciphered messages, etc. It is required 
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integrated approaches to process these messages. In addition, as to complexity in messages, 

some messages may relate to other messages. If the message has to be delivered, other relevant 

pending messages earlier should be delivered as well.      

Context complexity: To increase the accuracy of this message assistant, the following work 

can consider more complex contexts, like reasoning locations from a calendar, from close 

friends or from mobile location service. 

Person complexity: User’s needs can be complex in real life. A user may be interested in 

aunt’s messages rather than nephew’s message even though they both belong to a family group. 

In another case, a user may be interested in messages from a relative of aunt’s, but such person 

is not in the family group. To make more complex, a simple interest can have multiple forms 

of representations. For example, swimming can be represented as the seaside, coach, bench, 

etc.   

Examples above requires a flexible system with rich knowledge base which need us to 

explore proper technologies in future work. 

 

7.3.2   REPLACE PROTÉGÉ ONTOLOGY WITH OWL  

As demonstrated in chapter 3, OWL has a much better capacity to make semantic reasoning 

than protégé ontology. Thus, there is potential for extension to replace protégé class with OWL. 

OWL has better capacity because classes are organized into hierarchical structure. In addition, 

OWL has the ability to express rich semantic information by the triple, and provide semantic 

reasoning based on OWL information.  

 

7.3.3   SETTING INITIAL VALUE  

In the current implementation, some value are set based on user’s input or system default value. 

However, it is suitable for use in real life. The importance of user’s interest can be set based 

on historical learning based on past user’s behaviour. However, in this system, we failed to 

provide such mechanism.  

 

7.3.4   IMPROVE THE EFFICIENCY OF REASONING 

Another way to improve the performance of the system is to improve the efficiency of rule 

reasoning. As the evaluation showed, the processing time took long time to complete a 

decision. A solution is to choose a more efficient rule engine and optimise the reasoning 

approach. Future work will explore current rule engine and compare the performance. 
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As to improve the reasoning approach. We can design the architecture and the rules. 

Architecture 2 has already improved the efficiency, but it can make better. The efficiency can 

also be realised by adding priorities to the given rules. If the preferred rule is fired at first, it 

has a higher possibility that other rules will not have to be fired in the later stage. 

The reasoning approach can be optimised for using better in working memories and real-

time reasoning approach. 

 

7.3.5   ENLARGE THE KEYWORD LIST 

Currently, the system contains a limited number of keywords. However, in real life, this is not 

enough. OWL has its library, which can be useful to adopt RDF/OWL to overcome such issues. 

Another solution may be that whenever a novel message comes, the related words will be 

imported into the library. Based on the user behaviour, the system begins learning if the word 

should be important or less important. Future work will focus on machine learning in response 

to limited knowledge and semantic information. 

 

7.3.6   HETEROGENEOUS CONTEXT 

Even though there are some approaches to handling heterogeneous context and context 

integration, the system just realised a simple version without considering complex context and 

its diversity. In real life, it is practical that lots of evidence of location, time are coming from 

different sources. It is recommended to adopt OWL to represent and reason the context 

information. In future work, we will import complex context information into the message 

assistant system. 

 

7.3.7   SCALABILITY 

 With the advance of a rule-based system, many rules can be executed under different 

environments. Being cross-platform and easy to scale become another challenge for such 

system. The system should explore methods to handle an increasing number of messages and 

analyse security, performance, etc.   
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APPENDIX I 

Information representation in OWL format: 

<?xml version="1.0"?> 

<rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:swrlb="http://www.w3.org/2003/11/swrlb#" 

    xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#" 

    xmlns:owl="http://www.w3.org/2002/07/owl#" 

    xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#" 

    xmlns:swrl="http://www.w3.org/2003/11/swrl#" 

    xmlns:swrla="http://swrl.stanford.edu/ontologies/3.3/swrla.owl#" 

    xmlns="http://www.owl-ontologies.com/Ontology1435094805.owl#" 

    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

    xmlns:sqwrl="http://sqwrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl#" 

    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

  xml:base="http://www.owl-ontologies.com/Ontology1435094805.owl"> 

  <owl:Ontology rdf:about=""> 

    <owl:imports rdf:resource="http://sqwrl.stanford.edu/ontologies/built-ins/3.4/sqwrl.owl"/> 

    <owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/3.3/swrla.owl"/> 

  </owl:Ontology> 

  <owl:Class rdf:ID="Message"/> 

  <owl:Class rdf:ID="Work"> 

    <owl:disjointWith> 

      <owl:Class rdf:ID="Other"/> 

    </owl:disjointWith> 

    <owl:disjointWith> 

      <owl:Class rdf:ID="Family"/> 

    </owl:disjointWith> 

    <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:someValuesFrom> 

          <owl:Class rdf:ID="Person"/> 

        </owl:someValuesFrom> 
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        <owl:onProperty> 

          <owl:TransitiveProperty rdf:ID="isWork"/> 

        </owl:onProperty> 

      </owl:Restriction> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf> 

      <owl:Class rdf:about="#Person"/> 

    </rdfs:subClassOf> 

  </owl:Class> 

  <owl:Class rdf:about="#Person"> 

    <owl:disjointWith> 

      <owl:Class rdf:ID="Interests"/> 

    </owl:disjointWith> 

    <owl:disjointWith> 

      <owl:Class rdf:ID="Context"/> 

    </owl:disjointWith> 

    <owl:disjointWith> 

      <owl:Class rdf:ID="MessageOrigin"/> 

    </owl:disjointWith> 

  </owl:Class> 

  <owl:Class rdf:about="#Family"> 

    <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

    >Email</rdfs:label> 

    <owl:disjointWith> 

      <owl:Class rdf:about="#Other"/> 

    </owl:disjointWith> 

    <owl:disjointWith rdf:resource="#Work"/> 

    <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:someValuesFrom rdf:resource="#Person"/> 

        <owl:onProperty> 

          <owl:SymmetricProperty rdf:ID="isFamily"/> 

        </owl:onProperty> 

      </owl:Restriction> 
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    </rdfs:subClassOf> 

    <rdfs:subClassOf rdf:resource="#Person"/> 

  </owl:Class> 

  <owl:Class rdf:about="#Context"> 

    <owl:disjointWith> 

      <owl:Class rdf:about="#MessageOrigin"/> 

    </owl:disjointWith> 

    <owl:disjointWith rdf:resource="#Person"/> 

    <owl:disjointWith> 

      <owl:Class rdf:about="#Interests"/> 

    </owl:disjointWith> 

  </owl:Class> 

  <owl:Class rdf:about="#Other"> 

    <rdfs:subClassOf rdf:resource="#Person"/> 

    <owl:disjointWith rdf:resource="#Work"/> 

    <owl:disjointWith rdf:resource="#Family"/> 

  </owl:Class> 

  <owl:Class rdf:about="#MessageOrigin"> 

    <owl:disjointWith rdf:resource="#Context"/> 

    <owl:disjointWith rdf:resource="#Person"/> 

    <owl:disjointWith> 

      <owl:Class rdf:about="#Interests"/> 

    </owl:disjointWith> 

  </owl:Class> 

  <owl:Class rdf:about="#Interests"> 

    <owl:disjointWith rdf:resource="#MessageOrigin"/> 

    <owl:disjointWith rdf:resource="#Person"/> 

    <owl:disjointWith rdf:resource="#Context"/> 

  </owl:Class> 

  <owl:DatatypeProperty rdf:ID="DatatypeProperty_13"> 

    <rdfs:domain rdf:resource="#Family"/> 

  </owl:DatatypeProperty> 

  <owl:TransitiveProperty rdf:about="#isWork"> 

    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#SymmetricProperty"/> 
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    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 

    <owl:inverseOf rdf:resource="#isWork"/> 

  </owl:TransitiveProperty> 

  <owl:SymmetricProperty rdf:about="#isFamily"> 

    <owl:inverseOf rdf:resource="#isFamily"/> 

    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty"/> 

    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 

  </owl:SymmetricProperty> 

  <owl:FunctionalProperty rdf:ID="Influence"> 

    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 

  </owl:FunctionalProperty> 

  <owl:FunctionalProperty rdf:ID="uplift"> 

    <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/> 

  </owl:FunctionalProperty> 

  <swrl:Imp rdf:ID="Rule-2"> 

    <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string" 

    >family</rdfs:comment> 

  </swrl:Imp> 

  <swrl:Imp rdf:ID="Rule-1"/> 

</rdf:RDF> 

 

<!-- Created with Protege (with OWL Plugin 3.4.4, Build 579)  http://protege.stanford.edu --> 

 

 


