
Volume Rendering Optimisations for Mobile Devices

by

Antonio Nikolov

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

May 2015

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise for

a degree at this, or any other University, and that unless otherwise stated, is my own work.

Antonio Nikolov

May 20, 2015

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon re-

quest.

Antonio Nikolov

May 20, 2015

Acknowledgments

I would like to thank my supervisor Dr. Michael Manzke for taking me on this dissertation

and introducing me to the world of volume rendering. I would like to extend my thanks

to Tom Noonan and Niall Mullally for giving me a head start in the development of the

application. My deepest gratitude goes to Sarah and Giovanni for their support during the

good times and the bad times throughout the project.

ANTONIO NIKOLOV

University of Dublin, Trinity College
May 2015

iv

Volume Rendering Optimisations for Mobile Devices

Antonio Nikolov

University of Dublin, Trinity College, 2015

Supervisor: Dr. Michael Manzke

Historically volume rendering has been associated with lacking the performance of tradi-

tional mesh-based rendering to achieve interactive speeds. The parallelism in modern CPUs

and GPUs has allowed volume rendering to become a viable choice in movie special effects,

destructible environments in games and medical imaging. Different software techniques

have been developed to unlock the potential of the massively parallel architecture of the

GPU. While a modern desktop hardware is more than capable of achieving volume ren-

dering at interactive speeds, a modern mobile device is significantly lacking in power. A

use for volume rendering on a mobile device would be a doctor using a device capable of

reconstructing a 3D representation of a patients bone structure without stationary MRI scan-

ner and then rendering the volume. This paper investigates the performance of ray casting

against texture based volume rendering on mobile devices using OpenGL ES shaders as well

as the performance of ray casting volume rendering using general purpose programming

on the GPU (GPGPU) using CUDA. This project contributes a cross-platform volume ren-

derer on Windows and Android with four performance tested implementations: ray casting

v

using shaders, ray casting using CUDA, single-threaded texture based and multi-threaded

texture based volume rendering. Results show that generally the single-threaded approach is

the fastest but produces lower quality image while ray casting using shaders is significantly

faster than raycasting using CUDA.

vi

Abbreviations

CPU - Central Processing Unit
CT - Computed Tomography
CUDA - Compute Unified Device Architecture
GPU - Graphics Processing Unit
FPS - Frames per Second
MRI - Magnetic Resonance Imaging
SoC - System on Chip

vii

Summary

Chapter 1 Introduction sets the goals of the project and introduces the technical concepts
used in the project. The goal of the dissertation was to develop a volume renderer that runs
at interactive speeds on a mobile device architecture using modern OpenGL ES and GPGPU
through CUDA programming. Chapter 2 Previous Work presents the current state of the
art algorithms used in volume rendering for mobile devices. State of the art research uses
both ray casting and texture based algorithms but need a workaround when representing a 3D
texture with the outdated OpenGL ES 2.0 API which does not support 3D textures. An expo-
sition of the various bottlenecks in the graphics pipeline is presented to put in perspective the
ways of optimising the pipeline. Four different implementations of volume rendering were
implemented in the project as described in Chapter 4 Implementation. Namely, ray casting
using shaders, ray casting using CUDA, single-threaded texture based and multi-threaded
texture based. Chapter 3 Experiments describes the tests that were carried out before the
results of the experiments are presented. The implementation of the application is directed
by the eventual testing rather than the other way around. Chapter 5 Results and Evaluation

shows the visual output of the four different rendering methods used in the application as
well as the performance tests for those methods. Evaluation on those results is also pre-
sented. Ray casting produces the best visual output while single-threaded texture based is
the fastest. It was shown that the CUDA implementation performs significantly worse than
its shader based equivalent.

viii

Contents

Acknowledgments iv

Abstract v

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1
1.1 Initial Goals . 1
1.2 What is Volume Rendering? . 2
1.3 Volume Rendering Concepts . 3

1.3.1 Ray Casting Based Volume Rendering 4
1.3.2 Texture Based Volume Rendering 6

1.4 Nvidia Shield Hardware Architecture . 9
1.4.1 Performance per Watt . 10
1.4.2 Quad Warp Scheduler . 10

1.5 Memory system . 12
1.6 CUDA Programming . 13

1.6.1 CUDA Programming Model . 13
1.6.2 Memory Hierarchy . 14
1.6.3 Disadvantages of Using CUDA on the Shield 16

Chapter 2 Previous Work 18

Chapter 3 Experiments 23

ix

Chapter 4 Implementation 28
4.1 High Level Overview . 28

4.1.1 Platform Dependent Code . 28
4.1.2 Platform Independent Code . 29

4.2 Ray Casting Using Shaders . 30
4.3 Ray Casting Using CUDA . 31
4.4 Textured Based Single-threaded . 32
4.5 Texture Based Multi-threaded . 36

Chapter 5 Results and Evaluation 37
5.1 Visual Appearance . 37
5.2 Performance Tests . 42

5.2.1 Windows . 42
5.2.2 Android . 42

5.3 Evaluation . 43

Chapter 6 Conclusion 49

Bibliography 50

x

List of Tables

3.1 The specifications used for testing on the desktop and mobile versions . . . 25
3.2 The volumes used in the project . 27

5.1 Windows, CT Knee , 250 samples . 43
5.2 Windows, CT Knee , 500 samples . 43
5.3 Windows, Sphere, 250 samples . 44
5.4 Windows, Sphere, 500 samples . 44
5.5 Android, CT Knee , 250 samples . 45
5.6 Android, Sphere , 250 samples . 45
5.7 Multithreading: Windows, CT Knee, 250 samples 46

xi

List of Figures

1.1 Ray casting volume rendering . 5
1.2 Texture based volume rendering pipeline 6
1.3 Slicing the volume from the current viewpoint. There can be a minimum of

3 vertices and a maximum of 6. 7
1.4 Triangle fan. triangle are made by using the starting vertex and each subse-

quent two triangles: {v0, v1, v2}, {v0, v2, v3}... {v0, v7, v8} 8
1.5 Kepler GPU in the Tegra K1 Processor . 11
1.6 Kepler Memory Hierarchy . 12
1.7 Each block within the grid can be identified by a one-dimensional, two-

dimensional, or three-dimensional index accessible within the kernel 15
1.8 Memory Hierarchy . 16

4.1 Architectural overview . 29
4.2 Three ways of getting the minimum and maximum points 33
4.3 Converting from uvt to Cartesian coordinates 34
4.4 Percentage spent in the proxy generation loop 36

5.1 Comparison of ray traced using shaders vs CUDA with 250 samples 39
5.2 Comparison of ray traced using shaders vs CUDA with 500 samples 40
5.3 Comparison of textured based with 250 and 500 samples 41
5.4 Using more opaque transfer function . 42
5.5 Performance decrease of the shader versus the CUDA implementation when

changing from 250 to 500 samples . 47
5.6 Performance difference of ray casting using shaders over CUDA 48

xii

Chapter 1

Introduction

1.1 Initial Goals

It is helpful to present the concrete goals of the dissertation to get a perspective of the project
scope. The goals will also serve as a success criteria at the end of the project.

• Develop a volume renderer that will run on mobile devices at interactive speeds.

• Optimise the application to suit the system on chip (SoC) architecture of modern mo-
bile devices.

• Test the suitability of ray casting volume rendering against texture based volume ren-
dering.

• Test the suitability of ray casting volume rendering using CUDA on a mobile device
with CUDA capabilities.

Volume rendering techniques are developed with a powerful desktop setup in mind so in or-
der to test the suitability of existing techniques on a mobile device it was necessary to develop
the application cross-platform for a desktop and for a mobile environment simultaneously in
order to test the relative performance difference of each technique.

1

1.2 What is Volume Rendering?

Volume Rendering is the representation and visualisation of three-dimensional arrays of data
representing spatial volumes. [DCH88] Volume rendering has found many uses in visuali-
sation of data that is difficult to either gather or model with geometric primitives. [Fer04]
Among notable example of the use of volume rendering include the generation of volumes
by imaging a series of cross sections using Computed tomography (CT) and magnetic res-
onance (MR) scanners in medicine and visual effects which are volumetric in nature like
fluids, clouds or fire.
The three dimensional nature means that visualising the dataset involves careful choice on
how to map the data on a two dimensional surface. It is important to be able to view the data
from different viewpoints and to shade based on the density and opacity values1 in order
to extract the features and surfaces within. Much of current research in volume rendering
is concerned with the automatic extraction of such features. Instead, this dissertation fo-
cuses on optimisation in volume rendering as it has been traditionally been recognised as
computationally expensive. Recent advances software techniques and especially in the hard-
ware capabilities of modern graphical processing units (GPU) means that volume rendering
has become a more viable choice in many circumstances in real-time rendering where the
traditional mesh based approach to rendering would have been the only choice in the past.
The hardware of mobile devices lacks in power so it would be several years before current
techniques in real time volume rendering can be effectively applied there. Interactive 3D
rendering on mobile devices is mainly constrained by limited power and memory capacity.
A class of volume rendering techniques called isosurface extraction involve imposing geo-
metric structures where intermediate geometric representation of a surface is extracted first
and then a conventional rendering approach is used to render the geometric primitives. The
volume data is represented in a discrete binary form where a data element (or voxel) is either
present or not. A disadvantage of this technique is the introduction of false positives artefacts
into the final image as its nature involves intersecting geometric objects into the volume data
whose edges may not necessarily intersect the data items in the volume. [WW92]
On the other hand, ray casting is a technique that attempts to generate an output image from
a volume of continuous data values from 0.0 to 1.0 denoting the opacity2 of the voxel. A

1more on those terms later
2in the context of graphics processing the term transparency is the opposite of opacity. In most cases when

2

ray is cast from the image plane and the values that it intersected are interpolated using a
transfer function. It is a function which determines the mapping between the 3D volume
space to the 2D image plane for each ray. The sampling rate is the measure of separation
between successive contributing voxels. Non-uniform sampling can be achieved by defining
a density property over distinct regions of the volume. The density describes the degree of
compactness of the voxels. For example, sparsely populated regions or regions with empty
space typically found at the front and back of the volume can have low density so they can be
omitted from processing provided an algorithm is integrated to detect such empty regions.
A single voxel can be associated with more than just transparency. Depending on the desired
image quality several other properties can be introduced such as colour, normal (facing di-
rection), emissive, reflective and diffuse properties. [WW92]. Fitting geometric isosurfaces
is known as indirect volume rendering whereas the use of ray casting is known as direct vol-
ume rendering because there is no explicit step to extract geometric surfaces as first proposed
by [Lev88]. Due to the non-binary classification, small or poorly defined features are not lost
.

1.3 Volume Rendering Concepts

The transport equation for volume rendering is given by: [Lev88]

Cλ(x) =
n∑
k=0

cλ(x+ rk)α(x+ rk)
n∏

l=k+1

(1− α(x+ r1)) (1.1)

where λ is a wavelength constant, Cλ(x) is the final colour at position x, cλ(x + rk) is the
colour of the kth sample at position x + rk inside the volume, and α(x + rk) is the opacity
at position x + rk. The equation neglects illumination. It computes the final colour by
composing colour and opacities along a line.
The way the equation work is that for any given sample x+rk along the line – its contribution
to the final colour will be higher than the remaining samples if it has higher opacity and the
opacities of the remaining samples along the line are smaller. Inversely, if the remaining
opacities along the line are higher than the current sample then the current sample will have

saying ”the opacity value of” is the same as saying ”the transparency value of”

3

less of a contribution.

1.3.1 Ray Casting Based Volume Rendering

This project implements a ray casting approach and a texture based to volume rendering.
Ray casting is the process of generating a ray vector from a point in a certain direction. In
the context of volume rendering, a ray is cast from the viewpoint of the centre of the camera
towards the volume. The volume itself is enclosed in a bounding box which denotes the
boundaries of the 3D texture that represents the volume. Typically, a bounding box with
dimensions of −1 to 1 along the three primary axis is used.
The 3D volume stored in the host computer is loaded into RAM. It is usually stored in a
specific format such as .raw or .pvm which determines how the data is laid out inside of
the file. The 3D volume is written to a buffer and loaded onto the GPU only once at the
initialisation stage of the application. Depending on the complexity of the implementation,
additional data structures such as an octree may be loaded on the GPU and updated frequently
to reflect changes in the viewpoint. The transfer function is usually stored in texture memory
in the GPU. Depending on the dimension of the transfer function, it can be stored as a 1D, 2D
or 3D texture. The user can also change the transfer function at runtime to render the volume
differently. Shaders are created to to represent the algorithm that is to run the GPU. Depth
testing and culling are enabled. The volume is traversed with ray casting on each frame of
the application after initialisation.
Conceptually, there are four stages to the basic ray casting algorithm as illustrated in Fig-
ure 1.1. First, a ray is cast for each pixel of the screen. For each ray, the bounding volume
is checked for intersection at this stage. Secondly, equidistant sample points are generated
between the minimum and the maximum point of where the bounding box was intersected.
Sample points are located between voxels so trilinear interpolation is applied using the neigh-
bouring voxels. Thirdly, each sample point serves as a lookup into a transfer function to pro-
duce a colour value for that particular point in the volume. The shading of each sample can
be more complicated such as applying local illumination using the gradient of the sample
or using a 2D transfer function. And finally, the samples are composited in either front-to-
back or back-to-front order using the opacity of each sample before the opacity and colour
is supplied to the transport equation.

4

Figure 1.1: Ray casting volume rendering

Algorithm 1 illustrates how the rendering equation (1.1) is solved by ray casting.
Algorithm 1: Ray Casting

1 def raycastVR(pixelPos, eyePos, maxRaySteps, rayStepSize, volume,
transferFunction)

2 begin
3 finalColor← black
4 currPos← pixelPos
5 direction← normalise(currPos - eyePos)
6 accumAbsorption← 0
7 for i← 0 to maxRaySteps:
8 currColor← black
9 textureCoord← currPos transformed into texture space

10 density← sample(volume, textureCoord)
11 currColor← sample(transferFunction, density)
12 opacity← currColor.alpha
13 if (accumAbsorption + opacity) higher than 1.0:
14 finalColor = finalColor + currColor * (1.0 - accumAbsorption)
15 else:
16 finalColor = finalColor + currColor * opacity
17 accumAbsorption = accumAbsorption + opacity
18 currPos = currPos + (direction * rayStepSize)
19 if not intersect(currPos, bounding box) or accumAbsorption higher than 1.0:
20 break

21 return finalColor

5

1.3.2 Texture Based Volume Rendering

The end goal in texture based volume rendering is the same as when using ray casting:
render the volume from the current viewpoint. This is achieved differently by generating
proxy planes that slice the volume rather than shooting a ray through the volume for each
pixel. Each of the proxy planes represents a 2D slice of the volume. All the proxy planes are
blended using the transport function to create the final picture on the screen.
Figure 1.2 illustrates the conceptual stages involved in a texture based approach.[fer] The

Figure 1.2: Texture based volume rendering pipeline

initialisation stage is the same as in the ray casting approach. The update stage involves the
update and render loop of the application. Every time the viewing parameters change, the
proxy geometry has to be recomputed and reloaded onto the GPU. It consists of a set of
polygons usually stored as triangles or as is the case in my implementation – triangle fans.
A triangle fan (Figure 1.4) is easy to use to represent a proxy plane as the algorithm that
generates a proxy plane relies on a centre point and projecting outwards towards the edges
of the bounding volume to generate the vertices of the proxy plane. The proxy geometry
slices through the volume perpendicular to the viewing direction as shown in Figure 1.3 A

6

proxy polygon is computed by first by first projecting a plane perpendicular to the viewing
plane. Then this plane is intersected with the edges of the volume bounding box to create
the vertices of the polygon. Those vertices are sorted in a clockwise or counterclockwise
direction around the centre. Sorting is required in order to create the correct buffer for the
GPU. In the draw stage, setting up the rendering stage involves binding the buffer with the
proxy geometry to the GPU. Lighting and culling and depth buffering are disabled and the
alpha blend function is setup according to equation (1.1).
Each vertex of a proxy plane represents the texture coordinate inside the volume texture. All
the proxy planes are then blended in back-to-front order.
The sampling rate determines how many proxy planes will represent the volume. It is de-
termined by the resolution of the volume, the viewing angle and the maximum number of
samples allowed. Usually, texture based approaches produce lower visual fidelity than ray
casting when the sampling rate is the same thus a higher sampling rate is desired.

Figure 1.3: Slicing the volume from the current viewpoint. There can be a minimum of 3
vertices and a maximum of 6.

For correct behaviour the proxy planes used for slicing have to be view-aligned. Algorithm
2 provides a high-level explanation of how to compute the proxy geometry in view space. It

7

Figure 1.4: Triangle fan. triangle are made by using the starting vertex and each subsequent
two triangles: {v0, v1, v2}, {v0, v2, v3}... {v0, v7, v8}

transforms the vertices of the bounding box from object space to view space coordinates.
Algorithm 2: Geometry generation for textured based volume rendering

1 bbVerticesView← verticesLocal * modelViewMatrix /*bounding box vertices*/
2 bbEdgesView← edgesLocal * modelViewMatrix /*bounding box edges*/
3 (min,max)← compute min and max z coordinates of bbVerticesView
4 distanceSample← (max - min) / maxSamplingPts
5 for each sample in back-to-front order:
6 intersectionPtsProxy← get intersections with bbEdgesView
7 centreProxy← average the points in intersectionPtsProxy
8 sortedProxy← sort points counterclockwise
9 triangleFanProxy← tesselate sortedProxy

10 vertexBuffer← add triangleFanProxy

Line 3 in the algorithm is somewhat ambiguous. It does not specify whether the min max z

coordinates are supposed to be of the vertices themselves or the closest and furthest points
of the cube relative the view point. In the implementation section, a discussion of both
approaches is given. Line 4 makes a simplification for the total number of sampling points.
The algorithm does not account for the spacing between the voxels and assumes a constant

8

spacing to ease testing. This constraint has the implication that volumes of different sizes
will essentially be represented equally within the same bounding box constraints.
The most significant bottleneck in texture slicing is rasterization. The rasterizer produces
many fragments for each the proxy plane. The sampling rate greatly influences the load
on the rasterizer. The higher it is the higher the number of proxy planes generated. Also
transparent proxy geometry cannot leverage early depth culling to reduce the number of
fragments produced.
Another possible bottleneck is the generation of the proxy planes. Assuming the viewing
angle relative to the volume changes on each single frame then all the proxy geometry has to
be recomputed anew. For example, if there are 1000 sampling points then each of the steps
in Algorithm 2 has to be computed 1000 times.

1.4 Nvidia Shield Hardware Architecture

The Shield boosts a system-on-chip processor(SoC) with the Tegra K1 mobile processor
incorporating the powerful Nvidia Kepler GPU architecture [Nvi14a]. The CPU is based on
the ARMv8 architecture and the Kepler GPU has 192 CUDA cores. According to Nvidia,
the Tegra K1 processor delivers performance comparable to that of PS3 and XBOX 360.
The Kepler architecture delivers up to three times the performance per watt compared to its
predecessor Fermi. [Nvi12] There are several features that make the Kepler architecture get
more GPU utilisation without the need for higher clock speeds.

Dynamic Parallelism allows the GPU to generate new tasks dynamically without the
scheduling and control of the CPU. This allows larger portions of the application to run
entirely on the GPU.

HyperQ is a feature which enables multiple CPUs to launch work on a single GPU si-
multaneously reducing CPU idle time. It increases the total number of connections between
the host CPU and the GPU, allowing 32 hardware-managed connections compared to only
a single one on the Fermi architecture. It allows multiple CUDA streams, threads within a
process or multiple processes to run separately at the same time. Previously, applications
encountered false synchronisation across tasks because they were serialised on the single
connection.

9

Grid Management Unit (GMU) is the dispatch and control system which manages and
priorities grids to be executed on the GPU. A grid is an array of result blocks where each
block consists of hardware work threads. [LNOM08] It can pause dispatching grids and
queue pending suspended grids until they are ready to execute thus providing the flexibility
needed to enable Dynamic Parallelism.
The Kepler GPU in the Tegra K1 processor is identical to the Kepler architecture used in
high-end systems. It includes optimisations specifically targeting mobile systems with em-
phasis on conserving power. [Nvi12]. The highest-end Kepler GPUs consist of up to 4992
CUDA cores and consume up to 300W [Nvi14b] whereas the Kepler in the Tegra K1 consists
of 192 CUDA cores and consumes less than 2W. The logical organisation of the hardware
can be seen in Figure 1.5. The Tegra K1 Kepler consists of one Graphics Processing Clus-
ters (GPC), one Streaming Multiprocessor (SMX) and one memory interface. The high-end
counterpart consists of four GPCs, eight SMX and four memory controllers.
A SMX unit features 192 fully-pipelined floating-point and integer arithmetic logic units.
It has IEEE754 compliant single- and double-precision arithmetic with fused multiply-add
(FMA) operations. The special function unit (SFU) is used for fast approximate transcen-
dental operations like square root and sine. There are eight times the number of SFUs in
Kepler compared to the Fermi architecture.

1.4.1 Performance per Watt

The design philosophy focuses on consuming less power and generating less heat than its
predecessor. One way of achieving this was to use the primary GPU clock rate within the
SMX unit instead of the twice as fast shader clock. Running at higher clock rates allows
more throughput with fewer copies of the performed by the execution units. This is an area
optimisation but the added clocking logic means the cores require more power and dissipate
more heat. Nvidia chose to optimise for power at the expense of area cost by increasing the
number of processing cores running at lower clock speed.

1.4.2 Quad Warp Scheduler

The SMX schedules threads in groups of 32 parallel threads called warps. Four warps can be
issued and executed concurrently and two independent instructions per warp can be selected
each cycle. To optimise the warp scheduler, there is hardware logic to register scoreboarding

10

Figure 1.5: Kepler GPU in the Tegra K1 Processor

for operations with long latencies like texture read and write. Scoreboarding is a term used to
describe dynamically scheduling instructions so they can be performed out-of-order.[Tho65]
The scoreboard monitors waiting instructions to be dispatched and once all source operands
are available it dispatches the instruction.
Another optimisation is scheduling on a inter-warp level and thread block level. The latter is
performed by the ”PolyMorph Engine 2.0” shown in Figure 1.5. Improving from the previous
architecture, Kepler replaces the complex hardware stage which prevents data hazards with a
simple hardware block that extract the pre-determined instruction latency information which
is then used to mask out warps for eligibility at the inter-warp scheduling level. Most of the
work is left to the compiler to determine upfront the execution readiness of each instruction

11

and encode the information in the instruction.

1.5 Memory system

A diagram of the Kepler memory system can be seen in Figure 1.6. Each SMX has 64KB of
on-chip memory that includes the L1 cache and the Shared Memory with configurable splits
as 16KB/48KB, 32KB/32KB or 48KB/16KB. The bandwidth of the shared memory is 256B
per core clock. The read-only data cache is used for data that is known to be constant for the
duration of a function. The cache is directly accessible for general load operations. It lessens
the working set footprint of the Shared/L1 cache path. It supports full speed unaligned mem-
ory access patterns. The use of the read-only cache can be managed by the compiler or the
programmer through the ”const retrict” keyword. The L2 cache has 1536KB of memory. In
the high-end Kepler architecture, the L2 cache serves as unification point between the SMXs
on the GPU by providing load, store and texture requests. The GPU architecture supports

Figure 1.6: Kepler Memory Hierarchy

12

the DX11.2, OpenGL 4.4 and CUDA 6.0 APIs.

1.6 CUDA Programming

CUDA (Compute Unified Device Architecture) is a parallel programming platform cre-
ated by Nvidia and it is available in most of today’s Nvidia GPUs. CUDA allows gen-
eral purpose programming to utilise the power of the graphics processor and exploit its
massively-parallel architecture to perform computational tasks which lend themselves for
parallelization.[Nvi08a]
The programmable GPU has evolved into a highly parallel, multithreaded processor with
very high computational horsepower.[Nvi08b] It specialises in compute-intensive, parallel
tasks such as graphics rendering. The memory bandwidth of a GPU is many times higher
than that of a CPU. For example, an Intel processor from the Ivy Bridge microarchitecture
supports a theoretical memory bandwidth of 60 GB/s and Nvidia’s GeForce 780 Ti has a
theoretical memory bandwidth of 350 GB/s. A GPU is designed for data processing rather
than data caching and flow control. Both volume ray casting and texture-based volume ren-
dering are intensive data-parallel computations with high ratio of arithmetic operations over
memory operations. There is lower requirement for sophisticated flow control hence mem-
ory latency can be hidden with little to no data caching by the sheer amount of calculations at
once. Data-parallel processing maps data elements to parallel processing threads. [Nvi08b]
In traditional 3D rendering, large sets of vertices are mapped to parallel threads.

1.6.1 CUDA Programming Model

The CUDA programming model was introduced in 2006 and allows developers to create
general purpose applications that run on the GPU. It comes in an environment which uses
the C programming language. It is designed to overcome the challenge of developing ap-
plications which transparently scale to leverage the increasing number of processing cores
while maintaining a low learning curve for programmers familiar with the C. There are three
key concepts which are abstracted by the programming model: thread groups, shared mem-
ory and barrier synchronisation. These abstractions provide fine-grained data parallelism
and thread parallelism nested within task parallelism. The programmer is guided into sub-
dividing the problem into sub-problems that can be solved in isolation at once by blocks

13

of threads. Each block of threads can be scheduled on any of the available multiprocessors
within the GPU so that a compiled CUDA program can run on GPUs with differing number
of cores. For example, the Quadro K2000 GPU and the Tegra K1 GPU used for testing in
this project have 384 and 192 CUDA cores respectively but the application itself has the
same code regardless of the number of cores. This scalability brought by the programming
model allows the GPU as a viable option in a wide market range.
The thread hierarchy is split into threads, blocks and grids. The thread is a set of instructions
which run in isolation of other threads. The thread block contains threads which are expected
to reside on the same processor core within the GPU and must share the memory resources of
that core. Currently, a thread block can contain up to 1024 threads. Blocks are organised into
grids where each grid is logically mapped to a single streaming multiprocessor within the
GPU. The programmer does not specify the number of grids. Instead they are automatically
scheduled by the hardware based on the specified number of blocks and threads and the
available number of hardware streaming multiprocessors.
Figure 1.7 illustrates the logical hierarchy. A kernel is a C like function that will execute
a CUDA thread N number of times where N is the total number of threads scheduled to
be run. For example, a thread block size of 16x16 withing a grid of 32x32 will result in
4096 threads within the grid. If there are 8 grids then the total number of unique threads
running concurrently will be 32768. Typically in ray casting volume rendering, each pixel
of the screen is assigned a separate thread. That means, the screen width and height are used
to calculate the grid and block sizes. Thread blocks execute independently. That means, it
must be possible to execute them in any order either in parallel or in series depending on
the synchronisation imposed. This requirement allows thread blocks to be scheduled in any
order across the available cores.

1.6.2 Memory Hierarchy

Thread within a block can communicate by sharing data through shared memory and syn-
chronising execution to avoid race conditions. Synchronisation points are invoked at places
in the kernel where shared memory is accessed by calling the CUDA function syncthreads().
There are different memory spaces within the CUDA programming model that a single thread
can access. How fast a memory access is depends on the type of memory which designates
the locality of the data accessed. Figure 1.8 illustrates the memory hierarchy. Each thread

14

Figure 1.7: Each block within the grid can be identified by a one-dimensional, two-
dimensional, or three-dimensional index accessible within the kernel

has a private local memory. Each thread block has a shared memory available to all threads
of the block. Finally, global memory is shared by all threads within the kernel. One can
assign read-only global memory which is called constant memory. It is cached so access to
it is fast. Per-block shared memory is persistent only within a single kernel launch whereas
global memory is persistent across the kernel launches.
CUDA threads execute on a physically separate device (i.e the GPU) that acts as a copro-
cessor to the host processor (i.e the CPU) running the C program. While the CUDA kernels
execute on the GPU, the application that calls the kernels runs on the CPU. The CUDA
programming model assumes that the host and the device maintain their own separate mem-
ory spaces in RAM. The host manages allocation, deallocation of device memory and data
transfer between host and device memory.

15

Figure 1.8: Memory Hierarchy

1.6.3 Disadvantages of Using CUDA on the Shield

Specific to this project, the biggest disadvantage of using CUDA was the limited support
of the technology for the Tegra K1 processor. Developing CUDA for the Shield requires
a Linux environment because the libraries that are needed to compile the CUDA code for
the Shield are not available on Windows. Moreover, the only programming environment
available is Eclipse CDT which has been known to have serious bugs that hamper productive
development [Ecl10].
My personal opinion on the environment is that it is barely functional. I found that sometimes
it would cache an old version of my project and compile that instead of what I currently

16

trying to build. That brought about confusion on whether I am testing my current project
version or an old one. In order for me to verify what version I am testing, I had to place
version number in print statement in the code that I changed everytime I tried to compile.
Sometimes the program will be packaged without the runtime library and once the program
runs it will complain that it cannot find the library, prompting another attempt at compiling
the program.
The text editor does not give suggestion on syntax errors and available resources, further
slowing down the coding process.
Eclipse would oftentimes lose connection to the Shield through the USB cable, rendering it
impossible to upload a new build of the program onto the device. The only reliable tempo-
rary fix for this problem that I found was to restart the operating system. The CUDA code
has to be compiled manually in the command line manually outside of Eclipse separate of
the compilation of the application code. I would not recommend to develop CUDA on the
Shield until the development kit for the device improves to include a proper environment that
supports CUDA development.

17

Chapter 2

Previous Work

One of the reasons I chose to investigate graphic performance on mobile devices was the
introduction of OpenGL ES 3.0 [Smi12] in 2013 to the latest iterations of mobile devices.
The ”ES” stands for Embedded Systems denoting that the API was designed for devices like
smartphones, video game consoles and tablets. Previous research on volume rendering on
mobile devices: [NJOS12], [MF12], [RA12], [MW08] dated back from 2012 at the latest.
The implementations in those papers use the older OpenGL ES 2.0 that lacks some of the
capabilities of modern OpenGL such as 3D texture support which is used extensively in
volume rendering.
[NJOS12] compare several methods of direct volume rendering1 with the goal of real-time
interactivity on mobile devices using OpenGL 2.0. Their proposal comes from the need to
have energy efficient applications by minimising the work done in the shaders. The algorithm
is based on 2D texture slicing and their reason for not going with 3D texture slicing instead
is twofold. 3D texture were not supported by then current OpenGL and it requires the use of
proxy geometry that needs to be recomputed everytime the view angle changes.
The volumetric data is represented by placing each image slice in the 3D volume into a 2D
mosaic configuration as one big 2D texture image as implemented in [CSK+11] The solution
for rendering the model is a texture slicing approach where the set of slices are projected
perpendicular to the view direction. Equation(1.1) is computed by ordering composing the
slices in a front-to-back order in the framebuffer using alpha-blending. The stack of slices
is computed only once and remains static thereon. Hence, it can be cached in the GPU’s

1ray casting is a type of direct volume rendering

18

memory. In order to render the model the front face of the cube must remain perpendicular
to the view direction and the slices are view-aligned. To rotate the volume it is the texture
coordinates that are updated. Without rotation, the 3D texture coordinates (s, t, r) are defined
as follows:

(s, t, r) = (±1

2

d

X
,±1

2

d

Y
,±1

2

d

Z
) + (

1

2
,
1

2
,
1

2
) (2.1)

where (X, Y, Z) are the dimensions of the volume and d is the diagonal of the volume.
The implementation relies on blending to be enabled. Equation(1.1) is computed by a blend-
ing factor and the OpenGL blending function:
glBlendFuncSeparate(GL ONE MINUS DST ALPHA, GL ONE, GL ONE, GL ONE)

The vertex shader is provided with the texture transformation matrix according to the current
view and the 3D texture coordinate is multiplied by the matrix to generate the rotated vertex
texture coordinate. In the fragment shader, the mosaic texture is sampled according to the
3D texture coordinates. The resulting sample is used as a lookup into the transfer function
texture. Fragments lying outside the volume are those with texture coordinates lesser than 0
and higher than 1. The disgard function is very costly in OpenGL 2.0. It is used to remove
fragments from computation. Instead, an identity value of zero is assigned to the alpha of the
current fragment ensuring that the blending function will not modify the framebuffer. The
researchers compared their solution to the ray casting solution as described in [CSK+11].
They made several conclusions based on the result gathered. The performance linearly de-
pends on the number of fragments processed. The texture slicing approach nearly doubles
the performance obtained by the ray casting solution but the at the cost of rendering quality.
The researcher believe that their solution will scale better as the number of processing cores
in mobile GPUs increase than the ray-casting approach.
[MF12] implemented ray-based volume renderer for mobile devices using WebGL 2.0. We-
bGL is a Javascript wrapper for OpenGL ES that runs cross-platform on web browser. Their
implementation is a single-pass rendering pipeline that is able to handle dynamic transfer
functions. The volume renderer was designed with the purpose of visualising medical im-
ages and has a transfer function widget that allows the user to change the values dynamically.
They claim to achieve real-time visualisation of high-resolution volumes. They compare
their implementation against a multi-pass ray-based volume renderer [KW03] that was writ-
ten to target the out dated fixed-function OpenGL. The results of their experiments show that
their algorithm significantly outperforms the multi-pass ray caster by a factor of two. They

19

contribute this speedup due to the significantly less texture fetches and efficient traversal.
The efficiency of the algorithm mainly comes from the simplicity of the fragment shader
which does not do any illumination. There is a single optimisation that checks the current
ray against the bounding box enclosing the unit cube of the volume. A limitation that only
allowed them to do hundred loop iterations in the fragment shader meant they could not
implement more sophisticated shading.
[RV06] discuss the different bottlenecks present in the GPU The slowest part of the graph-
ics pipeline is the bus from system memory to the graphics card memory. A smartphone
GPU shares the same memory bus as the other components on the same chip thus the same
constraint is very applicable to mobile devices but I would have to do further testing to con-
clude that memory transfer is the slowest part of the graphics pipeline. Triangle throughput

is a measure of the speed of triangle assembly in the vertex shading stage of the graphics
pipeline. It is mainly limited by the complexity of the vertex shader and the triangle setup
phase which constitutes the steps taken to prepare the geometry2. Rasterization is the process
of converting the scene geometry to pixels. In volume rendering, there is a lot of rasterization
performed because the dataset is made up of slices of two dimensional textures which have
to be mapped to the screen. A single texture slice is accessed multiple times thus techniques
such as space-skipping are used to reduce the area that needs to be traversed. One of the most
time consuming operations performed is texture lookup. The texture cache size is a limiting
factor thus lower resolution textures may be used that fit into memory but that may reduce
the resulting image quality. The fragment shader performs operations on the pixels that were
previously rasterized. Simple fragment programs such as one that performs only a texture
lookup, generally do not become a bottleneck but complex operations such as ligthing and
multi-dimensional transfer functions can reduce the framerate. A framework that addresses
those factors should be expected to perform well.
The core algorithm aims to exploit skipping parts of the volume which are void. In medical
imaging for example, only 4% to 40% of the volume is occupied by regions of interest.
The novelty of the algorithm comes from the space-skipping division in two stages: course
division using bricking and a finer one using octrees. The steps are based on an analysis of
the bottlenecks encountered in the pipeline. Bricking is the process of chopping the volume
into texture bricks. The bricks area loaded into memory to serve as data for the volume
rendering algorithm. The bricks address the bus and texture size bottlenecks.

2or in the case of volume rendering, the volumetric dataset for vertex processing

20

The bricks contain the original scalar values before applying the transfer function. This
allows to change the transfer function on the fly. As mentioned before, the transfer function is
the function that determines how the voxels along the casted ray are interpolated to determine
the final colour of the pixel. Data in adjacent bricks overlaps by one pixel in every direction
for correct interpolation of the transfer function. For bricks of b3 and an overlap of n voxels,
the memory overhead is (3n/b)× 100%.
Bricks are loaded into video memory as 3D textures. One of the reasons for specifically
targeting OpenGL ES 3.0 is because it supports 3D textures whereas version 2.0 does not.
There is a requirement that textures size be the power of 2 so if the brick does not divide
evenly into brick dimensions, partially empty bricks will be added in every direction. In this
implementation, the bricks are chosen as small as possible to improve the chance of bricks
being completely void after applying the transfer function which is beneficial. On the other
hand, smaller bricks introduce larger overhead due to the overlap needed for interpolation.
The optimal brick size is defined depending on the available texture memory and nature of
the dataset (e.g density).
Octree generation is then performed within each brick. An Octree is a spatial data structure
which recursively divides the dataset into subtrees to speed up traversal and reduce the ras-
terization bottleneck. [Mea82] It is ideal for datasets which do not need to be recomputed on
a regular basis.
Every octree node corresponds to a cuboid part of the voxel volume in total of eight parts.
The octree is generated and traversed on the CPU. Its purpose is to reduce the workload
on the GPU. Let a cell be defined as the a cube whose eight sides represent the regions of
the overlapping voxels. For each element of the cell, if the a value representing the colour
contribution is 0 after applying the transfer function then the cell is completely transparent.
If all the elements of a cell are 0 then the octree of the cell is void and not send to the GPU
for further processing. Each node has a value r of the ratio of visible to total data within the
cube (r = 1 means completely filled). This ratio is calculated by averaging the ratios of the
children of the current node. If the ratio is 0 then the the node is not drawn. If the ratio is
above a certain threshold then the node is completely drawn.
Between the two stages, early-ray termination is performed to each brick. To perform this
action, the volume has to be traversed in front-to-back order. The two equations which

21

determine when to terminate the ray are

Ci+1 = (1− Ai)× ai × ci + Ci (2.2)

and
Ai+1 = (1− Ai)× ai + Ai (2.3)

Where A, C denote the opacity and colour of the accumulated values along the ray. a and c
denote the opacity and colour of applying the transfer function on the current voxel. When
Ai approximates 1, the ray is terminated.

22

Chapter 3

Experiments

The experiments carried out were aimed at analysing the performance and visual quality of
ray casting and texture based volume rendering. To have a baseline for reliable comparison it
was necessary to develop the application for a desktop environment which supports CUDA
as well as for the Shield mobile device. If an algorithm performed poorly than what was
expected consistently across both platforms, it can be concluded that the algorithm or its
implementation is inherently worse. But if an algorithm performed proportionally different
across both platform then it can be concluded that the hardware is the impeding factor. In
total four implementations were developed and tested:

1. Ray casting using shaders

2. Ray casting using CUDA

3. Textured based single-threaded

4. Texture based multi-threaded

The quality of the rendered image was measured purely by observation. The performance
metrics that were measured included the frames per second (FPS).
The reason I chose to implement a texture based multi-threaded approach as well was to test
whether the bottleneck in the application was in the application stage or the rasterization
stage. If the work the CPU is alleviated by multi-threading the generation of the proxy
geometry and the FPS increases while keeping the load on the GPU the same then this would
be an indication that the bottleneck is on the application side.

23

The desktop implementation was used to see how optimisation changes in the code and the
difference in the the performance of the algorithms was represented in relative terms to the
mobile implementation. For example, if Textured based single-threaded was 2.5 times slower
on the Shield and Texture based multi-threaded was still slower but only 1.5 times then this
is an indication of better CPU utilisation.
The hardware specifications [Int13], [qua], [Klu14] of both platforms can be seen in Table
3.1. There are some interesting differences to note. Even though the number of cores is the
same on both platforms, the desktop version can run 8 separate threads simultaneously. This
has implication in the textured based multi-threaded approach as the desktop version will be
able to run twice as many threads which compute the proxy plane generation. The other no-
table difference is the maximum theoretical performance. It is measured in FLOPS (FLoat-
ing point Operations per Second).[Dr.12] It takes into account the available parallelism in
the microprocessor. It is useful to the extent of having an idea of the limits of GPU but it
does not take into account the factors that affect a typical application like memory access,
caching, etc. and other criteria which may vary significantly across different applications.
Special care was taken to ensure that the testing parameters were consistent for the four
implementations on both devices. These include the following:

screen resolution The resolutions tested were the Shield native resolution 1920x1200 and
a lower resolution of 500x500.

camera projection A perspective projection of 45 ◦ field of view.

camera position The camera position was fixed to a position which ensured that most of
the screen space would cover the volume.

bounding box size The bounding box was fixed to 2 units cubed (i.e minimum vertex of
[-1,-1,-1] and a maximum vertex of [1,1,1]) for all volumes.

opacity threshold Fixed at 100%. This is a number which control the maximum allowed
saturation of each pixel. It also has an effect on early ray termination.

24

Parameter Desktop Mobile
Operating System Windows 7 Android 5.0.1
CPU Intel Xeon E3-1240 Tegra K1 ARMv8 Cortex-A15
Clock Speed 3.30 GHz 2.5 GHz
of Cores 4 4
of Threads 8 4
Cache Size 8MB 2MB
Instruction Set 64 bit 64 bit
Memory Bandwidth 21GB/s ?
Max Power Consumption 80W 2W
RAM 16GB 2GB
GPU Nvidia Quadro K2000 Tegra K1 Kepler GPU
CUDA Cores 384 192
Clock Speed 954 MHz 900MHz
Memory Size 2GB GDDR5 2GB shared with CPU
Theoretical Performance 732 GFLOPS 365 GFLOPS
Memory Bandwidth 64GB/s 17GB/s
Max Power Consumption 51W 2W
OpenGL 4.3 4.4
CUDA 6.0 6.0

Table 3.1: The specifications used for testing on the desktop and mobile versions

maximum ray steps/number of slices It is the number of steps permitted before the algo-
rithm is forced to terminate. It is an easy way to control the rendering speed at the expense
of visual quality. For regions of the volume which are mostly or totally void of informa-
tion(i.e close to 0% opacity) then the algorithm will mostly likely terminate due to hitting
this number rather than the maximum opacity in the case of ray casting. When using the
texture based approach, the number is always hit. I chose to factor in the diagonal length
of the bounding box to calculate the number to account for viewing directions that would
generate the longest rays: when the camera direction goes through one of the vertices and

25

the vertex on the opposite side on the diagonal. Hence the formula is:

maxRaySteps = N × diagonal length

axis length
(3.1)

= N ×
√

(−1− 1)2 + (−1− 1)2 + (−1− 1)2 + (−1− 1)2

2
(3.2)

= N × 1.73 (3.3)

where N is the number of rays along one of the axis and the axis length is 2 because the
calculation is made in object space and the length of one of the axis of the bounding box
there is 2 (-1 to 1).

ray step distance/sampling rate It is the distance between each sampling point and the
distance between each proxy plane in the ray casting and the texture based approaches re-
spectively. It is calculated by dividing the diagonal length of the bounding box by the maxi-
mum number of rays.

number of threads The texture based multi-threaded approach parallelises the generation
of the proxy geometry. Each thread is given an equal amount of proxy planes to calculate.
The number of threads was fixed to be the number of cores available on the machine.

CUDA block size The block size is the number threads assigned to a block. With very
little testing I found that allocating the maximum permissible number of 32x32=1024 gives
the best performance. Each thread calculates the transport equation for a single pixel.

CUDA grid size The grid size is the number of blocks per grid. To extract the maximum
level of parallelism the screen size is divided by the block size: block size = 1920/32 ×
1200/32 = 60× 38 = 2280.
The volume was made to spin on its y-axis with constant speed and constant camera position
for 10 seconds for to achieve consistency for each test.
Separately, there were two volumes that were tested as listed in Table. 3.2. The voxel
spacing parameter is ignored to stay consistent with the constant sampling rate. It describes
the spacing between voxels where X is the distance between of the centers of the voxels

26

along the x-dimension, Y is the spacing in the y-dimension, and Z is the spacing in the
z-dimension. [ITK14]. Rendered images of the volumes can be seen in the results section.
An important exclusion was testing of volumes which exceed the available memory space.
The limited 2GB space of the Shield and the sharing of the memory between the CPU and
the GPU means that volumes roughly the size of 500MB would barely fit in memory. The
other 1GB is in use by the operating system and system daemons. In fact, when a volume is
loaded on the Shield GPU it would occupy twice the memory on the same physical memory
due to the shared memory. Usually bricking is the technique used to divide a volume which
fits on the local RAM memory but not the GPU memory. Because of the shared memory,
there isn’t a reason for using bricking with the exception where streaming of the volume
directly from the hard drive is implemented. This would add extra layer of complexity to the
application and so it is out of the scope of the project.

Name Description File Size Resolution [x,y,z] Voxel Spacing [x,y,z]

CT Knee
A CT scan of a human
knee 25 MB [379, 229, 305] [1.0, 1.0, 1.0]

Sphere
A hollow ball with
interesting patterns 32 KB [32, 32, 32] [1.0, 1.0, 1.0]

Table 3.2: The volumes used in the project

27

Chapter 4

Implementation

As mentioned before, a significant effort was made to develop the application on two differ-
ent platforms: Windows and Android. I was supplied with skeleton implementation of a ray
casting volume renderer which I adapted to run on both systems.

4.1 High Level Overview

The application API abstracted the part of the code which were platform independent from
those which were platform dependent. The code in the latter category needed to be devel-
oped separately on both systems. Figure 4.1 illustrates the components of the application.
OpenGL Mathematics (GLM) was used as a helper library to perform the graphics maths cal-
culations. [GLM15] Having two different platform to develop on means there are program
components that have to be developed separately for each platform. Specific to this project:
handling of events, display, loading of assets and performance monitoring were platform
dependent.

4.1.1 Platform Dependent Code

Context/Window Manager

The context manager handles the creation and update of the display. On windows it is im-
plemented using the GLFW library. [GLF15]

28

Figure 4.1: Architectural overview

Asset Management

The asset manager handles loading of files from the filesystem.

Event Handling

The event handler handles incoming events from the user as well as internal events.

Performance Monitoring

The performance monitor abstracts the collection of statistics such as memory usage, frames
per second (FPS), global and local timers. For this project, only FPS and a global timer were
implemented.

4.1.2 Platform Independent Code

Camera Control

The camera class controls how the projection and transformations of the viewpoint.

29

File

The file class represents any loaded file from the filesystem.

Volume

The volume class is a representation of a RAW file which is formatted as the internal repre-
sentation for a 3D volume. It also handles the generation and usage of OpenGL textures to
represent the volume on the GPU.

Transfer Function

The transfer function class is a representation of a Voreen XML transfer function.

Shader Manager

The shader manager handles the creation and usage of OpenGL shader programs.

Renderer

The renderer handles the rendering of the volume. It also abstracts the writing of uniform
variables to the shaders. It has functionality to switch the rendering modes between the four
implementations.

4.2 Ray Casting Using Shaders

The implementation of ray casting uses a single-pass shading. Single-pass means that all the
calculations for a single pixel are made using a single shader program. On the other hand, a
multi-pass volume renderer [KW03] will render front and back faces of a unit cube and rays
are generated using textures rasterized in the first pass as lookups in the fragment shader.
Calculations are made in model space because the sampling rate is specified relative to the
size of the bounding box of the volume. The fragment shader is implemented as in Algorithm
1. One of the current disadvantages of this implementation is it would not render the volume
when the camera is inside of the volume. It relies on all of the vertices of the bounding box
to be infront of the camera even when OpenGL clipping is disabled. In such cases, clipping

30

could be integrated in the fragment shader which checks the position of the camera against
the current pixel z position with a simple subtraction and if the result is negative then the
current pixel is ”moved” to the position of the clip plane.
The vertex shader supplies the interpolated position of the vertices of the bounding box in
model space to the fragment shader. The texture coordinate for the pixel is calculated from
the current position of the sample along the ray. The position is in model space so to convert
it to texture space the following formula is used:

texCoord = (position+ 1.0) ∗ 0.5 (4.1)

giving a number in the range [0,1] assuming that the bounding box is specified between
[-1,-1,-1] to [1,1,1] in model space.
The main reason for using OpenGL ES 3.0 is the native support for 3D textures which was
not available in previous versions of the API. This means the volume texture can be supplied
to the fragment shader in a straightforward manner without resorting to extra layer of com-
plexity which converts 2D coordinates to 3D coordinates in the fragment shader. It is bound
to the OpenGL texture buffer as would be the case in a the standard OpenGL implementa-
tion. Due to limitations of the OpenGL ES 3.0 API, the transfer function is represented a 2D
texture rather a 1D texture as support for the latter does not exist. The second coordinate of
the 2D texture is always of size 1 and when the texture is sampled in the fragment shader,
the second coordinate is always 0.

4.3 Ray Casting Using CUDA

Harnessing the massive computational power of the GPU can be achieved through general
purpose programming as well instead of shaders. The CUDA programming model allows
the developer to apply their skills in C programming.
I adapted the sample CUDA implementation for volume rendering presented by [Nvi15]
into the API I was building. I had to change a portion of the code so it would work on
the Windows and the Android platform. Largely, it is the same as shown in Algorithm 1
with one notable exception. The position of the pixel is calculated based on the block and
thread ids rather than interpolating the vertices which happens automatically in the shader
implementation.

31

Preparing the 3D volume for use in CUDA takes several steps. The volume is loaded into a
file and parsed by the Volume class. At this stage it is only represented as an array on the
host side. The following procedure writes the raw volume from the application side to the
CUDA memory space:

1. on the CUDA side, a pointer v is allocated with cudaMalloc3DArray

2. a pitched pointer is created using cudaMallocPitch [Nvi08c] and associated with
v through the cudaMemcpy3DParms CUDA construct. A pitched pointer ensures
that the memory it is pointing to is padded for irregular memory allocations to avoid
bank conflicts where any two threads access different part of an array that spans mul-
tiple memory banks. cudaMemcpy3DParms is then used to make the actual copy
from host memory to the CUDA shared memory space.

3. A CUDA texture construct is also created. Just like an OpenGL texture buffer
object, the cuda texture is set to linear filtering and texture clamp instead of texture
wrap.

4. Finally, the texture is bound the array v using cudaBindTextureToArray.

On the host, a pixel buffer is created the size of the screen. Crucially,
cudaGraphicsGLRegisterBuffer is used to register the buffer object for access by
CUDA. This way the output of the render kernel in CUDA can write directly to the pixel
buffer allocated by OpenGL instead of writing to host then writing to OpenGL thereby saving
memory bandwidth and time.
The CUDA render kernel does the ray casting calculations for each pixel and writes the
results in the aforementioned pixel buffer. The information in this buffer still needs to be
renderer through the graphics pipeline. For this matter, a very simple shader is invoked
which renders a 2D plane directly without any model, view or projection transformations.
The information in the pixel buffer is unpacked onto a texture buffer object. The fragment
shader is supplied with this object to be draw onto the 2D plane as the final image.

4.4 Textured Based Single-threaded

The texture based algorithm works in view space. Alpha blending is enabled and configured
for back-to-front blending. To achieve this, the OpenGL function glBlendFunc(GLenum

32

(a) vertices (b) view-aligned (c) plane intersection

Figure 4.2: Three ways of getting the minimum and maximum points

sfactor, GLenum dfactor) is called with parameters sfactor=GL SRC ALPHA

and dfactor=GL ONE MINUS SRC ALPHA which translates to

Cdest = Csrc + (1− Asrc)Cnew (4.2)

Adest = Asrc + (1− Asrc)Anew (4.3)

where new corresponds to the current sample. Depth testing is disabled to let OpenGL
correctly apply alpha blending.
The bounding box vertices and edges are transformed into view space. The next step is
to get the minimum and maximum z intersections. There are three interpretations of this
which I implemented and all three produce slightly different results when the volume is
rendered. They are illustrated in Figure 4.2. I decided that intersection 4.2c gave the most
accurate results based on observation of the rendered volume under angle. It is also the
most computationally expensive method as it needs to find the exact intersections on the
planes of the cube. I used the fast Möller-Trumbore algorithm for calculating ray-triangle
intersection [MT05]. The advantage of this algorithm is that it does not need to compute the
plane equation neither dynamic or precomptuted leading to CPU usage and memory savings.
Algorithm 3 shows how the ray-cube intersection is performed. The Möller-Trumbore test
return results in uvt coordinate space which is similar to barycentric coordinates. Lines 8-10
describe how to convert from uvt to 3D Cartesian space. u is the scale factor of the edge
between v1 and v2, v is the scale factor of the edge between v1 and v3 and t is the distance
from the origin to the intersection point. The conditions u ≤ 1, v ≤ 1 and u + v ≤ 1 are
fulfilled by the algorithm.

33

Figure 4.3: Converting from uvt to Cartesian coordinates

34

Algorithm 3: Ray-cube intersection test

1 bool getMinMaxPoints(cube triangles, Out: min, Out: max) begin
2 VEC3 origin = VEC3(0,0,0)
3 VEC3 dir = VEC3(0,0,-1)
4 list intersections;
5 for triangle in cube triangles:
6 VEC3 uvt
7 if intersect(triangle, origin, dir, Out: uvt):
8 VEC3 scaledEdge1 = (triangle.v2 - triangle.v1) * uvt.u
9 VEC3 scaledEdge2 = (triangle.v2 - triangle.v1) * uvt.v

10 VEC3 intersectionPt = triangle.v1 + (scaledEdge1 + scaledEdge2)
11 intersection.add(intersection)

12 if intersections.size not 2:
13 return false
14 distFromView1 = length(intersections[0])
15 distFromView2 = length(intersections[1])
16 if distFromView1 lessthan distFromView2:
17 min = intersections[0]
18 max = intersections[1]

19 else:
20 min = intersections[1]
21 max = intersections[0]

22 return true

The for loop in Algorithm 2 is computationally the most intensive part of the algorithm. For
each sample, the intersections with the edges of the cube are calculated by testing the sample
point against all the edges of the cube. Because the calculation is made in view space the
following assumption can be made which simplifies the test:

there is an intersection if the z coordinate of the sample point lies between the z
coordinates of the two vertices of the edge being tested.

Sorting the points of the proxy plane around the centre involves iterating over all of the points
and using insertion sort. The relation used for the sort algorithm is a lessThan(a, b, centre)

operator which return true if a is smaller than b, false otherwise. It was adapted from [cia14].

35

This algorithm also makes the assumption that all the points lie on the same plane. In the
case of this program, it is the x-y plane of the view.
Each of the generated vertices is written to a vertex buffer object in a triangle fan format and
rendered using a simple 2D texture plane shader (the same way as with the CUDA imple-
mentation). OpenGL takes care of blending the proxy planes as long as they are rendered in
a back-to-front order.

4.5 Texture Based Multi-threaded

Tracing the application side code of the textured based approach with Visual Studio’s per-
formance analyser quickly reveals that it spends 78.8% of its time in the proxy generation
loop as shown in Figure 4.4. The whole loop is embarrassingly parallelisable, meaning that

Figure 4.4: Percentage spent in the proxy generation loop

there is no data dependency whatsoever between any two samples in the loop. The code is
open to be exploited using a multi-core implementation. In order to do so, the loop was split
evenly among a set number of 4 threads. For example, if there are a 1000 proxy planes to
be generated then each thread will compute 250. All the proxy planes are added to a list that
has been resized beforehand to be as big as the number of samples so that each thread can
”slot in” a proxy plane in its position without having to explicitly use mutual exclusion on
the list through a shared lock.
When performing the speed test comparison for the single-thread and the multi-threaded ap-
proaches it was revealed that there is no performance advantage when using multi-threading.
This is an indication that the application side is not the bottleneck in the texture based ap-
proach.

36

Chapter 5

Results and Evaluation

5.1 Visual Appearance

Figures 5.1, 5.2, 5.3 show the volume rendered at 500x500 resolution using the four
different methods. Each volume has its own transfer function that highlight different regions
of the volume and the transfer function is the same across the different methods.
The two volumes display different visual qualities. Although larger in size, the CT Knee
appears less dense than the Sphere volume. This is largely part to how the transfer function
is specified and that is outside of the scope of the project. It controls which regions of the
volume are considered dense by mapping transparency values to the density value stored in
the individual voxels. The colour that is given to a particular density value does not affect
the performance. But most importantly, the application fits volumes of all sizes within the
same bounding box dimensions with the same sampling rate thus the volume size does not
affect performance. Nevertheless, the size of the volume means the volume contains more
information so intricate details,if desired, can be rendered more prominently by tinkering
with the transfer function.
Figure 5.1 illustrates that the type of data itself and the shape of the geometry has an impact
on which algorithm is better suited. The shader implementation produces a sharper, more
contrasted image whereas the CUDA implementation produced a smoother image. Arguably,
the CUDA CT Knee looks more appealing than the shader CT Knee and the reverse is true
in the case of the Sphere. The CT Knee has a transfer function which produces regions with
gradual transition in colours that is more suited to a smoother blending. On the other hand,

37

the transfer function of the Sphere produces regions with sharp transition in colours that is
more suited to sharper rendering. In my opinion, the visual distinction between the both
implementations comes from how CUDA and OpenGL handle linear texture interpolation
with cudaFilterModeLinear and GL LINEAR respectively.
Another interesting observation is that more samples do not necessarily produce better im-
ages. Again, it depends on interpretation and the intended effect. Comparing Figures 5.1and
5.2, using 500 samples on the CT Knee clearly produces a better outline of the knee joint.
Looking at the Sphere, its transparency is lost when using higher samples. The overall
transparency can be regulated by the opacity threshold which is set to 1.0 in all cases for
performance testing purposes. But we can observe that the same effect can be achieved by
lowering the sample rate thus increasing the performance.
The texture based approach in 5.3 produces less dense and arguably lower quality image for
the same number of samples compared to the ray traced approach.

38

(a) CT Knee ray traced (shader) (b) CT Knee ray traced (CUDA)

(c) Sphere ray traced (shader) (d) Sphere ray traced (CUDA)

Figure 5.1: Comparison of ray traced using shaders vs CUDA with 250 samples

39

(a) CT Knee ray traced (shader) (b) CT Knee ray traced (CUDA)

(c) Sphere ray traced (shader) (d) Sphere ray traced (CUDA)

Figure 5.2: Comparison of ray traced using shaders vs CUDA with 500 samples

40

(a) CT Knee 250 samples (b) CT Knee 500 samples

(c) Sphere 250 samples (d) Sphere 500 samples

Figure 5.3: Comparison of textured based with 250 and 500 samples

41

Figure 5.4: Using more opaque transfer function

5.2 Performance Tests

The transfer functions labelled ”TF1” is the one used to produce the images in Figures 5.1,
5.2, 5.3. ”TF2” produces more opaque images and the opacity threshold is hit faster than
in ”TF1”. Output of how the volumes look with their respective ”TF2” can be seen in Fig-
ure 5.4. ”FPS” stands for frames per second.

5.2.1 Windows

Each algorithm was tested with 250 and 500 samples on two different resolutions with two
different transfer functions as shown in Tables 5.1, 5.2, 5.3, 5.4. Note that there are
9.216 times more pixels to be drawn for the 1920x1200 resolution compared to the 500x500
resolution.

5.2.2 Android

Each algorithm was tested with 250 samples on two different resolutions with two different
transfer functions 5.5, 5.6.

42

Algorithm FPS TF1
500x500

FPS TF1
1920x1200

FPS TF2
500x500

FPS TF2
1920x1200

Ray Casting
(Shader) 102 22 184 44

Ray Casting
(CUDA) 39 8 39 8

Texture-Based
Single-threaded 124 28 114 25

Texture-Based
Multi-threaded 123 26 114 25

Table 5.1: Windows, CT Knee , 250 samples

Algorithm FPS TF1
500x500

FPS TF1
1920x1200

FPS TF2
500x500

FPS TF2
1920x1200

Ray Casting
(Shader) 62 14 120 29

Ray Casting
(CUDA) 21 4 21 4

Texture-Based
Single-threaded 62 14 60 13

Texture-Based
Multi-threaded 61 14 60 13

Table 5.2: Windows, CT Knee , 500 samples

5.3 Evaluation

Several observations can be made based on the numbers gathered for the Windows and the
Android version.

The transfer function does not affect the performance in the CUDA implementation.
The transfer function has an effect on early ray termination as it changes the overall trans-
parency of the volume. It would make sense that using TF2 will be faster as it produces more
opaque volume where the opacity threshold will be reached earlier along the ray. But if that
is not the case as illustrated by the results gathered then one of the possible reasons is that
the early ray termination test in the CUDA implementation does not work. The early ray

43

Algorithm FPS TF1
500x500

FPS TF1
1920x1200

FPS TF2
500x500

FPS TF2
1920x1200

Ray Casting
(Shader) 168 33 212 42

Ray Casting
(CUDA) 52 9 52 10

Texture-Based
Single-threaded 210 41 210 41

Texture-Based
Multi-threaded 181 40 181 40

Table 5.3: Windows, Sphere, 250 samples

Algorithm FPS TF1
500x500

FPS TF1
1920x1200

FPS TF2
500x500

FPS TF2
1920x1200

Ray Casting
(Shader) 101 21 113 24

Ray Casting
(CUDA) 26 5 26 5

Texture-Based
Single-threaded 107 21 106 21

Texture-Based
Multi-threaded 106 20 106 20

Table 5.4: Windows, Sphere, 500 samples

termination test can be described by the following algorithm:

1 if sample outside of bounding box OR

2 accumulated opacity bigger than opacity threshold:
3 stop sampling

Removing this check from the code reduces the performance as expected. For example, the
performance of Windows TF1 500x500 Ray Casting (CUDA) drops from 39 to 31 FPS but
it is the same performance drop when using TF2. This shows that the early ray termination
does work but it is not a factor that contributes to the equivalence in performance of both
transfer functions.

44

Algorithm FPS TF1
500x500

FPS TF1
1920x1200

FPS TF2
500x500

FPS TF2
1920x1200

Ray Casting
(Shader) 25 5 39 10

Ray Casting
(CUDA) 10 2 10 2

Texture-Based
Single-threaded 28 7 28 7

Texture-Based
Multi-threaded 27 7 27 7

Table 5.5: Android, CT Knee , 250 samples

Algorithm FPS TF1
500x500

FPS TF1
1920x1200

FPS TF2
500x500

FPS TF2
1920x1200

Ray Casting
(Shader) 30 5 34 7

Ray Casting
(CUDA) 12 2 12 2

Texture-Based
Single-threaded 35 9 35 9

Texture-Based
Multi-threaded 36 8 34 8

Table 5.6: Android, Sphere , 250 samples

The transfer function does not affect the performance of the textured based approach.
This can be explained by the nature of the algorithm itself. It has to render all generated
proxy planes regardless of how much of the plane surface actually contributes to the final
image.

The Multi-threaded implementation does not perform faster than the single-threaded
implementation. This suggests that the bottleneck is the rasterization stage rather than the
application stage. Even at the lower 500x500 resolution both implementations perform sim-
ilarly. Lowering the resolution even further thus switching from rasterization bottleneck to
the application bottleneck does not ”help” the multi-threaded outperform the single-threaded
implementation. This suggests that the overhead of creating and maintaining the threads is
higher than the boost of performance they provide. The current number of threads is fixed

45

to 4. If the workload of each thread is not high to overcome the overhead its brings then
either lowering the thread count or increasing the number of samples will have a positive
effect on the performance compared to the single-threaded implementation. On the contrary,
it may be the case that not enough parallelism is extracted from the CPU thus increasing the
thread count should increase performance. Table 5.7 shows that increasing the thread count
actually lowers the performance. Further testing is needed to evaluate whether this approach

No. Threads 1 2 4 8 16
FPS 124 124 124 114 87

Table 5.7: Multithreading: Windows, CT Knee, 250 samples

has any merit at all or the implementation itself needs to be optimised.

The CUDA implementation perform significantly slower than its shader equivalent.
This was unexpected given that both implementations use the same algorithm with the same
parameters. Further testing revealed (using the NSight Performance Analyser [NVI14c])
that during runtime for the shader implementation 69% is spent performing the SwapBuffers

function. In the CUDA implementation, 68% is spent on the cudaMemset, 25% on the cud-

aGraphicsGLRegisterBuffer and 14% on the cudaGraphicsMapResources functions. The
latter two cannot be changed because they perform the necessary mapping of resources be-
tween CUDA and OpenGL each frame. cudaMemset is optional but highly desirable because
it acts as the OpenGL equivalent clearColor. Removing the call to the function at each frame
does not increase the FPS suggesting that the analyzer does not account for time spent ren-
dering in the CUDA kernel.
The next step was testing the performance impact of texture fetching in the shader against
CUDA implementations using Windows CT Knee 500x500 250 samples as an example. A
simple test is removing all texture fetches and observe the rendering speed. The shader im-
plementation became 4.25 times faster (from 102 to 434 FPS) and the CUDA implementation
became 8.07 times faster (from 39 to 315 FPS). This suggests that, as currently implemented,
the texture fetching in CUDA is slower than in a shader. For each loop iteration there is one
fetch to a 3D texture and one fetch to a 1D texture. There is no way that the algorithm will
perform correctly without either one.
So the only other way to improve texture fetching on CUDA is to investigate the memory
layout and see the volume and the transfer function can be stored in a memory space. Cur-

46

rently, both textures are stored in texture memory. It is a constant memory with read-only
access that is optimised for data locality and is cached in the texture cache.[LDD+12] But
if cached, global memory has a higher bandwidth. From the speedup of disabling texture
fetching, it can be concluded that the CUDA implementation is memory-bound.[LDD+12]
presents optimization strategies for compute- and memory-bound algorithm for CUDA. Ac-
cording to this paper, low latency memory caches can be better utilised by reorganising the
data into self-contained data structures and using multi-pass approach to process a subset of
these self-contained data structures during each pass. In the context of volume rendering,
this can be achieved by either bricking or spatial data structures.
Another consideration is the performance decrease when changing the number of samples.
CUDA suffers worse performance hit when increasing the number of samples as illustrated
in Figure 5.5.

Figure 5.5: Performance decrease of the shader versus the CUDA implementation when
changing from 250 to 500 samples

The ray casting shader implementation outperforms the texture based implementation
for opaque volumes. The ray casting approach is affected by early ray termination whereas
the textured based approach is not.

The performance difference between CUDA and ray casting is smaller on the Shield
than on the desktop version. This is illustrated in Figure 5.6. An in-depth investigation
of the two chosen hardware specifications is required to make a sound conclusion why this
is the case.

47

(a) CT Knee (b) Sphere

Figure 5.6: Performance difference of ray casting using shaders over CUDA

48

Chapter 6

Conclusion

The main goal of developing an interactive volume renderer has been achieved. A cross-
platform OpenGL ES 3.0 volume renderer was developed. Moreover, comparison of ray
casting versus texture based approaches was presented. It was shown that textured based
rendering produces lower quality image and is faster for volumes exhibiting higher trans-
parency. Ray casting produces higher quality visuals and is faster for opaque volumes. The
current implementation of CUDA is significantly slower than its shader equivalent due to
OpenGL shader programming still being computationally faster than CUDA when perform-
ing the same algorithm.
The biggest challenge was working with CUDA on the Shield. The development hurdles
with the Linux environment were a serious detriment throughout the project.
Future work might include integrating a user interface for a fully-fledged application. This
would merit the application for use in practice. Integration of the octree spatial data structure
to do empty region skipping would be the next logical step as it has been proven a viable
way of improving the traversal of the volume. Also, not all of the initial goals were met.
An investigation into how each algorithm suits the Shield hardware architecture would have
given insight on how to optimise specifically for that architecture in order to gain the most
performance. Possible areas of investigations would be cache utilisation and measuring the
power consumption for each of the implemented algorithms.

49

Bibliography

[cia14] ciamej. Sort points in clockwise order? http://stackoverflow.com/a/

6989383, 2014.

[CSK+11] John Congote, Alvaro Segura, Luis Kabongo, Aitor Moreno, Jorge Posada, and
Oscar Ruiz. Interactive Visualization of Volumetric Data with WebGL in Real-
time. In Proceedings of the 16th International Conference on 3D Web Technology,
Web3D ’11, pages 137–146, New York, NY, USA, 2011. ACM.

[DCH88] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume Rendering. SIG-

GRAPH Comput. Graph., 22(4):65–74, June 1988.

[Dr.12] Dr. Fernandez, Mark. Nodes, Sockets, Cores and FLOPS, Oh,
My. http://en.community.dell.com/techcenter/

high-performance-computing/w/wiki/2329, 2012.

[Ecl10] Eclipse Contributors. Symbol could not be resolved errors. https://www.

eclipse.org/forums/index.php/t/550462/, 2010.

[fer] GPU gems: programming techniques, tips, and tricks for real-time graph-
ics, author=Fernando, Randima and Haines, Eric and Sweeney, Tim, jour-
nal=Dimensions, volume=7, number=4, pages=816, year=2001, chapter=39.

[Fer04] Randima Fernando. GPU Gems: Programming Techniques, Tips and Tricks for

Real-Time Graphics. Pearson Higher Education, 2004.

[GLF15] GLFW Contributors. GLFW is an Open Source, multi-platform library. https:
//www.eclipse.org/forums/index.php/t/550462/, 2015.

[GLM15] GLM Contributors. OpenGL Mathematics, 2015.

50

http://stackoverflow.com/a/6989383
http://stackoverflow.com/a/6989383
http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329
http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329
https://www.eclipse.org/forums/index.php/t/550462/
https://www.eclipse.org/forums/index.php/t/550462/
https://www.eclipse.org/forums/index.php/t/550462/
https://www.eclipse.org/forums/index.php/t/550462/

[Int13] Intel Contributors. Intel Xeon Processor E3-1240 (8M Cache, 3.30
GHz) Specifications. http://ark.intel.com/products/52273/

Intel-Xeon-Processor-E3-1240-8M-Cache-3_30-GHz, 2013.

[ITK14] ITK Contributors. ITK/MetaIO/Documentation. http://www.itk.org/

Wiki/ITK/MetaIO/Documentation, 2014.

[Klu14] Klug, Brian and Lal Shimpi, Anand. NVIDIA Tegra K1 Preview &
Architecture Analysis. http://www.anandtech.com/show/7622/

nvidia-tegra-k1, 2014.

[KW03] Jens Kruger and Rüdiger Westermann. Acceleration techniques for GPU-based
volume rendering. In Proceedings of the 14th IEEE Visualization 2003 (VIS’03),
page 38. IEEE Computer Society, 2003.

[LDD+12] Daren Lee, Ivo Dinov, Bin Dong, Boris Gutman, Igor Yanovsky, and Arthur W
Toga. CUDA optimization strategies for compute-and memory-bound neuroimag-
ing algorithms. Computer methods and programs in biomedicine, 106(3):175–
187, 2012.

[Lev88] Marc Levoy. Display of surfaces from volume data. Computer Graphics and

Applications, IEEE, 8(3):29–37, 1988.

[LNOM08] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA
Tesla: A unified graphics and computing architecture. Ieee Micro, 28(2):39–55,
2008.

[Mea82] Donald Meagher. Geometric modeling using octree encoding. Computer graphics

and image processing, 19(2):129–147, 1982.

[MF12] M.M. Mobeen and Lin Feng. Ubiquitous medical volume rendering on mobile
devices. In Information Society (i-Society), 2012 International Conference on,
pages 93–98, June 2012.

[MT05] Tomas Möller and Ben Trumbore. Fast, minimum storage ray/triangle intersec-
tion. In ACM SIGGRAPH 2005 Courses, page 7. ACM, 2005.

51

http://ark.intel.com/products/52273/Intel-Xeon-Processor-E3-1240-8M-Cache-3_30-GHz
http://ark.intel.com/products/52273/Intel-Xeon-Processor-E3-1240-8M-Cache-3_30-GHz
http://www.itk.org/Wiki/ITK/MetaIO/Documentation
http://www.itk.org/Wiki/ITK/MetaIO/Documentation
http://www.anandtech.com/show/7622/nvidia-tegra-k1
http://www.anandtech.com/show/7622/nvidia-tegra-k1

[MW08] Manuel Moser and Daniel Weiskopf. Interactive volume rendering on mobile
devices. 2008.

[NJOS12] José M Noguera, Juan-Roberto Jiménez, Carlos J Ogáyar, and Rafael Jesús Se-
gura. Volume Rendering Strategies on Mobile Devices. In GRAPP/IVAPP, pages
447–452, 2012.

[Nvi08a] Nvidia. What is CUDA? http://www.nvidia.com/object/cuda_

home_new.html, 2008.

[Nvi08b] CUDA Nvidia. Programming guide, 2008.

[Nvi08c] Nvidia Contributors. Memory Management. http://

developer.download.nvidia.com/compute/cuda/4_1/

rel/toolkit/docs/online/group__CUDART__MEMORY_

g80d689bc903792f906e49be4a0b6d8db.html, 2008.

[Nvi12] Nvidia. Kepler GK110 Whitepaper. 2012.

[Nvi14a] Nvidia. NVIDIA Tegra K1 Whitepaper. 2014.

[Nvi14b] Nvidia. Tesla K80 GPU Accelerator Board Specifications. 2014.

[NVI14c] NVIDIA Contributors. Analysis Tools. http://docs.nvidia.

com/nsight-visual-studio-edition/4.0/Nsight_Visual_

Studio_Edition_User_Guide.htm#Analysis_Tools_

Overview.htm%3FTocPath%3DAnalysis%20Tools|_____0, 2014.

[Nvi15] Nvidia Contributors. CUDA Samples. http://docs.nvidia.com/cuda/
cuda-samples/#volume-rendering-with-3d-textures, 2015.

[qua] NVIDIA Quadro K2000. http://www.techpowerup.com/gpudb/

1838/quadro-k2000.html.

[RA12] Marcos Balsa Rodrı́guez and Pere Pau Vázquez Alcocer. Practical Volume Ren-
dering in Mobile Devices. In Advances in Visual Computing, pages 708–718.
Springer, 2012.

[RV06] Daniel Ruijters and Anna Vilanova. Optimizing GPU volume rendering. 2006.

52

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__MEMORY_g80d689bc903792f906e49be4a0b6d8db.html
http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__MEMORY_g80d689bc903792f906e49be4a0b6d8db.html
http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__MEMORY_g80d689bc903792f906e49be4a0b6d8db.html
http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__MEMORY_g80d689bc903792f906e49be4a0b6d8db.html
http://docs.nvidia.com/nsight-visual-studio-edition/4.0/Nsight_Visual_Studio_Edition_User_Guide.htm#Analysis_Tools_Overview.htm%3FTocPath%3DAnalysis%20Tools|_____0
http://docs.nvidia.com/nsight-visual-studio-edition/4.0/Nsight_Visual_Studio_Edition_User_Guide.htm#Analysis_Tools_Overview.htm%3FTocPath%3DAnalysis%20Tools|_____0
http://docs.nvidia.com/nsight-visual-studio-edition/4.0/Nsight_Visual_Studio_Edition_User_Guide.htm#Analysis_Tools_Overview.htm%3FTocPath%3DAnalysis%20Tools|_____0
http://docs.nvidia.com/nsight-visual-studio-edition/4.0/Nsight_Visual_Studio_Edition_User_Guide.htm#Analysis_Tools_Overview.htm%3FTocPath%3DAnalysis%20Tools|_____0
http://docs.nvidia.com/cuda/cuda-samples/#volume-rendering-with-3d-textures
http://docs.nvidia.com/cuda/cuda-samples/#volume-rendering-with-3d-textures
http://www.techpowerup.com/gpudb/1838/quadro-k2000.html
http://www.techpowerup.com/gpudb/1838/quadro-k2000.html

[Smi12] Smith, Ryan. Khronos Announces OpenGL ES 3.0, OpenGL 4.3, ASTC Tex-
ture Compression, & CLU. http://www.anandtech.com/show/6134/
khronos-announces-opengl-es-30-opengl-43-astc-texture-compression-clu/

2, 2012.

[Tho65] James E. Thornton. Parallel Operation in the Control Data 6600. In Proceedings

of the October 27-29, 1964, Fall Joint Computer Conference, Part II: Very High

Speed Computer Systems, AFIPS ’64 (Fall, part II), pages 33–40, New York, NY,
USA, 1965. ACM.

[WW92] Alan Watt and Mark Watt. Advanced Animation And Rendering Techniques. 1992.

53

http://www.anandtech.com/show/6134/khronos-announces-opengl-es-30-opengl-43-astc-texture-compression-clu/2
http://www.anandtech.com/show/6134/khronos-announces-opengl-es-30-opengl-43-astc-texture-compression-clu/2
http://www.anandtech.com/show/6134/khronos-announces-opengl-es-30-opengl-43-astc-texture-compression-clu/2

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Initial Goals
	What is Volume Rendering?
	Volume Rendering Concepts
	Ray Casting Based Volume Rendering
	Texture Based Volume Rendering

	Nvidia Shield Hardware Architecture
	Performance per Watt
	Quad Warp Scheduler

	Memory system
	CUDA Programming
	CUDA Programming Model
	Memory Hierarchy
	Disadvantages of Using CUDA on the Shield

	Chapter Previous Work
	Chapter Experiments
	Chapter Implementation
	High Level Overview
	Platform Dependent Code
	Platform Independent Code

	Ray Casting Using Shaders
	Ray Casting Using CUDA
	Textured Based Single-threaded
	Texture Based Multi-threaded

	Chapter Results and Evaluation
	Visual Appearance
	Performance Tests
	Windows
	Android

	Evaluation

	Chapter Conclusion
	Bibliography

