
University of Dublin, Trinity College

Animation of Register Allocation
via Graph Colouring

Author:

Caoimhe O’Regan

Supervisor:

Dr. David Abrahamson

May 2015

A dissertation submitted in fulfilment of the requirements

for the degree of Master in Computer Science

in the

School of Computer Science and Statistics

Declaration

I, Caoimhe O’Regan, declare that the following dissertation, except where otherwise

stated, is entirely my own work; that it has not previously been submitted as an

exercise for a degree, either in Trinity College Dublin, or in any other University;

and that the library may lend or copy it or any part thereof on request.

Signature:

Date:

i

Summary

Compiler design is currently studied by students in the Computer Science course at

Trinity College Dublin. It is divided into two modules, a mandatory one that is taken

by all third year computer scientists and a secondary one which is optional in fourth

year. In this fourth year module the process of register allocation is studied. Register

allocation is the final stage in the compiler pipeline before the code generation phase.

It is here where the unlimited amount of registers from the optimization stage are

mapped to the actual number of registers available in the machine. The motivation

for this work arises from the need to accommodate students in understanding this

topic.

The proposed solution to achieve this goal was to create an animation of register

allocation which the students could view. The animation was to depict the steps

involved to complete register allocation via graph colouring. Graph colouring is one

of the methods described in the compiler design module to solve the problem of

register allocation. Vivio, a tool for developing E-learning animations for the web,

was used to produce the application. Vivio has many capabilities which are vital

in creating animations that are easy to use and understand, such as giving the user

full control over the flow of the animation and its speed. Each aspect of register

allocation via graph colouring is implemented in the application dynamically based

on the current program. Each of these stages is then transposed to the screen in the

form of an animation.

Once the development of the application was finalised, experiments were carried out

to measure the performance of the application with different participants. Thirteen

participants were involved in the study and were all enrolled in a computer science

related subject. The participants’ levels of knowledge on the subject varied and

thus gave different insights into the application’s performance. The results of the

ii

iii

study revealed an increase in most of the participants understanding of the concept

after viewing the animation. This gives some support to the benefits of using the

animation to comprehend the subject of register allocation via graph colouring.

The results of this study show there are some benefits in using animations to illus-

trate the theory of compiler design techniques. Further animations could be devel-

oped to demonstrate other procedures of compiler design theory by incrementally

developing on this application or creating new ones.

The goal of completing an animation of register allocation via graph colouring has

been achieved. This application will be used in the teaching of compiler design

in Trinity College next semester to aid students in understanding the approach to

register allocation via graph colouring.

Acknowledgements

I would like to thank my supervisor Dr David Abrahamson for his support and

guidance throughout the duration of this project.

I would also like to thank my parents for their continued support and encouragement.

Caoimhe O’Regan

University of Dublin, Trinity College

iv

Contents

Declaration i

Summary ii

Acknowledgements iv

Contents v

List of Figures vii

1 Introduction 1

1.1 Motivation . 2

1.2 Overview of Contents . 3

2 Background 5

2.1 Compiler Design . 5

2.2 Register Allocation . 6

2.2.1 Basic Blocks . 7

2.2.2 Liveness Analysis . 8

2.2.3 Graph colouring . 9

2.2.4 Spilling . 11

2.3 E-Learning . 12

2.4 Vivio . 14

2.5 Related Work . 15

2.5.1 Colouring Heuristics for Register Allocation 18

2.5.2 Register Allocation by Priority-based Colouring 19

3 Implementation 22

3.1 Approach . 23

3.1.1 Parsing the program . 23

3.1.2 Basic Blocks . 25

v

Contents vi

3.1.3 Liveness Analysis . 27

3.1.4 The Interference Graph . 28

3.1.5 Graph Colouring . 29

3.1.6 Spilling . 31

3.2 Animation . 32

3.2.1 Design . 32

3.2.2 Animation Flow . 34

3.2.3 Display . 37

4 Evaluation 39

4.1 Results . 41

4.2 Discussion . 45

5 Future Work 49

6 Conclusion 52

A Algorithms 54

B Experiment Documentation 58

Bibliography 63

List of Figures

2.1 A simple graph requiring two colours demonstrated by Briggs [1] . . 18

3.1 First screen displayed to the user . 32

3.2 Program on the left and the Basic Blocks created on the right 34

3.3 Complete animation flow . 36

3.4 Scaled program will spill code . 37

3.5 Effects when the program becomes too large 38

4.1 Different levels of participants . 41

4.2 How would you rate your knowledge 42

4.3 Q2. Do you have an interest in compiler design 44

4.4 Question 2 subdivided into the answers for question 1 44

4.5 How students who previous ranked themselves as poor, ranked after . 46

B.1 Consent form . 59

B.2 Information sheet . 60

B.3 Survey given to the participants . 61

B.4 Vivio instructions given to participants 62

vii

Chapter 1

Introduction

This dissertation proposes a solution to accommodate students in the learning of a

compiler design concept register allocation via graph colouring. It’s goal is to com-

plete a totally functional animation depicting register allocation via graph colouring

in order to be successful in aiding students in the understanding of this topic.

Compiler design is currently taught over two modules in Trinity College Dublin by

Dr. David Abrahamson. The second module covers the topic of register allocation.

Register allocation is the final stage of the compiler before the code generation. The

purpose of register allocation is to map the variables and intermediate values that

reside in an unlimited number of registers (due to the previous optimization stages)

into the actual number of registers available in the machine.

In this module Chaitin’s [2] approach to register allocation is studied in detail where

graph colouring is used to assign variables and intermediate values to the registers

available. Chaitin’s approach was the first implementation of addressing the problem

of register allocation using graph colouring, although many works have tried to

improve on this since.

1

Chapter 1. Introduction 2

Vivio is a tool created by Dr. Jeremy Jones at Trinity College Dublin for creating

E-Learning animations for the World Wide Web [3]. It allows smooth animations to

be created that can be completely controlled by the user. It also has the capabilities

for playing the animation in reverse. It allows large animations to be created quickly

with relative ease and subsequent publishing to the web.

Vivio was used to create an animation of register allocation via graph colouring.

The animation displays the algorithm proposed by Chaitin [2] and the underlying

implementation also uses the solution proposed by Chaitin. Each of the stages

involved are implemented in accordance to Chaitin’s description. Some alterations

had to be made due to the available structures in Vivio. These stages are then

transposed to the screen in the form of an animation. The animation displays each

of the stages of the approach in the order of execution, including the transitions

between them. Cues are used to draw the users attention to current changes being

made and the relationship of the objects on screen.

1.1 Motivation

Many of the students who enroll in the compiler design module have very little

knowledge of the theory of graph colouring. The approach itself is easy to compre-

hend by example, whereas its usefulness in register allocation is a little more difficult

to appreciate.

Accordingly, the motivation for this dissertation emerges. By creating an animation

that details the steps of graph colouring and its importance in register allocation, it

is hoped this will educate and encourage the students of this module.

Furthermore, creating an application that the user can advance through at their own

speed could greatly aid in their understanding of the idea. Allowing students access

Chapter 1. Introduction 3

to this in their own time could further enhance their insight into the concept. It is

also well established that learning by example and the use of animation can greatly

assist in the understanding of complex ideas.

1.2 Overview of Contents

The structure of this document is as follows;

Chapter 2 Background, describes some of the concepts necessary for understanding

the application. Each of these concepts is explained with relation to the application

and in the order they are utilized in the approach. In addition, some information on

E-Learning and the tool used for the animation is discussed. The end of this section

includes a description of related work with regard to register allocation via graph

colouring.

Chapter 3 Implementation, details the approach taken to complete the application.

The structure of this section is configured similarly to the previous section where the

implementation of each concept is explained in the order of approach. This includes

a description of how these ideas were put into effect.

Chapter 4 Results, displays the findings of the experiments conducted. Thirteen

participants took part in the study. Each of the participants were asked to use the

application and fill out a short survey. The results of these are demonstrated in

this chapter. Included in this chapter is a discussion of the results and how the

experiments could have been improved.

Chapter 5 Future Work, expands on the future development of this application. It

includes details of improvements that could be made to the application to accom-

modate other concepts within this topic.

Chapter 1. Introduction 4

Chapter 6 Conclusion, summarizes the project and analyses its goal. Included in

this chapter is an overview of the results and some concluding thoughts on the

application and its results.

Chapter 2

Background

This section includes some information in relation to compiler design that may be

necessary in the understanding this dissertation. This information is related to

register allocation and the process of graph colouring.

A description of the tool used for the application, Vivio, including some background

information and the reason it was chosen for this project, can also be found in this

section.

At the end of this section you will find a discussion of similar works published in

this field.

2.1 Compiler Design

The motivation for this project as previously stated, was to assist students of the

compiler design II module in understanding the concept of register allocation via

graph colouring.

5

Chapter 2. Background 6

Compiler design is currently taught in Trinity College Dublin by Dr. David Abra-

hamson and comprises of two modules. The first module is taken by students in

third year computer science and is mandatory. This module provides an introduc-

tion into compiler design, including an overview of the main principles [4]. Students

are introduced to some of the concepts implemented in many compilers and some

students are introduced to the theory of a compiler for the first time. A compiler is

a program that parses a specific language and manipulates it into machine code to

be executed on the machine. Although this may sound elementary, there are many

different steps included in order to correctly get from one to the other. These steps

are covered in this module, but mainly focus on the opening stages such as parsing.

In fourth year, students of computer science are given the option to enroll in a

second module of compiler design. This module is a continuation of the first. The

focus of this module is the final stages of the compiler, with it being heavily centred

on optimizations and register allocation. It is this module that the application has

been developed for. In this module a number of techniques for register allocation

are explored. Chaitin’s [2], approach to register allocation is studied in detail in

accordance to this topic.

2.2 Register Allocation

Register Allocation is a significant phase in compiler optimization. It is used to

assign the minimum amount of registers to a large unrealistic number of program

variables produced by the compiler optimizations.

During compiler optimizations, intermediate code is generated, the goal of which

is to reduce program latency. Thus the intermediate code is generated with the

assumption that there are an unlimited number of registers, allowing it to store

all necessary variables into fast access memory i.e. registers, rather than having

Chapter 2. Background 7

to load/store to/from memory. This however, is unrealistic for any machine, as all

machines have a finite number of registers.

Register allocation is the process by which the intermediate code is translated into

a form that uses a realistic number of registers for the machine. This is achieved

by allowing different variables to share the same register. The decision of which

variables are assigned to the same register is determined by the register allocation

phase. This phase is made up of a number of different steps to which the intermediate

code is the input and the final code is the output.

Firstly the intermediate code is separated into basic blocks, section 2.2.1. Liveness

analysis is performed on the basic blocks in order to find out which variables are live

simultaneously, section 2.2.2. An interference graph is created to demonstrate which

variables interfere with each other (live at the same time), where nodes represent

the variables and adjacent nodes (joined by an edge) interfere with each other. For

this project Graph colouring was used for the process of register allocation, so this is

the next step and is performed on the interference graph, section 2.2.3. Sometimes

it is not possible to colour the graph and so spilling must occur in order to reduce

the need for registers, section 2.2.4.

One of the most important aspects of register allocation is that it must not change

the behaviour of the program.

2.2.1 Basic Blocks

A basic block is a piece of code that is executed sequentially and has a unique entry

point and a unique exit point. To separate a program into basic blocks the leader

of each block must be found. The leader is the first statement of each basic block

and can be identified by the following characteristics;

Chapter 2. Background 8

1. The first statement of code

2. Any statement that is the target of a GOTO (branch)

3. Any statement that immediately follows a GOTO

Separating a program into basic blocks is a very common practice in compiler design

and is used in other aspects of compiler design and not just register allocation.

2.2.2 Liveness Analysis

Live analysis is performed on the program and can be done locally on each instruction

or globally on each basic block. Liveness Analysis involves assigning each variable

to one or both of two sets for each basic block, namely LiveIn and LiveOut. To

determine whether a variable is a member of the set it must satisfy the equations

below which are discussed in the compiler design module.

Live – A variable is live at the end of a basic block if along any, at least one, path

from the block it may be used before its value is modified.

LiveOut(i) – A variable is live on exit from a block if it is live on entrance to

some successor of the block. If the block has no successor, the last block, then the

LiveOut(i) set is empty.

LiveOut(i) = ∪LiveIn(j)

j ∈ succ(i) (2.1)

LiveUse(i) – is the set of variables that are used before they are defined in block i.

Chapter 2. Background 9

Def(i) – is the set of all variables defined in block i

LiveIn(i) – A variable is live on entrance to a block if it is in LiveUse(i) of the block

or live on exit to some predecessor block and was not modified within the block.

LiveIn(i) = LiveUse(i) ∪ (LiveOut(i)−Def(i)) (2.2)

Similar equations can be found in “Compilers: Principles, Techniques, and Tools”

[5] for global flow anaylsis. Using the equations above to perform liveness analysis

demonstrates which variables are live at a given point in the program. If a variable

is live at the same time as another variable they are said to interfere. Variables that

interfere are unable to share the same register.

2.2.3 Graph colouring

Graph colouring is a division of graph theory whereby a graph is coloured in such

a way that no two adjoining vertices have the same colour. It is commonly known

that the problem of graph colouring is NP-Complete [6]. No efficient algorithm has

been found and so a more heuristic approach is used.

A graph G consists of pairs (V,E), where V is the set of vertices and E is the set of

edges. If a graph is k—colourable then we say it can be successfully coloured with

k colours. The main goal of graph colouring is to find the minimum number for k

such that G is colourable.

In order for G to be k—colourable all nodes must be coloured in k or fewer colours

and no two adjacent nodes can be the same colour. In regards to register allocation,

the different colours represent different registers.

Chapter 2. Background 10

Graph colouring is achieved by following a set of steps set out by an algorithm. For

this project, Chaitin’s algorithm was used and it is discussed below [2].

The first step is to complete a global data–flow analysis, this was discussed above

in section 2.2.2.

From this an interference graph of the variables is created whereby variables in the

graph are connected if they are live at the same time, which was briefly discussed

above. Each node in the graph is given a degree which represents how many adjacent

nodes it has. The next step is to begin the process of colouring the graph.

Chaitin describes the next step where k = 32;

“Assume we wish to find a 32–colouring of a graph G having a node N of

degree less than 32. Then G is 32–colourable if and only if graph G’ from

which N and all its edges have been omitted is 32–colourable.”(Chaitin

P68)

Each node, with degree less than k, is removed from the graph further decreasing

the degree of the rest of the nodes, until all nodes have been removed or no node

left in the graph has a degree less than k. The underlying concept is, by removing

a node with degree less than k and leaving a graph that is k colourable means that

there will be a colour left for this node when it is added back in as it has less than

k neighbours.

The nodes are then added back onto the graph, in the reverse order that they were

removed, and a colour is assigned to the node that does not conflict with any node

it is currently connected to.

Once this process is complete each node in the graph will have been assigned a colour.

These colours represent actual available registers in the machine. Variables that have

Chapter 2. Background 11

been assigned the same colour can be stored in the same register at different times.

The program can now be rewritten to reflect this.

2.2.4 Spilling

As mentioned above sometimes a k—colouring cannot be found for the graph. If

this is the case, some variables may need to be spilled in order to reduce the strain

on the number of registers.

The need to spill arises when it is impossible to remove a node from the graph as

mentioned above since all the nodes have a degree higher than there are registers,

i.e. have degree >= k. Hence a variable must be selected to reside in memory.

The act of spilling involves adding spill code to the program in such a way that

a selected variable is stored in memory and then loaded into a register when it is

needed and returned to memory, thus freeing the register as the amount of time the

variable is live is reduced. This can help colour the graph, however, adding spill

code to a the program can greatly impede the optimizations performed, therefore it

should be done sparingly.

Chaitin discusses his approach to spilling in his paper, “Register Allocation via

Graph Colouring” [2]. It explains how spilling should be performed and how spill

decisions should be made, which are outlined below.

Chaitin states the importance of keeping the graph and program in “step” in order

to make appropriate spill decisions. Once a spill decision has been made, the spill

code must be entered into the intermediate code and the graph must be rebuilt so

that colouring can be re-attempted.

When deciding which register should be spilled, the goal is to insert as little spill

code as possible. Spill code increases execution time, hence, choosing a register that

Chapter 2. Background 12

is used often and has to be loaded from, and stored to memory for every use can be

very costly. Chaitin’s solution to this, is to associate a cost with each node in the

graph which refers to the increase in execution time of the program [2].

The following calculation is stated with the assumption that each instruction exe-

cutes in one machine cycle, and an instruction in a loop executes ten more times

than if it were not in a loop [2].

H0(v) =
cost(v)

degree(v)
(2.3)

cost(v) =
∑

10depth(i) (2.4)

where i ε instructions, v is defined or used in i and depth(i) is the nested level of i

(within a loop).

When choosing which node to spill, the goal is to pick the node with the lowest

estimated cost found from the equation above where the cost of spilling is divided

by its current degree in the graph.

2.3 E-Learning

E-Learning is becoming ever prevalent in today’s academic society. For the most

part, this is primarily due to universities offering “online courses” to their students

as part of their studies.

E-learning however, is not only related to courses provided online but E-learning is

defined as “Learning conducted via electronic media, typically on the Internet”[7].

Chapter 2. Background 13

It is therefore not restricted to enrollment in an online course and related to any

learning conducted though electronic media which can be done online .

It is recognised that imagery and animation can accommodate in the learning of

complex ideas, with the belief that such mediums engage more of the users senses

helping them to learn. A number of studies have been conducted in this field.

Byrne [8] and Mayton [9] conducted studies on how beneficial animations are to

learning where both studies report improvements with animations however, this

success cannot be concretely tied to the animation aspect itself. In Byrne it is

stated that the animations encouraged learners to predict the algorithm’s behaviour

rather than accommodating the students learning [8]. In contrast Mayton states that

although the impact on learning made by animation of visuals cannot be completely

distinguished from that of image cueing, it was shown the use of animation to teach

a dynamic process can be beneficial [9].

Furthermore, allowing users to manipulate the speed and flow of the animation

can greatly assist their understanding of the concept being displayed. Allowing

the user the capability of reversing the animation is very important. In Birch [10]

they describe how the professors were unable “to respond to frequent questions

arising from students about what had just happened during the animation” without

restarting the whole animation, which can be tedious.

The type of animation that will be created for this project is described as a “concept

animator” [3] and [10], whereby the animation focuses on a specific topic which in

this case is register allocation of compilers.

Chapter 2. Background 14

2.4 Vivio

Vivio is an E-Learning tool that accommodates animations for a web page. Vivio

was developed by Dr Jeremy Jones at Trinity College Dublin. The motivation for

this tool arose while trying to teach cache coherency protocols to students of a

Computer Architecture course at Trinity College Dublin [11].

The goal of Vivio is to achieve the following characteristics as set out in the academic

research paper [3];

“Good educational animations should be easy to install and use, scale

with the window in which they are displayed and animate smoothly

and with purpose ... The animation speed should be controllable and it

should be possible to single-step in both forward and reverse directions

or quickly snap forwards and backwards to key points in the animation”

[3] P1.

Vivio allows the creation of animations and for these animations to be easily inte-

grated into any web page to be viewed on the Internet. The animations produced

respond to user input while still remaining on a direct path. This tool also allows

for the reversal of the animation dictated by the user. This will undo any actions

that have been done by the user. The interactive nature and the ability to reverse

the application allows a user to step through the animation which is an important

element of the E–Learning environment.

A Vivio animation is composed of multiple graphical objects displayed on the screen.

These objects can be manipulated over time in order to present an idea to the user.

Vivio animations are event based and the animation player organises all events by

time represented by ticks [3]. Ticks are used for the animation’s concept of time. The

animation speed can also be defined and/or set by the user in ticks per second. The

Chapter 2. Background 15

Vivio library contains a number of predefined graphical objects such as rectangles,

circles etc. and functions that can be performed on these objects making it quick

and easy to use.

To accommodate development in Vivio an Integrated Development Environment

(IDE) was created. Vivio animations are compiled into compressed vcode files which

in turn are compiled into x86 machine code, and finally these are executed to play

the animation [3].

The syntax of Vivio is similar to C++ or java and has many of the same capabilities[3].

Vivio is easy to install and run. Vivio currently works on PCs running Windows

and is compatible with Internet Explorer, Firefox, Opera, Safari and Google Chrome

browsers.

Vivio was chosen for this project because of its capabilities and lightweight nature.

The characteristics of Vivio provide the functionality for users to step through the

program at their own pace which is essential in an E-Learning software. It will

also provide the tools necessary to complete the project without any unnecessary

overhead. Vivio will also be familiar to prospective users of this project from their

past experience of the course, and so it is hoped they will have a good understanding

of how to use the tool without the need for too much instruction.

2.5 Related Work

Chaitin’s paper on “Register Allocation and Spilling via Graph Colouring” [2] is

well established in the field of compiler design with regards to register allocation.

This paper however, is not where the original idea was first introduced. “Register

Allocation and Spilling via Graph Colouring” by Chaitin [12] is where graph colour-

ing was first proposed as a solution to register allocation. As both papers remain

Chapter 2. Background 16

very similar they will be discussed together below. Chaitin’s first paper “Register

Allocation via Colouring” [12], will be referred to as paper one and Chaitin’s second

paper “Register Allocation and Spilling via Graph Colouring” [2], will be referred

to as paper two.

Paper one describes how global register allocation can be performed with the use

of graph colouring in an experimental PL/I compiler [12]. Before this paper, this

method had never been implemented, although it had been suggested. Their ap-

proach is described as “uniform, systematic and elegant” in dealing with idiosyn-

crasies.

In paper one [12] they introduce a data structure namely the interference graph,

which is key to the approach. The interference graph has proved to be instrumental

in the application of register allocation by graph colouring and is employed by al-

ternative approaches (Briggs [1], Chow [13]) and is discussed again in paper two [2].

In conjunction with this, paper one discusses the essence of interference and what

constitutes two nodes in the graph to be adjacent or connected.

An important aspect of the interference graph is how it should be represented [2]

[12]. It is necessary to have both random and sequential access to interfering nodes

in the graph. The proposed solution to this is described by paper one as follows:

To allow for random access a bit matrix is used to represent the interference graph

where the indices represent the nodes. For sequential access a list is provided for

each node where the list contains references to the nodes it interferes with. This

method was reiterated by paper two and has proved to be very successful.

When the interference graph cannot be coloured spilling must take place as previ-

ously discussed. Paper one describes a “heuristic and ad hoc” technique for selecting

what computation should be placed in memory. Their approach is to reduce the

pressure on registers by inserting spill code in parts of the program which are not

Chapter 2. Background 17

executed frequently i.e. outside of loops. Their main criteria for inserting spill code

is for computations which are “pass-throughs” of a basic block, meaning they are

live at entry into the block but not referenced within the basic block. This is used

in conjunction with two rules for inserting the spill code;

“if a name is spilled anywhere then we insert a store instruction at each

of its definition points. And pass-throughs are reloaded according to the

following rule: load at entry to each basic block B, every name live at

entry to B that is not spilled within B, but that is spilled in some basic

block which is an immediate predecessor of B. ” [12] P54.

If this method does not succeed then spill code is entered anywhere the register

pressure gets too high.

In contrast with this however, is paper two’s [2] approach to spill decisions where

spill decisions are made based on the cost to the program if a node were to be

spilt. The interference graph is supplemented with cost estimates for each node

and the node with the lowest cost is to be spilt. Cost estimates for the nodes are

established as “the increase in execution time if it is spilled” [2] P100. Cost estimates

are calculated on the basis that all instructions execute in one machine cycle and

instructions within a loop execute ten more times than if the were not in the loop.

The main goal discussed in paper one [12] is to store as many computations as

possible in the available registers rather than memory which is akin to the goal of

paper two [2]. It is stated in paper one [12] that when there is no need for spill code

to be entered, their proposed method does better than any hand coder would do.

Paper two [2] also discusses the success of their approach with respect to the cost in

compiler time and the speed of the programs produced, which use registers rather

than memory.

Chapter 2. Background 18

Figure 2.1: A simple graph requiring two colours demonstrated by Briggs [1]

Outlined below are other approaches to the problem of Register Allocation. These

approaches are formulated on Chaitin’s original idea [2]. Both papers discuss Chaitin’s

idea and how their proposed method improves upon it.

2.5.1 Colouring Heuristics for Register Allocation

Further from Chaitin’s heuristic Briggs [1] proposes an improvement. An interesting

example used by Briggs is the example shown in figure 2.1. This shows a graph of

four nodes each with a degree of two. It is clear to the human eye that this graph can

be coloured easily as a 2-colouring i.e. x and y assigned red and w and z assigned

blue. Chaitin’s algorithm fails to colour this graph with two colours without spilling.

Upon first look at the graph there is no node with a degree less than 2 and ergo a

node is spilt.

Briggs proposes a solution to this problem by introducing a new way of colouring

to enhance Chaitin’s algorithm which is based on an algorithm by Matula and Beck

[14]. The idea is that instead of removing an arbitrary node from the graph whose

degree is less than k, remove the node with the lowest degree. The rest of the

approach is completed in the same way as Chaitin’s algorithm [2] where nodes are

removed until the graph is empty. Once the graph is empty the colouring phase

begins where each node is added back into the graph in reverse order, and a colour

is assigned to it that has not been used on any of its neighbours.

Chapter 2. Background 19

In contrast to Chaitin’s approach the colours chosen are in order and the first one

that has not been used is assigned to the node. By using this approach the graph

in figure 2.1 will be colourable though, while colouring it may occur that the node’s

neighbours have already used up all the available colours. When this happens the

node is left uncoloured and the colouring of the rest of the nodes is continued. When

the entire graph has been rebuilt this method will insert spill code for the uncoloured

nodes then rebuild the interference graph and try again [1]. This approach defers

the spill decision to the colouring phase which Briggs declares is an improvement

on Chaitin’s approach and has a higher probability of finding a k—colourable for a

graph.

The results of this approach proved to be very successful and is stated to be “stronger

than Chaitin’s method”[1] P288. This technique will colour any graphs that Chaitin’s

algorithm colours and additionally, some graphs that Chaitin’s algorithm does not

colour [1]. One issue discussed with this algorithm is that it does not take the cost

of spilling into consideration, unlike Chaitin’s method. However, a refinement was

added to Briggs’ technique to incorporate a spill cost. When removing nodes from

the graph each of the nodes are ordered based on “cost in those areas where the

colouring phase may need to generate spill code” [1] P289 and therefore when re-

moving nodes from the graph it will remove nodes less than k in an arbitrary order.

This refinement further enhanced the algorithm so if a node needs to be spilt this

method will spill the same node as Chaitin. As a result this method will spill “a

subset of the live ranges that Chaitin would spill or the same set” [1] P289.

2.5.2 Register Allocation by Priority-based Colouring

In addition to Briggs’ paper another paper by Chow [13] offers improvements on

Chaitin’s algorithm. As previously mentioned when spilling a variable to memory

there is a cost associated whereas this paper introduces a new estimate namely,

Chapter 2. Background 20

saving. Saving refers to the gain in execution speed from allowing a variable reside

in a register rather than memory. This is in contrast to the previous techniques

which try to store as many variables as possible in registers rather than in memory,

whether or not it is beneficial [13]. The proposed solution for this is to assign

priorities to variables and assign variables to registers based on this priority.

The algorithm described was used in the production optimizer UOPT [15]. The

difference to note here is all program variables are assumed to have been allocated

in main memory hence, it is not required to generate spill code but map these

references to registers. Chaitin’s approach is used with the PL.8 compiler [2] and

spill code is generated for variables that can not be allocated a register.

Chow’s [13] algorithm is divided into two parts, a local method based on the amount

of uses of a variable and a global method which is based on colouring. As previously

stated saving costs are established for each variable which is done in the local phase.

Two savings are calculated a minimum and a maximum, where the actual saving

will range between these two values. Applying a final equation using the minimum

cost and the cost to move the variable from memory to the register, and taking

into account the number of predecessors and successors, it can be determined if

the variable should reside in the register. For the global phase the cost and saving

estimates are used along with the depth of a variable access i.e. within a loop. The

colouring process is conducted using the cost and saving estimates where registers

are assigned a colour based on these estimates i.e. the variables’ priorities. As it

is assumed variables already reside in memory there is no need to ever insert spill

code and the algorithm finishes when all variables have been assigned or there are

no registers left.

When colouring if a variable cannot be assigned the same register for the entire

procedure, its live range is spilt and the new live ranges are treated as separate

variables and are coloured accordingly. If a variable has more neighbours than the

Chapter 2. Background 21

number of colours it is left uncoloured until the end, anticipating that an unused

colour can be found for it.

As you can see, this approach is analogous to Chaitin’s algorithm. They are based

on similar foundations yet implement contrasting approaches. This new approach

achieves both “practical and efficient” results which is not effected by the number

of registers available [13]. This paper had little influence on this application.

Chapter 3

Implementation

The goal of this project was to complete an animation of Chaitin’s approach to

register allocation using graph colouring for the purpose of E-Learning. Its aim

is to teach students of computer science one of the methods a compiler uses to

allocate registers. The application was designed with the objective of educating

future compiler design students on the subject matter.

Included in this section, is a detailed description of the application including the

underlying structures and the visual animation. This includes the algorithms used;

although they are not visible to the user, the underlying application implements all

the concepts displayed on screen. Therefore the application itself fully implements

register allocation via graph colouring while also displaying the animation to the

user.

The implementation of this project is outlined below in two main sections, Approach

and Animation. The first section details the approach used to implement the logic

behind the application. The second section details the animation aspect of the

project.

22

Chapter 3. Implementation 23

3.1 Approach

The application was developed in Vivio, which is detailed in section 2.4. Vivio

provided the means to create a detailed animation that can easily be controlled by

the user. As Vivio provides similar capabilities to other languages, there was no need

to use any other technologies when developing this application. The fundamental

logic is computed in Vivio, which will then display the aspects of the computations

to the user.

As mentioned, the subject of the animation was Chaitin’s approach to register al-

location. Although a similar technique was used, due to the capabilities of Vivio

and the need to display the process on the screen some alterations were made to

the structures and implementation defined by Chaitin. Since the application was

implemented with the aim of allowing a user to enter their own program and the

application would perform the register allocation on this, a general approach was

taken with little to no hard coded values, functions or variables used. This function-

ality was not included in this phase of the application but is discussed in section 5

as functionality that could be implemented in the future.

These differences are outlined below with reference to the application. Each aspect

of the application is discussed in order of execution.

3.1.1 Parsing the program

A program is stored in a single String. In order to be able to parse this program

correctly and without a great deal of effort, as this is not the focus of the application,

some syntax rules needed to be established. These rules included the following;

1. Instructions must be either one- or two- address instructions

Chapter 3. Implementation 24

2. Instructions must be separated by a semi-colon

3. “:=” is the assignment operator

4. Only while and if else statements are supported

5. Statements must start and end with curly brackets

Defining these rules allowed a short concrete algorithm to be constructed that would

be capable of parsing any program abiding by these rules.

The procedure passed over each character in the String adding each character to an

instruction until it reached a semi-colon or a curly bracket. While this procedure

needed to parse the program onto an array of instructions, it also needed to produce

a formatted String of the program that could be displayed attractively on the screen.

This was achieved by using a count which mirrored the operation of a stack to keep

track of brackets for indentation. When an open bracket is encountered the count is

incremented, when a closing bracket is found the count is decremented. Before an

instruction is concatenated to the formatted program a loop adds indentation equal

to the count which represents the nested level. This allows the application to neatly

display nested levels of the program to the user that is straightforward to read. The

algorithm for parsing the program can be found in appendix A algorithm 1.

A final aspect of the parsing is to separate the instructions into their operands

namely, destination, operand one and maybe a second operand. These parts of the

instruction are separated from the string based on the definite instruction format.

These are used later in the application when performing the live analysis, section

3.1.3 nonetheless, it is completed at this step while the instructions are in a simple

array before they are separated into basic blocks in the next step outlined below.

These components of the instruction are included in the instruction object as well as

a String representing the instruction so that this information will be passed around

with the instruction for the entire application, allowing easy access.

Chapter 3. Implementation 25

3.1.2 Basic Blocks

As mentioned in section 2.2.1 there is a well defined method for separating a program

into its basic blocks, but despite this it does not easily transition into code. The

difficulty emerges when trying to track the control flow of the graph. In addition to

this, for this application each of the basic blocks must be displayed to the user with

arrows on screen. Accordingly, an original algorithm was used in the development

of this application.

A recursive algorithm was developed in order to account for any number of nested

levels. Furthermore the list of characteristics of a leader, section 2.2.1 was redefined

to the following;

1. The start of the program as per rule (1)

2. The statement following an if statement as per rule (2)

3. The statement following an else statement as per rule (2)

4. The statement following a while statement as per rule (2)

5. The statement following a closing bracket as per rule (3)

It is apparent the rules haven’t changed but have been expanded to the specific cases

for this application. More explicitly this algorithm is tail recursive, and as such a

structure is passed with each call representing the current state which is employed

in the creation of each basic block.

The algorithm works from the top level and is recursively called on each nested

level. Each index of the instruction array is tested and if it does not contain any

of the statements listed above it is added to the current block’s instruction list. If

the instruction contains an if, else or while statement, the current block is closed a

Chapter 3. Implementation 26

new block is set up in the state object and the function is called on the instructions

within the body of this statement. If a closing bracket is encountered, similarly the

current block is closed, a new block is set up in the state object and the function

returns i.e. returns back from the nested level.

A problem occurs when connecting the if block to the block following the if else

statement. The algorithm returns for the if block and then recurses into the else

part to finally return again. Consequently the current block and previous block have

since changed and there is no connection from the if part to the following block.

To account for this and also any nested if statements, the state object being passed

around holds a list of if blocks that have not been connected to a following block.

When there is a block that does not have a next block referenced we pop the last

reference off the stack.

While loops cause some difficulty when finding the correct links within the graph.

Firstly, the while statement itself is removed and instead an if statement is placed

at the end of the block and the path that should be taken if the if statement is true

“goes to” the beginning of the loop. It was carefully considered where this should

take place and it was decided that it should be done here to ensure the connections

of the blocks were correct.

Secondly, when a closing bracket is encountered it needs to be established if this

bracket belongs to the end of an if or else statement or in fact a while loop. To

accommodate this a separate list is used in the state object. When a while loop is

detected the instruction is saved to this list and the current block is saved similarly

to if and else statements which are both essentially stacks. Once a closing bracket is

found the top of the stack is checked. If it is a while statement the saved expression

is manipulated into an if and placed at the end of the block and is closed, similar

to the if and else. This provides the capability for while loops and allows for if

statements within them.

Chapter 3. Implementation 27

This algorithm creates an array of basic block objects. Each basic block object

records a list of previous block numbers, a list of next block numbers, its own number

and the instructions within this block. A pseudo representation of this algorithm

can be found in Appendix A algorithm 3. Nevertheless this function only populates

the previous block list for each block and not the next block list. The reason for

this is when processing each block it is only certain which block came before and it

is impossible to predict the full list of succeeding blocks accurately for each block.

A separate pass is used in which the blocks are traversed in reverse order and using

the previous block information for each block the next information can be added.

3.1.3 Liveness Analysis

For this application iterative global liveness analysis is performed on each of the

blocks followed by local liveness analysis on each instruction within a basic block.

As previously stated in section 2.2.2 the LiveOut and LiveIn sets must be computed

using equations 2.1 and 2.2 respectively. This analysis is performed from the bottom

up.

Global analysis is performed iteratively in order to gain a complete picture of the

overall program. This is crucial when handling loops. Consequently, global analysis

is performed first and is repeated until the sets converge. The algorithm used for

this was similar to that described in [5] and a pseudo representation can be found

in Appendix A algorithm 4. Once this is complete local analysis is performed inside

each block per instruction, using the LiveOut of the block as the last statement’s

LiveOut set. Completing both local and global analysis ensures no interferences are

missed.

Chapter 3. Implementation 28

Using the instruction objects discussed above the analysis can easily perform with

access to each variable in an instruction. Once this process is complete variables

within the same LiveOut set are said to interfere with each other.

3.1.4 The Interference Graph

Chaitin uses two structures to represent the interference graph as outlined in section

2.5, a bit matrix to provide random access and a vector for each node to provide

sequential access. Similarly two structures were used for this application however,

they are implemented differently.

Firstly interferences are stored for sequential access. Chaitin’s approach uses vectors

to store the interferences for sequential access, on the other hand Vivio does not

support vectors. Vectors are ideal for this use as they can grow as necessary and

simply finding the length of a vector for a given node gives the nodes degree.

An alternative solution implemented for this application was to use a linked list for

each node stored in an array. For this purpose and other comparison needs in the

application each node has a unique number associated with it. This number is used

to access the initial index in the array containing the node which will provide O(1)

access time to the start of the list. Each node in the list contains two integer values,

one which holds the number associated with the node it is representing, and one

which holds the index to the next node in the list, or zero if it is the end.

The first node in each list is located in the index corresponding to the associated

number of the node. As there is no data which needs to be stored in this node it

holds the degree of the node i.e. the length of the linked list. This structure may

not seem as elegant as Chaitin’s solution but still provides all the same functionality

with similar time and space complexity. It also caters for a varying number of nodes

Chapter 3. Implementation 29

in contrast to Chaitin’s structure as it is not necessary to define a vector for each

node at the beginning, it will be dynamically assigned space in the array.

Using the information collected in the sequential access the structure for random

access is populated. Instead of using a bit matrix for this application a 2D array

was used with a type of graphical object which in this case was a line. If there was

an interference between two indices the position in the array would contain a line

that connected the two nodes. These lines are then used in displaying the graph on

the screen. Random access is still provided, though instead of testing if the bit is 0

or 1 there is a test to see if the index contains an object or not. Furthermore, this

design only uses half of the structure split down the diagonal while the rest remains

empty [12].

Chaitin’s modus operandi uses a two pass algorithm over the IL program to first

populate the bit matrix then the vectors. This approach populates the interference

lists first and then uses this to populate the matrix. Providing random access to

interferences is to aid in the completion of coalescing, which is currently not included

in this application, however, it could be integrated as part of future work with little

effort as both types of accesses need for it [12] are provided. Currently the main

function of the matrix is to store the line for the animation as it provides simple

access to the lines and the nodes they connect.

3.1.5 Graph Colouring

As outlined above in section 2.2.3, graph colouring is performed on the interference

graph which in turn assigns registers to the variables. For this application a variation

on Chaitin’s [2] approach was used with influence from Briggs [1].

In Briggs [1] it is mentioned that selecting the node with the lowest degree may be a

better approach rather than selecting an arbitrary node less than k [2]. Equivalently

Chapter 3. Implementation 30

this application finds the node with the lowest degree from the interference list, and

if this is less than k then this node is removed from the graph. If the node with the

lowest degree is not less than k then spill code must be entered, section 3.1.6. As

you can see this is a combination of the two algorithms. When a node is removed

from the graph it is pushed onto a stack and all interferences with that node are

removed from the graph. This is repeated until the graph is empty or spilling must

occur.

Once the graph is empty colouring can begin. Nodes are popped off the stack which

will be in reverse order, then added back into the graph which is identical to Chaitin’s

technique. Where the two techniques diverge is in the selection of colours. Chaitin

states that when a node is added back into the graph a colour is “picked for it”

[2] P99. This is slightly ambiguous for implementing as the only constraint is that

it should not be the same colour as any of its neighbours. This notion executes

a similar concept as mentioned by Briggs [1]. An array is used where each index

represents a different colour. Furthermore, at each index the actual colour value for

each colour is stored for displaying on screen. When a node is being added back

into the graph the lowest available index is found and this colour is assigned to the

node. This is done by starting from the lowest index and finding the first available

index that has not been used by any of its neighbours.

When the graph has been coloured the final assignment can take place. Each colour

represents a register, meaning if two variables are the same colour then they do

not interfere and can reside in the same register. The original formatted program

is traversed and each variable is converted to a reference to the register in which

it resides. These registers are indicated with “R” concatenated with the index the

colour was stored at in the array. This is the final stage of the application.

Chapter 3. Implementation 31

3.1.6 Spilling

As previously explained, if it is impossible to remove a node from the graph due to

all the nodes having a degree greater than or equalled to k, then there is a need to

spill. Spilling is discussed in section 2.2.4 where the equations for calculating the

spill costs are ascertained at equation 2.3.

Chaitin’s procedure for finding the node that should be spilt uses a table to sup-

plement the graph with the cost for each node, equation 2.3. Equivalently, this

application supplements the graph with an array to hold the costs for each node.

As previously discussed, each node has a unique number associated with it. This

number is used to find the corresponding cost in the array. The cost for a given

node is the sum of all references where a reference is defined as 10 to the power of

the nested level of the reference.

When a node cannot be removed from the graph a heuristic is calculated for all

remaining nodes in the graph. This is done by dividing their cost by their current

degree. Similar to Chaitin’s method the node with the lowest cost estimate is chosen

for spilling. The algorithm used for selecting which node to spill can be seen in

appendix A algorithm 5.

Once a node is selected for spilling spill code must be added for the node and the

process needs to be started again. This is done in order to keep the program and

graph in step [2]. Spill code is added at every definition and use of the variable. As

the variable is now stored in memory, for each definition the memory location must

be updated and for each use the variable must be loaded from memory. This in turn

will reduce the live ranges of the variable.

The whole spilling process may need to be repeated several times until a colouring

can be found for the graph. Chaitin discusses some “local intellegence” [2] P100, used

when making spill decisions however, these were not included in this application.

Chapter 3. Implementation 32

Figure 3.1: First screen displayed to the user

3.2 Animation

Vivio was used to create the animation. Vivio is a tool for creating animations for

the web [3] and was discussed in section 2.4. As previously stated, the process of

register allocation needed to be fully implemented in order to accurately display the

information to the user. Once each step is performed the corresponding animation

is displayed to the user keeping the animation as smooth as possible.

3.2.1 Design

The design of the overall application was kept similar to previous animations created

and used within the college. This includes the styling and the buttons displayed to

the user. The first screen displayed to the user can be seen in figure 3.1. The three

leftmost buttons at the top right of the screen are used for controlling the animation.

Although the animation can be controlled by using the buttons on a mouse these

are provided in case the user does not have access to a mouse, and also to keep the

format consistent with other animations.

Chapter 3. Implementation 33

The start button can be clicked to start the animation. When the animation is

playing this button displays the word “stop” and can be used to stop the animation

at any time. The reset button can be used to reset the animation to the beginning

at any time throughout the animation. The ticks per second button displays the

speed at which the animation is currently playing. Clicking this button with either

the left or right mouse button will increase or decrease the current speed in a step

of ten.

The rightmost button “Prog=1” is the current program being displayed. There are

three sample programs included that the user can view by clicking on this button.

The first is a simple program that calculates the Nth Fibonacci number, the second

calculates the sum of all the uneven numbers less than 10 and the third is a program

containing an if statement, which produces a complex graph. These programs were

chosen because they would be familiar to the user and thus make it easier for them

to understand the process. Three programs are included to show how the process

works on a variety of examples without overwhelming the user.

The button marked with “K=4” can be used by the student to change the number

of k or registers for the program. This can be set to 3, 4 or 5 by clicking this button.

These numbers were chosen in order to fully expose the user to the influence this

number has. When K = 4 which is the default, the graph can be coloured and

the registers assigned to the nodes. When K = 3 there are not enough registers

available to colour the graph and spilling must occur. This will show the processes

of spilling to the user. When K = 5 the graph can again be coloured. What is

interesting about this example is that the application uses a method mentioned by

Briggs for choosing which colour to assign to a node, discussed above. The first

available colour is chosen for a specific node and as such, this example only uses

four out of the five colours.

Chapter 3. Implementation 34

Figure 3.2: Program on the left and the Basic Blocks created on the right

3.2.2 Animation Flow

The animation flows in a consistent manner where each new aspect of the process

is introduced incrementally so as to not overwhelm the user. Each new step of the

process appears on the right hand side and slides to the left after the previous step

shown on the left has finished and has disappeared. This will allow the user to

anticipate where the next information will appear and help them in understanding

the application. An example of this can be seen in figure 3.2 where the program is

on the left and the basic blocks created from that program have appeared on the

right.

Another mechanism to guide the user through the animation was with the use of

flashing. Flashing the background of an object draws the user’s attention to what

is changing and what it relates to. This will aid the user in understanding the

animation and in turn the concept being explained. Flashing was chosen in this

context to be consistent with all the other Vivio animations. Although this is the

case, this application and all other Vivio animations may need to reconsider this cue.

If a student was to have a condition such as photosensitive epilepsy this flashing could

be an issue, which was highlighted at the demonstration of the application by the

Chapter 3. Implementation 35

second reader. For this reason another alerting mechanism should be used such as

highlighting the object by simulating a pulsing effect i.e. growing and shrinking the

object slightly.

The speed of the animation is initialised to 70 ticks per second. This can be modified

by the user to speed up or slow down the animation. This speed was chosen as it

seems like an optimal speed to view the animation and it also allows the user to

speed up the animation a great deal if necessary.

If spilling occurs, after the spill code is inserted the process must be restarted from

the beginning. As both the program and graph need to be kept in step each step of

the method must be recalculated in order to generate the correct graph. As these

steps have been viewed by the user already this portion of the animation is set to

200 ticks per second to quickly display the process again without forcing the user

to watch it all again slowly. Notwithstanding, the user can still slow this aspect of

the animation down extensively at any point if they so wish. When the animation

reaches the colouring phase again it resumes a speed of 70 ticks per second.

It can be seen from the implementation chapter above that there are a distinct

number of steps involved in the process of register allocation via graph colouring.

Vivio allows the user to jump through the key parts of the animation. These are

known as checkpoints. Checkpoints have been added to the start of each of the main

steps in the animation so users can quickly advance through the animation to any

step they wish.

The full flow of animation can be seen in figure 3.3. Each screen in this flow indicates

the important transitions in the animation. Every screen in the animation is not

included as this would be unreasonable.

Chapter 3. Implementation 36

Figure 3.3: Complete animation flow

Chapter 3. Implementation 37

Figure 3.4: Scaled program will spill code

3.2.3 Display

When designing the animation particular consideration had to taken with regard to

the display. The animation was developed in accordance with an average sized laptop

screen utilizing all available screen space. The goal was to distinctively display all

aspects of the process, keeping it uncluttered while still being totally visible.

One difficulty encountered was the growing nature of the program after the need

to spill. As spill code is added to the program it becomes larger putting pressure

on screen space. Some of the examples used can spill numerous times before being

colourable and consequently the program, basic blocks and liveness grid can become

large enough to flow off screen. To accommodate this each of the animated objects

are scaled in accordance to how many variables have been spilt at a given time. This

is done by subtracting a fraction multiplied by the amount of variables spilt from 1

and scaling by this factor. This can be seen in figure 3.4 which is the same program

as figure 3.2 but with two variables spilt and spill code added for these.

Not to mention this scaling can only be done so many times before the user cannot

make out the program. One issue was with the grid displaying the liveness analysis

Chapter 3. Implementation 38

(a) Scrolling can be seen on the left (b) Table must then be split

Figure 3.5: Effects when the program becomes too large

which became too small to see for the example program three, as too many variables

had been spilt. To account for this, after a certain number of variables have been

spilt no more scaling will take place but the liveness grid will instead scroll while it

is being populated. This is shown in figure 3.5 A. Once the table has been filled it

is still impossible to display it all on screen for building the interference graph. In

order to display the table on screen it needed to be transposed and split into three

sections. This is shown in figure 3.5 B.

Chapter 4

Evaluation

The objective of this application was to assist students studying computer science

with the topic of register allocation via graph colouring in compiler design. There-

fore, it was important that the application not only work but was easy to use and

understand. The application must provide the user with detailed information on the

subject in order for them to grasp the concept while also encouraging them to learn

from it.

This section details the experiments conducted with regards to this application. A

description of the study can be found below. The results are shown and a discussion

of these results follows.

A study was conducted to determine how the application would perform while teach-

ing students on the topic. A total of thirteen students participated in the study.

Each of these students is currently enrolled in a computer science related course in

Trinity College Dublin.

The study comprised of two elements, firstly each participant was asked to use the

application for as long as they wished. In this time they were free to view the

animation at their own pace and also examine other examples by either changing

39

Chapter 4. Evaluation 40

the value of k as discussed in section 3.2, or viewing other example programs. When

they were satisfied with what they had seen they were asked to complete the second

element. The second element was a survey which consisted of eight questions. A

copy of the survey can be found in appendix B.3.

The survey was given to the participant at the beginning of the study along with an

information sheet about the project and instructions on how to use Vivio which are

also included in appendix B. Participants were asked to fill out the questions on the

survey either before or after using the application with no strict indication of what

should be filled out when.

During the course of this study participants were asked to be as honest as possible

when completing the survey. It is a well known fact however, that humans behave

differently when being watched. Moreover, as mentioned in “Experimental Design

from User Studies to Psychophysics” [16] participants in a study may be inclined to

provide the answers they think are expected. Students who know the matter being

studied and the results that are hoped for can end up consciously or unconsciously

providing the answers in a pattern that would match the expectations of the study

[16]. This book [16] discusses some solutions to “response bias” however, due to the

style, size and time available for this study the solutions were unrealistic for these

experiments.

It was hoped these experiments would give some insight into the success of the appli-

cation. The results of these experiments are outlined below although, as mentioned

due to the proximity and subject of the study they should be evaluated while taking

response bias into consideration.

Chapter 4. Evaluation 41

Figure 4.1: Different levels of participants

4.1 Results

The participants of this study included the following;

1. Students who had not previously studied compiler design

2. Students who had studied compiler design but not this topic

3. Students who had studied this topic in compiler design before

The breakdown of the different groups can be seen in figure 4.1.

The three categories above were included in the study in order to observe the results

of participants with different degrees of knowledge on the subject and to see how

the application would perform with each.

Ten participants did not know what graph colouring was before the study, this

includes participants who had studied compiler design before.

Chapter 4. Evaluation 42

(a) Before using this application

(b) After using this application

Figure 4.2: How would you rate your knowledge

Chapter 4. Evaluation 43

Question five of the survey asked the participants to rate their knowledge of register

allocation via graph colouring before and after using the application. The results

from this can be seen in figure 4.2. The scale used for this question was; poor, fair,

good, very good and excellent.

It is clear that before using the application many participants rated themselves as

poor, in spite of that after using the application none of the participants classed

themselves as poor in fact, a large portion stated their knowledge was now good or

higher.

Participants who answered “no” with regard to knowing what graph colouring is all

about rated themselves poor in the subject of register allocation via graph colouring.

This is to be expected. Be that as is it may, participants who knew what graph

colouring was, fell into three categories namely poor, very good and excellent with

one participant falling in each group. Only two of the participants who understood

what graph colouring was all about knew how it was used in register allocation.

Question two on the survey asked participants if they had an interest in compiler

design and these results can be seen in figure 4.3. Nine of the participants did have

an interest in compiler design even though many had never studied it before. These

results are broken down further and can be seen in figure 4.4.

Figure 4.4 displays the results for question two based on the answer the participant

gave for question one, namely Are you, or have you ever studied compiler design?.

Half the students who had not studied compiler design had an interest in the subject.

Additionally, two of the students who had studied compiler design had no interest

in the subject.

Everyone involved in the study found the application easy to use and they enjoyed

learning about register allocation via graph colouring in this way. They would

recommend the application to others.

Chapter 4. Evaluation 44

Figure 4.3: Q2. Do you have an interest in compiler design

Figure 4.4: Question 2 subdivided into the answers for question 1

Chapter 4. Evaluation 45

4.2 Discussion

The results outlined above display some interesting characteristics. A discussion of

these results follows.

When examining these results the most important point to consider is the different

levels of knowledge the students involved possessed shown in figure 4.1.

It was important to include students at different levels in the study in order to gain

a complete understanding of the performance of the application. The application

may be easy to understand for students who have studied the topic before but

not necessarily for students who have never encountered register allocation or graph

colouring. Consequently, students who had studied these topics were included in the

comparison and more importantly in the study to find if they enjoyed the application,

and of course to see if they could follow the animation easily with their background

knowledge.

It was discovered that students who had no previous knowledge in the subject needed

some extra information at the beginning of the experiment. This was done verbally

by the researcher. This information was given in accordance with the knowledge

they would have received in the compiler design module. As this application was

developed for use in the class of compiler design and not necessarily as a separate

entity divulging this information to the students was in keeping with the parameters

of the experiment. The information included details of what register allocation was

about and a little information on graph colouring.

Taking the different levels of the students into account the next chart can be anal-

ysed. Figure 4.2 demonstrates how the students judged themselves on their knowl-

edge of the subject both before and after using the application. This is one of the

most interesting graphs which produced the most relevant results. There is a marked

Chapter 4. Evaluation 46

Figure 4.5: How students who previous ranked themselves as poor, ranked after

improvement in how the participants graded themselves after using the application.

The majority of the participants estimated their knowledge on the subject as good

after viewing the animation which is an increase of two on the scale.

Figure 4.5, shows the breakdown of results for a subset of students after the anima-

tion. These students had classed themselves as poor before viewing the animation.

This breakdown displays an increase in knowledge of the students after viewing the

animation.

The goal of this research was to educate and encourage the students of the compiler

design module on register allocation via graph colouring. The results in figure 4.5,

give some indication of how this application performed.

It is also worth mentioning that all participants enjoyed using the application and

would recommend it to a friend not to mention, they found it easy to use. This

includes students who do not have an interest in compiler design. This feedback

Chapter 4. Evaluation 47

is important in relation to the application and it’s goal. It is hoped that future

classes of the compiler design module would enjoy using it as well as finding it easy

to operate.

While the participants were using the application some other points that were not

covered in the survey became apparent.

One difficulty many of the participants encountered was with the liveness analysis.

The equations for the liveness analysis are displayed on the screen for the entire

analysis and depict two equations that contain basic set theory operators. The

difficulty arose from the participants not knowing that the liveness analysis was

performed using sets. Although this distinction is not obviously stated, the word

set is mentioned in one of the sentences displayed at the bottom of the screen.

It seems that this was not enough for the participants to grasp the concept. On

the other hand, these students had not studied the second compiler design module

where liveness analysis is taught in depth. Furthermore, the equations in question

(discussed in section 2.2.2) do require a lengthy explanation in order to grasp the

theory correctly however, as this is discussed in the compiler design module it seems

unnecessary to include it in the animation and it would not make for a nice clean

graphical animation.

Another challenge faced by some of the participants was the operation of Vivio.

A sheet with instructions for Vivio was given to each student at the start of the

experiment in the event they were unfamiliar with it but it seems most participants

opted not to use this instruction sheet. Including instructions on screen for this

application would be excessive for the scale of the application. Likewise, all other

Vivio animations do not have this feature and it is assumed the users will embrace

the on-line documentation for the instructions of Vivio.

Chapter 4. Evaluation 48

While completing this dissertation time was of the essence and therefore little time

was left for experiments. If there had been an abundance of time available more

concrete experiments could have been performed. If this study was to be completed

again in the future with more time available, some improvements could certainly be

made.

Firstly, two surveys should have been completed so the user could not anticipate the

questions and their answers to them. One survey would be given before the student

used the application and the other would be given after the student had used the

application. The second survey could have included some questions on the subject

they had just viewed. Additionally, having further segregation between the users

and the researcher would perhaps encourage the participants to be more honest as

their data would not be directly linked to them. All of these improvements would

also reduce the effect of response bias mentioned above. The amount of participants

for this study was quite small and in order to find a more realistic estimate this

study should be done on a larger scale. Migrating this study to be done over the

Internet could assist in these modifications.

Chapter 5

Future Work

The goal of this project was to educate students of the compiler design module on

register allocation via graph colouring. This application has had some success in

achieving this goal, be that as it may, there are endless opportunities to expand on

the project.

An option for the user to enter a program could be implemented as an enhancement.

Allowing the user to enter a program they understand would have the benefits of the

user already knowing the program and focusing on the specific subject. It could also

demonstrate to them how this process would work on an infinite set of programs,

thus leading to more examples for them to follow. There are many obstacles that

would have to be addressed for this to be implemented. These would include the

following:

1. A standard format for the inputted program would need to be established in

order for the application to correctly parse it.

2. There may need to be a limit on the size of the program due to the amount of

available screen space. If the user was to enter a program that was very large

49

Chapter 5. Future Work 50

and required a lot of spilling, there may be a situation where the program

becomes too large to display on screen or, if scaled to fit on the screen, would

be unreadable.

3. Finally the current version of Vivio does not have the capabilities to read text

input from the user. This would need to be implemented by the researcher

along with the new application. Vivio has had a lot of new releases, so it is

possible this feature may be added in a future release.

Another aspect that could be implemented to complement the current application,

would be to complete animations for the other stages of the compiler. There are

many stages in the compiler pipeline that are not covered in this animation. Adding

these to the animation would give the user a more complete picture of the operations

involved in compiling code. This could include, but is not limited to:

1. Lexical Analysis

2. Intermediate code generation

3. Code optimisations

Likewise this software could be used in the compiler design module to educate the

students on the complete workings of the compiler. If these additions were to be

implemented the current application could be used as a starting point to build on.

As mentioned in section 2.5, there are other similar works published that focus on

improving Chaitin’s [2] algorithm. Other animations could be created, similar to

this, to execute different approaches, which could further the students education on

the subject of register allocation. These other papers are currently touched upon in

the compiler design module and it would be beneficial for the students to see these

approaches operational. Using the same sample programs for the different algorithms

Chapter 5. Future Work 51

would allow the students to easily compare them i.e. where one algorithm needs to

spill but the other does not, a point mentioned by Briggs [1].

Even though this project has reached its conclusion there is potential for building

on this. Results have shown minor improvements in educating students on this

subject and in consequence any additional elements could help improve the range of

knowledge of the students.

Chapter 6

Conclusion

The goal of this project was to create an E-Learning animation of register allocation

via graph colouring. This goal has been achieved. The animation displays the

complete process of register allocation via graph colouring as set out by Chaitin [2]

and has been completed in full.

The motivation for this application was to create an animation of register allocation

that would assist students of the compiler design module in Trinity College Dublin,

to understand this topic. This application is ready for students to use in the module

next semester.

The animation was created using Vivio which possess many features to enhance

the user’s experience. The animation can be completely controlled by the user,

including, starting and stopping the animation at any point, controlling the speed

of the animation and playing the animation backwards in case something was missed.

Vivio animations are created with the main publication medium being the World

Wide Web. This animation will be available to students on the Internet meaning

they will have access to it at any time.

52

Chapter 6. Conclusion 53

Experiments were used to assess how advantageous this application was in communi-

cating this subject. Users were asked to use the application and fill in a short survey

which included questions on their current stance on the topic and their experience

of the application. The results of these experiments show some improvement in the

users’ perception of their own knowledge of the subject after viewing the animation.

Besides this, all the participants not only enjoyed using the application but would

recommend it to others with a desire to learn about this subject.

These results should be analysed while taking into consideration the matter of re-

sponse bias. Response bias refers to the behaviour a participant in the study may

display when answering questions and can be influenced by the intimate nature of

the study. Participants may give answers they think the researcher wants rather

than giving their true answers. What’s more, most results display an increase in

the users knowledge, hence, it is acceptable to say there are benefits from using this

application. If there was an abundance of time a more thorough study could have

been conducted.

Overall it seems apparent that this was a successful and worthwhile project, and

was useful in the student’s understanding of this subject.

Appendix A

Algorithms

input : Program String
output: Program in a formatted string, an array of program instructions

while currentChar < program.len() do
currentInstruction =“”;
while program[currentChar] != “;” && program[currentChar] != “{” &&
program[currentChar] != “}” do

currentInstruction += program[currentChar];
currentChar++;

end
currentInstruction += program[currentChar];
programInstructions.add(currentInstruction);
if program[currentChar] == “}” then

stack–;
end
for i← 0 to stack do

formattedProgram += indent;
end
if program[currentChar] == “{” then

stack++;
end
formattedProgram += currentInstruction + “newline”;
currentInstruction =“”;
currentChar++;

end
return formattedProgram;

Algorithm 1: Parsing the program

54

Appendix A. Algorithms 55

Data: update information
Used to reduce repetition in the next algorithm;
increment instruction count in current information;
add current basic block to array of basic blocks;
set previous block number to current basic block;
increment current block in current information;

Algorithm 2: update information

Appendix A. Algorithms 56

input : Array of program instructions, Structure of current information
output: Array of the Basic blocks of the program

while not at end of Array of program instructions do
read current;
if contains ’}’ then

if closing a while loop then
add in corresponding instruction

end
update information;
return

end
if contains ’return’ then

update information;
add instruction to current basic block and increment count;
increment current block in current information;

end
if contains ’if ’ then

update information;
add instruction to current basic block and increment count;
add instruction to expression stack in current information;
current information ← findBasicBlocks(instructions, current
information);

end
if contains ’while’ then

update information;
add instruction to expression stack in current information;
current information ← findBasicBlocks(instructions, current
information);

end
if contains ’else’ then

update information;
add instruction to expression stack in current information;
current information ← findBasicBlocks(instructions, current
information);

end
if contains none of the above then

add instruction to current basic block and increment count;
increment instruction count in current information;

end
if reached end of conditional block then

create a new basic block;
connect any unconnected if blocks;

end

end
add current basic block to array of basic blocks;

Algorithm 3: Basic Block creation: findBasicBlocks

Appendix A. Algorithms 57

input :
output:

int changed = 1;
while changed is 1 do

changed = 0;
for bb← nunmberOfBB to 0 do

find live out of bb;
globalLivenessAnalysis[bb].liveout = liveOut;

oldLiveIn = globalLivenessAnalysis[bb].livein ;
find livein of bb ;
globalLivenessAnalysis[bb].livein = livein ;
if livein 6= oldLiveIn then

changed = 1;
end

end

end
Algorithm 4: Iterative Global Flow Analysis

input : Stack size
output: node to spill

for n← 0 to N do
if still in the graph then

real heuristic ← cost[n]/degree[n];
if heuristic < currentLowest && n /∈ spilllist && n /∈ stack then

currentLowest ← heuristic;
nodeToSpill ← n;

end

end

end
add nodeToSpill to spill list;
return nodeToSpill;

Algorithm 5: Find node to spill

Appendix B

Experiment Documentation

58

Appendix B. Experiment Documentation 59

Figure B.1: Consent form

Appendix B. Experiment Documentation 60

Figure B.2: Information sheet

Appendix B. Experiment Documentation 61

Figure B.3: Survey given to the participants

Appendix B. Experiment Documentation 62

Figure B.4: Vivio instructions given to participants

Bibliography

[1] Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring

heuristics for register allocation. SIGPLAN Not., 39(4):283–294, April 2004.

ISSN 0362-1340. doi: 10.1145/989393.989424. URL http://doi.acm.org/10.

1145/989393.989424.

[2] Gregory Chaitin. Register allocation and spilling via graph coloring. SIGPLAN

Not., 39(4):66–74, April 2004. ISSN 0362-1340. doi: 10.1145/989393.989403.

URL http://doi.acm.org/10.1145/989393.989403.

[3] J. Jones. Vivio - a system for creating interactive reversible e-learning anima-

tions for the www. In Visual Languages and Human Centric Computing, 2004

IEEE Symposium on, pages 131–133, Sept 2004. doi: 10.1109/VLHCC.2004.63.

[4] Trinity College Dublin School of Computer Science. Computer science. URL

https://www.scss.tcd.ie/undergraduate/computer-science/.

[5] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1986. ISBN 0-201-10088-6.

[6] Torben Ægidius Mogensen. Introduction to Compiler Design. Undergrad-

uate Topics in Computer Science. Springer, 2011. ISBN 978-0-85729-828-

7. doi: 10.1007/978-0-85729-829-4. URL http://dx.doi.org/10.1007/

978-0-85729-829-4.

63

http://doi.acm.org/10.1145/989393.989424
http://doi.acm.org/10.1145/989393.989424
http://doi.acm.org/10.1145/989393.989403
https://www.scss.tcd.ie/undergraduate/computer-science/
http://dx.doi.org/10.1007/978-0-85729-829-4
http://dx.doi.org/10.1007/978-0-85729-829-4

Bibliography 64

[7] Oxford University Press. Oxford dictionaries. URL http://www.

oxforddictionaries.com/.

[8] Michael D. Byrne, Richard Catrambone, and John T. Stasko. Evaluating

animations as student aids in learning computer algorithms. Computers &

Education, 33(4):253 – 278, 1999. ISSN 0360-1315. doi: http://dx.doi.

org/10.1016/S0360-1315(99)00023-8. URL http://www.sciencedirect.com/

science/article/pii/S0360131599000238.

[9] Gary B. Mayton. Learning dynamic processes from animated visuals in

microcomputer-based instruction. page 1, 1991. URL http://eric.ed.gov/

?id=ED334999.

[10] Michael R. Birch, Christopher M. Boroni, Frances W. Goosey, Samuel D. Pat-

ton, David K. Poole, Craig M. Pratt, and Rockford J. Ross. Dynalab: A

dynamic computer science laboratory infrastructure featuring program ani-

mation. SIGCSE Bull., 27(1):29–33, March 1995. ISSN 0097-8418. doi:

10.1145/199691.199706. URL http://doi.acm.org/10.1145/199691.199706.

[11] Dr. Jeremy Jones. Vivio Reference. Trinity College Dublin.

[12] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,

Martin E. Hopkins, and Peter W. Markstein. Register allocation via color-

ing. Computer Languages, 6(1):47 – 57, 1981. ISSN 0096-0551. doi: http://

dx.doi.org/10.1016/0096-0551(81)90048-5. URL http://www.sciencedirect.

com/science/article/pii/0096055181900485.

[13] Fred Chow and John Hennessy. Register allocation by priority-based coloring.

SIGPLAN Not., 39(4):91–103, April 2004. ISSN 0362-1340. doi: 10.1145/

989393.989406. URL http://doi.acm.org/10.1145/989393.989406.

http://www.oxforddictionaries.com/
http://www.oxforddictionaries.com/
http://www.sciencedirect.com/science/article/pii/S0360131599000238
http://www.sciencedirect.com/science/article/pii/S0360131599000238
http://eric.ed.gov/?id=ED334999
http://eric.ed.gov/?id=ED334999
http://doi.acm.org/10.1145/199691.199706
http://www.sciencedirect.com/science/article/pii/0096055181900485
http://www.sciencedirect.com/science/article/pii/0096055181900485
http://doi.acm.org/10.1145/989393.989406

Bibliography 65

[14] David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and

graph coloring algorithms. J. ACM, 30(3):417–427, July 1983. ISSN 0004-5411.

doi: 10.1145/2402.322385. URL http://doi.acm.org/10.1145/2402.322385.

[15] Frederick Chi-Tak Chow. A Portable Machine-independent Global Optimizer–

design and Measurements. PhD thesis, Stanford, CA, USA, 1984. AAI8408268.

[16] Douglas Cunningham. Experimental design from user studies to psychophysics.

CRC Press, Boca Raton, FL, 2012. ISBN 978-1-56881-468-1.

http://doi.acm.org/10.1145/2402.322385

	Declaration
	Summary
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Overview of Contents

	2 Background
	2.1 Compiler Design
	2.2 Register Allocation
	2.2.1 Basic Blocks
	2.2.2 Liveness Analysis
	2.2.3 Graph colouring
	2.2.4 Spilling

	2.3 E-Learning
	2.4 Vivio
	2.5 Related Work
	2.5.1 Colouring Heuristics for Register Allocation
	2.5.2 Register Allocation by Priority-based Colouring

	3 Implementation
	3.1 Approach
	3.1.1 Parsing the program
	3.1.2 Basic Blocks
	3.1.3 Liveness Analysis
	3.1.4 The Interference Graph
	3.1.5 Graph Colouring
	3.1.6 Spilling

	3.2 Animation
	3.2.1 Design
	3.2.2 Animation Flow
	3.2.3 Display

	4 Evaluation
	4.1 Results
	4.2 Discussion

	5 Future Work
	6 Conclusion
	A Algorithms
	B Experiment Documentation
	Bibliography

