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“A computer once beat me at chess, but it was no match for me at kick boxing.”

Emo Philips



Summary

The motivation of this project was to examine the practicality of functional program-

ming when designing a program to play the combinatorial game Dots-and-Boxes at an

advanced level. Specifically, it was intended that the program be able to analyse the

state of the game at any time and to use the famous double-dealing move to good effect.

The realisation of such a program required the invention of sophisticated theory and

strategies for advanced-level gameplay, the design of an architecture of data structures

which would store game data in an efficient and utilisable way, the design and imple-

mentation of intricate algorithms for chain detection, game state analysis, and decision-

making, as well as the development of an action policy which would enable the program

to select actions consistent with the high-level strategies it was intended to follow. In

addition to this, an interactive user interface required to be implemented in order to

effectively test the program.

The design of the program centred around the representation of a game of Dots-and-

Boxes as a mathematical graph. By doing this, the different types of nodes and chain

structures could be categorised into different classes. The pattern-matching abilities of

functional programming was used to identify these objects and perform actions accord-

ingly.

It was found that functional programming was well-suited for this difficult task. The

functional programming approach allowed complex and intricate functions to be con-

structed from simple, flexible, and powerful data structures and functions. Functional

programming’s support of higher-order functions and pattern-matching techniques, as

well as its extensive toolbox of highly-utilisable data structures and functions allowed

the program to be expressed in a concise and elegant way.

The completed program successfully achieved the goal of advanced-level play of the

Dots-and-Boxes game and it did so with an elegance and finesse only achievable through

the use of functional programming.
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Author’s Note

When analysing a state of a game of Dots-and-Boxes, the convention which will be used

is as follows:

The player to whom the turn belongs is referred to simply as the “player”. The other

player is referred to as the “opponent”.
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Chapter 1

Introduction

People have always been intrigued by games and puzzles. The feeling of accomplishment

that is felt when a long and arduous puzzle is finally solved is surpassed only by that of

defeating a fellow player in a hard-fought game of chess or draughts. It is in our nature

to always strive for victory over others and it is for this reason that games such as chess

are so popular. This work is interested in a special family of games and puzzles known

as combinatorial games.

1.1 Combinatorial games

Combinatorial games are typically two-player, turn based games with perfect informa-

tion and no stochastic elements. Well-known examples of combinatorial games include

chess, checkers, and tic-tac-toe. This family of games is not restricted to two player

games, however; it also includes single-player puzzles and even zero-player games such

as Conway’s Game of Life. Most combinatorial games have very large state spaces and

are NP-hard or NP-complete, making optimal play very difficult to achieve.

As well as being naturally appealing, the study of combinatorial games has applications

in various areas including complexity analysis, logic, artificial intelligence, graph and

matroid theory, and error correction codes [4]. One of the pioneering works on combina-

torial game theory is Winning Ways for your Mathematical Plays [5], a book written by

mathematicians Elwyn Berlekamp, John Conway (creator of the aforementioned Game

of Life), and Richard Guy.

1



Introduction 2

In [4], Fraenkel et al. provide a detailed explanation of combinatorial games and their

properties as well as provide a large bibliography of popular combinatorial games and

puzzles.

1.1.1 Nim

The game of Nim is one of the most important games in combinatorial game theory.

Nim is a two-player game in which players take turns removing objects from separate

heaps. During each turn, a player must take at least one object from a distinct heap.

There is no limit to the number of objects which can be taken during a turn, provided

that they all come from the same heap. In a normal game of Nim, the player who takes

the last object is deemed the winner.

The game of Nim has been mathematically solved and the complete theory of the game

was developed by Charles L. Bouton in [6]. A number which describes the value of a nim

heap is known as a Grundy number or nimber. Nimbers have their own special addition

and multiplication operations and are of great importance in the field of combinatorial

game theory.

The Sprague-Grundy theorem [7], [8], discovered by mathematicians R. P. Sprague and

P. M. Carmelo Grundy and later developed into the field of combinatorial game theory by

Berlekamp et al. [5], states that every impartial game under the normal play convention

has a corresponding nimber value. This does not mean that all games which meet this

criterion have been mathematically solved, although it does mean that nimber arithmetic

can be used in the their analysis.

1.2 Functional programming

Functional programming is a programming paradigm which models computation as the

evaluation of mathematical functions. The output of such a function depends only on

its list of arguments and their associated values. Unlike imperative programming (C,

Java, etc.), there is no dependence on any global state.

The nature of functional programs greatly facilitates the difficult task of formal verifica-

tion, i.e. proving that a program behaves as intended under any possible circumstance



Introduction 3

using formal methods. The same cannot be said about imperative programs, however;

the sequential and state-based nature of such programs makes this task much more

difficult.

Functional programming languages have many capabilities which make them very useful

for problem solving and analysis. In [9], Bird presents a program to solve the popular

combinatorial puzzle Sudoku using functional programming. Bird’s program solves the

problem in an extremely elegant and sophisticated way and is a testament to the effec-

tiveness and finesse of functional programming.

Function programming languages come with a toolbox of flexible and highly-utilisable

functions, such as the famous map and fold functions, which greatly facilitate the de-

velopment of concise and elegant programs. A detailed introduction to functional pro-

gramming and its many capabilities is provided in appendix A.

1.3 Aim

The aim of this work was to create a program capable of playing the combinatorial

game Dots-and-Boxes at an advanced level using functional programming in order to

demonstrate the effectiveness of the functional programming approach to solving such

problems. Specifically, the program was required to be able to perform a sophisticated

action known as the double-dealing move and use it good effect.

The rest of this document is structured as follows: First, an overview of the Dots-and-

Boxes game and its properties is given. Then the game of Strings-and-Coins is introduced

and it is shown how this game influenced the design of the architecture of the program.

In chapters 4-7, chain structures and their properties, advanced gameplay strategies, as

well as various methods performing sophisticated analysis of the game using functional

programming are discussed in detail. Finally, it is shown how the theory and strategies

presented in this work are sufficiently summarised into the action policy of the program.
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The Dots-and-Boxes Game

The combinatorial game which was studied as part of this project is called Dots-and-

Boxes. This game has a very interesting mathematical theory which makes achieving

optimal play a difficult and nontrivial problem.

Figure 2.1: A large game of Dots-and-Boxes as seen on the cover of [3]

2.1 Dots-and-Boxes

Dots-and-Boxes is a simple, two-player, turn-based game traditionally played using pen-

cil and paper. The game begins with a rectangular grid of dots enclosing a rectangular

array of boxes such that each dot forms the vertex of one or more boxes. The players

4
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Figure 2.2: A 4x4 grid of dots

take turns connecting two vertically or horizontally adjacent dots with lines. Each time

the final side of a box has been filled in, the player who drew the line is awarded with

the box and another turn. It is compulsory that this additional turn be taken. The

game ends once all of possible lines have been drawn in and the player who has earned

the most boxes is deemed the winner.

A 4x4 grid of dots containing a 3x3 rectangular array of boxes is shown in figure 2.2.

2.2 Child’s play?

Although traditionally played by children, advanced play of Dots-and-Boxes requires

complex mathematical analysis. Mathematician Elwyn Berlekamp, recognised as one of

the founders of combinatorial game theory, described Dots-and-Boxes as “The mathe-

matically richest popular child’s game in the world, by a substantial margin” [3].

2.3 Complexity of the game

The total number of lines contained within an n×m grid of dots is

Ne = n(m− 1) +m(n− 1) (2.1)

It can be shown using basic combinatorial mathematics that the total number of possible

states containing exactly i lines is
(
Ne

i

)
. Thus, the total number of possible states that

the board can be in is
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Ns =

Ne∑
i=0

(
Ne

i

)
= 2Ne (2.2)

See that the state space of the game increases exponentially with the dimensions of

the board. Thus, for large boards, achieving optimal play by a brute-force approach is

simply not practical.

2.4 Playing Dots-and-Boxes

An incomplete game of Dots-and-Boxes played between a red player and a blue player is

shown in figure 2.3. Recall that drawing the fourth edge of a box awards a player with a

box and an additional move. For this reason, an Dots-and-Boxestive strategy would be

to avoid filling in the third edge of a box so as not to offer the box to an opponent. See

from figure 2.3 that both players follow this Dots-and-Boxestive strategy until a state is

reached in panel 14 where it is impossible to make a move which does not offer a box to

the opponent. Such a state is known as a state of gridlock.

When a state of gridlock has been reached, the board becomes divided into a series of

structures called chains. Chain structures are strings of boxes with the special property

which allows a player to take all the boxes contained within the chain once the third

edge of any of the contained boxes has been filled. For this reason, when forced to open a

chain, one should aim to open the shortest possible chain so as to offer the least amount

of boxes to the opponent.

See from figure 2.3 that, when a state of gridlock is reached in panel 14, the board

becomes divided into two chain structures, one containing four boxes and the other

containing five. At this point, the red player is forced to open a chain. See in panel

15 that the red player opens the chain containing four boxes, i.e. the shortest possible

chain.

The blue player is now free to take all of the boxes contained within the newly-opened

chain. Figure 2.4a shows what would happen if the blue player were to take all the boxes

on offer. See that, once all the boxes have been taken, the blue player will be forced to

open the longer chain to the red player and thus allow the red player to win the game.
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Figure 2.3: An incomplete game of Dots-and-Boxes played on a 4x4 grid
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(a) The red player wins as a result of the blue player being greedy

(b) The blue player is clever and forces a win using a double-dealing move

Figure 2.4: Two possible endings to the game in figure 2.3

Alternatively, the blue player could perform the actions shown in figure 2.4b. See that,

when taking the available boxes in the open chain, the blue player declines the last two

boxes and hands them over to the red player instead of opening the longer chain. This

action is known as a double-dealing move. The red player now has no option other than

to open the longer chain to the blue player and thus the blue player is able to win the

game.

2.5 Mathematical theory of Dots-and-Boxes

Dots-and-Boxes is an impartial game, meaning that, by the Sprague-Grundy theorem,

any state of a game of Dots-and-Boxes has a corresponding nimber value. Thus, the

theory of Nim can be used in the analysis of the game. Berlekamp describes the use

of nimber arithmetic to play Dots-and-Boxes in [3]. The use of nimber arithmetic in

the analysis of the game is beyond the scope of this project; however, the theory and

architecture presented in this work is flexible enough to support the implementation of

higher-level strategies which perform such analysis.
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2.6 Creating a program to play Dots-and-Boxes

The concepts of chain structures and double-dealing moves are of paramount importance

in advanced play of the Dots-and-Boxes game and it is for this reason that the main

focus of this project was to create a program able to detect and analyse chains and to use

the double-dealing move to good effect. Such a program requires an architecture which

stores information in an effective an utilisable way which facilitates efficient and intricate

analysis of the game. The program which was designed to play Dots-and-Boxes at an

advanced level was implemented using the functional programming language Haskell.

The implementation of this program required the design and realisation of the following

modules:

• An architecture of functional data structures which facilitate the analysis of game

and player data

• A set of functions capable of performing actions such as chain and pattern detec-

tion, data analysis, decision making, etc.

• An action policy which enables the program to select actions that are consistent

with the advanced gameplay strategies which will be discussed later in this docu-

ment

• An interactive user interface to enable testing of the program

The functional data structures which were used in the program are discussed in chapter

3. The source code for this program as well as information on the various functions and

data structures is included in appendix D.

2.7 Summary

In this chapter the combinatorial game Dots-and-Boxes was introduced as well as its

complexity and theory. In the next chapter, a game which is isomorphic to Dots-and-

Boxes, the game of Strings-and-Coins, is introduced.
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Strings-and-Coins

In this chapter, a different way to represent a game of Dots-and-Boxes is presented. This

new representation facilitates the analysis and understanding of the game by allowing

any state of the game to be expressed as a mathematical graph.

Figure 3.1: A game of Dots-and-Boxes shown with its corresponding game of Strings-
and-Coins

3.1 Strings-and-Coins

Consider a set of coins interconnected with strings such that each string either connects

two coins together or connects a coin to a wall. Now consider a game in which two

players take turns cutting these strings. Once a coin has all of its strings removed, the

10



Strings-and-Coins 11

Figure 3.2: A game of Dots-and-Boxes expressed in Strings-and-Coins representation

player who made the final cut is awarded with the coin and an additional turn. The

game ends once all of the strings have been cut and the player who has collected the most

coins is deemed the winner. This game is called Strings-and-Coins and was invented by

Elwyn Berlekamp.

A game of Dots-and-Boxes is in fact mathematically equivalent to a special case of

Strings-and-Coins where each coin begins with exactly four attached strings and the set

of coins is arranged in a rectangular array bordered by walls as shown in figure 3.2.

Any arbitrary game of Dots-and-Boxes therefore has a corresponding Strings-and-Coins

representation. A game of Dots-and-Boxes is shown with its corresponding game of

Strings-and-Coins is shown in figure 3.1.

The great benefit of the Strings-and-Coins representation of a game of Dots-and-Boxes

is that it allows the game to be expressed as a mathematical graph where the coins and

walls form the set of nodes and the strings form the set of edges. This graph represen-

tation makes patterns and structures much easier to recognise and thus facilitates the

overall understanding of the game and its concepts.

3.2 Classification of nodes

At this point it is beneficial to categorise the many different types of node which can

occur during a game of Strings-and-Coins. First, each node should be classified as either

a coin node or a wall node. Coin nodes and wall nodes are defined as follows:

Definition 3.1 (Coin). A coin is a node which, once all its edges have been removed,

awards the player who removed the final edge a point and an additional turn.
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Definition 3.2 (Wall). A wall is a node with a single edge connecting it to a coin node.

Unlike a coin, removing all the attached edges of a wall has no additional effect.

The following classes of node were defined as part of this project. It was found that the

categorization of nodes into these classes was of great use in the analysis of the game.

Definition 3.3 (Singleton). A singleton is a coin with a single edge connected to it.

Definition 3.4 (Binode). A binode is a coin which has exactly two edges connected to

it.

Definition 3.5 (Multinode). A multinode is a coin which has at least three edges

connected to it.

Each class of node has a distinct set of associated properties which will be discussed

later in this document. The symbols which hereby will be used to graphically represent

these objects are shown in figure 3.3 below.

(a) A singleton node (b) A binode (c) A multinode

(d) A loose coin (e) A wall node

Figure 3.3: The five different classes of node used as part of this project

3.2.1 The wall node

Wall nodes play a special role in the game of Strings-and-Coins. An edge which connects

two coins together will have a direct effect on both coins when removed. However, an

edge which connects a coin to a wall node will effect only that coin when removed. Wall

nodes play an important role in the strategy of the game and are a key component in

structures called simple chains, which will be discussed in the next chapter.

Although there is no parallel to a wall node in a game of Dots-and-Boxes, their effects

are summarised by the existence of lines which form the side of only one box.



Strings-and-Coins 13

3.3 Strings-and-Coins in functional programming

When designing a program to play Dots-and-Boxes, it was found that an architecture

based on the game of Strings-and-Coins greatly eased the implementation and analysis

of the game.

3.3.1 Node and edge data structures

data Node = Wall — A wall node

| EmptyNode — Coin with no attached edges

| Singleton EdgeId — Coin with a single attached edge

| BiNode (EdgeId , EdgeId) — Coins with two attached edges

| MultiNode [EdgeId ] — Coins with three or more attached edges

The Haskell code above shows how node data structures were defined in the program.

See that nodes are divided into the five categories shown in figure 3.3. See also that

they are defined clearly and concisely; this is one of the many strengths of the functional

programming approach.

Coin objects contain key values called EdgeIds which uniquely identify the edges which

are connected to them. The edge objects themselves are stored in a special type of lookup

table known as a map. The map data structure is another highly utilisable member of

the Haskell toolkit; its O(log n) search time allowed the program to be highly scalable.

Using the appropriate EdgeId , any edge stored within the map can be accessed and

modified. Like edge objects, nodes are also stored in a map structure and each node can

be accessed using its associated key value called a NodeId .

Specifically, map objects which store node objects were called NodeMaps and map ob-

jects which store edge objects were called EdgeMaps. For convenience, a data structure

called a Database was defined to store both a NodeMap and an EdgeMap in a single

data structure. All the information about the current state of a game could be found

in its associated Database. More information on Map data structures in Haskell can be

found in appendix C.
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type Edge = (NodeId , NodeId , Bool)

The above code shows how edge data structures were defined in the program. See that

all edge objects contain three values: two key values which uniquely identify the nodes

to which they connect, and a Boolean variable which indicates whether or not the edge

has been cut.

More information on these node and edge objects can be found in section D.3.1.1.

3.3.1.1 Effectiveness of this architecture

Several different architectures were designed over the course of this project before the

above architecture was reached. Due to its simplicity and flexibility, this architecture

greatly facilitated the design of the functions and algorithms which analyse the current

game state and it allowed the program to become more sophisticated without creating

any unnecessary obstacles.

3.3.2 Traversing the graph

The architecture defined in the previous section allows the graph which expresses a

game of Strings-and-Coins to be traversed with ease. Let i be a key value which uniquely

identifies some coin ni on the board. The value of i can be used to reference its associated

coin stored in the NodeMap and thus it can be used to retrieve Ei, the set of all edges

which connect to ni. The program can hop to a neighbouring node by following any

of the edges in E. As an edge object, e, contains the key values of the two nodes to

which it connects, na, nb, the key value of the neighbouring node which can be reached

by following e is the only element in the set {a, b} whose value is not equal to i. This

key value can then be used to retrieve the neighbouring node from the Database. The

O(log n) search time of map data structures allows the graph to be traversed quickly

and efficiently.

More information on graph traversal can be found in section D.3.4.
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3.4 Structures

The term “structure” has been used loosely in this document thus far. Now that the

Strings-and-Coins representation of the game has been discussed in detail, structures can

be formally defined with respect to this representation. The definition of a structure is

stated as follows:

Definition 3.6 (Structure). A structure is a set of interconnected nodes S such that,

for any pair of nodes, ni, nj ∈ S, i 6= j, there exists at least one path which connects

them.

At the beginning of each game of Dots-and-Boxes, there exists at least one path con-

necting each arbitrary pair of nodes on the board. The entire board thus forms one

large structure. However, as the game progresses and edges are removed, this structure

will typically become divided into several independent structures. Recall that, once a

state of gridlock has been reached, the board becomes divided into a series of structures

known as chains. Such structures will be discussed in detail in the next chapter.
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Chains

The concept of a chain is the cornerstone of the analysis of the Dots-and-Boxes game

and advanced play requires a deep and thorough understanding of chain structures and

their properties. In this chapter, chain structures are studied in detail as well as the

strategies which involve them.

Figure 4.1: A series of chains

4.1 Chains

Recall that when a game of Dots-and-Boxes reaches a state of gridlock, the board be-

comes divided into a series of chains. Figure 4.1 shows an example of such a board. The

16
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same board is shown in Strings-and-Coins representation in figure 4.2.

Figure 4.2: The Strings-and-
Coins representation of figure 4.1

See that the chain structures are much easier to recog-

nise in this figure. This is one of the great strengths of

the Strings-and-Coins representation of the game.

In addition to making chain structures easier to recog-

nise, this representation also demonstrates clearly what

is contained within a chain structure: a sequence of bin-

odes. See that all the chains in figure 4.2 are made up

of binodes and one of which contains a singleton node.

Using this observation, a chain can be defined formally

as follows:

Definition 4.1 (Chain). A chain is a continuous string of singleton nodes or binodes.

4.1.1 Length of a chain

Since each chain contains a set of coins, it is useful to define a quantity which measures

the cardinality of this set. This quantity is known as the length of the chain.

Definition 4.2 (Length of a chain). The length of a chain is the number of coins

contained within the chain.

In order to keep the notation concise, a chain of length n will be referred to as an n-chain.

The definition of an n-chain is stated formally as follows:

Definition 4.3 (n-chain). An n-chain, where n ∈ N, is a chain which contains n coins.

4.1.2 Categories of chain

As part of this project, it was found that chains could be categorised into three distinct

classes: simple chains, loop chains, and complex chains. Each class of chain has a

different set of properties which affect the strategies of the game.

The first class of chain which will be examined is the simple chain. Simple chains are

defined as follows:
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Definition 4.4 (Simple chain). A simple chain is a chain which is bounded by wall

nodes.

All of the chains which will be looked at in this chapter are simple chains. The other

types of chain will be discussed in the later chapters of this document.

4.2 Open chains

Figure 4.3: An open chain

A chain containing a singleton node is known as an open

chain. Figure 4.3 shows an example of such a chain. Open

chains have a special property which enables a player to

take all of the coins contained within the chain. The reason

for this is that, once the singleton coin is freed from the end

of the chain, a new open chain is produced and the player

is awarded an additional turn. With this additional turn the player is able to take the

coin from the end of the new open chain and this process repeats until all the coins in

the chain are removed. This process is depicted in figure 4.4.

Figure 4.4: Taking the coins from an open chain

4.2.1 Opening chains

In contrast to an open chain, a closed chain is a chain which does not contain any

singleton nodes and thus no coins can be taken from such a chain during the next move.

However, if one of the edges contained within a closed chain is cut, the chain will be

reduced to one or two open chains depending on where the cut was made. This can be

seen clearly in figure 4.5.

Since opening a chain allows the opponent to take all of the coins contained within the

chain, an intuitive strategy when forced to open a chain would be to open the smallest

possible chain so as to minimise the number of coins offered to the opponent. This

strategy is stated formally in strategy 4.1 as follows.
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(a) Reducing a closed chain to two open chains

(b) Reducing a closed chain to a single open chain of the same length

Figure 4.5: Opening a chain

Strategy 4.1 (Opening chains). When forced to open a chain, one should open the

shortest possible chain so that the smallest possible number of coins are offered to the

opponent.

4.3 Double-dealing

Figure 4.6: A winning
position

Consider the situation in figure 4.6. The board was in a

state of gridlock and the opposing player was forced to open a

chain. Following strategy 4.1, the opponent decided to open

the shortest chain. The player is now free to take the coins

contained within this chain. However, if the player were to

be greedy and take all of the available coins, he/she would be

forced to open the longer chain and thus allow the opponent

to win the game. In this situation, a good strategy for the

player would be to perform an action which passes the turn

on to the opponent without opening the longer chain. There are two possible actions

which would achieve this and these actions are shown in figure 4.7. See that performing

either action in figure 4.7 would result in a scenario in which the opposing player would

eventually have no choice but to open the long chain. Any move that the opponent can

make either frees a coin and gains an additional move or opens the long chain and passes

the turn to the player. Thus by the end of the opponent’s turn the long chain will have

been opened and the player will be able to take the available coins and win the game.

The player is therefore in a winning position.
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(a)

(b)

Figure 4.7: Sacrificing some coins in order to force the opponent to open a longer
chain

Although either action in figure 4.7 would result in a situation in which the player can

win the game, the action in figure 4.7a is somewhat foolish; it sacrifices more coins

than is necessary in order to force a win. The action in figure 4.7b is the best possible

action in this situation; it reduces the open chain to an open 2-chain and then detaches

the chain from the wall node to form a special chain composed of two singleton nodes

sharing one common edge. In [3], Berlekamp refers to this structure as a double-cross,

however in this document the structure will be referred to as a dipole.

Figure 4.8: A double-
dealing move

A move which produces a dipole and passes the turn on to the

opponent is known as a double-cross move or a double-dealing

move. Double-dealing moves are of great importance in ad-

vanced play of the Dots-and-Boxes game and it is for this reason

that the main focus of this work was to create a program which

is able to use this move to good effect.

4.4 The hard-hearted handout

Figure 4.9: A closed
2-chain

Note that in order to perform a double-dealing move, an open

chain with a length of at least two nodes is required. A double-

dealing move cannot be performed on an open 1-chain because

the chain does not contain enough coins to produce a dipole.

Consider the closed 2-chain shown in Dots-and-Boxes representation in figure 4.9. When

forced to open such a chain, an inexperienced player might not give much thought into
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(a) (b) (c)

Figure 4.10: The three possible ways to open the 2-chain (Dots-and-Boxes)

choosing which edge to fill as either way the opponent will be given the opportunity to

take the two boxes contained within. There are three possible moves which will open

this chain and these moves are shown in figure 4.10. At first glance there may not seem

to be a difference between these three actions; however, choosing the right move in this

situation could be the difference between victory and defeat.

(a) (b) (c)

Figure 4.11: The three possible ways to open the 2-chain (Strings-and-Coins)

Figure 4.11 shows the same actions in Strings-and-Coins representation. In this repre-

sentation the consequences of each action are much more obvious: actions (A) and (B)

produce an open 2-chain whereas action (C) produces two open 1-chains. Recall that

a double-dealing move requires an open chain containing at least two nodes. Thus the

opponent will given a double-dealing opportunity if actions (A) or (B) are taken. With

this opportunity the opponent may have the chance to force a win, and for this reason

actions (A) and (B) can be considered to be very foolish moves. If action (C) is chosen,

then no such opportunity is presented to the opponent, as double-dealing moves require

open chains with lengths of at least two coins.

The move in action (C) is referred to as a hard-hearted handout [3]. Hard-hearted

handouts are defined as follows:

Definition 4.5 (Hard-hearted handout). A hard-hearted handout is an action which

divides a closed 2-chain into two open 1-chains.

In contrast, actions (A) and (B) are referred to as half-hearted handouts. A double-

dealing opportunity should never be presented to an opponent free of charge and thus

the following strategy should always be followed when opening 2-chains:
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Strategy 4.2. [Opening 2-chains] When opening a 2-chain, a hard-hearted handout

should always be performed.

4.5 Short chains and long chains

Under the assumption that both players follow strategy 4.2, then opening a 2-chain will

never result in a double-dealing opportunity. There is no way to open a 3-chain such

that the opponent will not be given such an opportunity, however. In fact, opening a

chain of length greater than 2 nodes will always result in a double-dealing opportunity.

For this reason, chains of length three or more coins are referred to as long chains and

chains shorter than three coins are referred to as short chains. Short chains and long

chains are defined formally in definitions 4.6 and 4.7 respectively.

Definition 4.6 (Short chain). A short chain is a chain containing less than three coins.

Definition 4.7 (Long chain). A long chain is a chain containing at least three coins.

4.6 Control

Figure 4.12: A double-dealing
opportunity and a series of long

chains

Consider a situation where the board has become di-

vided into a large set of long chains and an open 2-chain

as shown in figure 4.13. See that, if the player were to

perform a double-dealing move on the open 2-chain,

the opponent would be forced to open one of the long

chains. Since an open long chain will always present a

double-dealing opportunity, the player is able to force

the opponent to open each long chain by repeatedly

double-dealing on each open long chain. If the player

is in a situation in which the opponent can be forced to

open each long chain by double-dealing appropriately,

then the player is considered to have control over the opponent.

In the situation in figure 4.12, the player is actually in a winning position. By repeatedly

double-dealing and forcing the opponent to open each long chain, the player is able to
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take enough coins to win the game. The cost of two coins per double-cross is a small

price to pay for maintaining control over the opponent. Note that a double-dealing move

need not be performed on the last open chain as the game will end once all the coins in

this chain are taken. By following this strategy of repeatedly double-dealing in order to

maintain control over the opponent, the player should win the game with a score of 17

coins to 8.

4.7 Detecting chains

One of the main requirements for a computer program to play Dots-and-Boxes at an

advanced level is that it should be able to recognise chain structures. See that, from

definition 4.1, each binode has an associated chain. Therefore, with the exception of open

1-chains and dipoles, all chains on the board can be detected by taking each binode and

following the path in either direction until the bordering nodes are reached. This is

illustrated in figure 4.13.

Figure 4.13: Detecting a simple chain

Note that, in this context, a path is a string of binodes which ends once any other type

of node is reached.

4.7.1 Chain data structures

In order to make use of a detected chain, the information must be stored in an appro-

priate data structure. When designing the program, it was found that it was sufficient

to express a simple chain as a set of coin nodes with a label indicating the chain type

(open, closed). A chain structure can thus be represented with the following notation:

〈S〉x, where S is the set of coins contained within the chain and x is the label.
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This notation is very useful for describing chain structures as it is simple, flexible, and

can be easily represented by a functional data structure.

4.7.1.1 Chain data structures in functional programming

type Chain = ([NodeId ],Label)

data Label = Open | Closed

The above code shows how such chain structures can be defined using functional pro-

gramming. See that a chain data structure is composed of a list of NodeIds which

represent the coins which are contained within the chain as well as a label which indi-

cates if the chain is open or closed. These structures are simple, concise, yet powerful

and they closely follow the mathematical notation from the previous section.

4.7.2 The chain detection algorithm

As a chain is modelled as a set of coins and a label, a chain detection algorithm must work

out which coins are contained in such a set and also the label which describes the chain.

The algorithm which was designed to complete these tasks is stated in algorithm 4.1.

As the program was written using functional programming, algorithm 4.1 is presented

as a mathematical function.

Algorithm 4.1 (Detecting simple chains). Given a binode b with neighbours n1, n2,

the chain which contains b is the output of f(n2, f(n1, 〈S0〉c)) where S0 = {b} and the

function f(·) is defined as follows:

f(n, 〈S〉x) =


f(n′, 〈S ∪ {n}〉x), isBinode(n)

〈S ∪ {n}〉o , isSingleton(n)

〈S〉x , otherwise

where n′ is the next neighbour of a binode n, 〈·〉c denotes a closed chain, and 〈·〉o denotes

an open chain.

See that the algorithm is centred around the function f(·). f(·) is a recursive function

which takes both a node and a chain structure as arguments and returns a chain structure
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as an output. The type of the input node n determines the operation of the function.

If the end of the chain has been reached, i.e. if n is not a binode, then the function will

terminate; otherwise the function will recurse and examine the next node.

If n is a singleton, then the algorithm recognises that the end of the chain has been

reached. It adds n to the set S and returns an open chain containing S. The chain is

labelled as an open chain because any chain containing a singleton node is open.

If n is neither a singleton nor a binode, the algorithm concludes that a wall node or a

multinode has been reached and returns the same chain structure which was input.

If n is a binode then the end of the chain has not been reached so the algorithm adds

n to the set S and then calls itself with n′ and S as arguments where n′ is the node

obtained by following the next edge of n.

See that the algorithm calls the function f(·) two times, once for each path (see figure

4.13). The output of the first call will be a chain structure containing the initial binode

b and the sub-chain worked out by following the first path. This chain is then input to

the second call of f(·) along with the second neighbour of b. The final output of the

algorithm will be a chain structure containing a set S = {b} ∪ S1 ∪ S2 where S1 is the

set of coins from the first path and S2 is the set of coins from the second path. Note

that the chain structure which was input to the first call of f(·) is labelled as a closed

chain. If either call of f(·) is terminated by a singleton node then the final output will

be an open chain; otherwise the chain will remain a closed chain.
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4.7.2.1 Chain detection in functional programming

Algorithm 4.1 can be expressed in Haskell code as follows:

chainDetect (b, BiNode (e1, e2)) = foldl(λ acc n → f n acc)

([b],Closed) [n1,n2]

where

[n1,n2] = getNeighbours [e1, e2] b

f n c@(ns, x )

| isBiNode n = f (nextNode n) (n : ns, x )

| isSingleton n = (n : ns, Open)

| otherwise = c

A fold function in functional programming takes some accumulator value and modifies

it for each element of some input list. In this case the accumulator is the chain structure

being calculated and the input list is the list of neighbours of the binode b. See that the

chain structure is initialised as ([b],Closed), i.e. a closed chain containing the node b.

The above code implements algorithm 4.1 in a concise and elegant way. One of the

great strengths of functional programming is its toolkit of flexible and highly utilisable

functions such as foldl which keep the code short and concise. The implementation of

algorithm in 4.1 in an imperative language would typically be longer and less elegant.

4.7.3 Gathering all the chains

Recall that algorithm 4.1 takes a binode b and its two neighbouring nodes n1, n2 and

returns the chain which contains b. Thus the set of all chains on the board, C, can

be obtained by calling algorithm 4.1 for every binode. However, as a chain can contain

several binodes, calling algorithm 4.1 for each binode would result in the set C containing

duplicates. Therefore, before calling algorithm 4.1 for a binode b, one must first ensure

that b is not contained in any of the previously detected chains in C. If so, then b can be

discarded; otherwise, the chain containing b should be worked out and added to the set

C. The function getChains performs this action. See section D.4.2.2 for more details.
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Recall that open 1-chains and dipoles will not be detected by this process. This is not

a problem, however, as these types of chain are not needed when analysing the current

state of the board. This is discussed further in chapter 8.

4.8 Summary

In this chapter, simple chain structures and their properties were examined in detail.

Strategies involving such chains were discussed and an algorithm to detect these chains

was presented. The double-dealing move, one of the key concepts in this project, was

introduced and it was shown how this move could be used to gain control over the

opponent.



Chapter 5

Loops

In this chapter a new type of chain, called the loop chain, is presented. Loop chains

have certain properties which add a whole new level of complexity to the game and its

analysis.

Figure 5.1: A game of Dots-and-Boxes with a loop

5.1 The loop chain

All of the chains which have appeared so far in this document have been simple chains,

i.e. chains bounded by wall nodes. These structures are, however, not the only type of

chain which can appear in a game of Dots-and-Boxes.

28
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Figure 5.2: A loop chain

Consider a chain which is not bounded by end-

points. Instead the chain forms a closed loop of bin-

odes. Such chains are known as circular chains or

loops and are a common occurrence in large grids.

Loop chains are defined formally as follows:

Definition 5.1 (Loop chain). A loop chain is a

structure composed entirely of binodes which forms

a closed loop.

Figure 5.1 shows an example of a game of Dots-and-Boxes which contains a loop. The

same game is shown in Strings-and-Coins representation in figure 5.2.

Not only does the circular nature of loop chains increase the complexity of processes

such as chain detection, it also has a profound effect on the gameplay. This effect is

illustrated in the next section.

5.2 Double-dealing with loops

Figure 5.3: A double-
dealing opportunity

Consider the typical double-dealing opportunity involving an

open 2-chain shown in figure 5.3. This structure is composed

of a singleton node and a wall node on either side of a binode.

When the double-dealing move is performed, no coins are freed

and thus the turn is passed to the opponent. Since a loop chain

is not bounded by endpoints, the structure which is formed as

a result of opening such a chain will never resemble the structure in figure 5.3. Because

a loop chain is composed entirely of binodes, opening a such a chain will result in an

open chain composed of a string of binodes bounded by two singleton nodes, as shown

in figure 5.4 This has major implications with regards to a double-dealing strategy.

Figure 5.5: An open
loop composed of three

nodes

Consider the open chain in figure 5.5 which resulted from open-

ing a loop and removing a number of nodes. In this situation,

is it possible to perform an action which would result in passing

the turn to the opponent? Upon inspection one should conclude

that it is not possible. The reason for this is that, unlike the situation in figure 5.3, it is
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Figure 5.4: Opening a loop chain

impossible to perform a move which would not result in freeing a coin, thus earning an

additional move. It is possible to double-deal on open loop chains, but it requires that

the open loop consists of at least four nodes.

Figure 5.6: Double-
dealing on an open loop

Figure 5.6 shows a double-dealing move being performed on an

open loop. Like the double-dealing move in figure 5.3 this move

would not free any coins and thus the turn would be passed to

the opponent, however it is much more costly; such a move would

result in a handout of four coins to the opponent, double that

of a typical double-dealing move. The reason for this is that,

when a loop chain is opened, the result is an open chain with two loose ends. The term

loose end is defined in definition 5.2. Such is the nature of a loose end that in order to

perform a double-dealing move on an open chain, it requires a handout of one dipole for

each loose end. For this reason, it requires that an open loop must contain at least four

nodes in order for a double-dealing move to be possible. Due to the rectangular nature

of the Dots-and-Boxes game, all loop chains will contain at least four nodes and thus

a double-dealing move can be performed on any loop chain. Open simple chains, such

as the one shown in figure 5.3, contain exactly one loose end and thus a double-dealing

move would require a handout of a single dipole.

Definition 5.2 (Loose end). A loose end is a singleton node which forms the end of an

open chain.

5.3 Detecting Loops

Due to the circular nature of loop chains, the chain detection algorithm stated in 4.1

would enter an infinite recursive loop if it were to attempt to detect one. Thus to
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allow for loop chains, algorithm 4.1 should be modified so that it is able to recognise

nodes which have already been encountered. An algorithm with such a modification is

presented in algorithm 5.1.

Algorithm 5.1 (Chain detection with loops). Given a binode b with neighbours n1, n2,

the chain which contains b is the output of f(n2, f(n1, 〈S0〉c)) where S0 = {b} and the

function f(·) is defined as follows:

f(n, 〈S〉x) =



〈S〉l, n ∈ S

f(n′, 〈S ∪ {n}〉x), isBinode(n) and n /∈ S

〈S ∪ {n}〉o, isSingleton(n) and n /∈ S

〈S〉x, otherwise

where n′ is the next neighbour of a binode n, 〈·〉c denotes a closed chain, 〈·〉o denotes an

open chain, and 〈·〉l denotes a loop chain.

Algorithm 5.1 works similarly to algorithm 4.1 only that the chain detection function

f(·) has been modified to allow for loop chains. It does this by checking to see if the

input node n is already contained within the input chain structure 〈S〉. If so, then the

node n has been visited before in a previous call to f(·) and thus the chain structure

must be circular in nature. This is illustrated visually in figure 5.7.

Figure 5.7: Loop detection

Note that f(·) is called for the first neighbouring node n1 and then the output of this

function is fed into another call of f(·) alongside the second neighbouring node n2. If

the chain in question is circular, then the entire chain will have been recognised after

the first call of f(·) and thus second call of f(·) will return the same chain which was

input.

If one were to think of a chain structure as a trail of breadcrumbs, then algorithm 5.1

can be thought of as a process which picks up these breadcrumbs and places them into a
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basket. The process ends once all the breadcrumbs have been collected and the resulting

basket of breadcrumbs is the output chain structure.

5.3.1 Circular chain detection in functional programming

Algorithm 5.1 can be expressed in Haskell code as follows:

chainDetect (b, BiNode (e1, e2)) = foldl(λ acc n → f n acc)

([b],Closed) [n1,n2]

where

[n1,n2] = getNeighbours [e1, e2] b

f n c@(ns, x )

| elem n ns = (ns, Loop)

| isBiNode n = f (nextNode n) (n : ns, x )

| isSingleton n = (n : ns, Open)

| otherwise = c

See that only a slight adjustment is required to allow for circular chains. The function

elem is from the Haskell toolkit and returns a Boolean value indicating whether or not

an object is a member of some input list.

5.4 Summary

In this chapter, loop chains and their properties were examined in detail. The effect of

loop chains on double-dealing moves was discussed and algorithm 4.1 was modified to

allow for such chains.
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The Double-Dealing Decision

The increased handout for open loop chains adds a new level of complexity to the

decision of whether or not to double-deal if given the opportunity. The cost of two coins

per double-deal was considered a small price compared to the sizeable reward which

could be gained from retaining control over an opponent. The presence of loop chains,

however, increases this cost to such an extent that it is often more profitable to hand

control over to the opponent than to retain it.

Figure 6.1: A difficult decision

Consider the situation in figure 6.1. A decision of whether or not to double-deal has

presented itself (see the open 2-chain in the top right corner). The question is: is it more

33
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profitable to perform the double-dealing move or to take the coins and open the next

chain? This is a difficult question and cannot be answered with certainty without prior

knowledge of the opponent’s strategy. An informed decision can be made, however,

based on the minimum achievable reward which can be gained by applying a certain

strategy.

6.1 Reward from the long chains

Figure 6.2: A 4x4 grid of coins with four long chains

Before this decision can be made, the situation must be analysed correctly. Such an

analysis requires that different features of the game board be examined individually. The

first feature which will be investigated is that of the long chains. If a player’s opponent

has been forced to open the first long chain, then the player has gained control of the

long chains. See that double-dealing on the open 2-chain in figure 6.2 would result in a

gain of control. Recall that, when a player is in control of the long chains, the player can

force the opponent to open each long chain by double-dealing appropriately. Gaining

control of the long chains yields a certain reward, which will be denoted as rl. Under

certain assumptions, the value of this reward can be predicted. The first assumption

which will be made is that the opponent plays at a high level and won’t give away coins

needlessly. The player must therefore adopt a strategy which guarantees a minimum

yield from the long chains, given that the player has control. This strategy is stated as

follows:

Strategy 6.1 (Control of long chains). When presented with an open, long chain, one

should take as much coins as possible before double-dealing and forcing the opponent to
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open the next long chain. If, however, the final long chain has been opened, one should

take all the coins contained within the chain.

The strategy which the opponent is assumed to use is as follows:

Strategy 6.2 (Without control of long chains). When forced to open a long chain, the

shortest available chain should be opened. Priority should be given to loop chains over

non-circular chains of the same length.

The reason why loop chains are given priority over non-circular chains of the same length

is because loop chains yield a greater reward if the opponent were to double-deal. This is

particularly important in the case where two such chains are the only chains remaining

because the opponent does not need to double-deal on the final long chain.

Under the assumptions stated above, it is possible to calculate the minimum achievable

reward which can be gained by adopting strategy 6.1. The reward from each long chain

except the last is equal to the length of the chain minus the associated handout for

double-dealing. The reward from the last chain is simply equal to its length. The total

reward from the long chains can be summarised by the following expression:

rl =

Nl∑
i=1, i 6=i∗

(
|Ci| − hi

)
+ |Ci∗ | (6.1)

where Nl is the total number of long chains, |Ci| is the length of the ith chain, hi is the

handout of the ith chain, and i∗ is the last long chain, i.e. the longest chain in the set

with priority given to loop chains. If nl is the total number of coins contained within the

set of long chains under inspection, then the number of coins handed to the opponent

is nl − rl.

Recall that double-dealing would result in the gain of control of the long chains in figure

6.2. There are four long chains on this board: two non-circular 3-chains, one non-circular

4-chain, and one circular 4-chain. Assuming that the player and opponent would adopt

strategies 6.1 and 6.2 respectively if the player had gained control of the long chains,

then, from (6.1), the player would gain a reward of 6 coins from the long chains. Since

the long chains contain a total of 14 coins, it follows that the opponent would gain

a reward of 8 coins in addition to a reward of 2 coins gained from the double-deal. It
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(a) Gaining control with an
even number of short chains

(b) Gaining control with an
odd number of short chains

Figure 6.3: Gaining control of the long chains

would therefore be unwise for the player to double-deal in this situation, as the minimum

guaranteed yield is only 6 coins out of the total of 16 available.

6.2 Gaining control of the long chains

rl is the expected yield from the long chains given that control of the long chains has

been gained. In this section, the associated cost/reward of gaining control is explored.

Consider the situations in figure 6.3. If one were trying to gain control of the long

chains, should one perform the double-dealing move or not? Or, perhaps, is it not

certain that either decision would lead to the acquisition of control? To answer these

questions, certain assumptions must be made in a similar to manner to section 6.1. When

opening 2-chains, it is assumed that both players follow strategy 4.2, i.e. that a hard-

hearted handouts are always used. Recall that a hard-hearted handout divides a closed

2-chain into two open 1-chains. Such a strategy prevents the opponent from getting

the opportunity to double-deal and switch the parity of the situation. By applying this

strategy and thus preventing the opponent from double-dealing, the question of whether

or not performing the double-dealing move would result in a loss or gain of control

becomes a certainty and the answer is determined by the parity of the short chains.

Note that the open chain is not counted as one of the short chains in this context.
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See from figure 6.3a that, under the above assumptions, double-dealing will result in a

gain in control. A double-deal would force the opponent to open the first short chain.

The player would then take the coins in the opened chain and open the second short

chain with a hard-hearted handout. The opponent is now left with no choice but to

open the first long chain and thus the player has gained control over the long chains.

This can be seen graphically in figure 6.4.

Figure 6.4: Using a double-deal to gain control when the number of short chains is
even

Figure 6.3b shows a similar scenario except with an extra short chain. See that in

this case, double-dealing will result in a loss in control. Instead, if the player were to

take all the coins in the open chain and then open short chains following strategy 4.2,

the opponent would be forced to open the first long chain and thus control would be

gained. In general, given a double-dealing opportunity, double-dealing can be used to

gain control if the number of short chains is even; otherwise, control can be gained by

taking all the coins in the open chain and opening the first short chain. This will hereby

be referred to as the short chain rule.

Rule (Short chain rule). Given a double-dealing opportunity, if the number of short

chains is even then control of the long chains can be gained by double-dealing and em-

ploying strategy 4.2; if the number of short chains is odd, then control of the long chains

can be gained by taking all the coins in the open chain and employing strategy 4.2.

6.3 Reward from the short chains

The process of gaining control of the long chains has an associated reward, and the value

of this reward depends on the number short chains and their lengths.
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Figure 6.5: Distribution of coins from short chains when Ns is odd

6.3.1 Reward from 2-chains

Let Ns, N1, N2 be the number of short chains, 1-chains, and 2-chains respectively. It

follows that

Ns = N1 +N2 (6.2)

Assume that Ns = N2, i.e. that there are no 1-chains. In the case where Ns is odd,

control can be gained by taking the coins in the open chain and opening the first short

chain. It is expected that the opponent would take all the coins in this newly opened

chain and open the next short chain. The players will take turns collecting coins from

the short chains until the first long chain is opened. Since the number of short chains is

odd, the opponent will receive a greater reward from the short chains. This is illustrated

in figure 6.5. The reward associated with gaining control in a situation where Ns is odd

can be summarised by the following expression:

rs, odd = 2

⌊
Ns

2

⌋
+ |Co| (6.3)

where |Co| is the number of coins in the open chain and b·c is the flooring operator. In

the case where Ns is even, control can be gained by double-dealing and the associated
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reward can be summarised by the following expression:

rs, even = 2

⌈
Ns

2

⌉
(6.4)

where d·e is the ceiling operator. Although unnecessary, the ceiling operation was in-

cluded for consistency. Note that in the cases above, it is assumed that all short chains

are 2-chains.

6.3.2 Allowing for 1-chains

Figure 6.6: A 4x4 grid of coins
with both 1-chains and 2-chains

We now examine the case where the set of short chains

is composed of both 1-chains and 2-chains. Figure 6.6

shows an example of such a case. The short chain rule

still applies in this context and thus, since Ns is even,

control of the long chains can be gained by double-

dealing. The presence of 1-chains has an effect on the

expected reward from the short chains when gaining

control and thus (6.3) and (6.4) must be modified to

allow for this.

Consider a set of short chains where all chains are of equal length. If a player were to

open the first chain in the set, the opposing player would take the available coins and

open the next chain. This would continue in a similar manner to figure 6.5. Note that

if the number of chains is even, both players would gain an equal number of coins from

the chains; however, if the number of chains is odd, then the player who opened the first

chain would receive a smaller reward because the player would have opened more chains

than the opponent, as was the case in figure 6.5. In general, the player who opens the

first chain would receive a reward of l
⌊
Nc
2

⌋
coins, where l is the length of each chain

and Nc is the number of chains in the set. The opposing player would therefore receive

a reward of l
⌈
Nc
2

⌉
coins.

In order to calculate the number of coins that each player will take from the short chains,

it requires prior knowledge of the chains that each player will open. Obviously, such

information cannot be obtained with certainty; however, it is reasonable to assume that

each player will follow strategy 4.1, i.e. 1-chains will be opened before 2-chains. Under
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this assumption and the assumptions from section 6.2, the number of coins obtained by

each player from the short chains can be evaluated if knowledge of both the player who

opens the first 1-chain and the player who opens the first 2-chain is obtained. With such

knowledge, the theory from the above paragraph can be used to calculate the number

of coins that each player receives from both the 1-chains and the 2-chains.

Let P1 be the player who opens the first 1-chain and let P2 be the opposing player. The

player who opens the first 2-chain is determined by the parity of N1, the number of

1-chains. If N1 is even, then P1 will also open the first 2-chain and thus the number of

coins which P1 will receive is:

rP1, even =

⌊
N1

2

⌋
+ 2

⌊
N2

2

⌋
(6.5)

The corresponding reward which P2 will receive is:

rP2, even =

⌈
N1

2

⌉
+ 2

⌈
N2

2

⌉
(6.6)

If, on the other hand, N1 is odd, then P2 will open the first 2-chain and thus the number

of coins which P1 will receive is:

rP1, odd =

⌊
N1

2

⌋
+ 2

⌈
N2

2

⌉
(6.7)

The corresponding reward for P2 in this case is:

rP2, odd =

⌈
N1

2

⌉
+ 2

⌊
N2

2

⌋
(6.8)

Finally, the reward for gaining control of the long chains can be calculated. As the value

of this reward depends on the parities of both Ns and N1, there are four possible cases

to consider. These four cases are summarised in table 6.1. Note that from (6.2), if the

parities of both Ns and N1 are known then the parity of N2 is also known.

See that in figure 6.6, Ns = 4 and N1 = 3. Using table 6.1, the expected reward for

gaining control of the long chains evaluates to 2 coins.
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Ns N1 control gained by opens first
1-chain

opens first
2-chain

reward rc

even even double-dealing opponent opponent
⌈
N1
2

⌉
+ 2

⌈
N2
2

⌉
even odd double-dealing opponent player

⌈
N1
2

⌉
+ 2

⌊
N2
2

⌋
odd even not double-dealing player player

⌊
N1
2

⌋
+ 2

⌊
N2
2

⌋
+ |C0|

odd odd not double-dealing player opponent
⌊
N1
2

⌋
+ 2

⌈
N2
2

⌉
+ |C0|

Table 6.1: Reward for gaining control of the long chains

6.4 Decision time

The theory covered in the previous sections can now be used to make an informed

decision on whether or not to perform a double-dealing move. Define re to be the

minimum expected reward from gaining and retaining control over the long chains.

Thus, re can be calculated with the following expression:

re = rc + rl (6.9)

where rl is calculated using (6.1) and rc is calculated using table 6.1. Let n be the

total number of coins contained within the set of chains under examination, including

the open chain. A reasonable policy for deciding whether or not to double-deal would

be to base the decision on the ratio of re to n. If re > n/2 then gaining control would

yield a reward greater than the reward which the opponent would receive and thus the

player should choose the option which would result in the gain of control. If re < n/2

then gaining control would yield a reward less than what the opponent would receive

and thus the player should choose the option which results in a loss of control. It should

be noted, however, that the minimum expected reward for handing control over to the

opponent is not simply equal to n−re, although often this is the case. When control has

been handed over to the opponent, they may decide not to double-deal and thus hand

control back to the player, if it seems more profitable to do so. Thus, for the case where

re = n/2 the player should choose the option which results in the gain of control so as

not to give any power to the opponent. This strategy can be summarised as follows:

Strategy 6.3 (Double-dealing). When given a double-dealing opportunity, if performing

the double-dealing move results in a gain of control, then the move should be performed

if re is greater than or equal to n/2. If, on the other hand, performing the double-dealing
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move results in a loss of control, then the move should be performed if re is less than

n/2. If neither of the above conditions are met, then the double-dealing move should not

be performed.

Figure 6.7: Board in figure 6.1 displayed in Strings-and-Coins format

Strategy 6.3 can be used to decide whether or not to perform the double-dealing move

in figure 6.1. The board is shown in Strings-and-Coins format in figure 6.7. See that

the board is divided into a series of chains and that there is an open chain with which

a double-dealing move can be performed. Often it is easier to analyse the chains on the

board if they are compiled into a chain list as shown in figure 6.8. The chains at the

top of the list are the chains which are expected to be opened first and the chains at

the bottom are those expected to be opened last. See that Ns = 4 and that N1 = 3.

Thus, by table 6.1, control of the long chains can be gained by double-dealing and the

associated reward is rc = 2 coins. From (6.1), the expected reward from the long chains

evaluates to rl = 22 coins, where Ci∗ is the non-circular 10-chain. The total expected

reward is therefore re = 24 coins. As the total number of coins contained within the

chains is n = 49 coins, strategy 6.3 states that the double-dealing move should not be

performed in this situation.
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Figure 6.8: List of chains contained within figure 6.7
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6.4.1 Cases when double-dealing is not performed

Note that this decision process assumes that there is only one open chain on the board.

A double-dealing move should never be performed when there is more than one open

chain as performing such a move would not only offer the opponent the corresponding

handout from double-dealing on the chain but also all of the coins contained within the

other chain(s). This would be a very foolish move and, although somewhat obvious to

a human player, a computer could easily perform this action in error.

In addition to this case, the program will not perform a double-dealing move if any of

the following conditions are met:

• There are no long chains

• The board is in a pre-gridlock state

• There are chains which are not independent of each other

Note that, if the first condition is met, then there are no long chains and thus a double-

dealing move cannot be used to gain control of the long chains. If the second condition

is met, it means that the program can end its turn without offering any coins to its

opponent. If this is the case, the program will greedily take all the available coins and

then make a move which does not offer any coins to the opponent. The third case refers

to the existence of a special type of chain called a complex chain. These chains will be

discussed in detail in the next chapter.

6.4.2 The double-dealing decision in functional programming

The function which was written to make the double-dealing decision, doubleDeal , can

be found in section D.5.1. The function takes in a list of chains as well as a list of all

nodes on the board and then makes the decision by employing strategy 6.3.

The presence of complex chains or moves which can end a turn without offering any

coins to the opponent can be detected simply by checking if there are any multinodes

on the board. If this is the case, doubleDeal will return False.
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6.5 Summary

In this chapter, theory and framework for deciding whether or not to perform a double-

dealing move when given the opportunity were presented. By making certain assump-

tions about the action policies of the opponent, formulas for the minimum expected

reward for gaining control over the long chains were derived and a formula for the min-

imum expected reward from maintaining control over the long chains was presented.

These reward values were then used along with the total number of coins contained

within the chains in order to make an informed decision of whether or not to perform a

double-dealing move.

The underlying assumption throughout this chapter was that all the chains on the board

were independent, i.e the chains were either simple chains or loop chains. In the next

chapter, a new type of chain will be introduced. These new chains do not have this

independence property and thus significantly increase the complexity of the game.



Chapter 7

Complex Chains

So far in this document, only independent chains have been studied. Independent chains

are chains which either form a closed loop or are bounded at both ends by wall nodes.

Opening such chains and removing their contained nodes will have no effect on the other

chains on the board and this greatly simplifies analysis and prediction. In this chapter,

chains without this independence property as well as the difficulties associated with

them will be investigated.

Figure 7.1: A game of Dots-and-Boxes with several complex chains

46
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7.1 Complex chains and complex structures

Consider the structure in figure 7.2. This structure contains three sets of nodes which

adhere to definition 4.1, i.e. the definition of a chain. However, these chains do not

adhere to definition 4.4 because they are each bounded by a multinode and thus cannot

be classified as simple chains.

Recall that, as part of this project, chain structures were categorised into three classes:

simple chains, loop chains, and complex chains. The chains in figure 7.2 are examples

of complex chains. The strict definition of a complex chain is stated below.

Definition 7.1 (Complex chain). A complex chain is a non-circular chain bounded by

at least one multinode.

Figure 7.2: A complex structure

A structure composed of several interconnected com-

plex chains, such as the structure in figure 7.2, will

hereby be referred to as a complex structure. A com-

plex structure is defined as follows:

Definition 7.2 (Complex structure). A complex struc-

ture is a single structure composed of complex chains

and the nodes which bound them.

7.2 Dependence

What would happen if one of the complex chains in figure 7.2 were to be opened and its

coins were to be removed? Figure 7.3 shows an example of such an action. See that, once

the complex chain is opened and removed, the two remaining complex chains and the

node connecting them merge together to form a single long chain. This is an example of

how opening a complex chain in such a structure can have a direct and significant effect

on the other complex chains in the structure. These complex chains are thus considered

to be dependent on each other.

Not all neighboring chains in complex structures are dependant, however. A necessary

requirement for one complex chain to be dependent on another is that opening the other

chain and removing all of its coins must result in the shared multinode being reduced
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Figure 7.3: Dependence between complex chains

to a binode or singleton node. See in figure 7.3 that when the top chain is opened and

its coins are removed, the multinode connecting the three chains is reduced to a binode

and thus forms a link which merges the other two chains into a single long chain. See

that, due to the nature of this complex structure, opening any of these chains would

result in the other two merging together. Thus each complex chain is considered to be

dependent on the other. A strict definition of dependence is stated below.

Definition 7.3 (Dependence). Chain A is dependent on chain B if opening chain B and

removing all of its coins alters the composition of chain A.

This dependence property makes analysis of complex chains and structures significantly

more difficult than that of simple chains and loops.

7.2.1 Symmetry of dependence

Figure 7.4: An example
of how dependence between

chains can be asymmetric

Consider the complex structure shown in figure 7.4. See

that the complex chain labelled b is bounded at both ends

by the same multinode. Therefore, if this chain were to

be opened and its associated coins removed, the multinode

would be reduced to a binode and chains a and c would be

merged together. Thus, chains a and c are dependent on

chain b. However, if either chain a or c were to be cut and

their associated coins removed, the multinode would not be

reduced to a binode.

This is an example of how dependence between chains is not always symmetric. In this

example, chains a and c are dependent on chain b but chain b is neither dependent on

chain a nor chain c.
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7.3 Dippers

An interesting structure which arises as a result of two dependent complex chains is

the dipper. A dipper, which gets its name from the Big Dipper asterism, is a complex

structure which is part circular and part non-circular [3]. Dipper structures contain

a trinode (multinode of valency 3) with one edge forming part of a non-circular chain

bounded by either a wall or another multinode and the other two edges forming a closed

loop.

Figure 7.5: A dipper structure and the complex chains contained within

Figure 7.5 shows a dipper structure. See that the structure contains two complex chains

connected by a trinode. The first chain, labelled with an a, is bounded by a wall and a

trinode and thus forms the non-circular part of the structure. The second chain, labelled

with a b, begins and ends at the same trinode and thus forms the circular part of the

structure. This is not a circular chain, however, as it does not adhere to definition 5.1.

Upon inspection, one should conclude that these two chains are dependent on each

other. Figure 7.6 shows the consequences of opening the chain marked a and removing

the available coins. See that the chain marked b is transformed into a closed loop chain

and has gained an extra coin as a direct consequence of this action.

Figure 7.6: Opening the non-circular region of a dipper

Figure 7.7 shows the consequences of opening the chain marked b. See that, since the

circular region contains two of the three edges of the trinode, opening this region and

taking the available coins will reduce the trinode to a singleton and thus allow the rest

of the coins in the dipper structure to be taken. There are two ways in which such a

region can be opened. The first way involves opening one of the two edges connected to
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(a)

(b)

Figure 7.7: Opening a dipper

the trinode, as can be seen in 7.7a. See that this action causes the dipper structure to

become a single, large open chain. The second way involves opening one of the edges

not connected to the trinode, as can be seen in 7.7b. Such an action splits the chain into

two open chains which, when removed, will reduce the multinode to a singleton and thus

allow the rest of the coins in the dipper to be taken. Although each action has a different

effect on the dipper structure, either way would result in offering both a double-dealing

opportunity and all the coins contained within the dipper to the opponent and thus the

actions can be considered equivalent with regards to their overall effect on the game.

The process of opening the circular region of a dipper and thus offering all the coins

contained within the dipper to the opponent is known as opening the dipper. It is a

risky move and only in rare cases could performing such a move be considered wise. A

complex chain which, when opened, will cause a dipper to open will hereby be referred

to as a dipper loop.

7.3.1 Detecting dipper loops

Figure 7.8 shows a dipper structure where the non-circular region contains a significantly

larger amount of coins than the circular region. The chain-detection procedure defined

in algorithm 5.1 would detect a closed 12-chain and a closed 3-chain from the two regions
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Figure 7.8: A dipper structure

of the dipper. A computer program following strategy 4.1 would choose to open the 3-

chain first due to its smaller length. Such a move would in fact offer 16 coins to the

opponent instead of the assumed three. Thus it is important that the program is able

to recognise such an action to avoid performing it in error.

Dipper loops can easily be identified by the fact that they are bounded at both ends by

the same trinode. Algorithm 7.1 below determines if a complex chain is a dipper loop.

Algorithm 7.1 (Detecting dipper loops). Given a complex chain bounded by two end-

nodes, ni and nj, if ni and nj are both trinodes and i = j, i.e. the indices which

uniquely identify each node are the same, then the chain should be classified as a dipper

loop; otherwise it should not.

The function which was written Haskell to determine if a chain is a dipper loop using

algorithm 7.1 is called isDipperLoop. The source code for this function can be found in

section D.4.2.1.

7.3.2 Effective length

Since opening a dipper loop offers more coins to the opponent than was initially contained

within the chain, it is useful to define a quantity which measures exactly the number of

coins which is offered to an opponent upon opening a certain chain. This quantity is

defined to be the effective length of the chain.

Definition 7.4 (Effective length). The effective length of a chain is the number of coins

which are offered to an opponent once the chain has been opened.

The effective length of a dipper chain can be calculated using the following expression:



Complex Chains 52

le = |C1|+ |C2|+ 1 (7.1)

where |C1| is the number of coins in the dipper loop and |C2| is the number of coins in

the non-circular region of the dipper.

Using the concept of effective length, strategy 4.1 can be adjusted to allow for dipper

loops as follows:

Strategy 7.1 (Opening chains and dippers). When forced to open a chain, the chain

with the smallest effective length should be opened so that the smallest possible number

of coins are offered to the opponent.

7.3.2.1 Effective length in functional programming

The function which was written to determine the effective length of a chain using (7.1)

is called effLen. The source code for this function and an explantion of how it works

can be found in section D.4.2.1.

7.4 Detecting complex chains

7.4.1 Complex chain data structures

In order to facilitate the detection of dependence between complex chains, the bounding

multinodes of a complex chain should also be stored in the chain data structure. Thus

the notation used to represent a chain data structure should be modified to the following:

〈S〉Yx where S is the set of coins contained within the chain, x is the label, and Y is the

set of multinodes which bound the chain. If the chain is not complex, then Y should be

an empty set.

7.4.1.1 Complex chains in functional programming

The following code shows how complex chain data structures can be defined using func-

tional programming:
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type Chain = ([NodeId ], [NodeTuple], Label)

data Label = Closed | Open | Loop

This was how chain data structures were defined in the source code of the program. See

that the chain data structure contains a set of NodeIds which represent the set of coins

contained within the chain, a set of NodeTuples which represent the set of multinodes

which bound the chain, and a label which indicates whether the chain is open, closed or

a loop chain. Note that a NodeTuple object is a data structure containing a node and

its associated key value. It was found to be more convenient to use NodeTuple objects

to store information about the bounding multinodes of a complex chain. Again, these

structures are defined in a simple, concise, and highly utilisable way which can only be

achieved with the functional programming approach.

See section D.4 for more information about the implementation of chains in functional

programming.

7.4.2 Complex chain detection algorithm

As complex chains can be easily identified by the multinodes which bound them, algo-

rithm 5.1 need only be modified slightly in order to detect them. Algorithm 7.2 below

is an chain-detection algorithm able to recognise such chains.

Algorithm 7.2 (Chain detection with loops). Given a binode b with neighbours n1, n2,

the chain which contains b is the output of f(n2, f(n1, 〈S0〉Y0
c )) where S0 = {b}, Y0 = {},

and the function f(·) is defined as follows:

f(n, 〈S〉Yx ) =



〈S〉Yl , n ∈ S

f(n′, 〈S ∪ {n}〉Yx ), isBinode(n) and n /∈ S

〈S ∪ {n}〉Yo , isSingleton(n) and n /∈ S

〈S〉Y ∪{n}x , isMultinode(n) and n /∈ S

〈S〉Yx , otherwise

where n′ is the next neighbour of a binode n, 〈·〉c denotes a closed chain, 〈·〉o denotes an

open chain, and 〈·〉l denotes a loop chain.
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See that algorithm 7.2 behaves almost exactly like algorithm 5.1 except that it facilitates

the modified chain data structure from section 7.4.1. A new case has been added: the

case where n is a multinode. In this case, the algorithm recognises that the end of a

chain has been reached and thus terminates. It also adds the multinode n to the set Y .

As the set Y is initially an empty set, the output chain from algorithm 7.2 can easily be

recognised as a complex chain if the number of elements in Y is nonzero. If the chain

in question is not complex, then the set Y will remain empty throughout the execution

of the algorithm.

7.4.2.1 Complex chain detection in functional programming

The function which was written to detect a complex chain using algorithm 7.2 is called

toChain. The source code for this function can be found in section D.4.2.2.

7.5 Double-dealing and complex chains

Figure 7.9: A series of complex chains and a double-dealing opportunity

Consider the grid of coins in figure 7.9. The board is in a post-gridlock state and is

divided into a series of chains, one of which provides a double-dealing opportunity. Can

the strategies discussed in chapter 6 be used to make an informed decision on whether

or not to perform the double-dealing move? Upon inspection one should conclude that

they cannot. The reason for this is that the strategies in chapter 6 work on the assump-

tion that the board is divided into a series of independent chains. This independence

property makes it possible to accurately predict an opponent’s actions and thus predict
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the distribution of chains on the board several turns in advance. The minimum expected

reward from making a double-dealing decision is thus reduced to a few simple formulas.

In order to make an informed decision of whether or not to double-deal in this situation,

it requires the use of other decision-making techniques such as the minimax algorithm

or nimber analysis. The use of such techniques was beyond the scope of this project and

thus it was decided that the program would not perform a double-dealing move in such

a situation. Instead, the program would take the coins on offer and open the next chain

following strategy 7.1.

The function which was written to decide whether or not to double-deal, doubleDeal ,

will return False if there are any multinodes contained within the board. The presence

of multinodes indicates that the board is either in a pre-gridlock state or in a state

which contains complex chains and structures. Double-dealing moves will not be per-

formed under such conditions. See section D.5.1 for more information on the function

doubleDeal .

7.5.1 One-step-ahead analysis

(a) (b)

Figure 7.10: Two states which are equivalent from a double-dealing decision point of
view

The presence of complex chains on the board does not always cause the formulas in

chapter 6 to be inaccurate. Consider the board in figure 7.10a. See that there is a

complex structure composed of three complex chains and that one of these chains is

an open 2-chain. If either a double-dealing move is performed on the open 2-chain or

the two coins in the chain are removed, the multinode which borders all three chains

will be reduced to a binode and the two remaining chains will merge together. Notice
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that once either action is carried out, the complex structure will be reduced to a single

simple chain and all the complex chains on the board will have been removed. As the

board becomes divided into a set of independent chains after either action is carried

out, the theory from chapter 6 can be used to make an informed decision about the

double-dealing move. In fact, from a double-dealing decision point of view, the board

can be considered equivalent to the board in figure 7.10b, where the board is divided

into a series of independent chains before the double-dealing decision has been made.

The program which was written to play Dots-and-Boxes is able to make an informed

decision on whether or not to double-deal in the case of figure 7.10a simply by pretending

that it is the case of figure 7.10b and calling the function doubleDeal to decide if the

move should be made or not. The function doubleDeal takes in a list of chain data

structures and a Database object containing information about the board and returns

a Boolean value indicating whether or not a double-dealing move should be performed.

Thus the program can pretend that the state in figure 7.10a is the state in figure 7.10b

by appropriately modifying the list of chains and the Database object.

doubleDealComplex :: [Chain] → EdgeId → Database → Bool

doubleDealComplex cs e (nm, em)

| (1 6=) $ length opens = False

| f c = let n = fst $ head $ getBoundingNodes c

cs ′ = filter (not . boundedBy n) cs

a = (fromChain c, [], Open)

nm ′ = M .map (λ n → removeEdge n e) nm

b = toChain (n, getElem n nm ′) (nm ′, em)

in doubleDeal (a : b : cs ′) (nm ′, em)
| otherwise = False

where

opens = filter (λ x → and [isOpenChain x , isComplex x ]) cs

c = head opens

f ( , ys, ) = any (isTriNode . snd) ys

The above code shows the function doubleDealComplex , which can be found in appendix

D.5.1. This function was written to indicate whether or not to perform a double-dealing

move on an open complex 2-chain. In the above code, the variable c represents the

open complex chain. If c is bounded by a trinode, then removing c would reduce this
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trinode to a binode and thus any chains dependent on c would be merged together.

This is exactly the case of the open 2-chain in figure 7.10a. If such conditions are

met, doubleDealComplex will modify the list of chains and the Database and then input

these objects as arguments to the double-dealing decision function, doubleDeal . The

modifications are performed with the following steps:

• Get the trinode n which bounds c.

• Remove all chains which are bounded by n from the list of chains, cs.

• Disguise c as an open simple chain and represent it by the variable a.

• Reduce n to a binode by removing the edge which connects c to n and by updating

the database.

• Use the chain detection function, toChain, on the binode n to get the new chain

b to which it belongs.

• Add the chains a and b to the list of chains cs and input this list as well as the

updated database to the function doubleDeal .

Note that if there are still complex chains remaining after the modifications were made,

then doubleDeal will notice these and return False.

7.6 Summary

In this chapter, complex chains and their properties were examined in detail and an

algorithm to detect such chains was presented. The concept of dependence between two

complex chains and the effect this has on the analysis of Dots-and-Boxes was discussed.

Furthermore, the implications that complex chains have on the double-dealing decision

was discussed and a one-step-ahead analysis strategy for double-dealing with complex

chains was presented.

In the next chapter, the action policy which the program used in order to follow the

strategies discussed in this document is presented.
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Action policy

In order for a computer to play a game, it requires an action policy which allows it to

decide which move to make next. The action policy implemented for this project needed

to be consistent with the strategies and theory discussed in the previous chapters. The

design and implementation of this action policy is discussed in this chapter.

8.1 Edge priorities

In order to choose an action, the program was implemented so that it analyses the current

state of the board and assigns a priority value to each available edge. The program then

chooses the edge with the highest priority value as the next edge to cut. If more than

one edge has the highest priority value, then the program chooses one of these edges at

random. The function which was written to perform these actions is called makeMove

and the Haskell code for this function can be found in section D.5.3.

8.2 Assigning edge priorities

The priority of an edge is determined by the effect that cutting the edge would have

on the state of the game. An edge which, when removed, will result in a gain in coins

for the player would have a high priority value; on the other hand an edge which, when

removed, will result in offering a number of coins to the opponent would typically have

a low priority value. For example, a computer playing Dots-and-Boxes at a low level

58
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might assign a priority value of +1 to an edge which would result in a gain of a coin,

a priority value of −1 to an edge which would result in offering a number of coins to

the opponent, and a value of 0 to an edge which would not result in any player gaining

coins. Higher level programs would require more sophisticated policies for assigning a

priority value to an edge.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.1: All the possible node pairs to which an edge can connect

The effect that removing an edge would have on the game can be determined by exam-

ining the two nodes to which the edge connects. The function getPriority was written

to assign a priority value to an edge by pattern matching on its associated nodes. This

function can be found in section D.5.2.

Figure 8.1 shows all the possible combinations of node pairs to which an edge can connect

in a game of Dots-and-Boxes. See that edge types (A), (D), and (F) should have the

highest priority values because removing them would award the player with with coins

and an additional turn without worsening the player’s strategic position. In other words,

removing these edges will award the player free coins. getPriority assigns a priority value

of 3 to such edges. Recall that the chain detection algorithms described in this document

do not detect open 1-chains and dipoles. These chains contain only free coins and are

detected by pattern matching in getPriority .

The same cannot be said for the edge in figure 8.1e, however, because removing it may

result in the loss of a double-dealing opportunity. Nevertheless, removing the edge would

result in the gain of a coin and thus the move should be given a high priority, albeit not



Action policy 60

as high as a free coin or a double-dealing move used to good effect. getPriority assigns

a priority value of 1 to these edges.

See that removing the edges in figures 8.1c and 8.1i would neither result in a gain of

coins for the player nor an offering of coins to the opponent. These edges can thus be

considered to have medium priority values. getPriority assigns a priority value of 0 to

these edges.

The edges types (B), (G), and (H) are connected to binodes but not to singleton nodes

and thus removing them would result in offering a number of coins to the opponent.

As all these edge types are connected to binodes, it follows that they form a link in

a chain structure. The exact number of coins offered to the opponent when the edge

removed is therefore equal to the effective length of the edge’s associated chain. In order

to implement an action policy which follows strategy 7.4, the priority value of such an

edge should be proportional to the effective length of its associated chain such that

chains with a larger effective length would have a lower priority. However, if removing

such an edge results in a double-dealing move, then this edge may have a high priority

value. Further analysis is therefore needed. The further analysis of the edge types (B),

(G), and (H) is performed in the functions getPriorityB , getPriorityG , and getPriorityH

respectively. These functions can be found in section D.5.2.

8.2.1 Further analysis of possible double-dealing opportunities

In order to perform further analysis on edge types (B), (G), and (H), it requires that

other nodes be examined. These nodes of interest are the next neighbouring nodes of

each binode under analysis. Edge types (B) and (H) connect to a single binode and thus

only one additional node needs to be examined. Edge type (G) connects two binodes

together and thus two additional nodes are required.

8.2.1.1 Further analysis of edge type (B)

Figure 8.2: An open
simple 2-chain

The function getPriorityB determines the priority value of the

edge in figure 8.1b by examining the next neighbouring node of

the binode. If this node is a singleton node, then the resulting

structure would be the structure in figure 8.2. This structure is
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an open simple 2-chain and thus cutting the edge would result in performing a double-

dealing move. If the double-dealing decision function, doubleDeal , indicates that the

double-dealing move should be performed, then getPriorityB will return a value of 2.

See that the priority value of a double-dealing move is less than that of a free coin but

greater than that of the move in figure 8.1e. If it is deemed that the double-dealing

move should not be performed, then getPriorityB will return a value of − 4 (-2 times

the number of coins offered to the opponent).

If the node of interest is not a singleton, then removing the edge would result in opening

a chain and thus getPriorityB returns a value of -2 times the effective length of the

associated chain. The reason why the effective length is multiplied by -2 is that priority

values are stored as integers in the program.

8.2.1.2 Further analysis of edge type (G)

Figure 8.3: An open loop
chain containing four coins

The priority value of the edge type (G) is calculated us-

ing the function getPriorityG . This function examines the

neighbouring nodes of each of the binodes in order to deter-

mine the edge’s probability. See that, if both these nodes

are singleton nodes, then the resulting structure would be an open 4-chain with two

loose ends shown in figure 8.3. Recall that removing this edge would be a special case

of the double-dealing move where two dipoles are produced. In a similar manner to

getPriorityB , a priority value of 2 is returned if it is decided that the double-dealing

move should be performed; otherwise, a value of − 8 is returned.

If both of the nodes under inspection are either wall nodes or multinodes, then the

resulting structure is a closed 2-chain. Cutting the edge would therefore produce a

hard-hearted handout. Recall that strategy 4.2 states that a hard-hearted handout

should always be performed when opening a 2-chain. In order to follow this strategy,

this edge should have a higher priority value than one which produces a half-hearted

handout, i.e. a move which opens a 2-chain and creates a double-dealing opportunity.

getPriorityG assigns a priority value of − 3 for hard-hearted handouts. See that this

priority value is greater than that a half-hearted handout (− 4) yet smaller than that

of an edge which would open a closed 1-chain (− 2).
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If none of the above cases are met then the structure under inspection must be a long

chain and thus removing the edge would result in offering a number of coins to the

opponent equal to the effective length of the chain. If this chain is non-circular, then

getPriorityG returns a value of −2le, where le is the chain’s effective length; if the chain

is a loop chain, getPriorityG returns a value of 2le + 1 in order to give priority to loop

chains over non-circular chains of the same length. This is consistent with strategy 6.2.

8.2.1.3 Further analysis of edge type (H)

Figure 8.4: An open
complex 2-chain

The edge type in figure 8.1h connects a binode to a multinode

and thus forms a link in a complex chain. If the next neighbour-

ing node of the binode is a singleton node, then the resulting

structure would be an open complex 2-chain as can be seen in figure 8.4. Remov-

ing the edge would therefore result in a double-dealing move. Recall from chapter 7

that, since detailed analysis of complex structures is beyond the scope of this project,

double-dealing moves typically won’t be performed except perhaps if the board were to

become divided into a series of independent chains as a result of removing the open com-

plex chain. getPriorityH thus uses the function doubleDealComplex in order to check

whether or not to perform the double-dealing move. If doubleDealComplex returns True,

then getPriorityH will return a priority value of 2; otherwise it will return a priority

value of − 4.

If the next neighbouring node is not a singleton, getPriorityH will return a priority value

of -2 times the effective length of the associated chain.

8.3 Effectiveness of action policy design

The priority value of an edge was calculated by pattern matching on the two nodes to

which the edge connects. This approach enabled the strategies and theory from the

previous chapters to be integrated into the action policy and as a result the program

was able to play the game at an advanced level.
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The pattern recognition approach was greatly facilitated by functional programming

because functional programming languages have the ability to pattern match on data

structures and values.

isEdgeTypeA :: Node → Node → Bool

isEdgeTypeA Wall (Singleton ) = True

isEdgeTypeA (Singleton ) Wall = True

isEdgeTypeA = False

The Haskell code above shows a function which detects an edge of type (A) by pattern

matching on the two nodes which are joined by a certain edge. See that if one of the nodes

is a Wall and the other is a Singleton, then the function will recognise the pattern and

conclude that the edge connecting the nodes is of type (A). The use of pattern matching

is a concise, effective, and elegant way to reach this conclusion.

Furthermore, in [3], Berlekamp shows how a nimber value can be assigned to a structure

by recognising certain patterns contained within the structure. The pattern matching

capabilities of function programming languages would therefore be of great use when

designing a program to perform nimber analysis on a game of Dots-and-Boxes.

8.4 Summary

The process of assigning a priority value to an edge is summarised by tables 8.2, 8.3,

and 8.4. See that this process allows a program to follow the strategies which were

discussed throughout this document. A program following the action policy discussed

in this chapter should be able to consistently defeat a näıve player who does not have

an advanced-level understanding of the game.

8.5 Further work

The program created during this project is one which is able to play Dots-and-Boxes at

an advanced level and is able to use techniques such as chain counting and double-dealing

moves to good effect. However, this program is not yet able to play at the highest level

and thus further work is required in order to increase its sophistication.
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The next step for this program would be to enable it to perform advanced analysis on

complex structures using techniques such as alpha-beta pruning and nimber analysis.

This should allow the program to make better decisions in both pre-gridlock and post-

gridlock situations. The data structures and functions implemented during this project

are general and flexible and thus should facilitate further development of the program.

Edge type Pattern Comment Priority

(A) Free coin 3

(B) More analysis required Refer to table 8.2

(C) No obvious consequence 0

(D) Free coins 3

(E) Gain a coin 1

(F) Free coin 3

(G) More analysis required Refer to table 8.3

(H) More analysis required Refer to table 8.4

(I) No obvious consequence 0

Table 8.1: Summary of function getPriority
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Pattern doubleDeal Comment Priority

True Perform double-dealing
move

2

False Do not perform double-
dealing move

−4

Otherwise n/a Offer a number of coins
to the opponent

−2le

Table 8.2: Summary of function getPriorityB

Pattern doubleDeal isLoop Comment Priority

True Perform double-dealing
move

2

False Do not perform double-
dealing move

−8

Hard-hearted handout −3

Hard-hearted handout −3

Hard-hearted handout −3

Otherwise False Offer a number of coins
to the opponent

−2le

Otherwise True Give priority to loops −2le + 1

Table 8.3: Summary of function getPriorityG

Pattern doubleDealComplex Comment Priority

True Perform double-dealing
move

2

False Do not perform double-
dealing move

−4

Otherwise n/a Offer a number of coins
to the opponent

−2le

Table 8.4: Summary of function getPriorityH
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Conclusion

The aim of this project was to create a program capable of playing the combinatorial

game Dots-and-Boxes using functional programming. The program was required to play

the game at an advanced level such that it could use the famous double-dealing move

to good effect. In order to achieve this, a thorough understanding of the game and

its properties was needed. In this work, theory and framework for the Dots-and-Boxes

game were established and high-level strategies for playing the game were presented.

The program which was implemented to play the Dots-and-Boxes game required an ar-

chitecture of data structures which would store information in an efficient and utilisable

way, functions capable of performing actions such as chain detection, lookahead analysis,

and decision making, an action policy which would enable it to employ high-level game-

play strategies, as well as an interactive user interface with which the game could be

played and tested. These were all realised through the use of functional programming.

The use of functional programming proved to be extremely beneficial in the design of this

program. Its capability to support the use of functional data structures, pattern match-

ing, and higher-order functions, as well as its toolkit of flexible and highly-utilisable

functions made it extremely suitable for tackling the difficult task of achieving advanced-

level play of the Dots-and-Boxes game. Furthermore, the use of functional programming

allowed the program to be elegant and concise while achieving a sophisticated level of

functionality. The functional data structures used to express nodes, edges, and chains
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were simple, concise, yet extremely powerful; they allowed the program to perform com-

plex analysis in an efficient and precise way and they are also flexible enough to allow

for further development of the program.

A similar program could be realised through the use of imperative programming lan-

guages, however it would most likely lack the finesse and concision which can be achieved

using the functional programming approach.



Appendix A

An Introduction to Functional

Programming

A.1 Functional Programming

Functional programming is a programming paradigm which models computation as the

evaluation of mathematical functions. The output of such a function depends only on

its list of arguments and their associated values. Imperative programming languages,

on the other hand, model computation as the sequential execution of statements which

change a global state. In functional programming there is no dependence on any global

state variable.

A.1.1 First-class functions

Functions in functional programming are required to be first-class, meaning that a func-

tion and a list of arguments can be treated as a value prior to evaluation. This useful

property allows for the use of techniques such as higher-order functions, currying of

functions, lazy evaluation etc.

A.1.2 Lazy Evaluation

The requirement of functions to be first-class allows functional programming languages

make use of the evaluation strategy known as lazy evaluation. With lazy evaluation,

the evaluation of a function is not performed until absolutely necessary. This avoids

the unnecessary evaluation of expressions and thus can lead to more efficient use of

computational resources.
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Lazy evaluation allows infinite data structures to be defined and used. An infinite

data structure which is often used in functional programming is the infinite list. For

example, the Haskell code ‘take 5 [1, 2..]’ will return [1, 2, 3, 4, 5]. In this example, [1, 2..]

is an infinite list of consecutive integers beginning at 1. This infinite list will not be

completely evaluated, however, as only the first five elements are requested. As lazy

evaluation performs calculations on a need-to-know basis, evaluation of the infinite list

will cease after the fifth element is calculated.

A.1.3 Higher Order Functions

One of the great strengths of functional programming is its ability to use higher-order

functions, i.e. functions which do at least one of the following:

• Take a function as one of its arguments

• Return a function as an output

An example of a higher order function from mathematics is the differentiation operator,
d
dx . This function takes a function f(x) as its input and returns a function f ′(x) as its

output. The use of higher order functions allows for the implementation of flexible and

highly utilizable functions such as the famous map, fold , and filter functions.

A.1.4 Currying

Functional programming languages evaluate functions using a technique called curry-

ing. This technique translates a function of several arguments into a sequence of unary

functions.

Consider the function f (x , y) = 2x + y . A curried version of this function is the function

α(x) = x 7→ f(x, y). The function α(x) takes a single argument and returns a function

β(y) as its output. f(1, 2) can thus be evaluated using currying as

f(1, 2) = β(2),

where

β(y) = α(1) = f(x, y)|x=1 = 2 + y

All multivariable functions in functional programming can thus be thought of as higher

order functions due to the use of currying.
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A.2 Writing Functions in Haskell

All the source code for this project was written using the functional programming lan-

guage Haskell. This section discusses many common techniques used when programming

in Haskell in order to facilitate the understanding of the source code presented in ap-

pendix D. A detailed and enjoyable tutorial for Haskell can be found in [2].

A.2.1 Type declarations

The function f(x, y) from section A.1.4 can be implemented in Haskell as follows:

f :: Num a ⇒ a → a → a

f x y = 2 ∗ x + y

The line f :: Num a ⇒ a → a → a declares the type of the function. In this example,

f is a function which takes two arguments, each of type a where a is a member of the

Num typeclass (meaning that a must be a number), and returns a value of the same

type. The part a → a → a can be rewritten as a a → (a → a) and literally means

“a function which maps a type a to a function which maps a type a to a type a”. The

reason for this is that all multivariable functions in Haskell are curried. For all intents

and purposes, the last value in the type declaration can be thought of as the return

value of the function and all other values as the arguments.

A.2.2 Pattern matching

A useful property of functions in Haskell is their ability to use a technique called pattern

matching. Pattern matching allows certain patterns in the input arguments to determine

the behaviour of the function.

g :: Maybe a → Bool

g (Just x ) = True

g x = False

Consider the function g written in Haskell above. The input variable is of the Maybe

type. The Maybe type has two possible values: Nothing and Just a, where a is some

type (Int , Bool etc.). The function g uses pattern matching on this input variable and

returns different values depending on the pattern which the variable matches. The first

pattern is Just x and any input with the value Just a will match this type. The second

pattern is the most general pattern that all inputs will match. However, if the input

matches the second pattern it means that it did not match the first pattern and thus

cannot have the value of Just a. Thus it must have the value Nothing .
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A.2.3 Guards

Guards work in a similar way to pattern matching, however, instead of the patterns of

the input arguments, the behaviour of the function is determined by whether or not the

arguments satisfy certain predicates.

h :: Num a → a → a → Int

h x y

| (x > y) = 1

| (x < y) = 2

| otherwise = 3

The function h shown above uses guards to determine its behaviour. Note that if the

arguments meet the second guard predicate, it means that they did not meet the first

predicate.

A.2.4 Wildcards

Wildcards in are used to represent a variable whose value has no effect on the behaviour

of the function. Wildcards in Haskell are written as ‘ ’.

g :: Maybe a → Bool

g (Just ) = True

g = False

The function g from section A.2.2 can be rewritten using wildcards as shown above.

Since the value x is never used within the function, it can be replaced with a wildcard.

A.2.5 Lambdas

Lambdas are used to define functions which will only be used once and are typically

used when defining a function to pass to an higher order function. The famous function

filter is a higher order function which takes a predicate function and a list and returns

a new list composed of all the elements of the input list which satisfy the predicate.

filter (λ x → and [x > 5, x < 10]) [1, 2..20]

The Haskell code above should return a list of all natural numbers which lie on the

interval (5, 10). The predicate function which is input to the filter function is defined

using a lambda.
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A.3 I/O with functional programming

The requirement that the return value of a function in functional programming be deter-

mined by the argument list alone makes the design of I/O functions difficult. However,

as the code for the interactive user interface designed for this project is not included in

this document, I/O in Haskell will not be discussed in detail. A detailed tutorial about

I/O in Haskell can be found in [2].
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Lists

B.1 The List data structure

One of the most important data structures in Haskell is the list. A list is a set of objects

which can be accessed using an index, similar to an array in imperative languages. There

is no restriction on what type of object may be stored in a list; however the list must be

homogeneous, i.e. all objects stored within the list must be of the same type (integer,

boolean, etc.). The notation [a] is used when declaring an object to be a list of type a.

A list can be thought of as a recursive data structure with two possible values: an

empty list (denoted in Haskell as [ ]), or a combination of a head element and a sub-list

containing elements of the same type. The latter value is essentially a constructor which

takes an element and a list and forms a new list, i.e. l′ = Cons(e, l) where e is the new

element, and l is the input list. In Haskell this constructor is denoted as : and is used

as an infix operator. Any non-empty list l can thus be expressed as (x : xs), where x is

the head element and xs is the rest of the list.

Lists in Haskell are typically written as [e1, e2, e3, ..., en] where ei is the ith element in the

list. A list containing the first three natural numbers in increasing order would therefore

be written as [0, 1, 2]. However, this notation is just syntactic sugar for (0 : (1 : (2 : [ ]))),

which shows the list as a recursive data structure ending with an empty list.

B.2 Common List functions

The following are common operations on lists which were used regularly in this project.

Refer to Data.List from Hackage [10] for more information.

73



Lists 74

head :: [a]→ a

Returns the first element of a non-empty list.

tail :: [a]→ [a]

Returns all the elements after the head of a non-empty list.

last :: [a]→ a

Returns the last element of a non-empty list.

init :: [a]→ [a]

Returns all the elements of a non-empty list except the last element.

(++) :: [a]→ [a]→ [a]

An infix operator. Concatenates two lists into a single list.

(!!) :: [a]→ Int→ a

An infix operator. Takes a list and an index and returns the element located at that

index. Throws an error if the index is out of the range of the list.

length :: [a]→ Int

Returns the number of elements in a list.

maximum :: Ord a⇒ [a]→ a

Returns the maximum value of a finite, non-empty list. The elements must be of an

ordered type.

sum :: Num a⇒ [a]→ a

Returns the sum of a finite list of numbers.

product :: Num a⇒ [a]→ a

Returns the product of a finite list of numbers.

elem :: Eq a⇒ a→ [a]→ Bool

Tests if an element is in a list. For the function to return False, the list must be finite.

zip :: [a]→ [b]→ [(a, b)]

This function takes two lists and combines them into a list of associated pairs. The

length of the resulting list will be equal to that of the shortest of the input lists. The

excess elements of the longer list will be discarded.

and :: [Bool]→ Bool

This function returns the conjuction of a Boolean list. It returns False if any element

of the list is False. For it to return True, the list must be finite and all of its elements
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must be True.

or :: [Bool]→ Bool

This function returns the disjunction of a Boolean list. It returns True if any element

of the list is True. For it to return False, the list must be finite and all if its elements

must be False.

map :: (a→ b)→ [a]→ [b]

This function takes in a unary function f and a list xs and returns the list resulting

from applying f to each element of xs.

foldl :: (b→ a→ b)→ b→ [a]→ b

This function takes in a binary function, an initial accumulator value, and a list and

returns the accumulator after each element

filter :: (a→ Bool)→ [a]→ [a]

This function takes a predicate function p and a list xs and returns a list of all the

elements in xs which satisfy p.

partition :: (a→ Bool)→ [a]→ ([a], [a])

This function takes a predicate function p and a list xs and returns a pair of lists (ys, zs)

where ys contains all the elements in xs which satisfy p and zs contains all the elements

in xs which do not satisfy p.

any :: (a→ Bool)→ [a]→ Bool

This function takes a predicate function p and a list xs and returns True if any element

in xs satisfies p. In order for it to return False, it requires that the list be finite and

that no element in the list satisfies p.

all :: (a→ Bool)→ [a]→ Bool

This function takes a predicate function p and a list xs and returns True if all the

elements in xs satisfy p and that xs is finite. In order for it to return True, it requires

that at least one element in the list does not satisfy p.
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Maps

C.1 The Map data structure

Map data structures were used extensively in the implementation of the program for

this project. Map structures are essentially association lists, i.e. lists of key-value pairs

where each key uniquely identifies its corresponding value. The use of these structures

requires the inclusion of the Data.Map module.

The elements in a map are stored in a way which makes traversal of the map quick and

efficient. This implementation is based on size balanced binary trees, as is described in

[11], [12].

C.2 Common Map functions

The following are common operations on maps which were used regularly in this project.

Refer to Data.Map from Hackage [13] for more information.

size :: Map k a→ Int

Returns the number of elements contained in the map.

member :: Ord k ⇒ k → Map k a→ Bool

O(log n). Indicates whether or not a key is a member of a map.

lookup :: Ord k ⇒ k → Map k a→ Maybe a

O(log n). Retrieves an element from a map given its corresponding key value. If the key
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is a member of the map, the function returns (Just 〈value〉); otherwise it will return

Nothing .

insert :: Ord k ⇒ k → a→ Map k a→ Map k a

O(log n). Inserts a key and its corresponding value into the map. If the key is already

a member of the map, then its associated value will be replaced with the new value.

update :: Ord k ⇒ (a→ Maybe a)→ k → Map k a→ Map k a

O(log n). Updates the corresponding value x of a key value k, if k is a member of the

map. A unary function f is input to the function and if f x returns Nothing then the

key-value pair will be deleted; if f x returns (Just y) then the value x will be replaced

with y.

map :: (a→ b)→ Map k a→ Map k b

O(n). Takes a function f and a map m and returns the resulting map after f has been

applied to each element in m.

elems :: Map k a→ [a]

O(n). Returns a list of all the elements contained within a map in the ascending order

of their key values.

keys :: Map k a→ [k]

O(n). Returns a list of all the key values contained within a map in ascending order.

toList :: Map k a→ [(k, a)]

O(n). Takes a map m and returns a list of all key-value pairs contained within m.

fromList :: Ord k ⇒ [(k, a)]→ Map k a

O(n · log n). Takes a list of key-value pairs and converts it into a map object. If the list

has duplicate keys, then only the last value for the key is inserted.

filter :: Ord k ⇒ (a→ Bool)→ Map k a→ Map k a

O(n). Removes all elements from a map which don’t satisfy the input predicate func-

tion.
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Code

D.1 Imported modules

While most of the standard functions and data types which were used were defined

within the default Prelude module, some were defined in other modules which needed

to be imported.

import qualified Data.Map as M

import qualified Data.List as L

import qualified Data.Maybe as Mb

import System.Random

Functions and data types from any of the qualified imports stated above will be preceded

by the associated identification string. For example, a function imported from Data.Map

will be preceded by ‘M .’.

D.2 General functions

• removeElem

This function removes all occurrences of the element y from the list xs.

removeElem :: (Eq a) ⇒ [a] → a → [a]

removeElem xs y = foldr (λ x acc → if x == y then acc else x : acc) [] xs

• getElem

This function retrieves the element with the key value k from a Map structure m.

An error will be caused if there is no such element.
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getElem :: (Ord k) ⇒ k → M .Map k a → a

getElem k m = Mb.fromJust $ M .lookup k m

• randIndex

This function takes in a random number seed value gen and an integer i and

returns an integer chosen randomly from the first i natural numbers. The function

will not behave correctly if i is not a natural number.

randIndex :: StdGen → Int → Int

randIndex gen i = fst $ randomR (0, i − 1) gen

• ceilDiv

This function takes in two integers n, d and returns
⌈
n
d

⌉
, where d·e is the ceiling

operator.

ceilDiv :: Int → Int → Int

ceilDiv n d = (div n d) + if (mod n d) > 0 then 1 else 0

D.3 Strings-and-Coins architecture

As was discussed in chapter 3, any game of Dots-and-Boxes has an associated Strings-

and-Coins representation. This representation allows the board to be expressed as a

mathematical graph.

D.3.1 Data types for nodes and edges

D.3.1.1 Edge and node identifiers

Each edge and node in the graph must have a unique identifier.

type EdgeId = Int

type NodeId = Int

D.3.1.2 Edge structures

Each edge contains the identifiers of the two nodes to which it connects as well as a

boolean variable indicating whether or not the edge has been cut.

type Edge = (NodeId , NodeId , Bool)
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D.3.1.3 Node structures

Each node is either a wall node or a coin. Coin nodes are divided into four categories

depending on their valencies. Coins with attached edges store the identifiers of each

attached edge.

data Node = Wall

| EmptyNode — Coin with no attached edges

| Singleton EdgeId — Coin with a single attached edge

| BiNode (EdgeId , EdgeId) — Coins with two attached edges

| MultiNode [EdgeId ] — Coins with three or more attached edges

D.3.1.4 NodeTuple objects

It is often convenient to store both a node and its identifier in a single structure.

type NodeTuple = (NodeId , Node)

D.3.1.5 NodeMaps and EdgeMaps

All of the nodes and edges in the graph are stored in Map structures where each object

can be accessed using its unique identifier.

type EdgeMap = M .Map EdgeId Edge

type NodeMap = M .Map NodeId Node

D.3.1.6 Database objects

All of the information in a graph is stored in a Database object. This object contains

both the NodeMap and the EdgeMap associated with the graph.

type Database = (NodeMap, EdgeMap)

D.3.2 Node functions

• createNode

This function creates a node given a set of EdgeIds. The cardinality of the set

determines the node type.
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createNode :: [EdgeId ] → Node

createNode [] = EmptyNode

createNode [a] = Singleton a

createNode [a, b] = BiNode (a, b)

createNode ns = MultiNode ns

• getNode

This function retrieves a node from the Database given its ID. An error will be

thrown if the node cannot be found.

getNode :: Database → NodeId → Node

getNode (nm, ) n

|M .member n nm = getElem n nm

| otherwise = error “getNode : Node not in database”

• isSingleton

This function indicates whether or not a node is a singleton.

isSingleton :: Node → Bool

isSingleton (Singleton ) = True

isSingleton = False

• isBiNode

This function indicates whether or not a node is a binode.

isBiNode :: Node → Bool

isBiNode (BiNode ) = True

isBiNode = False

• isMultiNode

This function indicates whether or not a node is a multinode.

isMultiNode :: Node → Bool

isMultiNode (MultiNode ) = True

isMultiNode = False

• isTriNode

This function indicates whether or not a node is a multinode of valency three.

isTriNode :: Node → Bool

isTriNode (MultiNode ns) = (length ns == 3)

isTriNode = False
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• isEmptyNode

This function indicates whether or not a node is an emptynode.

isEmptyNode :: Node → Bool

isEmptyNode EmptyNode = True

isEmptyNode = False

• order

This function takes a pair of NodeTuple objects and arranges them in a useful

order for pattern matching in other functions.

order :: (NodeTuple, NodeTuple) → (NodeTuple, NodeTuple)

order x @ (( ,Wall), ) = x

order (a, b @ (Wall , )) = (b, a)

order x @ (( ,Singleton ), ) = x

order (a, b @ (Singleton , )) = (b, a)

order x @ (( ,BiNode ), ) = x

order (a, b @ (BiNode , )) = (b, a)

order x = x

D.3.3 Edge functions

• getEdge

This function retrieves an edge from the Database given its ID. An error will be

thrown if the edge cannot be found.

getEdge :: Database → EdgeId → Edge

getEdge ( , em) e

|M .member e em = getElem e em

| otherwise = error “getEdge : Edge not in database”

• isOpen

This function indicates whether or not an edge has been cut. A value of False

indicates that the edge has been cut.

isOpen :: Edge → Bool

isOpen ( , , b) = b

• nodes

This function takes an Edge object and returns the two nodes to which it is at-

tached as well as their IDs.



Code 83

nodes :: Edge → Database → (NodeTuple, NodeTuple)

nodes (a, b, ) db = order ((a, f a), (b, f b))

where

f x = getNode db x

D.3.4 Functions for graph traversal

• hop

This function takes in an Edge and the NodeId of one the nodes to which it is

connected and returns the NodeId of the other node. An error will be thrown if

the input NodeId is not associated with the Edge.

hop :: Edge → NodeId → NodeId

hop (n1, n2, ) n

| not $ any (n ==) [n1,n2] = error “hop : edge does not contain node n”

| otherwise = head $ filter (n 6=) [n1, n2]

• nextNode

This function takes a NodeId as well as the ID of an edge associated with the node

and returns the next NodeTuple which is reached by following the edge.

nextNode :: NodeId → EdgeId → Database → NodeTuple

nextNode n e db = (n ′, getNode db n ′)

where

n ′ = flip hop n $ getEdge db e

• nextNode

This function is almost identical to nextNode except that it returns only the NodeId

of the next node.

nextNode :: NodeId → EdgeId → Database → Node

nextNode n e db = snd $ nextNode n e db

• nextEdge

This function takes a BiNode and the ID of one of its associated edges and returns

the ID of the other associated edge.

nextEdge :: Node → EdgeId → EdgeId

nextEdge (BiNode (a, b)) e = if a == e then b else a

nextEdge = error “nextEdge : invalid node type”
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D.4 Chains

D.4.1 The chain data type

As was discussed in chapter 7, a chain data structure must store the set of nodes con-

tained within the chain, the set of multinodes which bound the chain, and a label

indicating if the chain is open, closed, or a loop chain.

type Chain = ([NodeId ], [NodeTuple], Label)

data Label = Closed | Open | Loop

The above code defines a chain data structure to be a 3-tuple composed of a list of

NodeIds (the IDs of the coins contained within the chain), a list of NodeTuples (the set

of bounding multinodes), and a Label data type which can have the value Closed , Open,

or Loop.

D.4.2 Chain functions

D.4.2.1 General chain functions

• isClosedChain

This function indicates whether or not a chain is closed (and non-circular).

isClosedChain :: Chain → Bool

isClosedChain ( , , x ) = (x == Closed)

• isOpenChain

This function indicates whether or not a chain is open.

isOpenChain :: Chain → Bool

isOpenChain ( , , x ) = (x == Open)

• isLoop

This function indicates whether or not a chain is a loop.

isLoop :: Chain → Bool

isLoop ( , , x ) = (x == Loop)
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• isDipperLoop

This function indicates whether or not a chain is a dipper loop. It returns True if

the chain is bounded at both ends by the same trinode; otherwise it returns False.

isDipperLoop :: Chain → Bool

isDipperLoop ( , [(ai ,n), (bi , )], ) = and [ai == bi , isTriNode n]

isDipperLoop = False

• fromChain

This function takes a chain and returns the list of nodes contained within the

chain.

fromChain :: Chain → [NodeId ]

fromChain (ns, , ) = ns

• chainLen

This function returns the length of the input chain.

chainLen :: Chain → Int

chainLen c = length $ fromChain c

• getBoundingNodes

This function returns the list of bounding multinodes from an input chain. If the

chain is not complex, then this function will return an empty list.

getBoundingNodes :: Chain → [NodeTuple]

getBoundingNodes ( , ys, ) = ys

• boundedBy

This function takes a chain and a NodeId and indicates whether or not the node

is contained within the set bounding multinodes of the chain.

boundedBy :: NodeId → Chain → Bool

boundedBy ni ( , ys, ) = any ((ni ==) . fst) ys

• handout

This function returns the minimum required handout to perform a double-dealing

move on an independent, closed chain (simple or circular).

handout :: Chain → Int
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handout ( , [], x )

| x == Loop = 4

| x == Closed = 2
handout = error “handout : invalid input”

• effLen

This function returns the effective length of a chain. If the chain is not a dipper

loop, then this function simply returns its length.

effLen :: Chain → [Chain] → Database → Int

effLen c@( , (n : ), ) cs db

| isDipperLoop c = sum [1, chainLen c, effLen ′ n c cs db]

| otherwise = chainLen c
effLen c = chainLen c

• effLen ′

This function is used as part of the effLen function stated above. It returns the

length of the non-circular region of a dipper structure. It does this by examining

the first node of the non-circular region. If this node is a singleton node, then it is

an open 1-chain and thus will return 1, if this node is a binode, then the function

returns the length of the chain which contains that node; otherwise, the function

will return 0. Note that open 1-chains will not be detected by the chain detection

algorithms and thus must be treated specially.

effLen ′ :: NodeTuple → Chain → [Chain] → Database → Int

effLen ′ (ni ,MultiNode es) c cs db =

let ns = map (λ e → nextNode ni e db) es

ns ′ = filter (λ (id , ) → not $ elem id $ fromChain c) ns

in case ns ′ of

[( ,Singleton )]→ 1

[(id ,BiNode )] → chainLen $ head $ filter (elem id . fromChain) cs

[ ] → 0

xs → error “effLen ′ : Invalid case”

D.4.2.2 Chain detection functions

• getChains

This function returns the set of chains contained within the board by examining

the associated Database object. It does this by calculating a list of all the binodes

contained within the board and calls the chain detection function, toChain, on

each binode which is not already contained within one of the detected chains.
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getChains :: Database → [Chain]

getChains db@(nm, ) = foldl (fn) [] $ M .toList $ M .filter (isBiNode) nm

where

fn acc a@(ni , )

| any (elem ni) $ map (fromChain) acc = acc

| otherwise = (toChain a db) : acc

• toChain

This function is the implementation of algorithm 7.2. It takes a binode and calcu-

lates the sub-chains in either direction by following its two associated edges and

calling the function toChain ′. It then combines these sub-chains with the input

binode to form the entire chain.

toChain :: NodeTuple → Database → Chain

toChain (ni , BiNode (a, b)) db = foldl (λ acc e → toChain ′ (fn e) acc e db

([ni ], [],Closed)

[a, b]

where fn x = nextNode ni x db

• toChain ′

This function is the implementation of the function f(·) from algorithm 7.2. See

chapter 7 for more information.

toChain ′ :: NodeTuple → Chain → EdgeId → Database → Chain

toChain ′ (ni , node) c@(ns, ys, x ) e db

| elem ni ns = (ns, ys, Loop)

| isBiNode node = toChain ′ t ′ (ni : ns, ys, x ) e ′ db

| isSingleton node = (ni : ns, ys, Open)

| isMultiNode node = (ns, t : ys, x )

| otherwise = c
where

e ′ = nextEdge node e

t ′ = nextNode ni e ′ db
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D.5 Action policy functions

D.5.1 Double-dealing decision functions

• doubleDeal

This function determines whether or not a double-dealing move should be per-

formed by examining the input list of chains. It makes its decision based on the

theory outlined in chapter 6. Note that the function will return False if any of the

following conditions are met:

– There number of open chains is not equal to one.

– There are multinodes in the database.

– There are no long chains.

doubleDeal :: [Chain] → Database → Bool

doubleDeal cs (nm, )

| (0 6=) $ M .size $ M .filter (isMultiNode) nm = False

| length opens 6= 1 = False

| null longs = False

| and [even ns, even n1] = (n ≤) $ (2∗) $ sum

[ceilDiv n1 2, (2∗) $ ceilDiv n2 2, rl ]

| and [even ns, odd n1] = (n ≤) $ (2∗) $ sum

[ceilDiv n1 2, (2∗) $ div n2 2, rl ]

| and [odd ns, odd n1] = (n >) $ (2∗) $ sum

[div n1 2, (2∗) $ ceilDiv n2 2, lo, rl ]

| and [odd ns, even n1] = (n >) $ (2∗) $ sum

[div n1 2, (2∗) $ div n2 2, lo, rl ]

where

(opens, cs ′) = L.partition (isOpenChain) cs

(longs, shorts) = L.partition (λ c → (chainLen c) > 2) cs ′

(ones, twos) = L.partition (λ c → (chainLen c) == 1) shorts

(end , longs ′) = getEndChain longs

[n1,n2,ns] = map (length) [ones, twos, shorts]

n = sum $ map (chainLen) cs

lo = chainLen $ head opens

rl =foldl (λ acc c → acc − (handout c) + (chainLen c))

(chainLen end) longs ′
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• getEndChain

This function is called as part of the doubleDeal function. It takes a list of chains

and returns the last chain expected to be opened as well as the list of chains with

this chain removed. The last chain expected to be opened is the longest chain

in the set. Priority is given to loop chains over non-circular chains of the same

length.

getEndChain :: [Chain] → (Chain, [Chain])

getEndChain cs =

let l x = chainLen x

f (m, s) c | (l c) > (l m) = (c,m : s)

| (l c) < (l m) = (m, c : s)

| isLoop c = (m, c : s)

| otherwise = (c,m : s)
in foldl (f ) (head cs, []) $ tail cs

• doubleDealComplex

This function determines whether or not to perform a double-dealing move when

there are complex chains on the board. It makes the decision using the theory

outlined in chapter 7. The function will immediately return False if any of the

following conditions are met:

– The number of open complex chains on the board is not equal to one.

– There is one open complex chain on the board but the chain is not bounded

by a trinode

If none of the above conditions are met, then there is exactly one open com-

plex chain on the board. The function converts the board into an equivalent

scenario where all the chains are independent and then makes the decision using

the doubleDeal function. See chapter 7 for a more detailed explanation.

doubleDealComplex :: [Chain] → EdgeId → Database → Bool

doubleDealComplex cs e (nm, em)

| (1 6=) $ length opens = False

| f c = let n = fst $ head $ getBoundingNodes c

cs ′ = filter (not . boundedBy n) cs

a = (fromChain c, [], Open)

nm ′ = M .map (λ n → removeEdge n e) nm

b = toChain (n, getElem n nm ′) (nm ′, em)

in doubleDeal (a : b : cs ′) (nm ′, em)
| otherwise = False
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where

opens = filter (λ x → and [isOpenChain x , isComplex x ]) cs

c = head opens

f ( , ys, ) = any (isTriNode . snd) ys

D.5.2 Edge priority functions

• getPriority

This function assigns a priority value to an edge by examining the two nodes to

which it connects using pattern matching. These two nodes are input as a pair

of NodeTuple objects which are assumed to have been ordered using the order

function. Open 1-chains and dipoles are detected here and further analysis is

performed on edges which are connected to at least one binode.

getPriority :: (NodeTuple,NodeTuple) → EdgeId → [Chain] →
Database → Int

getPriority (( ,Wall), ( ,Singleton )) = 3

getPriority (( ,Wall), (ni ,node@(BiNode ))) e cs db = †

getPriority (( ,Wall), ( ,MultiNode )) = 0

getPriority (( ,Singleton ), ( ,Singleton )) = 3

getPriority (( ,Singleton ), ( ,BiNode )) = 1

getPriority (( ,Singleton ), ( ,MultiNode )) = 3

getPriority ((na, a@(BiNode )), (nb, b@(BiNode ))) e cs db = ††

getPriority ((ni ,node@(BiNode )), ( ,MultiNode )) e cs db = †††

getPriority (( ,MultiNode ), ( ,MultiNode )) = 0

getPriority = error “getPriority : Invalid Pattern”

† getPriorityB n ′ ni cs db

where

n ′ = nextNode ni (nextEdge node e) db

†† getPriorityG (f na a, f nb b) na cs db

where

f n x = nextNode n (nextEdge x e) db

††† getPriorityH n ′ ni e cs db

where

n ′ = nextNode ni (nextEdge node e) db
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• getPriorityB

This function is called as part of getPriority when the edge connects a wall node to

a binode. It examines the other node which is attached to the binode by pattern

matching and assigns a priority value depending on what type of node this is.

If the node is a singleton then the structure is an open 2-chain and cutting the edge

would perform a double-dealing move. The functiondoubleDeal is called upon to

see if the double-dealing move should be performed. If so, then the edge is assigned

a priority value of 2 (the second highest possible priority value); if not, the edge

is assigned a priority value of -4 (-2 times the length of the chain).

If the node is not a singleton then the function returns a priority value of -2 times

the effective length of the chain containing the binode.

getPriorityB :: Node → NodeId → [Chain] → Database → Int

getPriorityB (Singleton ) cs db = if doubleDeal cs db then 2 else − 4

getPriorityB ni cs db = − 2 ∗ le

where

le = effLen c cs db

c = head $ filter (elem ni . fromChain) cs

• getPriorityH

This function is similar to getPriorityB only that it is called upon if the edge

connects a binode to a multinode. Again, the other node connected to the binode

is examined and the priority is assigned depending on its type.

If the node is a singleton, then a double-dealing opportunity has presented itself.

Since the open 2-chain is complex, then the function doubleDealComplex is called

upon to decide whether or not to perform the double-dealing move.

If the node is not a singleton then the function returns a priority value of -2 times

the effective length of the chain containing the binode.

getPriorityH :: Node → NodeId → EdgeId → [Chain] → Database → Int

getPriorityH (Singleton ) e cs db = if doubleDealComplex cs e db

then 2 else − 4

getPriorityH ni cs db = − 2 ∗ le

where

le = effLen c cs db

c = head $ filter (elem ni . fromChain) cs
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• getPriorityG

This function is called upon as part of getPriority when the edge connects two

binodes together. The function uses pattern matching on the other node connected

to each binode in order to assign an priority value.

If both of these nodes are singletons, then a double-dealing opportunity has been

detected. The function doubleDeal is called to decide whether or not to perform

the double-dealing move. If not, the edge is assigned a priority of -8 (-2 times the

length of the chain).

If the nodes are each one of a wall node or a multinode, then cutting the edge

would perform a hard-hearted handout. This move is assigned a priority value of

-3, slightly higher priority than a typical action which opens a closed 2-chain.

If none of the above cases are met, then function returns a priority of -2 times the

effective length of the associated chain. If the associated chain is a loop chain,

then the assigned priority value is increased by 1, so that opening a loop chain

would have a higher priority than opening a non-circular chain of the same length.

getPriorityG :: (Node,Node) → NodeId → [Chain] → Database → Int

getPriorityG (Singleton ,Singleton ) cs db = if doubleDeal cs db

then 2 else − 8

getPriorityG (Wall ,Wall) = − 3

getPriorityG (Wall ,MultiNode ) = − 3

getPriorityG (MultiNode ,Wall) = − 3

getPriorityG (MultiNode ,MultiNode ) = − 3

getPriorityG ni cs db = (−2 ∗ le) + (if isLoop c then 1 else 0)

where

le = effLen c cs db

c = head $ filter (elem ni . fromChain) cs
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D.5.3 The move selection function

This function analyses all of the open edges on the board and calculates their priority

values using the getPriority function. It then returns an edge selected at random from

the set of edges with the highest priority values.

makeMove :: Database → StdGen → EdgeId

makeMove db@( , es) gen = M .keys ps ′ !! (randIndex gen $ M .size ps ′)

where

cs = getChains db

f x = getPriority (nodes (getEdge db x ) db) x cs db

ps = foldl (λ acc e → M .insert e (f e) acc) (M .fromList [])

$ M .keys $ M .filter (isOpen) es

max = maximum $ M .elems ps

ps ′ = M .filter (== max ) ps

D.6 Update functions

• update

This function takes a Database object and an EdgeId and returns an updated

Database object with the indicated edge having been cut. The Edge object is

updated by setting its boolean value to False and the edge is removed from the

Node objects by use of the removeEdge function.

update :: Database → EdgeId → Database

update (nm, em) e = (nm ′, em ′)

where

nm ′ = M .map (λ n → removeEdge n e) nm

em ′ = M .update (λ (a, b, ) → Just (a, b,False)) e em

• removeEdge

This function takes a Node object and an EdgeId and removes the edge from the

node, if it was connected to the node. It achieves this by compiling all of the edges

associated with the node into a list and then removes all instances of the input

edge from the list. This new list is then used to generate a new Node object using

the createNode function.
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removeEdge :: Node → EdgeId → Node

removeEdge (Singleton a) e = createNode $ removeElem [a] e

removeEdge (BiNode (a, b)) e = createNode $ removeElem [a, b] e

removeEdge (MultiNode ns) e = createNode $ removeElem ns e

removeEdge EmptyNode = EmptyNode

removeEdge Wall = Wall

D.7 Other functions and data types

Although many other functions and data types were written for the program such as

initialisation functions, functions and data types for the interactive user interface etc.,

these were omitted from this document for brevity. The source code for the project can

be found in the CD submitted with this document and all functions and data types can

be found there.
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