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Summary

Deep learning is being used more and more extensively as a method performing
sentiment analysis on social media. There are studies examining sentiment analysis
on social media, these range from analysing whether film reviews are positive[25],
to whether or not the number of twitter posts a individual has affects their twitter
popularity[24]. While many studies are currently being performed, there are very few
models for sentiment analysis that can accurately classify twitter data. The difficulty
with classifying twitter data lies in the fact that the language used on twitter can
be colloquial and amount of text in each tweet is minimal. With the large database
available for twitter the desire to perform sentiment analysis is considerable in order
to determine public option on a range of topics.
The purpose of this project to investigate deep learning and neural network algo-
rithms and how they relate to logistic regression. In particular deep learning and
network algorithms are being investigated for their ability to classify data. The
purpose of this investigation is to develop a method of classifying data from Twitter
in order to perform sentiment analysis on it.
Currently the most state of the art method for classifying data is the Stanford
implementation of Sentiment Analysis from Socher et al[25] using sentiment tree-
banks. This method can achieve 80.7% accuracy when classifying the sentiment of
movie reviews. By using treebanks the Stanford method can effectively understand
the meaning of a sentence and use this information for classification. While this
method of classification is currently the state of the art in sentiment analysis, it
is trained on movie reviews rather than tweets. Movie reviews are by their nature
very different from tweets. The length of the average movie review used to train
the Stanford implementation is much longer than the average tweet. In addition to
that the language used in tweets is very different from the language generally used
in Twitter.
In this project the method of classification for sentiment analysis will be trained
using tweets. This means that the model will be catered to processing and classi-
fying tweets. One of the most helpful tools in sentiment analysis is knowing what
kind of analysis to perform. By knowing something about the social and cultural
context of the utterance, we can make smarter assumptions about the knowledge
of speaker and more accurately tailor the sentiment predictions to specific types of
communication[17]. The concept behind this project is that by designing a model
to classify Twitter posts the sentiment predictions will be catered for this kind of
communication.
The model will be adapted in two ways to improve its ability to classify tweets.
Firstly the text processing that is performed on the tweet will be designed for tweets.
This means that characteristics of tweets, such as emoticons, hashtags or usernames,
will be processed to improve the accuracy of the classifier. As well as this the
classification for this model will be trained using tweets, allowing the model to
become familiar with indicators of sentiment unique to Twitter. This model, that
has been specially catered for tweets, can then be compared to the state of the art in
sentiment analysis, the Stanford model[25]. For this analysis it will be clear whether
the state of the art or a model specially designed for twitter is better at classifying
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tweets.
For the purpose of classifying tweets, the model implemented in this project that
was trained on tweets performed better than the Stanford model[25]. This shows
the advantage of training the classifier on the kind of text that it will be classifying.
However sentiment is a subjective property and thus can be defined differently by
alternative models. If the complexity of the classification is reduced to a less sub-
jective model the Stanford model begins to outperform the model designed for this
project. This illustrates the potential of a model to classify tweets that was trained
uses tweets, but also reveals the difficulties faced when classifying text with such a
small amount of signal.

viii



In Depth Analysis of Deep Learning for Sentiment Analysis on Twitter
Using the Concepts of Deep Learning to Perform Sentiment Analysis on Twitter
Sarah O’Reilly
Department of Electronic and Computer Engineering
Trinity College Dublin

Abstract
The focus of this project is to investigate the concepts of neural networks and deep
learning. The aim is to implement these concepts to perform sentiment analysis
on Twitter posts, tweets. The structures currently that exist to perform sentiment
analysis are optimised for large bodies of text. Tweets are by their nature short and
thus difficult to classify the sentiment. The objective of this project is to improve
the ability to classify tweets by creating and training a system specifically for tweets.

Keywords: Deep Learning, Learning systems, Machine Intelligence, Natural Lan-
guage Processing, Neural networks, Sentiment Analysis, Social Media, Twitter
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1
Introduction

1.1 Sentiment Analysis

Sentiment analysis is one method of data mining, where text can be analysed to
determine the sentiment of the text. More formally the polarity of the sentiment
behind text, that is whether the text is positive or negative, happy or sad, etc.
Sentiment analysis can used to determine how people feel about a particular topic.
For example, the data can be taken from twitter, where the tweets relating to
the particular topic are isolated and the sentiment of the text is then determined.
Generally speaking in sentiment analysis opinion are classified into positive, negative
or neutral. Opinions can also be further classified into more specific categories for
example very positive or very negative.
Sentiment Analysis has been used in range of different areas from including mar-
keting, politics and psychology. Sentiment analysis can be used to analyse trends,
identify ideological bias, target advertising and gauge reactions. While the promise
of what sentiment analysis can produce with the amount of open data that is now
available is very appealing, sentiment analysis is not without its drawbacks. Opin-
ions are expressed in complex ways and often depend on the individual expressing
them, this makes opinions difficult to classify. Opinions can be expressed in many
different forms utilising all the complexities of language. Examples of this are nega-
tion. This is when the entire meaning of a sentience can be changed with one word, or
sub-sentential reversal when the meaning of the sentence changes halfway through.
These methods of expression are very difficult to account for in text processing. The
tone in which an opinion is expressed is often negated on in text. Rhetorical devices
are also used such as sarcasm or irony that the increase the difficulty of classification.
Previously sentiment analysis has been preformed on longer sequences of text than
twitter. One of the most popular datasets to train on for sentiment analysis has
been the IMDB movie review dataset, which has been used by many papers such
as Socher et al. [25], a paper which will be discussed in greater detail in chapter
4. The IMDB dataset contains 25,000 movie reviews for training, and 25,000 for
testing. This is a dataset where individuals write reviews of movies and accompany
the review with rating from 1 to 10 stars. This rating system along with the review
provides and indication of the sentiment of the review written. If the rating is 10 out
of 10 stars then the likelihood is that the writing review accompanying the rating
is also very positive. This rating accompanying the review means that the reviews
can be polarised by using the rating without the need to hand label the dataset.
This also means that the dataset is labelled accurately according to the writer of

1



1. Introduction

the review as they have provided the rating.
Movie reviews provide a good dataset for performing sentiment analysis because
generally the reviews are relatively long, which is beneficial as it provides more
signal for the sentiment analysis to be performed on. As well as that all the reviews
in the IMDB dataset are obviously written as reviews to movies. This means that
the scope of what can be discussed in the dataset is some what limited. On the other
hand tweets are more complex to classify, there are many reasons for this. Firstly
tweets are much shorter than the average movie review. Tweets must be under 140
characters, whereas the length of the reviews used in the IMDB dataset are also all
longer than this. This means that there is less signal for the sentiment analysis to
be performed on. The movie reviews in the IMDB dataset are also more thought
out than the average tweet, which is much more casual. The frequency of miss spelt
words is much higher on twitter than other media. Miss spelt words are sometimes
accidental and sometimes intentional, e.g love being spelt as "luv".The quantity of
data available on Twitter is much greater than that available for the IMDB dataset.

1.2 Deep Learning

Deep learning is a field of artificial intelligence that is built upon years of under-
standing and research. The concept originates from the idea that machines can store
and process information in a similar way to the brain. Information is processed by
many simple computation units. Many computational units in sequence can process
complex information. By connecting computation units in this model the overall
system begins to mimic a brain where rather than computational units there are
neurons.
The concept of deep learning first came about in the eighties by Geoffrey Hilton.
According to an article by Wired, Hilton began a wildly ambitious crusade to mimic
the brain using computer hardware and software, to create a purer form of artificial
intelligence we now call “deep learning.” [10] What differentiates deep learning from
traditional machine learning is the fact that the machine can build up understanding
of something without needed labels for the provided information.
During this period in the eighties up until 2004, Hilton continued work on improving
the speed and efficiency of deep learning using algorithms such as back propagation.
However these algorithms went widely unnoticed during this time as the computing
power required to make use of these algorithms remained out of reach of what most
computers could provide at the time.
Once the computing power became available to realise the potential of deep learning,
interest in this area accelerated. In 2011, deep learning was founded at Google and
in 2013 Hilton joined the company. [10]Today, deep learning is still being used for
some of the most difficult problems for computers to solve. Microsoft uses deep
learning for voice recognition systems. Facebook is using deep learning for facial
recognition.

2



1. Introduction

1.3 Report Outline
This project is laid out in four distinct sections text processing, deep learning back-
ground, machine learning for sentiment analysis and the conclusion. This part of
the introduction gives a general outline of each of these sections.
The text processing chapter explains how to process a document so that it can be
utilised by the machine. There are many methods of text processing, which of these
is used determines how a document will be used. For sentiment analysis a document
is processed and organised so that the sentiment can be extracted. This section also
describes some of the difficulties associated with text processing when it comes to
twitter. How data is extracted from Twitter and how the dataset used for this
project was collected.
The chapter on the background to deep learning explains some of the concepts
in machine learning and how they are used to create deep neural networks. This
chapter starts by explaining some of the basic concepts in machine learning, that
are computed in each neuron of a neural network. The next section then shows how
these basic concepts are organised together to create neural networks. Section 3.3
on Neural Net Optimisation describes method of improving the accuracy of neural
networks. The last section in this chapter describes some of the more complex
concepts in machine learning and how they are used to create a deep neural network.
Chapter 4 on Machine Learning for Sentiment Analysis explains machine learning
methods that can be used for sentiment analysis. These include naïve Bayes, the
Stanford implementation of Sentiment Analysis from Socher et al[25], and finally
the method used for classification in this project. The results and implementation
of the method used in this project and the Stanford method are also displayed
in this chapter. Finally the conclusion discusses how these models performed at
classifying the dataset and what may changed to the model in the future to improve
its performance.
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2
Text Processing

Text processing is the act of manipulating text so that information can be gathered
from it, by a machine. Text needs to be altered so that it can be understood by
computer programs. There are many different ways that text can be processed
in order to gather different information from it. Text processing is essential to
sentiment analysis as it involves determining the sentiment of text. This chapter
has two sections. The first describes some methods of Natural Language Processing
(NLP) and the second section describes the type of text that will be used in this
project "tweets", text that has been extracted from Twitter.

2.1 Natural Language Processing (NLP)

Natural Language Processing (NLP) is the process by which computer programs
are used to determine the meaning of natural language. This is generally performed
through artificial intelligence. The main tasks of natural language processing is to
understand human language or generate human language. In NLP there are low
level tasks such as part of speech tagging (POS tagging) or tokenization, both of
which will be discussed in section 2.1.1.1, and high level tasks. Higher-level tasks
build on low-level tasks and are usually problem-specific [18]. One example of a
higher level task in NLP is sentiment analysis. Sentiment analysis is the type of
NLP that will be investigated in this project. The following part of this section
aims to describe the tasks that are involved in NLP and how these were used in this
project in order to perform sentiment analysis. 1

2.1.1 Text Normalisation

The purpose of text normalisation is to process text so that all words in the text are
of the same form. For example in the case of the word "woodchuck" it is important
that for the purposes of text processing the word "Woodchuck" is understood as
having the same meaning. A method of solving this problem may be to ensure that
all the words are lower case. This is an example of text normalisation. The following
sections describe methods of text normalisation and the issues associated with text
normalisation.

1Much of the content for this section was draws on infromation from the Stanford video lectures
for Natural Language Processing [13]
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2.1.1.1 Tokenizing Words in Running Text

In NLP words are segmented into categorises in order to determine the meaning
of running text. Take the sentence "I uh main- mainly wake up at sunrise", it is
important to categorise the words in the text in order to determine the relevant words
that determine the meaning of the text. The word "uh" is considered a filled pause
as the word contains no addition information that adds meaning to the sentence.
The word "main-" is not a word at all but only part of a word, this is known as a
fragmentation.
Often in running text users can use the different words that have the same mean-
ing. For the purpose of natural language processing the similarities between these
words need to be recognised so that sentences with similar meaning are categorised
together. For example when using a search engine a user may enter the word "cats",
the search engine may then search for sites containing the word "cat" or "cats".
These two words have the same lemma. A lemma is a word which has the same
stem, part of speech and rough word sense as another word. The stem of the word
is its root or the core meaning of the word. Affixes are additional pieces or parts
that are added to the stem. In the example above the stem of "cats" is "cat" and the
affix is "s". The part of speech (POS) of the word refers to whether the word is a
noun, verb, pronoun, conjunction or interjection. In this case both "cat" and "cats"
are nouns. For this reason "cat" is a lemma of "cats". "Cat" and "cats" however
have different word forms. If two words have the same word form they have the
same exact meaning, an example of two words with the same word form is Natural
Language Processing and NLP.
After method of a segmenting words in running text is to determine the number of
words in a given piece of running text. There are different ways of thinking about
the number of different words in text. One method is to consider each instance of
each word in a sentence, this is the number of tokens in a text. Another method
of determining the number words in a given sentence is to determine the number of
different words in given text. This is the number of types. In the text "they lay back
on the San Francisco grass and looked at the stars and their", there are 15 tokens
but only 13 types. However the number of tokens and types in the text depends on
several aspects of the text. Firstly the pharse "San Francisco" could be considered
as one word rather than two. The word "their" is also a form of the possessive case
of "they", therefore it is possible that "they" and "their" should be considered one
type.
This example illustrates some of the complications with classifying types and tokens.
There are many other issues that arise in text normalisation such as which characters
should be eliminated from a piece of text in order to normalise the text. An example
of this is apostrophes, for example "I am" as oppose to "I’m". This is an example of
a word form. In practise translating all the words with apostrophes to their original
form requires a large data base to compare strings.

2.1.1.2 Normalising Word Formats

Normalising the formats of words relates to ensuring that the words with the same
word form but different formats are normalised. In terms of a search engine normal-
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ising text formats can be very important, to ensure that regardless of the format
of the input into the search engine the valid responses will be returned. Abbrevia-
tions often have many different formats, for example the abbreviation U.S (United
States) is the same as the abbreviation US. These words have the same word form
and should be normalised to one format or representation. A method of performing
this may be to remove all the periods in a word that is capitalised. However it is
also important not to remove the periods that create the end of sentences.
Case folding is the process of reducing the letters in a word to lower case in or-
der to normalise the format. In a search engine this would mean that the words
"wednesday" and "Wednesday" would be considered the same. Abbreviations can
make case folding more complicated, as lower case words may have one meaning but
where they are capitalised the word may represent an abbreviation. If case folding
is performed on the example from above, "US" (i.e. United States) then the result
is "us". This word has a completely different meaning. For this reason performing
case folding can only be performed at certain parts of a text, like at the start of a
sentence.
Abbreviations are words that are commonly formatted differently depending on the
author, but other words are often commonly formatted differently. Take the word
"window", if this word was entered into a search engine the user may be looking for
"window", "windows" or "Window". Therefore both of these words must be searched
for in order to return the correct result. Although this problem is not always so
easily solved. If the word "windows" is entered into a search engine the user is likely
referring to Windows the an operating system and may be searching for a computer
product rather than windows themselves.

2.1.1.3 Word Segmentation

Another element of text normalisation is word segmentation. Word Segmentation
is splitting up a large word into smaller words. Word segmentation is mainly used
in languages where there is no space between words, an example of this is Chinese.
In Chinese there is no space between words to indicate the end of one word and the
start of the next. This makes it difficult for NLP to determine the words in running
text. An algorithm called mix-match segmentation. It is possible to split up words
in Chinese as the average Chinese word is a consistent length. This is means that it
is possible to gauge the beginning of each new word. In English word segmentation
is much more difficult as word have varying lengths, for example if the phrase "the
table down there" was typed as one word in a text, "thetabledownthere", it would
be difficult to determine if the first word was "the" or "theta". For this reason words
segmentation is very difficult in the English language.

2.1.2 Bag-of-Words
A bag-of-words model is a representation of a sentence where the sentence is rep-
resented as a list of words rather than as a sentence with sentence structure. This
means that the meaning of the sentence is lost. The difference between the sentences
"cat chases mouse" and "mouse chases cat" would not be captured by a bag-of-words
representation. The bag words model is a useful tool as with a large enough sample
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words can be identified as indicators for certain topics. If a bag-of-words model is
used for spam email detection then words such as "buy" or "discount" may become
indicators that an email is spam. Rather than having to understand the meaning
of the entire email, these words can be used to classify emails as spam or non-spam
emails.
In a dataset the bag-of-words method is implemented by creating a dictionary of
all the words that are used in the dataset. Each word is entered in dictionary once,
that is the number of types in the database are recorded in the dictionary. The
dictionary is ordered according to the frequency of each word that is used in the
dictionary. The length of the dictionary is then specified, the main purpose of this
is to exclude a word from the dictionary that only occurs once in the dataset. If
words occur only once then this will not divulge any new information about the text
that will be useful for classification. Once the dictionary for the dataset has been
created, then each word in the dictionary is given an id based on its position in the
dictionary. Each text can now be represented as features, that represent each word
that is present in the text and the dictionary.
This bag-of-words representation of each text becomes the feature set for each text.
Table 2.1 shows an example of the features that were created from a bag-of-words
representation for spam emails and the dataset that was used for this project, the
Stanford dataset of tweets for the use in academics[7]. These features were created
from the dictionaries that were created from each dataset. The columns in both,
for both the spam email features and the Stanford dataset features, are the same.
The first column is the id of the text. For the spam email detection dataset this
represents each email and for the Stanford dataset this represents each tweet. The
second column shows the dictionary id for each word in the text and the third
column is the frequency of that word in the dataset. Table 2.1 shows firstly that
there is a large length difference between the two texts, that is the emails and the
tweets. The emails are much longer than the tweets and therefore have many more
features per email. This table shows only a subset of the features for the first email,
the first email actually has 68 features. The average tweet on that other hand may
have anything from ten features to none. This is one of the reason that the longer
the text is the easier it is to classify.
Another difference between the features in the spam email features and the Stanford
dataset features is the frequency of the words in the dataset. The scope of topics
discussed in the Stanford dataset is much larger than the scope of topics that are
discussed in the Spam email features. This means that frequency of words appearing
in more than one tweet is much lower than the frequency of words appearing in more
than one email. This as well as the length of the text, also increases the difficulty
of classifying the Stanford dataset as apposed to the spam email dataset.
In order to accurately create the dictionary the words must be preprocessed before
they enter the dictionary. This process mainly involves text normalisation as dis-
cussed in section 2.1.1. As well as this in a bag-of-words model stop words must also
be taken out of the dataset. Stop words are common words in a sentence that do
not themselves contain any information that add to the overall meaning of the text.
Examples of stop words are "the", "it", "me", "then". 2 These words are important

2Figure A.3 shows the full list of the stop words that were used in this project. These stop
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Spam Email Features Stanford Dataset Features
Text id Dictionary id Freq Text id Dictionary id Freq

1 32 601 1 257 7
1 1 861 1 26 31
1 94 589 1 1746 1
1 92 439 1 7 25
1 91 328 2 71 3
1 127 530 2 213 4
1 377 269 3 486 1
1 27 311 3 160 1
1 262 321 3 106 3
1 175 284 3 40 8
1 12 312 3 382 2
1 85 351 3 29 36
1 99 368 3 100 4
1 156 295 3 10 10
1 231 297 3 14 6
1 904 312 4 286 1
1 44 322 6 179 2
1 1647 247 6 1385 1
1 1222 213 6 2027 1
1 143 225 6 612 1
1 551 296 7 4210 18
1 1107 225 8 505 1
1 76 198 9 103 4
1 250 234 9 1391 1
1 137 217 10 198 5
1 391 183 10 1833 6

Table 2.1: Features for a bag of words representation
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in order to understand the structure of the sentence however they do not add any
additional information when they are isolated. If a word is a stop word then it is
removed from the sentence.

2.1.3 Treebanks
Besides a bag-of-words representation of a text there are other methods of represent-
ing text, one of these is a treebank. A treebank is hierarchical structure in which the
meaning of a sentence is maintained. Treebanks are a method of attempting to truly
understand the text. The text is represented in a tree structure where the weight
of the word is dependent on its position in the tree. There are two different main
different types of treebanks. Treebanks that are created using dependency grammar
and treebanks that are created using phrase grammar. The Prague Dependency
Treebank is a treebank that is create where the words are connected based on their
connection to other words and eventually to the verb in the sentence. The Penn
Treebank on the other hand is created based on how the text can be broken up into
phrases, for example verb phrases and noun phrases. The focus of this project is on
phrase structure treebanks such as the Penn Treebank.
Treebanks are created from text corpses that have been processed to contain part of
speech tags. As described in section 2.1.1.1, the part of speech (POS) of the word
refers to whether the word is a noun, verb, pronoun, conjunction or interjection.
The tree is then created based on phrase structure rules and grammatical rules.
There are pre-existing rules that determine the structure of a tree bank. The text
is broken up based on the phrases within the text. Groups of words that belong
together are grouped together as phrases, these phrases are then grouped together
to eventually form a treebank and encapsulates the entire text.
Figure 2.1 shows the Penn Treebank from the sentence "President Obama thinks it
would be great idea to have mandatory voting by citizens but is against voter i.d.
What’s wrong with this picture?". From this treebank the method with which text
is split up to create a treebank can be seen. Each sentence is primarily split up into
the noun phrase and verb phrase in the sentence. The conjunctions, such as "but"
in this case, is then considered another separate phrase altogether. Punctuation is
also excluded from the other phrases. The final result is the treebank shown.3

words were taken from http://www.textfixer.com/resources/common-english-words.txt
3A list of all POS tags used in figure 2.1 are located in the appendix figures A.4, A.5, A.6

and A.7
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2.1.4 NLP and Sentiment Analysis

Sentiment analysis is the use of NLP to annotate sentiment to text. It is in fact,
as mentioned at the start of this section a type of NLP. Some NLP tasks are easier
automate than others. For example the task of separating articles about basketball
and football could be easily automated. A automated system could quickly classify
these articles using keyword features such as the terminology specific to each sport
or names of famous players. Sentiment analysis however is more complex to classify.
The way that we express sentiment is a complex mix of the linguistic structures of
our utterances and the assumed knowledge of the people who we are addressing[17].
This complex mix proves difficult to classify.
Increasing the difficulty of sentiment analysis are linguistic structures such as sar-
casm and irony that dramatically affect the sentiment of text and are extremely
difficult to detect. The use of different linguistic structures depends on the writer.
Writers can express themselves differently depending their ethnicity. For example
British speakers are known for their understated use of language. The sentence "I
was a bit disappointed that" can be an understated may of expressing annoyance.
The key for machine learning to pick up on these different methods of expression is
to be exposed to as many different examples of expression as possible.

2.1.4.1 Keywords

Twittratr is a website that describes itself as a website where "you can distinguish
negative from positive tweets surrounding a brand product, person or topic.This is
a simple tool, which searches Twitter for a keyword and the results its get back
are cross-referenced against our adjective lists, and then displayed accordingly." [4]
By adjective list what Twittratr are referring to is a list of positive and negative
labelled words. If a tweet contains one of these words then it is labelled accordingly.
On Twittratr this list consists of 174 postive words and 185 negative words. The
classifier determines the sentiment of the text by calculating if the tweet has more
positive or negative words from the adjective list. There are problems with this
method of classification, in that the context of the speech is not accounted for.

2.1.4.2 The Bag-of-Words Model and Sentiment Analysis

In terms of sentiment analysis a bag of words method can used to analyse a corpus
to determine which words often indicate a negative sentiment and which words
are generally in text with a positive sentiment. Depending on how accurate these
features are at determine the sentiment of the text, they are given a certain weight.
This weight is then used along with the other features of the text to determine the
sentiment of the text. The problem with this method of sentiment analysis is that
the sentences "That’s true, I am not a fan" and "That’s not true, I am a fan" would
be understood as the same sentence by a bag of words model. This is because there
is no attempt by this model to understand the sentence. For this reason text can
be classified incorrectly.
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2.1.4.3 Treebanks and Sentiment Analysis

Treebanks can be enhanced with semantic meaning, for example the sentiment. One
example of where the sentiment is added to a tree bank is a sentiment treebank. A
sentiment treebank is a treebank where the sentiment of each word is predetermined
using a sentiment lexicon. A sentiment lexicon is a vocabulary of words that have a
sentiment polarity. The words in this lexicon are given a value as to how positive or
negative they are. This sentiment lexicon is then used to determine the sentiment
of the last nodes in the sentiment tree. For each node above this the sentiment is
calculated as a product of its children. The sentiment of the root node of the tree
determines the sentiment of the overall text.
Treebanks take into account the position of words in a phrase. This can make them
a more accurate method of determining the sentiment of a phrase. Treebanks are
particularly useful for sentiment analysis when there is a negation in the sentence in
question. Take the sentence "One of the most significant moviegoing pleasures of the
year" and the sentence "Not one of the most significant moviegoing pleasures of the
year", the difference between these sentences can only be determined by taking the
structure of the sentence into account. The word "not" is a conjunction and would
therefore be separated from the other phrases in the treebank. A bag of words model
would be unable to correctly determine the sentiment of a negated sentence.
One study that has used sentimental treebanks to predict the sentiment of text has
been the Recursive Deep Models for Semantic Compositionality Over a Sentiment
Treebank [25]. Figure 2.2 shows the same sentence as in figure 2.1 however in this
figure the sentiment of the sentence has been determined using the method outlined
in Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
[25]. Negative nodes as illustrated as red nodes, positive nodes as illustrated as blue
nodes with one plus sign and very positive nodes as illustrated as blue nodes with
two plus signs. From this figure it can be seen that even though the sentence in
question has very positive words the over all sentiment of the text is negative, due
to the word wrong and its placement in the text.
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2.2 Twitter as a Dataset
The purpose of this section is to describe Twitter and why this social media site was
chosen as a dataset for this project. What are some of the complication associated
with using twitter for sentiment analysis? What are some of the aspects that make
it different from other documents traditionally used for text processing. The Twitter
sentiment analysis is a special case of the general category of text classication[6].
Twitter is a social networking site that allows users to post short messages that
must be under 140 characters. This makes twitter a microblogging website. These
messages are known as "tweets". The appeal of twitter for sentiment analysis lies
in the popularity of the site. According to Internet Live Statistics[36] since 2013
the number of tweets posted every day has reached 500 million. This number of
tweets provides a huge dataset to gauge public opinion on a number of different
issues. Another benefit of twitter is that by using the twitter API(Application
Interface Program), live tweets can be pulled from twitter. This provides the ability
to analyse the public opinion in real time.

2.2.1 Reasons for using Twitter as a Dataset
Several studies have been published on the ability of twitter to predict everything
from the stock market[3] to elections[28]. Using twitter in order to gauge public
opinion is an appealing one, with millions of people posting tweets everyday, the
potential of such a dataset can be attractive to researchers. The most popular uses
for Twitter are to assess public attitude towards a particular brand, product or
political candidate. Using twitter has many advantages, Tweets can be analysed
instantaneously, providing instantaneous feedback.
A dataset of this size has never been so readily available to researchers. The size of
the dataset means that it is no longer required to speculate what kind of person buys
a particular product or has a particular political view. It can now be statistically
measured. Along with every tweet that is extracted from twitter the geographical
location, gender, age and even a description of the individual is available. Figures 2.6
and 2.7 in section 2.2.4, show the information that is provided from each tweet that
is pulled from Twitter using the Twitter API. From these figures the large extent of
information that is available is apparent. Using this information the characteristics
of customers can be easily examined.
While previously this type of data was attained using focus groups or opinion polls,
it can now be accessed on a public forum where the candidates are not influenced
by the focus group. Focus groups and other similar methods create artificial envi-
ronments which can influence participants to respond insincerely. One outcome of
these artificial environments can be that participants are unlikely to give negative
feedback. Alternately on social media individuals can "hide behind the computer
screen" meaning that people are more willing to express how they feel without the
fear of the consequences that can otherwise occur. This negative feedback is a valu-
able perk of using social media . Groupthink is also a phenomenon that occurs in
focus groups. Groupthink is when groups reach a consensus often orientated around
a group leader, that can ignore otherwise persuasive alternatives. This means that
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Table 2.2: Demographics of Twitter users. [5]

the opinion of a group may not accurately reflect that of the general public.
Compared to traditional methods of opinion polling, extracting and manipulating
data on Twitter or text mining is also relatively cheap. In addition to that the cost of
this type of analysis does not increase with an increased dataset. However analysing
data from Twitter presents new drawbacks in text processing that traditional meth-
ods of analysing public opinion do not face, this is discussed in section 2.1.

2.2.2 Difficulties in using Twitter as a Dataset
While there are downsides to traditional polling techniques, one of the advantages
is the ability to vary the demographics of the group that is being analysed. On
Twitter this is not a possibility. For example in the United States the number of
Hispanic users on Twitter can be altered in order to improve the accuracy of the
model for prediction. If a particular demographic are not present on social media,
then their opinion will be negated when social media is used for public analysis. This
is particularly true for the elderly, who are usually not as present online as other
adult groups. Table 2.2 shows a table of the demographics of Twitter users in 2013
and 2014 taken from the Pew Research Centre[5]. From this table it is clear that
the majority of Twitter users are between 18 and 29, affluent and urban dwellers.
While this table shows the sampling bias of individuals that have Twitter profiles,
it is in fact the Twitter users that post that create the dataset. When performing
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sentiment analysis on Twitter on a particular topic it is the select number of people
that choose to voice their opinion publicly on that topic that create the dataset.
This means that when taking a dataset from Twitter the demographics of the group
are further limited to the people that post, not only those that have Twitter profiles.
According to the Pew Research Centre that carried out a study on the accuracy of the
reaction on Twitter to public opinion as measured by surveys, "Much of the difference
may have to do with both the narrow sliver of the public represented on Twitter as
well as who among that slice chose to take part in any one conversation"[16].
The demographics of Twitter users that post needs to be considered, rather those
that use Twitter. Figure 2.3 shows a geographical representation of geotagged tweets
in Europe, tweets that have been tagged with a geographical location, it is taken
from The geography of Tweets[22]. From this figure we can see that the same patterns
emerge for Twitter posts as for Twitter users. In this figure the cities in Europe are
a clear concentration of tweets. There are also more tweets in affluent areas. This
is particularly visible when a comparison is drawn between the north and south of
Italy. The Italy has a reasonably distributed population however concentration of
tweets sent is much more prominent in the north of Italy than in the south. The
reason for the higher concentration of tweet in the north of Italy is due to the fact
that the north is much more affluent than the south. This example illustrates the
influence of affluence upon the demographic of Twitter users.

Figure 2.3: Geography of Twitter users. [22]

When analysing Twitter there are some ethical issues that need to be considered.
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The main ethical issue is of analysing data of individuals without their knowledge or
consent. When individuals post to Twitter, the content they post is automatically
the property of twitter. This means that Twitter is entitled to allow developers
access to this knowledge. However many Twitter users are unaware of this fact and
post to Twitter without understanding how there tweet can be used for purposes
that may not need to their benefit, such as advertising or recruitment. This project
could in itself enable the use of tweets for purposes that may not benefit Twitter
users.

2.2.3 Text Processing for Twitter
Tweets create a dataset that is unlike other dataset that are used for sentiment anal-
ysis. For this reason there are particular ways in which twitter has to be processes
differently to other types of text. Some of the ways that twitter has to classified
differently to other text are described below.

2.2.3.1 User names, hashtags and Hyperlinks

Tweets often contain user names, hashtags or hyperlinks. User names are used to
direct a tweet at a particular tweeter user. Usually the @ is used to indicate that
the tweet is referring to particular user. Hashtags, #, are used as topic specifier. So
that if the tweet contains a hashtag it will be grouped together with all the tweets
containing that hashtag if a user searches for a particular tweet. The topic specifier
relates to the sentiment of the tweet, for this reason need to be maintained in the
tweet. Links are sometimes included in tweets, they add no value in classifying the
tweet.
Another element of hashtags that can make them difficult when it comes to text
processing is that if a topic classifier consists of more than one word, for example
"perfect day", then the hashtag is represented as a single word for example "per-
fectday". This means that word segmentation is required. As mentioned in section
2.1.1.3 word segmentation is very difficult in the English language the length of
words differs greatly depending on the word. Because of this when more than one
word is used in a hashtag the words are not segmented and therefore the words are
not normalised correctly.

2.2.3.2 Vernacular Language and Misspellings

On twitter there can be many reasons for miss spelt words. As twitter users post
from all kinds of devices on the go, there can often be accidental miss spelt words.
For example spelling "album" as "albunm". Tweets can also contain miss spelt words
that have intentionally been miss spelt. This can be done for different reasons, for
example the word "you" may be miss spelt as "u" so reduce the number of characters
that need to be typed by the user. Other misspelled words can be miss spelt for
emphasis. Extra vowels can included in words to emphasis them, for example the
word hungry (huuunry, huuuuungry, huuuuuungry). Intentionally miss spelt words
can be altered in order to improve the performance of the classifier, vowels used
more than twice can be removed from words that in the case of the word hungry
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the only the words hungry and huungry would be maintained in the dictionary.
There can also be a reference list for all known misspellings used by twitter users so
that the word "u" would be translated into "you". This reference list would need to
contain all the known popular misspelled words on social media and their reference
word. Unfortunately in the case of accidentally miss spelt words, not much can be
done to process the words into useful features as accidentally miss spelt words are
unpredictable.

2.2.3.3 Emoticons

Emoticons can be used to classify tweets as negative or positive by the emoticon
that is included in the tweet. However emoticons are noisy labels. This means that
the labels are not as accurate as hand classified labels. Emoticons can classify tweets
incorrectly if the emoticon with the tweet is mismatched with the tweet. Consider
the tweet "@BATMANNN :( i love chutney.......", despite the negative emoticon this
tweet would probably be hand classified as positive. These types of mismatched
tweets can be difficult to classify. In some cases emoticons are also stripped from
the training set. This ensures that the classifier relies on unigrams or bigrams rather
than the emoticon to classify the tweet. If emoticons are not used in the training
data then if they occur in the testing data their effect will be ignored in the tweet
and this can limit the effectiveness of the classifier.
In the case of the dataset that was used for this project, emoticons were used to
classify the 1,600,000 tweets that were used for training. However these emoticons
where then removed from the dataset, so that the tweet would be classified on the
text that was included in the tweet rather than the emoticon. The testing data
was hand classified and in these tweets emoticons where maintained. However as
mentioned above as these emoticons have not been used in the testing data, they
will not aid the classifier in determining the sentiment of the tweet. This limits the
effectiveness of the classifier, but if the emoticons where left in the training data
then every positive tweet would have a happy emoticon because the tweets where
classified using the emoticons. The result of this would be that all tweets without
emoticons would be classified incorrectly.

2.2.3.4 Feature Engineering

The overall effect of processing the text in this way in tweets is that the number
of different features in the dataset is reduced. Table 2.3 shows a table that was
used in the paper "Twitter Sentiment Classification using Distant Supervision" [8]
that utilised the same dataset. Table 2.3 shows the effect of reducing the number
of features in the dataset that was used for this project. For this investigation of
the effect of reducing features in the dataset, the user names, URLs and repeated
letters in words were removed from the dataset. From this figure it is clear that
excluding the user names from the dataset in order to extract the features has the
largest effect on the number of features in the dataset, however reducing the number
of user names, URL’s and repeated letters all has an effect on the number of features
to 45.85% of its original size. Reducing the number of features in a dataset reduces
the complexity of the dataset and thus makes the dataset easier to classify.

19



2. Text Processing

Table 2.3: Effect of Feature Reduction [8]

2.2.4 Extracting Twitter data using the Twitter API

Tweets can be extracted from Twitter using the Twitter API (Application Program
Interface). This means that tweets that are posted by users of twitter are downloaded
from the site and stored. The user of the twitter API specifies some details of the
kinds of tweet they wish download, such as the subject matter. The recent tweets
posted on that subject matter are then downloaded. In this way the user of the
twitter API can create a corpus of tweets on any topic.

2.2.4.1 Code for Twitter API

Figure 2.4 shows code taken from Matlab in order to extract tweets from Twitter
that contain the tweets about Twitter.4 The first few lines contain the credentials
that are provided by Twitter when a Twitter development profile is created. These
credentials are essential in order to download information for Twitter, so that the
amount of data being downloaded by Twitter developer can be monitored. The
next lines of code are used to add libraries to the project that are used to extract
tweets from Twitter. Twitty is an app that is used by Twitter developers to access
Twitter. The parse json library is a library to parse JSON format text. JSON
(JavaScript Object Notation) is a format that is used to transmit data objects that
is user friendly, the format the objects are transmitted in can be easily read by users.
This format is generally used to transmit data from a web application to a server.
In this case the data that is received from Twitter by the Matlab code is received in
JSON format and parsed by this library and the final library jsonlab translates this
into Matlab variables that Matlab can use and manipulate.
The final line of the Matlab code in figure 2.4 extracts the tweets from Twitter. The
function tw.search searches Twitter for the most recent tweets posted on a given
topic. The first parameter into the function is the topic that tweets will be searched
for, for example in this case tweets on the topic President Obama will be extracted
from twitter. Figure 2.5 shows a tweet that was extracted from Twitter using the
Matlab code above. Each tweet than is extracted from Twitter contains additional
information to the tweet. The date and time of the tweet, the id of the tweet and
the source of the tweet are also available. As well as that there is also information
about the location of the user and a short description of the user themselves, such
as the number of friends the user has. The user information and the location of the
user can be seen in figures 2.6 and 2.7.

4This code was adapted from code taken from Matlab Central [24]
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Figure 2.4: Code for extracting data from Twitter using the API

Figure 2.5: Information from available from each tweet

2.2.4.2 Tweet Attributes

These attributes of the tweet, such as the user location and the language of the
tweet, which is denoted by the abbreviation lang and en denoting English, can be
specified by the Twitter API when creating a query for tweets. In the function
tw.search the language of the tweet, is specified by the entry lang and the following
parameter into the function is the language tweets will be retrieved in. For example
in figure 2.5 in the last line the language used, English ’en’, is specified next to the
lang of the tweet. The variable geocode specifies the location in which tweets will be
taken from. The location is based on geographical coordinates. In this Matlab code
in, figure 2.4, tweets in the continental US are the only tweets that are extracted
from the Twitter. The coordinates of the continental US are shown as the variable
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Figure 2.6: User information from available from each tweet

Figure 2.7: User location from available from each tweet

ContinentalUs Geocode.
Other attributes of the tweet can also be included, for example in this case the
parameter include entities specifies that entities will also be returned with the tweet.
These entities can be seen in the tweet object that is returned, in figure 2.5, as the
forth last field. Figure 2.8 shows the entities field from this tweet object. The entities
field contains information about the tweet itself, such as the number of hashtags,
symbols, user mentions, or URLs that are in each tweet. These terms and how they
effect the processing of a tweet are explained in section 2.2.3.

Figure 2.8: Entries information from available from each tweet

There are a number of other parameters that can be included in order to limit the
type of tweets that are retired from Twitter. These other parameters include the
ability to specify the particular dates to extract tweets from, or even locate the most
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popular tweets rather than the most recent tweets on a particular topic.There are
also many more parameters that can be specified in order to make a detailed query
to Twitter, these can be seen on the Twitter development website [35].

2.2.4.3 Twitter API Limitations

The variable count refers to the number of tweets that will be taken from Twitter in
a request. In this case, for this Matlab code, in figure 2.4, the number of tweets that
are to be extracted from Twitter are 100. This is actually the maximum number of
tweets that can be returned per request. This value can however be manipulated
by altering the max id that the query searches for. Each tweet has an id allocated
with it, in figure 2.5 the id of the tweet can be seen as the third parameter of the
object. The id of the tweet is increased with each new tweet that is posted. This
means that if a query is made for a particular topic on the most recent tweets of
that topic, then if the last id returned by that query is used as the maximum id for
the next query more than 100 more tweets can be collected for each topic.

Figure 2.9: Code for extracting more than 100 tweets per topic

Figure 2.9 shows Matlab code for collecting 1000 tweets. The most recent 100 tweets
are collected and then the last id of those tweets is used as the maximum id for next
query. This code also writes each of the tweets to a text file, where they can be
processed. However there is still a limit on the number of requests that can be made
by any one developer, 100 tweets can only be collected every two seconds. The
Twitter developer credentials, that were shown in figure 2.4, are used to track the
number of tweets being extracted by each Twitter developer. Due to this limitation
on the number of tweets that can be extracted every two seconds, when extracting
large amount of tweets, twitter developers have to wait to keep extracting large
amount of twitter. If the topic under investigation by twitter developers is very
popular, it is possible that more than 100 tweets may be posted every second. If
this is the case not all tweets on a particular topic can be collected. This means
data cannot be collected from Twitter on a continuous basis and tweets can be
missed during collection. This also means that collecting a large data corpus from
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Label ID Date and Time Topic User Tweet
4 3 Mon May 11 2009 kindle2 tpryan @stellargirl I

loooooooovvvvvveee my
Kindle2. Not that the DX
is cool, but the 2 is fantastic
in its own right.

Table 2.4: Positive tweet from testing data

the Twitter API can be time consuming. Even more time consuming is determining
the sentiment of each tweet by hand, i.e. hand labelling each tweet. For this reason
a dataset was used for this project that was already collected and labelled. This
dataset was collected using the twitter API in the same way as described above.

2.2.5 Dataset

For this project the dataset that was taken from Stanford for the use in academics[7].
This dataset was collected using the Twitter API which allows the users to extract
tweets. The data was collected based on a variety of different topics such as including
eating, china and kindles. The corpus is given with a sentiment numbered from 0 to
4 where zero represents a very negative sentiment, 2 represents a neutral sentiment
and 4 represents a very positive sentiment. Along with the sentiment there is also
an ID, date and time that the tweet was posted, topic that the tweet was related to,
the user that posted the tweet and finally the tweet itself. When extracting tweets
from the twitter API a particular topic must be specified and this is the reason for
a a particular topic being associated with each tweet. 5

2.2.5.1 How was the dataset collected?

This dataset was extracted from Twitter using the distant supervision as discussed in
the paper accompanying the dataset Twitter Sentiment Classification using Distant
Supervision[8]. All the tweets collected for this dataset contained emoticons, and
these emoticons were then used to classify the dataset. That is a happy emoticon :)
was used to indicate a positive sentiment in a tweet and a negative emoticon :( was
used to indicate a negative sentiment. Tweets were classified as neutral if the tweet
could be a line in wikipedia or a news paper headline.
Table 2.4 shows one of the tweets from the testing data that was contained in the
Twitter corpus. The entire corpus provides 500 tweets for testing and 1,600,00
tweets for training. This represents 800,000 tweets with positive emoticons and
800,000 tweets with negative emoticons. 6

5Figure A.1 shows the queries that were entered into Twitter in order to extract the tweets
that made up this dataset.

6Figure A.2 illustrates the first 10 of the testing tweets.
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Table 2.5: List of Emoticons [8]

2.2.5.2 Preprocessing

Before this dataset was used it was also preprocessed in several ways from the data
that was extracted from the Twitter API before it was used for sentiment analysis.
This preprocessed dataset was then processed again for the purposes of this project
before it was used, the method in which this dataset was preprocessed is discussed
in further detail in section 2.1. The first of these methods of preprocessing, was that
all happy emoticons and sad emoticons where categorised together, this can be see
in table 2.5. Secondly any tweets containing both positive and negative emoticons
where removed. This can occur if the tweet in question has more than one topic being
discussed. Emoticons were then removed from the dataset. Because emoticons were
used to label the dataset, positive emoticons were present in all positive tweets and
negative emoticons were present in all negative tweet. If the emoticons were retained
in the dataset, then the classifier would simply learn to determine the sentiment
based on the emoticon in the tweet. If a tweet did not contain an emoticon it would
be classified incorrectly. The training data however does contain emoticons, as this
will assess how proficient the classifier is at determining sentiment when a emoticon
is present.
Retweets were also removed. Retweets are tweets that are posted again by another
Twitter user. Retweets are often flagged by Twitter users with the abbreviation
"RT", in order to remove the retweets all the tweets containing the abbreviation
"RT" were removed. Duplicated tweets were also deleted. This meant that if a tweet
was retweeted but the tweet was not flagged as a retweet with "RT", then it was still
removed from the dataset.

2.2.5.3 Drawbacks

The training set consists of purely positive or purely negative tweets. This means
that when training a classifier on this data it will not be trained to identify neutral
tweets. The result of this is that it is very unlikely that any classifier trained on this
dataset will identify any tweet as neutral. Another draw back is that because the
emoticons were removed from the training dataset, as described in above, a classifier
trained on this dataset will also negate the effect of emoticons when performing
sentiment analysis, while emoticons can in fact be good indicators of the sentiment
of a tweet.
The main reason this dataset was used as appose to others was that large datasets
of classified twitter messages are difficult to find, according to the publishers of
this dataset "[t]here are not any large public datasets of Twitter messages with
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sentiment"[8]. However despite the drawbacks of this dataset it can still be used to
assess the effectiveness of a classifier to perform sentiment analysis on tweets.
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3
Deep Learning Background

In order to understand the operation of deep nets and how they preform deep learn-
ing, it is first crucial to understand neural networks. Neural networks with several
hidden layers are considered deep nets. Each neural network is made up a series of
neurons that are connected to create an output. The following sections will investi-
gate the functionality of each of these neurons and how they are connected to other
neurons to create neural networks. 1

3.1 Inside Each Neuron
Classification is the act of assigning a a discrete value to data. Whether an email is
SPAM or not SPAM or whether music is rock, classical or pop. This is in contrast
to system that assign continuous values to data. Inside each neuron in a neural
network there are computation units. In general these computational units preform
classification. There are many types of classification, the primary focus of this
project is logistic regression. Before discussing logistic regression, linear regression
will first be discussed in order to explain some of the concepts used in logistic
regression.

3.1.1 Linear Regression
Linear Regression is the aim of fitting a line to a given dataset. This is desirable
because it means that the we can take a point that was not given in the dataset and
estimate its likely output. If the two properties are lineally related, we can use linear
regression to determine the relationship between the two. Using this relationship
we can then estimate the output from a given input. Depending on the data given,
the relationship between the two may be different.
Figure 3.1 shows a visual representation of linear regression. In this example the
inputs are the height in meters and age in years of boys. These two properties are
linearly related. The blue circles on the graph represent the dataset that given as
an input in order to give the relationship between the height and age of boys. The
yellow stars show test cases for the dataset. These test cases show how the height of
a boy can be estimated from this dataset given the age of the boy. For this example
the first yellow star represents a boy of age three and a half, with an estimated
height of 0.97 meters and a boy of age 7 with an estimated height of 1.19 meters. As

1Much of the information discussed in section 3.1.1 through to section 3.2.1 is drawn from the
Stanford Machine Learning tutorials [1].
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Figure 3.1: Linear Line Fit to Data

the input age is changed the height continually changes proportional to the change
in the age. This continuous change is referred to as a continuous valued output,
linear regression always has a continuous valued output. Classification like logistic
regression of the other hand, which is discussed in section 3.1.4, has a discrete valued
output.
Another aspect of figure 3.1 is that the curve does not exactly fit the dataset or
training data. At an age of two, the training data has a case of a child that is
much shorter than the predicted height from the relationship derived from linear
regression. Children between the ages of two and three grow much more rapidly than
is predicted by this relationship. This same disparity between the linear relationship
and the training data can be see between the ages of four and five where children in
the training set having widely varying heights. This is a result of a linear relationship
being used to fix all the training data, whereas not all the parts of the training may
be linear.
As described above the relationship between the two values depends on the dataset
given. This means that given another dataset of different children, for example
children from a different country, the relationship between the height and the age
of the boys would be different. For example if the dataset was taken in a country
where the population are much taller than the linear relationship between the height
and the age would be steeper.
Linear regression is an example of supervised learning. It works by taking in training
data using a learning algorithm to find the relationship between the input and the
output. This relationship is the hypothesis of linear regression. This hypothesis
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h(x) is the relationship between x and y for a given dataset, where in the example
above the age in year of the child is the x value and the height in meters of the child
is the y value. For Linear regression the hypothesis is a linear function, such that:

h(x) = φ1 + φ2x. (3.1)
By varying φ1 and φ2 in 3.1 the angle of the line fitting the data changes. Choosing
the best line fit for the data is in effect choosing the correct values for φ. Fig-
ure 3.2 shows the code that used to create the test values in figure 3.1. The variable
"testAge" is the x values in this case and the variable "testHeight" is the output of
both hypothesises. "testHeight" is calculated using equation 3.2.

Figure 3.2: Code for test cases in figure 3.1

In the example above height of boys is dependent only upon the age of boys. However
the height of boys may be dependent on more than just the age of the boy, the height
may also dependent on the ethnicity of the child. As some ethnicity’s have taller
populations than others. In linear regression the number of properties is known as
the number of features. Increasing the number of features changes the hypothesis,
for example two features give the following formula for the hypothesis in linear
regression:

h(x) = φ1 + φ2x1 + φ3x2. (3.2)
Where x1 and x2 are the features. Increasing the number of features can change
how effectively the hypothesis fits the dataset. That is as long as the chosen features
are relevant. Figure 3.3 shows a representation of a different problem, where the
dataset is one of the cost of a house based on its square footage and the number of
bathrooms. From this figure it can be see that the greater the square footage of the
house and the number of bathroom the more expensive the house. Similar to the
other graph the yellow star symbolises the test case where the price of the house is
calculated as function of the input features, the number of bathrooms and the size
of the house.
Figure 3.4 shows the Matlab code from creating the test cases for figure 3.3. This
code shows how calculating the output based on two features is the same in principle
to calculating the output for one feature. As shown in equation 3.2.
If the hypothesis for linear regression is determined by φ then there must be an
effective method finding the best φ. φ is found using a cost function. The purpose
of a cost function is to find the optimum values for φ by penalising any error.
Equation 3.3 shows the equation for computing the cost function, where J(φ) is the
cost function and (hφ(xi) − yi)2 is the average squared error function. The goal of
the cost function is to minimise φ for J(φ), by doing this the optimal φ is found.
This is done by using gradient descent which will be discussed in section 3.1.2.

J(φ) = 1
m

m∑
i=1

(hφ(xi)− yi)2 (3.3)
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Figure 3.3: Multiple Features for the House Prices Problem

Figure 3.4: Code for test cases in figure 3.3

3.1.2 Optimisation
Optimisation is the act of enhancing an algorithm, by minimising or maximising it,
by systematically changing the input parameters.

3.1.2.1 Gradient Descent

Gradient descent is an iterative function for minimizing any given function. In this
instance gradient descent is the process of changing the value of φ to optimise the
cost function, as shown in equation 3.3. Gradient descent starts with φ values of
zero and gradually changes them in order to find the value of φ that minimises the
cost function. When the value of the cost function is at its minimum, the function
is said to have converged. Formally gradient descent is given by the formula:

φj := φj − α
1

20j J(φ)∀j (3.4)

where α is the learning rate and J(φ) is the cost function. 1
20j is a function that

means that the result will always to moving towards its minim. ∀j implies that
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this equation is carried out for all values of φ at the same time, that is φ1, φ2, etc.
Therefore this function can be rewritten as

φ := φ− α d

dφ
J(φ) (3.5)

what this means is that partial derivative of φ is found, until the cost function is
at its minimum. Figure 3.5 shows gradient descent in process. Gradient descent
starts with a guess value and calculates the gradient at that point. The initial guess
value is then altered to step the solution in the negative gradient. Eventually the
gradient is zero, at this point θ is at its optimum value to reduce the cost function,
equation 3.3. This in turn results in the optimum θ for linear regression to fix the
dataset.

Figure 3.5: The Process of gradient descent taken from Stack Overflow [32]

Figure 3.6 shows the cost function against φ1 and φ2. The goal of gradient descent is
to minimises the cost function by changing the values of φ1 and φ2. From this figure
we can see that first values chosen for φ1 and φ2 have an impact upon the minimum
that is found. Depending upon the starting values of φ1 and φ2 gradient descent
may find a local minimum rather than the global minimum. This can affect the
accuracy of gradient descent, however this does not effect linear regression. Linear
regression is unaffected because of its cost function.The cost function for linear
regression is squared, as shown in equation 3.3, which results in a parabolic function
and parabolic functions only have one minimum. This can be seen in figure 3.7.
Figure 3.7 shows the cost function against φ1 and φ2 for the linear cost function that
was calculated for the example shown in figure 3.1. The cost function calculated for
this dataset only has one minimum, the global minimum. If the cost function was
based on a hypothesis with more input features, such as the example described in
section 3.1.1 the house price problem example, then the representation of the linear
cost function would form a cone.
The learning rate, α, of the function effects how large a step size is taken by each
partial derivative. If the learning rate is too small then it may take many iterations
of the gradient descent before the formula converges. If the value of the learning
rate is too large then the formula can begin to diverge rather than converge. Each
iteration overshoots the minimum. One way of checking if the learning rate is at
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Figure 3.6: Gradient Descent effect of Starting Point on Result taken from Da-
tumBox [29]

Figure 3.7: Linear cost function

an appropriate value is to ensure that the value of the cost function is falling every
iteration of gradient descent. Figure 3.8 shows the cost function against the number
of iterations for the gradient descent that was calculated for the example shown in
figure 3.1. Figure 3.9 shows the change in φ0 and φ1 for the gradient descent that
was calculated for the example shown in figure 3.1. For this example 300 iterations
of gradient descent were required before the values converged. However the values
of theta were very close to their optimum after 100 iterations. Figure 3.10 shows
the code that used to calculate the gradient descent algorithm for the example in

32



3. Deep Learning Background

section 3.1.1 the boys height problem. The variables "thetaIterations" and "J theta"
are used to create figures 3.8 and figure 3.9 that can then be used to determine if
gradient descent has converged.

Figure 3.8: Change in Cost Function with increasing number of Iterations

Figure 3.9: Change in Theta with increasing number of Iterations

Figure 3.11 shows a birds eye view of the graph shown in figure 3.7. If the features
of the two input features have the same scale then this representation of the cost
function would have perfectly circular contours. In this case the scale of the two
features are not exactly the same therefore the contours are not perfectly circular.
The less circular the contours, the longer convergence takes. When the scale of the
two input features are widely different this rate of convergence can be dramatically
effected, an example of this is described in section 3.1.1 the house price problem
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Figure 3.10: Code for calculating Gradient Descent used to create figure 3.1

example. For this example, the inputs are the square footage of the house and the
number of bedrooms in the house and the output was the cost of the house. Because
the scale of the square footage of a house and the scale of the number of bedrooms
in the house varies greatly, the contours of the cost function for that example would
be non-circular. In order to reduce the rate of converge for this problem, the input
features can be rescaled so that their is not such a large difference between them.

Figure 3.11: Affect of feature scale on Gradient Descent

3.1.2.2 Newton’s Method

Newtons method is another method of optimisation other than gradient descent.
Gradient descent often requires many iterations of the algorithm before the algo-
rithm converges. Newtons method can be faster than gradient descent due to the fact
that number of iterations required as less than that for gradient descent.Newton’s
method functions by finding the point in the cost function where its derivative is
equal to zero. This is the same as find the minimum of the function, as shown in
equation 3.6.
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d

dφ
J(φ) = 0 (3.6)

Each iteration of newtons method finds the tangent of the cost function and where
it intersects with the x-axis. This is then used to find the φ values that are used
for the next iteration. Eventually values for φ are found that minimise the cost
function. The formula for each iteration is given in equation 3.7, where J ′(φt) is
equal to the derivative of the cost function J(φ) as shown in equation 3.8 and J ′′(φt)
is the derivative of J ′(φt).

φt+1 = φt − J
′(φt)

J ′′(φt) (3.7)

J
′(φt) = d

dφ
J(φ) (3.8)

Equation 3.7 shows the each iteration for newtons method where φ is only one
vector however depending on the number of input features φ may be more than one
vector. Equation 3.10 shows each iteration of Newtons Method for φ of more than
one vector. H is the the hessian containing the partial derivatives of each of the
vectors of φ, as shown in equation 3.11.2

φt+1 = φt −H−15φ J (3.9)

where

5θ J = 1
m

m∑
i=1

(
hφ(xi)− y

)
xi (3.10)

H = 1
m

m∑
i=1

[
h(xi)

(
1− h(xi)

)
(xi)(xi)T

]
(3.11)

3.1.2.3 Comparison of Gradient Descent and Newtons Method

Gradient descent is considered to be a slightly simpler computation than newtons
method. However in order to perform gradient descent a learning rate, α, param-
eter must be chosen.Choosing an optimum value of is difficult and can hinder the
simplicity of the function. On the other hand newtons method does not require any
parameters and for that reason can be considered easier to use. In comparison to
gradient descent, newtons method converges faster. Gradient descent requires more
iterations to converge. However despite the fact that gradient descent takes longer
to converge each iteration is cheaper to compute. Each iteration of gradient descent
has a cost of O(n) where n is the number of features where as newtons method
has a cost of O(n3). Newtons method has a higher cost as the cost of inverting a
matrix, H−1, is high compared to the computation required for gradient descent. In
general due to the cost of both functions gradient descent is used when the number
of features is very large as the cost of computing newtons method becomes too large.

2(xi)T represents the transpose of xi
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3.1.3 Features
When choosing which features to include in a dataset it is important to consider the
relevance of chosen data. It can be complex to know which data is actually relevant
in predicting the output of a dataset. One way to estimate this is to consider if
the features are lineally dependent. To return to the example of the house price
estimation used in section 3.1.1, we could take two features for linear regression
that are the area of the house in meters squared and the area of the house in feet
squared. As the area of the house in meters squared is a function of the area of the
house in feet square, these two features are lineally dependent. These two features
cannot therefore be used for linear regression. Features used for linear regression
must be linearly independent, that is the features are not dependent on each other.
The number of features chosen can drastically effect the hypothesis of linear regres-
sion. The features chosen can also be squared or cubed to increase the complexity
of the resulting line, which can then better fit the data. Figure 3.12 shows three
different types lines to fit the given data. The red line shows a linear function, the
blue line is a quadratic function and the yellow line is a quadratic function. As the
complexity of the line in increased the line begins to fit the data better and better.

Figure 3.12: Polynomial Regression taken from Blogger Rocapal[31]

Increasing the complexity of the line fitting the data is not always desirable. If
the data fits to closely to the dataset then the result is hypothesis that maps the
relationship between the input and output for this dataset exactly rather than cap-
turing the overall characteristics of the relationship between the two. This is known
as overfitting. Figure 3.13 illustrates this problem. The first image shows the prob-
lem of under fitting where the line does not fit the data accurately enough to match
the characteristic curve of the data. In the second image the line fits the data well,
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following the characteristic curve of the data. In the third image the line fits every
point on the curve exactly, losing the characteristics of the curve.

Figure 3.13: Illustration of overfitting taken from Analytics Vidhya [27]

The problem of overfitting can be over come by reducing the complexity of the
features. As described above this affects the complexity of the line. The dataset
used can also be increased or regularisation can be used. The basic principle of
regularisation uses a weight decay parameter to penalise values of φ that are not
zero, this reduces that complexity of the hypothesis.

3.1.4 Logistic Regression
In contrast to linear regression, logistic regression has a discrete valued output. This
means that the output is a discrete set of values. Figure 3.14 shows an example of
logistic regression. Students wishing to enter college take two exams, their accep-
tance into college is based on the outcome of the two exams. The data points that
red circles are students that were admitted to college and the data points that are
blue plus signs are students that were refused to college. Every student was either
admitted or refused, this is a discrete valued output. The decision boundary in-
dicates which students were classified as being admitted or refused by the logistic
regression model.
Rather than linear regression, in order to determine the hypothesis of a logistic
regression a sigmoid function is used. Equation 3.12 is used to create the sigmoid
function.

g(z) = 1
1− e−z (3.12)

Figure 3.15 shows a plot of the sigmoid function. From this plot it can be seen that
the output is either one or zero. The hypothesis for logistic regression is given by
the following formula

h(x) = (y = 1|x, φ) (3.13)

The top of figure 3.16 illustrates a 3D representation of the exam scores against
whether the student was admitted or not. The bottom of figure 3.16 shows 2D
representations of each side of this graph. Superimposed on this graph is the sigmoid
function which illustrates how this data is classified using the sigmoid function. The
decision boundary that is need to classify this data can be created using linear
regression.
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Figure 3.14: College Acceptance Example

Figure 3.15: Sigmoid Function

Similar to linear regression, in logistic regression a cost function is used to find
optimum values of φ. If in logistic regression the cost was found by squaring the
input and output, like in linear regression, the result would produce a cost function
with many maximum and minimum. As described above in section 3.1.2 many local
maximum and minimum result in an inefficient gradient descent algorithm. In order
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Figure 3.16: Linear Regression and Logistic Regression

to solve this problem another cost function must be found for logistic regression,
this is found by finding the maximum likelihood of the sigmoid function.

cost(hθ(x), y) =
{
−log(hθ(x)) if y = 1
−log(1− hθ(x)) if y = 0 (3.14)

Equation 3.14 is the resulting equation for the cost function for the logistic function.
There are appealing features of this function. The first is that the function has only
one minimum, making gradient descent more efficient. The second is that this
functions punishes the algorithm for producing the incorrect output. As mentioned
in section 3.1.1 the purpose of the cost function is to penalise incorrect results. For
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Figure 3.17: Code used to Perform Logistic Regression from Figure 3.14

logistic regression as the function approaches the output zero for an output that
should be one, the cost function approaches infinity. Figure 3.17 illustrates the code
used to implement logistic regression for the college acceptance example.

3.2 Neural Networks

3.2.1 The Basics
Neural Nets, as the name implies, are made up of neurons. These neurons preform
either logistic or linear regression and give an output. This output is then used as a
input to the next neuron. This adds another layer of complexity to the computation
allows for algorithms that create complex decision boundaries. Figure 3.18 shows
the college acceptance problem that was introduced in section 3.1.4. The red line
in the diagram shows the decision boundary that would need to be created in order
to correctly classify all the data point as admitted or not admitted. This decision
boundary could not created using linear or logistic regression it requires a more
complex function. More complex decision bounaries can be created using neural
networks.

3.2.2 Preceptrons
Preceptrons carried out a process which is carry out by each neuron in a neural
net.Figure 3.19 shows a perceptron. A perceptron is takes in inputs, e.g. x1, x2 and
x3, and produces an output y. Perceptrons also introduce the concept of weights.
In figure 3.19 weights are represented for each of the inputs, w1, w2 and w3. By
altering the value of the weights the output of the preceptron can be manipulated.
The value of each of the weights for each input is multiplied by each input, these
are then summed together along with a bias unit. A bias unit or intercept term is
an additional value added to the perceptron in order to manipulate the output. In
figure 3.19 the bias units is represented by the symbol b. Once sum of these terms
has been found, shown in this figure by the ∑ symbol, an activation function in then
applied to the output. Generally in artificial intelligence this activation function is a
sigmoid function and therefore the perceptrons function much like logistic regression,
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Figure 3.18: Difficult Decision Boundary for College Acceptance Problem

which was discussed in section 3.1.4. However these neurons may also preform other
functions. One example of this is a hyperbolic tangent, or tanh function. A tanh
function is very similar to a sigmoid function except for the fact that the slope is
steeper. This process carried by the preceptron shown in figure 3.19 can summarised
by equation 3.15.

y = f(x1w1 + x2w2 + x3w3) (3.15)
The inputs to these perceptrons are the feature set, as described in previous sections.
As well as having these inputs, perceptrons can also have intercept terms. Intercept
terms also exist in linear and logistic regression. Equation 3.2, from section 3.1.1,

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 3.19: Perceptron
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Figure 3.20: Notation for Neural Network

represents the hypothesis for a linear relationship with two features, where x1 and
x2 are the features. x0 can be thought of the term multiplied with θ1, where the
value of x0 is one. x0 is an intercept term for logistic and linear regression that is
always equal to one. In the case of preceptrons and neural networks the intercept
term is not always constant and is used to produce more complex outputs.
These preceptrons are what make up the building blocks of a neural network. The
first layer is used to make the first decision and the second layer is then used to
make decisions based on the outputs of the first later. The outputs of these gates
can be even more complex then that of a signal preceptron, by doing this neural
nets create more complex decision boundaries.

3.2.3 Neural Network Architecture
Figure 3.20 shows the architecture of a neural net. The green nodes shows the
neurons in the input layer L1, the blue nodes shows the neurons in the hidden layer
L2, the red node shows the neuron in the output layer L3. The architectures of
a neural net can differ depending on the requirements of the neural net. Layer 1
consists of the features input into the net. Layer 2 is the hidden layer and layer 3 is
the output. Depending on the requirements of the net there may be more than one
hidden layer. Neural nets with several hidden layers are deep neural nets.
In figure 3.20, each of the features, denoted with xi, are inputs to the neural network
shown on the left of the diagram as x1 to x4. +1 is the intercept term, in this neural
network there are two intercept terms in both layers 1 and 2. The intercept term is
denoted as bLi , where L is the layer the weight is associated with and i is the neuron
in the next layer the bias effects.Each of these inputs also has a weight associated
with it, wLji where L is the layer the weight is associated with, i is the neuron the
weight effects and j is the next layer neuron that it effects. For example w2

11 is
the weight on the input x1 going to the first neuron in layer two. The output of
each neuron is the activation and is denoted with aLi where again L is the layer
the weight is associated with and i is the neuron the weight effects. For example
a2

1 is the output of the first neuron in the second layer. The output of this neuron
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is a function of all its inputs. This function depends on the function used within
the neuron, as described in section 3.2.2. The activation function used within the
neuron is denoted by f . Equation 3.16 and 3.17 denote the activations in layer one
and two in this neural network in figure 3.20.

a2
1 = f(w1

11x1 + w1
12x2 + w1

13x3 + b1
1) (3.16)

a2
2 = f(w1

21x1 + w1
22x2 + w1

23x3 + b1
2) (3.17)

The output of the entire neural network is, similar to logistic and linear regression
the hypothesis. The hypothesis is denoted by hw,b(x), it is a function of the input,
(x) and of the weights and biases in the network. For this neural network the
hypothesis is:

hw,b(x) = a3
1 = f(w2

11a
2
1 + w2

12a
2
2 + b2

1) (3.18)

Figure 3.21 shows the Matlab code for calculating the activation of each layer. The
function bsxfun calculates the weights by the inputs plus the intercept terms. The
following line calculates the activation function, that is thew sigmoid function, of the
output. The activation of both the hidden and output layers are calculated using
this method, the input however does not change it is therefore simply returned.

Figure 3.21: Code for calculating the Activation of each Layer in Matlab

Figure 3.20 is a feed forward network, this means that the network flows from layer 1
to layer 2 and so on. However there can be other kinds of networks that also reverse
direction, these are recurrent neural networks. Recurrent neural nets have been less
influential than feed forward networks, in part because the learning algorithms for
recurrent nets are (at least to date) less powerful[20]. Networks can also have two
outputs two outputs may represent whether two different conditions that a neural
network is attempting to detect. When the output from one layer is passed to the
next this is known as feed forward propagation. There is also backward propagation’s
that can be used for a variety or reasons, this will be discussed in the section 3.3.3.

3.2.4 Exclusive Or (XOR) Gate Example
In order to explain how neural nets can create more complex decision boundaries
than logistic or linear regression, the example of a decision boundary can classifies an
XOR gate can be used. By altering the weights and the intercept term the output of
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Figure 3.22: Logical Gates

a neural net can be altered. Figure 3.22 illustrates the decision boundaries required
for a AND, NAND, OR and XOR gates. There are two input features which are
either zero or one, the output of the gate is either on, illustrated with a blue plus
sign, or off, illustrated with a red circle. The decision boundary for each gate is
shown in orange. AND, NAND and OR gates are all decision boundaries that can
be created using logistic regression. However XOR have more complex decision
boundaries that cannot be classified by logistic regression. The XOR gate is a non-
linearly separable pattern[9]. These types of patterns are of common occurrence.
and require neural nets to be solved.

Weights and Biases for XOR example
x1 x2 w1

11 w1
12 b1

1 a2
1 w1

21 w1
22 b1

2 a2
2 w2

11 w2
21 b2

1 y
0 0 0.5 0.5 -0.75 0 -0.75 -0.75 0.5 1 -0.75 -0.75 0.5 0
0 0 0.5 0.5 -0.75 0 -0.75 -0.75 0.5 0 -0.75 -0.75 0.5 1
1 0 0.5 0.5 -0.75 0 -0.75 -0.75 0.5 0 -0.75 -0.75 0.5 1
1 1 0.5 0.5 -0.75 1 -0.75 -0.75 0.5 0 -0.75 -0.75 0.5 0

Table 3.2.4 shows the inputs, weights and biases and outputs that are required to
create the decision boundary for the XOR function. This Table represents a neural
net with an input layer with two inputs and a bias unit, one hidden layer with two
neurons and bias unit and an output. Each of the weights and biases are labelled
using the notation from section 3.2.3. a2

1 and a2
2 represent the activation functions of
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the two neurons in the hidden layer. This table shows that activation a1
1 represents

that of an AND gate and a2
2 represents that of a NOR gate. This illustrates how

both AND and NOR gates can be created using a single neuron, therefore they can
both be created using logistic regression. In fact AND, NAND and OR gates can
all be created using logistic regression. This can be seen in figure 3.22, each of these
gates require a simple decision boundary. On the other hand XOR gates require a
more complex decision boundary, therefore a neural net most be used.
Although using neural nets to create logical gates can be helpful, this does not
reflect the full advantage of neural nets. In the XOR example described above
the biases and weights were constants that do not change throughout the process.
Because these weights and biases are remaining constant the output produced is
not changing or learning anything for its computation. Learning algorithms are be
devised to automatically tune the weights and biases of the network of artificial
neurons[20].

3.3 Neural Net Optimisation

3.3.1 Next Generation of Neural Nets
While preceptrons use hand coded features and weights. The second generation
of neural nets overcame this problem by dynamically assigning the weights and
features. Rather giving the neural net features to identify these networks are simply
given the data and the most relevant features are identity from the data. The
advantage of this technique is that individuals do not have to identify for the neural
network the most relevant parts of the data. The neural network can in fact choose
the most relevant features based on the data.
Back propagation also improves the accuracy of these nets. Back propagation works
by taking the output and identifying the errors in the output compared with the
expected values. The outputs which are incorrect are then back propagated through
the neural net to find the weight or bias or caused the data to be classified incorrectly.
This weight or bias can then be changed to increase the accuracy of the neural net.
Before improvements in computational speed, the result of back propagation had
many limitations as it was inefficient on less powerful machines. During this time
popularity grew in other methods can could provide better accuracy then back prop-
agation. Support Vector Machines where one example of these alternative methods.
Support Vector Machines were effectively intelligent preceptrons that functions by
comparing training examples and efficiently optimising the algorithms by discarding
the features which lead to incorrect results and maintaining the successful features.
Support Vector Machines performed better than back propagation however unlike
neural networks these machines where not actually learning. The algorithm for
determining the output remained the same.
The Restricted Boltzmann Machine was another type of neural net that was re-
stricted in size, by this we mean that the number of hidden layers was restricted to
just one. The advantage of this method was that this method was efficients due to
its restricted size. As the computational power increases more of the concepts that
had been developed could be further realised, such as the ability to learn features.
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Figure 3.23: Back Propagation in a Neural Network

Features are extracted from the data using deep nets. At each layer of the net ex-
tracts features from the previous layer, creating more and more abstract features.
Features are chosen if they alter the data into the behaviour we wish to see from
the training set. Back Propagation can then be used to fine tune the dataset.3

3.3.2 Symmetry Breaking

Earlier on in this chapter in the section 3.1.2, the principle of gradient descent
was discussed as a method for finding the parameters of a hypothesis. For neural
networks each neuron outputs an activation function that in a feed forward network
is sent on to the next layer in the neural network. Gradient Descent must be
performed on each of these neurons in order to find its output. In a neural network
the parameters of the output, previously referred to as φi, are in a neural network
the weights associated with each input into a neuron, wLji as described in section
3.2.3.

When performing gradient descent for linear regression each of these parameters or
weights can be initialised as zero and then gradient descent finds the their optimum
values. While this procedure functions well for linear and logistic regression the
same technique cannot be used for a neural network. If all the weights in a neural
network were initialised as zero and each had the same function, there the result of
gradient descent would be the same for all the weights of the hidden nodes within
the network. The hypothesis of such a network would not be very useful. In order to
negate this problem the weights are initialised randomly, this is known as symmetry
breaking.
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3.3.3 Backpropagation Error Algorithm
Backpropagation is a method of improving the performance of a neural network.
Error backpropegation is a method of fixing the intercept terms and weights to op-
timise the performance of the network. Error backpropegation was a break through
algorithm in artificial intelligence that led to the wide spend use of neural networks.
The backpropagation algorithm was originally introduced in the 1970s, but its im-
portance wasn’t fully appreciated until a famous 1986 paper by David Rumelhart,
Geoffrey Hinton, and Ronald Williams[20]. Prior to this due to the difficulty in
optimising deep neural networks restricted neural networks were mainly used, as
they were easier to optimise. In recent years with increasing computing power back-
propegation has become even more popular as it is now able to train much larger
networks.
Similar to linear and logistic regression, neural networks need to be trained. In the
same way that logistic and linear regression are trained, neural networks are trained
by using minimising a cost function using gradient descent. The cost function for
neural networks is defined by the equation 3.19. Rather than optimising theta, as
for linear and logistic regression, the cost function for neural networks optimises the
weight and biases. Overfitting, the phenomenon discussed in section 3.1.3, can also
occur in neural networks were the solution to the neural network fits too closely to
the training data, rather than fitting the overall characteristic of the training data.
Regularisation, or weight decay as it is called for neural networks, is introduced to
minimise this problem. In weight decay, weights other than with a value of zero are
penalised. Weight decay is not applied to bias terms. Equation 3.20 displays the
cost function with the weight decay term. Lambda in this equation is a constant
and m is the number of training samples used.

J(W, b, x, y) = 1
2 ||hW,b(x)− y||2 (3.19)

J(W, b) = [ 1
m

m∑
i=1

(1
2 ||hW,b(x)− y||2)] + λ

2

nt−1∑
l=1

st∑
i=1

st+1∑
j=1

(W l
ji)2 (3.20)

The goal is now to minimise the weights and biases for the cost function, equa-
tion 3.20. Since J(W, b) is a non-convex function, gradient descent is susceptible to
local optima [19]. Equation 3.21 displays one iteration of gradient descent for a neu-
ral network. This is essentially the same as equation 3.5 from section 3.1.2, where
α is the learning rate of gradient descent. The difficulty in solving equation 3.21
and equation 3.22 is solving the partial derivative, backpropegation gives an efficient
way of solving the partial derivative.

W l
ij = W l

ij − α
δ

δW l
ij

J(W, b) (3.21)

bli = bli − α
δ

δbli
J(W, b) (3.22)

3This information originates from tutorials given by Hilton.[11]
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The principle of error backpropegation is that first a "forward pass" is computed to
calculate the activations throughout the network, including the output value of the
hypothesis hW,b(x). After this is performed the error of hypothesis is found using
training data. This error value can then be used to determine the which nodes are
most responsible for causing this error. The error for the entire network is found by
equation 3.23 where nl is the output layer of the network and zli is the total weighted
sum of inputs to unit i in layer l.

δnli = −(yi − hW,b(x)).f ′(znli ) (3.23)
where f ′(zli) is given by:

f ′(zli) = ali(1− ali) (3.24)
While this function gives the error of the overall network. It does not indicate which
weight and biases in particular are responsible for the error. For each node the error
of the node in next layer must be must be found. That is in order to find δli, δl+1

i

must first be found. δl+1
i can be found by computing the partial deviate of the cost

function. Once this has been computed the error for each node can be found by
evaluating equation 3.25.

δli = (
nl∑
j=1

wljiδ
l+1
i )f ′(zli) (3.25)

Once the error for each neuron has been determined, the partial derivatives for
the weight and biases can be found. Equation 3.26 and equation 3.27 show how
the partial derivatives are finally calculated. Each iteration of gradient descent can
finally be calculated using these partial derivatives and the cost function can be
minimised by altering the weights and biases according to how they attributed to
the final error of the network.

δ

δW l
ij

J(W, b, x, y) = aljδ
l+1
i (3.26)

δ

δbli
J(W, b, x, y) = δl+1

i (3.27)

Figure 3.24 shows Matlab code that calculates the backpropagation error in a neural
network. The first part of the code calculates the cost function and the weight decay
for network, i.e. equation 3.19 and equation 3.20. The error of the entire network is
then calculated as the variable delta3, i.e. equation 3.23. The error for the hidden
layer of the network is then calculated as delta2, i.e. equation 3.25. nablaW1,
nablaW2, nablab1 and nablab2 represent the partial derivatives for the weights and
biases in the network. Finally the weights and biases are adapted to reduce the cost
function.
Although backpropagation improves the ability to train neural networks, as neural
networks get deeper, the ability to effectively train the network becomes more dif-
ficult. According to Learning Deep Architectures for AI "gradient-based training
of deep super- vised multi-layer neural networks (starting from random initializa-
tion)gets stuck[ed] in apparent local minima or plateaus”[2]. However according to
this same source the performance of these deep neural nets can be improved by
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Figure 3.24: Code for Calculating the Error Backpropagation in Matlab

pre-training the network using unsupervised learning. The concept of unsupervised
learning is discusses in the next section 3.4.1.

3.4 Feature Learning

3.4.1 Unsupervised Learning

There are many different types of machine learning algorithms. Supervised Learning
is when the algorithm is given the desired output for a dataset and this dataset is
then used to train the algorithm that is used to classify future data. Supervised
learning describes all the examples that have been seen in the section 3.1. For all
of these examples the desired output of the data was known and this allowed the
desired output of data to be determine either as a continuous valued output as in
regression (Linear Regression in the section 3.1.1) or as a discrete valued output as
in classification (Logistic Regression in the section 3.1.4).
Unlike supervised learning in unsupervised learning the desired output of the dataset
is not know. Often in unsupervised learning clustering can be used to determine the
number of different dataset that need to classified. Clustering is used in a wide field
of applications and is a very useful tool for unsupervised classification, examples of
this can be gene classification, social network analysis, or market segmentation.
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Figure 3.25: Autoencoder

3.4.2 Autoencoders

Supervised learning is a very useful AI technique that allows algorithms to learn
a variety of complex data. However this technique does have drawbacks. In order
for supervised neural networks to output valuable representations of data, relevant
features must used as inputs. in some cases relevant features can be easily identified
however this is not always the case. In applications such as computer vision choosing
relevant features can be extremely complex and time consuming. In addition to that
the neural networks that are trained from such features are not flexible and cannot
be adapted to different problems.
An autoencoder neural network is an unsupervised learning algorithm that applies
back propagation, setting the target values to be equal to the inputs. [19] What this
in effect equates to is the ability to learn features from unlabelled data. Figure 3.25
shows an autoencoder. In Layer 1 inputs are taken in and layer 2 variations of these
inputs are output and these can be utilised later in the neural network. By using
backpropagation an autoencoder is trained to encode the input xi to a representation
x̂i to that it can be reconstructed. The idea behind using a autoencoder is that
through optimisation the weights and biases of the autoencoder are altered so that
new representations of the input, x̂i, capture the main features of the variation in
the data. Once the main features of the variation in the data have been captured
these can then be used as the features for the network rather than the original inputs
themselves.
In figure 3.25, the number of hidden units is less than the number of input units.
This means that the data must be compressed into the number of hidden units.
This operation can revel interesting representations in the data that is output.If all
the input data is random then compressing the data into a fewer number of hidden
units makes the reconstruction of the data into the output very difficult. However if
the data is not random and it has features that are correlated, this neural network
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can discover those correlated features.

3.4.3 Sparsity
As was discussed in section 3.1.4 on logistic regression, the output of a sigmoid
function is between zero and one. Inside each of the neurons a sigmoid function
is used to determine the output. As discussed early in section 3.2.2 this sigmoid
function is referred to as the activation function in the context of neural networks.
This means that the output of each of the neurons is between zero and one. If the
output of a neuron is close to one then that neuron can be thought of as being
active. On the other hand if the output of the neuron is zero then the neuron can
be thought of as being inactive. As described in section 3.2.3, on the architecture
of neural networks the output of a neuron is referred to as the activation of that
neuron, given by the equation 3.16. Therefore the activation of each neuron can
be active or inactive. Whether a neuron is active or inactive depends on the input
from the previous layer.
For a hidden unit there are activations for each of the training examples put through
the neural network. The average activation of a hidden unit over a number of
training examples is given by equation 3.28 where m is the number of training
examples and a2

j is the jth activation from the second layer of the neural network
with is a function of the inputs to the neural network (xi). This is the average
activation of the jth unit of the hidden unit. In figure 3.25, the number of j would
be four, as this is the number of units in layer 2. The number of features would be
six.

p̂j = 1
m

m∑
i=1

[a2
j(xi)] (3.28)

The average activation of each hidden unit is a parameter that can be set as a
constant. This constant is the sparsity parameter. If the sparsity parameter is
close to zero then the majority of the hidden units must be inactive. If the sparsity
parameter is close to one then the majority of the hidden units must be active.
This method of setting the sparsity parameter is another method that can be used
by autoencoders to find correlations in data. As discussed in section 3.4.2, on
autoencoders, interesting structures in the data can be uncovered by limiting the
number of hidden units in neural network and reconstructing the data. This is
however not the only to method to uncover interesting patterns in the data. By
specifying a lower sparsity parameter, limitations are also imposed on the neural
network that mean that the data has to restricted much as it is done when the
number of hidden units is lower than the number of input and output units.
In order to impose the sparsity parameter on the hidden units another function is
added to the cost function. This function acts similarly to regularisation, where a
parameter is introduced to penalise the values of weights in the cost function that
are not equal to zero. This purpose of regularisation is to reduce the likelihood
of over fitting. With the sparsity parameter a formula is added to the cost func-
tion that penalises average activations, p̂j, that differ from the sparsity parameter.
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Equation 3.29 shows the cost function with the sparsity parameter. β dictates the
weight of the sparsity parameter on the data. The sparsity parameter is p.

J(W, b) = J(W, b) + β
s2∑
j=1

KL(p||p̂j) (3.29)

KL represents the Kullback Leibler function. Equation 3.30 displays the Kullback
Leibler function. This function is minimised when p = p̂j and reaches infinity as the
disagreement between p and p̂j increases. The effect of this is that if the average
activation of the neural network differs greater from the sparsity parameter the cost
function increases at a rate dictated by the weight parameter β. Figure 3.26 shows
code for implementing the Kullback Leibler function in Matlab code. This function
return the disparity between the average activation and the sparsity parameter.

s2∑
j=1

KL(p||p̂j) = plog
p

p̂j
+ (1− p)log 1− p

1− p̂j
(3.30)

Figure 3.26: Matlab Code for Kullback Leibler Function

In order to incorporate the sparsity parameter into the backpropagation algorithm
the sparsity is incorporated into the calculation of the error in layer two. Equa-
tion 3.31 shows the same equation as equation 3.25, in section 3.3.3, except a spar-
sity part of the equation has been added on. The term p̂i refers to the action of
the particular neuron in question. A forward pass on the neural network can be
computed first that retains the activation of each of neurons. These values can then
be used to calculate the error of each neuron.

δli = (
nl∑
j=1

wljiδ
l+1
i ) + β(− p

p̂i
+ 1− p

1− p̂i
)f ′(zli) (3.31)

An autoencoder than compresses the data by using a sparsity parameter is known
as a sparse autoencoder. Figure 3.27 shows the Matlab code for creating a sparsity
autoencoder. A forward pass is first run on the neural net. This determines the
activations of each of neurons. The first part of the cost function is then evaluated
as the squaredErrCostFn. One important difference in calculating the first part of
the cost function for the autoencoder is that rather than hW,b(x)− y as is depicted
by equation 3.19, in section 3.3.3, this part of the cost function is calculated as
hW,b(x) − input4. The reason for this is that for the autoencoder the expected
output is the input, this equation is therefore adapted to find the difference between
the output and the input. The next part of the code calculates the weight decay and

4In the code shown in figure 3.27 the input is displayed as data.
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the sparsity. The Kullback Leibler is calculated in the equation shown in figure 3.26.
Once all three part of the cost function have been calculated the entire cost function
can be calculated. Similar to the first part of the cost function, the squared error
cost, the error of the entire neural network is calculated using the input as the
expected value. The calculation of the error in the second layer of the network is
adapted to include the sparsity calculation, as in equation 3.31. The calculation of
the partial derivatives and the adaption of the weights and biases does not change
from the method used for backpropagation.5

Figure 3.27: Matlab Code for a Sparse Autoencoder

3.4.4 Softmax Regression
The previous examples in this document of classification, such as neural networks
and logistic regression, illustrate the ability to classify two possible values. This is
known as binary classification. However there are also classes were there are more
than two possible values or labels. This is known as multi-label classification. In
the example used about for logistic regression, in section 3.1.4, student are either
admitted or rejected from college based on the outcome of two exams. Say there was
a third possible outcome, such as if students scored just below the level of admittance
in both exams, they would have the opportunity to retake the exams. This would

5The difference in the code for the calculation of the partial derivatives from figure 3.24, of the
code for backpropagation, and figure 3.27, of the code for the sparse autoencoder, is due to the
fact that the code for backpropagation is written to function for many hidden layers whereas the
code for sparse autoencoder is for only one hidden layer.
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make this classification problem a multi-label classification problem, where there are
three possible outcomes either the student is admitted, rejected or told to retake
the exams.
For logistic regression the hypothesis is given by the sigmoid function, this is shown
in section 3.1.4 in equation 3.12. If logistic regression were extended to a multi-label
classification problem the hypothesis would need to be adapted to produce more
than just two possible outcomes. For this problem the probably of each possible
outcome needs to be calculated. Equation 3.32 shows the hypothesis for multi-label
classification logistic regression. The hypothesis for multi-class logistic regression
is the calculation of the probability of the output, y being 1, 2....k, where k is the
number of possible outcomes, given a particular input xi and θ. This is depicted in
the first part of the equation.

hθ(xi) =


p(yi = 1|xi; θ)
p(yi = 2|xi; θ)

...
p(yi = k|xi; θ)

 = 1
k∑
j=1

eθ
T
j x

i


eθ

T
1 x

i

eθ
T
2 x

i

...
eθ

T
k x

i

 (3.32)

The second part of equation 3.32, on the right hand side, shows the calculation of
the probability of each possible outcome. The probability of each possible outcome
is calculated using the sigmoid function, where the values of θ are altered for each
possible output. The term θ as described in section 3.1.4, refers to the parameters
of the model that are altered to optimise the classification. For multi-class logistic
regression there is are different parameters, θ, for each of the different possible
outputs. This is illustrated in equation 3.33. θT represents the transpose of θ.

θ =


θT1
θT2
...
θTk

 (3.33)

Equation 3.34 shows the cost function for logistic regression, where 1[yi = j] equals
one for a true state and zero for a false statement. This cost function also applies for
multi-label logistic regression, however the value of p(yi = j|xi; θ) differs for binary
and multi-label classification. Equation 3.35 shows the value of p(yi = j|xi; θ) for
multi-label classification for logistic regression. There are however issues with this
equation the cost function of logistic regression for multi-lable classification. If an
additional parameter is added to equation 3.35 it does not effect the hypothesis. This
proves that the parameters in this equation are redundant, or that the equation
is overparameterised. This means that there are several different values for the
parameters that give the same value for the hypothesis. One method of solving this
problem, of overparametrisation, is to use weight decay.

J(θ) = − 1
m

[
m∑
i=1

1∑
j=0

1[yi = j]log(p(yi = j|xi; θ))] (3.34)

p(yi = j|xi; θ) = eθ
T
j x

i

∑k
l=1 e

θT
j x

i (3.35)
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Weight decay, as described in section 3.3.3, is a method of penalising weights that
differ from zero. Equation 3.36 shows the cost function for multi-label logistic re-
gression with weight decay. Weight decay is controlled by a parameter λ. This cost
function now has only one unique solution for minimsing the cost function.

J(θ) = − 1
m

 m∑
i=1

1∑
j=0

1[yi = j]log
(

eθ
T
j x

i

∑k
l=1 e

θT
j x

i

)+ λ

2

k∑
i=1

n∑
j=0

θ2
ij (3.36)

Figure 3.28 shows the code for implementing softmax regression. M represents the
matrix of the input by the parameters shown in equation 3.32. If values in matrix,
M, are large then there is strong likelihood that overflow could occur. To avoid
this the maximum value in the matrix is subtracted from each of the values in the
matrix, to prevent overflow. The variable groundTruth in the code presents the
function 1[yi = j] and temp contains the part of the equation 3.36 inside the square
brackets. Once the first part of the cost has been calculated the weight decay is
then calculated and the values of θ can be adapted to minimise the cost function.

Figure 3.28: Matlab Code for a Softmax Regression

In the same way that logistic regression can be adapted for softmax regression neural
networks can also be adapted to classify more than two possible labels.

55



3. Deep Learning Background

56



4
Machine Learning For Sentiment

Analysis

This chapter describes some of the methods that are used in order to preform senti-
ment analysis. These include methods that have been traditionally used for this pur-
pose such as the naïve Bayes model. As well as methods that are the current state of
the art in this area such as the Stanford implementation of Sentiment Analysis from
Socher et al.[25]. Finally this section describes the method that was implemented
in this project. This method was compared against the Stanford implementation
of Sentiment Analysis from Socher et al.[25] in order to assess its effectiveness in
analysing tweets compared with the current state of the art.

4.1 Naïve Bayes Classification

The naïve Bayes method of classification is one that can be used for all kinds of
text classification, such as Spam detection, authorship identification or sentiment
analysis.

4.1.1 Generative Learning

Similar to logistic regression and neural networks, naïvee Bayes is a classification
technique. Unlike logistic regression however a naïve Bayes classifier is a generative
method of classification. Logistic regression on the other hand is a discriminative
method of classification. In section 3.1.4 on logistic regression the example of college
acceptance was used to describe logistic regression. Figure 4.1 shows the dataset
that was used for this example. Students took exams, exam one and exam two, and
their acceptance into college was based on the outcome of the two exams. In logistic
regression the dataset is classified calculating the probability of each output given a
particular input, i.e. p(y|x). In generative learning the probability of an input given
a particular output is calculated, i.e. p(x|y). In the case of the college acceptance
example, in figure 4.1, this would mean first analysing what admitted students test
scores look like. Then analysing what rejected students test scores look like. When
a test example then needs to be classified the naïve Bayes classifier determines if
the test case looks more like an admitted students test score or rejected student test
score. What is the probability of an admitted student having these test case scores
and what is the probability of a rejected student having these test case scores.

57



4. Machine Learning For Sentiment Analysis

Figure 4.1: College Acceptance Example Dataset

4.1.2 Bayes Rule
Naïve Bayes classification is based on Bayes Rule. Equation 4.1 shows Bayes Rule.
I implies that the probability of A given B is equal to the product of the probability
of B given A by the probability of A divided by the probability of B. In the naïvee
Bayes model this equation is used to calculate the probability of an output given a
particular input. In this case term A in equation 4.1 is the output, y, and B is the
input, x. Equation 4.2 shows Bayes rule adapted to calculate the likelihood of the
output, y being one given an input, x. In order to calculate this the probability of
an input when the output is one, P (x|y = 1), the probability of the output being
one, p(y = 1) and the probability of that input, p(x) must be calculated.

P (A|B) = P (B|A)P (A)
P (B) (4.1)

P (y = 1|x) = P (x|y = 1)P (y = 1)
P (x) (4.2)

In order to find the the probability of an output, p(y), prior probability is used.
Prior probability is concept of basing the probability of the classification of the next
observation on past observations. For example in the college acceptance example if
twice as many students were admitted than rejected then it is reasonable to assume
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that the next observation is twice as likely to be classified as admitted rather an
rejected. In the Bayesian analysis, this belief is known as the prior probability. Prior
probabilities are based on previous experience, and often used to predict outcomes
before they actually happen. [33].
Rather than finding the probability of each class given as input, as shown in equa-
tion 4.2, the most likely class can instead be found. Equation 4.3 shows an equation
for finding the most likely class, maximum posteriori. argmax returns the argument
of the maximum probability in the equation.

y = argmax
(
P (x|y)P (y)

)
(4.3)

4.1.3 Text Classification
For text classification the inputs to the naïve Bayes method of classification are
documents. These documents are processes so that they can be classified. In the
naïve Bayes method the bag-of-words model, discussed in section 2.1.2 in Text Pro-
cessing Chapter, is used to process the documents. The dictionary of words created
by the dataset is used to determine the features in each document. Each occurrence
of a dictionary word in a document is a feature of that document along with the
frequency the word occurs in the dataset. Using this bag of words model features
for each document are generated. Each document has different feature lengths.
These features can then be input into the naïve Bayes classifier. As with other meth-
ods of classification the features are input as xi where i is the ith features of the
training example. Equation 4.4 and 4.5 show the adaption of equation 4.3 for many
input features. The probability of each feature for a given output, P (x1, x2, ..., xn|y),
is computed as the fraction of the amount of times that feature appeared for that
output. With this method for calculating the probability of an input when the out-
put given, P (x|y), and prior probability for calculating the probability of a particular
output, p(y), the output can be calculated.

y = argmax
(
P (x1, x2, ..., xn|y)P (y)

)
(4.4)

y = argmax
(
P (y)

∏
x∈X

P (x|y)
)

(4.5)

4.1.4 Spam Email Example
The naïve Bayes method of classification can be used for many text classification
tasks, one of these is the ability to classify emails as spam or non-spam. Emails
are the inputs to the model and the features of these emails are created using a
bag-of-words technique. The most frequently used words in the dataset of emails
are entered into a dictionary along with the frequency they occur in the dataset. It
is important to note that in order to create the dictionary the entire dataset must
be used, that is all the testing and training examples. The features in each email
are the words in the email that also occur in the dictionary. Figure 4.2 shows the
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Matlab code for calculating the probability of spam in the dataset.1 This is the prior
probability of the next observation being spam. This is equivalent to the calculation
P (y = 1), where the class y = 1 represents spam emails.

Figure 4.2: Code for Calculating the Prior Probability for the Spam Email Exam-
ple

Figure 4.2 shows the Matlab code for calculating the number of features in spam
and non-spam emails. This calculation is used to then calculate the probability of
each feature for either spam or non-spam emails. Figure 4.3 shows the Matlab code
for calculating these probabilities. The term prob tokens spam is the equivalent of
P (x1, x2, ..., xn|y = 1) where y = 1 represents spam emails and n represents the total
number of features. This is calculated from how often each word occurs in spam
emails over all the words that occur in spam emails. The term prob tokens spam
now contains a list of all words in the dictionary and the probability of that feature
given the output spam. The term prob tokens nonspam is the opposite of prob tokens
spam, that is equivalent of P (x1, x2, ..., xn|y = 0) where y = 0 represents non-spam
emails and n represents the total number of features. This term is calculated in the
same way as the prob tokens spam except for non spam emails.

Figure 4.3: Code for Calculating the Word Frequency for the Spam Email Example

Figure 4.4: Code for Calculating the Probability of Features for Spam and Non-
Spam Emails for the Spam Email Example

The product of all the features in each email in the testing data can be calculated to
find the classification of each email testing data. The probability of the email, in the
testing set, being a spam email is then compared to the probability of the email being
a non-spam email. The email is classified as the class with the higher probability. In
practise the probabilities can be more easily compared using the logarithm’s of the

1This code, and the following code in figures 4.2, 4.3, 4.4 and 4.5, is based on a tutorial given
in the Stanford Open Learning Classroom[1]
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probabilities, rather than dealing with very small numbers. Figure 4.5 shows the
classification of each of the testing emails using the logarithm’s of the probabilities
for each classification.

Figure 4.5: Code for Calculating the Output for the Spam Email Example

4.1.5 Summary
The naïve Bayes method of classification is one that can be very useful for text classi-
fication. It was low storage requirements compared to other methods of classification
and as a result can deal with larger datasets before becoming too slow. Features are
also handled well by the naïve Bayes method, in that irrelevant features are can-
celled out by the bag-of-words model of text processing. The naïve Bayes method
can also handle features that are of equal importance. In general, the naïve Bayes
method of classification is a good dependable baseline for text classificaion[12].

4.2 Stanford NLP Library for Deeply Moving: Deep
Learning for Sentiment Analysis

The principle behind the Standford Deep Learning for Sentiment Analysis is that
while bag-of-words text processing can be used for Sentiment Analysis it does not
capture the meaning of the sentence. The Stanford implementation of Sentiment
Analysis from Socher et al.[25] uses sentiment treebanks, as discussed in section 2.1.3,
as the method of text processing. This means that the overall meaning of the
sentence is maintained. Negation in particular is an aspect of sentence which is
completely lost in a bag-of-words representation of text. The paper "Recursive
Deep Model for Semantic Compositionality over a Treebank"[25] has the aim of
rectifying this by utilising treebanks. This paper is built upon the knowledge from
Socher’s previous paper "Semi-Supervised Recursive Autoencoders for Predicting
Sentiment Distributions"[26] which originally used sentimental treebanks to capture
the meaning of sentences.
In order to implement this type of sentiment classifier Socher et al.[25] introduces
the Stanford Sentiment Treebank using the Recursive Neural Tensor Network.The
Stanford Sentiment Treebank is a treebank that has been annotated with sentiment.
Section 2.1.3 shows an example of a sentence that has been annotated from the
Stanford Sentiment Treebank in figure 2.2. In order to create this treebank, the
dataset parsed with the Stanford parser[14] in order to annotate the data with part-
of-speech tags and create treebanks.
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4.2.1 Dataset
The Stanford Sentiment Treebank was created using the IMDB dataset, which is a
dataset of movie reviews from the IMDB website. Reviews are accompanied with
ratings from one to ten for each film. Smaller segments of this dataset were extracted
from each review and the larger sentence was used to label these smaller segments.
Each of these sentences was classified as very negative, negative, neutral, positive,
or very positive. After reviewing the dataset shorter sentences or phrases were more
likely to be neutral, while longer sentences were equally spread between the five
possible sentiments. This illustrates part of the difficulty with classifying shorter
sentences, such as those found on twitter.

4.2.2 Text Processing
Due to the fact that the text is classifed using a sentiment treebank, the words
need to tokenised into part-of-speech (POS) tags2 before they can be used to create
treebanks. The tweets that input into this model were not processed in any way.
This meant that emoticons, hashtags and usernames were all used to classify the
tweets. These inputs had no effect classifying the tweet, as the model was trained
on movie reviews, which do not generally contain these types of text. The Stanford
Sentiment Treebanks create a sentiment for each sentence rather than for the entire
input. This means that sentiment of the entire sequence of sentences had to equated.
Figure 4.6 shows the code used to determine the sentiment of multiple sentences.
The sentiment of each sentence is added to the running sentiment of all the text.
The reason that this method is used rather than for example finding the average
sentiment, is that if there is one positive sentence and two neutral sentences, then
the overall sentiment is still considered positive.

4.2.3 Recursive Neural Networks
Recursive Neural Networks are networks that can be used to produce parse trees by
applying the same set of weights recursively. The architecture of this network is a
tree structure with a neural net at each node. When a sentence is given as an input
into a the recursive neural model it is first parsed in a binary tree by the Stanford
parser[14]. Each word is then a leaf node on the tree.
The probability of each word given each possible output, P (word|y) is calculated
using softmax regression. Softmax regression, as discussed in section 3.4.4, is a
method of classifing more than two possible outputs. In this case there are five
possible outputs, as discussed earlier these are very negative, negative, neutral,
positive, or very positive. Using this technique the probability of each word can be
calculated and used to determine the sentiment for each word. Figure 4.7 shows
the percentage probability for the words "with", "manditory" and "Obama" from the
Stanford Sentiment Treebank for the sentence "President Obama thinks it would be
great idea to have mandatory voting by citizens but is against voter i.d. What’s

2A list of all POS tags used in figure 4.9 and 4.10 are located in the appendix figures A.4,
A.5, A.6 and A.7
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Figure 4.6: Code Created to Calcualte Sentiment of Multiple Sentences

wrong with this picture?" in figure 2.2. Each word is then classified based on the
label with the highest probability, i.e. all the words in figure 4.7 were classified as
neutral.
The probability of each output for each word then makes up a vector which is used to
determine the parent vectors using compositionality functions. Once the sentiment
of each word is determined, the sentiment of parent nodes, or hidden vectors are
computed in a bottom-up fashion. Each parent vector is computed as a function
of its children using the tanh function. The sentiment of each parent is determined
using the same softmax classifier as for the children. These parent vectors are then
given as inputs to determine the sentiment of the next level of the treebank. This

Figure 4.7: Example of Words Taken from Sentiment Treebank shown in figure 2.2
using the Stanford Implementation[25]
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Figure 4.8: Code for using the Stanford NLP API for the Stanford Core NLP[15].

is continued until the sentiment of the root node is determined.
A Recursive Neural Tensor Network (RNTN) is a recursive neural network where
the input vectors interact with one another more. This means that words next to
one another in a treebank interect with one another more.

4.2.4 Result on IMBD Dataset

The Standford Deep Learning for Sentiment Analysis model out performed all mod-
els to date on its ability to predict the sentiment of the IMDB dataset. In the paper
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
[25] this method was compared to classification methods that ignore word order
such as the naïve Bayes method and neural networks that ignore word order. This
method attained 80.7% accuracy when tested.

4.2.5 Using the Stanford NLP Library API

The Stanford Core NLP Library can be downloaded and used as an API[15]. Fig-
ure 4.8 shows the code for using the Stanford API. The function setProperty deter-
mines which text processing annotators will be applied to the text. In this case the
text will be tokenised, part-of-speech (POS) tagged and sentiment annotated. The
sentence being classified is shown as the variable text. Figure 4.9 shows the resulting
tree from this input, which is the same as the tree created in figure 2.2.
The Stanford NLP Library is not adapted for twitter, but was rather trained us-
ing the IMDB dataset. Due to this some there are some interesting aspects when
the Stanford API is used for classifying tweets. Figure 4.10 shows the treebank
that was created from the tweet "@BATMANNN :( i love chutney......". This tweet
contains several of properties that are specific to social media such as usernames,
"@BATMANN" and emoticons ":(". The tweet is also very short, making it difficult
to classify. From the treebank created for this tweet it is clear that the symbols ":"
and "(" are considered different features by the classifier. This means that emoticons
are not considered features that determine the sentiment of the tweet. Usernames
are also not used to determine the sentiment of the tweet. This tweet is however
correctly classified as positive.
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Figure 4.9: Treebank Created by Stanford NLP API for the Stanford Core
NLP[15].

Figure 4.10: Treebank Created by Stanford NLP API for the Stanford Core
NLP[15] from the Tweet "@BATMANNN :( i love chutney......".
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Actual Class
VN N NU P VP

Total Population 497 177 0 139 0 181

Predicted Class

VN 27 0 2 0 5 79.41%
N 99 0 66 0 55 0%
NU 35 0 63 0 49 42.86%
P 15 0 8 0 56 0%
VP 1 0 0 0 16 94.12%

15.25% 0% 45.32% 0% 8.84% 21%

Table 4.1: Confusion Matrix for Stanford NLP Sentiment Analysis
Implementation[25]

4.2.6 Results

Table 4.13 shows the results of the confusion matrix for the testing data for this
method of sentiment analysis. The top of the table represents the predicted senti-
ment of the input tweet from the testing data and the left of the table represents the
actual sentiment of the input tweet. The first column of the table shows the number
of tweets of each sentiment in the testing data. There are 177 very negative tweets,
139 neutral tweets, 181 very positive tweets and zero negative or positive tweets.
Of the 177 very negative tweets 27 tweet were correctly classified, 15.25% accuracy.
Of the remaining tweets 99 were classified as being negative, 35 were classified as
being neutral, 15 were classified as being positive, and 1 was classified as being very
negative.Of the 139 neutral tweets 63 tweet were classified correctly, 45.32% accu-
rate. Of the remaining tweets 2 were classified as very negative, 66 were classified as
negative and 8 were classified as positive. Of the 181 very positive tweets, 16 were
classified correctly, 8.84% accuracy. The remaining tweets 5 were classified as very
negative, 55 were classified as negative, 49 were classified as neutral, and 56 were
classified as positive.
Of all the tweets that were identified as being very negative 79.41% were actually
very negative. Of all the tweets that were identified as being neutral 42.86% were
actually neutral. Of all the tweets that were classified as very positive only 94.12%
were actually very positive. Of all the tweets 21% were classified correctly. This
is the overall accuracy of the sentiment analysis. It is calculated as the number of
correctly classified tweets divided by the total number of tweets. Equation 4.6 shows
the calculation of the accuracy for these results, as shown in table 4.1.

PercentageAccuracy = 27 + 0 + 63 + 0 + 16
497 ∗ 100 = 21 (4.6)

3The following symbols in this table have the meaning: VN - Very Negative, N - Negative, NU
- Neutral, P- Positive, VP- Very Positive
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4.3 Deep Learning
The techniques described in chapter 3 on Deep Learning were implemented in a
neural network in order to Perform sentiment analysis. A neural network was created
capable of taking tweets and determining the sentiment of the tweet, based on the
language used in the tweet. The potential outputs of the neural network were
very negative, negative, neutral, positive or very positive. This code used to create
this neural network was written in Matlab and tutorials from the Stanford UFLDL
tutorial[19] were used as a framework for this implementation.

4.3.1 Text Processing
For this implementation the text, i.e. the tweets were processed using a bag-of-words
model as described in section 2.1.2. This model then created all the features that
were input into the network. Using this method a dictionary of all the tweets, in
the training and the testing was created along with the frequency that each word
occurs in all the training and testing data. Figure 4.11 shows the first eight words
in the dictionary that was created for the Stanford twitter corpus[7]. These words
are words that were found to be most frequently used in the corpus, after the stop
words were removed from the dataset.4. From this dictionary the features of each
tweet are determined as the words in the tweet that are also in the dictionary.

Figure 4.11: Dictionary for Stanford Corpus Tweets[7]

For this project, a dictionary of 90,000 words was created. This means that each
tweet could have a potential of 90,0000 features. The reason such as large dictionary
was chosen was that, there are very few words in tweets. This means that there is
high probability that for small dictionary a tweet may contain none of the words
in the dictionary. If this is the case then this tweet has no features being input
into the classify. This makes tweets very hard to classify. By choosing a large sized
dictionary and creating the dictionary using the training and testing data, the model
was given the best probability for having features for every tweet. Although even
with this dictionary, there were cases of tweets where no word other than stop words
were found.

4Figure A.3 in the Appendix shows the stop words that were used for this project.
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In order to normalise the text in the tweets the number of words per tweet was
first determined. Stop words were removed from the tweets along with URls, which
were determined as words containing the prefix "HTTP:". All the words were case
folded before being entered into the dictionary. Usernames symbols @ and hashtag
symbols # were removed from the tweet, however the text following these symbols
was maintained. The following text often contained many words concentrated into a
single word such as "perfectday" as oppose to "perfect day". Due to the difficulty with
word segmentation in the English language this following text was maintained as it
was. Misspellings were retained in the dictionary, due to the difficulty determining
the intended word. As described in section 2.2.5 the emoticons were removed from
the dataset meaning that the model was not trained using emoticons, and would
negate their meaning in the testing data. Figure 4.12 illustrates some of the code
used for text processing. This code checks if the input word is a stop word, URL, is
completely blank and removes all symbols from the text.

Figure 4.12: Code for Text Normalisation

4.3.2 Architecture

Figure 4.13 shows the neural network that was designed for this project in order
to perform sentiment analysis. The network consists of four layers, the input layer,
two hidden layers, and an output layer. The input layer consists of all features
that are input for each sample. The first hidden layer and second hidden layers are
autoencoders. The activation of the first hidden layer is controlled by the sparsity
parameter. This is then used to create values for an autoencoder, in hidden layer
2. Features are created in this layer that are then optimised using backpropagation.
This second hidden layer then feeds into the output layer which performs softmax
regression to find the probability of each output. Using this probability from softmax
regression the output is determined. The output can be very negative, negative,
neutral, positive and very positive.

4.3.3 Input Layer

The input layer to the neural network is made up of all the features that are input
into the network for each tweet. Each of the features for this neural network were
processed using the bag-of-words model. Table 2.1 in section 2.1.2 shows an example
of the features that were created from tweets one to ten. Each of these features is
then an input into the neural network.
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Figure 4.13: Neural Network for Sentiment Analysis

4.3.4 Hidden Layers
The first and second hidden layers create the sparse autoencoder that is used to
create the features input into softmax regression. Figure 4.14 shows the parameters
used by the autoencoder. The sparsity parameter, p̂j, lambda, λ, and beta, β, are
all parameters that are used to determine the cost function. Equation 4.7 shows the
cost function with the weight decay and sparsity implemented.

J(W, b) = [ 1
m

m∑
i=1

(1
2 ||hW,b(x)− y||2)] + λ

2

nt−1∑
l=1

st∑
i=1

st+1∑
j=1

(W l
ji)2 + β

s2∑
j=1

KL(p||p̂j) (4.7)

This function is optimised using gradient descent or Newtons Method, as described
in section 3.1.2. Optimisation was implemented in this project using the minFun
library[23]. This is a library that implements the L-BFGS optimisation algorithm,
which is the Limited-memory BFGS optimisation algorithm. Similar to Newtons
Method this method uses the inverse of the hessian matrix in order to find minimise
the cost function. The difference between the L-BFGS algorithm and Newtons
method is that, the L-BFGS algorithm is a quasi-newton method where the hessian
is not computed at every iteration as it considered too expensive.
Figure 4.15 shows the code used in this project to optimise the parameters used in
the sparse autoencoder. There are a maximum of 400 iterations of the function to
check for convergence and the function is using the L-BFGS optimisation algorithm.
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Figure 4.14: Parameters for the Deep Learning Project

Each of the parameters used as inputs into the sparse autoencoder are from the
parameters defined in figure 4.14.

Figure 4.15: Implementation of the minFunc Library to Perform Optimisation on
the Sparse Autoencoder

4.3.5 Output Layer
As mentioned earlier softmax regression is used to determine the output of the neural
net. In order to perform softmax regression the features that were created in the
sparse autoencoder first need to be extracted from the second hidden layer of the
neural network. This is computed by calculating the activation of the hidden layer
of the autoencoder. The activation of the hidden layer is the features that need to
be output.
Once the features output from the sparse autoencoder are found softmax regression
can be performed on these features. Softmax regression like the sparse autoencoder
is also optimised by minimising the cost function. The cost function for softmax
regression is shown in equation 3.36, in section 3.4.4 on softmax regression.5 This
cost function was also optimised using the L-BFGS algorithm, from the minFunc
Library[23]. Figure 4.16 shows the code used to optimise the softmax regression
algorithm.

4.3.6 Testing
Once the softmax regression model has been created and optimised it can be used
to predict the sentiment of tweets given the features of the tweets. Figure 4.17
shows the calculation of the prediction for the output using softmax regression. The
parameter theta is found from the softmax regression model that was optimised.

5This cost function was created in this project using the code shown in figure 3.28 in section 3.4.4
on softmax regression.
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Figure 4.16: Implementation of the minFunc Library to perform Optimisation on
the Softmax Regression Algorithm

This parameters is then used to find M, the matrix of the input parameters. This
matrix divided by its sum gives the probability of each output. This is shown in
equation 3.35 in section 3.4.4 on softmax regression. The maximum probability for
each testing data is then the prediction of the model.

Figure 4.17: Implementation of the Softmax Regression Model to find a Prediction
of the Output for all of the Testing Data

4.3.7 Results
Table 4.26 shows the results of the confusion matrix for the testing data for this
method of sentiment analysis. The top of the table represents the predicted senti-
ment of the input tweet from the testing data and the left of the table represents the
actual sentiment of the input tweet. The first column of the table shows the number
of tweets of each sentiment in the testing data. There are 177 very negative tweets,
139 neutral tweets, 181 very positive tweets and zero negative or positive tweets. Of
the 177 very negative tweets 102 tweet were correctly classified, 57.63% accuracy.
The remaining 75 tweets were classified as very positive. Of the 139 neutral tweets
zero tweets were classified correctly, 0% accuracy. 80 were classified as being very
negative and 59 were classified as very positive. Of the 181 very positive tweets,
95 were classified correctly, 52.49% accuracy. The remaining 86 tweets were classi-
fied as very negative. Of all the tweets that were identified as being very negative
38.06% were actually very negative. Of all the tweets that were classified as very
positive only 41.48% were actually very positive. Of all the tweets 40% were classi-
fied correctly. This is the overall accuracy of the sentiment analysis. It is calculated
as the number of correctly classified tweets divided by the total number of tweets.
Equation 4.8 shows the calculation of the accuracy for these results, as shown in
table 4.2.

6The following symbols in this table have the meaning: VN - Very Negative, N - Negative, NU
- Neutral, P- Positive, VP- Very Positive
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Actual Class
VN N NU P VP

Total Population 497 177 0 139 0 181

Predicted Class

VN 102 0 80 0 86 38.06%
N 0 0 0 0 0 0%
NU 0 0 0 0 0 0%
P 0 0 0 0 0 0%
VP 75 0 59 0 95 41.48%

57.63% 0% 0% 0% 52.49% 40%

Table 4.2: Confusion Matrix for Deep Learning Implementation

PercentageAccuracy = 102 + 0 + 0 + 0 + 95
497 ∗ 100 = 40 (4.8)
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5.1 Result Discussion
For the purpose of classifying tweets, the neural network that was trained on tweets
for this project performed better than the Stanford model. This shows the advantage
of training the classifier on the kind of text that it will be classifying. However
this may also illustrate some parts of the model that are open to interpretation.
Sentiment is a subjective property and thus can be defined differently by alternative
models. In this case the labels very negative and very positive are quite subjective.
The Stanford model[25] rarely defines sentiments as very positive or very negative.
However the dataset used in this experience defines all tweets with positive emoticons
very positive and all tweets with negative tweets as very negative. This definition
has a huge effect on the overall performance of the model. From the confusion
matrix from the Stanford model it is clear that many tweets that were labelled as
very negative were classified by the Stanford model as negative. The same is true
for the tweets that were labelled as very positive. The neural network on the other
hand, only classifies tweets as very positive or very negative as these were the only
labels in the training data. While this improves the accuracy of the model for this
dataset, it is clear that the model is not very accurately classifying the tweets. For
very negative, neutral and very positive tweets almost half of the tweets are split in
all cases between very negative and very positive classes. The model also seems to
favour classifying tweets as very negative.
Table 5.2 and 5.11 show the confusion matrix from the neural network implementa-
tion and the Stanford method for only three classes, positive, negative and neutral.
In order to create these tables all the very negative labels were counted as negative

1The following symbols in this table have the meaning: N - Negative, NU - Neutral, P- Positive

Actual Class
N NU P

Total Population 497 177 139 181

Predicted Class
N 126 68 60 49.61%
NU 35 63 49 42.86%
P 16 8 72 75%

71.19% 45.32% 39.78% 53%

Table 5.1: Confusion Matrix for Stanford NLP Sentiment Analysis
Implementation[25] for Three Classes
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Actual Class
N NU P

Total Population 497 177 139 181

Predicted Class
N 102 80 86 38.06%
NU 0 0 0 0%
P 75 59 95 41.48%

57.63% 0% 52.49% 40%

Table 5.2: Confusion Matrix for Deep Learning Implementation for Three Classes

and all the very positive labels were counted as positive. The result of the neural
network does not change as the only outputs were very negative or very positive.
The Stanford model however improves its accuracy greatly, from 21% to 53%. This
illustrates the effect of the ambiguous very negative and very positive labels.
Therefore, understanding the tweet in a hierarchical structure in which the meaning
of a sentence is maintained improves the ability to classify it. In general, however,
both the Stanford model and the neural network model are reasonably ineffective at
classifying tweets, even when the labels are reduced to less ambiguous labels. The
ability to perform sentiment analysis on a tweet is still not dependable. Determining
public opinion using twitter is not perfected to a point where it could be relied upon.

5.2 Future Work

5.2.1 Dataset
Increase the size of the dataset by including tweets taken from the Twitter API.
These tweets could be hand labelled. The advantage of including these tweets could
be that if the tweets contain emoticons they could be maintained in the dataset,
which would allow the model to trained to account for the presence of emoticons.
Another dataset that has been labelled using other methods could also be used.
Currently there are few other labelled dataset available, however this is likely to
change in the future.

5.2.2 Text Processing
There are many additional methods that could be applied to this project in order
to improve the performance of the neural network created. Words that have spaces
in them were not considered in this model, such as "San Francisco". By creating a
corpus of words with spaces a comparison could be made against the input word
and this corpus. This would ensure that words with spaces could be characterised
correctly in the dictionary created for this model.
A corpus of words with the same word form such as "I’m" and "I am" could be created
so that words were either recognised as stop words, as in this case, or entered into
the dictionary as a single input. On social media, users can intentionally miss
spell words that have the same word form as other words for emphasis. A corpus
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containing commonly intentionally miss spelt words on social media would negate
this problem.
Due to the fact that all words were case folded certain words were categorised as be-
ing the same, while they in fact had different word forms, for example "US" (United
States) as appose to "us". By treating words with capitalised letters differently
depending on their location in the sentence, the accuracy of the model could be im-
proved. Words with capitalised letters in the middle of a sentence would be entered
as they are, without case folding. This would retain the meaning of abbreviations
and company names.
These changes require large data bases in order to contain all variations of words
that occur in the twitter dataset. This increases the computational time required in
order to create dictionaries, but would improve the accuracy of the model.

5.2.3 Further Assessment of the Model
In order to further assess the performance of this model it could be compared against
the naïve Bayes method for sentiment analysis. As this method is much simpler
to design than the Stanford implementation of Sentiment Analysis from Socher
et al.[25] it could be trained using the tweets in the same way that the model
implemented in this project was. For this reason the naïve Bayes model would be
a good model of comparison for this implementation despite the fact that it is not
the most state of the art model in this area.

75



5. Conclusion

76



Bibliography

[1] Bengio, S., Dean, T. and Ng, A. Machine Learning. Open Classroom, 2014.
http://openclassroom.stanford.edu

[2] Bengio, Y. Learning Deep Architectures for AI. Dept. IRO, Universite de Mon-
treal, C.P. 6128, Montreal, Qc, H3C 3J7, Canada, 2009. http://www.iro.
umontreal.ca/bengioy

[3] Bollen, J., Mao, H., and Zeng, X., Twitter mood predicts the stock market. J.
Comput. Science, 2(1):1–8, 2011.

[4] Bonthous, J., Twitrratr Archive. Twitrratr, 2010.

[5] Duggan, M., Ellison, N., Lampe, C., Lenhart, A., and Madden,
M., Demographics of Key Social Networking Platforms. Pew Re-
search Centre, 2014. http://www.pewinternet.org/2015/01/09/
demographics-of-key-social-networking-platforms-2/

[6] Ghiassi, M., Skinner, J., and Zimbra, D., Twitter brand sentiment analysis:
A hybrid system using n-gram analysis and dynamic artificial neural network.
Oklahoma State University, 2014.

[7] Go, A., Bhayani, R., and Huang L., Sentiment140. Stanford, 2009. http://
help.sentiment140.com/for-students/

[8] Go, A., Bhayani, R., and Huang, L., Twitter Sentiment Classification using Dis-
tant Supervision. Stanford University, 2009. http://cs.stanford.edu/people/
alecmgo/papers/TwitterDistantSupervision09.pdf

[9] Haykin, S., Neural Networks. A Comprehensive Foundation, Second Addition,
McMaster University, Hamilton, Ontario, Canada pages 173–178, 1999.

[10] Hernandez, D. Meet the Man Google Hired to Make AI a Reality. Wired, 2014.
http://www.wired.com/2014/01/geoffrey-hinton-deep-learning/

[11] Hinton G. E., Movies of the neural network generating and recognizing digits.
Basic papers on deep learning, 2006. http://www.cs.toronto.edu/~hinton/

[12] Jurafsky D., Naïve Bayes and Text Classification. CS 124: From Languages to
Information, Stanford, 2015.

77

http://openclassroom.stanford.edu
http://www.iro.umontreal.ca/bengioy
http://www.iro.umontreal.ca/bengioy
http://www.pewinternet.org/2015/01/09/demographics-of-key-social-networking-platforms-2/
http://www.pewinternet.org/2015/01/09/demographics-of-key-social-networking-platforms-2/
http://help.sentiment140.com/for-students/
http://help.sentiment140.com/for-students/
http://cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf
http://cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf
http://www.wired.com/2014/01/geoffrey-hinton-deep-learning/
http://www.cs.toronto.edu/~hinton/


Bibliography

[13] Jurafsky, D., and Manning C., Video Lectures. Natural Language Process-
ing, Coursera, Stanford, 2015. https://class.coursera.org/nlp/lecture/
preview

[14] Klein, D., and Manning, C., Accurate Unlexicalized Parsing. Computer Science
Department, Stanford, 2003.

[15] Klein, D., and Manning, C., Stanford CoreNLP version 3.5.2.. The Stanford
Natural Language Processing Group., Stanford, 2015.

[16] Mitchell, A., and Hitlin, P., Twitter Reaction to Events
Often at Odds with Overall Public Opinion. Pew Research
Center, 2013. http://www.pewresearch.org/2013/03/04/
twitter-reaction-to-events-often-at-odds-with-overall-public-opinion/

[17] Munro, R., Why is sentiment analysis hard?. Digital Marketing,
Natural Language Processing, IDIBON, 2013. http://idibon.com/
why-is-sentiment-analysis-hard/

[18] Nadkarni, P., Ohno-Machado, L., and Chapman, W., Natural language process-
ing: an introduction. Journal of the American Medical Informatics Association,
NCBI, 2011. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168328/

[19] Ng, A., Ngiam, J., Foo, C., Mai, Y., Suen, C., UFLDL Tutorial, Unsupervised
Feature Learning and Deep Learning, Stanford, 2013. http://ufldl.stanford.
edu/wiki/

[20] Nielsen, .M Neural Networks and Deep Learning. Free online book, 2014. http:
//neuralnetworksanddeeplearning.com/

[21] Pang, B., Lee, L., and Vaithyanathan, S., Thumbs up? Sentiment classification
using machine learning techniques. Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 79–86, 2002.

[22] Ríos, M., The geography of Tweets. Twitter, 2009. https://blog.twitter.
com/2013/the-geography-of-tweets

[23] Schmidt, M., minFunc Library. Unconstrained differentiable multivariate Op-
timisation in Matlab, 2005. http://www.cs.ubc.ca/~schmidtm/Software/
minFunc.html

[24] Shure, L. Analysing Twitter with Matlab. Matlab Central
Blogs, 2014. http://blogs.mathworks.com/loren/2014/06/04/
analyzing-twitter-with-matlab/

[25] Socher, R., Perelygin, A., Wu.J, Chuang, J., Manning, C., Ng, A., and Potts, C.,
Recursive Deep Models for Semantic Compositionality Over a Sentiment Tree-
bank. Stanford, 2014. http://nlp.stanford.edu/~socherr

78

https://class.coursera.org/nlp/lecture/preview
https://class.coursera.org/nlp/lecture/preview
http://www.pewresearch.org/2013/03/04/twitter-reaction-to-events-often-at-odds-with-overall-public-opinion/
http://www.pewresearch.org/2013/03/04/twitter-reaction-to-events-often-at-odds-with-overall-public-opinion/
http://idibon.com/why-is-sentiment-analysis-hard/
http://idibon.com/why-is-sentiment-analysis-hard/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168328/
http://ufldl.stanford.edu/wiki/
http://ufldl.stanford.edu/wiki/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://blog.twitter.com/2013/the-geography-of-tweets
https://blog.twitter.com/2013/the-geography-of-tweets
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://blogs.mathworks.com/loren/2014/06/04/analyzing-twitter-with-matlab/
http://blogs.mathworks.com/loren/2014/06/04/analyzing-twitter-with-matlab/
http://nlp.stanford.edu/~socherr


Bibliography

[26] Socher, R., Pennington, J., Huang, E., Ng, A., Manning, C., Semi-
Supervised Recursive Autoencoders for Predicting Sentiment Distributions. Com-
puter Science Department, Stanford University, 2011. http://www.socher.org/
uploads/Main/SocherPenningtonHuangNgManning_EMNLP2011.pdf

[27] Srivastava, T., How to avoid Over-fitting using Regularization?. Learn Every-
thing About Analytics, Analytics Vidhya. http://www.analyticsvidhya.com/
blog/2015/02/avoid-over-fitting-regularization/

[28] Tumasjan, A., Sprenger, T., Sandner, P., and Welpe, I., Predicting Elections
with Twitter: What 140 Characters Reveal about Political Sentiment . Technische
Universität München, 2010.

[29] Vryniotis, V., Tuning the learning rate in Gradient Descent. Machine Learn-
ing Blog and Software Development News, DatumBox. http://blog.datumbox.
com/tuning-the-learning-rate-in-gradient-descent/

[30] Yu, S. and Kakn, S. A Survey of Prediction Using Social Media. Oklahoma
State University, 2014.

[31] Blogger "Rocapal" Polynomial Regression. Rocapal or Lapacor, Blog. http:
//blog.rocapal.org/?page_id=2

[32] Gradient Descent in Linear Regression. Questions, Stack
Overflow. http://stackoverflow.com/questions/21064030/
gradient-descent-in-linear-regression

[33] Naive Bayes Classifier. Statisitcs Textbook, DELL Software.

[34] Penn Treebank II tag set. Penn Treebank, Computational Linguistics
and Psycholinguistics Research Centre. http://www.clips.ua.ac.be/pages/
mbsp-tags

[35] The Search API. Developers, Documentation, REST APIs, Twitter, Inc. 2015.
https://dev.twitter.com/rest/public/search

[36] Twitter Usage Statistics. Internet Live Statistics, 2013.

79

http://www.socher.org/uploads/Main/SocherPenningtonHuangNgManning_EMNLP2011.pdf
http://www.socher.org/uploads/Main/SocherPenningtonHuangNgManning_EMNLP2011.pdf
http://www.analyticsvidhya.com/blog/2015/02/avoid-over-fitting-regularization/
http://www.analyticsvidhya.com/blog/2015/02/avoid-over-fitting-regularization/
http://blog.datumbox.com/tuning-the-learning-rate-in-gradient-descent/
http://blog.datumbox.com/tuning-the-learning-rate-in-gradient-descent/
http://blog.rocapal.org/?page_id=2
http://blog.rocapal.org/?page_id=2
http://stackoverflow.com/questions/21064030/gradient-descent-in-linear-regression
http://stackoverflow.com/questions/21064030/gradient-descent-in-linear-regression
http://www.clips.ua.ac.be/pages/mbsp-tags
http://www.clips.ua.ac.be/pages/mbsp-tags
https://dev.twitter.com/rest/public/search


Bibliography

80



A
Appendix 1

I



A. Appendix 1

Table A.1: Queries used to create dataset[8]
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Label ID Date and Time Topic User Tweet
4 3 Mon May 11 2009 kindle2 tpryan @stellargirl I

loooooooovvvvvveee
my Kindle2. Not
that the DX is
cool, but the 2 is
fantastic in its own
right.

4 4 Mon May 11 2009 kindle2 vcu451 Reading my kin-
dle2... Love it...
Lee childs is good
read.

4 5 Mon May 11 2009 kindle2 chadfu Ok, first assesment
of the #kindle2 ...it
fucking rocks!!!

4 6 Mon May 11 2009 kindle2 SIX15 @kenburbary
You’ll love your
Kindle2. I’ve had
mine for a few
months and never
looked back. The
new big one is
huge! No need for
remorse! :)

4 7 Mon May 11 2009 kindle2 yamarama @mikefish Fair
enough. But i have
the Kindle2 and I
think it’s perfect :)

4 8 Mon May 11 2009 kindle2 GeorgeVHulme @richardebaker no.
it is too big. I’m
quite happy with
the Kindle2.

0 9 Mon May 11 2009 aig Seth937 Fuck this economy.
I hate aig and their
non loan given
asses.

4 10 Mon May 11 2009 jquery dcostalis Jquery is my new
best friend.

4 11 Mon May 11 2009 twitter PJ King Loves twitter
4 12 Mon May 11 2009 obama mandanicole how can you not

love Obama? he
makes jokes about
himself.

Table A.2: 10 tweets taken for testing corpus for Stanford twitter corpus [7]
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Stop Words
a ever might them
able every most then
about for must there
across from my these
after get neither they
all got no this
almost had nor tis
also has not to
am have of too
amoung he off twas
an her often us
and hers on wants
any him only was
are his or we
as how other were
at however our what
be i own when
because if rather where
been in said which
but into say while
by is says who
can it she whom
cannot its should will
could just since with
dear least so would
did let some yet
do like than you
does likely that your
either may the
else me their

Table A.3: Stop words used during text processing
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Table A.4: Part of Speech Tags for Penn Treebank [34]

Table A.5: Chunk Tags, groups of words that belong together, for Penn Treebank
[34]
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Table A.6: Relation Tags, groups of chunks that belong together, for Penn Tree-
bank [34]

Table A.7: Anchor Tags, propositional noun phrases attached together, for Penn
Treebank [34]
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