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“The purpose of computing is insight, not numbers.”

Richard Hamming
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This study examined the possible use of non-standard floating point types for scientific

computing. The question of this thesis is: “Is there anything to be gained by supporting

non-standard floating point data types?”.

There are several gaps in the literature that this thesis will aim to address. There could

exist potential in the use of non-standard floating point types. This thesis investigates

in particular the non-standard floating point type of 48-bit size. As long as there is no

need for the full precision of floating point standard size of 64, the 48-bit non-standard

type requires less memory, reduces the amount of data movement and might be faster

than the standard size of 64-bit.

The initial findings showed that the non-standard (f48-bit) without the use of Streaming

SIMD (Single Instruction Multiple Data) Extensions (SSE) is slower than using the

standard 64 bit floating point. However, using SSE intrinsics the non-standard 48-bit

floating point is competitive with the standard 64-bit. The results shown are good for

a floating-point type that is not supported in hardware.
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Chapter 1

Introduction

This research explores the idea of using a non-standard floating point type in scientific

computing. This dissertation presents a design for such a non-standard floating point

type, along with the conversions to the standard 64-bit type (double). The dissertation

also provides implementation of selected basic linear algebra subroutines (BLAS). The

functions selected provide an answer to the efficiency question. Additionally, using a

non-standard type of floating point reduces the memory bandwidth and could possibly

have a diversity of applications.

1.1 Motivation

One of the motivations for this project was to find if there is the possibility of defining

and emulating the use of non-standard floating point types on current existing hardware.

Another interesting motivation point for this research was to discover if newly defined

non-standard floating point types can be competitive with current standard ones, in

terms of computation time and performance. This brings us to the main research ques-

tion outlined below.

The concept of the Internet of Things is becoming ever more widespread. We see con-

ventional objects combined with electronics and embedded systems to make our lives

easier in many ways. With such a boom in this area, the need for embedded system

1



Chapter 1. Introduction 2

has risen. Embedded systems are the core motivation towards the use of non-standard

floating point types, in order to save on memory usage with trade-off being precision.

Floating point types have in general a diversity of applications. The motivation for using

a non-standard type of floating point relies on the memory savings achieved by using

smaller non-standard floating point types. A scenario where 32-bit representation does

not provide the accuracy required, but the 64-bit representation is an overkill in terms of

the memory usage leads to a big-data problem. The use of non-standard floating point

types could offer a solution to this problem.

From another perspective, the use of multiple cores convey cheap computation. However,

the bottleneck is caused by data movement which is expensive. Memory bandwidth plays

a huge role in the performance of such computations. The use of non-standard floating

point types that suffice the accuracy of the intended system would require less memory

bandwidth. Saving memory bandwidth has implications in the energy efficiency of the

system. Less memory bandwidth required — less the energy consumption.

Saving memory, energy, and data movement are very important factors in a wide range

of domains where the extra precision and accuracy of the results is required.

1.2 Research Question

According to the motivation and small introduction of this project, its aim focuses on

the exploration of non-standard floating point types and their usage. The research

conducted aims to answer the following question:

Is there anything to be gained by supporting non-standard floating point

data types?

Having this question in mind and as long as there is no need for the full precision of the

standard double (F64) type, then the non-standard might be faster, require less memory

and reduce the amount of data movement.
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1.3 Thesis Outline

This report presents the research that has been conducted towards the final answer to the

research question. The report is structured in six chapters including this Introduction

(Chapter 1).

Chapter 2 presents a solid state of the art research being done towards gathering infor-

mation as part of the background or related work to the scope of this research.

Chapter 3 presents the design of the new non-standard type along with the structure

that is going to be used in computation using this newly defined type.

Chapter 4 goes into the details of the implementation, from the conversions required to

each function selected from the different levels of the Basic Linear Algebra Subroutines.

Chapter 5 consolidates the experiments. It goes into the details required for setting up

the environment to run the experiments. A description of the results and their evaluation

is provided in chapter 5.

Finally, Chapter 6 presents the conclusions drawn from the investigations and results

gathered and answers the initial research question along with some future work mentions.



Chapter 2

State of the Art

This chapter consolidates the background of this dissertation research project. It also

gives an overview of the existing related work that has been explored towards achieving

the aim of the dissertation.

2.1 Background

As part of the background research towards achieving a concise response to the research

question (in Chapter 1), I have investigated the formal specifications of the floating point

types. These are defined in the IEEE-754 standard [1] and have been widely adopted

since its first version back in the 1980s. A later version of the IEEE-754 [1] defines the

structure of two floating point types: 32-bit and 64-bit. Both of these floating point

types are of main interest of my work in this dissertation. The standard specifies the

number representations and the structure: sign, exponent and mantissa location in terms

of bit placement and their interpretation.

IEEE-754 [1] also defines five different rounding modes. These rounding modes are:

a) To nearest, ties to even

b) To nearest, ties away from zero

c) Toward 0

4
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d) Toward +∞

e) Toward −∞

The most commonly used rounding method is (a) To nearest, ties to even. I have

decided to use this mode in the work presented in this dissertation. Revy in chapter 1

of his thesis (Implementation of binary floating-point arithmetic on embedded integer

processors) [2] outlines and further explains the structure of floating point types based

on the standard IEEE-754 [1]. Revy, also explains the implementation of the rounding

methods in Chapter 2 of his thesis [2]. This has been the main sustain point of the

rounding mode implementation in my dissertation.

Operations with floating point types require the use of a floating point unit (FPU). One

or more FPUs may be integrated with the central processing unit (CPU). The usage of

the FPUs can vary as exemplified by Deschamps et al. in ‘Floating Point Unit’ [3]. This

shows the possible usage of the FPU for different situations and different type of data

other than the standard floating point types.

In order to examine the performance of a newly defined floating point type this dis-

sertation addresses the most common functions of the basic linear algebra subroutines.

These functions defined for Fortan use by Lawson et al. [4] and extended by Hammarlin

et al. [5] along with the addition of level 3 by Dongarra et al. [6] represent a solid baseline

of functions that can be used to test the performance of the non-standard floating point

type. BLAS is defined on three levels:

a) vector functions — dot product,

b) matrix-vector functions — matrix-vector multiplication, and

c) matrix-matrix functions — matrix-matrix multiplication.

These three different levels offer analysis of the performance of the non-standard type

compared to the standard type across a variety of functions and different levels of com-

plexity of the computations performed.



Chapter 2. State of the Art 6

In order to gain and analyse performance for both of the types (standard and non-

standard) a solution comes by adopting and implementing the BLAS functions with the

use of Intel’s streaming SIMD (single instruction multiple data) extensions (SSE) [7].

The SSE intrinsics provide access to a large set of Intel instructions without the need

to write assembly code. These functions offer the ability to perform the same single

computation (operation) on multiple data lanes. Along with the knowledge of the latest

version of SSE (SSEv4), the Intel intrinsics guide [8] allowed the search for specific

functions and their description and usage.

2.2 Related work

The related work section of this project is quite slim. There is a gap in the literature of

this particular topic.

Telemetry standard RCC document [9] appendix O shows a range of different floating

point representations including the IEEE-754 [1]. However, interesting definitions that

are related to the interest of this research are the military standard (MIL STD) 1750A

and the Texas instruments (TI) which both define interesting non-standard floating point

types.

The Texas instruments defines a 40-bit extended precision floating point type. Its struc-

ture is defined as 8 bits for the exponent, followed by the sign bit (one bit) followed by

32bits representing the fraction. This structure is related to TI’s structure of a 32-bit

floating point which is represented and structured in similar fashion, except it is using

only 23 bits for the mantissa.

A more interesting definition in the Telemetry standard RCC document [9] is the MIL

STD 1750A. This standard was initially introduced in 1980 with the aim towards air-

borne computers. It provides the formal definition of a 16-bit computer instruction

set architecture including both required and optional components. Within the optional

components the structure of the two types of floating point is defined.

MIL STD 1750A defined a 32-bit single precision floating point type and a 48-bit double

precision floating point type. It defines the 32-bit single precision floating point type
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as 1 bit for the sign, 23 bits for the fraction followed by the remaining 8 bits for the

exponent.

The design approach for a MIL STD 1750A microprocessor( [10]) explores in more

detail the structure of the double precision floating point type of the MIL STD 1750A.

Its structure is very similar to the single precision floating point type. It requires the

extra 16 bits of fraction to be padded after the exponent, with the mention that the

most significant fraction is the one following the sign.

With the acceptance of the IEEE754 initially in 1985 and it’s more recent version from

2008, the MIL STD and the TI definition of floating point types are not as common in

the industry.

A more interesting and more recent analysis of using a half precision float (16-bits) type

is presented in Intel’s article ‘Performance Benefits of Half Precision Floats’ [11]. Patrick

Konsor, defines the F16 as a storing type and the focus is on improving the locality and

data transfer. The trade-off between using the typical 32-bit floating point type and

the half precision float defined is the precision and range against half the storage and

memory bandwidth. This article is addressing alignment issues and performance of the

half floats defined.



Chapter 3

Design

For the purpose of analysing the question of efficiency, a new non-standard floating

point type is chosen. The non-standard floating point picked as representative for non-

standard floating point types is on 48-bits (F48).

This chapter will put emphasis on the structure of the newly defined floating point type

on 48-bits (F48) in comparison with the standard double (F64). It will also focus on

the computation structure that is required for the mathematical functions defined in the

Basic Linear Algebra Subroutines (BLAS).

3.1 F48 structure

The aim of this section is to describe in detail the structure design of the newly created

floating point type on 48-bits (F48). Along with the structure description this section

is aimed to discuss the differences in precision, range and memory use that arise from

comparing the standard double (F64) type against the defined non-standard F48.

The structure of the typical double (F64) specified in IEEE-754(2008) [1] is as shown in

the Figure 3.1 below. The structure is defined as one single bit for the sign of the floating

point number value. The sign bit set (equal to one) representing negative number and the

sign bit equal to zero representing positive number value. The sign bit being followed by

11 bits representing the exponent, and the remaining 52 bits representing the mantissa.

8
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Figure 3.1: Bit structure of the standard double (F64).

This leads to the design decision of structuring the non-standard floating point type F48

in a similar manner. Its structure is defined as a single bit for the sign of the number

value, 11 bits for the exponent and the remaining 36 bits in this case for the mantissa.

The structure described is shown in the Figure 3.2 below.

Figure 3.2: Bit structure of the non-standard F48.

The definition of double (F64) [1] shows a precision of ≈ 15.9 decimal digits. From

the design structure of the the non-standard F48 type its precision is of ≈ 10.8 decimal

digits.

The precision of both types can be computed using the formula m× log10 (2) where m

is the number of mantissa bits. With the difference of 16 bits from the mantissa, the

precision of F48 type is reduced by ≈ 5.1 compared to the double (F64) standard [1].

An obvious difference between the F64 (double) defined in the IEEE754 standard [1] and

the newly defined floating point type on 48-bits is the memory required. A difference of

16 bits that allows the store of four F48s in the same space required to store only three

F64s (doubles). In other words, in 192 bits required to store three F64s (doubles) could

be stored four F48s.
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3.2 Computation structure

As part of the design decisions regarding the structure and format of the chosen non-

standard floating-point type, computational structure is required. This section defines

the design decisions made towards the computation structure.

The research is inclined towards finding an answer to the efficiency question. This

requires a set of mathematical functions to be tested using the F48 type and compared

to the standard F64 (double) type. Computation for this is required such as addition,

multiplication, subtraction etc.

In a typical situation, the processor contains one or more floating point execution units

(FPU). The FPU execution units perform typical operations such as addition, subtrac-

tion, multiplication, division etc. These units are designed to be used with the standard

sizes defined in IEEE-754 [1]. Therefore the use of the FPU requires the input to be in

a supported format.

Floating point type on 48-bits (F48) is not supported by a standard FPU. However

operations as described above are required to be performed on F48. Therefore my design

solution involves the use of a standard FPU execution unit to perform the standard

operations using standard types.

Below, Figure 3.3 shows the designed flow of computation. This involves the need of

converters (to and from doubles - F64). Performing operations on floating point in

the FPU but using the non-standard F48 type defined, requires the conversion of the

operands to the standard type (double - F64) perform the operation using the FPU and

the resultant to be converted back to the same non-standard type (F48).

This flow of computation allows to support non-standard floating point types to be

emulated in software. The decision in using this computation flow, forces the library

that defines the F48 floating type to consist of conversion methods. The conversions

dictated by the computation flow are a) to double (F64); and b) to non-standard F48;
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Figure 3.3: Graphical representation of the flow of computation.

A small description on the requirements of each of the conversion can be found below.

Conversions required as enumerated above are described in details in Chapter 4 (Imple-

mentation). These requirements are derived from the designed computation structure.

a) To double (F64) - takes as input a single F48 type number and converts to a

standard double (F64) type.

b) To non-standard F48 - taking a single standard F64 (double) type and correctly

converting it to a non-standard F48.

The computation structure I picked for the non-standard F48 type makes use of the

existing standard F64 (double) unit. The reason for this choice is that computation is

cheap. However, data movement is expensive and this brings a strong reason for doing

the computation on the existing hardware.



Chapter 4

Implementation

This chapter describes a general approach to the implementation of the library. The

following section will extend towards the technical details of the conversions required,

and finally the last section of this chapter will focus on the implementation details of

the Basic Linear Algebra Subroutines (BLAS) that will be used in order to evaluate

the performance and provide an answer to the research question. The research question

stated in chapter 1 is:

Is there anything to be gained by supporting non-standard floating point

data types?

The language of choice for the implementation of the dissertation is C++. This allows

the definition of the new type as a class and allows the implementation of specific

operators that act on the new type.

4.1 Approach

The implementation has two main sections (Conversions and BLAS) which are described

in detail in the following sections of this chapter. The implementation approach is to

implement a) conversions described in Chapter 3 (Design); and b) a significant function

from each of the three levels of the BLAS. The conversions are implemented as part of

12
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the library defining the F48 type. These library functions are then used to implement

standard functions from BLAS. Functions of BLAS are implemented using both the

standard double (F64) and the newly defined F48 (defined in Chapter 3 - Design).

The newly defined F48 type is represented in the implementation as a class. The F48

class contains a single private attribute of type unsigned long long on 48 bits. The class

forces the use of only 48 bits as shown in Listing 4.1 by applying the GNU compiler

collection (GCC) specific attribute packed to the class.

1 c l a s s f48 {

pr i va t e :

3 unsigned long long num: 4 8 ;

pub l i c :

5 f 48 ( ) { } ;

f 48 ( double va lue ) ;

7 operator double ( ) ;

} a t t r i b u t e ( ( packed ) ) ;

Listing 4.1: F48 type class definition

The approach in implementing the functions of BLAS is to implement at least one

representative function from each of the three levels using the Intel’s Streaming SIMD

(single instruction multiple data) Extensions (SSE) [7].

Lomont’s Introduction to Intel advanced vector extensions(2011) [12] offers a more de-

tailed overview of both the legacy SSE4.2 (used in this project) and the new Advanced

Vector Extensions (AVX — which rely on the SSE versions). This offered assistance with

more advanced SSE intrinsics that are required for the implementation of the different

functions of the BLAS.

The non-SSE function implemented for initial/partial results is the representative func-

tion matrix-vector multiplication of level 2 in the BLAS. This function (matrix-vector

multiplication) showed that the non-SSE versions are slow even when using the standard

floating point type. Results of the non-SSE version of the F48 type and the F64 type

are present in chapter 5. Therefore, in order to keep the performance of the standard

type as high as possible I have decided that the focus of the project should change. This
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change means that the implementation and measurement of performance of the BLAS

functions in both of the types is done using the Intel’s SSE.

4.2 Conversions

This section of the implementation aims to explain in detail the conversions required and

implemented in this research. The conversions are a) to standard F64 - double (from

non-standard F48); and b) to the non-standard F48 (from the standard F64 - double).

These conversions are required for the flow of computation as described in subsection

’Computation structure’ of chapter 3 (Design). The computation is implemented using

the standard type (double - F64). Two types of conversions are required as described

in chapter 3, but also an SSE version of the conversion to non-standard F48 type is

required. The reason for this conversion in SSE being required is that the BLAS func-

tions implemented are using SSE. Keeping the SSE level of parallelism through the

computation flow is important from a performance point of view.

4.2.1 To standard F64 (double)

Figure 4.1: Graphical representation of the conversion of the non-standard F48 to
the standard F64 (double).

Conversion of F48 to the standard F64 (double) requires the missing two bytes to be

padded to the existing data. As shown in Figure 4.1 the existing six bytes (48-bits) of

the f48 require the addition of extra two bytes with the value of 0 to convey to the size

of 64-bits required for the standard double.

To achieve a correct conversion without using SSE, the 48 bits from the class defined

earlier in this chapter, have been shifted 16 times to the left. This offers the extra 16

non-set(0) bits. Reinterpreting the bits from an unsigned long long type to the double

type assures that the alignment (little endian) is correct. Listing 4.2 shows the union
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that allows the interpretation of an unsigned long long as double. The union is used for

the conversion without using SSE as shown in listing 4.3.

union conver s i on un ion {

2 unsigned long long l ;

double d ;

4 } convert ;

Listing 4.2: Union definition

f 48 : : operator double ( ) {

2 convert . l = ( th i s−>num)<<16;

re turn convert . d ;

4 }

Listing 4.3: Conversion from non-standard F48 to double

Conversion to double is mainly required for the ability to display the result on screen.

However, there is a need for an SSE implementation of the conversion. This is mainly

required for being able to load the F48 values as doubles in the m128 type defined

by SSE. Listing 4.4 shows the conversion being implemented in SSE at load time. The

snippet of code shown in the listing is hiding the use of the values, showing only the

load and conversion happening. The details of the use of the values will be detailed in

the following section of this chapter. The first two values of the array a are loaded in

the m128i vector. Then each element of the vector is being shuffled based on the mask

defined. The mask defines the extra two bytes to be set as 0 at the end of the F48 value.

This is represented by the appended 255 value at the end of the epi-8 mask. The other

numbers represent the counts of the bytes to be loaded from the original load.

f 48 ∗ a ;

2 m128i mask = mm set epi8 (11 , 10 , 9 , 8 , 7 , 6 , 255 , 255 ,

5 , 4 , 3 , 2 , 1 , 0 , 255 , 255) ;

4 f o r ( i n t i = 0 ; i < SIZE ; i+=2 ) {

m128i a01 = mm loadu si128 ( ( m128i ∗ ) (&a [ i ] ) ) ;

6 a01 = mm shu f f l e ep i 8 ( a01 , mask ) ;

/∗ . . . ∗/

8 }
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Listing 4.4: Conversion from non-standard F48 to double using SSE

4.2.2 To non-standard F48

Converting the standard F64 (double) to the non-standard F48 requires correct rounding

as truncation of the extra 16 bits is not enough. Removing the extra 16 bits erases data

therefore removing precision. To calibrate the result to the correct value requires the

implementation of a rounding method. The default rounding mode in C++ and other

programming languages such as C, Python etc. . . is round to nearest, where ties round

to the nearest even. This mode of rounding is by far the most common mode, therefore

I have selected it as the method of rounding for this conversion.

IEEE-754 [1] defines rounding to nearest, where ties round to the nearest even. This

method does the expected for most of the values. For example rounding 1.132 down to

to digits yields 1.13 and rounding 1.159 yields 1.16. However, rounding values that are

exactly at halfway are rounded to the nearest even digit. For example 0.125 rounded

down to two digits rounds to 0.12 similarly when rounding 0.675 down to two digits

rounds up to 0.68.

This rounding method is also described by Revy in chapter 2, section two of his thesis

(Implementation of binary floating-point arithmetic on embedded integer processors) [2].

Rounding to nearest, where ties round to even is a method that relies on three bits.

Guard (g) bit, Sticky (s) bit and the second-last bit of the final result (m).

The Guard (g) bit is the last bit of the value after truncation (elimination of the extra

16 bits in our case). The Sticky (s) bit is the logical or of the bits removed in the

truncation process. The second-last bit of the final result (m), can be seen as the bit

before g. Revy [2] defines the rounding procedure by an addition of the rounding bit

(b) to the truncated value. Bit b is defined based on the mode of rounding. For the

chosen method (to nearest, ties to even), rounding bit (b) is defined in Revy’s thesis [2]
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as follows:

b =


0 if g = 0;

1 if g = 1 and s = 1;

m if g = 1 and s = 0.

The extraction of the sticky bit, guard bit, and the bit before the guard bit have been

implemented as shown in listing 4.5. The listing also shows the computation of the

rounding bit (b) [2] (which is dependant on the bits g, m and s) on line 7. The rounding

bit is then used to be added to the truncated result. Overflow of the mantissa would

increase the exponent by the structure of the newly defined type, therefore the conversion

is being performed correctly. The final result is the correct approximation of the original

standard value expressed in double type.

f 48 : : f 48 ( double value ) {

2 convert . d = value ;

unsigned long long tmp = convert . l ;

4 bool S = (tmp & 65535)>0 ? 1 : 0 ; // s t i c k y b i t

bool G = (tmp >> 16) & 1 ; // guard b i t

6 bool M = (tmp >> 17) & 1 ; // b i t be f o r e guard b i t

bool b = G & (M | S) ; // rounding b i t

8 /∗ . . . ∗/

}

Listing 4.5: Conversion from standard F64(double) to non-standard F48

The above conversion is not using SSE and conversions using SSE are required for the

computation flow to stay as using SSE. The version using SSE has to apply the same

rounding method to two values (items) at a time. Extraction of the Sticky bit (s) is done

by using a mask with all the bits set corresponding to the bits being removed from the

standard double type. Figure 4.2 shows the m128 variable used as a mask to extract

the Sticky bit. Firstly the mask is used to extract the bits that are being removed by

applying logical and between the mask and the original double value. This results in

clearing all the other bits before the bits to be removed, and keeping the original 16

bits to be removed. However, adding (arithmetic add) this temporary extraction to the

same mask would result in an overflow at the position of G if any of the bits in S is set,

creating a logical or of them. As Revy [2] has defined the Sticky bit (s) to be the logical
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or of all the bits being removed, this addition computes this logical or by addition and

inspecting the overflow.

Figure 4.2: SSE mask required for the extraction of the sticky bit (s)

The extraction of the guard bit (g) is done in a simpler fashion. Logical ‘and‘ between

the existing value and the mask shown in Figure 4.3 would result with the value of the

guard bit (g) at the same position as original. This leads to the extraction of the bit

before the guard bit (m). For this a similar mask is required to mask out all the other

bits, by having a single bit set as 1 in position of the bit before G.

Figure 4.4 shows the mask required for the extraction of m. This mask is used by

applying logical ‘and‘ between itself and the original value. The result of the operation

is the m bit to the left of the guard bit. Having the sticky bit in position of the guard

bit, forces a single logical shift to the right of the m bit for it to be in line with the other

extracted bits. Logically shifting the m bit to the right once, aligns the extracted bits

for the operations required to compute the rounding bit (b).

Figure 4.3: SSE mask required for the extraction of the guard bit (g)

Figure 4.4: SSE mask required for the extraction of the bit before the guard bit (m)

In order to compute the rounding bit (b), a series of operations are required. All the

operations are possible as the bits are aligned in the same bit position. The bit position
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chosen is the position of the guard bit. Firstly, apply logic or between the extracted m

and the extracted s. This results in the m or s value. This value is then logically anded

with the guard bit (g) extracted earlier using its mask. The result of this logical and is

the value of the rounding bit (b). The operations described for the computation of the

rounding bit (b) do not affect the positioning of the bit, therefore the resultant bit b is

in the same position as the original guard bit. The guard bit (g) being the last bit of

the final result, then the arithmetic addition between the initial value and the resultant

bit b is possible. This final addition results in a correct rounded value for both items of

the m128 vector.

Listing 4.6 shows the function described above. The fixed values for each of the masks are

derived from the re-interpretation(conversion) of the hexadecimal representation shown

in the figures of the masks to their corresponding double type value. The function ap-

plies round to nearest, ties to even rounding mode for both of the times in the m128

vector, keeping the same level of parallelism as the SSE intrinsics.

1 m128i conve r t doub l e to f 48 SSE ( m128i a ) {

m128i mask = mm set epi8 (15 ,14 ,13 ,12 ,11 ,10 ,255 , 255 ,

3 7 , 6 , 5 , 4 , 3 , 2 , 255 , 255) ;

// prepar ing f i n a l r e s u l t

5 m128i unrounded resu l t = mm shu f f l e ep i8 ( a , mask ) ;

7 // ex t r a c t i n g s t i c ky b i t S

m128d s mask = mm set pd (3.23785921002060922726114358406E

−319 ,3.23785921002060922726114358406E−319) ;

9 m128i s = mm and si128 (a , ( m128i ) s mask ) ;

s = ( m128i ) mm add pd ( ( m128d ) s , ( m128d ) s mask ) ;

11

// ex t r a c t i n g b i t be f o r e guard M

13 m128d m mask = mm set pd (6.47581723317038670383112248188E

−319 ,6.47581723317038670383112248188E−319) ;

m128i m = mm and si128 (a , ( m128i )m mask) ;

15 m128d s h i f t c o un t = mm set1 pd ( 1 . 0 ) ;

m = mm sr l ep i64 (m, ( m128i ) s h i f t c o un t ) ;

17

// ex t r a c t i n g the guard b i t G
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19 m128d g mask = mm set pd (3.23790861658519335191556124094E

−319 ,3.23790861658519335191556124094E−319) ;

m128i g = mm and si128 (a , ( m128i ) g mask ) ;

21

// computing M| S

23 m128i m or s = mm or si128 ( s ,m) ;

// computing B

25 m128i b = mm and si128 (g , m or s ) ;

// apply rounding b i t by add i t i on

27 m128d r e s u l t = mm add pd ( ( m128d ) unrounded resu l t , ( m128d )b) ;

// adding f i n a l padding

29 m128i permute mask = mm set epi8 (15 , 14 , 13 , 12 , 11 , 10 , 255 , 255 ,

7 , 6 , 5 , 4 , 3 , 2 , 255 , 255) ;

31 re turn ( m128i ) mm shu f f l e ep i8 ( ( m128i ) r e su l t , permute mask ) ;

}

Listing 4.6: Conversion from standard F64(double) to non-standard F48 using SSE

The above mentioned conversions, both using and not using SSE intrinsics, are being

used in the implementation of the representative functions from each level of the BLAS.

Both of the different versions of conversions are required for keeping the computation

flow as designed and detailed in chapter 3 (Design) section 2.
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4.3 Basic Linear Algebra Subroutines

This section will describe in detail the implementation that has been done for each of the

selected functions from the levels of the BLAS. The original BLAS [4] along with all the

extensions and updates (level 3 addition [6], extensions [5] and sparse extensions [13])

addresses the functionality for each of the levels in BLAS. Each level can be categorised

by the type of operations it addressees. Level 1 can be described as addressing scalar

and vector(array) operations. Level 2 considers operations on matrix(2D-array) and

vector(array). Level 3 addresses matrix-matrix(2D-arrays) functions.

BLAS functions have been chosen in order to evaluate the performance of the non-

standard type defined (F48) against the standard double (F64) type. Testing the dif-

ferent level functions allows to answer the efficiency question of the research. BLAS

functions offers concrete and complex functions in terms of the operations performed.

The representative functions that have been implemented from each of the BLAS levels

are enumerated below. Each of the functions have been implemented using both F48

and the standard double types.

• Level 1: Dot product, Magnitude, Scale, Absolute maximum, Absolute minimum

(vector functions)

• Level 2: Matrix-Vector multiplication

• Level 3: Matrix-Matrix multiplication

The implementation of all the representative functions enumerated above is described

in details in the following subsections of this section. A subsection is dedicated to the

details of the implementation of the F48 loop-unroll which is used in a couple of functions

in level 1 and level 2. The loop-unroll is required to minimise the data being written

back to memory after the computation. This technique is used where a vector(array) of

the newly defined F48 type is required to be stored back to memory.
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4.3.1 Loop un-roll

The loop un-roll technique refers to unrolling a loop when using the non-standard F48

type for specific functions in the BLAS library that require the store back to the memory

of a vector(array) with elements of the non-standard type. Figure 4.5 below, shows the

typical store of two F48 elements from the SSE vector represented on top in the figure,

to the memory. The figure describes the overwrite of the two byte padding for each F48

item stored. In the case of storing to the initial array, this would also alter the next

values that have not yet been used. To eliminate this side-effect a solution is required as

extracting the bits that will be overwritten, saving them and after the overwrite write

the bits back to the memory. Another solution to this issue is to extract the bits that

will be overwritten and or them with the padding, causing the padding to contain the

original data. This approach would still require two data transfers from memory. One

for getting the required data and another one to write it back.

Figure 4.5: Graphical representation of storing to memory an SSE vector with F48
elements.

To counteract these issues, the loop-unroll technique uses eight F48 values and structures

them as shown in Figure 4.6 (byte representation of the three SSE vectors required to

store eight F48 values). This allows the write to memory to be smoother as the items

are aligned to the actual memory address space eliminating the side effects caused by

overwriting. This is achieved by permuting values across the SSE vector items boundary,

and allowing the cross of values across two items. As it can be seen in the figure below,

the two byes of the F48 value ‘b‘ are on the first item of the first SSE vector, and the

other four bytes in the second item of the SSE vector. Similarly, the values are spread

between two SSE vectors as the ‘c‘ value which is split between the last item of the first

SSE vector (4 bytes) and the first item of the second SSE vector (remaining 2 bytes).
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Figure 4.6: Graphical representation of the structure of items when using the loop-
unrolling technique.

Loop unroll technique offers the possibility to the BLAS function implementations to

make less data movement when storing F48 values to the memory in a vector(array).

4.3.2 Level 1

All the functions selected for this level, have been implemented using Intel’s SSE intrin-

sics [7].

Starting with the dot product function. This function takes as input two vectors(arrays),

computes and returns a single value of the initial type. The formula below describes the

operation of the dot product.

a · b =
n∑

i=0

ai × bi

By letting A and B to be defined as:

A =



a0

a1
...

an


, B =



b0

b1
...

bn



Then the dot product formula expands to the following:

A ·B = a0 × b0 + a1 × b1 + . . . + an × bn

The central approach to this function is the same using both types (standard F64 and

non-standard F48). In achieving this operation using SSE, a running sum that is initially
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0 is required. Each iteration of the loop requires the load of two items from both of the

arrays(A and B) in two SSE vectors (for example: in one SSE vector at first time around

the loop a0 and a1 would be loaded, similarly b0 and b1 would be loaded in the other

vector). Applying a multiplication operation between the loaded SSE vectors, results in

two item multiplied (computing a0× b0 and a1× b1 for example). This temporary result

has to be added to the running sum (initially 0 + a0 × b0 and 0 + a1 × b1 following the

example). Saving this running sum and adding each multiplication result to it would

result in an SSE vector that would contain the first item as: (0+a0× b0 +a2× b2 + . . .+

an−1× bn−1, and the second item as: 0 +a1× b1 +a3× b3 + . . .+an× bn). Final result is

then obtained by horizontally adding the items in the running sum vector. This implies

the swap of the values between them and addition. The final result being the addition

of the first value containing the odd indexed items and the second value of the vector

containing the even indexed items.

In addition to the above described approach for computing the dot product using SSE,

when implementing this function on the non-standard type there is a need to convert

the input at load time as described in the conversions section of this chapter. Having

the values converted from the non-standard F48 to the standard double type, the com-

putation described above can be executed, and the final result can be stored to memory

after it’s conversion back to F48 is completed.

Another function implemented from BLAS level 1 is the magnitude of a vector(array).

This function requires a single vector(array) as input, and produces a single value of the

same type as output. The formula for computing the magnitude of an array is:

|A| =

√√√√ n∑
i=0

(ai)
2

Similar to the dot product, the implementation of the magnitude function is the same

for both types (standard and non-standard), as the computation required is processed

in the same mode. A running sum is required for this case as well as in the dot product

described above. Having the running sum starting initially at 0, and continuously adding

the squared values of the odd indexed items of the array into the left item of the SSE
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vector, and the squared values of the even indexed values into the right item of the SSE

vector. The running sum after execution of the loop around each element of the initial

array, should contain the first item as: 0+a0
2 +a2

2 + . . .+an−1
2 and the second item as

0+a1
2 +a3

2 + . . .+an
2. Similar to the dot product, a final horizontal add is required to

obtain the final value of the running sum (adding the odd indexed and the even indexed

square values together). The running sum is then: 0 + a0
2 + a1

2 + a2
2 + . . . + an

2.

In order to get the final value of the magnitude, square root is applied to the final sum

resulting in the final result of the function (obtaining
√
a02 + a12 + . . . + an2). As the

dot product, the function implemented to work on the non-standard type, requires the

conversion of the values to the standard (doubles) before doing any computation, but

also requires the conversion from the final double (F64) result to the non-standard (F48)

type.

The scale function requires a vector(array) and a scalar as parameters. The result of the

function is a vector(array) of the same size as the input, but with each of the elements

multiplied (scaled) by the scalar parameter. This operation can be seen as follows.

Let: A =



a0

a1
...

an


and the scalar S

The result of the scale function would be the following vector(array).

S ×A =



a0 × S

a1 × S

...

an × S



The implementation of this function for the standard type is a straight-forward multi-

plication of each two loaded elements of the array in the SSE vector, by the preloaded

scalar. Then storing the new values back into the memory at the address of the initial

loaded items. However, the non-standard F48 implementation of this function makes
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use of the loop-unroll technique. This requires the load of eight items of the array at

each loop iteration. Converting each of the item to the standard double type at load

time, and computing the multiplication for each in turn. Then each of the 4 SSE vectors

(4 vectors containing 2 items each) are converted back to the non-standard f48 type by

applying the rounding method described in the Conversions section of this chapter. Hav-

ing the 8 elements in 4 SSE vectors and storing straight to the memory, will overwrite

16 bytes. For each item stored back two bytes will be written twice. For this reason, the

loop-unroll technique described in section 4.3.1 of this chapter. Applying this technique

removes the overwrite, and compacts the 4 SSE vectors into using only 3 SSE vectors

to store the same amount of data (24 bytes - 8 F48 values).

Two functions named absolute maximum and absolute minimum have been imple-

mented using both the standard type F64 (double) and the newly defined non-standard

F48 type. These functions are similar in their structure. The only difference between the

absolute maximum and the absolute minimum being the comparison (greater/less) that

is being performed on the items. Both of the functions have a vector(array) as input, and

one single value is returned as result. The implementation of these functions using SSE

requires an initial load of the first two elements of the array. These are to be considered

as the maximum / minimum respectively. At every iteration of the loop (loop starting

from the third element and incrementing by two items at a time) the next two elements

are loaded and the comparison is done between the initial assumed maximum/minimum.

By using the SSE intrinsic ‘ mm max pd‘/‘ mm min pd‘ the maximum/minimum is se-

lected for both of the items in the SSE vector. At the end of the loop, a final comparison

is required to detect the final maximum/minimum. Similar to the final horizontal add

implemented for the magnitude and dot product, swapping the two values of the SSE

vector, and applying the comparison would result in the final result that requires to be

returned by the function (or saved back to the memory). As before, the implementation

of the F48 version of this function requires the conversion of each loaded value to double,

and the final result to be converted back to the non-standard F48 type.
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4.3.3 Level 2

The representative function chosen for the second level of BLAS is the matrix-vector

multiplication. In general this multiplication is defined as taking a matrix and a

vector(array) input and resulting a vector return.

Let matrix A =



a0,0 a0,1 · · · a0,n

a1,0 a1,1 · · · a1,n
...

...
. . .

...

am,0 am,1 · · · am,n


and the vector B =



b0

b1
...

bn



A×B =



(a0,0 × b0) + (a0,1 × b1) + . . . + (a0,n × bn)

(a1,0 × b0) + (a1,1 × b1) + . . . + (a1,n × bn)

...

(am,0 × b0) + (am,1 × b1) + . . . + (am,n × bn)


For the implementation of this function, I have experimented with different approach.

The first approach considered was without using SSE. This has been a naive implemen-

tation of the function, computing a running sum for each of the rows in matrix A. The

running sum comprised of computing the multiplication between each of the elements

and adding to the existing running sum (which was initially set to 0). Finally, once a

row of the matrix has been evaluated store the final running sum to the index of the

vector(array) corresponding to the row of the matrix.

Two other implementations approaches have been considered, both of which are making

use of the SSE intrinsics. The first version, is an SSE version of the above described

approach. This involves the load of two values from a row of the matrix at each iteration.

Also at each iteration to corresponding two values from the vector(array) are loaded.

Loading these values into two separate SSE vectors allows the multiplication to be

performed. As an example, loading a0,0, a0,1 into one SSE vector and b0, b1 in another

SSE vector, then in turn computing a0,0×b0, a0,1×b1. Computing a running sum of these

values and at the end of traversing a row of the matrix using the technique described

in the level 1 functions of horizontal add by swapping the values to compute the final
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sum for that row. Storing this value as being the first computed value of the result, and

repeating the process for each of the rows of the matrix. The size of the vector resultant

is the same as the ‘m‘ size of the input matrix. The F48 implementation is similar to

the described approach in this version with the addition of the conversions from F48

to double at load time. Computation happening in the standard double type. Before

storing the values back to the memory, each of the double type sums are converted in

turn back to F48.

The second approach, applies a similar approach as the first version described above.

Version two makes use of loading four items from the matrix and two from the vector,

improving locality and also computing four partial results at a time. Using the notations

above for example. This approach loads the following items from the matrix: a0,0, a0,1

(the same as the first approach), and a1,0, a1,1 (from the second row of the matrix). These

values are loaded in SSE vectors similarly to the first approach. The values loaded from

the vector are the same as in the first approach b0, b1. Using these values, this approach

can compute the following: a0,0 × b0, a0,1 × b1 (the same as the first approach) but also

a1,0 × b0, a1,1 × b1. The procedure of computing the running sum and finally the sum

that is the final result for the respective row is the same as in version one. However,

in this version there are two different running sums (one for each of the rows loaded

initially). Once both of the final sums are computed, this approach makes use of the

permutation abilities provided by SSE intrinsics and merges the two final results into

one SSE vector. This allows the store of the SSE vector into memory, storing the two

final results in one store operation.

The above version two describes the approach implemented for the double type use of the

function. However, the non-standard F48 type use of the function exploits the loop unroll

technique defined in section 4.3.1 of this chapter. As explained in detail in section 4.3.1,

loop unroll technique requires eight elements to work with. For this, version two of the

implementation using the non-standard F48 type eight pairs of elements are loaded from

the matrix (for example from the first eight rows of the matrix load the first two values).

However, from the vector there is no other required values to be loaded other than the

ones loaded in the version two working on the standard F64 (double) type. This means

that only two values are loaded from the vector and used in conjunction with all the
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eight values loaded from the matrix. The computation is similar to the version two for

use on the standard types. The main difference being that in this case, there are eight

running sums being computed, therefore at each completed run across the rows of the

matrix there are eight final results computed. These results are then being converted

back to the non-standard F48 type, aligned according to the loop unroll technique and

stored in the final vector result.

4.3.4 Level 3

Level 3 of the BLAS provides details of functions that operate on matrices. The repre-

sentative function selected for this level is the matrix-matrix multiplication. Matrix-

Matrix multiplication requires two matrices as input and produces another matrix as

the result. This function has been implemented in two ways. Firstly without using the

Intel’s SSE intrinsics and the second version makes use of the SSE vectors and intrinsics.

Figure 4.7: Graphical representation of the computation of an item in the result of a
matrix-matrix multiplication.

Both non-standard (F48) and standard F64 (double) types of implementation are naive

implementations of the function, without making use of any locality improvement.

Therefore both SSE implementations (F48 type and the standard double type) are based

on the same principle. The implementation creates a running sum (similar to the ones

used in the implementation of matrix-vector multiplication - level 2) for each element

of the result matrix. Each running sum is stored in a temporary result matrix at the

position where the final sum has to be placed in the final matrix. At each pass the

multiplication of the items is computed and added to the corresponding running sum

(initially 0).
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A final pass is required to finalise the addition of the running sums. This applies the

same approach as the horizontal addition described in the level two, and passes through

all the saved SSE vectors as partial sums for the elements where the values have been

computed. Once the final addition is done, the resultant value is converted to F48 (if

required) and stored back to memory accordingly.
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Experiments and Evaluation

In order to be able to answer the thesis question, I have conducted a number of exper-

iments. These experiments mainly consist in evaluating the time required to compute

the implemented BLAS functions using both types (the standard F64 double and the

non-standard F48). A setup was required for the experiments which is described in

details in the section below. This allowed to time accurately the run of the functions on

different vector/matrix sizes. This chapter focuses on the setup that allows the running

of experiments and also with the analysis of the results and interpretation of the timings.

All the experiments described in this section have been run on the Intel Core i5-3450

processor (ivy bridge architecture). The processor has a base frequency of 3.1GHz with

the maximum Turbo frequency reaching 3.5GHz.

5.1 Experiment setup

The experiments that are to be ran, in order to investigate towards the answer to

the question of performance when using the non-standard F48 type compared to the

standard F64 (double) type, require a precise setup. The setup that has been put in

place is based on Paoloni’s publication on How to benchmark code execution times

(2010) [14].

31
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As the BLAS functions implemented are considered as being small programs (subrou-

tines) that would not take a long time to execute, then the measurement of time required

for the computation needs to be a lot more accurate and precise. In order to obtain most

stable results the processor has to be locked to it’s base frequency (3.1GHz) by disabling

turbo and also the Dynamic Voltage and Frequency Scaling (DVFS). All the processes

that are running on the machine have to be killed including the graphical interfaces so

that the processor is clear to use a core dedicated to the running of the benchmarks.

Having this setup in place, in order to run the benchmarks and record the timings

of each of the functions, I have made use of the Intel’s Read Time-Stamp Counter

and Processor ID IA assembly instruction RDTSC [15] to get the time-stamp of the

processor before the function (that has to be timed) call and getting the same RDTSC

time-stamp at the end of the execution of the function. This allows the computation of

the time needed for execution of the function in the number of cycles by subtracting the

timestamps. Listing 5.1 shows RDTSC usage for the calculation of the timings for each

of the function.

For further investigation that was pursued in order to find a correlation between the

slow-down of some functions, the Intel Performance Counter Monitor (PCM) tool [16]

has been used to gather information about the number of instructions executed per

cycle, number of cache hits etc.

#inc lude <c l o c k s . h>

2 u in t 64 t s ta r t , stop , d i f f ;

f o r ( i n t i = 1 ; i < runs+1; i++) {

4 s t a r t = c l o ck s ( ) ;

benchmark (a , b) ;

6 stop = c l o ck s ( ) ;

d i f f = stop − s t a r t ;

8 }

Listing 5.1: RDTSC usage example
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5.2 Experiment results and analysis

Each of the functions described in Chapter 4 (implementation) a series of tests have

been run in order to measure the number of cycles that it takes to execute. Each of the

tests has been run 100 times to be able to get a more stable result and confirm that the

result is stable enough to be considered.

In the following subsections, all the results of the tests grouped by the level of BLAS

are analysed and interpreted.

5.2.1 BLAS level 1

The functions implemented in this level of BLAS are a) dot product, b) magnitude,

c) scale, and d) absolute maximum/minimum.

The most representative function for this level is the ‘dot product’. Looking at fig-

ure 5.1 can be seen that the timings over 100 runs are stable and provide an accurate

measurement of the number of cycles required for each of the readings. For each size of

the input vector histograms have been generated across all the functions implemented

in BLAS level 1.

Figure 5.1: Histogram of the dot product timings for size 1024.

Having stabilised the results, then the mean of the number of cycles out of 100 runs can

be used to be compared against the corresponding value on the standard type.
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Figure 5.2: Comparison between the non-standard F48 and the standard F64 types
across different sizes of the vector in computing the dot-product of a vector.

The figure 5.2 above shows a clear comparison between the number of cycles required

to compute the dot product using the standard double-F64 type (blue line) against the

non-standard F48 type (orange line). This figure is based upon table 5.1. In the table,

a speed-up row is present, calculating the time observed for F64 divided by the time

observed for F48. The closer this speed-up value is to 1, the closer the timings are

together. A lower than 1 value denotes a slow-down of F48 compared to F64. However,

a higher value than 1 represents an actuall speed-up from the F64. In this figure ( 5.2)

the lower the line the faster the computation is. Clearly can be observed that the F48

is performing slightly slower than the standard F64 (double) in the case of dot product.

Vector size
128 256 512 1024 2048 4096

F64 (double) 293.2 576.4444 956.6869 1696.8 3257.96 6607.03

F48 631 756.404 1209.818 2082.1 4058.242 7923.529

Speed-up 0.464659 0.762085 0.790769 0.814946 0.802801 0.833849

Table 5.1: Dot product timing results and speed-up

Similarly, the stabilisation of the processor usage has been done for all the testings,

therefore the following test results will not include the histogram of spread of the timing
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over 100 runs, as the results are stable and the mean can be used to interpret as the

average number of clock cycles required.

Figure 5.3: Comparison between the non-standard F48 and the standard F64 types
across different sizes of the vector in computing the magnitude of a vector.

Another BLAS level 1 function that has been implemented for testing the F48 type

performance against F64 (double) type is the ‘magnitude’. Figure 5.3 shows a compar-

ison between the F64 (double) type timing and the non-standard F48 type timing. The

lower values are faster, however the F48 (orange line) is very close to the standard (blue

line). Table 5.2 shows the actual results of the timings and the speed-up row discussed

previously. The speed-up value is seen in figure 5.3 as it is closer to 1, and the lines in

the figure are very close.

Vector size
128 256 512 1024 2048 4096

F64 (double) 380.08 572.88 954.44 1683.88 3217.4 6303.2

F48 478.16 711.96 1102.44 1830.02 3453.6 6683.2

Speed-up 0.79488 0.804652 0.865752 0.920143 0.931608 0.943141

Table 5.2: Magnitude timing results and speed-up

Similarly the analysis of the timings for the ‘scale’ function of BLAS level 1 has been

conducted. Table 5.3 shows the results of the timings along with the speed-up value (as
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Figure 5.4: Comparison between the non-standard F48 and the standard F64 types
across different sizes of the vector in computing the scale of a vector.

described above). The difference between the F48 performance and the F64 (double)

as can be seen in figure 5.4. This requires further investigation that is described in this

section below.

Vector size
128 256 512 1024 2048 4096

F64 (double) 293.2 428.4 684.76 1247.8 2272.1 4389

F48 631 1035.44 1832.76 3537.8 6843.55 13521.8

Speed-up 0.464659 0.413737 0.373622 0.352705 0.332006 0.324587

Table 5.3: Scale timing results and speed-up

The timings for the ‘absolute maximum’ and ‘absolute minimum’ on both the

types (standard F64 - double and non-standard F48) are shown in table 5.4. Based on

this results table, figure 5.5 has been created. The comparison between the absolute

maximum on F64 type (blue line) and the absolute maximum on the non-standard F48

type (orange line) shows that the F48 performs slower. Similar in computing the absolute

minimum the F48 type (yellow line) performs slower than the standard F64 type (grey

line).
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Figure 5.5: Comparison between the non-standard F48 and the standard F64 types
across different sizes of the vector in computing the absolute maximum and minimum

of a vector.

Figure 5.6: Graphical representation of the number of instructions performed in both
F64 and F48 when computing the scale function.
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Figure 5.7: Graphical representation of the hit ratio of level 2 and 3 cache in both
F64 and F48 when computing the scale function.

I have pursued Further investigation in order to examine a relationship between the slow-

ness of the scaling function on the F48 type in relation with total number of instructions,

level 2 cache hit ratio and level 3 cache hit ratio.

Figure 5.6 shows the total number of instructions executed on both (F64 and F48 types)

when computing the scale function. The total number of instructions is derived from the

instructions per cycle multiplied by the average cycle. The instructions per cycle(IPC) is

observed using the Intel’s PCM tool [16]. There is a correlation between the number of

instructions executed by the F48 type and it’s slowdown shown in figure 5.4. However,

the level 2 and level 3 cache hit ratio shown figure 5.7 do not provide enough support

in reasoning the cause of the slow-down of the scale function.

5.2.2 BLAS level 2

The function I have considered representative for BLAS level 2 is matrix-vector mul-

tiplication. Initially the tests I have ran on this function were using implementations

without SSE, and the results were as shown in figure 5.8. Inspecting the number of
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cycles required to perform the matrix-vector multiplication without the use of SSE, the

focus of the implementation has changed towards the full use of SSE therefore the two

different approaches both of which explained in details in Chapter 4.

Figure 5.8: Graphical representation of the timings of the matrix-vector multiplica-
tion function without the use of SSE intrisics.

As described in chapter 4(Implementation) there have been implemented two different

versions of the function using SSE. Table 5.5 shows timings of the run of the matrix-

vector multiplication. The matrix size is defined as x× x, where x is one of the sizes in

the table (for example: 128 size of the vector and the matrix size is: 128× 128).

Figure 5.9 shows the graphical representation of the results. Version 1 of the implemen-

tation is performing slower when used over the non-standard F48 type. However, when

looking at the version 2 implementations, F48 is comparative more performant than

the standard F64 type. For a better visualisation of the results, the number of cycles

counted for completion of the function has been divided by the total number of elements.

This is only reflected in figure 5.9. The actual cycles are shown in the table 5.5.
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Matrix/Vector size
128 256 512 1024 2048

F64 (double) - v1 27656 105864 408066 2164836 8354452
F48 - v1 35284 132122 497978 2054976 8539432
Speed-up 0.783811 0.801259 0.819446 1.05346 0.978338

F64 (double) - v2 16532 69794 265252 1827224 7633828
F48 - v2 (unrolled) 15624 62228 232936 1139860 6441200

Speed-up 1.058116 1.121585 1.138733 1.603025 1.185156

Table 5.5: Matrix-vector multiplication results on different matrix/vector sizes across
both implementations and types (F64 & F48)

Figure 5.9: Graphical representation of the timings of the matrix-vector multiplica-
tion function.

5.2.3 BLAS level 3

For BLAS level 3, I have selected the matrix-matrix multiplication function. Figure 5.10

shows a graphical representation of the timing results from table 5.6. The values plotted

on the graphical representation in the figure 5.10 are divided by the total number of

elements. This allows for a better graphical representation. The size of both the matrices

is defined as: x× x where x is one of the sizes in the table (for example on the column

size 128, both the matrices are of the size: 128× 128 with a total of 16384 elements in

the matrix).
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Matrix size
128 256 512 1024

F64 (double) 3639847.16 28283522.4 220551085 2086150393

F48 5068690.56 37562567 285406534.7 2301423409

Speed-up 0.718104038 0.75297097 0.772761161 0.906460925

Table 5.6: Matrix-matrix multiplication results on different matrix sizes across both
types (F64 & F48)

Interpreting the results, the F48 type (orange line) performs slower than the standard

F64 (double) type (blue line). This requires some further investigation by inspecting the

instructions per cycle (IPC) using Intel’s PCM tool [16] and deriving the total number

of instructions. Figure 5.11 shows the number of instructions of both types for each of

the sizes timed. This shows that there is a relationship between the slowdown of the F48

(in comparison with F64) and the number of instructions executed. However figure 5.12

correlates the slowdown of the F48 implementation of matrix-matrix multiplication to

the level 2 cache hit ratio. Level 2 hit ratio of the F48 (orange line in figure 5.12) is a

lot lower than the standard F64 (blue line in the same figure 5.12). The higher the line

in the figure, the better the hit ratio, meaning that more hits into the respective cache

are happening.

Figure 5.10: Graphical representation of the timings of the matrix-matrix multipli-
cation function.
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Figure 5.11: Graphical representation of the number of instructions on the matrix-
matrix multiplication function.

Figure 5.12: Graphical representation of the hit ratio of level 2 and 3 cache in both
F64 and F48 when computing matrix-matrix multiplication function.
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Conclusions

This chapter would present a general assessment of the experimentation results and a

general conclusion with respect to the initial research question presented in chapter 1

section 2.

6.1 Assessment

The assessment of the results shown in chapter 5 is based on the findings(timings) from

experimentation. The experiments conducted provide a solid comparison between the

standard F64 (double) type and the newly defined non-standard F48 type.

In the functions of BLAS level 1, the F48 type in terms of performance is ranging from 6%

to 70% slowdown compared to the standard F64 (double) type. From the experiments

using the functions implemented within this thesis, BLAS level 1 scale function shows

the slowest F48 at a vector size of 4096.

However, BLAS level 2 function, matrix-vector multiplication shows that different ap-

proaches to the implementation of the same function can be advantageous for one type

and not for the other. The two approaches implemented using both types (F64 and

F48) vary in results. The first version (v1) starting with a 30% slowdown compared to

the standard F64 on the matrix size of 128× 128 and vector size of 128. Increasing it’s

performance with size, getting to a matrix size of 2048 × 2048 and vector size of 2048

44
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to only have a slowdown of 3%. However, version 2 implementation starts with a 0.05%

speed-up and reaches 60% speedup on the matrix size of 1024× 1024 and vector size of

1024.

Inspecting the results of BLAS level 3, the non-standard F48 type is performing slower

(30% slower decreasing with size to 10% slow-down) when compared to the standard

F64 (double).

Overall there is a difference between the levels due to the read/writes proportions of

the functions in each level. For example the dot product is reading all the items and

produces a single value that requires to be written back. On the other side, the matrix-

vector multiplication and it’s two different implementation approaches (see chapter 4)

shows a difference where the number of reads is reduced and the number of writes is

the same, but the performance increases. This concludes that the implementation that

improves locality and reuse of that will perform faster using F48 type due to less memory

bandwidth and data movement.

6.2 General conclusion

The general conclusion of the use of non-standard floating point type (such as F48 used

in this research) is that F48’s performance is competitive with F64. A good result for a

floating point type that is not supported in hardware and it is only being emulated.

F48 type to be used comes with a trade-off between accuracy of the floating point

representation (≈5 decimal digits less), memory usage (16 bits less than the standard

double — 25% less memory usage) and performance (which is shown to be fluctuating

between speedup and slowdown - function and implementation dependant). In order

to use the F48 type one must consider the need of overhead in the implementation.

Therefore it’s usage requires attention to implementation details.

Finally, to answer the thesis question, the F48 type considered as the non-standard

floating point is competitive with the standard double (64-bit floating point) type given

it is not supported in hardware. Generally the performance of the non-standard type

could be considered of the same as the standard type.
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6.3 Future work

As the experiments have reflected some fluctuation in the consistency of the results,

further investigation in finding the reasons why the final results of F48 have been po-

tentially slower and what has been causing it. Further investigation in the BLAS level

1 functions should be considered.

For the level 2 and 3 of the BLAS, more experiments should be conducted with higher

matrix and vector sizes. This will allow the evaluation of current results and allow for

better performance predictions on different sizes.

An improved level 3 of the BLAS implementation (making use of the technique of locality

improvement and other implementation specific techniques) could be developed to make

a comparison similar to the level 2 versions implementations.
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