
University of Dublin

TRINITY COLLEGE

Bitslice Vector Computation

Student: John Lennon (10705273)

Master in Computer Science

CS7092: MCS Dissertation

Supervisor: Dr. David Gregg

Submitted to the University of Dublin, Trinity College

May 2015

DECLARATION

I, John Lennon, declare that the following dissertation, except where otherwise stated,

is entirely my own work; that it has not previously been submitted as an exercise for

a degree, either in Trinity College Dublin, or in any other University; and that the

library may lend or copy it or any part thereof on request.

Name Date

Abstract

This work explores an alternative way of representing arrays of numbers in com-

puters. A bitslice representation is considered. This approach takes advantage of

bitwise-level parallelism. In the past, bitslicing approaches have served to produce

more efficient cryptographic implementations, such as the Data Encryption Standard

(DES) symmetric-key algorithm. In general however, bitslicing is rarely seen outside

of the realm of cryptography. To help bridge the gap into more mainstream fields,

this dissertation focuses on the development of a bitslice arithmetic library. Functions

to add, subtract, and multiply bitslice values are built from the ground up, using

only bitwise operations. Conversion algorithms are developed to allow conversion from

standard arrays to bitslice arrays, and vice versa. Logical and arithmetic shifting rou-

tines are also developed. Support for signed bitslice numbers and fixed-point bitslice

numbers are added. Interesting properties arise from developing the library, such as

the inherent support for arbitrary-sized bitslice values (where computing 9-bit values

is no more complicated than computing 8-bit values). This work examines the prac-

tical challenges of developing such a library. It examines the performance of bitslice

computation compared to that of conventional approaches, by measuring and com-

paring relative clock cycles for each operation. It is found that in the case of 8-bit

values, bitslice computation performs faster than conventional computation when the

functionality is mapped from gate-level logic.

Dedicated to my father, John Edward Lennon,

who sadly passed away in 2010.

Acknowledgements

I would like to thank my supervisor, Dr. David Gregg, for offering me such an interesting

topic, and for all the help and guidance given throughout. I wish to thank the lecturing

staff of the School of Computer Science & Statistics for their high standard of teaching.

In particular, I would like to thank Dr. Arthur Hughes and Dr. Jonathan Dukes for

teaching me the fundamentals of programming in my Junior Freshman year, as well as

Course Director Mike Brady for his support throughout. I wish to thank my family and

friends for their support and encouragement. I wish to offer a special thanks to a fellow

student, Miles McGuire, for his encouragement throughout our degree. Thanks also

to Killian Devitt, for his support and hilarity. Finally, I wish to thank Sarah Gallagher

for her unending support throughout this journey.

Abbreviations

ALU Arithmetic Logic Unit

AND Logical Conjunction

BLAS Basic Linear Algebra Subprograms

CNN Convolutional Neural Network

DES Data Encryption Standard

NOT Logical Negation

OR Logical Disjunction

SIMD Single Instruction Multiple Data

SWAR SIMD Within A Register

XOR ExclusiveOR Operation

List of Figures

3.1 Bitslicing Explained . 7

3.2 Full-Adder Logic Gate . 9

3.3 Subtractor Logic Gate . 10

4.1 Addition (using 8-bit values) . 40

4.2 Multiple Environments . 40

4.3 Subtraction (using 8-bit values) . 41

4.4 Unsigned Multiplication (using 8-bit values) 42

4.5 Signed Multiplication (using 8-bit values) 43

4.6 Vector Scale (using 8-bit values) . 44

4.7 Dot Product (using 8-bit values) . 45

4.8 Addition Performance Over Multiple Sizes 46

4.9 Subtraction Performance Over Multiple Sizes 47

4.10 Unsigned Multiplication Performance Over Multiple Sizes 48

4.11 Signed Multiplication Performance Over Multiple Sizes 49

4.12 Vector Scale Performance Over Multiple Sizes 50

4.13 Dot Product Performance Over Multiple Sizes 51

Contents

1 Introduction 1

2 Literature Review 3

3 Methodology 6

3.1 Bitslicing Explained . 6

3.2 Bitslice Arithmetic Library . 8

3.2.1 Addition . 8

3.2.2 Subtraction . 10

3.2.3 Bit-Shifting . 11

3.2.4 Unsigned Multiplication . 15

3.2.5 Signed Multiplication . 19

3.3 Additional Functionality . 22

3.3.1 Fixed-Point Support . 22

3.3.2 Conversion Algorithms . 23

3.3.3 Horizontal Addition . 25

3.3.4 BLAS Routines . 26

3.4 Library Enhancements . 28

3.4.1 Generic Types . 28

3.4.2 Inline Functions . 29

3.4.3 Control Flow . 29

3.4.4 Compiler Optimisations . 30

3.4.5 Memory Leak Prevention . 31

3.4.6 Printing Bitslice Arrays . 32

4 Research Findings 34

4.1 Experimental Evaluation . 34

4.1.1 Time Stamp Counter . 34

4.1.2 Multiple Passes . 36

4.1.3 Multiple Environments . 37

4.1.4 Bitslice Structure Sizes . 37

4.1.5 Conventional Approach . 38

4.2 Results & Discussion . 39

5 Conclusions 52

Chapter 1

Introduction

This dissertation focuses on an alternative way of representing arrays of numbers in

computers. A bitslicing approach is considered, which takes advantage of bitwise-level

parallelism. The most appropriate way of explaining this alternative representation of

bits is by way of an example. Consider a sixty-four element array of 8-bit numbers.

Another way of representing this entire structure is by instead creating an eight element

array of 64-bit values, where the first element of the new array is used to store the

first bit of every number from the original array. The second element of the new

array is used to store the second bit of every number from the original array, and

so on. Effectively this new structure packs all of the i ’th bits together within each

of its elements. This representation will henceforth be referred to as a “bitslice” or

“bitsliced” array or structure. A more thorough explanation of the bitslice concept is

described in Section 3.1.

1

While bitslice approaches have been used in the past to develop more efficient

cryptographic implementations, such as the Data Encryption Standard (DES), bitslicing

is rarely seen outside of the realm of cryptography. There exists no native support for

bitslice values on modern computing architectures. Therefore, the primary task of this

dissertation is to develop a library of functions that can provide support for arithmetic

operations on bitsliced structures. Functions to add, subtract, and multiply bitslice

values will be developed, as well as functions to perform logical and arithmetic shifts on

bitslice “bits”. Support for signed and unsigned bitsliced values will be added. So too

will support for fixed-point bitslice values. Conversion algorithms will also be developed

to allow users to convert conventional arrays of numbers into bitslice structures, and

vice versa. In addition, BLAS (Basic Linear Algebra Subprograms) functions: vector

scale and dot product shall be implemented from a bitslice perspective.

C++ shall be the programming language of choice to develop this library, as it

provides sufficient support for bit-level manipulation. Before going any further, I shall

outline the structure of this dissertation. I first consider the background of bitslicing

and vector programming in my literature review in Chapter 2. Chapter 3 describes the

development of the library itself, as well as extra functionality and library enhancements

which were added once the core library was written. Chapter 4 covers the findings from

the research conducted, as well as a discussion of the measurement results. Finally, a

summary of the entire body of work shall be provided in Chapter 5.

2

Chapter 2

Literature Review

The term bitslicing or simply bitslice was first coined by Matthew Kwan after a paper

entitled A Fast New DES Implementation in Software was presented by Dr. Eli Biham

at the fourth international workshop of Fast Software Encryption (FSE4), in Haifa,

Israel in January 1997 [1]. The “fast new implementation” eluded to in Biham’s paper

is one which adopts a bitsliced approach to the implementation of the Data Encryption

Standard (DES) cryptographic symmetric-key algorithm [2]. In this, Biham treats the

processor as a SIMD computer (Single Instruction Multiple Data). What this allowed

Biham to achieve was that rather than having to encrypt many 64-bit words (the

natural unit of data within a computer), one after the other, he instead was able to

encrypt the first bit from every word simultaneously, before moving onto the second bit

from every word. This was achieved because of the nature of the bitslice representation

briefly explained in Chapter 1. It seems a rather novel approach, but it is one which

has roots in much older computing architectures.

3

One such architecture was the Cray CDC6600 from 1964. It is widely regarded

as the world’s first supercomputer. A supercomputer is one which happens to be the

world’s fastest at performing a certain task [3]. Typically, supercomputers have found

their usage in areas such as military research, weather forecasting and simulation,

scientific research, and industrial design. All of these areas involve large computations

on large data sets. During the 1970’s, a supercomputer took the form of a vector

machine. Vector machines, such as the Cray-1 from 1976, encode multiple operations

into single instructions by storing multiple values within a single register. Another word

for this approach is SWAR (SIMD Within A Register) [4].

The benefit of this approach is essentially increased throughput of operations.

While vector machines might seem antiquated in today’s world, their impact continues

to resonate. Referring back to Biham’s approach of encrypting a portion of all 64-bit

words simultaneously, we can draw a connection between the architectures of old, and

this new, seemingly novel, bitslice approach.

A similar concept to instruction-level parallelism is the notion of bitwise-level paral-

lelism, which is at the core of the bitslicing approach covered in this work. Ultimately,

it allows increased throughput, as is the case with SIMD approaches. Other than being

adopted in cryptographic endeavours [5], bitslicing is rarely seen outside of this realm.

One area where a bitslicing approach may prove useful in the future is in the area of

Convolutional Neural Networks (CNN) [6] [7].

4

In establishing an approach to the development of a bitslice arithmetic library, two

core research questions are posed:

1. What are the practical challenges associated with developing a bitslice arithmetic

library?

2. How does the performance of bitslice computation compare to that of conven-

tional computation?

In the chapters that follow, I hope to provide answers to these research questions.

5

Chapter 3

Methodology

This chapter describes the development of the bitslice arithmetic library. In Section

3.1, I explain the concept of bitslicing in depth. In Section 3.2, I describe all of the

functions that are contained within the bitslice arithmetic library. Section 3.3 describes

the additional functionality that was added once the core library was developed. Fur-

ther library enhancements are discussed in Section 3.4. Following on from the initial

description of bitslicing in Chapter 1, I shall now describe more thoroughly the concept

of a bitslice before moving onto the development of the library.

3.1 Bitslicing Explained

It may be helpful to expand upon the description of bitslicing from Chapter 1, with the

help of an illustration. Figure 3.1 depicts a standard array of sixteen uint8 t elements

6

stacked on top of one another (shown on the left). To the right of this array is another

array which happens to be the bitslice representation of the first array.

Figure 3.1: Bitslicing Explained

A bitslice value is read vertically in this case. Each vertical slice represents one

of the sixteen values contained in the original array. The least significant bits (LSB)

from all of the numbers from the standard array are positioned at the top of the

bitslice structure and the most significant bits (MSB) from all of the numbers from

the standard array are positioned at the bottom of the bitslice structure.

7

3.2 Bitslice Arithmetic Library

Following on from the bitslice structure described in Section 3.1, let us now consider

how we can perform arithmetic between two bitslice structures, where each corre-

sponding bitslice value is either added, subtracted, or multiplied. Because a bitslice

representation is so different compared to conventional representations, there was no

option to use standard arithmetic functions to help build the bitslice library. The use

of such standard functions would only yield garbage results. Instead, core functions

such as addition and subtraction needed to be built from the ground up, using only

bitwise operations (AND, OR, NOT, XOR). In the following sections, I shall outline

the development of addition, subtraction, and unsigned multiplication. Support for

signed multiplication takes the form of a sophisticated algorithm known as the modi-

fied Baugh-Wooley algorithm [8] and is covered in detail in Section 3.2.5.

3.2.1 Addition

The bitslice addition function accepts three bitslice structure parameters (two of which

act as operands whilst the third acts as a result container). Figure 3.2 shows the logic

gate for the full-adder. The functionality of the full-adder was mapped to the bitslice

addition routine. Rather than operate on just one number at a time, as is the case

with conventional approaches, the bitslice adder operates on a portion of all numbers

simultaneously. The resulting code is shown in Listing 3.1.

8

Figure 3.2: Full-Adder Logic Gate

t emp la t e <typename T>
i n l i n e vo i d b i t s l i c e a d d (T ∗ r e s t r i c t a , T ∗ r e s t r i c t b , T ∗

c , con s t i n t s i z e) {
T c a r r y = 0 ;
T xxo r = a [0] ˆ b [0] ;
T aand = a [0] & b [0] ;
c [0] = c a r r y ˆ xxo r ;
c a r r y = aand ;
f o r (i n t i = 1 ; i < s i z e ; i ++){

xxo r = a [i] ˆ b [i] ;
aand = a [i] & b [i] ;
c [i] = c a r r y ˆ xxo r ;
c a r r y = (c a r r y & xxo r) | aand ;

}
}

Listing 3.1: Bitslice Addition

9

3.2.2 Subtraction

A similar approach to that of bitslice addition from Section 3.2.1 was adopted for

subtraction, where the gate-level logic shown in Figure 3.3 was mapped into the bitslice

subtraction routine, producing the code shown in Listing 3.2.

Figure 3.3: Subtractor Logic Gate

t emp la t e <typename T>
i n l i n e vo i d b i t s l i c e s u b (T ∗ r e s t r i c t a , T ∗ r e s t r i c t b , T ∗

c , con s t i n t s i z e) {
T borrow = 0 ;
T xxo r = a [0] ˆ b [0] ;
c [0] = borrow ˆ xxo r ;
T aand1 = ˜a [0] & b [0] ;
T aand2 = borrow & ˜ xxo r ;
borrow = aand1 | aand2 ;
f o r (i n t i = 1 ; i < s i z e ; i ++){

xxo r = a [i] ˆ b [i] ;
c [i] = borrow ˆ xxo r ;
aand1 = ˜a [i] & b [i] ;
aand2 = borrow & ˜ xxo r ;
borrow = aand1 | aand2 ;

}
}

Listing 3.2: Bitslice Subtraction

10

3.2.3 Bit-Shifting

Bit shifting of bitslice numbers differs dramatically to that of conventional numbers.

Applying conventional bit shifting operations to any of the elements of a bitslice struc-

ture would yield garbage results. What is required is a shifting of the elements within a

bitslice structure, as opposed to the bits themselves. Three bitslice bit-shifting routines

were developed:

• Logical Left Shift

• Logical Right Shift

• Arithmetic Right Shift

11

Logical Left Shift

The following function shifts all the bitslice values (contained within a bitslice struc-

ture) left by “numPlaces” which is passed as an argument to the function. I have

included two versions of the function in the code snippet in Listing 3.3. This is a good

example of the computer science concept of space-time trade-off, where one imple-

mentation (of a particular function) contains more lines of code and executes faster

than another implementation (of the same function) that contains fewer lines of code.

t emp la t e <typename T>
i n l i n e vo i d b i t s l i c e s h i f t l e f t (T a [] , c on s t i n t s i z e , con s t i n t

numSh i f t s) {
i f (numSh i f t s > 0) {

i n t count = 0 ;
w h i l e (count < numSh i f t s) {

f o r (i n t i = s i z e −1; i >= 1 ; i −−){
a [i] = a [i −1] ;

}
a [0] = 0 ;
count++;

}
}

}
/∗ A l t e r n a t i v e (but s l o w e r) imp l ementa t i on ∗/
temp la t e <typename T>
i n l i n e vo i d b i t s l i c e s h i f t l e f t (T a [] , c on s t i n t s i z e , con s t i n t

numSh i f t s) {
memmove(a+1, a , s i z e o f (T) ∗(s i z e −1)) ;
a [0] = 0 ;

}

Listing 3.3: Logical Left Shift

12

Logical Right Shift

The following function shifts all the bitslice values (contained within a bitslice struc-

ture) right by “numPlaces” which is passed as an argument to the function.

t emp la t e <typename T>
i n l i n e vo i d b i t s l i c e s h i f t r i g h t (T a [] , c on s t i n t s i z e , con s t i n t

numSh i f t s) {
i f (numSh i f t s > 0) {

i n t count = 0 ;
w h i l e (count < numSh i f t s) {

f o r (i n t i = 0 ; i < s i z e −1; i ++){
a [i] = a [i +1] ;

}
a [s i z e −1] = 0 ;
count++;

}
}

}
/∗ A l t e r n a t i v e (but s l o w e r) imp l ementa t i on ∗/
temp la t e <typename T>
i n l i n e vo i d b i t s l i c e s h i f t r i g h t (T a [] , c on s t i n t s i z e , con s t i n t

numSh i f t s) {
memmove(a , a+1, s i z e o f (T) ∗(s i z e −1)) ;
a [s i z e −1] = 0 ;

}

Listing 3.4: Logical Right Shift

13

Arithmetic Right Shift

The following function shifts all the bitslice values (contained within a bitslice structure)

right by “numPlaces” which is passed as an argument to the function. Furthermore,

this function maintains the sign of the number.

t emp la t e <typename T>
i n l i n e vo i d b i t s l i c e a r i t h m e t i c s h i f t r i g h t (T a [] , c on s t i n t s i z e ,

con s t i n t numSh i f t s) {
i f (numSh i f t s > 0) {

i n t count = 0 ;
w h i l e (count < numSh i f t s) {

f o r (i n t i = 0 ; i < s i z e −1; i ++){
a [i] = a [i +1] ;

}
a [s i z e −1] = a [s i z e −2] ;
count++;

}
}

}
/∗ A l t e r n a t i v e (but s l o w e r) imp l ementa t i on ∗/
temp la t e <typename T>
i n l i n e vo i d b i t s l i c e a r i t h m e t i c s h i f t r i g h t (T a [] , c on s t i n t s i z e ,

con s t i n t numSh i f t s) {
T tmp = a [s i z e −2] ;
memmove(a , a+1, s i z e o f (T) ∗(s i z e −1)) ;
a [s i z e −1] = tmp ;

}

Listing 3.5: Arithmetic Right Shift

14

3.2.4 Unsigned Multiplication

Shift/Add Multiplication

With conventional approaches to multiplication, values can be shifted left or right to

achieve the same result as multiplication and division respectively. For example, shifting

a binary value left by n places yields a result which is the same as having multiplied the

original value by 2n. However, this concept does not lend itself to bitslice structures.

This is because each and every bit within a bitslice structure is inextricably linked

to its adjacent bits which happen to belong to neighbouring, yet disjoint, bitslice

values. Therefore, the shifting functions of Section 3.2.3 were used to shift the bitslice

bits. Unfortunately however, when one shifts a bitslice value using these functions,

its neighbouring bitslice values get shifted also (whether the user wishes this or not).

This was not an ideal situation, as it resulted in an extremely inefficient shift/add

multiplication routine, where the bitslice structure had to be reset with every pass. It

is the sole reason for not fully adopting this approach for unsigned multiplication.

Listing 3.6 shows the code for the function, which multiplies all bitsliced values

contained in bitslice structure A by all bitsliced values contained in bitslice structure

B, storing all bitsliced results in bitslice structure C. Volatile copies of A and B were

also passed for shifting and resetting purposes.

15

t emp la t e <typename T>
i n l i n e vo i d b i t s l i c e u n s i g n e d m u l (T a [] , T b [] , T a copy [] , T b copy

[] , T c [] , c on s t i n t s i z e) {
/∗ Sto rage f o r sub−r e s u l t b i t s l i c e d s t r u c t u r e s . To be OR ’ d wi th

each o th e r at the end ∗/
s td : : v e c to r<s t d : : v e c to r<T> > a g g r e g a t e d r e s u l t s ;
/∗ Reuseab l e c o n t a i n e r s f o r temporary r e s u l t s ∗/
T ∗ r e s = (T ∗) c a l l o c (s i z e , s i z e o f (T) ∗ s i z e) ;
s t d : : v e c to r<T> s u b r e s u l t ;
/∗ A mask to i s o l a t e the LSB o f the b i t s l i c e d v a l u e i n each pas s .
A l so used to mask out unwanted b i t s t ha t may be p r e s e n t i n sub−

r e s u l t s t r u c t u r e s . ∗/
uns i gned mask = 0x1 ;
/∗ Pass t h i s v a l u e i n t o memcpy when making c o p i e s o f ’ a ’ and ’ b ’
∗/
cons t i n t NUM BYTES TO COPY = s i z e o f (T) ∗ s i z e ;
/∗ For each b i t s l i c e v a l u e . . . ∗/
f o r (i n t i = 0 ; i < s i z e o f (T) ∗8 ; i ++){

/∗ Keep t r a c k o f number o f s h i f t s to be per fo rmed upon the
m u l t i p l i c a n d . ∗/

i n t numSh i f t s = 0 ;
w h i l e (numSh i f t s < s i z e) {

/∗ i f the LSB o f the b i t s l i c e d m u l t i p l i e r i s s e t . . ∗/
i f (b copy [0] & mask) {

/∗ S h i f t the m u l t i p l i c a n d l e f t by the a p p r o p r i a t e
number o f p l a c e s ∗/

b i t s l i c e s h i f t l e f t (a copy , s i z e , numSh i f t s) ;
/∗ Add the s h i f t e d m u l t i p l i c a n d to an accumulated

r e s u l t . Upon f i r s t pa s s the s h i f t e d m u l t i p l i c a n d must be added to
a ze roed s t r u c t u r e . ∗/

i f (numSh i f t s == 0)
b i t s l i c e a d d (c , a copy , r e s , s i z e) ;

e l s e
b i t s l i c e a d d (r e s , a copy , r e s , s i z e) ;

/∗ r e s e t the copy o f ’ a ’ (the m u l t i p l i c a n d) ∗/
memcpy(a copy , a , NUM BYTES TO COPY) ;

}

/∗ When we reach the end o f the b i t s l i c e m u l t i p l i e r , mask
out unwanted b i t s from ’ r e s ’ and s t o r e i n t o a sub−r e s u l t

s t r u c t u r e . ∗/
i f (numSh i f t s == s i z e −1){

/∗ mask out a l l garbage v a l u e s b e f o r e push ing r e s
i n t o sub−r e s u l t s v e c t o r ∗/

f o r (i n t j = 0 ; j < s i z e ; j++){
r e s [j] &= mask ;
s u b r e s u l t . push back (r e s [j]) ;

}

16

}
/∗ S h i f t the m u l t i p l i e r r i g h t by one b i t , f o r nex t

i t e r a t i o n ∗/
b i t s l i c e s h i f t r i g h t (b copy , s i z e) ;
numSh i f t s++;

}

/∗ Sto r e sub−r e s u l t i n t o f i n a l r e s u l t v e c t o r ∗/
a g g r e g a t e d r e s u l t s . push back (s u b r e s u l t) ;
s u b r e s u l t . c l e a r () ;
/∗ Update mask f o r nex t b i t s l i c e v a l u e ∗/
mask <<= 0x1 ;
/∗ Reset the c o p i e s o f ’ a ’ and ’ b ’ f o r nex t b i t s l i c e

m u l t i p l i c a t i o n ∗/
memcpy(a copy , a , NUM BYTES TO COPY) ;
memcpy(b copy , b , NUM BYTES TO COPY) ;

}

/∗
OR a l l b i t s l i c e d sub−r e s u l t s t r u c t u r e s t o g e t h e r ;

∗ | 0 | 0 | 0 | 0 | ∗ | 0 | 0 | 0 | 0 | ∗ | 0 | 0 | 0 | 0 | ∗ = ∗ | ∗ | ∗ | ∗
∗ | 0 | 0 | 0 | 0 | ∗ | 0 | 0 | 0 | 0 | ∗ | 0 | 0 | 0 | 0 | ∗ = ∗ | ∗ | ∗ | ∗
∗ | 0 | 0 | 0 | 0 | ∗ | 0 | 0 | 0 | 0 | ∗ | 0 | 0 | 0 | 0 | ∗ = ∗ | ∗ | ∗ | ∗
∗ | 0 | 0 | 0 | 0 | ∗ | 0 | 0 | 0 | 0 | ∗ | 0 | 0 | 0 | 0 | ∗ = ∗ | ∗ | ∗ | ∗

∗/
f o r (uns i gned i = 0 ; i < a g g r e g a t e d r e s u l t s . s i z e () ; i ++){

s t d : : v e c to r<T> tmp = a g g r e g a t e d r e s u l t s . a t (i) ;
f o r (un s i gned j = 0 ; j < tmp . s i z e () ; j++){

c [j] |= tmp . at (j) ;
}

}
}

Listing 3.6: Shift/Add Multiplication

17

Repeated Addition

After concluding that the shift/add approach was not a viable one, I then attempted

a repeated addition approach. Since multiplication can be thought of as a process of

repeated addition when dealing with conventional numbers, it seemed reasonable to

assume I could reuse my bitslice addition functionality within my multiplication routine.

This proved successful. The function is shown in Listing 3.7.

t emp la t e <typename T>
i n l i n e vo i d b i t s l i c e m u l (T ∗ r e s t r i c t a , T∗ r e s t r i c t b , T ∗

r e s t r i c t c , con s t i n t s i z e) {
f o r (i n t i = 0 ; i < s i z e ; i ++){

c [i] = a [i] & b [0] ;
}
f o r (i n t i = 1 ; i < s i z e ; i ++){

T c a r r y = 0 ;
T xxor , aand ;
f o r (i n t j = i ; j < s i z e ; j++){

T c u r r e n t = a [j− i] & b [i] ;
x xo r = c u r r e n t ˆ c [j] ;
aand = c u r r e n t & c [j] ;
c [j] = c a r r y ˆ xxo r ;
c a r r y = (c a r r y & xxo r) | aand ;

}
}

}

Listing 3.7: Bitslice Unsigned Multiplication

18

3.2.5 Signed Multiplication

Signed numbers can be represented using either sign-magnitude, one’s complement, or

two’s complement form. After conducting some research into these alternative forms,

two’s complement seemed to be the wiser choice to support, since the other two forms

contain ambiguities when representing the value zero. Section 10.3 of Digital Design:

a systems approach covers this in detail [9].

Booth’s Algorithm

At this point, three core routines have been developed for the bitslice arithmetic li-

brary: addition, subtraction, and unsigned multiplication. The next step would be to

add support for two’s complement signed number multiplication. The first approach

considered was to adopt Booth’s multiplication algorithm [10]. Booth’s algorithm in-

volves the comparison of all adjacent bits of a predetermined value. Based on the

outcome of each comparison, one of two predetermined values gets added to a result

value and is then shifted right. Once all comparisons are made, the end result is the

product. This was not a viable option for the bitslice library due to two main factors.

Firstly, dense logic was required to compare adjacent bits within an individual bitslice

value. Secondly, shifting of a bitslice value was required with every pass. These two

factors combined made this approach untenable. An approach known as the modified

Baugh-Wooley algorithm [8] was selected instead to provide the necessary support for

two’s complement signed number multiplication, which will now be discussed in the

following section.

19

Modified Baugh-Wooley Algorithm

The bitslice signed multiplication routine is shown in Listing 3.8. The algorithm itself

is known as the modified Baugh-Wooley algorithm and is fully described in Chapter

11 of Computer Arithmetic: Algorithms and Hardware Designs by Parhami Behrooz

[8]. Table 3.1 illustrates the algorithm for two 4-bit operands: a and b. One must

ensure that the result container (p in this case) is twice the size of the operands. The

algorithm focuses on performing logical conjunctions between bits from a and from b.

This results in a set of partials which are added together to produce the result. Logical

negation occurs in the most significant bit (MSB) of each partial except for the final

partial. The logical conjunctions contained in the final partial are all negated except

for the MSB.

Table 3.1: Modifed Baugh-Wooley Algorithm

1 ˜b0&a3 b0&a2 b0&a1 b0&a0
˜b1&a3 b1&a2 b1&a1 b1&a0 0

˜b2&a3 b2&a2 b2&a1 b2&a0 0 0
1 b3&a3 ˜b3&a2 ˜b3&a1 ˜b3&a0 0 0 0

p7 p6 p5 p4 p3 p2 p1 p0

20

t emp la t e <typename T>
i n l i n e vo i d b i t s l i c e s i g n e d m u l (T ∗ r e s t r i c t a , T ∗ r e s t r i c t

b , T ∗ r e s t r i c t c , con s t i n t s i z e) {
f o r (i n t i = 0 ; i < s i z e −1; i ++){

c [i] = a [i] & b [0] ;
}
c [s i z e −1] = ˜(a [s i z e −1] & b [0]) ;
c [s i z e] = −1;
T ∗ p a r t i a l = (T ∗) c a l l o c (s i z e ∗2 , s i z e o f (T)) ;
f o r (i n t i = 1 ; i < s i z e −1; i ++) {

p a r t i a l [i −1] = 0 ;
f o r (i n t j = i ; j < (i+s i z e −1) ; j++) {

p a r t i a l [j] = a [j− i] & b [i] ;
}
p a r t i a l [i+s i z e −1] = ˜(a [s i z e −1] & b [i]) ;
b i t s l i c e a d d (c , p a r t i a l , c , s i z e ∗2) ;

}
p a r t i a l [s i z e −2] = 0 ;
f o r (i n t j = s i z e −1; j < s i z e ∗2−2; j++){

p a r t i a l [j] = ˜(a [j−s i z e −1] & b [s i z e −1]) ;
}
p a r t i a l [s i z e ∗2−2] = a [s i z e −1] & b [s i z e −1] ;
p a r t i a l [s i z e ∗2−1] = −1;
b i t s l i c e a d d (c , p a r t i a l , c , s i z e ∗2) ;
f r e e (p a r t i a l) ;

}

Listing 3.8: Bitslice Signed Multiplication

21

3.3 Additional Functionality

3.3.1 Fixed-Point Support

Fixed-point signed multiplication is essentially bitslice signed multiplication followed by

a bitslice arithmetic right shift. Both operands are assumed to have the same precision

i.e. the same number of decimal places. The initial product from the signed multipli-

cation routine will contain twice the number of decimal places as had the operands,

hence the need for an arithmetic right shift to adjust the result to the correct precision.

The function is shown in Listing 3.9.

t emp la t e <typename T>

i n l i n e vo i d b i t s l i c e f p s i g n e d m u l (T ∗ r e s t r i c t a , T ∗

r e s t r i c t b , T ∗ r e s t r i c t c , con s t i n t s i z e , con s t i n t

p l a c e s) {

b i t s l i c e s i g n e d m u l (a , b , c , s i z e) ;

b i t s l i c e a r i t h m e t i c s h i f t r i g h t (c , s i z e ∗2 , p l a c e s) ;

}

Listing 3.9: Fixed-Point Multiplication

22

3.3.2 Conversion Algorithms

Two conversion algorithms were developed to allow the user to transition to bitslice

computation with greater ease. The first algorithm accepts a pointer to a conventional

array of numbers and in return produces a bitsliced representation of that array. The

second algorithm does the opposite. These algorithms exhibit isomorphic behaviour:

when passing a conventional array into the bitslice conversion routine, we then pass

the result of that into the conventional conversion routine. What we get back is an

identical array to what we had initially passed in. The same is also true if we pass

a bitslice structure into the conventional conversion routine, and then pass the result

of that into the bitslice conversion routine. What we get back is an identical bitslice

array to what we had initially passed in.

t emp la t e <typename T, typename P>
i n l i n e vo i d b i t s l i c e c o n v e r t (s t d : : v e c to r<P> numbers , s t d : : v e c to r<T>

&b i t s l i c e s) {
T mask = 1 ;
T e lement = 0 ;
i n t n = 0 ;
f o r (i n t i = 0 ; i < s i z e o f (P) ∗8 ; i ++){

f o r (i n t j = 0 ; j < numbers . s i z e () ; j++){
e l ement |= ((numbers . a t (j) & mask) >> i) << n++;

}
b i t s l i c e s . push back (e l ement) ;
e l ement = 0 ;
mask <<= 1 ;
n = 0 ;

}
}

Listing 3.10: Bitslice Conversion

23

t emp la t e <typename T, typename P>

i n l i n e vo i d b i t s l i c e n o r m a l i z e (s t d : : v e c to r<T> b i t s l i c e s , s t d : : v e c to r

<P> &numbers) {

T mask = 1 ;

P e lement = 0 ;

f o r (i n t i = 0 ; i < s i z e o f (T) ∗8 ; i ++){

f o r (i n t j = 0 ; j < s i z e o f (P) ∗8 ; j++){

e l ement |= ((b i t s l i c e s . a t (j) & mask) >> i) << j ;

}

numbers . push back (e l ement) ;

e l ement = 0 ;

mask <<= 1 ;

}

}

Listing 3.11: Bitslice to Conventional Values Conversion

24

3.3.3 Horizontal Addition

Horizontal addition is the process of adding all of the values contained within an indi-

vidual structure together. From a conventional approach, this is fairly straight forward,

as one can simply iterate through an array using a looping contruct, all the while main-

taining a running sum. From a bitslice perspective however, this process is far from

trivial. The code in Listing 3.12 shows the implementation. It involves a process of

bitslice addition where the operands are the bitslice structure which is passed into the

function, and a logically shifted version of that structure. This allows each vertical

slice to be added to every other slice in that structure. The sum is contained in the

left-most bitslice of the resulting structure. The other slices contain garbage results.

t emp la t e <typename T>
i n l i n e vo i d b i t s l i c e h o r i z o n t a l a d d (T ∗ r e s t r i c t a , T ∗

r e s t r i c t r e s u l t , c on s t i n t s i z e) {
T ∗ tmp = (T ∗) ma l l o c (s i z e o f (T) ∗ s i z e) ;
f o r (i n t i = 0 ; i < s i z e ; i ++){

tmp [i] = a [i] << 1 ;
}
b i t s l i c e a d d (a , tmp , r e s u l t , s i z e) ;
i n t count = 0 ;
w h i l e (count++ < s i z e o f (T) ∗8 − 1) {

f o r (i n t i = 0 ; i < s i z e ; i ++){
tmp [i] <<= 1 ;

}
b i t s l i c e a d d (r e s u l t , tmp , r e s u l t , s i z e) ;

}
f r e e (tmp) ;

}

Listing 3.12: Bitslice Horizontal Addition

25

3.3.4 BLAS Routines

BLAS stands for Basic Linear Algebra Subprograms. It is a collection of mathematical

operations which were created to promote modularisation, portability and efficiency of

program code [11].

Vector Scale

Vector scale takes an array of values and scales each value in that array by a constant.

From a bitslice perspective, the constant must take the form of a bitslice structure.

This bitslice structure simply contains the same value for each bitslice. Following this,

we scale the bitslice structure by performing bitslice multiplication. The code in Listing

3.13 shows the implementation.

t emp la t e <typename T>

i n l i n e vo i d b i t s l i c e b l a s s c a l e (T ∗ r e s t r i c t vec , T ∗

r e s t r i c t s c a l e , T ∗ r e s t r i c t r e s u l t , c on s t i n t s i z e) {

b i t s l i c e s i g n e d m u l (vec , s c a l e , r e s u l t , s i z e) ;

}

Listing 3.13: Bitslice Vector Scale

26

Dot Product

Considering vectors A and B, the dot product of A and B is the sum of the products

of the corresponding values contained in A and B. From a bitslice perspective, this

translates to a combination of signed multiplication and horizontal addition. The code

in Listing 3.14 shows the implementation.

27

t emp la t e <typename T>

i n l i n e vo i d b i t s l i c e b l a s d o t (T ∗ r e s t r i c t a , T ∗ r e s t r i c t b ,

T ∗ r e s t r i c t c , con s t i n t s i z e) {

T ∗ tmp = (T ∗) c a l l o c (s i z e ∗2 , s i z e o f (T)) ;

b i t s l i c e s i g n e d m u l (a , b , tmp , s i z e) ;

b i t s l i c e h o r i z o n t a l a d d (tmp , c , s i z e ∗2) ;

f r e e (tmp) ;

}

Listing 3.14: Bitslice Dot Product

3.4 Library Enhancements

3.4.1 Generic Types

While initial development and testing took place using explicit types such as uint8 t,

uint16 t, uint32 t, and uint64 t, the functions contained in the library were re-

factored using generic types by way of C++ templates. This gave the library flexibility

in that the user could call the same function using structures comprised of different

types. An example of this is shown in Listing 3.15. This also means that as technology

advances, larger native conventional data types can still be handled by the library

without any change to the code itself.

28

/∗ E x p l i c i t Types ∗/
i n l i n e vo i d b i t s l i c e a d d (u i n t 8 t a [] , u i n t 8 t b [] , u i n t 8 t c [] , c on s t

i n t s i z e)
{

. . .
}

/∗ Gene r i c Types ∗/
temp la t e <typename T>
i n l i n e vo i d b i t s l i c e a d d (T a [] , T b [] , T c [] , c on s t i n t s i z e)
{

. . .
}

Listing 3.15: Using Generic Types

3.4.2 Inline Functions

Function inlining was a proactive measure taken to aid faster execution time. By

declaring a function inline, the compiler can weigh up the cost of whether to make a

function call or to simply insert the body of the function in place of its invocation.

3.4.3 Control Flow

The arithmetic library was built using only bitwise operations. No control flow exists in

the arithmetic functions themselves, other than looping constructs e.g. for -loops. The

lack of conditional-statements (if -statements, switch-statements) means less branch-

ing and ensures a more sequential flow of execution.

29

3.4.4 Compiler Optimisations

The GNU Compiler Collection was utilised to compile the library [12]. The use of the

restrict command on some of the parameters being passed into the functions informs

the compiler that the pointers being passed in point to different locations in memory.

The compiler can then remove certain error checks from its compiling sequence, thus

enabling a saving to be made in terms of processing time. Figure 3.16 shows this

command in use.

t emp la t e <typename T>
i n l i n e vo i d b i t s l i c e f u n c t i o n (T ∗ r e s t r i c t a , T ∗ r e s t r i c t b)
{

// f u n c t i o n body
}

Listing 3.16: Restrict Keyword Usage

When compiling the bitslice library, the -O3 flag was used to invoke all available

compiler optimisations. For an exhaustive list of these optimisations, the GNU Com-

piler Collection should be referenced [12].

g++ b i t s l i c e . cpp −O3 && . / a . out > output . t x t

Listing 3.17: Compiling the Bitslice Library

30

3.4.5 Memory Leak Prevention

Many memory allocations exist within the library. For every allocation of memory from

the heap, there needs to be a corresponding deallocation or free to ensure a memory

leak does not transpire. Valgrind is a program that was used to identify any memory

leaks that might exist in the library [13]. An example of the output of Valgrind after

it was run on the bitslice library is shown in Listing 3.18.

/∗==15205== Memcheck , a memory e r r o r d e t e c t o r
==15205== Copy r i gh t (C) 2002 −2013 , and GNU GPL ’d , by J u l i a n Seward e t

a l .
==15205== Using Va lg r i nd −3.10.1 and LibVEX ; r e r un wi th −h f o r

c o p y r i g h t i n f o
==15205== Command : . / a . out

. . . BITSLICE VECTOR COMPUTATION LIBRARY . . .

==15205==
==15205== HEAP SUMMARY:
==15205== i n use at e x i t : 0 b y t e s i n 0 b l o c k s
==15205== t o t a l heap usage : 1 ,172 a l l o c s , 1 ,172 f r e e s , 129 ,040

by t e s a l l o c a t e d
==15205== A l l heap b l o c k s were f r e e d −− no l e a k s a r e p o s s i b l e
==15205== For count s o f d e t e c t e d and s u p p r e s s e d e r r o r s , r e r un wi th : −

v
==15205== ERROR SUMMARY: 0 e r r o r s from 0 c o n t e x t s (s u p p r e s s e d : 0 from

0) ∗/

Listing 3.18: Valgrind Output

31

3.4.6 Printing Bitslice Arrays

The bitset functionality from the standard library was utilised to allow a user to con-

vert a value to its binary representation. I made a conscious decision to display the

bitslice arrays where the elements are stacked on top of one another. This ensured that

the user could more easily interpret what values are contained within. Each resulting

vertical slice represents each bitslice value. The printing functions are shown in Listing

3.19 and 3.20.

t emp la t e <typename T>
i n l i n e vo i d p r i n t b i t s l i c e a r r a y s (T a [] , T b [] , T c [] , c on s t i n t s i z e

) {
f o r (i n t i = s i z e −1; i >= 0 ; i −−){

s t d : : cout << ” b i t ” << i << ” :\ t ”
<< (s t d : : b i t s e t <s i z e o f (T)∗8>) a [i] << ”\ t ”
<< (s t d : : b i t s e t <s i z e o f (T)∗8>) b [i] << ”\ t ”
<< s t d : : e nd l ;

}
s t d : : cout << ”\ nRe su l t ;\ n” ;
f o r (i n t i = s i z e −1; i >= 0 ; i −−){

s t d : : cout << ” b i t ” << i << ”\ t ” << (s t d : : b i t s e t <s i z e o f (T)
∗8>) c [i] << s t d : : e nd l ;
}

}

Listing 3.19: Printing Bitslice Structures

32

t emp la t e <typename T>
i n l i n e vo i d p r i n t b i t s l i c e f p a r r a y (T a [] , c on s t i n t s i z e , con s t i n t

d e c i m a l p l a c e) {
s t d : : cout << ” Fixed−Po in t Output (” << d e c i m a l p l a c e << ” dec ima l
p l a c e / s) ; ” << s t d : : e nd l ;
f o r (i n t i = s i z e −1; i >= 0 ; i −−){

i f (i == d e c i m a l p l a c e) {
sw i t ch (s i z e o f (T) ∗8) {

ca se 64 :
s t d : : cout << ” dec :\ t

. ”
<< s t d : : e nd l ;

b reak ;
ca s e 32 :

s t d : : cout << ” dec :\ t
. ” << s t d : : e nd l ;

b reak ;
ca s e 16 :

s t d : : cout << ” dec :\ t ” << s t d : :
e nd l ;

b reak ;
ca s e 8 :

s t d : : cout << ” dec :\ t ” << s t d : : e nd l ;
b reak ;

}
s t d : : cout<<” b i t ” << i << ” :\ t ” << (s t d : : b i t s e t <s i z e o f (T)

∗8>) a [i] << s t d : : e nd l ;
} e l s e {

s t d : : cout << ” b i t ” << i << ” :\ t ” << (s t d : : b i t s e t <s i z e o f (
T)∗8>) a [i] << s t d : : e nd l ;

}
}

}

Listing 3.20: Printing Bitslice Fixed-Point Structure

33

Chapter 4

Research Findings

4.1 Experimental Evaluation

4.1.1 Time Stamp Counter

In order to measure the performance of the library’s functions, a time stamp counter

technique was used. The code in Listing 4.1 allows the contents of the time stamp

register to be read into a 64-bit data type [14]. The contents of this register represents

the number of elapsed clock cycles since reset.

34

uns i gned long long r d t s c (vo i d) {

uns i gned c y c l e s l o w , c y c l e s h i g h ;

asm v o l a t i l e (”CPUID\n\ t ”

”RDTSC\n\ t ”

”mov %%edx , %0\n\ t ”

”mov %%eax , %1\n\ t ” : ”=r ” (c y c l e s h i g h) , ”=r ” (c y c l e s l o w) : :

”%rax ” , ”%rbx ” , ”%rcx ” , ”%rdx ”) ;

r e t u r n ((uns i gned long long) c y c l e s h i g h << 32) | c y c l e s l o w ;

}

Listing 4.1: Reading the Time Stamp Counter

For every library function that is invoked, two calls are made to capture the contents

of the time stamp counter. One call is made before the library function is invoked, and

one after. The difference between the two values is the number of clock cycles elapsed

since the library function was first invoked until its completion. An example of this is

shown in Listing 4.2.

s t a r t = r d t s c () ;

b i t s l i c e a d d (a , b , sums , s i z e) ;

s top = r d t s c () ;

e l a p s e d c l o c k c y c l e s = s top − s t a r t ;

Listing 4.2: Calling rdtsc() before and after library function invocation

35

4.1.2 Multiple Passes

The reason for wrapping all of the library’s function invocations within a loop was to

repeatedly capture the elapsed clock cycles and then subsequently extract the median

clock cycle for each function once the loop terminated. I opted for one hundred passes.

This allowed me to extract a more realistic performance metric, since the processor

could be dealing with other computationally-heavy processes at a particular point in

time. Opting for the extraction of one elapsed clock cycle measure from one invocation

would have most likely yielded an unrealistic measure of that function’s performance.

con s t i n t PASSES = 100 ;

i n t count = 0 ;

w h i l e (count++ < PASSES) {

// 1 . i n voke a l l l i b r a r y f u n c t i o n s

// 2 . s t o r e a l l e l a p s e d c l o c k c y c l e s

}

// 3 . e x t r a c t the median c l o c k c y c l e f o r each f u n c t i o n

Listing 4.3: Multiple Passes

36

4.1.3 Multiple Environments

The reason for testing in multiple environments was to help reduce the potential risk

of receiving false positives in the results. This was a worthwhile endevour since it

confirmed to me that the relative performance of the bitslicing approach to the con-

ventional approach was consistent.

Table 4.1: Environments

Environment A Environment B Environment C
Operating System Ubuntu 14.04.2 LTS Windows 7 Professional (SP1) 64-bit OS X Yosemite 10.10.3

Processor Intel Xeon E5-2630L v2 @ 2.40GHz Intel Core i5-3570K @ 3.40GHz Intel Core i5 2.6GHz
Memory 512 MB 32 GB 8 GB

4.1.4 Bitslice Structure Sizes

As well as testing the capabilities of the bitslice approach on arithmetic functions,

different sizes of bitslice values were also tested. The performance over different sizes

is shown in Figure 4.8. Of particular interest is the fact that the bitslice library can

handle bitslice values of any size. This is an advantage the bitslice approach has over

the conventional approach, which is restricted to particular types such as 8-bit, 16-bit,

32-bit, and 64-bit.

37

4.1.5 Conventional Approach

The conventional approach comprises of standard numerical arrays containing the same

values as are present in the bitslice structures. When a particular operation is being

considered, the standard arrays are traversed and the corresponding elements act as

the operands to that particular operation. Listing 4.4 shows two standard arrays (alpha

and beta) being traversed using a for -loop and each of the corresponding elements are

being added. This entire process is wrapped in an outer loop. The elapsed clock cycles

are recorded for each pass. The median clock cycle is then extracted after the outer

loop terminates.

/∗ Conven t i ona l Add i t i o n ∗/

s t a r t = r d t s c () ;

f o r (i n t i = 0 ; i < s i z e o f (b a s e t y p e) ∗8 ; i ++){

n o r m a l a d d r e s u l t s [i] = a lpha [i] + beta [i] ;

}

s top = r d t s c () ;

/∗ Sto r e e l a p s e d c l o c k c y c l e s f o r t h i s pa s s ∗/

no rma l add t imes [count] = s top − s t a r t ;

Listing 4.4: Conventional Approach

38

4.2 Results & Discussion

Figure 4.1 shows the performance of bitslice addition compared with conventional

addition. The Y-axis represents the number of clock cycles. The operations were

performed on sixty-four 8-bit numbers. This process was repeated over one hundred

passes and elapsed clock cycles were recorded with every pass for both approaches.

Bitslice addition was developed by mapping the functionality of the full-adder (from

gate-level digital logic) to the bitslice addition routine, described in detail in Section

3.2.1. Bitslice addition takes fewer clock cycles to complete than conventional addition.

This is due to the bitwise-level parallelism that exists in the bitslice implementation.

Effectively, a portion of all the numbers are being operated on simultaneously. Only

bitwise operations are used in the implementation. The median clock cycle value for

bitslice addition was 1885 cycles. For conventional addition, it was 2175 cycles.

39

Figure 4.1: Addition (using 8-bit values)

The same approach was adopted within different environments as can be seen in

Figures 4.2a and 4.2b. What this shows us is that in general, bitslice addition on 8-bit

values performs faster than conventional addition.

(a) Environment B (b) Environment C

Figure 4.2: Multiple Environments

40

Figure 4.3 shows the performance of bitslice subtraction compared with conven-

tional subtraction. A similar approach to the implementation of bitslice addition was

adopted for subtraction. The functionality of the subtractor gate from gate-level dig-

ital logic was mapped to the bitslice subtraction routine. This process is described

in detail in Section 3.2.2. As with bitslice addition, bitslice subtraction out-performs

conventional subtraction by taking less clock-cycles to complete its work. Again, this

is due to the bitwise-level parallelism that exists in the bitslice subtraction implemen-

tation. The median clock cycle value for bitslice subtraction was 1845 cycles. For

conventional subtraction, it was 2145 cycles.

Figure 4.3: Subtraction (using 8-bit values)

41

Figure 4.4 shows the performance of bitslice unsigned multiplication compared with

conventional multiplication. The implementation of unsigned bitslice addition is de-

scribed in Section 3.2.4. We begin to see a reduction in the performance difference

between the two approaches. This is largely due to the fact that this routine is a process

of repeated bitslice addition. The median clock cycle value for bitslice unsigned multi-

plication was 1938 cycles. For conventional unsigned multiplication, it was 2172 cycles.

Figure 4.4: Unsigned Multiplication (using 8-bit values)

Figure 4.5 shows the performance of bitslice two’s complement signed multipli-

cation compared with conventional multiplication. The modified Baugh-Wooley algo-

rithm was adopted in the implementation of the bitslice routine, the implementation of

which is fully described in Section 3.2.5. This is the first bitslice function to move away

from an approach of mapping gate-level logic, and the effects of this are seen in the

42

performance. We see that the bitslice approach is slightly slower than the conventional

approach. At this point it is worth taking into consideration that the arithmetic logic

unit (ALU) present in modern computing architectures does not support the bitslice

format. The bitslicing approach performs reasonably well considering this. The median

clock cycle value for bitslice signed multiplication was 2586 cycles. For conventional

signed multiplication, it was 2172 cycles.

Figure 4.5: Signed Multiplication (using 8-bit values)

Figure 4.6 shows the performance of bitslice vector scale compared with conven-

tional vector scale. The bitslice vector scale implementation is described in Section

3.13. Because the conventional approach is scaling an array by a constant, clearly

the constant is being saved in a register which is utilised for all remaining elements

of the array. The bitslice approach must represent a constant as a bitslice structure

43

containing the same bitslice value. The performance of bitslice vector scale is slower

as a result. The median clock cycle value for bitslice vector scale was 2562 cycles. For

conventional vector scale, it was 2118 cycles.

Figure 4.6: Vector Scale (using 8-bit values)

Figure 4.7 shows the performance of bitslice dot product compared with conven-

tional dot product. The implementation of bitslice dot product is described in Section

3.3.4. The fact that bitslice dot product is a combination of bitslice signed multiplica-

tion and horizontal addition, it performs slower than its conventional counterpart. The

median clock cycle value for bitslice dot product was 7477 cycles. For conventional

dot product, it was 2127 cycles.

44

Figure 4.7: Dot Product (using 8-bit values)

Figure 4.8 shows the median clock cycles for bitslice and conventional addition, over

multiple bit-sizes. What this figure conveys is that 8-bit, 16-bit, and 32-bit bitslice

addition is generally faster than its conventional counterparts. 64-bit bitslice addition

is slightly slower than 64-bit conventional addition. An advantage the bitslicing ap-

proach has over the conventional approach is that it can handle arbitrary-sized values.

This can be seen in the figure where the median clock cycles were also measured for

12-bit, 25-bit, 44-bit, and 83-bit sizes.

45

Figure 4.8: Addition Performance Over Multiple Sizes

Figure 4.9 shows the median clock cycles for bitslice and conventional subtraction,

over multiple bit-sizes. What this figure conveys is that 8-bit, 16-bit, and 32-bit bit-

slice subtraction is generally faster than its conventional counterparts. 64-bit bitslice

subtraction is slightly slower than 64-bit conventional subtraction. Again, as was the

case with Figure 4.8, unusual-sized values were tested.

46

Figure 4.9: Subtraction Performance Over Multiple Sizes

Figure 4.10 shows the median clock cycles for bitslice and conventional unsigned

multiplication, over multiple bit-sizes. What this figure conveys is that the time it takes

to compute bitslice unsigned multiplication increases dramatically as the bit-sizes in-

crease.

47

Figure 4.10: Unsigned Multiplication Performance Over Multiple Sizes

Figure 4.11 shows the median clock cycles for bitslice and conventional signed

multiplication, over multiple bit-sizes. We see that the performance of bitslice signed

multiplication becomes significantly slower as the bit-size increases.

48

Figure 4.11: Signed Multiplication Performance Over Multiple Sizes

Figure 4.12 shows the median clock cycles for bitslice and conventional vector scale,

over multiple bit-sizes. We see that the performance of bitslice vector scale becomes

significantly slower as the bit-size increases.

49

Figure 4.12: Vector Scale Performance Over Multiple Sizes

Figure 4.13 shows the median clock cycles for bitslice and conventional dot product,

over multiple bit-sizes. We see that the performance of bitslice dot product becomes

significantly slower as the bit-size increases.

50

Figure 4.13: Dot Product Performance Over Multiple Sizes

The results are promising for bitslice adoption in the cases of small bit-sizes such

as 8-bit values. The highest level of compiler optimisation was used. This optimisation

most likely does more for the conventional approach than for the bitsliced approach. I

must also point out that the ALU is very likely aiding the conventional approach more

so than the bitslice approach. I therefore believe that bitslice vector computations

could potentially prove a viable option to those who seek to perform multiple arith-

metic operations in parallel. Particularly those who may wish to perform arithmetic on

unusual-sized values. Another contributing factor to the speed of the bitslice opera-

tions lies in the ommission of control flow. In other words, no conditional statements

are present (no if -statements, no switch-statements). Additionally, the operations

are built purely from bitwise operations: which is the language and structure of the

processor rather than the language and structure of the programmer.

51

Chapter 5

Conclusions

In exploring this relatively novel concept, it seemed fitting to develop the mathemat-

ical building blocks which could underly future bitslicing endeavours. Two research

questions were initially posed in relation to the task at hand:

1. What are the practical challenges associated with developing a bitslice arithmetic

library?

2. How does the performance of bitslice computation compare to that of conven-

tional computation?

In response to the first research question, the main challenge lay in the concept

of bitslicing itself, as it required one to think differently about number representation.

A further challenge involved the need to build addition and subtraction routines from

the ground up, using only bitwise operations. This was an essential measure since

52

no hardware support exists for the bitslice format in modern computing architectures.

This process involved a mapping of gate-level logic functionality to the bitslice addition

and bitslice subtraction routines respectively.

In terms of performance, bitslice addition and bitslice subtraction perform well

compared to their conventional counterparts. This is witnessed across multiple envi-

ronments. Unsigned multiplication also performs well compared to the conventional

approach but only when we deal with 8-bit values. There is quite a noticable perfor-

mance hit as bit-size increases. When we move to signed multiplication we start to

see the conventional approach out-perform the bitslice approach in all cases. Bitslice

vector scale and bitslice dot product routines are significantly slower than their con-

ventional counterparts. Another point at which the performance drops for bitslicing

is when we move away from mapping gate-level logic functionality. This is seen when

one compares the performance of unsigned and signed multiplication of 8-bit values.

The former, mapped from gate-level logic, the latter stemming from an algorithm.

I see potential for further work to be carried out in this area. An obvious next step

would be in adding a division routine for bitslice values. This would not be a trivial

task and one would need to research either the gate-level logic that can provide such

functionality or find an appropriate algorithm that achieves the same result. Another

area to look at would be adding support for floating-point numbers. Further areas of

consideration could involve overflow and underflow detection, similar to the condition

control flags seen in assembly language.

A selling point for the bitslice approach lay in the support it has for values of

arbitrary size. What I have attempted to achieve here is not only investigate the

53

practical challenges, and evaluate the performance of the bitslice approach, but to lay

the foundations to allow the bitslicing approach to flourish. It was for this reason that

I developed conversion algorithms to enable the user to convert standard arrays to

bitslice arrays, and back again. Furthermore, the library was developed with a generic-

programming mindframe. Templates were adopted to ensure that the functions would

not require continuous updates, as larger conventional data-types appear in the future.

When larger data-types such as 128-bit and 256-bit do eventually surface, the bitslice

library will be ready to embrace them, and more parallelism will be achieved as a result.

54

Bibliography

[1] Matthew Kwan. Bitslice DES. http://www.darkside.com.au/bitslice/,

1998. [Online; accessed 1-April-2015].

[2] Eli Biham. A fast new DES implementation in software. In Fast Software Encryp-

tion, pages 260–272. Springer, 1997.

[3] Boelie Elzen and Donald MacKenzie. The social limits of speed: development and

use of supercomputers. Annals of the History of Computing, IEEE, 16(1):46–61,

1994.

[4] Randall J Fisher and Henry G Dietz. Compiling for SIMD within a register. In

Languages and Compilers for Parallel Computing, pages 290–305. Springer, 1999.

[5] Philipp Grabher, Johann Großschädl, and Dan Page. Light-weight instruction set

extensions for bit-sliced cryptography. In Cryptographic Hardware and Embedded

Systems–CHES 2008, pages 331–345. Springer, 2008.

[6] Olivier Garbe and Christopher Mills. Data bit-slicing apparatus and method for

computing convolutions, June 25 1996. US Patent 5,530,661.

55

http://www.darkside.com.au/bitslice/

[7] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional

neural networks for document processing. In Tenth International Workshop on

Frontiers in Handwriting Recognition. Suvisoft, 2006.

[8] Parhami Behrooz. Computer Arithmetic: Algorithms and Hardware Designs. Ox-

ford University Press, 19, 2000.

[9] William J Dally and R Curtis Harting. Digital Design: a systems approach.

Cambridge University Press, 2012.

[10] Andrew D Booth. A signed binary multiplication technique. The Quarterly Journal

of Mechanics and Applied Mathematics, 4(2):236–240, 1951.

[11] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T. Krogh. Basic

linear algebra subprograms for fortran usage. ACM Transactions on Mathematical

Software (TOMS), 5(3):308–323, 1979.

[12] The GCC Team. Optimize Options - Using the GNU Compiler Collection

(GCC). https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#

Optimize-Options, 2015. [Online; accessed 22-March-2015].

[13] Valgrind Developers. Valgrind. http://valgrind.org/, 2015. [Online; accessed

31-March-2015].

[14] Gabriele Paoloni. How to benchmark code execution times on Intel IA-32 and

IA-64 instruction set architectures. Intel Corporation, September, 2010.

56

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
http://valgrind.org/

	Introduction
	Literature Review
	Methodology
	Bitslicing Explained
	Bitslice Arithmetic Library
	Addition
	Subtraction
	Bit-Shifting
	Unsigned Multiplication
	Signed Multiplication

	Additional Functionality
	Fixed-Point Support
	Conversion Algorithms
	Horizontal Addition
	BLAS Routines

	Library Enhancements
	Generic Types
	Inline Functions
	Control Flow
	Compiler Optimisations
	Memory Leak Prevention
	Printing Bitslice Arrays

	Research Findings
	Experimental Evaluation
	Time Stamp Counter
	Multiple Passes
	Multiple Environments
	Bitslice Structure Sizes
	Conventional Approach

	Results & Discussion

	Conclusions

