
UNIVERSITY OF DUBLIN
TRINITY COLLEGE

DISSERTATION

PRESENTED TO THE
UNIVERSITY OF DUBLIN, TRINITY COLLEGE

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MAGISTER IN ARTE INGENIARIA

Content Interoperability and Open Source Content
Management Systems

An implementation of the CMIS standard as a PHP library

Author:
MATTHEW NICHOLSON

Supervisor:
DAVE LEWIS

Submitted to the University of Dublin, Trinity College,
May, 2015



Declaration

I, Matthew Nicholson, declare that the following dissertation, except where

otherwise stated, is entirely my own work; that it has not previously been

submitted as an exercise for a degree, either in Trinity College Dublin, or

in any other University; and that the library may lend or copy it or any part

thereof on request.

May 21, 2015

Matthew Nicholson

i



Summary

This paper covers the design, implementation and evaluation of PHP li-

brary to aid in use of the Content Management Interoperability Services

(CMIS) standard. The standard attempts to provide a language indepen-

dent and platform specific mechanisms to better allow content manage-

ment systems (CM systems) work together.

There is currently no PHP implementation of CMIS server framework

available, at least not widely.

The name given to the library is Elaphus CMIS.

The implementation should remove a barrier for making PHP CM sys-

tems CMIS compliant. Aswell testing how language independent the stan-

dard is and look into the features of PHP programming language.

The technologies that are the focus of this report are:

CMIS A standard that attempts to structure the data within a wide range

of CM systems and provide standardised API for interacting with this

data.

PHP A general-purpose scripting language that is typically used for web

development.

Zend Engine Zend Engine the commonly used interpreter for PHP. This

is responsible for running PHP code.

ii



HHVM A virtual machine designed for running PHP and Hack (another

programming language similar to PHP) code. HHVM has been de-

veloped by facebook as an alternative to the Zend Engine.

Wordpress A CM system, or website manager, that started out as blog-

ging software. Wordpress will server as the platform the Elaphus

CMIS will be used on for testing.

This paper cover some of the design decision that went into creating

Elaphus CMIS. Aswell as details from the benchmarks designed to evalu-

ate Elaphus CMIS.

Using the Elaphus CMIS in Wordpress provided largely positive re-

sults. The benchmarks performed showed that the generation of Atom

CMIS documents is at least comparable to the generation of Wordpress

web pages. In some cases the CMIS documents used less CPU time to

generate.

The achieved request rates were better in the case of CMIS docu-

ments, meaning that as well as causing less of a load the CPU they also

could be generated faster.

iii



Acknowledgements

I would like to thank my supervisor Dave Lewis for his help and support

through the project.

I must thank my family for their support and understanding during this

past year, I deeply appreciate them.

Finally, I’d like to thanks my classmates and friends. They have been

there to make this year enjoyable. And to thank Conor Brady who has

been a good friend since my first year of college.

iv



Abstract

The nice thing about standards is that you have so many to

choose from.

– Andrew S. Tanenbaum, 1981

This paper covers the design, implementation and evaluation of PHP

library to aid in use of the Content Management Interoperability Services

(CMIS) standard. The paper examines language independence of the

CMIS standard by applying to a PHP content management system and

details the benchmarks performed to evaluate the server.

Parts of the CMIS standard where implemented in PHP and used within

a Wordpress site. In particular basic navigation of post, pages and media

through the Atom binding of the CMIS standard.

Strides have been made toward an implementation of a PHP library

to allow PHP CM system be CMIS compliant. Benchmark show that the

cost of the generations of CMIS objects in a PHP CM system requires less

computation (CPU load) and time than the generation of a full HTML web

page.

v



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 CMIS . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 State of the Art 9

2.1 What is a CM System . . . . . . . . . . . . . . . . . . . . . 9

2.2 CMIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Apache Chemistry . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Dynamic Typing . . . . . . . . . . . . . . . . . . . . 18

2.4.2 PHP interpreters . . . . . . . . . . . . . . . . . . . . 20

2.4.3 CMIS and PHP . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Front Control Pattern . . . . . . . . . . . . . . . . . . 22

2.5 Similar Standards . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 JCR . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



3 Design and Implementation 25

3.1 Current State of the Implementation . . . . . . . . . . . . . 26

3.2 Implementing CMIS in PHP . . . . . . . . . . . . . . . . . . 27

3.2.1 CMIS Domain Model . . . . . . . . . . . . . . . . . . 27

3.2.2 PHP Namespaces . . . . . . . . . . . . . . . . . . . 29

3.2.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 Atom Binding . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Using the PHP implementation in Wordpress . . . . . . . . 35

3.3.1 Applying the CMIS data model to Wordpress . . . . 35

3.3.2 Wordpress Posts from the UI of Wordpress . . . . . 36

3.3.3 Wordpress Posts Database structure . . . . . . . . . 37

3.3.4 Wordpress Category Database structure . . . . . . 40

3.3.5 Site structure . . . . . . . . . . . . . . . . . . . . . . 41

4 Evaluation 43

4.1 Generation of a the dataset . . . . . . . . . . . . . . . . . . 44

4.2 Details of the machines used for testing . . . . . . . . . . . 44

4.3 Means of measuring server performance . . . . . . . . . . 45

4.3.1 CPU usage . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Memory usage . . . . . . . . . . . . . . . . . . . . . 46

4.4 Design of a simple client for benchmarking . . . . . . . . . 46

4.5 Evaluation of the server running at maximum request rate . 50

5 Future Work 56

6 Conclusion 57

vii



List of Figures

2.1 UML diagram for objects in CMIS. . . . . . . . . . . . . . . 12

2.2 UML diagram for types in CMIS. . . . . . . . . . . . . . . . 14

2.3 Efficiency of HHVM relative to HPHPc as of November 2012. 21

4.1 Duration of client request sessions . . . . . . . . . . . . . . 49

4.2 CPU time spent during Requests (Zend Engine w/ OPCache) 52

4.3 CPU time spent during Requests (HHVM) . . . . . . . . . . 52

4.4 Memory usage during Requests (Zend Engine w/ OPCache) 54

4.5 Memory usage during Requests (Zend Engine w/ OPCache) 54

viii



List of Tables

1.1 Members of CMIS technical committee . . . . . . . . . . . . 3

3.1 Mapping of CMIS Document Properties to Wordpress Posts 38

3.2 Mapping of CMIS Folder Properties to Wordpress Categories 41

4.1 Duration and request rate over 100 client sessions . . . . . 48

4.2 Achieved max request rate . . . . . . . . . . . . . . . . . . 50

ix



Chapter 1

Introduction

The title “An implementation of the CMIS standard as a PHP library” raises

two immediate questions:

• What is CMIS?

• Why PHP?

This chapter aims to answer these questions and provide insight into

the motivation for this dissertation. Further it covers a brief description of:

what a CM systems is, what the CMIS standard is, and the choice of PHP

for the implementation.

1.1 Background

A core concept of this dissertation is the concept of a content manage-

ment system (CMS or CM system). This is a system for publishing or

maintaining content that is stored in content repository or database. As

Kampffmeyer [2006, p. 2] notes:

The general term Content Management itself has a great many facets,
and also includes Web Content Management, Content Syndication,

1



Digital or Media Asset Management, and naturally Enterprise Con-
tent Management as well. This “vicious circle” of terminology merely
points up the lack of clarity in manufacturers’ marketing language.

The two types of CM systems that the average user may come across

are:

Web content management system (WCM) Allows for the management

of a the content from a website. Websites that are managed by some

form of WCM, included sites like Wikipedia, newspapers or typically

any site with content written by people.

Enterprise content management (ECM) Kampffmeyer [2006] goes on de-

scribe the changing definition of what an ECM is and provides the ap-

plication areas they cover, which includes: Document Management,

Collaboration, WCM, Record Management and Workflow.

1.1.1 CMIS

Content Management Interoperability Services (CMIS) is a standard from

the Organization for the Advancement of Structured Information Standards

(OASIS). There have been two major versions. CMIS V1.0 which was ap-

proved on May 1 2010. The second and current version of is V1.1, which

was first approved and published on 12 November 20121. Details of this

version will be provided later in this paper. As stated in the abstract “It (the

CMIS standard) is intended to define a generic/universal set of capabilities

provided by a CM system and a set of services for working with those ca-

pabilities” [TC, 2013, p. 2] Essentially the standard attempts to provide a

universal structure and means to access the data within a CM system.

1https://www.oasis-open.org/news/announcements/content-management-
interoperability-services-cmis-version-1-1-approved-and-publis

2



An important aspect of this type of standard is adoption, there is little

benefit from having a standard that allows systems to work together if very

few systems comply to it. Looking at the groups that make up the technical

committee can give a sense high level of the interest in the problem of

interoperability. There is a list of people and the organisation they are

associated with is made available on OASIS’s website2 the organisations

are state in table 1.1.

Accenture Hewlett-Packard Nuxeo
Adobe Systems IBM Oracle
AIIM ISIS Papyrus America Inc. RSD
Alfresco Software Liferay, Inc. SAP AG
ASG Software Solutions Microsoft Wells Fargo
EMC Northeastern University

Table 1.1: Members of CMIS technical committee

Müller et al. [2013] lists the following compliant systems:

• Alfresco

• EMC Documentum

• HP Autonomy Interwoven Worksite

• IBM Content Manager 8.4.3

• KnowledgeTree

• Magnolia CMS

• Microsoft SharePoint Server

• Nuxeo Platform

• OpenText ECM

• SAP NetWeaver Cloud Document Service

The standard provides a structure that can be used to represent the
2https://www.oasis-open.org/committees/membership.php?wg abbrev=cmis

3



data within a CM system. This is expressed as the domain model which

consisting of two parts

• Data Model, the representation of the entities within a repository.

• Services, a set of actions that can be taken to interact with these

entities.

This structure is intent to be applicable to any content management sys-

tem providing base level of functionality. The standard does not attempt to

provide a full representation of all possible functionalities available in CM

systems. It focuses on specifying a subset of functionality that is expected

of a CM system. Some capabilities of the standard are marked as optional.

Content management systems have developed without standardisa-

tion. This has resulted in the situation that making content from one system

available from another can require bespoke software acting as a connec-

tor between systems. This is due to systems being developed by different

vendors. Problems can occur when systems are updated, if the structures

of their data changes or even due to small changes to their APIs. Creating

a standard API would make it easier for systems to work together. This is

the problem of interoperability that the CMIS standard attempts to solve.

The standard defines three binding, means to expose the data from a

CMIS server over the internet. CMIS V1.0 include Restful AtomPub and

Web Services. Both of these are XML based technologies. CMIS V1.1

introduced the Browser Binding, a JSON based interface for CMIS servers.

Apache Chemistry

Apache Chemistry is a project from the Apache Software Foundation that

provides an open source implementation of the standard. This includes

4



CMIS client libraries, a CMIS Server Framework and some development

tools.3

As part of this client libraries are available in:

• Java

• Python

• PHP

• .NET

• Objective-C

• JavaScript

While the server framework is only available in Java. Apache Chemistry

OpenCMIS is collection of providing the Java server and client.

1.1.2 PHP

PHP is an open source general-purpose scripting language that is espe-

cially suited for web development and can be embedded into HTML4. PHP

can be used for either procedural or object oriented programming, the de-

tails of these will be discussed in greater detail later in this paper.

PHP can be primarily consider a server side scripting language, it has

been used to power different content management systems. Some com-

mon systems built on PHP are:

Drupal Originally a messaging board5. Drupal is released under the GPL

licence. Drupal focus on providing a core functionality while being

extendible through modules6. The current stable release is V7.36.
3http://chemistry.apache.org/
4http://php.net/manual/en/intro-whatis.php
5https://www.drupal.org/about
6https://www.drupal.org/mission

5



MediaWiki a content management system developed for Wikipedia and

other Wikimedia Foundation projects. These are focused on user

submitted content. 7

TYPO3 is an open source enterprise CMS8, as apposed to the others in

this which are more focues on web content.

Wordpress originally was started as a “publishing system built on PHP

and MySQL”. Wordpress is a CMS with some focus on blogging but

also works for more general purpose websites.

The implementation of this project will be applied to a Wordpress site.

Wordpress is available from their website, wordpress.org. The software is

available to that it can be used on the user’s server.

The website wordpress.com is serivice that provides host of Wordpress

web sites. They claim to provide an easy way to create a website.

This paper is concerned with the implementation of CMIS for web site

using software from wordpress.org

1.2 Motivation

An implementation of the standard in PHP will remove a barrier for making

PHP CM systems CMIS compliant. As mentioned, adoption of this type of

standard is particularly important, making CMIS more available could aide

in the success of the standard.

Implementing the standard will also serve to test how language inde-

pendent it is. PHP is a dynamically typed language run in an interpreter.

This offers a point of comparison to Java, which is strongly typed and is

compiled and run within a virtual machine. //
7https://www.mediawiki.org/wiki/Project:About
8https://typo3.org/

6



CMIS structures data, this has implications beyond interoperability. Projects

like DBpedia aim to extract structured data from Wikipedia. This results in

a dataset that is semantically queryable. CMIS has a query mechanism

that provides a relational model of the data within a content repository.

CMIS could be used as a means to structure the data with in Wikipedia

as well as external sources allowing more source be used in this Linked

Data.

The standard does not limit itself to document management systems.

Applying the standard to Wordpress which does not necessarily structure

data in a hierarchical fashion offers another test of the possible applica-

tions of the standard.

OhAirt [2013] looks into the CMIS as mechanisms for locationation,

finding that the CMIS standard could be extended to allow for localisation

of content between CM systems,

1.3 Outline

Chapter 2 Provides information about CM systems, how CMIS as stan-

dard function. Also discusses PHP as programing language and

some of the technologies built around it.

Chapter 3 Cover the design and implementation of CMIS in PHP, and the

application of this implementation to a PHP CM system (Wordpress).

Chapter 4 Discusses the evaluation and benchmarking of the implemen-

tation mentioned in chapter 3.

Chapter 5 Discusses the future work in completing the implementation

of CMIS for PHP as well as some of the potential research topics

relevant to CMIS.

7



Chapter 2

State of the Art

This chapter details: what a CM system is, how the CMIS standard works

and covers aspects of the Apache Chemistry Project. Details of PHP and

some of the technologies related to it are also discussed.

2.1 What is a CM System

The CMIS standard attempts to provide a generalised structure for data

within a content repository and a set of services to working with that data.

As mention the definition of what a CM system is some what unclear. The

standard attempts to provide an interface to a repository. This raises the

issue of what the standard attempts to standardise. It does not attempt to

cover all features of ECM repository.

Kampffmeyer [2006] discussed the state of ECMes, this is before the

formations of committee for CMIS in late 20081. The CMIS standard it

does not restrict itself to a type of repository. The points Kampffmeyer

makes about the interesting when consider what CMIS attempts.
1http://www.aiim.org/Research-and-Publications/Standards/Articles/CMIS

8



Kampffmeyer [2006] discusses the difference between a CMS and ECM,

saying the claimed benefit of WCMes is broken into three points:

Integrative Middleware The concept of an Enterprise Application Inte-

gration (EAI) providing a single interface to multiple services, or main-

taining consistency within different systems.

Independant Services For a given application one general service is avail-

able for that purpose.

Federated Repository an ECM is used as a content warehouse, storing

information without regard for its source or use.

This raises the question of how CMIS can be used for these aims. How

can CMIS work so that one client can retrieve data from multiple CMIS

compliant sources? Would one CMIS compliant server be a solution, with

other CM systems retrieving the information from that single source?

2.2 CMIS

The CMIS domain model is the means for structuring data within a CM

system. This is done in two parts the data model and services.

2.2.1 Data Model

The aim of the data model is to provide a format that any CM system could

use to structure its data. To do this CMIS represents the objects as fitting

into one five base types:

Document These are used to describe information entities within a sys-

tem.

9



Folder Allows for collections of fillable objects, providing a means to struc-

ture objects in a hierarchical manner.

Relationship Allow for a semantic dependency. that consist of a source

and target object.

Policy represents an administrative policy that can be enforced by a repos-

itory. The CMIS standard does not provide an instances of policy

objects, but a means for a repository to declare policies.

Item This was a new type introduced in CMIS v1.1, allows for objects

which do not fit other object types. An given is sub types for an

identity object could be declared for users and groups.

Additionally CMIS offers secondary object-types, which are a means to

add extra data to an object. A CMIS repository MUST support the docu-

ment and folder object-types.

These object types provides sets of properties, data fields, about that

object. Properties may contain single or multiple values. There are prop-

erties that are common to all objects types, the base types then define

additional properties for objects of that type.

Secondary object types allow for properties to be added or removed

from an object. An object may only belong to one object type but can have

many secondary object-types applied to it. Secondary object types allow

for temporary data to be added to an object such as workflow, or can be

used to add metadata to a document for example.

Figure 2.1 shows the UML diagram for these types. For example any

CMIS Object has a cmis:objectId and cmis:objectTypeId. A cmis:document

has the additional properties cmis:contentStreamFileName and cmis:contentStreamId.

A document could represent an object that is binary data, such as an im-

10



age. If a document has a binary stream these properties are used to iden-

tify that data. As a document may not require binary data, could represent

plain text, these properties may be “not set” or contain an empty value.

Figure 2.1: UML diagram for objects in CMIS.

Properties are typed and must fall into one the following types: string,

boolean, decimal, integer, datetimes, uri, id, or html. Properties have at-

tributes, pieces of metadata, associated with them such as: name, display

11



name, default value, possible values and many more. Some attributes of

a property are dependent on its type such as the precision of a decimal

value. Figure 2.2 provides the UML for type definitions, this shows the

attributes relevant to properties.

CMIS allows for the definition and mutability of object types. A system

can define new object types, that must inherit of another object-type and

have a base-type as an ancestor. This allows for object types with more

properties to fit the need a specific system.

It is also possible to include additional properties, without declaring a

sub-type. In the CMIS standard at the start of each object type has a

section on property definitions. The opening sentence of each of these

sections is to the effect of TC [2013, p. 34]:

The document base object-type MUST have the following property
definitions, and MAY include additional property definitions.

Similarly the server and client may ignore properties that they do not un-

derstand.

The CMIS standard defines some enumerated types, these are either

returned by the services or taken as parameters to them. For example the

getObject service has an optional parameter of type “enum IncludeRela-

tionships”, the values of this type are declared in the standard.

2.2.2 Services

The services are the set of actions that can be taken on the data within a

CMIS repository. They are the means the retrieve and manipulate the data

within the repository.

They are grouped in the following way:

12



Figure 2.2: UML diagram for types in CMIS.

Repository Services Allow for discovery about the repository and the

meta data about the types defined within the repository. Reposito-

ries may support type mutability, repository services also includes

the methods of manipulating type definitions.

Navigation Services Allow for the discovery of the hierarchical structure

of the data within the repository.

Object Services Allow for CRUD (Create, Retrieve, Update, Delete) op-

13



erations on the objects within the repository.

Multi-filing Services Provides the ability to update objects when a repos-

itory supports multi-filing or unfiling optional capabilities

Discovery Services Expose the search functionality covered by the stan-

dard. CMIS provides an optional query capability that uses an SQL

read-only projection of the CMIS data model into a relational view.

This maps the properties of object-types to the attributes of a rela-

tional database structure.

Versioning Services CMIS cover the record of versions of objects within

a repository as well as the concept of a private working copy.

Relationship Services Provides “getObjectRelationships” to give access

to the relations associates with an object.

Policy Services Mechanism to apply, remove or get the policies associ-

ated with an object.

ACL Services Access Control Lists, CMIS provides a set of base set per-

missions as well as allowing for repository specific permissions to be

applied to objects.

2.3 Apache Chemistry

As mentioned previously Apache Chemistry servers as the reference im-

plementation of CMIS, the project provides a server framework and client

libraries. OpenCMIS is a collection of Java libraries, frameworks and tools.

The server framework aims to “hide” the detail of the bindings.

OpenCMIS has many parts, including an android client, general client

libraries, a common library for clients and the servers, the server which

includes a query parser and binding implementations, test utilities, a work-

14



bench for testing compliance, a sample server that stores data in memory.

The packages of particular interest for this project are:

org.apache.chemistry.opencmis.commons

.data Interfaces for the objects in the data model, such as a con-

tainer for the list of objects filed under a folder, as well as prop-

erties and objects.

.definitions contains the interfaces for the “definitions” within data

model. This includes object-type and property-type definitions.

.enums This is the declarations of the Enums defined in the CMIS

standard as well as some enums used internally within the OpenCMIS

implementation. OpenCMIS also includes additional enums such

as “DateTimeFormat” which is not mentioned in the standard.

.exceptions These are the exceptions as declared in the CMIS stan-

dard. CMIS standard declares two types of exceptions that

can be raised from the services. General and specific excep-

tions, any service may raise a general expectation some ser-

vices have specific exceptions they can throw.

.impl.dataobjects contains the implication of interfaces for the data

model. The classes implement interfaces from both the “.data”

and “.definitions” packages.

.spi This contains the CMIS service interfaces.

2.4 PHP

PHP is a scripting language commonly used in web applications. The

description for the PHP packaging in Arch Linux is “An HTML-embedded

15



scripting language”.2 It is a language with a focus on web development.

PHP is dynamically typed, variables do not require declaration and PHP

does not provide static type checking.

Though its history PHP has gone through some rewrites. PHP 3 was

the first version to resemble the current versions of PHP. PHP 4 introduced

the Zend engine, the two stage process for parsing and executing code.

PHP 5 was released in 2004 and introduced a new OOP mode and a

second version of the Zend engine. PHP is currently maintaining support

for version 5.4, 5.5 and 5.6.

PHP is made up of two separate pieces, Golemon [2005] provides an

introduction to the life cycle of a request being handled by PHP powered

by the Zend engine. The Zend Engine is responsible for interpreting the

script and producing machine code. It handles memory management and

function handling and such. The PHP Core is responsible for communi-

cation with the Server Application Program Interface (SAPI). It talks to the

application server, which may be a Apache http server or fastCGI.

Code for PHP may be written in two ways:

PHP script These are interpreted which can lead to inefficiency, the op-

code from these scripts can be caches to reduce this cost, by avoid-

ing the need to parse and compile the code every time the script is

called. “Zend Opcache” is built into PHP since version 5.5, though it

may not be enabled by default.

Extensions These have a use case of getting code to run smaller, and

consume less memory while running.

Zend Opcache was added on the 20th June 20133.
2https://www.archlinux.org/packages/extra/i686/php/
3http://php.net/ChangeLog-5.php

16



Extensions can be written for PHP in C. These will appears as functions

that are callable from a PHP script, the Zend will call the required C code

and return a value as though it a function written in PHP was called. It

something is not achievable using PHP alone an extension can be written.

There PECL and PEAR are two repositories of PHP extensions.

2.4.1 Dynamic Typing

PHP has no static type checking or variable declaration. Variables can

change between types during run time. For example a string can be

changed into a array:
$va r i ab le = ’ 123:ABC ’ ;
$va r i ab le = explode ( ’ : ’ , $va r i ab le ) ;

$variable is assigned a string value, it is then assigned the value returned

from explode which will be an array containing two strings. Dynamic typing

may not be a desired feature when implementing the CMIS domain model.

Code written in PHP can suffer from a lack of clarity because CMIS at-

tempts to assign structure this could be an issue. When releasing the

implementation documentation will play an important role as the intended

functionality may not be as clear.

Hack: Statically types PHP

Hack is a language created by Facebook that is derived from PHP4. Hack

provides explicit typing on parameters, class member variables and return

values. In comparison PHP only provides basic type hinting for parame-

ters. PHP 5 introduce type hinting allows for parameters to be limited to

objects, interfaces, or arrays (introduced in 5.1)5. It does not allow for hint-
4http://hacklang.org/
5http://php.net/manual/en/language.oop5.typehinting.php

17



ing at the level of scalar types such as int, string, Boolean, With Hacks’

Type Annotations and the ability to specify the return value the methods

returned would aide in the clarity of the methods within the CMIS domain

model.

Hack also allows for more strictly typed parameter, ensures that only

integer values are stored as integer properties of a CMIS object. To do

this in PHP it would be necessary to add code to check the types at run

time.

Hack also introduces generics and more built in structured data types

(collections and pairs), these are similar to those found in Java. PHP has

arrays, though the array object provided by PHP is not necessarily the

traditional concept of an array. PHP accept mixed values and are stored

as an ordered map, they can be used as arrays, vectors, hash tables. Keys

used for arrays are cast to integers where possible, the string “1” and the

float 1.5 are both treated as the integer 1. Non-decimal string values are

used as keys as is.

OpenCMIS makes use of Java’s generics and collections. Properties

which may contain multiple values, these are stored as a collection making

use of generics to ensure properties values match the property type.

Hack has developed because Facebook saw a need for these features.

Implementing CMIS these features would be desirable, as they would al-

low for more descriptive code.

Eshkevari et al. [2015] have investigated how some PHP applications

use dynamic typing and the changes that would be needed to enforce

static typing. They found that less that 1% of assignments used dynamic

typing. A large proportions of cases would relatively simple to avoid by

18



renaming local variables. If static typing offers more understandable code,

the flexibility dynamic typing offers may not be worth the cost. Perhaps

Hack would be a more suitable platform for implementing CMIS. Hack may

become more widely used and a Hack implementation of CMIS may be-

come more desired.

2.4.2 PHP interpreters

The Zend engine is not the only interpreter available for PHP, though it

is provided by the PHP group and is widely distributed. There are other

methods of using PHP code. Facebook are a company that have built

technologies using PHP and one of their interests has been optimising

performance of PHP. They have released two open source projects perus-

ing this.

Facebook have developed HipHop for PHP (HPHPc), which is source

code transformer. “HipHop programmatically transforms your PHP source

code into highly optimized C++ and then uses g++ to compile it” Zhao

[2010]. They state that the use of HPHPc reduced the CPU usage on av-

erage by about fifty percent. This project has been succeeded by The

HipHop Virtual Machine (HHVM) Paroski [2012]. Which was released

when it overtook HPHPc in terms of efficiency. Stating the performance

of HHVM continuing on an upward trajectory. See Figure 2.3.

19



Figure 2.3: Efficiency of HHVM relative to HPHPc as of November 2012.

HHVM could offer an interesting point of comparison when evaluating

the performance of the implement of CMIS in PHP. The following is a de-

scription of how HHVM works from it homepage.

Rather than directly interpret or compile PHP code directly to C++,
HHVM compiles Hack and PHP into an intermediate bytecode. This
bytecode is then translated into x64 machine code dynamically at
runtime by a just-in-time (JIT) compiler. This compilation process
allows for all sorts of optimizations that cannot be made in a statically
compiled binary, thus enabling higher performance of your Hack and
PHP programs. [Facebook, 2015]

As of 19th of November 2014 HHVM was added to Archlinux’s repos-

itoies6. Archlinux is a distribution of Linux which attempts to stay on the

“bleeding edge” and will tend to adopt packages earlier than other distribu-

tions. At the time of writing HHVM is not available from the main Debian or

Ubuntu repositories, but the project does provide a repository themselves.

HHVM being added to Arch Linux’s repositories is a sign the project is

gaining traction.

HHVM is also only available for x64 machines, this may limit the cases

in which it can be used. It is also worth noting that Hack is written for use
6https://projects.archlinux.org/svntogit/community.git/log/trunk?h=packages/hhvm

20



in HHVM, it is not usable in all cases where PHP is used.

The performance of the Zend Engine was also improved with the ad-

dition of features like Zend Opcache, that have been added since HHVM

initial release.

2.4.3 CMIS and PHP

Implementations of a PHP CMIS server are not available, at least not

widely. A stub of server is available on github7. This has not been updated

in the past two years and has the note that it is under “Heavy Develop-

ment”. This project should results in a usable implementation in PHP.

2.4.4 Front Control Pattern

The front controller pattern is a design pattern that is commonly used in

PHP applications. The design pattern is not exclusively used in PHP but

is a consideration for this report. Wordpress and Drupal are two example

of PHP CM systems that make use of the front controller pattern.

The patterns uses a single point of dealing with requests. This affects

the URL structure of the site, for example Wordpress sites use the following

structure:

example.com/index.php?p=49

The query string contains the field emphp with value. The index pages

handles most requests, setting this emphp value indicates the value of post

request. Wordpress uses different parameters to indicate what is being

requested: emphm, request the archive of posts from a month; emphcat,

is used to get posts from a category. Wordpress can hide this underlying

structure with the use of rewrite rules, with the cooperation of the web
7https://github.com/maddingo/php-cmis-server

21



server URLs can be written so that they are intrepeted by the server as a

query string but appear to the user as “nice” descriptive URL. The CMIS

implementation is going to be built on the presumption that url structure

may be using the front control design pattern.

2.5 Similar Standards

The CMIS standard is not alone in attempting to address the issue of in-

teroperability.

2.5.1 JCR

Content Repository API for Java (JCR) is a specification for providing gen-

eralised interface to content repositories 8.

Like CMIS, JCR is a standard that applies a structure to a content

repository9. Some of the features that it offers are also available from by

CMIS, these include: a query language, versioning, access control. JCR

differs in that it does not provide access to the repository remotely. It is

a set of objects that must be defined within the content management sys-

tem. This means that code written for one JCR compliant CMS can be

used in other JCR compliant systems. In effect JCR dictates how a con-

tent management system should be written, whereas CMIS define how the

information should be made available.

The project Apache Jackrabbit provides a reference implementation10.

It is possible to use JCR to make a system CMIS compliment. Part of

Appache Chemistry aims to “bridge between the CMIS and JCR stan-
8https://wiki.jasig.org/download/attachments/22940141/JCR iECM CMIS JASIG final.pdf
9https://jcp.org/en/jsr/detail?id=283

10http://jackrabbit.apache.org/

22



dards”11. Allowing a CMIS client talk to JCR server.

PHPCR

One of the differences between CMIS and JCR is that JCR is language

specific. PHP Content Repository12 (PHPCR) is and adoption of the JCR

to PHP. This project is interesting to see a desire for this type of standard-

isation within the PHP community.

11http://chemistry.apache.org/java/developing/repositories/dev-repositories-jcr.html
12http://phpcr.github.io/about/

23



Chapter 3
Design and Implementation

The objective of this dissertation is to minimises the work required to make

a CMS written in PHP CMIS compliant. Taking an approach similar to

OpenCMIS, hiding the workings of the bindings allows a CMS developer

just implement the services as necessary. Early during development to

following requirement we decided upon:

Be usable with multiple CM systems

The library should be able to work with range of open source CMSes.

Have similar dependencies to typical CMSs

The library should attempt to not require any extension that are not

commonly available in situations where CMS are in use. This is to

minimise the effort in using the library.

Though it is possible to extend PHP with extensions written in C, this

would result in some level of type checking and benefit from being com-

piled. Implementing the CMIS data model in a low level language would

present more challenges. Requiring the installation of extensions, this

would require more control over a web server to install the library. Im-

plementing the library in PHP with the libraries commonly installed would

reduce the complexity of the task.

Then with this CMIS implementation applying it to a PHP CMS.

24



3.1 Current State of the Implementation

The implementation is not a full CMIS implementation. 42 out of the 64

data objects are implemented, some objects like the constream and ex-

tension element are not yet done. However of the interfaces for the data

objects and definitions have been generated from the Java interfaces, the

detail of this follows later in this chapter. All services have a basic imple-

mentation that raise a NotSupportedException, it is necessary that these

are implemented on a per system basis. Providing default implement, that

raises an exception, ensures that only the user of the library can implement

only their desired functionality.

The data objects implement were chosen so that the getRepositories(),

getRepositoryInfo(), getChildren(), and getObject() could be implemented.

The enumerated types mentioned in the standard have been imple-

mented, though there is more to be said about the support for enums

in PHP. The exceptions covered by the standard have also been imple-

mented.

The implementation uses a factory design pattern, so allow for user

implemented services to be passed to bindings. An additional service is

declared to add some that is required by the bindings.

An attempt at the Atom binding was made. 3 of the 18 resources have

been implemented. The getRepositories() and getRepositoryInfo() ser-

vices are accessed through the Atom Service document. getChildren()

is exposed through the Folder Children Collection, getObject() is exposed

through the Object Entry.

25



3.2 Implementing CMIS in PHP

The implementation proposed varies from the OpenCMIS implementation

in dealing with the service objects. OpenCMIS provides interfaces for each

of the services according to their grouping (Repository Services, Naviga-

tion Services. . . ) It then introduces a CmisService is an interface which

extends each of the other interfaces for services. A user of OpenCMIS

must then implement one object that provides all the services methods.

This CmisService also adds some extra functionality, because the stan-

dard acknowledges that the bindings do not necessarily match the ser-

vices.

For the implementation the decision was made to declare the groupings

of services as objects that provide default implementation. It is not possible

for an object to extend multiple other objects, the CmisService includes

instances of the other services as member variables.

A factory design pattern is used so that the user of the library can

implement their own Service with the repository specifics. The user must

extend the service objects and the CMIS service factor, so that it sets their

service objects as the members of CmisService.

3.2.1 CMIS Domain Model

The decision was made to attempt to match the implementation of the

OpenCMIS data model. OpenCMIS is used within the Alfresco ECM, it is

functional. Copying the objects declared within OpenCMIS ensures that

the necessary functionality is covered. Also there is the benefit that any

developers familiar with the OpenCMIS implement will be able to carry

over knowledge of the structure of the reference implementation.

In the OpenCMIS packages org.apache.chemistry.opencmis.commons.data

26



and org.apache.chemistry.opencmis.commons.definition there are a total

of 96 interfaces declared. They do not contain any implement of methods

and have similar structure. Taking advantage of these two facts a ruby

script was written to iterate over the files in a given directory and generate

valid PHP interfaces from detected java interfaces. Because there is no

implementation within interfaces the code is simple enough that it is possi-

ble to automate the process of changing the code to be PHP. Because the

code followed a structure use of regular expression was an viable option.

The approach for generating the PHP interfaces was as follows:

For each Java file found in a directory or subdirectory:

• Search for interface declaration if found then:

• Open new PHP file in output directory.

• Write PHP open tag and namespace to PHP file.

• Write licence text from from Java file to PHP file.

• Find imported packages in Java file and write list of required pack-

ages as comment in PHP file.

• Write Javadoc comment block to PHP file.

• Manipulate interface declaration, removing any use of generics, so

that it is valid PHP. Write this to the PHP file.

• Keep record of any extended interfaces, so that it is possible to en-

sure any dependencies are satisfied when scan is complete.

• For each method found manipulate into valid PHP. Write Javadoc and

method declaration to PHP file, also add comment indicating return

type.

• End interface with “}” and close the PHP file.

Once all files are scanned check all dependencies (anything that an inter-

face extends) put message to standard i/o indicating unsatisfied depen-

27



dencies.

3.2.2 PHP Namespaces

Namespaces are a mechanism to encapsulate parts of code written in

PHP. It was introduced in PHP 5. This is necessary to use namespaces

when implementing a library that is to be used within an application, such

as the CM systems the CMIS implementation will be used in. Because the

CMIS library is intended for used within a content management system it

is important to avoid name collisions. It also allows for the logical grouping

of the objects and methods of the CMIS implementation.

It is possible that the CM system that the library is being used in might

have objects declared that could conflict with the objects declared in CMIS.

The CMIS that the library is being used in could have its own “Version-

ingService” or “ObjectData” object declared. PHP does not have support

for function or method overloading. The objects should all be within a par-

ticular namespace to avoid the potential for conflicts. Without the use of

namespaces it is necessary to use longer object names and prefix objects

with an identifier to avoid name conflicts.

The name given to the implementation for CMIS in PHP is “Elaphus

CMIS”, this is in reference to the Cervus Elaphus, or the Red Deer. A

specie of deer whose population fell to low levels during the 20th century

in Ireland. With protection and management the population has grown,

increasing by over 500% between 1978 and 2008. Aiming to draw a par-

allel to need for standardisation of CM system and the hope that through

management interoperability could become less of an issue.

The namespace used in this project was: Elaphus\Cmis. The inter-

28



faces defined with the implementation are declared within Elaphus\Cmis\Interfaces

This decision was made so that the interfaces would be logically grouped

and when an interface is used for type hinting it is clear the type specified

is not an instantiable object.

3.2.3 Types

Type Hinting

Elaphus CMIS makes use of the ability to constrain parameters to descen-

dants of interfaces. If a parameter is specified to be an object or interface

the method will accept any object that is a descendant of the specified pa-

rameter. This ensure that the parameters passed will be an object with the

class methods needed for that function.

The object data class uses private variable to store the properties as-

sociated with that object. The setter method for the properties array uses

type hinting to ensure the parameter passed implement the getProperties()

method.

It is not possible to ensure total type consistency from type hinting

alone. As mentioned in the chapter 2 Hack and Java provide the con-

cept of generics, this can be used to ensure that a hash map only contains

objects of a certain type or ancestor. The level type hinting provided by

PHP will only allow for parameters to be array (which are more similar to

hash maps) and not provide a mechanism to specify what the array can

contain. The implementation in Java allows for the all of the properties to

be set by passing a Collection containing PropertyData.
vo id addProper t ies ( Co l l ec t i on<PropertyData<?>> p r o p e r t i e s )

While equivillent declareation PHP may look like:

29



f u n c t i o n addProper t ies ( ar ray $p rope r t i es )

Looking at this method declaration there is no indication regarding what

should pass in the $properties array. The return type of functions cannot

be indicated in PHP, this can lead to a lack of clarity in the implementation.

This means that the documentation for Elaphus CMIS will play a much

more important role. The library is intended to allow the user not worry

about the data model of CMIS. The lack of clarity discussed here is unde-

sirable, as the objects declared provide less information and could lead to

confusion when use Elaphus CMIS.

The type hinting used should not prevent any users from extending

objects provided by Elaphus CMIS, if they want to alter it for the specific

requirement of their system.

Type Evaluation

Atom print word ‘true’ and ‘false’ for boolean values. Adding a Boolean

variable as the content of a DOMElement will result in the value 1 for

true and unset if the value is false. There would substantial increase of

path complexity as a result of using if/else statements. Increase is path

complexity is more of an issue when using interpreted languages like PHP

compared to compiled languages. PHP provides var export function which

can be used to get the strings ‘true’ or ‘false’ from a boolean value. How-

ever this can only be used to evaluate booleans value, if use an a variable

containing a string this would output the string value surrounded by quota-

tion marks. This means that:
$value = ” abc ” ;
va r expo r t ( $value , t r ue )

30



The call to var export will return the value “abc” as a string, whereas if

$value is a Boolean the string true is outputted, without surrounded quo-

tation marks.

Lack of Native Enum type

A limitations of PHP is the lack of enum type. CMIS defines some enums

which are used both as service parameters and as values returned as part

of services. For example the getRepositoryInfo() return Enum supported-

Permissions, all bindings will represent this value as the string “basic”,

“repository”, or “none”. The Java implementation provides an instantiated

objected with an enumerated value, a call to the toString() or name() will

return the name of this enum constant1. This is the value used to represent

this in the bindings.

There are various solutions for achieving behaviour in PHP. There are

several projects on GitHub providing “Java style” enums. For this project

an implementation of enums was from a GitHub project that provided the

desired functionality and had the highest rating on GitHub. The project

was released under the MIT licence.

An alternative approach commonly used for enums in PHP is the use

of an abstract class with the enum values declared as constants within the

class. This method is mentioned in Hacks documentation, it is a simpler

approach. However it will not allow for type hinting as instance of the enum

type in method parameters. The abstract class only provides a mechanism

to refer to a value defined elsewhere2.

This is not a major barrier in implementing CMIS in PHP, but it stands as
1http://docs.oracle.com/javase/7/docs/api/java/lang/Enum.html
2http://docs.hhvm.com/manual/en/hack.enums.php

31



a reason to question how language independent the standard is. Having

parts of the implementation dependant on non built-in functionality could

mean that the functionality is not intuitive for developers using the library.

3.2.4 Atom Binding

Elaphus CMIS’s implementation of the bindings is not the concern of the

average end user. The library is written to hide the implementation of

the bindings so that the end user can focus on the implementation of the

services. The structure of the Atom binding will likely be reusable for other

bindings. Implementations will declare their own end point for bindings.

The user will need to handle the repository specific binding selecting. If a

request is made to the atom binding the user will simply need to instantiate

an Atom object and pass a CMIS service to it. As follows:
$crea to r = new MyCmisCmisServiceCreator ;
$cmisService = $creator−>createCmisService ( ) ;

i f ( $ GET [ ’ cmis ’ ] == ’ atom ’ ) {
$atom = new Elaphus\Cmis\Atom ;
$atom−>request ( $cmisService ) ;

} e l s e i f ( $ GET [ ’ cmis ’ ] == ’ browser ’ ) {
/∗ Browerser b ind ing stub ∗ /

} else i f ( $ GET [ ’ cmis ’ ] == ’ws ’ ) {
/∗ WS bind ing stub ∗ /

} else {
/∗ Disp lay welcome to CMIS page ∗ /
echo ’ Elpahus CMIS Wordpress Server ’ ;

}

The Atom object will handle exception handling and determine the re-

source to return by using a dispatcher mechanism.

The Atom binding is based upon Atom (RFC 4287) and the Atom Pub-

lishing Protocol (RFC 5023). The binding was chosen as it an XML based

binding similar to the Web Services binding. Wordpress natively provides

an Atom feed of posts this offers a point of comparison.

32



AtomPub uses a RESTful architecture. This means that it makes use

of HTTP actions hyperlinks as an engine for discovery. This means the

Elaphus CMIS Atom binding needs to be aware of the capabilities of the

repository. The standard states that the representation SHOULD provide

links to implemented service that are relevant in a resource representa-

tion. CMIS does not include a mechanism for declaring what services are

supported, some services may not be supported by repositories. An addi-

tional (non-optional) service that states what operations are support could

be added to the standard.

The CMIS standard extends the Atom and AtomPub to include some

CMIS specific features. Adding XML namespaces for describing the parts

of the CMIS objects. These include elements for CMIS object properties.

Dispatcher

A dispatcher mechanism has been implemented that maps the HTTP ac-

tion (GET, POST, PUT, DELETE) and resource identifier to the associated

resource as a PHP object and method. This is done using a multidimen-

sional PHP array, the first index of the array maps to HTTP action, while

the second identifies the resource. The returned value is a string that

corresponds to the object/method to call. For example the HTTP GET re-

quest within no action declared, corresponds to the method for displaying

the Service Document.

Generation of XML documents

Aspects of PHP make it well suited for a CMIS implementation. PHP is pri-

marily used a server side scripting language. Many features are built in to

aide in this as a result. PHP comes with tools for generating and handling

XML documents and dealing with JSON. This will be advantageous when

33



implementing all of the bindings.

When generating the XML documents there were two approaches:

1. PHP is used for “embedded HTML” It would be possible to generate

XML by “printing” using echo to output to the response. Care would

be needed to ensure a valid XML is created. This would not lead to

ideal exception handling.

2. PHP 5 provides the DOMDocument object which can be used to

generate and manipulate XML. Using this approach ensure the well

formed XML is created. The methods that generate XML document

can then return a DOMDocument objects and nothing is printed until

all methods that could cause an exception to be raised have been

called. This allows for cleaner exception handling as nothing has

been printed to the response within the resource methods.

Use of the DOMDocument was chosen.

3.3 Using the PHP implementation in Wordpress

3.3.1 Applying the CMIS data model to Wordpress

Wordpress started as a blogging system, but has evolved to be used as full

content management system. The behaviour of aspects can be changed

through plugins, these can modify the many aspects of a Wordpress site.

The CMIS implementation will be plugin to Wordpress.

All document objects within wordpress are stored as “posts”. The fol-

lowing are the default post types: Post, Page, Attachment, Revision, Navi-

gation Menu. Custom page types can be defined.

To apply the CMIS structure to Wordpress the approach used was to:

34



1. Look at the Wordpress Dashboard, this is the “admin area” of the site

and provides the user interface (UI) for for creating and managing the

site.

2. Look at the underlying database structure, this will provide a means

to discover the data associated with aspects of the site and what can

be made to CMIS properties.

3.3.2 Wordpress Posts from the UI of Wordpress

Looking at the WordPress dashboard. The following options are available

to users for creating posts.

Posts These are typically and most commonly used by blogs, these are

stored as under the “post” post-type. They are displayed in reverse

sequential order, providing a timeline of posts with the most recent

posts at the top. Posts can be categorised, possibly to multiple cat-

egories, this would work in conjunction with CMIS multi-filling capa-

bility. If a post is not assigned a category it will placed placed into

the “Uncategorized” category. This is a default category provided by

Wordpress, however it can be renamed. A post must have at least

one category.

Pages These are typically used to represent “less time-dependent” infor-

mation of a website. Like posts these are HTML data. However they

are not filed under categories but instead use a weaker form of hier-

archy. They are organised in a hierarchical structure using a parent

attribute. This is a relationship from a post to another post of the

page type, this is not required.

Media Which includes Images, videos as well as pdf or other files up-

loaded to the server. These are stored under the “attachment” post-

35



type.

Additional default post may be less apparent to users of Wordpress,

both to the site users and owners.

Navigation Menu Allow for custom navigation menus into a built into a

theme. These are made using the Wordpress Dashboard are more

theme specific.

Revisions These include: auto-saved copies of pages/posts and saved

drafts of posts/pages. They create a history of published update to

a post. As changes are made the original wp post entry is updated,

an a record of the state is created. The id of the original post will not

change, this fit that the post id can be used to generate the CMIS

concept of an immutable object id.

3.3.3 Wordpress Posts Database structure

There are two tables containing information about posts. When using

Wordpress’s default table prefix (wp ) these are called: wp post table and

wp postmeta.

wp post is a table with 23 attributes. The primary is an AUTO INCREMENT

integer value. The table contain values used as foreign keys, foreign key

constraints are not enforced by the dbms instead are managed at the ap-

plication level. Many attributes may be left null depending on post -type.

There are attributes that are always set such as: post author, which is a

foreign key to the ID of a wp users table tuple; a GUID, which is contains

the URL for that item; post type. Some attributes are only set for particular

post types: an attachment will not have any post content set, while an post

or page will not have a post mime type set.

36



Table 3.1 shows the mapping of CMIS properties to values from Word-

press table entries. When a values are tables are indicated by <table

name:attribute name>. When a table other than wp posts is used a for-

eign key from the wp posts entry is used to find the corresponding value

from the other table.

Property Description WP value

cmis:name Name of Object <wp posts:post name>

cmis:description Description of the object

cmis:objectId Id of the object post:<wp posts:ID>

cmis:baseTypeId Id of the base object-type for
the object cmis:document

cmis:objectTypeId Id of the object’s type cmis:document

cmis:secondaryObjectTypeIds Ids of the object’s secondary types

cmis:createdBy User who created the object <wp users:display name>

cmis:creationDate DateTime when the object was
created <wp posts:post date>

cmis:lastModifiedBy User who last modified the object

cmis:lastModificationDate DateTime when the object was
last modified <wp posts:post modified>

cmis:changeToken Opaque token used for optimistic
locking and concurrency checking

cmis:isImmutable Defines if the object can be modified.

cmis:isLatestVersion Requires Calculation

cmis:isMajorVersion true

cmis:isLatestMajorVersion Requires Calculation

cmis:isPrivateWorkingCopy Requires Calculation

cmis:versionLabel Requires Calculation

cmis:versionSeriesId

cmis:isVersionSeriesCheckedOut

cmis:versionSeriesCheckedOutBy

cmis:versionSeriesCheckedOutId

cmis:checkinComment

cmis:contentStreamLength Length of the content stream (in bytes).

cmis:contentStreamMimeType MIME type of the content stream <wp posts:post type>

cmis:contentStreamFileName File name of the content stream <wp post:guid>

cmis:contentStreamId Id of the content stream.

Table 3.1: Mapping of CMIS Document Properties to Wordpress Posts

Some properties may be unset, for example properties relating to con-

37



tent streams may left empty when a document does not have an associ-

ated content stream. Similarly objects do require values in the secondary-

ObjectTypeIds property.

Properties related to versioning have the following note in the standard:

The repository MUST return this property with a non-empty value if
the property filter does not exclude it. Version property values are
repository-specific when a document is defined as non-versionable.
[TC, 2013, p. 39]:

To determine if a Wordpress post is the latest version a it will be nec-

essary to determine if any revision posts with the parent page value set to

the post id are drafts or are published. To determine if a revision is a draft

or has been made the post status tuple will need to be checked. A similar

method is necessary to determine the lastModifiedBy, using the aurother

of the “published” revision.

Wordpress has basic versioning built in, it does not include the con-

cepts such as a private working copy or checking in/out documents.

wp postmeta contain additional information about posts, information is

stored as key value pairs. This is where some meta data is stored about

media for example. The key “ wp attachment metadata” is used and in-

formation about alternate image sizes and camera metadata is stored as

a string. No file size is stored however, determining the content stream

length will need to be by querying the file from the filesystem.

There is no property for the HTML markup of page, an additional HTML

type property was included in documents. This was called “wp:post” and

contains the markup as it is stored in the database, a fragment of HTML

markup. The standard states that value of a HTML property may contain

38



fragments of HTML and do not need to guaranteed validity. This prop-

erty key was chosen for the implementation of the plugin built on Ela-

phus CMIS, if other plugins are to implement CMIS this could be point

at which implementations could vary. This could affect interoperability be-

tween CMIS implementations.

3.3.4 Wordpress Category Database structure

Another wordpress object that needs to be mapped to the a CMIS object

type is categories. Categories function like folders for posts of the post

type. They have a hierarchical structure, categories may have a single

category as a parent.

Table 3.2 shows a suggestion for the mapping of CMIS folder properties

values from Wordpress value. While the mapping a post to a document

presents few challenges, Wordpress categories are not as equivalent to

CMIS folders.

Wordpress stores information about categories across 3 tables:

wp terms Contains the definition of Wordpress categories, the id, name

and slug (name for use in URLs).

wp term taxonomy Provides more information about entries in the wp terms

table, a description, their parent (foreign key relationship) and num-

ber of posts.

wp term relationships Contains the post ids (object id) and term ids (term taxonom id),

this is used to place posts into categories.

No information about the creator of categories otr changes in their his-

tory is stored in the database. This means there is no source of information

for this properties. It may be possible the for CMIS wordpress function to

record changes to categories itself. However as CMIS is intent to be an

39



abstraction layer this seems to go against the intention of the standard.

The standard is not written to change the structure used to store infor-

mation in a CM system. It does not seem desirable to have the CMIS

implementation, or a plugin providing CMIS to affect the database of the

system.

Property Description WP value

cmis:name Name of Object <wp terms:name>

cmis:description Description of the object <wp term taxonomy:description>

cmis:objectId Id of the object cat:<wp terms:term id>

cmis:baseTypeId Id of the base object-type for the
object cmis:folder

cmis:objectTypeId Id of the object’s type cmis:folder

cmis:secondaryObjectTypeIds Ids of the object’s secondary types

cmis:createdBy User who created the object

cmis:creationDate DateTime when the object was
created

cmis:lastModifiedBy User who last modified the object

cmis:lastModificationDate DateTime when the object was
last modified

cmis:changeToken Opaque token used for optimistic
locking and concurrency checking

cmis:parentId Id of the parent folder of the folder
folder:root
folder:posts
cat:<wp terms:term id >

cmis:path The fully qualified path to this folder Requires Calculation

cmis:allowedChildObjectTypeIds
Id’s of the set of object-types that can
be created, moved or filed into this
folder.

cmis:document...

Table 3.2: Mapping of CMIS Folder Properties to Wordpress Categories

3.3.5 Site structure

To generate id for objects the id use by Wordpress are useful. There are

two tables that store information about objects. To differentiate the ids

a prefix was used, for entries from the wp post table ids took the form

“post:id”. For categories the prefix used was “category:id”. When imple-

menting the services the repository specific implementation is written to

40



look at value before the colon and make the relevant Wordpress functions

based on this part of the object id.

Wordpress does not structure its sites in a strict hierarchy as CMIS

does. It is necessary to create some CMIS specific folders under which

the items within a Wordpress site can be presented. This is another point

at which implementation of CMIS for Wordpress could potentially diverge.

For this implementation a root folder was created with the id “folder:root”.

This had 3 children folders:

folder:posts This is the access point for post type posts. All children

this folder are categories, only categories that do not have a par-

ent relationship set in the wp term taxonomy table are listed under

folder:posts. categories will have children that are either posts or

other categories. When generating the list of children is necessary

to iterate over all categories, this is a limitation of Wordpress as par-

ent relationship is only mentioned in child categories.

folder:pages provides a list of all pages, as they do not have a hierarchy

in the same folder manner this only access point for pages.

folder:media access for media, this operates similarly to folder:pages.

41



Chapter 4
Evaluation

To evaluate the performance of the CMIS server the following metrics will

be used: the CPU load on the server and the memory usage of the server.

These will be measured under different workloads. A simple client will

be written that requests random documents from a data set. The client

will attempt to request pages at varying page requests per second. The

client should not do any work with the results of requests and try to closely

match the desired number of page requests per second.

It is not the objective to evaluate the performance of the web server

or of the interpreter used, however benchmarking the code base running

with different interpreters is an objective. There are layers of caching that

cause skewed data. It is possible that either the application server could

return a cached version of a page, or that the interpreter could avoid having

to regenerate the document. To avoid the possibility of caching a large

data set should be used. MySQL will also cache the results of SELECT

statements. If the statements are the same it will not need to run the query

again.

42



4.1 Generation of a the dataset

It is necessary to populate the Wordpress repository with large enough

dataset so that the server will need to generate a different for requests

and cannot cache the generated document. To achieve this 12,000 Word-

press posts were generated. A short php script was used to generate post

using content from lorem ipsum generator. The content of the posts had

a fixed number of paragraphs of similar length, the content was randomly

generated and varied from post to post. The title of the posts varied by

having a number appended to the word “Ipsum”. The posts were gen-

erated so that they would be in order, this meant that the post IDs were

sequential and the client could easily pick a post by generating a random

number within the range of post IDs.

4.2 Details of the machines used for testing

When evaluating the CPU usage of the some of the features CPU will

need to be turned off. In particular CPU frequency scaling, Intel CPU can

come with “Intel Speedstep”. It is important that this feature is turned off

so that the base workload of the server can be measured without aiming

for a moving target. When the processor is under a lower workload it is

switched to a slower clock frequency, this allows for power conservations

however this would cause unreliable results.

For the benchmarks performed it was necessary to use a low per-

formance machine (when compared to a scaled server machine) as the

server; this will be referred to as device 1. This device had an Intel Atom

Processor N2600 and 2GB of ram and no swap space (room allocation on

43



the hard disk for pages). The typical use case for a device with this pro-

cessor is not as a server, it was chosen because it was possible to disable

Intel SpeedStep in the BIOS of this machine. When using a more powerful

machine a greater rate of page requests per second would be expected.

The clock rate of this device was limited to 600 MHz.

Another device was also used. This machine had a Intel Core i3-4000M

CPU with 8GB of ram; this will be referred to as device 2. The clock rate of

this machine ranges from 800 Mhz to 2.4 GHz, however due to limitations

of the BIOS it is not possible to turn off Intel SpeedStep. If this machine

was as the server, requests would be processed more quickly.

Both machines used an x86 64 install of Arch Linux as the operating

system. The web server used was lighttpd version 1.4.35-1. The version

PHP used was 5.6.8-2. The version HHVM used was 3.7.0-1. MariaDB

was used to provide mysql server, the version used was 10.0.17-2. Word-

press version 4.2.2 was used. The version of the Linux kernel used was

4.0.1-1.

4.3 Means of measuring server performance

It is necessary to measure the CPU and memory usage on the server.

Requests made to the server are handled by multiple processes: the web

server, PHP CGI processes, MySQL, HHVM. A means of measuring all

of these process is it to look at the total CPU and memory usage of the

system. This means that it is necessary to limit the other processes run-

ning on the server, as these would be a source of unwanted activity on the

machine.

This data should be obtained during sessions of requests. A bash script

was used to obtain these values, the script would take a reading and store

44



that as a text file and sleep for a period of time.

4.3.1 CPU usage

Details about CPU usage was obtained from “/proc/stat”1. This contains

information about the time the CPU has spent on different tasks since boot.

The time spent on user and system process is measures during a session

of requests. Since the processor time include information from boot the

initial value obtained should be subtracted from all later readings.

Polling and storing of the values for CPU usage will take up proces-

sor time, a baseline of the script running without the server handling any

requests will be needed.

4.3.2 Memory usage

The memory usage was measured using the “free” command2 Since no

swap was allocated on the device used as a server only the physical mem-

ory was checked.

4.4 Design of a simple client for benchmarking

It was necessary to design a client that would do minimum work and at-

tempt to closely match a desired request rate. A client was written in Ruby

with three different methods for getting a set request rate.

1. A client built under the assumption that the time per request would

be negligible. This client would make a set number of requests with

equal time between requests. This avoids the overhead of checking

the time taken for each request.
1http://www.linuxhowtos.org/system/procstat.htm
2http://linux.die.net/man/1/free

45



2. A client that makes a fixed number of request but calculates the time

taken for a request so that the frequency of requests can be varied.

This method should better match the request frequency, if the time

taken for a request is not negligible.

3. A client that runs for a set time and varies request frequency to match

the desired frequency. This has the additional overhead of checking

total run time of session of request.

To determine which strategy would be the most effective, each client

was run 100 times attempting to make 100 requests per second over a 30

second period, with a 10 second break between each session of requests.

The time and number of requests made per session was measured. It is

important to consider whether the request rate matches the desired re-

quest rate. As well as running for the required time, this is so that the data

measure correlates to workload. This is so that the load on the server can

accurately be attributed to the clients requests.

The request were made for random CMIS document entries from a

server running HHVM. Both client and server were running on the same

machine, the values would not accurately measure the server’s perfor-

mance. Device 2 was used for this test. Non-essential background ap-

plications were not stopped, as server performance was not measured.

Requests were made to a local machine minimising the time taken to look

up the host of the server, the requests were made to ip address “127.0.0.1”

They are only suitable for evaluating the approach to take for the client. It

is possible to make some observations about the performance of HHVM

running for an extend time. HHVM has been stated to have a “warm up

period”, this is not evident from this test which ran for close to 4 hours

46



with approximately 900,000 requests made to the server. Request time

appears to be reasonably consistent, HHVM caches based on hostname

of the request. It is possible to speculate that the performance of HHVM

will not vary hugely during a test session with a single client.

Table 4.1 shows the results of these series of test. These results show

that the client that makes a fixed number of requests with equal time be-

tween requests, runs for longer than desired and does not achieve a value

near the desired request rate. This client performed the worst and was not

used.

Average Runtime
of Session (s)

Average Request
Rate (s)

Fixed request count
Fixed pause 51.37102684 58.41545984

Fixed request count
Calculated pause 30.97463337 96.85866851

Varied request count
Calculated pause 30.00515986 96.80335313

Table 4.1: Duration and request rate over 100 client sessions

Figure 4.1 shows the results from each of the individual session dura-

tions. When doing minimal work to correct for session duration, the clients

would run for at least 20 extra seconds. As there is no apparent speed

up in response of the server, some of the longest sessions times were to-

wards the end of the test. It can be assumed for the code size used in the

test, that HHVM is able “warm up” quickly enough that the effect on results

is negligible. The variance of the session time, when there is no correction

for pause between requests, is 0.78. This 0.78 variance is over 3000 re-

quests be session, this variance seems small when considering the total

number of requests. Multiple factors can attribute to this beyond request

47



Figure 4.1: Duration of client request sessions

time, noise caused by background process and possible imprecision in

Ruby’s sleep duration.

A modified version of the client was also made to determine the max-

imum request rate the server can manage. To achieve this the pause

between requests was removed.

All of these clients were designed to make non-concurrent requests.

The client would be written to use a thread pooling approach and achieve

a page request rate closer to the desired rate. The client would then make

concurrent requests, however for this tests the decision was made to only

evaluate the server under a non-concurrent load.

48



4.5 Evaluation of the server running at maxi-
mum request rate

The performance of the server was measured while generating the CMIS

representation of random wordpress post compared to the web page gen-

erated when viewing that page online. The client used attempted to make

requests at the highest request rate possible.

The theme used will affect the the amount of work the server must do

to generate a post. The web page displayed of a post is theme specific,

a theme may include a list of recent posts or links to categories. This

information is not required or included in a CMIS document. The theme

used for this test was “Twenty Fifteen” the default theme selected in current

installations of Wordpress.

The test was run using Zend Engine with Zend OpCache and HHVM

using device 1 as the server.

Time (s) Request Req per Sec (s−1)

CMIS
HHVM 600.0338292 4853 8.087877322

Zend OPcache 600.064528 5330 8.882378063

WP
HHVM 600.3758767 1459 2.430144276

Zend OPcache 600.0431712 535 0.8916025141

Table 4.2: Achieved max request rate

The server achieved a much lower response rate when generating a

the Wordpress page when compared to a CMIS version of a page. This

can be expected as the rendered page shows more information from the

database and relies on more calls to Wordpress functions. The generating

of the CMIS representation of a post is reliant on work in manipulating

the XML representation than of the initialisation of objects. As the tests

49



were done using OPcache and HHVM which implements it own caching

these repeated methods calls are likely cached. The database requests

were more to be the bottleneck as, database queries are a time consuming

endeavor.

During these test server resource were monitored. The values for pro-

cessor time spent during the test are shown in figure 4.2 and figure 4.3.

These graphs show a baseline of CPU usage of the server running with

no requests being made to it. This will consist of the cost of polling CPU

and memory usage as well as any background process that were left run-

ning. It is not possible to run this test in complete isolation because the

test require an operating system and networking process.

The slope of the graph indicate rate of processor time spent doing work.

When the processor is more active, under higher load, less time will be

spent idle and the graph will be less steep.

Looking at results from figure 4.2, it shows that less process time is

spent when computing a CMIS document object when compared to Word-

press post. The slope of the CMIS representation becomes less steep af-

ter a period of time. Before this point there is less difference in the slope of

the CMIS and Wordpress representations. Possible reason for this change

will be discussed later in this section.

The same test was run with using HHVM. Figure 4.3 shows that more

process time was spent when generating the CMIS objects initially. How

ever there is a similar change in rate of process use when generating CMIS

objects.

50



Figure 4.2: CPU time spent during Requests (Zend Engine w/ OPCache)

Figure 4.3: CPU time spent during Requests (HHVM)

51



Speculating on the reason for this change in performance there two

reasons:

1. Generation of CMIS objects is less dependent on function/method

calls to PHP script. Less time is needed to cache the OP code

needed to run the script. If the caching mechanism works similarly

in HHVM and Zend OPCache the similarity in results would make

sense.

2. A constant between the test is that application server and SQL server

are the same. It is possible that due to the smaller response size

that caching at one or both of these services causes a gain in per-

formance. Less varied queries are run on the SQL server when a

CMIS document is generated. No information about categories or

navigation menus is retrieved for example. As the CMIS issues sim-

ilar request MariaDB could begin operating better after a “warm up”

time. Perhaps the application server, lighttpd, begins issues cache

hits when asked for the smaller CMIS response.

The memory usage during the test are shown in figure 4.4 and figure

4.5. Again a baseline of the system when no request are being made

is shown in green. These values are taken with the necessary daemons

running. The baseline memory usage when HHVM is running is higher

than when it not. This is expected as HHVM runs in addition to the lighttpd

and MariaDB.

52



Figure 4.4: Memory usage during Requests (Zend Engine w/ OPCache)

Figure 4.5: Memory usage during Requests (Zend Engine w/ OPCache)

Memory usage show little difference when generating CMIS documents

and Wordpress posts in Zend Engine, see figure 4.4. Memory usage when

53



using HHVM shows more a of a difference. When generating CMIS doc-

uments HHVM uses more memory, approximately 5% of available RAM.

While Zend Engines memory usage remains quite consistent, HHVM in-

creases over time. There could be an issues with HHVMs garbage collec-

tion. The generation of CMIS document will result in the instantiation of

more objects, this could be the cause of the increased memory consump-

tion.

54



Chapter 5
Future Work

The implementation of Elaphus CMIS is not yet complete, work should be

done to get the implementation to a point at which I could be released

as an open source project. When the completion of both: the CMIS data

model and Atom binding would be desirable time for release. Documen-

tation will need to be written before release. At that point work would still

need to be done to add the Web Services and Browser bindings.

There are potentially interesting area that CMIS could be applied to.

Use of CMIS as means to structure data for the semantic web could be an

interesting area of research.

Potentially if the CMIS standard was updated to include predefined sub-

types for commonly used object types CMIS could function more as an “out

of the box” solution. The standard could be extended to include a lookup

service to allow for sharing of objects-type definitions.

55



Chapter 6
Conclusion

A part of the CMIS standard was implemented in PHP. No major barriers

were encountered during this implementation. This supports the standards

claim of language independence.

Aspects of the standard may have been written with Java in mind.

Java’s generics and available data structures can aid in the implementa-

tion of the CMIS standard. Some limitations of PHP result in Elaphus CMIS

possibly being less intuitive than desirable. This will only be determinable

once a more complete version of Elaphus CMIS has been released and

used by other developers.

Some of the limitations that cause this are: the lack a function/method

return type, lack of native enums, weak type hinting. The need for these

features has been observed before, Facebook have developed their lan-

guage Hack that provides these features.

Using the Elaphus CMIS in Wordpress provided largely positive re-

sults. The benchmarks performed showed that the generation of Atom

CMIS documents is at least comparable to the generation of Wordpress

web pages. In some cases the CMIS documents used less CPU time to

generate.

56



The achieved request rates were better in the case of CMIS docu-

ments, meaning that as well as causing less of a load the CPU they also

could be generated faster.

CMIS may not be an “out of the box” solution to provide interoperability

between CM systems. There is room for variations within implementations

of CMIS. This is especially evident for CM systems that do not provide a

strict hierarchical representation of the data within a repository.

When implementing CMIS in Wordpress there are different approaches

available to applied CMIS data model to Wordpress. Interoperability will

likely be an issue if different implementations approach this differently.

However different implementation of CMIS should will only be able to rep-

resent data according to the data model. This means that differences

should more easily accounted for than if the two systems are completely

different.

57



Bibliography

M. Achour, F. Betz, A. Dovgal, and N. Lops. Php manual, 2015.

http://php.net/manual/en/ Accessed: 2015-05-02.

L. Eshkevari, F. Dos Santos, J. Cordy, and G. Antoniol. Are php applica-

tions ready for hack? In Software Analysis, Evolution and Reengineering

(SANER), 2015 IEEE 22nd International Conference on, pages 63–72,

March 2015. doi: 10.1109/SANER.2015.7081816.

Facebook. The jit compiler, 2015. http://hhvm.com/ Accessed: 2015-05-

02.

S. Golemon. Extension writing part i: Introduction to php and

zend, 2005. http://devzone.zend.com/303/extension-writing-part-i-

introduction-to-php-and-zend/ Accessed: 2015-05-17.

U. Kampffmeyer. Enterprise content management. PROJECT CONSULT

GmbH, 2006.

F. Müller, J. Brown, and J. Potts. CMIS and Apache Chemistry in Action.

Manning Publications Company, 2013. ISBN 9781617291159.

A. OhAirt. An open localisation interface to cms using oasis content man-

agement interoperability services. Master’s thesis, School of Computer

Science and Statistics at Trinity College Dublin, 2013.

58



D. Paroski. Speeding up php-based development with hhvm,

November 2012. https://www.facebook.com/notes/facebook-

engineering/speeding-up-php-based-development-with-hiphop-

vm/10151170460698920 Accessed: 2015-05-02.

O. C. M. I. S. C. TC. Content management interoperability services (cmis)

version 1.1. Technical report, Organization for the Advancement of

Structured Information Standards (OASIS), 2013.

H. Zhao. Hiphop for php: Move fast, February 2010.

https://www.facebook.com/notes/facebook-engineering/hiphop-for-

php-move-fast/280583813919 Accessed: 2015-05-02.

59


