
Self Tuning Algorithms Running on

Intel’s Transactional Memory

— An investigation into Self Tuning Split Transaction algorithms

running on Intel’s Hardware Transactional Memory —

Daniel Dowd
Supervisor: Jeremy Jones, Head of the Department of Computer Science and

Statistics

Examiner: David Gregg, Department of Computer Science and Statistics

Submitted to the University of Dublin, Trinity College in order to fulfil the

requirements for the award of the MAI in Computer Engineering

May, 2016

Declaration

I, Daniel Dowd, declare that the following dissertation, except where otherwise stated,

is entirely my own work; that it has not previously been submitted as an exercise for

a degree, either in Trinity College Dublin, or in any other University; and that the

library may lend or copy it or any part thereof on request.

Signature Date

1

Permission To Lend

I agree that the Library and other agents of the College may lend or copy this thesis

upon request.

Signature Date

2

Abstract

As processors grow into a new era where the number of cores on a chip is growing to

meet consumer demands for greater performance, we need to utilise new advancements

in hardware to meet these demands. Intel have recently released their implementation

of Hardware Transactional Memory and using this it is possible to obtain greater per-

formance of multithreaded applications. However, serial data structures do not benefit

from these new advancements in the same way as more parallel data structures such

as a binary search tree do. Using a technique called Split Transactions it is possible to

show considerable performance increases over current state of the art approaches with

a serial data structure such as an ordered linked list. The performance increase that is

observed by using this method on an ordered linked list can be up to 9 times greater

than transactional memory which is not utilising split transactions. Split transactions

are also 9 times faster than a conventional lock based approach.

Summary

The recent move of processors towards more and more cores creates performance bottle-

necks on multithreaded applications that require locks. This limits the performance of

multithreaded applications as all but one thread, the thread that has obtained the lock,

are not progressing. Hardware Transactional Memory provides a solution to this prob-

lem. It allows all threads to make speculative changes and only commit the changes it

has made if there are no conflicts with the speculative changes of other threads.

Unfortunately Intel’s implementation of Hardware Transactional Memory needs a lock

based fallback path. A transaction is never guaranteed to be able to commit its changes.

A transaction abort can be caused by events other than the transaction going into a

conflict status. A page fault is an example of this. Some errors such as a page fault

can not be handled by a transaction and this is why there needs to be a lock based

fallback path.

This has been shown to work well with parallel data structures but, it does have limi-

tations when it comes to serial data structures. Split transactions provide a method of

splitting up a long transaction into a number of smaller transactions. Split transactions

carry more overhead costs in setting them up because there are more of them happen-

ing for one operation on a data structure to complete but, they can drastically reduce

the likelihood of a conflict between two threads. This can reduce the number of aborts

1

Self Tuning Algorithms Running on Intel’s Transactional Memory

that occur and this reduces the number of times the fallback path is taken.

The likelihood that a transaction will need to take the fallback path, when split trans-

actions are being used, can be predicted. Using the birthday problem algorithm as a

base, this can be adapted to give the probability that two threads will be in the same

split at the same time. This adaptation can be used in conjunction with the probability

that a split transaction will operate in a split to find the percentage of operations that

will require a lock to complete.

The split length of a split transaction is crucial to a the split transaction committing

its portion of the work. If the split length is too long, the fallback path will need to be

taken too often, while if the split length is too short, the high overhead of setting up

a new transaction is going to negatively impact performance. This ideal split length

value will change with the key range of a list and the ideal length could even change

within the course of the benchmark test to check its performance. A static analysis was

performed to find the upper and lower bounds for the split lengths. This was integrated

into the dynamic tuning algorithm that was developed to tune the split length on the

fly.

The performance of the dynamically tuned split transaction was compared against

transactional memory that was not running split transactions and a lock. All tests

were run on ordered linked lists with key ranges of 64, 4096(4K) and 65536(64K). The

lock used in this comparison was the same type of lock that was used in the fallback

path of the transactions. This lock was the Test and Test and Set lock. It was chosen

for its speed and efficiency of bus usage.

2

Acknowledgements

I would like to thank Jeremy Jones for the time and effort he invested in me. He was

always willing to answer my questions and give his support in whichever way he could

throughout the project. I would also like to thank Cian Burns for giving his feedback

throughout the writing of my thesis.

3

Contents

Summary 1

Acknowledgements 3

1 Introduction 10

1.1 The Problem . 10

1.2 Potential Solution . 11

1.3 Chapter Guide . 13

2 Background 14

2.1 Ordered Linked List . 14

2.1.1 Origin of the Ordered Linked List 14

2.1.2 Data Structure Choice . 16

2.2 Transactional Memory . 18

2.2.1 Origin of Transactional Memory 18

2.2.2 Intel’s Implementations of Transactional Memory 21

2.2.3 Hardware Lock Elision . 23

2.2.4 Drawbacks of Intel’s Hardware Transactional Memory . 24

2.2.4.1 Lock Based Fallback Path 24

4

CONTENTS Self Tuning Algorithms Running on Intel’s Transactional Memory

2.2.4.2 Limitations of Intel’s Hardware Transactional

Memory . 26

2.2.5 Current Research with Hardware Transactional Memory 28

2.3 Split Transactions . 31

2.3.1 Limitations of Split Transactions 33

2.4 Alternative Solutions . 34

2.4.1 Lock Approach . 34

2.4.2 Lockless Algorithms . 35

2.4.2.1 Hazard Pointers . 35

2.4.2.2 Bakery Algorithm . 37

3 Design 40

3.1 Baseline . 40

3.2 Implementation . 41

3.2.1 Transactional Memory . 42

3.2.2 Split Transactions . 44

3.3 Dynamic Tuning of Split Transactions 47

3.3.1 Design . 47

3.3.2 Birthday Problem . 48

4 Results 51

4.1 Static Analysis . 53

4.1.1 Key Range of 64 . 54

4.1.2 Key Range of 4096 . 56

4.1.3 Key Range of 65536 . 59

4.2 Dynamic Tuning . 62

4.3 Conflict Prediction . 66

5

CONTENTS Self Tuning Algorithms Running on Intel’s Transactional Memory

5 Discussion 69

6 Conclusion 71

Bibliography 73

Appendices 77

A Code 78

A.1 helper.h . 78

A.2 helper.cpp . 83

A.3 main.cpp . 100

A.4 Build File . 117

6

List of Figures

1 Binary Search Tree . 16

2 Ordered Linked List . 17

3 Basic C++ Transaction Code . 22

4 Generated Assembly Transaction Code 23

5 Transaction Code Update . 26

6 ABA Problem Diagram 1 . 36

7 ABA Problem Diagram 2 . 36

8 ABA Problem Diagram 3 . 36

9 Lamport’s Bakery Algorithm . 38

10 Taubenfeld’s Black and White Bakery Algorithm 39

11 Test and Test and Set Lock . 41

12 Full Transaction Code . 42

13 Full Split Transaction Code . 46

14 Static Split Length with a Key Range of 64 Part 1 54

15 Static Split Length with a Key Range of 64 Part 2 55

16 Static Split Length with a Key Range of 4096 Part 1 56

17 Static Split Length with a Key Range of 4096 Part 2 57

18 Static Split Length with a Key Range of 4096 Part 3 58

7

LIST OF FIGURES Self Tuning Algorithms Running on Intel’s Transactional Memory

19 Static Split Length with a Key Range of 65536 Part 1 59

20 Static Split Length with a Key Range of 65536 Part 2 60

21 Static Split Length with a Key Range of 65536 Part 3 61

22 Key Range of 64 . 62

23 Key Range of 4096 . 64

24 Key Range of 65536 . 65

8

List of Tables

1 Possible Transaction Conflicts . 20

2 Processor Information . 52

3 Parameters for Conflict Detection equations derived from the Birthday

Problem equations . 66

4 Results from the modified Birthday Problem equation, equation 3, and

Conflict Detection equation, equation 4 67

5 Calculated percentage of successful Split Transactions 67

6 Observed Success % . 68

9

Chapter 1

Introduction

1.1 The Problem

Up until 2007 Moore’s Law [Moore, 2006] held in terms of computers. It stated that ev-

ery 18 months the clock frequency of computers would have doubled, thereby doubling

the speed of the computer. After 2007 this law no longer held. This led to a change

in the approach of processor design. Instead of the single or dual core processors that

were popular up until 2007, the processors began to contain 4 or more cores. Up to this

point computers with this number of cores were almost exclusively super-computers,

not the consumer grade readily available chips that we now see.

Multicore processors can increase the performance of computers as multiple tasks can

run at the same time on different cores. However, when using a shared data structure

this is not always the case. When two threads are running and attempting to operate

on the same data structure, only one can do so at any point in time. If this does not

happen it is possible that one of the threads will change data that the other thread

was using without its knowledge. This results in the data structure becoming corrupt.

In order to prevent this the data structure must be protected by a lock or a mutual

10

CHAPTER 1. INTRODUCTION Self Tuning Algorithms Running on Intel’s Transactional Memory

exclusion algorithm. This ensures that only one thread at a time can operate on the

data structure. This can lead to a large amount of idle cores which is a waste of

resources. If a processor has eight cores with a program that has eight threads running

on that processor, all trying to update a shared data structure, the program can at

best achieve 1/8th of the amount of work that it could potentially actuate. What

we actually find is that by increasing the number of threads updating a shared data

structure that is protected by a lock, the performance actually decreases as the number

of threads increase. The overall performance achieved is a very small fraction of the

ideal speed, which can only be seen in single threaded programs.

This is a limitation which severely hampers the overall execution speed of multi-

threaded programs. It is compounded with the fact that computers are being manufac-

tured containing more and more cores to achieve the speed increase which consumers

grew accustomed to while Moore’s Law held. Processors are now heading in the di-

rection of becoming many-core which is similar to a graphics card in approach. This

problem is all the more important to solve, as future programs will become more and

more reliant on multi-threading for performance.

1.2 Potential Solution

A potential solution to this problem is to take an approach similar to the approach

taken by Databases. If a thread would update a shared data structure that is not

protected by a lock, it will do so speculatively. If there is a conflict between one thread

and another, instead of the data structure becoming corrupted, one of the threads will

rollback its speculative changes allowing the other thread to commit its changes thereby

making them viewable to every thread. This is known as Transactional Memory and

was first proposed, to be handled completely in hardware, by Herlihy and Moss [Herlihy

11

CHAPTER 1. INTRODUCTION Self Tuning Algorithms Running on Intel’s Transactional Memory

and Moss, 1993].

This concept is a logical extension of Load Locked (LL) and Store Conditional (SC)

instructions which were first proposed by Jensen, Hagensen, and Broughton for the S-1

AAP multiprocessor [Jensen et al., 1987] for Lawrence Livermore National Laboratory

(LLNL). These instructions have also been implemented in architectures such as Pow-

erPC and ARM architectures. The implementations differ between architectures in the

limitations of the size of the memory block that is covered by the instructions and the

retry policies used.

Currently only two manufacturers, IBM and Intel, have implemented Hardware Trans-

actional Memory (HTM) and even this is in the last 5 years. This project will use the

Intel version because it is cheaper to experiment with as they have incorporated this

into their general purpose chips without errata as of the Broadwell series. IBM appear

to have only included HTM with their high end Series-Z [Jacobi et al., 2012] processor

range. There is however, another aspect to this research. While just using HTM can

greatly increase the performance of data structures that are inherently parallelisable

such as a Binary Search Tree, this may not be the case for linear data structures such as

an Ordered Linked List. The Ordered Linked List also happens to be the pathological

edge case for a Binary Search Tree.

There is also a method to use multiple transactions to span a list instead of just using

a single transaction. This has the potential benefit of improving the performance of

a linear data structure as standard transactional memory is able to do for a parallel

data structure such as a Binary Search Tree. This is known as the Split Transaction

and was first proposed by Lev and Massen [Lev and Maessen, 2008].

12

CHAPTER 1. INTRODUCTION Self Tuning Algorithms Running on Intel’s Transactional Memory

1.3 Chapter Guide

The Background chapter will cover the state of the art research has been done into

this topic to date. It will also contain some information to help the reader better

understand the rest of the thesis to follow. The Design Algorithms chapter will detail

the approaches taken to solving the problem outlined and how this was implemented.

Results will contain the output data from the program outlined in Design Algorithms.

This will be in graph and table format. The Discussion will explain what the results

mean in the context of the application. The Conclusion will describe the results in

the context of the Industry and how they could affect the design of future multithread

applications.

13

Chapter 2

Background

2.1 Ordered Linked List

An ordered linked list is discussed here because it is the pathological worst case of a

binary search tree. The ordered linked list in this case, is a singly linked list. A standard

linked list or an unordered list is essentially an unordered stack which even though it

is similar to a linked list, it behaves differently due to the difference in insertion and

removal algorithms for it. Ordered lists are much easier to search for a particular key

value as the entire list does not necessarilly need to be checked. This will perform

poorly when compared to an ordered linked list when the list size is increased.

2.1.1 Origin of the Ordered Linked List

As stated earlier the Ordered Linked List is the pathological worst case of the Binary

Search Tree. It is also however, a valid, and well used, data Structure in its own right.

A more standard Binary Search Tree would have a structure similar to the example

in figure 1. In this Tree the root node would be the first node entered into the Tree

which in this case is 10. Any value less than 10 would go to the left and any value

14

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

higher would go to the right. If a value was equal to 10 nothing would happen as no

duplicates are allowed in this Tree. This comparison style will continue for each node

until each value seeking to be entered into the Tree is in place, or the key is a duplicate

and therefore no insertion has taken place.

To remove a node, a value is checked against the root node. If the root node is to be

removed, the rightmost node of the left subtree of the root node would become the root

node. In other words, the highest value less than the root node would become the root

in this situation. If the value to be removed is less than the root value, the comparison

moves to the node along the left branch of the root node and here the comparison is

repeated. While if the value is higher than the root node, then the comparison moves

to the node on the right branch of the root node and the process repeats. With a

matching value the same process for finding a replacement node occurs. If there are

no nodes on the left subtree of the node to be removed, the node is removed and the

previous node points to any child it might have in its right subtree. Finally if there is

no matching node in the Tree, the method will exit without changing the Tree as early

as possible.

15

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

Figure 1: Binary Search Tree

For the sample Tree shown in Figure 1 to be the pathological worst case of a Binary

Search Tree, the node with a key value 5 must be the root node. The remaining nodes

shown must also enter the Tree in ascending order for this case to be realised. When

this occurs, the Tree would look and behave like the Ordered Linked List shown in

Figure 2. The difference between the two data structures at that point is that the

Binary Search Tree could still resemble the Tree in Figure 1 after some favourable

inserts and removals. It is very likely that this would occur given enough time. A

very real concern exists where there is significant deterioration of the Tree leading to a

data structure that resembles an ordered linked list. This is the case which should be

prepared for when incorporating such a data structure into an application.

2.1.2 Data Structure Choice

For this reason, the Ordered Linked List, as can be seen in Figure 2, will be the data

structure of choice for this research. The information which each node in the linked list

will have is the Key and a pointer, Next, pointing to the subsequent node in memory

16

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

or NULL if there are no more nodes in the list.

Figure 2: Ordered Linked List

To insert a node into the list, the steps used are very similar to those used in inserting

a node into the pathological case of the Binary Search Tree. The key of the node to

be inserted is checked against the key of the root node. If the value of the key is less

than the root node’s key then the new node becomes root and its next value points to

the previous root node. If the value of the key is equal, no actions occur as the node

already exists in the list so the insert terminates. While if the key value is greater

than the root node’s key, then the subsequent node undergoes the same comparisons.

This is done exhaustively until the node is either entered in to the list or the insert is

terminated as the value is already present in the list.

Removing a node from the list is the other main operation that can take place. The

node with the key to be removed from the list is checked against the key value of the

root node. If it is less than the key value of the root node, the node is not present in the

list and so the operation terminates. If it is equal to the key value to be removed from

the list, the next node in the list becomes the root node. If the value is greater than

the key value of the root node, the next node in the list becomes the subject of these

comparisons. However, there is a slight alteration in the process when a node, which

is not the root node, is removed. The previous node in the comparison also needs to

17

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

be updated. This will point to the subsequent node to the node that is being removed.

This process continues until the operation terminates due to the Key value not being

present or the removal of a node takes place.

2.2 Transactional Memory

There are many implementations of transactional memory, both in hardware and in

software. Software implementations have been available for some time and have been

developed to a reasonably high standard. Hardware implementations however, are

not as common. There are currently only two vendors who supply processors with

Hardware Transactional Memory (HTM) support, IBM [Jacobi et al., 2012] and Intel.

Sun microsystems were developing the Rock processor which reportedly had HTM

support until the project was stopped when Oracle assumed control of Sun.

For the purposes of this research Intel’s implementation of HTM was used. This deci-

sion was based primarily on the availability of HTM since IBM’s version is only included

in their high end Series-Z processors which are very expensive. Intel on the other hand

have included HTM in all their processors as of the Broadwell series.

2.2.1 Origin of Transactional Memory

As stated in the Introduction, Transactional Memory is in essence an extension of the

Load Locked (LL) and Store Conditional (SC) instructions [Jensen et al., 1987]. Unlike

the implementations of LL and SC, it can examine to see if there are multiple memory

locations and not just a single block of memory as in the LL and SC implementations.

In order to do this, Transactional Memory has two sets, a Read Set and a Write Set.

Any memory location that is read in by a Transaction is placed in the Read Set.

18

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

Similarly any memory location that a Transaction writes to, is placed in the Write Set.

This model was first proposed by Herlihy and Moss [Herlihy and Moss, 1993]. It has

become the basis for transactional memory research since its publication.

The main benefits of transactional memory, according to Herlihy and Moss, are to avoid

locking issues such as Priority Inversion, Convoying and Deadlock. Priority Inversion

occurs when a low priority task delays a high priority task. This is mitigated with

transactional memory as each thread executes in parallel assuming there are enough

cores for all the threads. Convoying occurs where a task has de-scheduled but that

task has not released the lock. Using transactional memory this is avoided as no locks

need to be taken. Since no locks are taken, no processes are blocked from running

when a process is de-scheduled. The final issue that is avoided using transactional

memory is Deadlock. This is avoided as no locks are taken so other processes running

can not lock the same data set in a different order. This issue can also be mitigated

with instructions such as a compare and swap instruction where the bus is also locked

by the instruction.

In order for those attributes to be possible, a transaction would need to have a finite

sequence of instructions which is atomic and serialisable. The atomic property is defined

as the results from the instructions all committing as one or none. The sequence then

restarts. The serialisable property is defined as the execution of a transaction will not

interleave with other transactions. This only means that the finished transactions will

appear to be serial in nature.

It is possible and probable that a transaction will update a memory location in use by

another transaction. These transactions are then said to be in conflict. Conflict in this

regard has defined states that are listed in figure 1. This table depicts the conflict state

for only two transactions, A and B, as conflict of more transactions will be handled in

19

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

the same manner.

Case 1 Transaction A Writes to a memory location in Transaction B’s Read Set.

Case 2 Transaction A Reads a memory location in Transaction B’s Write Set.

Case 3 Transaction A Writes to a memory location in Transaction B’s Write Set.

Table 1: List of Possible Transaction Conflicts

If a transaction does not encounter the conflict states shown above during its execution,

it can finish or commit its results. A transaction will not be able to continue if one of

the three states above are encountered. When this occurs, the transaction is said to

have aborted. The transaction then has to be retried from the start and is referred to

as a retry.

On a commit, a transactions changes must become visible to the rest of the transactions

or threads as if this had happened in 1 cycle. This has to occur in 1 cycle for it to appear

atomic to the rest of the threads. If a transaction is running in another thread and the

commit happens in several cycles it would be almost impossible to have a consistent

model. As a direct consequence of this, parallel logic is needed when a commit occurs

to ensure all updated or added memory locations are seen in one block of changes. It

also means that the changes can’t be made to main memory as this would take too

long. As a result all changes need to be published in the cache as this is much faster

than accessing main memory. All changes are able to appear in a first level cache in

one cycle. Using a snoopy cache coherence protocol, changes can be easily identified

by other threads of execution.

The paper by Herlihy and Moss also proposed a validate instruction to report if a

transaction had aborted. The emphasis is on the programmer, in their model, to test

20

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

if a transaction had aborted when it would be more progressive to have a section of

code for handling the aborted transaction and the calling of this handler would be

done in hardware. It should also be the case that an aborted transaction should not

be running and the program counter of the processor should be pointing to the point

at which the transaction had started. An aborted transaction should be shut down as

soon as possible.

2.2.2 Intel’s Implementations of Transactional Memory

Intel’s HTM has eager conflict detection as a feature. As soon as any of the conflicts

defined in table 1 occur, they are resolved. In all three cases, Transaction B will

abort so it can start from the beginning of its code sequence while Transaction A will

continue.

To monitor the Read and Write Sets, it is assumed that Intel have extended their

MESI cache coherency protocol rather than adopt another cache coherency model such

as Hammond’s [Hammond et al., 2004]. MESI works on a cache line granularity level.

It can also be assumed for simplicity that Transactional Memory is only a feature of the

first level cache and is not present in the second or third level caches. This assumption

will hold for Write Sets, but Read Sets do not appear to follow this behaviour in testing.

However, for simplicity we will assume this principle holds.

There are four bits per cache line to represent MESI and, as we assume, some extra bits

to represent Transactional Memory. Any conflict is resolved by hardware in the cache

which makes it very fast. This is required in order to obtain performance increases over

traditional lock based approaches. This is also where HTM has a major advantage over

Software Transactional Memory (STM). STM takes much longer to handle a conflict

than HTM and it takes STM a lot of processing to implement a similar conflict detection

21

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

system across different threads of execution.

To facilitate HTM, Intel has supplied programmers with six new instructions. These

are XBEGIN, XEND, XACQUIRE, XRELEASE, XTEST and XABORT. XBEGIN

and XEND are for beginning a transaction and committing a transactions changes

respectively. XACQUIRE and XRELEASE are the instructions for Hardware Lock

Elision which will be explained further in section 2.2.3. The final two instructions,

XTEST and XABORT, have a different role. XTEST will check to see if a transaction

is currently running. This is very useful as the code for both paths transactional and

the fallback path can be combined together. This instruction allows the programmer to

isolate code which they only want to run when in a transaction such as calling XEND if

a transaction is running or releasing the lock otherwise. XABORT is an instruction to

abort the currently running transaction. This allows the programmer to handle cases

where they need the transaction to abort swiftly. Such a case can arise if the lock

is taken on the fallback path, and a transaction needs to abort as another thread is

updating the data structure and is doing so without using Transactional Memory.

unsigned i n t s t a t u s = 0 ; // Holds the re turn s t a t u s o f xbegin () ;
whi l e (t rue) { //Keep t r y i ng

s t a t u s = xbeg in () ; // Store the re turn value o f xbegin () ;
i f (s t a t u s == −1) { // check the re turn i s −1

/∗UPDATE SHARED DATA STRUCTURE∗/

xend () ; //End the t r a n s a c t i o n
break ; //Code executed . Get out o f loop to

cont inue program execut ion
} e l s e {

//The code f o r handl ing aborted t r a n s a c t i o n s w i l l be here
}

}

Figure 3: Basic C++ Transaction Code

22

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

RETRY: or eax , 0xFFFFFFFFh ; s t a t u s = −1
xbegin L0 ; Sta r t the t r a n s a c t i o n

L0 : cmp eax , 0xFFFFFFFFh ; Check eax i s s t i l l equal to −1
jne L1 ; I f eax != −1 jump to L1

;UPDATE SHARED DATA STRUCTURE

xend ; F in i sh the t r a n s a c t i o n
jmp L2 ;Go to L2

L1 : ; Code f o r handl ing aborted t r a n s a c t i o n s
jmp RETRY ;Go back to s t a r t to r e t r y the t r a n s a c t i o n

L2 : ; Continue program execut ion

Figure 4: Assembly Generated from figure 3

2.2.3 Hardware Lock Elision

Hardware Lock Elision (HLE) is an attempt to use transactional memory with lock

based programs. Intel have two new instructions XACQUIRE and XRELEASE to

accomplish this. With HLE, the first time a thread attempts to acquire a lock it

will automatically acquire the lock. It will however, be run as a transaction. If the

transaction aborts for any reason it will actually attempt to acquire the lock. If another

thread already has the lock, then the transaction will abort and the thread will have

to wait until the lock becomes free. The advantage of this is that it is very easy to add

onto the standard lock approach. If the code is written in assembly, two instructions

need to be added to the lock code. The XACQUIRE instruction is placed just before

the lock is acquired while the XRELEASE instruction is placed before the lock is

released. If the code is in C or C++, the compiler will have already pre-implemented

these instructions in functions, so it is just a matter of using the function that acquires

the lock with the HLE version and replacing the code for releasing the lock with the

HLE version as well.

It was designed to be easily used by programmers who had already implemented lock

23

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

approaches so they could get some of the benefits that transactional memory provides

with very little effort. In a worst case scenario, HLE will have similar performance

as the lock based approach. In other situations there is the caveat that the program

could be more effectively parallelised. This would most likely be used when a lock

based system is retrofitted to take advantage of some of the benefits of transactional

memory.

2.2.4 Drawbacks of Intel’s Hardware Transactional Memory

Intel’s HTM is not without its drawbacks. It does require a lock based fallback path

to be implemented. The manner in which it is implemented means that some events,

such as page faults, can’t be resolved within a transaction. It is also possible that the

transaction could read or write to too many memory locations. While there are only

three states where transactions are in conflict, there are many more global states that

will cause aborts to occur. For this reason, Intel give no guarantee that a transaction

will ever commit [Intel, 2013]. The main difficulty then is determining when, not if,

should the transaction be abandoned for a particular operation such as inserting a node

into an ordered linked list.

2.2.4.1 Lock Based Fallback Path

The lock based fallback path, as stated, is something that is certain to happen. When

it does occur, for the lock to be effective, transactions can’t update the shared data

structure while a thread has the lock. This must happen even if a transaction is

currently running. To ensure this will happen, we leverage the potential conflict states

by placing the lock in the Read Set of the transaction as soon as it starts. To cover

the scenario where the lock is updated by another thread after a transaction has begun

24

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

but before the lock is placed into the Read Set of the transaction, a comparison must

take place.

There are drawbacks to this as well. For example, if the thread is de-scheduled off

the processor, other transactions still can’t complete until the lock is released. This is

where time can be gained or lost in the execution of HTM. If a transaction is unlikely

to complete with repeated tries, it should go to the fallback path as early as possible.

However, if it is likely that the operation could succeed, it should be given every

opportunity to do so as a transaction.

Reverting back to a lock is expensive. All other threads can not update the data

structure while this is held, as stated before. Hence, it is a priority to minimise this

state as it reduces the potential parallelisation of the operations. Due to the need to

minimise the fallback paths execution time, the lock in place must be very efficient.

We can also have threads wait until the lock is released before trying a transaction.

Since transactions can not operate on the data structure while the lock is held, this

should stop needless transaction aborts. Sample code of this algorithm can be seen in

figure 5. Before a thread can start a transaction, it must first wait for the lock, named

lock var, to be reset to 0. Then inside a transaction, the lock variable is read into the

read set of the transaction and the transaction is immediately aborted if it is set. If

it is set at a later point in time while the transaction is still running this will cause a

conflict and an abort will occur as defined by the conflict states in table 1

25

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

unsigned i n t s t a t u s = 0 ;
whi l e (t rue) {

whi le (l o c k v a r) {
mm pause ;

}
s t a t u s = xbeg in () ;
i f (s t a t u s == −1) {

// Transac t i ona l Area
i f (x t e s t () && l o c k v a r) xabort () ;

} e l s e {
//Abort Handling

}
}

Figure 5: Transaction Code Update

The factors mentioned are just some of the major considerations and drawbacks of this

system. The Bakery algorithm would enforce fairness with regard to threads entering

the fallback path. However, if we assume that we can minimise the number of locks

taken as a proportion of the completed operations, then enforcing fairness, which would

solve starvation and liveness, isn’t a major concern. Efficiency and speed of execution

is a priority. We would like to return to transactional operations as quickly as possible

as it offers the best performance return. For this reason, a simple lock such as the

Test and Set or the Test and Test and Set should be used. The Test and Test and Set

lock reduces main memory accesses over the test and set lock by taking advantage of

cache coherency protocols. This lock is therefore the lock that should be used due to

its speed and efficiency of execution.

2.2.4.2 Limitations of Intel’s Hardware Transactional Memory

Transactional memory, despite what it may seem, is not the solution to all of our

problems when it comes to executing operations in parallel. There is an overhead in

creating a transaction. It takes some time to set up a transaction. We also have the

fallback path which is controlled by a lock meaning that in a worst case scenario, Intel’s

26

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

implementation of transactional memory will degrade to a slightly lower performance

than the lock implemented in the fallback path. This is a consequence of the overhead

of creating the transactions and can not be avoided.

The data structure used is integral to the performance of a transaction. Serial data

structure such as a linked list, will have far more contention than their tree based

counterparts. Skip lists could also help alleviate some of the problems which the serial

nature of linked lists pose. The main issue with serial data structures is the amount

of potential conflict that can occur. For example, the average depth to find a node in

a binary search tree containing one million nodes is 22. That is compared to 500,000

for a linked list of the same size. While it is possible that a binary search tree, can in

its pathological worst case. degrade to a linked list, it is very unlikely.

The Write Set of a transaction is also limited by the cache line size of the first level

cache. A typical cache line will be 64 bytes in size. With variables of 8 bytes in size

(64 bits), 9 writes to the same cache line to which a memory address is mapped by the

set associative cache could cause an abort. This limitation would increase the number

of locks taken and unfortunately it is unavoidable. This type of abort will probably

be rare but if the data structure is in a contiguous block of memory mapped to one

cache line and the transaction has more than 8 variables in its write set every time, the

transactional memory will have its worst case performance as outlined above.

Due to the necessity of a lock implementation in the fallback path, if a thread acquires

the lock and is descheduled, no transactions can run during this period. This is mainly

problematic when the number of threads running exceeds the number of available

cores on the processor. However, this is a real concern as a scheduling quantum is

typically around 2 milliseconds. The thread is also not guaranteed to run during the

next quantum if it was de-scheduled. This is at the discretion of the scheduler of the

27

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

operating system. On Microsofts and most Linux/Unix operating systems, it is possible

to give a thread a high priority to allow it the best chance of running. This option

is not available on the Mac OSX operating system. Some long delays can therefore

occur until the thread is re-scheduled so it can complete its operation and release the

lock.

2.2.5 Current Research with Hardware Transactional Memory

Transactional memory needs to be compared to the methods it attempts to replace,

which in this case is lock implementations. Pankratius and Adl Tabatabai [Pankratius

and Adl-Tabatabai, 2011] compiled an investigation where they compared the devel-

opment process between development teams to implement a software transactional

memory approach against a lock based alternative. It was found that the team using

transactional memory had a working solution quicker than the team that used locks.

However, the time difference evened out as the transactional memory team spent the

time saved into tuning the code that controlled transactional memory for best per-

formance. The team using locks took the same time to get a working application as

the transactional memory team took to implement and tune the code for maximum

performance. From this we can conclude two things. Firstly, transactional memory

simplifies the development process for a development team. To achieve maximum per-

formance, the transactional memory approach code needs to be tuned to get the best

performance which takes time.

The simplification of the code will make applications easier to maintain and update

with new functionality. Additionally, it is also conceptually easier to manage which

could reduce the number of bugs present in the application.

So far very little investigation has taken place with regard to Hardware Transactional

28

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

Memory. Romano and Diegues are at the forefront of this with two papers in the past

two years on this subject [Diegues and Romano, 2015] [Diegues and Romano, 2014].

These papers focus on Intel’s version of HTM rather than the IBM implementation

[Jacobi et al., 2012]. Much of the current research involves Intel’s implementation

rather then IBM’s. A likely cause of this is probably down to the cost of a series-Z

cpu from IBM, while Intel have implemented transactional memory across their chipset

range.

Diegues and Romano in their 2014 paper [Diegues and Romano, 2014], incorporated

their transactional memory solution into a GCC compiler. This was a mistake as it is

unlikely to have the optimum solution with this approach. Different algorithms and

data structures behave very differently and as they pointed out themselves, ”there is

no one size fits all solution”. It can be viewed that integrating the approach into a

compiler is trying to make a one size fits all solution. However, they do get some

reasonable performance increases from using transactional memory and their dynamic

tuning achieves the same result as their best variant approach. There is also no com-

parison to current ubiquitous techniques such as a lock based approach, which would be

the best comparison as the performance increase is relative to the performance of such

an implementation, not relative to transactional memory running on a single thread.

When multiple threads require a lock to operate on a data structure, typically there is a

performance reduction with increasing numbers of running threads. Therefore transac-

tional memory with 8 threads could be 4 times faster than transactional memory with

1 thread but could have a relative speed increase of 10 over the lock based approach

with 8 threads. The follow up paper in 2015 [Diegues and Romano, 2015] is a more

extensive paper with regard to the various simulations run. It however, has the same

faults that are listed above.

29

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

Yoo [Yoo et al., 2013] investigated if Intel’s hardware transactional memory could

improve the performance of TCP/IP in 2013. This paper focusses on high performance

computing workloads and the improvement that transactional memory can provide for

these situations. They found that transactional memory could boost performance by

about 40% under real world loads but fell to just over 30% under very high loads. This

paper shows how versatile transactional memory is and that it can be adapted to meet

most multithreaded systems where there is the potential to use multiple threads to

increase speed of execution.

Another target for potential performance increases is in memory databases. Karnagel

[Karnagel et al., 2014] investigated the use of transactional memory to increase the per-

formance of B+ Trees and the Delta Storage Index which is implemented in the SAP

HANA in memory database. This study used Intel’s transactional memory implemen-

tation. Karnagel found that by using transactional memory, there was a performance

increase but also a code simplification. The study found that algorithms implemented

scaled better and were easier to verify on top of providing performance increases. To

further strengthen the performance claims, Leis [Leis et al., 2014] compiled a study

using transactional memory for updating data in an in memory database. Leis found

that by using Intel’s transactional memory, almost all of the database transactions

could be achieved without a lock thereby vastly increasing performance. This allowed

Leis to have concurrent database transactions commit with a very low overhead.

The possible use cases of transactional memory, some of which are mentioned above, is

only matched by its potential to change the way programs are written. Herlihy, whose

paper [Herlihy and Moss, 1993] is the cornerstone of this field, speaks of such a potential

change in a more recent presentation [Herlihy, 2014]. Herlihy highlights some of the

more recent novel uses of transactional memory in this talk. He also presented the

30

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

concept that transactional memory will not replace locks but rather they need to work

together. This is supported by the fact that a transaction needs a lock based fallback

path in the Intel implementation otherwise they can not guarantee that a transaction

will ever commit.

2.3 Split Transactions

Split transaction as proposed by Lev and Maessen [Lev and Maessen, 2008] is splitting

one transaction into smaller individual transactions. This could be done for a variety of

reasons but reducing potential conflict is a major reason. When using split transactions

on a data structure such as an ordered linked list, the reduction in conflicts that can be

provided, offsets the overhead of setting up more transactions. The overhead of setting

up a transaction is not insignificant and that is one of the limitations of transactional

memory as it stands. The amount of conflict that can be observed needs to be very

high for this method to be considered as a viable option to take.

Diegues [Diegues et al., 2014] has shown that in cases where the number of aborts is

very high, transactional memory actually performs worse than a lock based alternative.

This case is where split transactions are of value and as stated above, can be found in

the ordered linked list data structure.

In order to implement split transactions, the point at which one split transaction ends

needs to be saved so the next split can start from that saved point. There is an obvious

problem with this. What happens when that point no longer exists in the list by the

time the next split transaction is due to start? This is not an easy problem to solve

and causes most of the issues to do with split transactions.

Another problem, which is not as obvious but just as important for the performance,

31

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

is how an abort of a split transaction is handled. This problem extends the previous

problem stated. This means that the solution needs to be extended to take this into

account. Practically, the best situation would be where each individual split transaction

can be retried so long as the saved starting point of the split hasn’t been updated.

Otherwise it would need to start at the very beginning of the data structure which

could potentially waste a lot of effort and resources of the processor. However, even

if it is possible to create a checkpoint, if that checkpoint is updated then it has to go

back to the very beginning.

Lev and Maessen were part of the team in Sun Microsystems developing the Rock

processor which was rumoured to have an implementation of transactional memory.

This lends credence to their statement where they state full hardware support for true

closed and open nested transactions is unlikely to be possible. Since Intel have not

implemented the split transaction concept in hardware, it means that this tracking

of the checkpoints of the split transactions will need to be done in software. Split

transactions was already going to have additional overhead time costs due to the extra

transactions being created but there will also now be the overhead of tracking the

checkpoints of the split transactions in software. While this is not ideal, the effect of

the split transactions will have to be greater to offset this overhead.

Surprisingly virtually no attention has been paid to split transactions since their sug-

gestion by Lev and Maessen. This lack of research into these could have been influenced

by the cancellation of the Rock processor that Lev and Maessen were working on when

this paper was released.

32

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

2.3.1 Limitations of Split Transactions

Split transactions have numerous limitations some of which have been outlined above.

These limitations are quite large and as such there is quite a lot to overcome. The

biggest issue however, is that hardware support for split transactions is unlikely to

designed. Unfortunately true open and closed nesting of transactions would be difficult

to support in hardware, as stated by Lev and Maessen [Lev and Maessen, 2008], which is

the reason for this. It then has to be a software algorithm, as stated before, which makes

it expensive to implement. It is likely that a solution would have its own data structure

stored in main memory to keep track of each node that has been updated.

The performance of transactional memory will already have been compromised by the

fact that there is an extra piece of software controlling the transactions. This is com-

pounded by the problems of the sequence of events upon an abort with a transaction.

If any abort causes the operation to go back to the start of the list, there is potentially

a massive loss in performance over longer lists as the work needed to get to the same

point in the list is likely to be a lot more when compared to shorter lists.

While performance is an issue, it is possible to effect the performance by changing

the split length of the transaction. However, the only other way to directly effect the

performance dynamically is to alter the number of retries. This gives a very interesting

situation. While it is beneficial, what can be changed is limited. This also limits your

options if performance is not adequate. It is also crucial when performing this task

that the split length is not increased excessively as this will have a major adverse effect

on the performance.

33

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

2.4 Alternative Solutions

There are numerous potential solutions to the multithreaded approach for updating a

shared data structure. Normally such a data structure would be protected by a lock

but there are also other options. Lockless approaches which create an ordered list of

threads that want to update the data structure can ensure the starvation free property.

An example of this approach would be the Bakery Algorithm [Lamport, 1974] which

is outlined in section 2.4.2.2.

2.4.1 Lock Approach

There are many locks that could be chosen as the base lock approach to compare with

transactional memory. However, it is beneficial to choose a lock that is both fast and

efficient. This would exclude using any lockless algorithms such as the Mellor Crummy

Scott (MCS) [Mellor-Crummey and Scott, 1991], Bakery or Black and White Bakery

algorithms [Taubenfeld, 2004]. A lock that is both fast an efficient with its bus traffic

is the Test and Test and Set lock.

The lock approach is the current norm and as such it is the main point of comparison for

transactional memory to evaluate, and quantify, the performance increase it provides,

or performance decrease in certain situations. It is important to note a Test and Test

and Set lock is not a fair lock. It doesn’t ensure threads are starvation free and it

doesn’t ensure liveness of threads. It is deadlock free however, which is the minimum

requirement for a lock. This allows it to run optimally as it doesn’t attempt to solve

other issues such as liveness or starvation in software as algorithms such as the Bakery

or MCS lock do.

Due to its speed, the same lock that is used as a comparison is also used in the fallback

34

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

path of the transactional memory. The Test and Test and Set lock was chosen here for

the same reasoning, as it is the lock based comparison for the transactional memory.

It is very fast and efficient with its bus traffic. Too much bus traffic will slow down the

whole system so this is an important consideration.

2.4.2 Lockless Algorithms

These are algorithms that do not require a lock, hence the name, but instead rely

on clever algorithms to provide the same functionality. Most lockless algorithms are

superior for satisfying thread liveness and being starvation free than conventional lock

approaches such as a Test and Set or Test and Test and Set lock. Two examples of such

algorithms are Hazard Pointers [Michael, 2004] and the Bakery Algorithm. This section

will give a brief overview of these algorithms and highlights some of their strengths and

weaknesses.

2.4.2.1 Hazard Pointers

One of the most common problems faced when multiple threads can update a data

structure in parallel is the ABA problem. Due to the nature of transactional memory

this problem is avoided completely. However, algorithms that allow multiple threads

to update a data structure without obtaining a lock, such as hazard pointers or Treiber

stack [Treiber, 1986], must contend with this issue. An example of the ABA problem

is as follows.

Thread T1 attempts to pop node A from the list in figure 6. Before T1 can complete

its operation, it is preempted to allow T2 to run.

35

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

Figure 6: ABA Problem Diagram 1

T2 will then pop node A. T2 will push node X and node A onto the stack, as can be seen

in figure 7. When node A is pushed back onto the stack, the memory location is reused.

Figure 7: ABA Problem Diagram 2

T2 operations complete and T1 is allowed to run again. It is unaware of the changes

that T2 made to the stack. T1 still thinks that node A points to node B. T1 then

finishes its operation which is popping node A off the list. With T1 not knowing about

the update to what node A is pointing to, T1 moves the head to node B as can be seen

in figure 8. This leaves the stack in an inconsistent state.

Figure 8: ABA Problem Diagram 3

One solution to this concurrent programming problem is to use Hazard Pointers [Michael,

2004]. Hazard Pointers solve this problem as each thread keeps track of all the memory

locations that it is updating and stores the locations in the so-called Hazard Pointers.

36

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

This then allows for the implementation of a conflict detection systems to stop other

threads updating memory locations another thread is using. If a thread is only reading

a memory location, other threads will also be allowed to read that location but will

not be able to update it. However, for a write, all other threads must wait until the

thread which has that memory location in its hazard pointer, has updated it.

There are multiple implementations available in C and C++. This algorithm gives

more benefits compared to a lock and is very similar to software transactional memory

conceptually in with the problems it attempts to, and succeeds, solve. Each threads

hazard pointers must be available to all other threads and the checking of these pointers

can take time especially if a lot of memory locations are being updated.

2.4.2.2 Bakery Algorithm

In the 1970’s Dijkstra’s concurrent programming problem was a major issue [Dijkstra,

1965]. This problem is about ensuring the mutual exclusivity of a programs critical

section where multiple threads can execute this section. This is the issue which con-

ventional locks solve by only allowing one thread at a time to be in the critical section.

One of the most famous solutions to this problem, and an alternative to transactional

memory, is Lamport’s Bakery algorithm[Lamport, 1974].

The Bakery algorithm is one of the first lockless solutions to Dijkstra’s concurrent

programming problem. It works by giving each thread a number that is one more

than the maximum number assigned to a thread. Then each thread will in turn have

their turn at executing the critical section in order. On exiting the critical section the

number assigned to the thread is reset to 0. The main ingenuity about this algorithm

is the way it deals with which thread should advance into the critical section when

there are N threads running.

37

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

Figure 9: Lamport’s Bakery Algorithm

Lamport’s algorithm, shown above, requires read and writes to be in order for it to

work. This memory fence needs to be placed anytime the choosing array is updated.

If this does not occur it is possible for two threads to have the same max value which

will cause the algorithm to break down.

By virtue that none of the processes can go through deadlock or live-lock, starvation

free is also satisfied since there would be no other way in this algorithm for starvation

to happen. These properties are crucial as most lock implementations, such as the

Test and Test and Set lock, do not guarantee liveness which implies that starvation is

possible. Deadlock free is a minimum requirement for all locks to have mutual exclusion

on the owner of the lock.

Unfortunately the algorithm is not bounded and the maximum value assigned to a

thread can keep going up until register overflow occurs. This problem was solved by

Taubenfeld with the Black and White Bakery Algorithm [Taubenfeld, 2004]. Tauben-

feld’s algorithms achieves this by having two lists, a white list and a black list. While

38

CHAPTER 2. BACKGROUND Self Tuning Algorithms Running on Intel’s Transactional Memory

the threads in the white list are in the critical section, the black list is filling up. Once

all the threads in the white list have executed, the black list threads start to execute

the critical section. While this happens the white list will start to fill up. The max-

imum values for the black and white lists are also independent. This has the effect

of bounding the maximum values which can be assigned to the threads which in turn

stops register overflow from occurring.

Figure 10: Taubenfeld’s Black and White Bakery Algorithm

The Bakery algorithm does have a major performance issue when the number of threads

exceed the number that can run at once on a processor. The performance in these cases

will be a fraction of the performance otherwise. It is also slower than other locks such

as the Test and Set lock or the Test and Test and Set lock. Transactional memory will

outperform the Bakery and Black and White bakery algorithms by a wide margin. This

is down to the fact that the Bakery and Black and White Bakery algorithms do not

perform as well as locks such as the Test and Test and Set locks which transactional

memory outperforms. This was shown by Diegues and Romano [Diegues and Romano,

2014].

39

Chapter 3

Design

The main focus of this project was to discover the possible performance increase on

ordered linked lists using transactional memory. Long linked lists will have a very large

read set in comparison to a Binary Search Tree of the same size. The more memory

locations in the read set, the more likely it is for an abort to occur. This is where split

transactions can help. They will reduce the number of memory locations in a read

set on average which should provide a performance increase over both standard lock

implementations and transactional memory with no split transactions.

3.1 Baseline

The base comparison for all methods is that the lock based approach. The lock ap-

proach represents the current fastest way to update a shared data structure, therefore

it will be used as the comparison for all other algorithms that are implemented and

not the single threaded version of each algorithm.

40

CHAPTER 3. DESIGN Self Tuning Algorithms Running on Intel’s Transactional Memory

v o l a t i l e i n t l o c k v a r = 0 ;
#d e f i n e ACQUIRE() {

do {
whi le (l o c k v a r == 1) {

mm pause () ;
}

} whi le (InterlockedCompareExchange(& lock var , 1 ,
0) == 1) ;

}

#d e f i n e RELEASE() l o c k v a r = 0

Figure 11: Test and Test and Set Lock

The lock shown above in figure 11 is the implementation of the Test and Test and Set

lock that is used. The inner while loop limits the number of times that the Interlocked-

CompareExchange will run. Since the InterlockedCompareExchange is a Compare and

Swap instruction, it will lock the bus and stop other threads from using the bus. This

will delay and adversely affect the performance of other threads which is why it needs

to be limited. The mm pause() is recommended by Intel when spinning on a variable

that is in the cache.

3.2 Implementation

Hardware Transactional Memory is still in its infancy and as such there is limited

information available on how to use it. Luckily GCC, Visual Studio and Clang have

implemented functions as part of their C++ compiler allowing much easier usage of

HTM. In Clang’s and GCC’s case, an extra command line argument is also needed for

this to run. Even though only 6 new instructions were added to the instruction set,

the implementation means that the code can be written in C (Compiler Dependant)

or C++ rather than Assembly.

41

CHAPTER 3. DESIGN Self Tuning Algorithms Running on Intel’s Transactional Memory

3.2.1 Transactional Memory

A very basic and in some ways incomplete example can be seen in figure 3. It can be

noticed that the area of the code to handle a transaction abort is not present. This

section and others were removed to simplify the example.

As can be seen below in figure 12 there are two more variables that need to be defined.

Attempts holds the remaining number of tries that can be given to the transaction

approach before reverting to a lock. Transaction is set to one for when a transaction

should execute or 0 when the fallback path should execute.

unsigned i n t t r a n s a c t i o n = 1 ;
unsigned i n t s t a t u s = 0 ;
unsigned i n t attempts = 8 ;
whi l e (t rue) {

whi le (l o c k v a r) {
mm pause ;

}
i f (t r a n s a c t i o n == 1) {

s t a t u s = xbeg in () ;
} e l s e {

ACQUIRE LOCK() ;
s t a t u s = XBEGIN STARTED;

}
i f (s t a t u s == XBEGIN STARTED) {

i f (x t e s t () && l o c k v a r) xabort (0 x01) ;

/∗UPDATE SHARED DATA STRUCTURE∗/

i f (x t e s t ()) xend () ;
e l s e RELEASE LOCK() ;
break ;

} e l s e {
i f (attempts > 0) {

attempts−−;
} e l s e t r a n s a c t i o n = 0 ;
whi l e (l o c k v a r) {

mm pause ;
}

}
}

Figure 12: Full Transaction Code

As can be seen in figure 12, the functions relating to the new instructions provided by

Intel are named the same. Also within GCC they have defined XBEGIN STARTED

42

CHAPTER 3. DESIGN Self Tuning Algorithms Running on Intel’s Transactional Memory

to be equal to -1 as this is the value that is returned in the register eax, the register

all functions will put their return value in, if a transaction successfully starts.

There are some easy performance increases implemented in this code as well. A trans-

action has to be aborted if it starts and the lock is set. It therefore makes sense to not

start a transaction if the lock is set. This can be seen with the first while loop inside

the main while(true) loop. This loop is identical to the waiting loop used in the Test

and Test and Set lock. This loop was also implemented at the end of the fallback path

at the very bottom of the code. This will stop the transaction from going back to retry

if the lock is set. These two changes to the logic, stop transactions from needlessly

aborting because one thread has acquired the lock. This reduces the number of locks

taken by limiting preventable aborts.

When using transactional memory it is very important to do all memory allocation

outside of a transaction because malloc may be implemented with a lock which could

cause the transaction to fail. Malloc is also very time consuming which could also

increase the likelihood of an abort, even if malloc is implemented using an instruction

such as a Compare and Swap instruction. Therefore to limit the number of calls to

malloc, there needs to be a pool of unused nodes that a thread can use. When this is

empty and only then, will a call to malloc be made. This will be done outside of the

transaction in order to reduce the time in a transaction.

To reduce the complexity of this solution, each thread will have its own pool of allocated

nodes available for use instead of calling malloc. This pool of nodes will fill when a

thread removes a node from the list and adds that node to its thread local stack or

”pool” of unused nodes. If an insert would occur but that node is already in the list,

then this node will also be added to the stack of unused nodes. Each stack is thread

local to remove shared data issues which could arise from a shared stack or ”pool” of

43

CHAPTER 3. DESIGN Self Tuning Algorithms Running on Intel’s Transactional Memory

unused nodes. This helps offset the time that malloc would take to run and hopefully

the program would reach a point where malloc would no longer need to be called. These

thread local stacks of nodes will only be freed when the thread is finished running to

give the maximum potential increase from pooling unused nodes. This are no nodes

present in the stack when the program begins execution. All nodes that are entered

into each stack have either just come from the list, or the key value was already present

in the list and therefore the node could not be added. These nodes need to be added

outside the transactions to limit the time spent executing transactionally, which is not

an issue as each stack is thread local.

3.2.2 Split Transactions

This code can then be extended to allow for split transactions to take place. Split

transactions however, need some way of keeping track of updated nodes. An updated

node is a node that has been added or removed from the list. One way of implementing

such a system is to take advantage of the fact that the list is dynamically allocated.

It is then possible to map the memory address that the node is at to an index in an

array. A 64 bit architecture was in the machine that was used for testing. This means

that all the memory addresses are also 64 bits in length. In a 64 bit architecture, the

three least significant bits are 0, which allows the mapping to be done with the three

least significant bits shifted out.

To map the address to an index in the array, the remainder operator in C++ (%) is used

on the address with the length of the array. The remainder is that memory addresses

index in the array. A check can therefore be done at the start of a transaction to

ensure that the index corresponding to the memory location that the split transaction

is starting from has not been changed. It is crucial that when a node is updated,

44

CHAPTER 3. DESIGN Self Tuning Algorithms Running on Intel’s Transactional Memory

the index in the array corresponding to the memory address is incremented in the

transaction. If it is updated outside the transaction, there is no guarantee that list will

be consistent as two transactions could theoretically update the same node. It is also

important to set each index in the array to 0 before starting. This is because wrap

around could occur as some very large numbers could have been present in the memory

locations now assigned to the array.

With this approach, the memory address of the position to start the next split trans-

action from can not be stored in a pointer. It has to be stored in a variable that is not

dynamically assigned. The address needs to be stored in a 64 bit unsigned variable.

Then it can be cast back into a pointer when needed. Just in case that memory location

has been updated the variable can be shifted 3 bits to the right and the corresponding

index can then be found. If the value at that index has changed, we need to start from

the very beginning of the list again. If it has not been updated, the next split can be

started from this location.

This logic can be extended to deal with the case where a split aborts. Using the same

logic, it is possible to retry the same split so long as the index corresponding to the

memory location of the start of the split has not been changed. This can increase the

performance of split transactions as we are eliminating work that shouldn’t need to

be repeated unless the checkpoint or saved memory location has been updated. An

example implementation of the algorithm can be seen in figure 13.

45

CHAPTER 3. DESIGN Self Tuning Algorithms Running on Intel’s Transactional Memory

i n t mode = TRANSACTION; // Transact ion == 1
unsigned i n t attempts = MAXATTEMPT;
unsigned i n t s t a t u s = 0 ;
unsigned i n t s p l i t = 0 ;
unsigned long long save = 0 ;

r e t r y :
Node∗ v o l a t i l e pp = head ; // head o f the l i s t
Node∗ v o l a t i l e p ;
i f (mode == TRANSACTION) {

unsigned long long = TAG(pp) ;
n e x t s p l i t :

i n t backo f f = 0 ;
i n t cnt = 0 ;
whi l e (1) {

s t a t u s = xbeg in () ;
i f (s t a t u s == XBEGIN STARTED) {

i f (s p l i t == 1) pp = (Node∗) save ;
i f (l o c k v a r)

xabort (0xA0) ;
i f (myTag != TAG(pp)) { // abort i f tag corre spond ing

to saved p o s i t i o n i s d i f f e r e n t to saved value
s p l i t = 0 ;
xabort (0xA1) ;

}
/∗ UPDATE HEAD HERE ∗/
do {

/∗ UPDATE SHARED DATA STRUCTURE HERE (BAR HEAD) ∗/
pp = p ;
i f (++cnt >= s p l i t l e n g t h) { // i f the nodes

passed in l i s t == s p l i t l ength
myTag = TAG(pp) ; // save the

number corre spond ing to the tag
save = (unsigned long long) pp ; // po int at

which to s t a r t next t r a n s a c t i o n
xend () ;

s p l i t = 1 ; // i n d i c a t e s
next t r a n s a c t i o n i s f o l l o w i n g on from a
prev ious s p l i t

goto n e x t s p l i t ;
}
p = p−>next ; // go to next

node in l i s t
} whi le (p && p −> data != newNode −> data) ;
xend () ;

r e turn 0 ;
} e l s e { // here i f t r a n s a c t i o n abort s

i f (−−attempts <= 0) {
mode = LOCK;
goto r e t r y ;

}

i f (s p l i t == 1) goto n e x t s p l i t ;
}

}

Figure 13: Full Split Transaction Code

46

CHAPTER 3. DESIGN Self Tuning Algorithms Running on Intel’s Transactional Memory

3.3 Dynamic Tuning of Split Transactions

There are two ways to influence the performance of split transactions on the fly. Firstly,

the number of retries that a transaction can have can be altered and secondly, the split

length of the split transaction can also be altered. Both of these methods will have

different effects on the performance of the splits, but they share one characteristic.

More retries will increase the performance where contention is low while it will de-

crease the performance where contention is high. Under high contention scenarios, it

is usually more beneficial to take the lock sooner to limit the time wasted with aborted

transactions.

Changing the split length has the exact same characteristics but the performance results

will be more drastic in comparison. The longer the transaction, the more likely it is

that there will be contention, especially as the number of threads rise. Both of these

avenues for influencing the performance are therefore double edged swords. They could

severely hamper performance by increasing the number of retries or split length too

quickly, but conversely, being too slow to increase the values will lower performance in

the split length case. With the number of retries increasing, it could have an adverse

effect on the number of locks that need to be taken.

3.3.1 Design

The potential performance outcome is a huge consideration when choosing how to

implement performance tuning algorithms. When changing the split length, there are

a lot of advantages and this approach can be quite conservative when it comes to

increasing the split length. When the split length is increased too far, it will severely

hamper performance by causing too many aborts. However, the issue with smaller split

lengths is a slightly smaller drop in performance, but it is more likely to complete.

47

CHAPTER 3. DESIGN Self Tuning Algorithms Running on Intel’s Transactional Memory

An alternative approach to the problem that can be implemented in conjunction with

the approach stated above is to be really aggressive when reducing the split length

in the case of an abort. A very aggressive approach to this is in line with the slow

increment of the split length that is mentioned above. This will lead overall to a very

conservative approach to the tuning of the split transaction length.

This may appear simplistic, and it to some extent is, but the speed of execution of

the tuning can be very fast. The reduction of the split length can be executed in 1

operation with a shift to divide the number by two. If this would reduce the split

length below a minimum split length threshold, then the split length could be set to

that threshold. Likewise, when increasing the split length, if the increase would bring

the split length over the designated threshold, then it should set the split length to

be that threshold. While these may not be the most radical or even inventive ideas,

the concept seeks to limit the calculations necessary between operations on the list.

This is of primary importance as a lot of time is already used by implementing split

transactions.

3.3.2 Birthday Problem

The birthday problem is a method of discovering how likely it is for n people to have

the same birthday. It can be adapted to find the probability that at least two threads

will be in the exact same fixed section, or split, of a linked list. The standard birthday

problem equation is defined as follows.

p(n) = 1 − p(n) (1)

Where

p(n) = 365!
(365n)((365 − n)!) (2)

48

CHAPTER 3. DESIGN Self Tuning Algorithms Running on Intel’s Transactional Memory

In equation 2, the references to 365 are the number of days in a year. Therefore if the

references to 365 are replaced by the key range of the list divided by the split length,

we will have a representation of how likely it is that two splits will be in the same

split of the key range. We must also consider that, on average, there will be half of

the key range in nodes present in the list. This can be stated because we will either

attempt to insert or remove a node from the list with each attempt. Both insertion

and removal will have the exact same probability of occurring. Therefore the key range

will be divided by 2 to get the average number of nodes in the list. For this purpose n

will be the number of threads instead of the number of people. Then it should be as

follows.

pintersect(n) =

(KeyRange

2(SplitLength)
)
!((KeyRange

2(SplitLength)
)

n
)(((KeyRange

2(SplitLength)
)

− n
)
!
) (3)

This equation can give the probability that more than one thread will not be in a

split assuming that the split length is fixed for the duration of the execution. To

find the probability that more than one thread will be in the same split, subtract

the result of the equation from 1. Even though computers use pseudo random number

generators, the same result should not be gotten every run. The pseudo random number

generator is seeded with the same number every time, but the interleaves of the threads

is uncontrolled and entirely random. This should cause enough randomness in the

system for this equation to hold over the long run.

The probability of a conflict can be derived using equation 3 which was derived from

the birthday problem equation. On average, half the threads will operate on the list

past the halfway point of the list. Half the threads will, on average, operate on the first

49

CHAPTER 3. DESIGN Self Tuning Algorithms Running on Intel’s Transactional Memory

half of the list. Due to this it is possible to assume that on average, half the threads

have the potential to operate on the list and potentially cause a conflict. However,

when considering the probability that another thread could be in a split, all threads

are considered as all threads could potentially abort. This model assumes only half

the threads could cause the interference for aborts to occur. Therefore the equation to

model the probability of a potential conflict is.

pconflict(n) = pintersect(n) × n

2
(KeyRange

2(SplitLength)
) (4)

It is important to note that this equation only deals with the average likelihood of a

transaction aborting. There will probably be some factors during the execution of a

transaction which could cause the figures obtained from equation 4, not to hold. One

potential case where this will not hold is when 9 writes occur to the same cache line.

This is due to Intel’s cache coherency protocol which only has space for 8 memory

locations in a cache line and thus the transaction is aborted.

50

Chapter 4

Results

In order for the tests carried out to be as relevant as possible, the variables in the

system need to be kept to a minimum. The variables in the system need to be varied

the same amount for all tests as well for the same reason. Some of the main variables

in the system are as follows. The number of thread were varied for the execution of

the program with 1, 2, 4, 8, 16 and 32 threads. For each of the six different values

of threads, the program would be run for 10 seconds. One full execution on one key

range with one constant split length would therefore take 60 seconds to complete. For

example, with the static analysis that was done on a key range of 64, there are 7

different split lengths used ranging from 8 to 56. The program would have run for 7

minutes to get those results.

One problem running benchmark style tests like these, is to give the system time

to stabilise. If this is not allowed, results from separate runs are likely to be vastly

different as the list could still be filling which will artificially affect the results. On

average only half of the insert operations will add a node to the list as half the time

the key will already be present. The test would therefore have to run for a minimum

where the total number of operation is 4 times that of the key range. Then to for this

51

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

artificial effect to be sufficiently reduced, the test would need to run for a time that

allowed for the number of operations to be at least 10 times the key range. Through

experiment the 65536 key range produced a minimum of roughly 5000 operations per

second. This key range would have to run for 130 seconds as that is the time needed

for the number of operations completed to be 10 times the key range. Alternatively

to reduce this artificial performance boost, the list could be prefilled with all the odd

numbered nodes in the key range.

The processor used is part of the Broadwell family from Intel. It is the first family of

processors from Intel with HTM without errors in its implementation. The processor

information is listed below in table 2.

Processor Intel Xeon D-1540

Clock Frequency 2.00 GHz with 2.60GHz turbo boost

Memory 128GB

Number of Cores 8

Number of Threads 16

Architecture 64 bit

L1 Cache size 32KB

L2 Cache size 256KB

L3 Cache size 12,288KB (12MB)

Table 2: Processor Information

52

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

4.1 Static Analysis

In order to determine what the allowable split range should be, the number of trans-

actional attempts an operation on a list can have are capped at 16. This allows for

only one variable in the execution of the program, the split length. The split length is

varied from 8 to 56 on a key range of 64 and 8 to 120 on key ranges of 4096 and 65536.

These split lengths were chosen as the performance of larger splits, over 120, drops off

considerably. This should give an indication as to the limits, both upper and lower, for

the split length in the tuning algorithm. To make the graphs easier to read, each key

range has the total information spread over at least two graphs.

The graphs are laid out with the number of threads on the x-axis and the operations

per-second on the y-axis. Operations per-second is the performance metric used in

these tests. It is measured when an insert or a remove successfully complete either

transactionally or by obtaining the lock in the lock based fallback path. Each line on a

graph refers to a different split length used during the execution with the legend every

graph to illustrate which lines correspond to the various split lengths.

53

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

4.1.1 Key Range of 64

Figure 14: Static Split Length with a Key Range of 64 Part 1

As can be seen in figure 14, this graph covers the split range of 8 to 32 for a key

range of 64. In this graph, the performance with a split length of 8 is well below the

performance of all other split lengths. This indicates that a split length of 8 is not

beneficial on such a small list. One of the reasons for this could be that on average

with a key range of 64 there will be 32 nodes in the list. This will require 2 splits (16

nodes down the list) to reach the point of insertion or removal into the list on average.

Whereas the rest of the split sizes all exceed the average number of nodes down the

list a thread will go for an insertion or removal. With 4 threads the split length of 32

is the best performant which is interestingly the average length of the list. Beyond 4

threads the performance equalises for all split lengths.

There is a noticeable decrease in performance from 16 to 32 threads. This drop in

54

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

performance is caused by the context switching of the threads. As only 16 threads

can run at any one time, every scheduling quantum there is the overhead of a context

switch for each cpu. This phenomena will occur for all split lengths and key ranges. In

fact would be very unusual and highly suspicious if there was no performance decrease

where an application has the maximum number of threads a processor can run at a

time and where it has double the maximum number of threads that can be run at a

time. This performance drop could be exacerbated by a thread being preempted off the

processor while holding the lock on the data structure as no transactions can update

the data structure while the lock on the data structure is held.

Figure 15: Static Split Length with a Key Range of 64 Part 2

A similar trend can be seen with regard to the performance of 4 threads in figure 16.

The closer the split length comes to the key range, the better it seems to perform.

This is due to the length of the list. Operations on the list can complete quite quickly

55

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

compared to those on an increased list size. When compared to graphs (figure 17 and

20) of similar split lengths for key ranges, 4096 and 65536 respectively, it is possible to

confirm that the list length is key to performance outcome. This graph highlights the

high cost of sharing data across too many threads and by extension cpu’s.

4.1.2 Key Range of 4096

Figure 16: Static Split Length with a Key Range of 4096 Part 1

When the key range of the list is increased to 4096, there are some interesting differences

with the results where the key range is 64. We can see that the performance is at a

maximum at 16 threads and not 4 threads for the split lengths shown in figure 16. It

is also interesting to note that the split lengths in figure 16 apart from split lengths of

8 and 16 decrease in speed from 1 to 2 threads. This is evidence of a large increase in

the number of transaction aborts, and by extension, the number of locks.

56

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

Figure 17: Static Split Length with a Key Range of 4096 Part 2

The trend that could be observed in figure 16 with regard to the performance of split

lengths with 2 threads is even more striking in figure 17. We can see that there is now

a large dip in performance between 1 and 2 threads which indicates that the issues seen

in figure 16 have been exacerbated with an increase of the split length. However, we

see a large improvement, if not a stabilisation, of performance with a greater number

of threads. It appears that there is a large range of split lengths which will achieve

almost peak performance for this key range.

Based on these results, the dynamic tuning of the split transactions will need to place

the split length on the lower end of the spectrum when using two threads while allowing

for an increase in the split length when there are more threads available for program

execution.

57

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

Figure 18: Static Split Length with a Key Range of 4096 Part 3

With a key range of 4096, we now see a decline in performance where the split lengths

continue to increase as shown in figure 18. We can clearly see that with a split length

above 88 with the key range of 4096, the performance drastically drops off after 8

threads. It should also be noted that the behaviour previously identified about the

lack of performance with 2 threads is deteriorating. There is also what appears to be

an anomaly with a split length of 112 where the performance drops off for 4 threads

as well as for 2 threads. This could be an anomaly but if the split length is increased

further, it is possible that it could be representative based on the rapid decline in

performance that can be observed at 16 threads and above when compared to figures

16 and 17. This decline in performance is likely due the split lengths being too long

which is causing more transaction aborts. An increase of aborts is very likely to cause

a performance decrease.

58

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

Given these trends with the results, we know that above a split length of 88, there is a

distinct lack of performance for a key range of 4096. It was also shown that the split

length of 8 is needed to help overcome the performance drop off that which is apparent

with 2 threads.

4.1.3 Key Range of 65536

Figure 19: Static Split Length with a Key Range of 65536 Part 1

There are several very interesting pieces of information that can be obtained from figure

19. What we don’t see is as interesting as what we do see. For example, there is no

drop in performance with 2 threads compared to a single thread. We instead see a

performance increase by a factor of 2 across the board with the operations per-second

between 1 and 2 threads. This is most likely due to the fact that there is a greatly

reduced chance of a conflict occurring with a key range of 64K (65536) as compared

59

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

to 4096. Particularly when the average number of splits needed to traverse the list is

considered. With a key range of 4096 and split length of 32, on average half of the list

will be filled. This means that on average there will be 64 splits that are 32 nodes long

in the list. This compares with 1024 splits, with a length of 32 nodes which are in the

list on average. In both cases the key range is halved to find the average number of

nodes in the list.

The decrease in performance that can be observed in figure 19 as compared to figure 16,

the first graphs for key ranges 64K and 4K respectively. It takes significantly longer for

the performance to drop off in the shorter list length. This might seem a little counter

intuitive as it may initially appear that having the same number of splits for a longer

list as for a shorter list, should provide similar results relative to the single thread

performance. However, this is not the case as is illustrated by the peak performance

coming from a split length of 32 with a large decline to a split length of 40.

Figure 20: Static Split Length with a Key Range of 65536 Part 2

60

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

The trend seen in the first graph of the 65536 key range is followed on in figure 20.

The split length of 40 is similar to the split length of 32. After that split length, the

performance decreases severely. Despite the similarity for the split length of 40 to the

split length of 32, the difference shows at 32 threads. Here the performance drops to

the same level as the single thread performance. This is the start of a rapid crash of

the performance. The rapid reduction in performance is at its most drastic where the

split length is 80, is so severe that the performance of 16 threads drops to below the

performance of a single thread. The performance up to 8 threads however, is very close

to the performance shown in figure 19 which depicts the first 5 split lengths in the

sequence used.

Figure 21: Static Split Length with a Key Range of 65536 Part 3

The final graph, figure 21, of the static analysis of the 65536 key range, continues the

tendency shown in previous graphs. The performance, or lack thereof, stabilises with

61

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

a high split length value. This is consistent with results seen in the analysis of a key

range of 64 and 4096. It can also be deduced that the split length range for this key

range is 8 to 32. After 32 as the split length it was shown that the performance starts

to drastically drop off.

4.2 Dynamic Tuning

Based on the results from the static analysis, bounds were applied to the split lengths.

The upper bound was 32, while the lower bound was 8. This split length range provided

the best performance across the static analysis for all three key ranges. The tuning

algorithm used was the algorithms outlined in the design section.

Figure 22: Key Range of 64

On short key ranges, such as a key range of 64, we have some interesting results. We

62

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

can clearly see in figure 22 that for short key ranges, transactional memory outperforms

both the lock approach and split transactions. The performance difference of transac-

tional memory against the transactional memory with split transactions is quite large.

At its peak at 8 threads, transactional memory’s performance 2x greater than split

transactions. It is also 10x greater when compared to the lock approach for 16 and 32

threads. Split transactions have a performance increase of up to 4x over the lock based

approach for 16 and 32 threads. Unfortunately we can see that updating the data

structure with a single thread and a lock is faster than split transactions across the

board and there is only a small performance boost provided by transactional memory

with out split transactions.

The performance of transactional memory with no splits, is similar to the performance

in the static analysis where the key range is 64 and the split length is 56 in figure 15.

This is understandable as essentially the transactional memory approach is the same

as having one split transaction go the entire length of the list.

63

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

Figure 23: Key Range of 4096

The results obtained for a list with a key range of 4096 are much more promising. In

figure 23, it is noticeable that split transactions far outperform both the lock approach

and transactional memory that does not use split transactions. This is illustrated

with a performance difference of over 6x at its peak compared to both the lock, and

transactional memory.

In this example, transactional memory only performs as well as the lock in this case.

Even though the chance of a conflict is greater over a shorter list, the transactions

can execute much faster because of the length of the list. A second factor influencing

transactional memory’s poor performance, is the average workload required to get back

to the same point in the list if an abort occurs. As the list is longer, after an abort

it will, on average, take much longer to reach the point in the list at which the abort

took place on a list with a key range of 64 or 4096. This extra processing has a large

64

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

negative impact on the performance.

Figure 24: Key Range of 65536

With 64K as the key range, the results obtained are a little surprising. The best

performant approach below 10 threads is the lock. The lock approach is in decline

from two threads onwards. However, the lock approach is over 5.5x faster over a single

thread when compared to both transactional memory and split transactions. However,

split transactions show a marked performance increase with an increase in the number

of threads. Transactional memory without splits transactions performed very poorly

although with such a large key range it was not expected to perform well due to the

very high probability of contention.

65

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

4.3 Conflict Prediction

Using the equations derived from the Birthday Problem equation, equations 3 and 4

which can be found in the Chapter 3 Design, it is possible to find the probability that

two transactions will be searching through the same split in a list. The parameters

needed for these equations are shown in table 3. It is crucial to note that in these

results the thread value does not go above 16 even though all other tests reach 32

threads. The processor used can only run 16 threads at once, as shown in the pro-

cessor information in table 2. Therefore only 16 threads will be able to interfere with

each other at any point in time. This is why the calculations only go as far as 16 threads.

Key Range Split Length Average Length of LIst Number of Splits

4096 32 2048 64

Table 3: Parameters for Conflict Detection equations derived from the Birthday Prob-

lem equations

In table 4, the probability that at least 2 threads will be present in any split at a

point in time. This value is in the Probability in Same Split column. This value is

then multiplied by a factor based on the number of threads and the likelihood of a

thread operating in a split. This factor can be seen in equation 4. The result from this

calculation is in the Probability of Contention column. The Probability of Contention

is how likely a thread is to interfere with at least one other thread because at least one

of those threads has operated in a split region that at least one other thread is in.

66

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

Number of Threads Probability in Same Split Probability of Contention

1 0 0

2 0.0156250000000002 0.000244140625000003

4 0.0910873413085939 0.00284647941589356

8 0.365972102659725 0.0228732564162328

16 0.87098847007459 0.108873558759324

Table 4: Results from the modified Birthday Problem equation, equation 3, and Con-

flict Detection equation, equation 4

This can be converted to the likelihood that a transaction will be a success by subtract-

ing the value in the Probability of Contention column in table 4, from 1. Multiplying

this by 100 gives the percentage of this result, and that is the value in the Calculated

Success % column in table 5.

Number of Threads Calculated Success %

1 100 %

2 99.9755859375 %

4 99.7153520584106 %

8 97.7126743583767 %

16 89.1126441240676 %

Table 5: Calculated percentage of successful Split Transactions

The calculated success percentage needs to be compared to results obtained from run-

ning Split Transactions with a key range of 4096 and a split length of 32 to test the

accuracy of the conflict detection. For this test the split transaction algorithm needs to

67

CHAPTER 4. RESULTS Self Tuning Algorithms Running on Intel’s Transactional Memory

be updated. Instead of potentially restarting a transaction from a saved point we need

to restart from the beginning of the list. Otherwise the probabilities of the threads

running split transactions will be very hard to model.

Number of Threads Observed Success %

1 99.99 %

2 97.41 %

4 94.67 %

8 93.34 %

16 92.13 %

Table 6: Observed Success %

There is a difference between the calculated results and the observed results. However,

for a method that is not very complicated, this is not a large difference. This difference

is small enough to come under to be mostly explained by experimental error. As we

can see the difference in the success percentage between observed and calculated results

is out by, at most, 4 percentage points. Given the likelihood that some experimental

error is involved, the predicted results are very close to the actual results. Given more

time it may be possible to produce more accurate predictions.

68

Chapter 5

Discussion

There have been some positive results for split transactions in the results presented.

The dynamic tuner performed very well with a key range of 4096 and again, to a

lesser degree, when the number of threads got above 8 on a key range of 65536. Split

transactions were up to 6 times faster than both locks and transactional memory on

this mid sized list.

While this result was not matched on the longest list used in the comparison, key range

of 64K, it did outperform both transactional memory and the Test and Test and Set

lock when the number of threads exceeded 8. At 32 threads, split transaction were over

4 times faster than transactional memory and over twice as fast as the test and test

and set lock. However, both transactional approaches failed to reach the performance

of a single thread with a lock. A possible reason for this lack of performance could

be the number of attempts that were allowed before a lock was acquired. In the

tests, to reduce the number of variables the number of attempts was set to 16. When

it is considered how likely a transaction is to abort is these circumstances and how

much time is wasted, on average, getting back to the point in the list where the abort

occurred, the time is not insignificant.

69

CHAPTER 5. DISCUSSION Self Tuning Algorithms Running on Intel’s Transactional Memory

The key range of 64 was very good for transactional memory while split transactions

and the lock lagged behind in terms of performance. The very poor showing of split

transactions on this key range is explainable. The overhead of setting up transactions

on a list that is on average going to be 32 nodes long is too big to overcome. This is

shown by how successful transactional memory with no splits is on this key range.

As the key range increases, it would make sense for split transactions to come into their

own. This however, is not the case. After the 4096 key range where split transactions

performed very well it then could not even achieve the single thread performance of the

lock. The small caveat of this is that it did finish as the highest performing approach

once the thread count went above 8. Its speed also kept increasing to 16 threads

where it would be expected to have its maximum speed. Therefore there is there is

some optimism that a different algorithm for tuning the transactions could cause this

performance to rise even further. It should also be noted that transactional memory

without the use of split transactions was the slowest in the 64K key range and that

split transactions provided considerable performance gains compared to it.

Using equation 4 derived from the birthday problem equation, some interesting results

were obtained. The results were very similar to the inverse of the percentage of locks

taken on the 4K list. There were some differences but this is probably down to experi-

mental error and insufficient runs for the probability to fully stabilise. If the test was to

run for longer this error would lessen but the experimental error would still be present

in this circumstance. This shows that some work could be done to find optimum split

lengths with statistics and then applied to the implementation. The investigation men-

tioned would be part of future work on this subject matter. The predicted results are

close enough to the observed results that this should be possible.

70

Chapter 6

Conclusion

Research into Split Transactions has been sparse at best. With the results in this

paper, Split Transactions prove worthy of a greater consideration than they currently

receive. The performance increase that can be observed on a list with a key range of

4096 is substantial. The 9x performance increase that can be observed with the key

range of 4096 over a current method, the Test and Test and Set lock, is remarkable.

With more investigation this could even be larger.

It is questionable whether a list with a key range of 65536 is too big. However, there

is evidence of a performance increase with Split Transactions on this key Range. The

number of retries granted were static, but 16 could have been too many for a key range

of this size. Therefore further investigation would need to be accomplished with static

split lengths and a variance of the number of retries to investigate this argument.

Split Transactions should not be used unless necessary. From the results it is possi-

ble to conclude that a key range of 64 is not large enough for Split Transactions to

be warranted. Transactional memory without Split Transactions delivers admirable

performance gains over a lock based alternative. Therefore Split Transactions should

only be a secondary method implemented if Transactional Memory does not provide

71

CHAPTER 6. CONCLUSION Self Tuning Algorithms Running on Intel’s Transactional Memory

adequate results.

The surprising accuracy of the prediction of the success probability of Split Transactions

could account for interesting future research. Based on the results, it appears to be

possible to use statistical analysis to optimise the split length of a Split Transaction.

This approach could also be applied to the dynamic tuner to potentially enhance the

performance of the tuning of the split length.

72

Bibliography

[Diegues and Romano, 2014] Diegues, N. and Romano, P. (2014). Self-tuning intel

transactional synchronization extensions. In 11th International Conference on Au-

tonomic Computing (ICAC 14), pages 209–219. USENIX Association.

[Diegues and Romano, 2015] Diegues, N. and Romano, P. (2015). Self-tuning intel

restricted transactional memory. Parallel Computing, 50:25 – 52.

[Diegues et al., 2014] Diegues, N., Romano, P., and Rodrigues, L. (2014). Virtues

and limitations of commodity hardware transactional memory. In Proceedings of the

23rd International Conference on Parallel Architectures and Compilation, PACT ’14,

pages 3–14, New York, NY, USA. ACM.

[Dijkstra, 1965] Dijkstra, E. W. (1965). Solution of a problem in concurrent program-

ming control. Commun. ACM, 8(9):569–.

[Hammond et al., 2004] Hammond, L., Wong, V., Chen, M., Carlstrom, B. D., Davis,

J. D., Hertzberg, B., Prabhu, M. K., Wijaya, H., Kozyrakis, C., and Olukotun,

K. (2004). Transactional memory coherence and consistency. SIGARCH Comput.

Archit. News, 32(2):102–.

[Herlihy, 2014] Herlihy, M. (2014). Fun with hardware transactional memory. In Pro-

ceedings of the 2014 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’14, pages 575–575, New York, NY, USA. ACM.

73

BIBLIOGRAPHY Self Tuning Algorithms Running on Intel’s Transactional Memory

[Herlihy and Moss, 1993] Herlihy, M. and Moss, J. E. B. (1993). Transactional mem-

ory: Architectural support for lock-free data structures. SIGARCH Comput. Archit.

News, 21(2):289–300.

[Intel, 2013] Intel (2013).

[Jacobi et al., 2012] Jacobi, C., Slegel, T., and Greiner, D. (2012). Transactional mem-

ory architecture and implementation for ibm system z. In Proceedings of the 2012

45th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-

45, pages 25–36, Washington, DC, USA. IEEE Computer Society.

[Jensen et al., 1987] Jensen, E. H., Hagensen, G. W., and Broughton, J. M. (1987). A

new approach to exclusive data access in shared memory multiprocessors. Technical

report, Technical Report UCRL-97663, Lawrence Livermore National Laboratory.

[Karnagel et al., 2014] Karnagel, T., Dementiev, R., Rajwar, R., Lai, K., Legler, T.,

Schlegel, B., and Lehner, W. (2014). Improving in-memory database index per-

formance with intel 0x00ae; transactional synchronization extensions. In 2014

IEEE 20th International Symposium on High Performance Computer Architecture

(HPCA), pages 476–487.

[Lamport, 1974] Lamport, L. (1974). A new solution of dijkstra’s concurrent program-

ming problem. Commun. ACM, 17(8):453–455.

[Leis et al., 2014] Leis, V., Kemper, A., and Neumann, T. (2014). Exploiting hardware

transactional memory in main-memory databases. In 2014 IEEE 30th International

Conference on Data Engineering, pages 580–591.

[Lev and Maessen, 2008] Lev, Y. and Maessen, J.-W. (2008). Split hardware transac-

tions: True nesting of transactions using best-effort hardware transactional memory.

74

BIBLIOGRAPHY Self Tuning Algorithms Running on Intel’s Transactional Memory

In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’08, pages 197–206, New York, NY, USA. ACM.

[Mellor-Crummey and Scott, 1991] Mellor-Crummey, J. M. and Scott, M. L. (1991).

Algorithms for scalable synchronization on shared-memory multiprocessors. ACM

Trans. Comput. Syst., 9(1):21–65.

[Michael, 2004] Michael, M. M. (2004). Hazard pointers: safe memory reclamation for

lock-free objects. IEEE Transactions on Parallel and Distributed Systems, 15(6):491–

504.

[Moore, 2006] Moore, G. E. (2006). Cramming more components onto integrated cir-

cuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.

IEEE Solid-State Circuits Newsletter, 20(3):33 – 35.

[Pankratius and Adl-Tabatabai, 2011] Pankratius, V. and Adl-Tabatabai, A.-R.

(2011). A study of transactional memory vs. locks in practice. In Proceedings of

the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Archi-

tectures, SPAA ’11, pages 43–52, New York, NY, USA. ACM.

[Taubenfeld, 2004] Taubenfeld, G. (2004). Distributed Computing: 18th International

Conference, DISC 2004, Amsterdam, The Netherlands, October 4-7, 2004. Pro-

ceedings, chapter The Black-White Bakery Algorithm and Related Bounded-Space,

Adaptive, Local-Spinning and FIFO Algorithms, pages 56–70. Springer Berlin Hei-

delberg, Berlin, Heidelberg.

[Treiber, 1986] Treiber, R. K. (1986). Systems programming: Coping with parallelism.

International Business Machines Incorporated, Thomas J. Watson Research Center.

[Yoo et al., 2013] Yoo, R. M., Hughes, C. J., Lai, K., and Rajwar, R. (2013). Per-

formance evaluation of intel® transactional synchronization extensions for high-

75

BIBLIOGRAPHY Self Tuning Algorithms Running on Intel’s Transactional Memory

performance computing. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’13, pages 19:1–

19:11, New York, NY, USA. ACM.

76

Appendices

77

Appendix A

Code

A.1 helper.h

#pragma once

//
// he lpe r . h
//
// Copyright (C) 2011 − 2015 jones@scs s . tcd . i e
//
// This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify i t

under
// the terms o f the GNU General Publ ic L i cense as publ i shed by the Free

Software Foundation ;
// e i t h e r v e r s i o n 2 o f the License , or (at your opt ion) any l a t e r v e r s i o n .
//
// This program i s d i s t r i b u t e d in the hope that i t w i l l be use fu l , but

WITHOUT ANY WARRANTY;
// without even the impl i ed warranty o f MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.
// See the GNU General Publ ic L i cense f o r more d e t a i l s .
//
// You should have r e c e i v e d a copy o f the GNU General Publ ic L i cense
// along with t h i s program ; i f not , wr i t e to the Free Software Foundation

Inc . ,
// 51 Frankl in Street , F i f t h Floor , Boston , MA 02110−1301 , USA.
//

#inc lude ” s tda fx . h” // pre−compiled headers
#inc lude <iomanip> // { j o j 27/5/14}
#inc lude < l o c a l e > // { j o j 7/6/14}

#i f d e f WIN32
#inc lude < i n t r i n . h> // i n t r i n s i c s
#e l i f \ \ l i n u x \ \
#inc lude <uni s td . h> // us l e ep
#inc lude <cpuid . h> // cpuid
#inc lude <s t r i n g . h> // s t r cpy
#inc lude <pthread . h> // pth r ead c r ea t e

78

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

#inc lude <x 8 6 i n t r i n . h> // need to s p e c i f y gcc f l a g s −mrtm −mrdrnd
#inc lude <sys /mman. h> // mmap, munmap { j o j 23/5/14}
#inc lude < l i m i t s . h> // { j o j 17/11/14}
#e n d i f

#d e f i n e AMALLOC(sz , a l i g n) a l i g n e d m a l l o c ((sz + a l i gn −1) / a l i g n ∗ a l i gn
, a l i g n)

#d e f i n e AFREE(p) a l i g n e d f r e e (p)

#i f d e f WIN32

#d e f i n e CPUID(cd , v) cpu i d ((i n t ∗) &cd , v) ;
#d e f i n e CPUIDEX(cd , v0 , v1) cpu idex ((i n t ∗) &cd , v0 , v1)

#d e f i n e THREADH HANDLE

#d e f i n e WORKERF DWORD (WINAPI ∗worker) (void ∗)
#d e f i n e WORKER DWORD WINAPI

#d e f i n e ALIGN(n) d e c l s p e c (a l i g n (n))

#d e f i n e TLSINDEX DWORD
#d e f i n e TLSALLOC(key) key = TlsAl loc ()
#d e f i n e TLSSETVALUE(t l s Index , v) TlsSetValue (t l s Index , v)
#d e f i n e TLSGETVALUE(t l s I n d e x) (i n t) TlsGetValue (t l s I n d e x)

#d e f i n e t h r e a d l o c a l d e c l s p e c (thread)

#e l i f l i n u x

#d e f i n e BYTE unsigned char
#d e f i n e UINT unsigned i n t
#d e f i n e INT64 long long
#d e f i n e UINT64 unsigned long long
#d e f i n e LONG64 s igned long long
#d e f i n e PVOID void ∗
#d e f i n e MAXINT INT MAX
#d e f i n e MAXUINT UINT MAX

#d e f i n e MAXUINT64 ((UINT64) ˜((UINT64) 0))
#d e f i n e MAXINT64 ((INT64) (MAXUINT64 >> 1))
#d e f i n e MININT64 ((INT64) ˜MAXINT64)

#d e f i n e CPUID(cd , v) cpu i d (v , cd . eax , cd . ebx , cd . ecx , cd . edx) ;
#d e f i n e CPUIDEX(cd , v0 , v1) cpu id count (v0 , v1 , cd . eax , cd . ebx , cd . ecx ,

cd . edx)

#d e f i n e THREADH pthread t
#d e f i n e GetCurrentProcessorNumber () sched getcpu ()

#d e f i n e WORKER void ∗
#d e f i n e WORKERF void ∗ (∗worker) (void ∗)

#d e f i n e ALIGN(n) a t t r i b u t e ((a l i gned (n)))
#d e f i n e a l i g n e d m a l l o c (sz , a l i g n) a l i g n e d a l l o c (a l i gn , ((sz)+(a l i g n)−1)

/(a l i g n) ∗(a l i g n))
#d e f i n e a l i g n e d f r e e (p) f r e e (p)
#d e f i n e a l l o c a a l l o c a

#d e f i n e s t r c p y s (dst , sz , s r c) s t r cpy (dst , s r c)
#d e f i n e s t r t o i 6 4 (s t r , end , base) s t r t o l l (s t r , end , base)
#d e f i n e s t r t o u i 6 4 (s t r , end , base) s t r t o u l l (s t r , end , base)

79

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

#d e f i n e Inte r l ockedIncrement (addr)
s y n c f e t c h a n d a d d (addr , 1)

#d e f i n e Inte r lockedIncrement64 (addr)
s y n c f e t c h a n d a d d (addr , 1)

#d e f i n e Inter lockedExchange (addr , v)
s y n c l o c k t e s t a n d s e t (addr , v)

#d e f i n e Inter lockedExchangePointer (addr , v)
s y n c l o c k t e s t a n d s e t (addr , v)

#d e f i n e InterlockedExchangeAdd (addr , v)
s y n c f e t c h a n d a d d (addr , v)

#d e f i n e InterlockedExchangeAdd64 (addr , v)
s y n c f e t c h a n d a d d (addr , v)

#d e f i n e InterlockedCompareExchange (addr , newv , oldv)
sync va l compare and swap (addr , oldv , newv)

#d e f i n e InterlockedCompareExchange64 (addr , newv , oldv)
sync va l compare and swap (addr , oldv , newv)

#d e f i n e InterlockedCompareExchangePointer (addr , newv , oldv)
sync va l compare and swap (addr , oldv , newv)

#d e f i n e Inter lockedExchange HLEAcquire (addr , va l)
a tomic exchange n (addr , val , ATOMIC ACQUIRE | ATOMIC HLE ACQUIRE

)
#d e f i n e InterlockedExchangeAdd64 HLEAcquire (addr , va l)

a tomic exchange n (addr , val , ATOMIC ACQUIRE | ATOMIC HLE ACQUIRE
)

#d e f i n e Store HLERelease (addr , v)
a t o m i c s t o r e n (addr , v , ATOMIC RELEASE | ATOMIC HLE RELEASE)

#d e f i n e Store64 HLERelease (addr , v)
a t o m i c s t o r e n (addr , v , ATOMIC RELEASE | ATOMIC HLE RELEASE)

#d e f i n e mm pause () b u i l t i n i a 3 2 p a u s e ()
#d e f i n e mm mfence () b u i l t i n i a 3 2 m f e n c e ()

#d e f i n e TLSINDEX pthread key t
#d e f i n e TLSALLOC(key) p th r ead key c r ea t e (&key , NULL)
#d e f i n e TLSSETVALUE(key , v) p t h r e a d s e t s p e c i f i c (key , v)
#d e f i n e TLSGETVALUE(key) (s i z e t) p t h r e a d g e t s p e c i f i c (key)

#d e f i n e t h r e a d l o c a l t h r e a d // {
j o j 26/10/12}

#d e f i n e S leep (ms) us l e ep ((ms) ∗1000)

#e n d i f

extern UINT ncpu ; // #
l o g i c a l CPUs { j o j 25/7/14}

extern void getDateAndTime (char ∗ , int , t ime t = 0) ; //
getDateAndTime { j o j 18/7/14}

extern char ∗ getHostName () ; // get
host name

extern char ∗ getOSName () ; // get
OS name

extern i n t getNumberOfCPUs () ; // get
number o f CPUs

extern UINT64 getPhysicalMemSz () ; // get
RAM sz in bytes

extern i n t i s 64b i tExe () ; //
re turn 1 i f 64 b i t . exe

extern s i z e t getMemUse () ; // get
working s e t s i z e { j o j 10/5/14}

extern s i z e t getVMUse () ; // get
page f i l e usage { j o j 10/5/14}

80

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

extern UINT64 getWallClockMS () ; // get
wa l l c l o ck in m i l l i s e c o n d s from some epoch

extern void createThread (THREADH∗ , WORKERF, void ∗) ; //
extern void runThreadOnCPU(UINT) ; // run

thread on CPU { j o j 25/7/14}
extern void waitForThreadsToFinish (UINT, THREADH∗) ; // {

j o j 25/7/14}
extern void c loseThread (THREADH) ; //

/∗#i f d e f x 8 6 6 4
extern UINT64 rand (UINT64&) ; // {

j o j 11/5/14}
#e l s e ∗/
extern UINT rand (UINT&) ; // {

j o j 3/1/14}
//#e n d i f

extern i n t cpu64bit () ; //
re turn 1 i f CPU i s 64 b i t

extern i n t cpuFamily () ; // CPU
fami ly

extern i n t cpuModel () ; // CPU
model

extern i n t cpuStepping () ; // CPU
stepp ing

extern char ∗ cpuBrandString () ; // CPU
brand s t r i n g

extern i n t rtmSupported () ; //
re turn 1 i f RTM supported (r e s t r i c t e d t r a n s a c t i o n a l memory)

extern i n t hleSupported () ; //
re turn 1 i f HLE supported (hardware lock e l i s i o n)

extern i n t getCacheInfo (int , int , i n t &, i n t &, i n t &) ; //
getCacheInfo

extern i n t getCacheLineSz () ; // get
cache l i n e sz

extern UINT getPageSz () ; // get
page s i z e

extern void pauseI fKeyPressed () ; //
pause i f key pre s sed

extern void pressKeyToContinue () ; //
p r e s s key to cont inue

extern void qu i t (i n t = 0) ; //
qu i t

//
// CommaLocale
//
c l a s s CommaLocale : pub l i c std : : numpunct<char>
{
protec ted :

v i r t u a l char do thousands sep () const { re turn ’ , ’ ; }
v i r t u a l std : : s t r i n g do grouping () const { re turn ”\03 ” ; }

} ;

extern void setCommaLocale () ;
extern void s e t L o c a l e () ;

//
// performance monitor ing

81

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

//

#d e f i n e FIXED CTR RING0 (1ULL)
#d e f i n e FIXED CTR RING123 (2ULL)
#d e f i n e FIXED CTR RING0123 (0x03ULL)

#d e f i n e PERFEVTSEL USR (1ULL << 16)
#d e f i n e PERFEVTSEL OS (1ULL << 17)
#d e f i n e PERFEVTSEL EN (1ULL << 22)
#d e f i n e PERFEVTSEL IN TX (1ULL << 32)
#d e f i n e PERFEVTSEL IN TXCP (1ULL << 33)

#d e f i n e CPU CLK UNHALTED THREAD P ((0 x00 << 8) | 0x3c) //
mask | event

#d e f i n e CPU CLK UNHALTED THREAD REF XCLK ((0 x01 << 8) | 0x3c) //
mask | event

#d e f i n e INST RETIRED ANY P ((0 x00 << 8) | 0xc0) //
mask | event

#d e f i n e RTM RETIRED START ((0 x01 << 8) | 0xc9) //
mask | event

#d e f i n e RTM RETIRED COMMIT ((0 x02 << 8) | 0xc9) //
mask | event

extern i n t openPMS () ; // open PMS
extern void closePMS () ; // c l o s e PMS
extern i n t pmversion () ; // re turn performance

monitor ing v e r s i o n
extern i n t n f ixedCtr () ; // re turn # of f i x e d

performance counter s
extern i n t fixedCtrW () ; // re turn width o f f i x e d

counter s
extern i n t npmc () ; // re turn # performance

counter s
extern i n t pmcW() ; // re turn width o f performance

counter s

extern UINT64 readMSR(int , i n t) ;
extern void writeMSR (int , int , UINT64) ;

extern UINT64 readFIXED CTR(int , i n t) ;
extern void writeFIXED CTR(int , int , UINT64) ;

extern UINT64 readFIXED CTR CTRL(i n t) ;
extern void writeFIXED CTR CTRL(int , UINT64) ;

extern UINT64 readPERF GLOBAL STATUS(i n t) ;
extern void writePERF GLOBAL STATUS(int , UINT64) ;

extern UINT64 readPERF GLOBAL CTRL(i n t) ;
extern void writePERF GLOBAL CTRL(int , UINT64) ;

extern UINT64 readPERF GLOBAL OVF CTRL(i n t) ;
extern void writePERF GLOBAL OVR CTRL(int , UINT64) ;

extern UINT64 readPERFEVTSEL(int , i n t) ;
extern void writePERFEVTSEL(int , int , UINT64) ;

extern UINT64 readPMC(int , i n t) ;
extern void writePMC(int , int , UINT64) ;

// e o f

82

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

A.2 helper.cpp

//
// he lpe r . cpp
//
// Copyright (C) 2011 − 2015 jones@scs s . tcd . i e
//
// This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify i t

under
// the terms o f the GNU General Publ ic L i cense as publ i shed by the Free

Software Foundation ;
// e i t h e r v e r s i o n 2 o f the License , or (at your opt ion) any l a t e r v e r s i o n .
//
// This program i s d i s t r i b u t e d in the hope that i t w i l l be use fu l , but

WITHOUT ANY WARRANTY;
// without even the impl i ed warranty o f MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.
// See the GNU General Publ ic L i cense f o r more d e t a i l s .
//
// You should have r e c e i v e d a copy o f the GNU General Publ ic L i cense
// along with t h i s program ; i f not , wr i t e to the Free Software Foundation

Inc . ,
// 51 Frankl in Street , F i f t h Floor , Boston , MA 02110−1301 , USA.
//

//
// 12/01/11 f i r s t v e r s i o n
// 15/07/13 added performance monitor ing support
// 14/09/13 l i nux support (needs g++ 4.8 or l a t e r)
// 09/02/14 added setCommaLocale and s e t L o c a l e
// 10/05/14 added getVMUse and getMemUse
// 08/06/14 a l l o c a t e d commaLocale only once
// 26/07/14 added getPageSz ()
// 26/10/14 added t h r e a d l o c a l d e f i n i t i o n s
// 26/11/14 added AMALLOC and AFREE
//

//
// 05−08−15 enab l ing TSX i n s t r u c t i o n s
//
// TSX was f i r s t supported by Haswel l CPUs r e l e a s e d Q2 2013 .
// Not a l l Haswel l or newer CPUs support TSX, you need to consu l t the

I n t e l Ark database .
// In Aug−14, a bug was repor ted in the TSX implementation (occurs very

r a r e l y) .
// Although t h i s bug has been f i x e d in more r e cent CPUs (eg Broadwell and

Skylake) , many systems
// d i s a b l e the buggy TSX i n s t r u c t i o n s at boot time by load ing microcode

in to the CPU.
// This i s done by the BIOS or OS or both .
// On Windows the f i l e C: / Windows/System32/ mcupdate GenuineIntel . d l l i s

used to load the microcode in to the CPU.
// Ubuntu doesn ’ t update the microcode by d e f a u l t
// In order to experiment with TSX whi le wa i t ing f o r a CPU with a bug f r e e

TSX implemenation , i t i s
// important to make sure that the TSX i n s t r u c t i o n s e t i s enabled .
//
// T1700 (Xeon E3 1240 v3 CPU) r e q u i r e s v e r s i o n A10 BIOS +

mcupdate GenuineIntel . d l l dated 12−11−2010
//

//
// NB: gcc needs f l a g s −mrtm −mrdrnd

83

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

//

#inc lude ” s tda fx . h” // pre−compiled headers
#inc lude <iostream> // cout
#inc lude <iomanip> // s e t p r e c i s i o n
#inc lude ” he lpe r . h” //

#i f d e f WIN32
#inc lude <con io . h> // ge tch ()
#inc lude <psapi . h> // GetProcessMemoryInfo
#e l i f l i n u x
#inc lude <termios . h> //
#inc lude <uni s td . h> //
#inc lude < l i m i t s . h> // HOST NAME MAX
#inc lude <sys /utsname . h> //
#inc lude < f c n t l . h> // ORDWR
#e n d i f

us ing namespace std ; // cout

//
// f o r data returned by cpuid i n s t r u c t i o n
//
s t r u c t cd {

UINT eax ;
UINT ebx ;
UINT ecx ;
UINT edx ;

} cd ;

UINT ncpu ; // # l o g i c a l CPUs { j o j 25/7/14}
char ∗hostName = NULL; // host name
char ∗osName = NULL; // os name
char ∗brandStr ing = NULL; // cpu brand s t r i n g

//
// getDateAndTime
//
void getDateAndTime (char ∗dateAndTime , i n t sz , t ime t t)
{

t = (t == 0) ? time (NULL) : 0 ;
#i f d e f WIN32

s t r u c t tm now ;
l o c a l t i m e s (&now , &t) ;
s t r f t i m e (dateAndTime , sz , ”%d−%b−%Y %H:%M:%S” , &now) ;

#e l i f l i n u x
s t r u c t tm ∗now = l o c a l t i m e (&t) ;
s t r f t i m e (dateAndTime , sz , ”%d−%b−%Y %H:%M:%S” , now) ;

#e n d i f
}

//
// getHostName
//
char ∗ getHostName ()
{

i f (hostName == NULL) {

#i f d e f WIN32
DWORD sz = (MAXCOMPUTERNAMELENGTH + 1) ∗ s i z e o f (char) ;
hostName = (char ∗) mal loc (sz) ;
GetComputerNameA(hostName , &sz) ;

#e l i f l i n u x

84

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

s i z e t sz = (HOST NAME MAX + 1) ∗ s i z e o f (char) ;
hostName = (char ∗) mal loc (sz) ;
gethostname (hostName , sz) ;

#e n d i f

}
re turn hostName ;

}

//
// getOSName
//
char ∗ getOSName ()
{

i f (osName == NULL) {

osName = (char ∗) mal loc (256) ; // should be l a r g e enough

#i f d e f WIN32
DWORD sz = 256 ;
RegGetValueA (HKEY LOCAL MACHINE, ” Software \\Microso f t \\Windows NT

\\CurrentVers ion ” , ”ProductName” , RRF RT ANY, NULL, (LPBYTE)
osName , &sz) ;

#i f d e f WIN64
s t r c a t s (osName , 256 , ” (64 b i t) ”) ;

#e l s e
i n t win64 ;
IsWow64Process (GetCurrentProcess () , &win64) ;
s t r c a t s (osName , 256 , win64 ? ” (64 b i t) ” : ” (32 b i t) ”) ;

#e n d i f
#e l i f l i n u x

s t r u c t utsname utsName ;
uname(&utsName) ;
s t r cpy (osName , utsName . sysname) ;
s t r c a t (osName , ” ”) ;
s t r c a t (osName , utsName . r e l e a s e) ;

#e n d i f

}
re turn osName ;

}

//
// i s64b i tExe
//
// return 1 i f a 64 b i t . exe
// return 0 i f a 32 b i t . exe
//
i n t i s 64b i tExe ()
{

re turn s i z e o f (s i z e t) == 8 ;
}

//
// getPhysicalMemSz
//
UINT64 getPhysicalMemSz ()
{
#i f d e f WIN32

UINT64 v ;
GetPhysical lyInstal ledSystemMemory(&v) ; //

r e tu rn s KB
return v ∗ 1024 ; // now

85

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

bytes
#e l i f l i n u x

return (UINT64) sy s con f (SC PHYS PAGES) ∗ sy s con f (SC PAGESIZE) ; // NB:
r e tu rn s bytes

#e n d i f
}

//
// getNumberOfCPUs
//
i n t getNumberOfCPUs ()
{
#i f d e f WIN32

SYSTEM INFO s y s i n f o ;
GetSystemInfo(& s y s i n f o) ;
r e turn s y s i n f o . dwNumberOfProcessors ;

#e l i f l i n u x
return sy s con f (SC NPROCESSORS ONLN) ;

#e n d i f
}

//
// cpu64bit
//
i n t cpu64bit ()
{

CPUID(cd , 0 x80000001) ;
r e turn (cd . edx >> 29) & 0x01 ;

}

//
// cpuFamily
//
i n t cpuFamily ()
{

CPUID(cd , 0x01) ;
r e turn (cd . eax >> 8) & 0 x f f ;

}

//
// cpuModel
//
i n t cpuModel ()
{

CPUID(cd , 0x01) ;
i f (((cd . eax >> 8) & 0 x f f) == 0x06)

re turn (cd . eax >> 12 & 0 xf0) + ((cd . eax >> 4) & 0 x0f) ;
r e turn (cd . eax >> 4) & 0 x0f ;

}

//
// cpuStepping
//
i n t cpuStepping ()
{

CPUID(cd , 0x01) ;
r e turn cd . eax & 0 x0f ;

}

//
// cpuBrandString
//
char ∗ cpuBrandString ()

86

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

{
i f (brandStr ing)

re turn brandStr ing ;

brandStr ing = (char ∗) c a l l o c (16∗3 , s i z e o f (char)) ;

CPUID(cd , 0 x80000000) ;

i f (cd . eax < 0 x80000004) {
s t r c p y s (brandString , 16∗3 , ”unknown”) ;
r e turn brandStr ing ;

}

f o r (i n t i = 0 ; i < 3 ; i++) {
CPUID(cd , 0 x80000002 + i) ;
UINT ∗p = &cd . eax ;
f o r (i n t j = 0 ; j < 4 ; j ++, p++) {

f o r (i n t k = 0 ; k < 4 ; k++) {
brandStr ing [i ∗16 + j ∗4 + k] = (∗p >> (k ∗ 8)) & 0 x f f ;

}
}

}
re turn brandStr ing ;

}

//
// rtmSupported (r e s t r i c t e d t r a n s a c t i o n a l memory)
//
// NB: VirtualBox re tu rn s 0 even i f CPU supports RTM?
//
i n t rtmSupported ()
{

CPUIDEX(cd , 0x07 , 0) ;
r e turn (cd . ebx >> 11) & 1 ; // t e s t b i t 11 in ebx

}

//
// hleSupported (hardware l ock e l i s i o n)
//
// NB: VirtualBox re tu rn s 0 even i f CPU supports HLE??
//
i n t hleSupported ()
{

CPUIDEX(cd , 0x07 , 0) ;
r e turn (cd . ebx >> 4) & 1 ; // t e s t b i t 4 in ebx

}

//
// look f o r L1 cache l i n e s i z e (s ee I n t e l App l i ca t ion note on CPUID

i n s t r u c t i o n)
//
i n t lookForL1DataCacheInfo (i n t v)
{

i f (v & 0 x80000000)
re turn 0 ;

f o r (i n t i = 0 ; i < 4 ; i++) {
switch (v & 0 x f f) {
case 0x0a :
case 0x0c :
case 0x10 :

re turn 32 ;
case 0x0e :

87

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

case 0x2c :
case 0x60 :
case 0x66 :
case 0x67 :
case 0x68 :

re turn 64 ;
}
v >>= 8 ;

}
re turn 0 ;

}

//
// getL1DataCacheInfo
//
i n t getL1DataCacheInfo ()
{

CPUID(cd , 2) ;

i f ((cd . eax & 0 x f f) != 1) {
cout << ” unrecogn i sed cache type : d e f a u l t L 64” << endl ;
r e turn 64 ;

}

i n t sz ;

i f ((sz = lookForL1DataCacheInfo (cd . eax & ˜0 x f f)))
re turn sz ;

i f ((sz = lookForL1DataCacheInfo (cd . ebx)))
re turn sz ;

i f ((sz = lookForL1DataCacheInfo (cd . ecx)))
re turn sz ;

i f ((sz = lookForL1DataCacheInfo (cd . edx)))
re turn sz ;

cout << ” unrecogn i sed cache type : d e f a u l t L 64” << endl ;
r e turn 64 ;

}

//
// getCacheInfo
//
i n t getCacheInfo (i n t l e v e l , i n t data , i n t &l , i n t &k , i n t &n)
{

CPUID(cd , 0x00) ;
i f (cd . eax < 4)

re turn 0 ;
i n t i = 0 ;
whi l e (1) {

CPUIDEX(cd , 0x04 , i) ;
i n t type = cd . eax & 0 x1f ;
i f (type == 0)

return 0 ;
i n t l e v = ((cd . eax >> 5) & 0x07) ;
i f ((l e v == l e v e l) & (((data == 0) & (type = 2)) | | ((data == 1) &

(type == 1))))
break ;

i ++;
}
k = ((cd . ebx >> 22) & 0 x 0 3 f f) + 1 ;
i n t p a r t i t i o n s = ((cd . ebx) >> 12 & 0 x 0 3 f f) + 1 ;
n = cd . ecx + 1 ;
l = (cd . ebx & 0 x 0 f f f) + 1 ;

88

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

re turn p a r t i t i o n s == 1 ;
}

//
// ge tDete rmin i s t i cCache In fo
//
i n t ge tDete rmin i s t i cCache In fo ()
{

i n t type , ways , p a r t i t i o n s , l i n e S z = 0 , s e t s ;
i n t i = 0 ;
whi l e (1) {

CPUIDEX(cd , 0x04 , i) ;
type = cd . eax & 0 x1f ;
i f (type == 0)

break ;
cout << ”L” << ((cd . eax >> 5) & 0x07) ;
cout << ((type == 1) ? ” D” : (type == 2) ? ” I ” : ” U”) ;
ways = ((cd . ebx >> 22) & 0 x 0 3 f f) + 1 ;
p a r t i t i o n s = ((cd . ebx) >> 12 & 0 x 0 3 f f) + 1 ;
s e t s = cd . ecx + 1 ;
l i n e S z = (cd . ebx & 0 x 0 f f f) + 1 ;
cout << ” ” << setw (5) << ways∗ p a r t i t i o n s ∗ l i n e S z ∗ s e t s /1024 << ”K”

<< ” L” << setw (3) << l i n e S z << ” K” << setw (3) << ways << ” N
” << setw (5) << s e t s ;

cout << endl ;
i ++;

}
re turn l i n e S z ;

}

//
// getCacheLineSz
//
i n t getCacheLineSz ()
{

CPUID(cd , 0x00) ;
i f (cd . eax >= 4)

return ge tDete rmin i s t i cCache In fo () ;
r e turn getL1DataCacheInfo () ;

}

//
// getPageSz
//
UINT getPageSz ()
{
#i f d e f WIN32

SYSTEM INFO s i ;
GetSystemInfo(& s i) ;
r e turn s i . dwPageSize ;

#e l i f l i n u x
return sy s con f (SC PAGESIZE) ;

#e n d i f
}

//
// getWallClockMS
//
UINT64 getWallClockMS ()
{
#i f d e f WIN32

return (UINT64) c l o ck () ∗ 1000 / CLOCKS PER SEC;
#e l i f l i n u x

89

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

s t r u c t t imespec t ;
c l o c k g e t t i m e (CLOCK MONOTONIC, &t) ;
r e turn t . t v s e c ∗1000 + t . tv ns e c / 1000000;

#e n d i f
}

//
// setThreadCPU
//
void createThread (THREADH ∗ threadH , WORKERF, void ∗ arg)
{
#i f d e f WIN32

∗ threadH = CreateThread (NULL, 0 , worker , arg , 0 , NULL) ;
#e l i f l i n u x

pth r ead c r ea t e (threadH , NULL, worker , arg) ;
#e n d i f
}

//
// runThreadOnCPU
//
void runThreadOnCPU(UINT cpu)
{
#i f d e f WIN32

SetThreadAff inityMask (GetCurrentThread () , 1 << cpu) ;
#e l i f l i n u x

c p u s e t t cpuset ;
CPU ZERO(&cpuset) ;
CPU SET(cpu , &cpuset) ;
p t h r e a d s e t a f f i n i t y n p (p t h r e a d s e l f () , s i z e o f (c p u s e t t) , &cpuset) ;

#e n d i f
}

//
// c loseThread
//
void c loseThread (THREADH threadH)
{
#i f d e f WIN32

CloseHandle (threadH) ;
#e l i f l i n u x

// nothing to do
#e n d i f
}

//
// waitForThreadsToFinish
//
void waitForThreadsToFinish (UINT nt , THREADH ∗ threadH)
{
#i f d e f WIN32

WaitForMult ipleObjects (nt , threadH , true , INFINITE) ;
#e l i f l i n u x

f o r (UINT thread = 0 ; thread < nt ; thread++)
p t h r e a d j o i n (threadH [thread] , NULL) ;

#e n d i f
}

//
// Proces sor monitor ing support (PMS)
//
// NB: see I n t e l Performance Counter Monitor v2 . 5 . 1
// NB: s i m p l i f i e d f o r HLE and RTM performance measurement

90

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

//
// NB: FIXED CTR0 counts i n s t r u c t i o n s r e t i r e d (see Vol 3C 35−17)
// NB: FIXED CTR1 counts unhalted core c y c l e s
// NB: FIXED CTR2 counts unhalted r e f e r e n c e c y c l e s
//

#i f d e f WIN32

typede f BOOL (WINAPI ∗ I n i t i a l i z e O l s) () ;
typede f VOID (WINAPI ∗ D e i n i t i a l i z e O l s) () ;

typede f DWORD (WINAPI ∗ Rdmsr) (DWORD index , PDWORD eax , PDWORD edx) ;
typede f DWORD (WINAPI ∗ Wrmsr) (DWORD index , DWORD eax , DWORD edx) ;

I n i t i a l i z e O l s I n i t i a l i z e O l s = NULL;
D e i n i t i a l i z e O l s D e i n i t i a l i z e O l s = NULL;

Rdmsr Rdmsr = NULL;
Wrmsr Wrmsr = NULL;

HMODULE hModule = NULL;

//
// openPMS
//
// to get the f o l l o w i n g code to work with Windows need to do the f o l l o w i n g

:
//
// f o r 64 b i t exes , make sure WinRing0x64 . d l l and WinRing0x64 . sys are

p laced in the same d i r e c t o r y
// f o r 32 b i t exes , make sure WinRing0 . d l l and WinRing0 . sys or WinRing0x64 .

sys (f o r 32 and 64 b i t windows r e p s p e c t i v e l y) are p laced in the same
d i r e c t o r y

// exe needs to have root a c c e s s eg . Run Visua l Studio as Administrator
//
i n t openPMS ()
{

i f ((hModule = LoadLibrary (i s 64b i tExe () ? T (”WinRing0x64 . d l l ”) : T (”
WinRing0 . d l l ”))) == NULL)
goto e r r ;

I n i t i a l i z e O l s = (I n i t i a l i z e O l s) GetProcAddress (hModule , ”
I n i t i a l i z e O l s ”) ;

D e i n i t i a l i z e O l s = (D e i n i t i a l i z e O l s) GetProcAddress (hModule , ”
D e i n i t i a l i z e O l s ”) ;

Rdmsr = (Rdmsr) GetProcAddress (hModule , ”Rdmsr”) ;
Wrmsr = (Wrmsr) GetProcAddress (hModule , ”Wrmsr”) ;

i f (I n i t i a l i z e O l s ())
re turn 1 ;

e r r :

i n t win64 ;
IsWow64Process (GetCurrentProcess () , &win64) ;

cout << ” unable to a c c e s s performance monitor ing counter s ” << endl ;
cout << ”make sure ” << (i s 64b i tExe () ? ”WinRing0x64 . d l l ” : ”WinRing0 .

d l l ”) << ” and ” << (win64 ? ”WinRing0x64 . sys ” : ”WinRing0 . sys ”)
<< ” are in the same d i r e c t o r y as exe ” << endl ;

cout << ”make sure shar ing . exe i s run as admin i s t ra to r ” << endl <<
endl ;

91

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

re turn 0 ;

}

//
// closePMS
//
void closePMS ()
{

i f (hModule) {
D e i n i t i a l i z e O l s () ;
FreeLibrary (hModule) ;
hModule = NULL;

}
}

//
// readMSR
//
UINT64 readMSR(i n t cpu , i n t addr)
{

DWORD high , low ;
DWORDPTR o l d A f f i n i t y = SetThreadAff inityMask (GetCurrentThread () , 1 <<

cpu) ;
Rdmsr(addr , &low , &high) ;
SetThreadAff inityMask (GetCurrentThread () , o l d A f f i n i t y) ;
r e turn ((UINT64) high << 32) | low ;

}

//
// writeMSR
//
void writeMSR (i n t cpu , i n t addr , UINT64 v)
{

DWORDPTR o l d A f f i n i t y = SetThreadAff inityMask (GetCurrentThread () , 1 <<
cpu) ;

Wrmsr(addr , (DWORD) v , v >> 32) ;
SetThreadAff inityMask (GetCurrentThread () , o l d A f f i n i t y) ;

}

#e l i f l i n u x

i n t ∗ fd ;

//
// openPMS
//
// to get the f o l l o w i n g code to work with l i nux need to do the f o l l o w i n g :
//
// auto load msr d r i v e r on boot by adding msr to / e tc /modules
// performance counter s acce s s ed by read ing from and wr i t i ng to /dev/cpu/n

/msr where n i s the cpu number
// need to have root a c c e s s eg . $sudo e c l i p s e
//
// did try the f o l l ow ing , but i t didn ’ t work
//
// created a group c a l l e d msr : $sudo groupadd msr
// added user to group : $sudo usermod −a −G msr user
// added the f o l l o w i n g code to / e tc / rc . l o c a l so that a f t e r boot the /dev/

cpu/n/msr f i l e s should
// be ab le to be read and wr i t t en by u se r s be long ing to the msr group
//

92

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

// i=0
// ncpus=‘ cat / proc / cpu in fo | grep p r o c e s s o r | wc −l ‘
// whi l e [$ i − l t 8]
// do
// chown : msr /dev/cpu/ $ i /msr
// chmod ug+rwx /dev/cpu/ $ i /msr
// i =‘ expr $ i + 1 ‘
// done
/

//
// openPMS
//
i n t openPMS ()
{

char fn [3 2] ;
i n t e r r = 0 ;

ncpu = getNumberOfCPUs () ;

fd = (i n t ∗) c a l l o c (1 , ncpu∗ s i z e o f (i n t)) ;

f o r (UINT i = 0 ; i < ncpu ; i++) {
s p r i n t f (fn , ”/dev/cpu/%d/msr” , i) ;
i f ((fd [i] = open (fn , ORDWR)) == −1) {

cout << ” unable to open ” << fn << endl ;
e r r = 1 ;

}
}

i f (e r r) {
cout << endl ;
cout << ”make sure the msr d r i v e r i s loaded by check ing f o r f i l e (s

) /dev/cpu/0/msr , /dev/cpu/1/msr . . . ” << endl ;
cout << ” auto load the msr d r i v e r on boot by adding msr to / e tc /

modules ” << endl ;
cout << ”make sure program i s run as root ” << endl ;

}
re turn e r r == 0 ;

}

//
// closePMS
//
void closePMS ()
{

f o r (UINT i = 0 ; i < ncpu ; i++) {
i f (fd [i] != −1)

c l o s e (fd [i]) ;
}

}

//
// readMSR
//
// check r e s u l t returned by wr i t e to avoid a gcc warn unused resu l t
//
UINT64 readMSR(i n t cpu , i n t addr)
{

UINT64 msr = 0 ;
i f (fd [cpu] != −1) {

l s e e k (fd [cpu] , addr , SEEK SET) ;
i f (read (fd [cpu] , &msr , s i z e o f (msr)) != s i z e o f (msr))

93

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

cout << ”Warning : unable to readMSR(” << cpu << ” , ” << addr
<< ”) ” << endl ;

}
re turn msr ;

}

//
// writeMSR
//
// check r e s u l t returned by wr i t e to avoid a gcc warn unused resu l t
//
void writeMSR (i n t cpu , i n t addr , UINT64 v)
{

i f (fd [cpu] != −1) {
l s e e k (fd [cpu] , addr , SEEK SET) ;
i f (wr i t e (fd [cpu] , &v , s i z e o f (v)) != s i z e o f (v))

cout << ”Warning : unable to writeMSR (” << cpu << ” , ” << addr
<< ” , ” << v << ”) ” << endl ;

}
}

#e n d i f

//
// pmversion
//
i n t pmversion ()
{

CPUID(cd , 0x0a) ;
r e turn cd . eax & 0 x f f ;

}

//
// n f i x e d c t r
//
i n t n f ixedCtr ()
{

CPUID(cd , 0x0a) ;
r e turn cd . edx & 0 x1f ;

}

//
// f i x edc t rw
//
i n t fixedCtrW ()
{

CPUID(cd , 0x0a) ;
r e turn (cd . edx >> 5) & 0 x f f ;

}

//
// npmc
//
i n t npmc ()
{

CPUID(cd , 0x0a) ;
r e turn (cd . eax >> 8) & 0 x f f ;

}

//
// pmcW
//
i n t pmcW()

94

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

{
CPUID(cd , 0x0a) ;
r e turn (cd . eax >> 16) & 0 x f f ;

}

//
// readFIXED CTR
//
UINT64 readFIXED CTR(i n t cpu , i n t n)
{

re turn readMSR(cpu , 0x0309 + n) ;
}

//
// writeFIXED CTR
//
void writeFIXED CTR(i n t cpu , i n t n , UINT64 v)
{

re turn writeMSR (cpu , 0x0309 + n , v) ;
}

//
// readFIXED CTR CTRL
//
UINT64 readFIXED CTR CTRL(i n t cpu)
{

re turn readMSR(cpu , 0x038d) ;
}

//
// writeFIXED CTR CTRL
//
void writeFIXED CTR CTRL(i n t cpu , UINT64 v)
{

re turn writeMSR (cpu , 0x038d , v) ;
}

//
// readPERF GLOBAL STATUS
//
UINT64 readPERF GLOBAL STATUS(i n t cpu)
{

re turn readMSR(cpu , 0 x038e) ;
}

//
// writePERF GLOBAL STATUS
//
void writePERF GLOBAL STATUS(i n t cpu , UINT64 v)
{

re turn writeMSR (cpu , 0x038e , v) ;
}

//
// readPERF GLOBAL CTRL
//
UINT64 readPERF GLOBAL CTRL(i n t cpu)
{

re turn readMSR(cpu , 0 x038f) ;
}

//
// writePERF GLOBAL CTRL

95

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

//
void writePERF GLOBAL CTRL(i n t cpu , UINT64 v)
{

re turn writeMSR (cpu , 0 x038f , v) ;
}

//
// readPERF GLOBAL OVR CTRL
//
UINT64 readPERF GLOBAL OVR CTRL(i n t cpu)
{

re turn readMSR(cpu , 0x0390) ;
}

//
// writePERF GLOBAL OVR CTRL
//
void writePERF GLOBAL OVR CTRL(i n t cpu , UINT64 v)
{

re turn writeMSR (cpu , 0x0390 , v) ;
}

//
// readPERFEVTSEL
//
UINT64 readPERFEVTSEL(i n t cpu , i n t n)
{

re turn readMSR(cpu , 0x186 + n) ;
}

//
// writePERFEVTSEL
//
void writePERFEVTSEL(i n t cpu , i n t n , UINT64 v)
{

re turn writeMSR (cpu , 0x186 + n , v) ;
}

//
// readPMC
//
UINT64 readPMC(i n t cpu , i n t n)
{

re turn readMSR(cpu , 0xc1 + n) ;
}

//
// writePMC
//
void writePMC(i n t cpu , i n t n , UINT64 v)
{

re turn writeMSR (cpu , 0xc1 + n , v) ;
}

//
// pauseI fKeyPressed
//
void pauseI fKeyPressed ()
{
#i f d e f WIN32

i f (kbh i t ()) {
i f (ge t ch () == ’ ’) {

cout << endl << endl << ”PAUSED − pr e s s key to cont inue ” ;

96

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

ge tch () ;
cout << endl ;

}
}

#e l i f l i n u x

#e n d i f
}

//
// pressKeyToContinue
//
void pressKeyToContinue ()
{
#i f d e f WIN32

cout << endl << ” Press any key to cont inue . . . ” ;
g e t ch () ;

#e l i f l i n u x
termios old , input ;
t c g e t a t t r (f i l e n o (s t d i n) , &old) ; // save s e t t i n g s
input = old ; // make new s e t t i n g s same

as o ld s e t t i n g s
input . c l f l a g &= ˜(ICANON | ECHO) ; // d i s a b l e b u f f e r e d i /o

and echo
t c s e t a t t r (f i l e n o (s t d i n) , TCSANOW, &input) ; // use these new termina l

i /o s e t t i n g s now
puts (” Press any key to cont inue . . . ”) ;
getchar () ;
t c s e t a t t r (f i l e n o (s t d i n) , TCSANOW, &old) ;

#e n d i f
}

//
// qu i t
//
void qu i t (i n t r)
{
#i f d e f WIN32

cout << endl << ” Press key to qu i t . . . ” ;
g e t ch () ; // stop DOS window d i sappear ing prematurely

#e n d i f
e x i t (r) ;

}

/∗#i f d e f x 8 6 6 4

//
// rand
//
// due to George Marsagl ia (goog l e ” x o r s h i f t wik i ”)
//
UINT64 rand (UINT64 &r)
{

r ˆ= r >> 12 ; // a
r ˆ= r << 25 ; // b
r ˆ= r >> 27 ; // c
re turn r ∗ 2685821657736338717LL ;

}

#e l s e ∗/

//
// rand

97

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

//
// Parker & Mi l l e r , ”Random Number Generators : Good ones are hard to f i n d

” , CACM Vol 311 No 10 Oct−88
//
// 31 b i t s
//
UINT rand (UINT &r)
{

// return r = (UINT64) r ∗ 16807 % 2147483647; // 31 b i t s
// re turn r = (UINT64) r ∗ 48271 % 2147483647; // 31 b i t s
re turn r = (UINT64) r ∗ 279470273 % 4294967291; // almost 32 b i t s

}

//#e n d i f

l o c a l e ∗commaLocale = NULL;

//
// setCommaLocale
//
void setCommaLocale ()
{

i f (commaLocale == NULL)
commaLocale = new l o c a l e (l o c a l e () , new CommaLocale ()) ;

cout . imbue (∗ commaLocale) ;
}

//
// s e t L o c a l e
//
void s e t L o c a l e ()
{

cout . imbue (l o c a l e ()) ;
}

//
// getVMUse { j o j 10/5/14}
//
s i z e t getVMUse ()
{

s i z e t r = 0 ;

#i f d e f WIN32

HANDLE hProcess ;
PROCESS MEMORY COUNTERS pmc ;

i f ((hProcess = OpenProcess (PROCESS QUERY INFORMATION |
PROCESS VM READ, FALSE, GetCurrentProcessId ()))) {
i f (GetProcessMemoryInfo (hProcess , &pmc , s i z e o f (pmc)))

r = pmc . Page f i l eUsage ;
CloseHandle (hProcess) ;

}

#e l i f l i n u x

UINT64 vmuse ;
FILE∗ fp ;

i f ((fp = fopen (”/ proc / s e l f / statm ” , ” r ”)) != NULL) {
i f (f s c a n f (fp , ”%l l u ” , &vmuse) == 1)

r = vmuse ∗ sy s con f (SC PAGESIZE) ;
f c l o s e (fp) ;

98

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

}

#e n d i f

r e turn r ;
}

//
// getMemUse { j o j 10/5/14}
//
s i z e t getMemUse ()
{

s i z e t r = 0 ;

#i f d e f WIN32

HANDLE hProcess ;
PROCESS MEMORY COUNTERS pmc ;

i f ((hProcess = OpenProcess (PROCESS QUERY INFORMATION |
PROCESS VM READ, FALSE, GetCurrentProcessId ()))) {
i f (GetProcessMemoryInfo (hProcess , &pmc , s i z e o f (pmc)))

r = pmc . WorkingSetSize ;
CloseHandle (hProcess) ;

}

#e l i f l i n u x

UINT64 memuse ;
FILE∗ fp ;

if ((fp = fopen("/proc/self/statm", "r")) != NULL) {

if (fscanf(fp, "%*s%\llu", &memuse) == 1)
r = memuse * sysconf(_SC_PAGESIZE);

fclose(fp);
}

#endif

return r;
}

// eof

99

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

A.3 main.cpp

#inc lude ” s tda fx . h” // pre−compiled headers
#inc lude <iostream> // cout
#inc lude <iomanip> // s e t p r e c i s i o n
#inc lude ” he lpe r . h” //

us ing namespace std ; // cout

#d e f i n e K 1024 //
#d e f i n e GB (K∗K∗K) //
#d e f i n e NOPS 65536 //
#d e f i n e NSECONDS 10 // run each t e s t f o r

NSECONDS

#d e f i n e MAX 8
unsigned i n t NSPLIT = 32 ;
#d e f i n e NTAG 4096
#d e f i n e TAG(a) tag [((UINT64) (a) >> 3) % NTAG]

#d e f i n e TRANSACTION 0 // mode
#d e f i n e LOCK 1 //

UINT64 ∗ abort s ; // f o r count ing abort s

#d e f i n e COUNTER64 // comment f o r 32 b i t
counter

#i f d e f COUNTER64
#d e f i n e VINT UINT64 // 64 b i t counter
#e l s e
#d e f i n e VINT UINT // 32 b i t counter
#e n d i f

#d e f i n e ALIGNED MALLOC(sz , a l i g n) a l i g n e d m a l l o c (sz , a l i g n)

#i f d e f FALSEkeyRAnge
#d e f i n e GINDX(n) (g+n) //
#e l s e
#d e f i n e GINDX(n) (g+n∗ l i n e S z / s i z e o f (VINT)) //
#e n d i f

//
// OPTYP
//
// 0 : inc
// 1 : Inte r l ockedIncrement
// 2 : InterlockedCompareExchange
// 3 :RTM (r e s t r i c t e d t r a n s a c t i o n a l memory)
//

#d e f i n e OPTYP l o c k t y p e // s e t op type

#i f OPTYP == 5
v o l a t i l e i n t l o c k v a r = 0 ;

#d e f i n e OPSTR ” Test , Test and Set Lock”
#d e f i n e ACQUIRE() {

100

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

\
do {

\
whi le (l o c k v a r == 1) {

\
mm pause () ;

\
}

\
} whi le (InterlockedCompareExchange(& lock var , 1 ,

0) == 1) ; \
}

#d e f i n e RELEASE() l o c k v a r = 0

#e l i f OPTYP == 8
v o l a t i l e i n t l o c k v a r = 0 ;

#d e f i n e OPSTR ” Test , Test and Set Lock with HLE”
#d e f i n e ACQUIRE() {

\
do {

\
whi le (l o c k v a r == 1) {

\
mm pause () ;

\
}

\
} whi le (Inter lockedExchange HLEAcquire(& lock var ,

1) == 1) ; \
}

#d e f i n e RELEASE() Store HLERelease(& lock var , 0) ;

#e l i f OPTYP == 9
v o l a t i l e i n t l o c k v a r = 0 ;

#d e f i n e OPSTR ” Transac t i ona l Memory with Test and Test and Set Lock
as f a l l b a c k ”

#d e f i n e ACQUIRE LOCK() {

\
do {

\
whi le (l o c k v a r == 1) {

\
mm pause () ;

\
}

101

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

\
} whi le (InterlockedCompareExchange(& lock var ,

1 , 0) == 1) ; \
}

#d e f i n e RELEASE LOCK() l o c k v a r = 0

#d e f i n e ACQUIRE()

\
unsigned i n t t r a n s a c t i o n = 1 ;

\
unsigned i n t s t a t u s = 0 ;

\
unsigned i n t attempts = MAXATTEMPT;

\
whi le (1) {

\
whi le (l o c k v a r) {

\
mm pause () ;

\
}

\
i f (t r a n s a c t i o n == 1) {

\
s t a t u s = xbeg in () ;

\
} e l s e {

\
ACQUIRE LOCK() ;

\
nlock++;

\
s t a t u s = XBEGIN STARTED;

\
}

\
i f (s t a t u s == XBEGIN STARTED) {

\
i f (x t e s t () && l o c k v a r) xabort (0 x01)

; \

#d e f i n e RELEASE()

\
i f (x t e s t ()) xend () ;

\

102

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

e l s e RELEASE LOCK() ;

\
break ;

\
} e l s e {

\
nabort++;

\
i f (attempts > 0) {

\
attempts−−;

\
} e l s e t r a n s a c t i o n = 0 ;

\
whi le (l o c k v a r) {

\
mm pause () ;

\
}

\
unsigned shor t wait = attempts ;

\
whi le (wait−−) ;

\
}

\
}

\

unsigned shor t b i t s h i f t = 0 ;

s t r u c t Node{
unsigned i n t v o l a t i l e data ;
Node∗ v o l a t i l e next ;

} ;

void push (Node∗ node , Node∗ &stack) {
node −> next = stack ;
s tack = node ;

}

Node∗ pop (Node∗ &stack , unsigned i n t x) {
Node∗ temp = stack ;
s tack = stack −> next ;
temp −> next = NULL;
temp −> data = x ;
re turn temp ;

103

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

}

i n l i n e bool isEmpty (Node∗ s tack) {
re turn stack ? f a l s e : t rue ;

}

void removeAll (Node∗ v o l a t i l e &node) {
Node∗ curr ;
whi l e (node) {

curr = node ;
node = curr−>next ;
f r e e (curr) ;

}
}

Node∗ i n i t (unsigned i n t x) {
Node∗ temp = new Node () ;
temp −> next = NULL;
temp −> data = x ;
re turn temp ;

}

#i f OPTYP < 10
i n t add (Node∗ v o l a t i l e &node , Node∗ newNode , unsigned long long& nlock ,

unsigned long long& nabort , unsigned shor t MAXATTEMPT) {
ACQUIRE() ;
Node∗ v o l a t i l e curr = node ;
Node∗ v o l a t i l e prev = NULL;
i f (! cur r) {

node = newNode ;
#i f OPTYP == 9

i f (x t e s t ()) xend () ;
e l s e RELEASE LOCK() ;

#e l s e
RELEASE() ;

#e n d i f
r e turn 1 ;

}

i f (cur r −> data > newNode −> data) {
newNode −> next = node ;
node = newNode ;

#i f OPTYP == 9
i f (x t e s t ()) xend () ;
e l s e RELEASE LOCK() ;

#e l s e
RELEASE() ;

#e n d i f
r e turn 1 ;

}

do {
i f (cur r −> data > newNode −> data) {

prev −> next = newNode ;
newNode −> next = curr ;

#i f OPTYP == 9
i f (x t e s t ()) xend () ;
e l s e RELEASE LOCK() ;

#e l s e

104

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

RELEASE() ;
#e n d i f

r e turn 1 ;
}
prev = curr ;
curr = curr −> next ;

} whi le (curr && curr −> data != newNode −> data) ;
RELEASE() ;
r e turn 0 ;

}

#e l s e

i n t add (Node∗ v o l a t i l e &node , Node∗ newNode , unsigned long long& nlock ,
unsigned long long& nabort , unsigned shor t MAXATTEMPT, unsigned i n t&
s p l i t l e n g t h)

{
i n t mode = TRANSACTION;
unsigned i n t attempts = MAXATTEMPT;
unsigned i n t s t a t u s = 0 ;
unsigned i n t s p l i t = 0 ;
unsigned long long save = 0 ;

r e t r y :

Node∗ v o l a t i l e pp = node ; //head o f l i s t
that i s passed in

Node∗ v o l a t i l e p ;

i f (mode == TRANSACTION) {

UINT64 myTag = TAG(pp) ;

n e x t s p l i t :

i n t backo f f = 0 ;
i n t cnt = 0 ;

whi l e (1) {

whi le (l o c k v a r) {
mm pause () ;

}

s t a t u s = xbeg in () ;

i f (s t a t u s == XBEGIN STARTED) {
i f (s p l i t == 1) pp = (Node∗) save ;

i f (l o c k v a r)
xabort (0xA0) ;

i f (myTag != TAG(pp)) {
s p l i t = 0 ;
xabort (0xA1) ;

}

p = pp−>next ;

i f (! p) {
pp −> next = newNode ;
xend () ;

r e turn 1 ;
}

105

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

i f (p −> data > newNode −> data) {
newNode −> next = p ;
pp −> next = newNode ;
xend () ;

r e turn 1 ;
}

do {
i f (p−>data > newNode−>data) {

pp −> next = newNode ;
newNode −> next = p ;
xend () ;

r e turn 1 ;
}
pp = p ;
i f (++cnt >= s p l i t l e n g t h) {

myTag = TAG(pp) ;
save = (unsigned long long) pp ;
xend () ;

s p l i t = 1 ;

s p l i t l e n g t h += 4 ; //
dynamic tuner

i f (s p l i t l e n g t h > 32) s p l i t l e n g t h = 32 ;

goto n e x t s p l i t ;
}
p = p−>next ;

} whi le (p && p −> data != newNode −> data) ;

xend () ;

r e turn 0 ;

} e l s e { // here i f t r a n s a c t i o n abort s
++nabort ;
i f (l o c k v a r) {

do {
mm pause () ;

} whi le (l o c k v a r) ;
}
i f (−−attempts <= 0) {

mode = LOCK;
goto r e t r y ;

}
unsigned shor t wait = attempts ;
whi l e (wait−−) ;

s p l i t l e n g t h >>= 1 ; //dynamic
tuner

i f (s p l i t l e n g t h < 8) s p l i t l e n g t h = 8 ;

i f (s p l i t == 1) goto n e x t s p l i t ;
}
}

} e l s e { // LOCK
do {

do {
mm pause () ;

} whi le (l o c k v a r) ;
} whi le (Inter lockedExchange(& lock var , 1)) ;

p = pp −> next ;

106

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

i f (! p) {
pp −> next = newNode ;
l o c k v a r = 0 ;
re turn 1 ;

}

i f (p −> data > newNode −> data) {
newNode −> next = p ;
pp −> next = newNode ;
l o c k v a r = 0 ;
re turn 1 ;

}

do {
i f (p−>data > newNode−>data) {

pp −> next = newNode ;
newNode −> next = p ;
l o c k v a r = 0 ;
re turn 1 ;

}
pp = p ;
p = p−>next ;

} whi le (p && p −> data != newNode −> data) ;

l o c k v a r = 0 ;

re turn 0 ;

}
}
#e n d i f

bool search (Node∗ node , unsigned i n t x) {
Node∗ curr = node ;

whi l e (curr) {
i f ((curr −> data) == x) {

re turn true ;
}

i f ((curr −> next) == NULL) {
re turn f a l s e ;

}
curr = curr −> next ;

}

re turn f a l s e ;
}

#i f OPTYP < 10
Node∗ remove node (Node∗ v o l a t i l e &node , unsigned i n t x , unsigned long

long& nlock , unsigned long long& nabort , unsigned shor t& MAXATTEMPT) {
ACQUIRE() ;
Node∗ v o l a t i l e ∗ curr = &node ; //node i s the head o f the l i s t
whi l e (∗ curr != NULL) {

i f ((∗ curr)−>data == x) {
Node∗ temp = ∗ curr ;
∗ curr = (∗ curr)−>next ;

#i f OPTYP == 9

107

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

i f (x t e s t ()) xend () ;
e l s e RELEASE LOCK() ;

#e l s e
RELEASE() ;

#e n d i f
r e turn temp ;

}
curr = &(∗ curr)−>next ;

}
RELEASE() ;
r e turn NULL;

}

#e l s e
Node∗ remove node (Node∗ v o l a t i l e &node , unsigned i n t x , unsigned long

long& nlock , unsigned long long& nabort , unsigned shor t& MAXATTEMPT,
unsigned i n t& s p l i t l e n g t h)

{
i n t mode = TRANSACTION;
unsigned i n t attempts = MAXATTEMPT;
unsigned i n t s t a t u s = 0 ;
unsigned i n t s p l i t = 0 ;
unsigned long long save = 0 ;

r e t r y :

Node∗ v o l a t i l e pp = node ; //node i s the head
o f the l i s t

Node∗ v o l a t i l e p ;

i f (mode == TRANSACTION) {

UINT64 myTag = TAG(pp) ;

n e x t s p l i t :
i n t backo f f = 0 ;
i n t cnt = 0 ;

whi l e (1) {

whi le (l o c k v a r) {
mm pause () ;

}

s t a t u s = xbeg in () ;

i f (s t a t u s == XBEGIN STARTED) {
i f (s p l i t == 1) pp = (Node∗) save ;

i f (l o c k v a r)
xabort (0xA0) ;

i f (myTag != TAG(pp))
xabort (0xA1) ;

p = pp −> next ;

whi l e (p) {
i f (p −> data >= x) {

i f (p −> data == x) {
pp −> next = p −> next ;
TAG(p)++;

xend () ;
r e turn p ;

}

108

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

break ;
}
pp = p ;
i f (++cnt >= s p l i t l e n g t h) {

myTag = TAG(pp) ;
xend () ;

s p l i t l e n g t h += 4 ; //
dynamic tuner

i f (s p l i t l e n g t h > 32) s p l i t l e n g t h = 32 ;

goto n e x t s p l i t ;
}
p = p −> next ;

}

xend () ;
r e turn NULL;

} e l s e { // here i f t r a n s a c t i o n abort s
++nabort ;
i f (l o c k v a r) {

do {
mm pause () ;

} whi le (l o c k v a r) ;
}
i f (−−attempts <= 0) {

mode = LOCK;
goto r e t r y ;

}
unsigned shor t wait = attempts ;
whi l e (wait−−) ;

s p l i t l e n g t h >>= 1 ; //dynamic
tuner

i f (s p l i t l e n g t h < 8) s p l i t l e n g t h = 8 ;

i f (s p l i t == 1) goto n e x t s p l i t ;
}

}

} e l s e { // LOCK
++nlock ;
whi l e (Inter lockedExchange(& lock var , 1)) {

do {
mm pause () ;

} whi le (l o c k v a r) ;
}

p = pp −> next ;

whi l e (p) {
i f (p −> data >= x) {

i f (p −> data == x) {
pp −> next = p −> next ;
TAG(p)++;
l o c k v a r = 0 ;
re turn p ;

}
break ;

}
pp = p ;
p = p −> next ;

109

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

}

l o c k v a r = 0 ;
re turn NULL;

}
}

#e n d i f

i n t pre add (Node∗ v o l a t i l e &node , Node∗ newNode) {
Node∗ v o l a t i l e curr = node ;
Node∗ v o l a t i l e prev = NULL;
i f (! cur r) {

node = newNode ;
re turn 1 ;

}

i f (cur r −> data > newNode −> data) {
newNode −> next = node ;
node = newNode ;
re turn 1 ;

}

do {
i f (cur r −> data > newNode −> data) {

prev −> next = newNode ;
newNode −> next = curr ;
r e turn 1 ;

}
prev = curr ;
curr = curr −> next ;

} whi le (curr && curr −> data != newNode −> data) ;
r e turn 0 ;

}

void p r e F i l l (i n t s i z e , Node∗ v o l a t i l e &head) {

unsigned i n t temp = 1 ;
unsigned long long lock = 0 ;
unsigned long long abort = 0 ;
Node∗ pre ;
unsigned shor t max = 8 ;
unsigned i n t s p l i t = 8 ;

whi l e (temp < s i z e) {
pre = i n i t (temp) ;
pre add (head , pre) ;
temp +=2;

}

}

// t e s t i n g only

110

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

void p r i n t (Node∗ node) {
Node∗ curr = node ;

whi l e (curr) {
p r i n t f (”%i \n” , curr −> data) ;
curr = curr −> next ;

}
}

UINT64 t s t a r t ; // s t a r t o f t e s t in ms
i n t keyRAnge ; // % keyRAnge
i n t l i n e S z ; // cache l i n e s i z e
i n t maxThread ; // max # of threads

THREADH ∗ threadH ; // thread handles
UINT64 ∗ops ; // f o r ops per thread

unsigned long long ∗ l o c k s ;

typede f s t r u c t {
i n t keyRAnge ; // keyRAnge
i n t nt ; // # threads
UINT64 r t ; // run time (ms)
UINT64 ops ; // ops
UINT64 i n c s ; // should be equal ops
UINT64 abort s ;
unsigned long long l o c k s ; //
unsigned long long added ;
unsigned long long removed ;
unsigned long long l i s t s i z e ;
unsigned i n t s t a t i c r e p e a t ;

} Result ;

Result ∗ r ; // r e s u l t s
UINT indx ; // r e s u l t s index

v o l a t i l e VINT ∗g ; // NB: p o s i t i o n o f
v o l a t i l e

WORKER worker (void ∗vthread)
{

i n t thread = (i n t) ((s i z e t) vthread) ;
Node∗ s ta ck top = NULL;
Node∗ temp ;
srand (thread) ;
UINT64 n = 0 ;
unsigned shor t MAXATTEMPT = MAX;
unsigned i n t s p l i t l e n g t h = NSPLIT ;

unsigned i n t a = rand () ;

unsigned long long nabort = 0 ;
unsigned long long abort = 0 ;
unsigned i n t r e s = 0 ;
runThreadOnCPU(thread % ncpu) ;

111

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

whi le (1) {

#i f OPTYP < 10
a = rand (a) ;
i f (a & 1) {

isEmpty (s tack top) ? temp = i n i t (a >> (30 − b i t s h i f t)) : temp
= pop (stack top , (a >> (30 − b i t s h i f t))) ;

r e s = add (head , temp , abort , nabort , MAXATTEMPT) ;
i f (r e s == 0) push (temp , s tack top) ;

} e l s e {
temp = remove node (head , a >> (30 − b i t s h i f t) , abort , nabort ,

MAXATTEMPT) ;
i f (temp != NULL) push (temp , s tack top) ;

}
#e l s e

a = rand (a) ;
i f (a & 1) {

isEmpty (s tack top) ? temp = i n i t (a >> (30 − b i t s h i f t)) : temp
= pop (stack top , (a >> (30 − b i t s h i f t))) ;

r e s = add (head , temp , abort , nabort , MAXATTEMPT, s p l i t l e n g t h)
;

i f (r e s == 0) push (temp , s tack top) ;
} e l s e {

temp = remove node (head , a >> (30 − b i t s h i f t) , abort , nabort ,
MAXATTEMPT, s p l i t l e n g t h) ;

i f (temp != NULL) push (temp , s tack top) ;
}

#e n d i f

n++;
//
// check i f runtime exceeded
//
i f ((getWallClockMS () − t s t a r t) > NSECONDS∗1000)

break ;

}
removeAll (s t a ck top) ;
ops [thread] = n ;

#i f OPTYP == 9 | | OPTYP == 10
abort s [thread] = nabort ;
l o c k s [thread] = abort ;

#e n d i f
r e turn 0 ;

}

//
// main
//
i n t main ()
{

ncpu = getNumberOfCPUs () ; // number o f l o g i c a l CPUs
maxThread = ncpu ∗ 2 ; // max number o f threads

//
// get date
//
char dateAndTime [2 5 6] ;
getDateAndTime (dateAndTime , s i z e o f (dateAndTime)) ;

112

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

//
// conso l e output
//
cout << getHostName () << ” ” << getOSName () << ” keyRAnge ” << (

i s 64b i tExe () ? ” (64 ” : ” (32 ”) << ” b i t EXE) ” ;
#i f d e f DEBUG

cout << ” DEBUG” ;
#e l s e

cout << ” RELEASE” ;
#e n d i f

cout << ” [” << OPSTR << ”] ” << ” NCPUS=” << ncpu << ” RAM=” << (
getPhysicalMemSz () + GB − 1) / GB << ”GB ” << dateAndTime << endl ;

#i f d e f COUNTER64
cout << ”COUNTER64” ;

#e l s e
cout << ”COUNTER32” ;

#e n d i f
#i f d e f FALSEkeyRAnge

cout << ” FALSEkeyRAnge” ;
#e n d i f

cout << ” NOPS=” << NOPS << ” NSECONDS=” << NSECONDS << ” OPTYP=” <<
OPTYP;

#i f d e f USEPMS
cout << ” USEPMS” ;

#e n d i f
cout << endl ;
cout << ” I n t e l ” << (cpu64bit () ? ”64” : ”32”) << ” fami ly ” <<

cpuFamily () << ” model ” << cpuModel () << ” s tepp ing ” <<
cpuStepping () << ” ” << cpuBrandString () << endl ;

#i f d e f USEPMS
cout << ” performance monitor ing v e r s i o n ” << pmversion () << ” , ” <<

nf ixedCtr () << ” x ” << fixedCtrW () << ” b i t f i x e d counters , ” <<
npmc () << ” x ” << pmcW() << ” b i t performance counter s ” << endl ;

#e n d i f

//
// get cache i n f o
//
l i n e S z = getCacheLineSz () ;
// l i n e S z ∗= 2 ;

cout << endl ;

//
// a l l o c a t e g l o b a l v a r i a b l e
//
// NB: each element in g i s s to r ed in a d i f f e r e n t cache l i n e to stop

f a l s e keyRAnge
//
threadH = (THREADH∗) ALIGNED MALLOC(maxThread∗ s i z e o f (THREADH) , l i n e S z)

; // thread handles
ops = (UINT64∗) ALIGNED MALLOC(maxThread∗ s i z e o f (UINT64) , l i n e S z) ;

// f o r ops per thread

#i f OPTYP == 10 | | OPTYP == 9
abort s = (UINT64∗) ALIGNED MALLOC(maxThread∗ s i z e o f (UINT64) , l i n e S z) ;

// f o r count ing abort s
l o c k s = (UINT64∗) ALIGNED MALLOC(maxThread∗ s i z e o f (UINT64) , l i n e S z) ;

#e n d i f

113

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

r = (Result ∗) ALIGNED MALLOC(32∗maxThread∗ s i z e o f (Result) , l i n e S z) ;
// f o r r e s u l t s

memset (r , 0 , 5∗maxThread∗ s i z e o f (Result)) ;
// zero

indx = 0 ;

//
// use thousands comma separa to r
//
setCommaLocale () ;

//
// header
//
cout << ” ” << ” L i s t S i z e ” ;
cout << setw (3) << ” nt ” ;
cout << setw (6) << ” r t ” ;
cout << setw (16) << ” ops ” ;
cout << setw (16) << ” ops / s ” ;

#i f OPTYP == 10 | | OPTYP == 9
cout << setw (18) << ” Locks taken ” ;
cout << setw (6) << ”%” ;
cout << setw (18) << ” Aborts ” ;
cout << setw (18) << ” Aborts per Op” ;

// cout << setw (12) << ” S t a t i c ” ;
#e n d i f

cout << endl ;
cout << ” ” << ”−−−−−−−” ; // keyRAnge
cout << setw (4) << ”−−” ; // nt
cout << setw (6) << ”−−” ; // r t
cout << setw (16) << ”−−−” ; // ops
cout << setw (16) << ”−−−” ; // r e l

#i f OPTYP == 10 | | OPTYP == 9
cout << setw (15) << ”−−−−−−” ;
cout << setw (10) << ”−−” ;
cout << setw (16) << ”−−−−−−” ;
cout << setw (18) << ”−−−−−” ;
// cout << setw (12) << ”−−−−”;

#e n d i f
cout << endl ;

b i t s h i f t = 0 ;

f o r (keyRAnge = 16 ; keyRAnge <= NOPS; keyRAnge∗=4) {
b i t s h i f t += 2 ;

f o r (i n t nt = 1 ; nt <= maxThread ; nt∗=2, indx++) {

//
// zero shared memory
//

head = NULL;

p r e F i l l (keyRAnge , head) ;

#i f OPTYP >= 10
memset ((void ∗) tag , 0 , NTAG∗ s i z e o f (UINT64)) ;

114

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

#e n d i f

//
// get s t a r t time
//

t s t a r t = getWallClockMS () ;

//
// c r e a t e worker threads
//

f o r (i n t thread = 0 ; thread < nt ; thread++)
createThread(&threadH [thread] , worker , (void ∗) (s i z e t)

thread) ;

//
// wait f o r ALL worker threads to f i n i s h
//
waitForThreadsToFinish (nt , threadH) ;
UINT64 r t = getWallClockMS () − t s t a r t ;

//
// save r e s u l t s and output summary to conso l e
//
f o r (i n t thread = 0 ; thread < nt ; thread++) {

r [indx] . ops += ops [thread] ;
r [indx] . i n c s += ∗(GINDX(thread)) ;

#i f OPTYP == 10 | | OPTYP == 9
r [indx] . abort s += abort s [thread] ;
r [indx] . l o c k s += l o c k s [thread] ;

// r [indx] . s t a t i c r e p e a t = MAX + 1 ;
#e n d i f

}
r [indx] . i n c s += ∗(GINDX(maxThread)) ;
i f ((keyRAnge == 0) && (nt == 1))

ops1 = r [indx] . ops ;
r [indx] . keyRAnge = keyRAnge ;
r [indx] . nt = nt ;
r [indx] . r t = r t ;

cout << setw (10) << keyRAnge ;
cout << setw (4) << nt ;
cout << setw (8) << f i x e d << s e t p r e c i s i o n (2) << (double) r t /

1000 ;
cout << setw (18) << r [indx] . ops ;
cout << setw (16) << f i x e d << s e t p r e c i s i o n (2) << (double) r [

indx] . ops / ((double) r t / 1000) ;

#i f OPTYP == 10 | | OPTYP == 9

cout << setw (12) << r [indx] . l o c k s ;
cout << setw (10) << f i x e d << s e t p r e c i s i o n (2) << (double) (r [

indx] . l o c k s ∗100) / r [indx] . ops ;
cout << setw (16) << r [indx] . abort s ;
cout << setw (18) << f i x e d << s e t p r e c i s i o n (2) << (double) r [

115

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

indx] . abort s / r [indx] . ops ;
// cout << setw (12) << MAX;

#e n d i f

// i f (r [indx] . ops != r [indx] . i n c s)
// cout << ” ERROR i n c s ” << setw (3) << f i x e d <<

s e t p r e c i s i o n (0) << 100 .0 ∗ r [indx] . i n c s / r [indx] . ops
<< ”% e f f e c t i v e ” ;

cout << endl ;

//
// d e l e t e thread handles
//
f o r (i n t thread = 0 ; thread < nt ; thread++)

closeThread (threadH [thread]) ;

removeAll (head) ;
#i f OPTYP == 10

head = new Node () ;
head −> data = 0 ;

#e n d i f
}

// }

}

cout << endl ;

//
// output r e s u l t s so they can e a s i l y be pasted in to a spread shee t

from conso l e window
//
s e t L o c a l e () ;
cout << ” Tree S i z e /nt/ r t / ops /ops−per−s ” ;

#i f OPTYP == 10 | | OPTYP == 9
cout << ”/Lock Taken/%Lock Taken” ;

#e n d i f
cout << endl ;
f o r (UINT i = 0 ; i < indx ; i++) {

cout << r [i] . keyRAnge << ”/” << r [i] . nt << ”/” << r [i] . r t << ”/”
<< r [i] . ops << ”/” << (double) r [i] . ops / ((double) r [i] . r t /
1000) ;

#i f OPTYP == 10 | | OPTYP == 9
cout << ”/” << r [i] . l o c k s ;
cout << ”/” << f i x e d << s e t p r e c i s i o n (2) << (double) (r [i] . l o c k s

∗100) / r [i] . ops ;
cout << ”/” << r [i] . abor t s ;
cout << ”/” << f i x e d << s e t p r e c i s i o n (2) << (double) r [i] . abort s / r [

i] . ops ;
// cout << ”/” << r [i] . s t a t i c r e p e a t ;
#e n d i f

cout << ”/” << endl ;
}
cout << endl ;

qu i t () ;

r e turn 0 ;

}

// e o f

116

APPENDIX A. CODE Self Tuning Algorithms Running on Intel’s Transactional Memory

A.4 Build File

BIN = shar ing
CC = g++
#FLAGS = −Wall −pedant ic
OPTS = −Dlock type=10
SYS LIB = −mrtm −mrdrnd −O3 −pthread
SRC = main . cpp he lpe r . cpp

a l l :
${CC} ${FLAGS} −o ${BIN} ${SRC} ${SYS LIB} ${OPTS}

117

	Summary
	Acknowledgements
	Introduction
	The Problem
	Potential Solution
	Chapter Guide

	Background
	Ordered Linked List
	Origin of the Ordered Linked List
	Data Structure Choice

	Transactional Memory
	Origin of Transactional Memory
	Intel's Implementations of Transactional Memory
	Hardware Lock Elision
	Drawbacks of Intel's Hardware Transactional Memory
	Lock Based Fallback Path
	Limitations of Intel's Hardware Transactional Memory

	Current Research with Hardware Transactional Memory

	Split Transactions
	Limitations of Split Transactions

	Alternative Solutions
	Lock Approach
	Lockless Algorithms
	Hazard Pointers
	Bakery Algorithm

	Design
	Baseline
	Implementation
	Transactional Memory
	Split Transactions

	Dynamic Tuning of Split Transactions
	Design
	Birthday Problem

	Results
	Static Analysis
	Key Range of 64
	Key Range of 4096
	Key Range of 65536

	Dynamic Tuning
	Conflict Prediction

	Discussion
	Conclusion
	Bibliography
	Appendices
	Code
	helper.h
	helper.cpp
	main.cpp
	Build File

