
Robust Recognition and Identification of
Paintings using Computer Vision Techniques

Author : Conor Broderick

Supervisor : Dr. Kenneth Dawson-Howe
M.A.I Computer Engineering

�

Submitted to the University of Dublin, Trinity College, May 2016

�
Page � of �1 71

Declaration

I, Conor Broderick, declare that the following dissertation, except where otherwise
stated, is entirely my own work; that is has not previously been submitted as an exercise

for a degree, either in Trinity College Dublin, or in any other University; and that the
library may lend or copy it or any part thereof on request.

Signature:

Date: Wednesday 19th May 2016

�
Page � of �2 71

Summary

This project aims to develop a mobile Android application capable of recognising and
identifying known paintings via computer vision techniques and image processing.

A user using the application would identify a painting of interest by pointing their
smartphone’s camera at a painting of interest in an art gallery or museum setting, snap a

photograph of it and have the application relay information regarding the painting such
as the painting’s name, artist’s name, era it was painted in etc. back to the user for them

to read.
The resultant application that was developed shows that such an application is viable on

a smartphone mobile device with no external processing on remote machines required.
In order to test the application, a public dataset of paintings from the Stanford Mobile

Visual Search library is used as its dataset of known paintings.

The application itself is comprised of two main components to first find and extract what
may be a painting in an image and then second to match this extracted painting to its

correct match in a collection of reference paintings stored on the on board database
containing the reference paintings and their relevant information. In order to find and

extract what may be a painting in an image, a number of different image processing
techniques are used. To detect what may be a painting in an image essentially a

combination of smoothing, edge detection, morphological operations, and contour
location, filtering, and extraction were used to detect the painting’s frame and remove it

from its background. In order to match the painting a combination of SIFT features and
kNN (k nearest neighbours algorithm) were used to find unique features in the extracted

paintings and match these to their respective counterparts in the reference paintings
dataset. This report explores the theory behind these processes and how they work

together in order to achieve the end of goal of matching and identifying paintings.

The results consist of the success rate of both the matching and extraction techniques
employed in this application, and the time in which it took to match each painting to a

reference in the dataset. As well as this, some test cases were observed for the
extraction technique identifying both the effectiveness and limitations of the developed

method.

�
Page � of �3 71

Overall the performance of the application proved promising showing a 58% success
rate or true positive rate in terms of correctly matching paintings to their references. The

entire application is not finished but this project serves as a good point to continue from
in order to implement a more complete application fit for real-world use. The final parts of

the report detail some additional features that are to be implemented in order to improve
the application on both a technical and aesthetic level in order to improve accuracy,

performance, and ease of use for the user.

�
Page � of �4 71

Acknowledgements

I would like to thank my project supervisor Dr. Kenneth Dawson-Howe for his feedback,

guidance, and support throughout the entire duration of this project.

I would also like to thank my family and friends for proofreading this document and for
supporting me throughout this academic year.

�
Page � of �5 71

Abstract - Robust Recognition and

Identification of Paintings using Computer
Vision Techniques

Conor Broderick

This report details the research, theory, development, testing, and results of a mobile
computer vision application capable of recognising and identifying a known set of
paintings.
Art galleries and museums tend to rely on cumbersome paper based brochures, human
tour guides, and/or audio tapes in order to deliver information about the artwork hanging
on their walls to its patrons. An alternative approach to this problem is presented in this
report in the form of a mobile application capable of recognising and identifying paintings
whereby a user looking at paintings in an art gallery can obtain more information about
them by taking out their smartphone and simply taking a picture of it. In this report, an
investigation is carried out into the available literature surrounding this problem and a
technique is developed in order to try and tackle it in a way without using any external
computational machines for the required image processing.
The final results of the application showed a 58.24% success rate in correctly matching
paintings extracted from images to their known reference counterparts hence
demonstrating that computer vision could be applied in this case in order to serve as an
alternative to traditional museum guides.

�
Page � of �6 71

Robust Recognition and Identification of Paintings using Computer Vision

Techniques

Declaration

Summary

Acknowledgements

Abstract - Robust Recognition and Identification of Paintings using Computer

Vision Techniques

Introduction

Aims 10...

Motivation 12...

Ethical Considerations 13...

Test Data 13..

Copyright 14...

Summary 15...

Overview 16...

Painting Extraction 16...

Painting Matching 17..

Technology 20...

Summary 20...

Literature Review 21...

Painting Recognition using Camera-phone Images [5] 21

Painting Recognition From Wearable Cameras [5] 22

Robust Painting Recognition & Registration for Mobile Augmented Reality [7] 24

Summary 27

Methodology & Implementation 29..

�
Page � of �7 71

Introduction 29

Painting Extraction 29

Introduction 29..

The Captured Image 30..

Gaussian Blur 31..

Canny Edge Detection 33...

Dilation 38...

Finding and Filtering contours 39...

Painting Matching 42

SIFT (Scale invariant feature transformation) 42..

Constructing a scale space and Laplacian of Gaussian approximations 43............

Key-points detection and filtration 45...

Assignment of orientation 47..

Generate SIFT features 48...

K Nearest neighbour feature matching 49..

Summary 51

Testing and Results

Painting Extraction 52

Test case 1 - Successful Extraction 52...

Test case 2 - Unsuccessful Extraction 55...

Overall results for painting extraction 60..

Conclusion 60...

Painting Matching 60

Average time taken to find a match 62..

Future work 65

�
Page � of �8 71

Serialisation of reference painting SIFT feature data 65..

Categorisation of Paintings 65..

Conclusion

Bibliography

Appendix

Demo 70...

Matching via colour using histograms 70...

�
Page � of �9 71

Introduction

Computer vision is a field that includes methods for acquiring, processing, analysing,

and understanding images and, in general, high-dimensional data from the real world in
order to produce numerical or symbolic information.[1] One of the main goals for

computer vision has been to replicate the sophistication of the human eye in terms of
perceiving and understanding visual information to interface with reasoning processes to

elicit an appropriate response. In the case of this project I aim to solve a computer
vision related problem using some of the techniques developed in trying to achieve this

goal.

Aims

This project aims to develop an mobile Android application capable of recognising and
identifying paintings in an art gallery or museum setting. A user of the application would

be able to point their smartphone’s camera at a painting of interest, take a photograph of
it and then have the application recognise it and relay the relevant information back to

the user about the targeted painting. The information returned to the user would include
things like the artist’s name, the year the painting was painted, the period the painting is

from etc. This is achieved by extracting the painting of interest from the photographed
image and comparing it to a set of known paintings to find its correct match using image

processing and computer vision related algorithms and techniques.
The application would come preloaded with a database of known paintings for that

particular gallery or museum and their relevant information.
Figure 1 below illustrates the application in use by a woman using the application to gain

more information about a framed piece of artwork hanging on a wall in front of her by
taking a photograph of it.

�
Page � of �10 71

�
Figure 1 - Woman taking a photograph of a piece of artwork using the application to gain

more information about it

Figure 2 below further illustrates how the app is used and what a typical result looks like
for a recognised painting.

Figure 2 - Illustration of typical result produced by the application

�
Page � of �11 71

Motivation

In today’s modern world, smartphones are increasingly prevalent among the general

population, becoming a standard possession of both the young and old alike. The ITU
(International Telecommunication Union) reports that there are now more active mobile

device subscriptions than there are people in the developed part of the world[2]. Due to
their widespread availability and the companion-like attachment smartphone users have

to their devices, there has been a lot of development of a large variety of applications to
enhance the user’s life and to simplify a lot of their day-to-day inconveniences that

previously required separate real-world tools and items to solve.

Applications for scanning barcodes, retrieving real-time public transport information, and
virtual wallets for keeping credit cards to cinema tickets are just some examples of

applications that have been developed to achieve this. As well as this, smartphone
cameras have become better in both software and hardware over the years which has

opened the door to more sophisticated computer vision focused applications to become
viable on the smartphone platform.

One such application could be that of an electronic guide to paintings in museums

whereby users could point their smartphone device at a painting of interest in order to
retrieve more information about the painting they are viewing rather than flipping through

a cumbersome brochure provided to them by the museum they are in. In essence, this
would result in turning the passive experience of walking around an art gallery or

museum into an active one where the user is empowered to draw more information
about the artworks surrounding them should they desire it. An application of this nature

would also save money for the museums in printing out artwork guides for visitors as
well as saving the paper that would be needed to print them on. Museums would also no

longer be limited to a small placard on the wall beside the painting to deliver information
about it to its visitors.

Imagine a tourist exploring Trinity College Dublin for the first time and wanting to find out

more about the paintings and artwork installations around the campus. They could
simply pull out their phone, download the app along with the latest information regarding
�

Page � of �12 71

Trinity’s art exhibitions allowing them to discover more about the artwork and enrich their

overall experience while walking around the grounds and visiting the various buildings
and locations on campus. Such an application would also save the time and resources

of the staff managing Trinity’s various art collections as they now all have a centralised
location and dispensary for the information about the artwork rather than having to figure

out what information is worth displaying along with particular pieces of artwork and
paintings.

Ethical Considerations

In conducting any kind of research one must take pause to consider the ethical

implications of the work they are embarking on. One must consider if what they’re doing
will cause any harm to others, infringe on the anonymity or the privacy of others, and if

any participants in the research have informed consent as to what they will be doing,
what data is being collected on them, and what is being done with that data during and

after the research has been completed. In the case of the ethical reporting of results
from research, one must ensure that they are not introducing any bias to the test data or

falsifying results in order to produce data favourable to their research. External material
must also be correctly referenced in order not to plagiarise the work and efforts of

others.

Test Data

One potential case for unethical practice on my part would be that of tampering with the

test data I will be using to evaluate my application’s performance in order to produce
favourable results for my research project.

My project uses a publicly available data set, the ‘Stanford Mobile Visual Search’[20] data

set of museum paintings, in order to test the effectiveness of the application. In order to
artificially improve my results, I could crop out the photographs of the paintings hanging

on walls by manually removing the background in order to improve the effectiveness of

�
Page � of �13 71

my painting extraction technique which would in turn increase the number of successful

matches the application returns.

This however would produce unrealistic results that would not be reflective of how well
my application and the algorithms/techniques within are actually performing and may

mislead and waste the time of others reading my work who are trying to achieve
something similar and conduct related research.

Copyright

In the case of copyright, ethical issues may arise in the case of taking photographs of
copyrighted paintings for use in the app as reference paintings. If I were to test out my

application in a museum in Dublin, there’s a good chance I may face some legal issues
when it comes to taking both high quality reference photographs of the paintings as well

as standard smartphone photos to test with.

The issue mainly lies in the fact that most museums do not hold the copyright to the
paintings that they are displaying. According to copyright and fair use specialist lawyer

Julie Aherns from the Centre for Internet and Society at Stanford University, she states

that a photograph of an artwork could be considered a “derivative work,” which is

“potentially a violation of the copyright holder.”[3]

This of course allows for the potential to be unethical and acquire or stealthily take the

desired photographs for my project in order to acquire a dataset to test it with. In another
somewhat similar example, researchers in the past have landed in hot water for breaking

copyright laws in order to aid their research. In an article by NPR[4] it’s revealed that
many University libraries are ending their subscriptions to expensive journals which has

led to their researches acquiring them through illegal channels. Breaking copyright law in
this way is unethical and can lead to monetary loss for the copyright holder and therefore

damage their business, research etc.

�
Page � of �14 71

Summary

From the exploration of the various ethical issues above it is evident that some degree of
care must be taken in regards to the handling of the test data and copyright of paintings

in researching and developing the proposed project in this report. In order to ensure
ethical standards are held I did not tamper or alter any of the test data taken from the

Stanford mobile visual search dataset in order to skew my results, and this dataset was
also used to avoid the potential to violate the copyrights of any artists whose paintings I

may have had to take a high quality photograph of in order to test with.

�
Page � of �15 71

Overview

The purpose of this section of the report is to provide an overview of the main

components of the developed application, how they fit together, and how they overcome
the challenges involved in achieving the end goal of identifying the paintings contained in

the dataset.

The various components of each step here will be mentioned briefly. The theory and
reasoning behind them will be explained in the methodology portion of this document.

The main sections of the application are:

● Capturing the image and extracting the painting from the background
● Matching the extracted painting against a set of known paintings stored in the

onboard database.

Painting Extraction

In order to successfully match the painting it must be first isolated from its background in
order to accurately detect key-points and compute their descriptors for it to match

correctly with its reference. In order to do this a number of different methods were
attempted to try and remove the background from the image. Methods such as Hough

lines to detect the straight lines of the frame, corner detection to find the frame’s corners,
edge detection, and rectangular contour search were some of approaches attempted

and tested for this.

The extraction method implemented consisted of a five step process. Starting with the
initial captured image on the user’s smartphone, a Gaussian blur is applied to remove

some of the smaller edges while preserving the larger ones we’re interested in.
Following this the Canny edge detector is run over the image to detect the edges in the

image, a dilation is then applied to connect any broken edges, the contours are detected
and finally filtered to extract the largest one which will be the frame of the painting which

we can then crop out from the background. If everything works correctly we should be

�
Page � of �16 71

left with the painting that was contained in our captured image with the entire

background removed, thus isolating the painting for matching.

�
Figure 3 - The 5 step process of finding and isolating the painting from the background

Painting Matching

To match the painting to its correct reference a number of solutions were considered.

Colour based, histogram matching, bag of words, and feature based techniques were all
explored as to how to match the extracted painting to its reference and identify it

correctly. One of these approaches made it into the final implementation of the
application. Some of the others will be discussed in the latter parts of this document.

In order to match the extracted painting to its reference SIFT was used to detect local
features in both the extracted image and the reference images of the paintings and

compared using kNN (k-Nearest-Neighbour) to find the number of matching descriptors
of key-points between the two images. A threshold was set for the number of matches to

determine a match, otherwise the reference painting with the highest amount of
matching descriptors of the key-points would be returned. Reference paintings that

surpassed this threshold are considered to be ‘strong matches’ by the application.

�
Page � of �17 71

�
Figure 4 - Detecting SIFT key-points and descriptors + Matching with kNN

�
Page � of �18 71

�
Figure 5 - Flowchart of application’s processes

�
Page � of �19 71

Technology

In order to develop the application the OpenCV (open computer vision) library was used

for implementations of the various computer vision related techniques and algorithms
used in building this application. The external OpenCV library was also used for the use

of patented algorithms such as David Lowe’s SIFT. Initial testing and prototyping was
conducted initially using Python before implementation in Java for the Android

application. Developing and testing on the Android device itself is time consuming so the
initial Python implementations served as a time saver for prototyping before

implementing the final application. The paintings and some of their related information
were stored and accessed via a SQLite database that came with the Android application

itself.

Summary

In this section we have briefly seen and discussed how the application works from a high
level overview of its different components. The painting is extracted from the background

of the image using a mix of pre-processing techniques, edge detection, and contour
finding and filtering. Then in order to match the painting to its reference, key-points are

detected and descriptors computed for them using SIFT. Both the image and the
references are then compared using kNN matching to match the descriptors and return

the painting with the most matches.

�
Page � of �20 71

Literature Review

The purpose of this section is to provide a review of the relevant literature I have studied

for my thesis and how it helped to inform my design and implementation of the final
application.

In order to avoid repeating myself too much I will say here that the following papers are
all relevant to my project as they all generally have the same goal in mind of identifying

paintings using computer vision related techniques and algorithms.
Each paper is essentially an exploration into how to use computer vision on a mobile

device of some kind to identify and recognise paintings. The algorithms all break down
into different components containing an extraction phase and a matching phase of some

sort. Each of the papers and their findings have guided me towards how I tackled my
own project in terms of implementation, known difficulties, and result interpretation.

Painting Recognition using Camera-phone Images [5]

This paper discusses a computer vision algorithm implemented to recognise paintings
from a known dataset. Similar to my project, the algorithm was to be used as part of a

mobile application in a museum or gallery setting in order to recognise paintings hanging
on a wall and to provide audio commentary on the recognised painting.

In order to achieve this, their algorithm was broken down into two main parts. The first

part was that of finding the painting in the image and transforming it so that it fit on a
50x50 pixel square.

The second part was recognising the now extracted painting by extracting its lower
dimensional features using eigen-images and classifying it by using Euclidean nearest

neighbour classifier.

The results of the algorithm they developed were quite positive as they yielded only 2
misclassified test images out of a total of 132 test images with an average running time

of 0.5 seconds for recognising training images and an average running time for
recognising test images of 0.5992 seconds. However, I would be skeptical as to how

�
Page � of �21 71

they selected their test data as in the paper they mention taking their own photos using a

digital camera rather than a mobile phone camera to test their application.

While they briefly mention that they tried to take photos that would be on par with those
taken with a typical smartphone camera, I would be uncertain of the validity of their

strong test results given that they gave themselves plenty of opportunity to introduce a
selection bias into their test data. Whether consciously or not, they may have taken and

used photos that would be likely to produce favourable results for their project. A fairer
assessment of their application would have been if they had used a dataset of publicly

available photographs of paintings or collected their own photographs in a more
unbiased fashion.

The paper concluded that the success and speed of their results may have come down

to their own algorithms and that they may not be as robust for other image recognition
problems. Their general findings were that the more complex time consuming algorithms

proved to be more accurate and the less time consuming algorithms were less accurate
but faster. Overall, they propose that a smartphone could be used to recognise a

painting in a reasonable amount of time.

Painting Recognition From Wearable Cameras [5]

This paper describes a Google Glass application capable of identifying and recognising

paintings for use in a museum or art gallery. The paper provides an experimental
comparison of the accuracy and speed of the different feature detectors and descriptors

on a realistic dataset of paintings from the Louvre. The paper identifies that emerging
technology such as Google Glass provides the ample opportunity for computer vision

and augmented reality applications to be developed for many day-to-day activities for the
wearer and also that such applications due to the limitations of the hardware must be

very fast and efficient in order to work effectively.

Their system is composed of two different parts. In the first part, for each of the different
key-point detection and descriptor methods (SIFT, SURF, ORB etc.) they each compute

�
Page � of �22 71

the key-points and descriptors for all the images of the data set and store the result in an

onboard database on the Google Glass device. The second part is when the user
wearing the device and looks at a painting, the same algorithm is run over the input

frame and compared against the images in the database. They rank the database
images decreasingly according to the number of matches between the them and the

input image.

What’s notable about this paper and relevant to my own project is their discussion of
how matching the descriptors of the query image to all the descriptors of the database

image is not a scalable strategy. They identify that the complexity of the system and the
time it will take to match a painting is linear with the number of paintings in the database.

In order to resolve this they reference Josef Sivic and Andrew Zisserman’s paper ‘Video
google: A text retrieval approach to object matching in videos.’ which proposes using a

‘visual bag of features’ approach to the problem. The method involves constructing a
vocabulary of features, then in representing each image by a histogram. For each of the

images, their computed descriptors are converted into ‘words’ by taking the approximate
nearest neighbour and the histogram counts the number of occurrences of each word.

The histograms are then normalised and re-weighted so that the rarer words are more
important than the common ones which means that rather than matching hundreds of

descriptors we now only need to match one histogram which is significantly faster and
makes the system a lot more scalable.

They tested 100 reference images of paintings and used 10 photographs they took

themselves of each of the paintings in the museum. After obtaining their ranking of
matched images against the input image, they measure recall at top 1 (the number of

times that the correct reference painting from the database is at the top of the ranking
list) and recall at top 5 (the number of times that the correct painting is in the top images

of the ranking list).

�

�
Page � of �23 71

They did the same for their bag of words matching technique and finally compared the
time for key-point detection of the different methods they used for matching.

�

�
While I found the paper and its results to be fairly reliable I would be concerned that they
took photographs of the original paintings that would be favourable to their application in

terms of producing the desired results rather than a public set of photographs where no
bias would be in place. The main takeaway of the paper for me would be that of the

discussion of scalability and solutions to make the application more scalable which could
also be implemented into my project for the gains in terms of scaling the application for

use with larger data sets of known paintings.

Robust Painting Recognition & Registration for Mobile Augmented

Reality [7]

In this paper an approach for identifying and recognising paintings for mobile augmented

reality applications is discussed and developed. The aim of the approach is for it to be in
real-time and the method itself is again, broken down into multiple stages. The first stage

is what they’ve called ‘the relevant painting region detector’ which essentially finds and
extracts the painting region from the given image. In the second stage, two local and

global features are extracted from the relevant region to robustly match a painting from
the database. Lastly, a RANSAC homography estimation method is used to overlay the

additional content in an AR (augmented reality) framework.
They then perform experiments using a dataset of publicly available images to test their

solution.

�
Page � of �24 71

One of the key issues identified in this paper is that of the real-time nature of the
application. Static vision issues like illumination, view, and scale changes are more

severe when the camera is moving and the effects of blur, noise, and motion are
introduced. While not as much as an issue for my project, I was still able to identify

some of the key issues I would have to consider while developing my application from a
static viewpoint from reading this paper and its discussion of these issues.

The diagram below outlines the architecture of the system they developed.

Three main modules process the current read in frame by the camera. The first module
extracts the relevant painting region by removing the background of the painting and the

painting’s frame to keep only the portion of the image that contains the painting. It
achieves this by using the Randomised Hough Transform[21] (RHT) method. Essentially

what happens is after applying Canny edge detector, the RHT is used to to fit ellipses
and rectangles around these edges. The painting is extracted by choosing the shape

which has an area that is at least a certain times the size of the input image.

�
Figure 6 - Proposed architecture for system from Robust Painting Recognition and

Registration for Mobile Augmented Reality paper

Following this, the second module computes the match between the current camera
frame and a target in the database using SURF and PHOG. Finally, if the input frame

produced a match with the candidate target, the homography transformation used to
overlay the additional content to the current camera frame is computed by the third

module.

�
Page � of �25 71

The dataset used consists of 607 different publicly available photographs of 70 different

Van Gogh paintings. The pictures are taken from different viewing angles and under
different lighting conditions, some even come with light reflections and occlusions.

The algorithm has been tested on a standard PC with P4 CPU 2.0GHz, 1GB RAM,
Windows XP and on a Tablet with ARMv7 processor 1GB RAM, Android 4.2.2.

In the paper’s results, they first show the performance of their method without their

relevant painting region (RPR) detector, and graph it against the rotation of the input
image.

On average, a true positive rate of 49% is achieved for a false positive rate of 20%.

�
Figure 7 - False positive rate for RPR detector

For their second experiment, they graph the performance against image scale. In such

scenario, an average true positive rate of 67% is achieved for a false positive rate of
20%.

They then perform the same experiments again only this time using the RPR before

matching which results in a 71% true positive rate is reached for a false positive rate of
20% and for the second experiment a true positive rate of about 59% is reached for the

same false positive rate of 20%.

�
Page � of �26 71

�
Figure 8 - False positive rate RPR before matching

In comparison to the original experiment without RPR, performance increases by about
33%.

The results clearly demonstrate the benefits of extracting the relevant painting region
before matching as well as the effects of rotation and scale when it comes to accurately

matching against a dataset. I believe the results of this paper to be sound judging by the
public nature of the dataset used to conduct their experiments which was far less likely

to introduce bias than that of the datasets used in some of the other papers in this
literature review.

Their results and finding are especially relevant to my project as they explore some of
the same issues I’d be taking on as well as running their tests on hardware similar to that

of my own project, namely the mobile Android device.
Out of all the papers, their system’s architecture would be closest to that of mine,

especially in the painting extraction technique.

Summary

In this section of the report we looked at some of the relevant literature related to my
project of other similar projects attempting to achieve a similar goal in that of recognising

and identifying paintings. Looking at such material provides valuable knowledge which
will likely inform how one might approach a new project using similar techniques in the

same area. By studying the techniques used and the results they produced by the

�
Page � of �27 71

previously discussed papers I was able to make more informed choices as how to

develop my application and how different techniques would perform in certain
circumstances. This allowed me to avoid some of the more common pitfalls I may have

otherwise fallen into had I have not read them which would have resulted in a
significantly poorer performing application.

�
Page � of �28 71

Methodology & Implementation

Introduction

This section of the report details the theory and reasoning behind the various parts of the
application giving a description of how they work on a technical level and examples of

the results they produce. This section essentially gives a detailed breakdown of the
computer vision theory behind all of the working components of the application and why

they were used.
To recap, the application is broken down into 2 sections - the painting extraction phase,

and the painting matching phase. Each section is broken down further into intermediary
steps where combinations of image processing and computer vision techniques are

used to achieve the end result of identifying the target painting against a known dataset.

Painting Extraction

Introduction

Beginning with the painting extraction phase we will look at the 5 step process of
extracting the painting from its background. The process involves pre-processing of the

image, edge detection, further processing, and finally contour detection and filtering. The
final aim is to end up with the extracted painting as our result with the entire background

of the image removed in order to increase the chances of the successfully matching the
painting to its correct reference image in the matching phase of the application.

�
Page � of �29 71

The Captured Image

In order to understand the various pre-processing steps required to extract the painting
we must first understand what exactly the nature of the data is that we are processing

which in this case is an image.

For our purposes an image is simply a grid or matrix of different intensity values. For
example a grayscale image may have intensity values represented between 0 and 255

where 0 represents black and 255 represents white. All of the values in between these
values make up the different shades of grey.

�
Figure 9 - A simple grayscale image on the left represented in its matrix or grid form on

the right [9]

More complex images such as colour images may be represented in different forms

such as RGB or HLS which stand for red green blue and, hue luminance and saturation
respectfully. In the case of these 3-channelled images, each channel would have its own

grid of numbers so in the case of RGB, each pixel would have a corresponding red
value, green value, and blue value.

�
Page � of �30 71

By manipulating and changing these values across the image it enables us to process

them in different ways, some of which will be explained in the following pages in order to
extract the painting successfully.

Gaussian Blur

In order to remove any unwanted small edges and image noise produced by the
smartphone’s camera’s sensor due to poor illumination and temperature changes, the

captured image is initially pre-processed using a Gaussian blur. The aim of this pre-
processing is to allow for better results in the edge detection part of the painting

extraction process where we’ll be looking to find the edges of the rectangular frame of
the painting itself. Image noise negatively affects the results of edge detection

techniques as false detection of noise perceived as edges is likely to occur. The goal is
to essentially reduce the effects of the noise on the edge detector before running it over

the image.

A Gaussian blur (also known as Gaussian smoothing) is achieved by convolving an
image with a Gaussian function.

�
Figure 10 - Gaussian blur in two dimensions [9]

The above equation expresses a Gaussian blur in two dimensions. It is the product of

two different singular Gaussian functions in the x and y directions. In the equation, x is
the distance from the origin in the horizontal axis, y is the distance from the origin in the

vertical axis, and σ is the standard deviation of the Gaussian distribution.

A Gaussian blur essentially acts as a low-pass filter, passing signals or in the case of
images, pixels with intensities lower than a certain cutoff intensity and attenuating pixels

with intensities higher than the cutoff intensity.

�
Page � of �31 71

The result of this formula produces a Gaussian distribution whose values are used to

construct a convolution matrix or kernel which is essentially just a grid or matrix of
numbers.

Kernel convolution is a process whereby a kernel is passed over an image transforming

the image based on what the numbers inside the kernel are. Depending on what those
numbers are it can be used for anything from sharpening, blurring, edge detection,

dilations, erosions etc.

 In the case of the Gaussian blur the convolution kernel weights are themselves
Gaussian in order to achieve a smooth blurring effect between the pixels.

�
Figure 11 - Example of a Kernel whose weighed values are Gaussian being applied to

an image [9]

The Gaussian blur results in smooth blurring of the pixels and avoids the blocky nature

of a mean blur, the comparison of which can be seen in the below image. The below
image also shows the effect the kernel will have on groups of pixels. As we can see in

the left hand kernel for the mean blur, the change in pixel intensity is sharp whereas in
the case of the Gaussian kernel, the change in pixel intensity is more gradual lending to

its smoother appearance.

�
Page � of �32 71

�
Figure 12 - Mean vs. Gaussian Blur [9]

Canny Edge Detection

In order to detect the outline of the painting’s frame that we wish to extract we use an

edge detector to threshold the image into black and white pixels where the white pixels
represent an edge in the image and black pixels represent where there is no edge in the

image.
Thresholding simply involves taking a grayscale image, setting a threshold intensity, and

traversing through all of the pixels in the image setting their intensity value to either 0
(black) or 255 (white) depending on whether they are above or below the given

threshold. This allows for the creation of binary images which is what we’ll end up with
after running the Canny edge detector over our input image.

�
Figure 13 - Thresholded image of a painting

�
Page � of �33 71

Edges are defined as the points in an image in which pixel intensity changes sharply.

The detection of these edges can be achieved through the use of mathematical methods
to identify the points in the digital image where they occur. The general aim of edge

detection is to extract all of the useful structural information we’re interested in from an
image and to significantly reduce the amount of data to be processed.

�
Figure 14 - Basic image on the left, edges and orientations highlighted on the right [13]

Edge detection is usually performed on grayscale images as we only care for the change
in pixel intensity in order to detect edges. Looking at the grayscale image below from the

OpenCV documentation, we can clearly see with our own eyes were an edge or area of
pixel intensity suddenly changes.

�
Figure 15 - Grayscale image highlighting are of pixel intensity change or edge [12].

In order to express these changes in pixel intensity we use derivatives where a high
change in gradient indicates a major change in the image in terms of pixel intensity.

�
Page � of �34 71

The graph below represents a change in pixel intensity in a 1 dimensional image

�
Figure 16 - Change in pixel intensity for a 1 dimensional image[12].

Taking the derivative of this allows us to see this change more clearly. Using this we can

detect where edges in an image may exist by finding pixels where the gradient is
significantly higher than its surrounding neighbours.

�
Figure 17 - First derivative of change in pixel intensity for a 1 dimensional image [12].

From calculating the first derivative of the pixel intensity in both the x and y directions we
can then find the edge gradient and direction of the edge using the following the

equations.

�
Page � of �35 71

�
Figure 18 - Calculating the edge gradient

�
Figure 19 - Calculating the direction or orientation of the gradient

In visual form, the edge orientation is represented using a colour to represent what
direction the edge is facing.

One of these mathematical methods which utilises the above principles is the Canny

edge detector which was published in 1986 by John F. Canny.[18] It aims to have a low
error rate in detecting edges meaning we only want to detect edges that actually exist,

good localisation meaning the distance between edge pixels detected and real edge
pixels have to be minimised, and to have a minimal response meaning we only want to

detect each edge once.[11] We use the Canny edge detector here to try and detect the
structural element of the painting’s frame.

The process of the Canny edge detector can be broken down into 4 different general

steps:
1. Apply a Gaussian filter to reduce noise and smooth the image (Gaussian blur

explained in previous section)
2. Detect the gradient intensities in the digital image.

3. Apply non-maximum suppression to remove pixels that are not considered to be
a part of an edge.

Non-maximum suppression is a technique to thin the edges we have found in the image.

It will essentially preserve the part of the edge where only the sharpest change in
intensity value occurs in order to remove blurred edges in our edge detected image. It

does the via the following algorithm:

● The edge strength in both the positive and negative directions are
compared

�
Page � of �36 71

● The value of the pixel’s intensity will be preserved if its edge strength is

larger than the other pixels in the mask with the same orientation,
otherwise it will be suppressed.

4. Apply hysteresis to remove any undesirable edges caused by noise and colour

variation that do not actually represent a real edge in the image.
a. If a pixel gradient is higher than the upper threshold, accept the pixel as

an edge
b. Reject pixels whose gradient value is below the lower threshold

c. Pixels whose gradient is between that of the lower and higher threshold
are only accepted if they are directly connected to a pixel whose gradient

value is above the upper threshold. This basically allows for strong
continuous edges that may taper off at some point to be preserved.

Taking the example of the below painting we may see that one part of the
frame produces stronger edges than the other side because of

illumination changes. This step in hysteresis will preserve the weaker
edge of the frame because it is connected to the stronger one by basically

saving the edges that are connected to the edges above the top
threshold.

The process of hysteresis will essentially remove all weak edges that are not connected

to strong edges.
The resulting image should be a thresholded image showing the edge pixels in white

and every other pixel in black as in the example below.

� �
Figure 20 - Canny edge detection performed on a painting

�
Page � of �37 71

Dilation

Having detected the edges in the image of the painting hanging on wall, you may notice
that while we can see the outline of the frame there doesn’t exist a consistent

rectangular edge or contour around the whole frame. This is due to the fact that not all of
the edges will be detected correctly due to factors such as the Gaussian smoothing

blurring out the corners and junctions in the edges making them harder to detect by the
Canny edge detector and other issues such as poor illumination conditions etc.

In order to rectify this we use what is known as a dilation to fill in these gaps in the edges
and connect up all of the broken junctions to allow for the frame to be detected in its

entirety.

A dilation is a morphological operation. Morphological operations are a set of operations
that process images based on shapes called ‘structuring elements’ in order to generate

an output image from a thresholded image. The structuring element is essentially a
kernel or grid of numbers with an anchor point which is normally the centre of the

structuring element.

Dilation is a technique for expanding the number of object pixels[13].
In the case of dilation the maximum value of the pixels contained within the structuring

element or kernel are found and the anchor point’s pixel value is replaced with this
value causing the bright pixels of the edges to dilate and become more defined, helping

to join broken edges, and fill in gaps between larger edges in the image.

We use dilation here following the Canny edge detector to fill in and connect any broken
edges that may have not been correctly detected. This increases the chances that the

edge of the frame of the painting will be detected allowing it to be extracted later on.

�
Page � of �38 71

�
Figure 21 - Binary image of a circuit board following a dilation operation [13]

Finding and Filtering contours

A contour is a line or curve connecting continuous points along a boundary that either
have the same colour or intensity. Contours are a useful for shape analysis and object

detection and recognition. We use contours here to describe the area in which we
believe a painting may exist in the given input image after the previous processing has

complete. For the best accuracy contour detection should be used on binary images.
Since we’ve used Canny, our image is already thresholded. The edges found within the

image will also be connected up from the previous dilation step. Contours will be found
along the white lines in the image that are continuous. In order to save some memory we

use the contour approximation method. This method avoids storing the (x,y) coordinates
of the boundary of a shape by just storing the start and end point of each straight line. A

coloured line and then be drawn between these points to represent the contours.

�
Page � of �39 71

�
Figure 22 - Image on the right depicts using no contour approximation, image on the left

using contour approximation method [16]

In order to find the contour representing the frame we only wish to detect the external
contours. To achieve this we must look at the hierarchy of the contours.

Finding contours is normally used with the goal in mind of detecting some kind of an

object in a given scene. Objects will be in different locations in the scene, but in our
case, shapes will be found contained in other shapes - the painting and its elements in

the painting frame.

Considering the image below we see some arbitrary shapes labeled 0-5 where 2 and 2a
represent the external and internal contours of the outermost box.

The contours we’re interested in in terms of finding our painting’s frame are the most
external ones - so in this example contours 0, 1, and 2. The hierarchy level they are

described as being a part of is called hierarchy-0.

Using the ‘RETR_EXTERNAL’ flag in OpenCV when detecting contours allows us to filter
out all contours that are not extreme outer flags i.e the child contours. Looking at the

below example we only consider the contours at the hierarchy-0 level, contours 0, 1, and
2.

�
Page � of �40 71

�
Figure 23 - External contour hierarchy representation. [15]

Using the above mentioned flag we return only contours 0, 1, and 2 and filter out the rest

of the child contours we’re not interested in as they are likely not to be the frame of our
painting.

In order to find the contour representing the painting from these remaining contours, we

filter the contours by area, selecting the contour containing the largest area which is
most likely to be our painting’s frame. The coordinates of this contour are then used to

extract the painting from its background using OpenCV’s crop function.

�
Page � of �41 71

Painting Matching

SIFT (Scale invariant feature transformation)

SIFT was developed in 2004 by David Lowe[19] with the aim to compute robust features

in digital images for tracking and recognition.
In order to match the extracted painting to its correct reference we use SIFT to detect

key-points and create SIFT features that we can then use in a later stage to match them
correctly to their reference painting. SIFT is useful in this case as it is invariant to images

of different scales and rotations as well as partially invariant to viewpoint and illumination
changes which will be the case here as users will be photographing the target painting

from different angles and distances than that of the reference painting we wish to match
it to.

SIFT is quite a complex algorithm involving many parts and concepts. It can be generally

broken down into the 5 following steps:

1. Constructing a scale space - Internal representations of the original image are
created to ensure scale invariance.

2. Laplacian of Gaussian approximation

3.
a. Key-points detection - Locate the local maxima and minima in the

difference of Gaussian to locate the key-points

b. Removal of poorly detected key-points - Remove key-points detected at
edges and low contrast regions.

4. Assignment and orientation of the detected key-points - Calculate each key-

points’s orientation.

5. Generation of SIFT features

�
Page � of �42 71

Constructing a scale space and Laplacian of Gaussian approximations

Objects we view are only meaningful at certain distances. If you view an apple at 1m
distance from yourself it is still perceived as an apple to you. However if you view the

same apple 10 kilometres away it won’t exist as far as you can tell. Scale spaces
attempt to replicate this concept in digital images.

�
Figure 24 - Another example of scale variance, the corner will not be perceived as a

corner when zoomed in.[14]

In order to create a scale space for the extracted painting, the image is taken and a

series of progressively more blurred out images are created using Gaussian blur, the
original image size is halved and the blurring process is conducted again. The number

of times this happens is determined by the number of octaves specified. Lowe suggests
that 4 octaves and 5 blur levels are generally ideal for use of the algorithm.

�
Figure 25 - Three octaves of scale space for the image of a clock tower[13]

�
Page � of �43 71

● L is a blurred image

● G is the Gaussian Blur operator

● I is the image

● x, y are the location coordinates

● σ is the "scale" parameter. Think of it as the amount of blur. Greater the value,

greater the blur.

● The * is the convolution operation in x and y. It "applies" gaussian blur G onto the

image ‘I’.

The actual Gaussian blur operator used in SIFT.

Following on from where we created the scale space of the image, we now use those
blurred images to generate the DoG images which are useful for locating key-points.

In this step we take those images, blur them again and calculate the laplacian to locate

edges and corners which can be used for finding key-points. The blur is used to smooth
out noise generated from calculating the laplacian. While this works, calculating the

laplacian is computationally expensive so an approximation is taken instead by finding
the difference between two different scales instead to find potential stable key-points

locations. See below figure for an example.

(DoG)

�
Page � of �44 71

�
Figure 26 - Above: Gaussian smoothed images for a certain scale, Below: Difference of

Gaussian images [13]

Key-points detection and filtration

In order to find key-points we need to locate the maxima/minima in the difference of

Gaussian images and find the sub-pixel maxima/minima.

In order to locate the maxima/minima in the difference of Gaussian images, we iterate
through each pixel and check its neighbours in both the current image and the image

above and below it at the different scales.

�
Figure 27 - Considering pixel X and its neighbours (green circles) at different scales for

an image.[14]

�
Page � of �45 71

It’s worth noting that the we do not locate key-points in the uppermost and lowermost
scales as there are not enough neighbours to compute the comparison.

Some of the key-points detected this way will be found on edges in the image and some

will be of low contrast. These key-points are not suitable for matching so we have to filter
them out. To remove key-points of low contrast the magnitude of the intensity for the

pixel is checked and if it is below a certain threshold then the key-points is removed.

In order to remove edges we calculate the gradient in the x and y direction at the key-
points. In the case of finding an edge, one of the two gradients will be much larger than

the other. The other possible outcomes is that we’ll come across a non-edge region
where the gradients will be smaller or a corner where both gradients will be large. This is

calculated mathematically using a Hessian matrix at the location and scale of the key-
points similar to that of Harris corner detection.

�
Figure 28 - Example of key-points filtering from contrast and edge tests [13]

Following these tests for contrast and edges we now have a set of actual key-points that

we know are stable and scale invariant as it will be the same as the scale in the blurred
images.

�
Page � of �46 71

Assignment of orientation

The next step in the process is to assign orientations to each of the stable key-points we
now have in order to achieve rotation invariance. This is achieved by finding the direction

and magnitudes of the gradients around each of the key-points and assigning the most
prominent orientation to each key-point. All subsequent calculations are then done

relative to this calculation ensuring that the rotation invariance is achieved.

The following two formulae are used to calculate the respective magnitude and
orientations of each pixel in each key-points in the image:

(L(x,y) represents an image sample)

These values are then mapped to a histogram. The histogram is broken up into 36

different bins where each bin represents 10 degrees. Each key-points’s proportional
magnitude is added to the orientation bin it falls into. This is done for all pixels around a

key-points resulting in a peak in the histogram representing an orientation that the key-
points are then assigned. Any additional peaks above 80% of the highest found peak in

the histogram will also be used a new key-points. In this case a new key-points made
with the same scale and location as the original but with this lesser peak as its

orientation. About 15% of the original key-points will result in multiple orientations.

�
Page � of �47 71

 �
Figure 29 - Example histogram for representing the proportional magnitude of each

orientation across pixels surrounding a particular key-points

To summarise, a histogram of the most prominent pixel gradient orientations is used to
determine the orientation of an individual key-points in order to achieve rotation

invariance.

Generate SIFT features

Now that we have both our scale and rotation invariant stable key-points we now want to

make descriptors for these key-points in order for to be able to identify and compare
them with the other key-points. To do this a blurred image at the closest scale is selected

for a particular key-points. We then select sampling points around the key-points and
compute their individual gradients and orientations. The image is then rotated by the

key-points orientation so that all orientations are normalised with respect to the key-
point’s orientation. We then divide up the surrounding region of the key-points into four

different subregions and compute a weighted histogram of the orientations similar to that
of the previous step by gradient and location for each of the subregions.[13]

�
Page � of �48 71

�
Figure 30 - SIFT features of a painting

K Nearest neighbour feature matching

Now that we have our key-points and descriptors for the key-points we can start
matching them against those of the known set of reference paintings that are stored on

the onboard database. In order to find matches fast and efficiently we use the FLANN
based kNN matching algorithm. FLANN stands for Fast Library for Approximate Nearest

Neighbours and it contains a collection of algorithms optimised for fast nearest
neighbour search in large datasets and for high dimensional features. One of which is

kNN which stands for k Nearest Neighbour (k being a number).

The main idea behind kNN is to search for the closest match of the test data in feature
space.

So in our case for each SIFT feature we look for its closest match in the feature space of
the reference painting’s detected SIFT features.

�
Page � of �49 71

�
Figure 31 - kNN diagram [17]

Taking the above diagram as an example we see two classes of shapes in a 2D feature
space, the blue square and the red triangle. When a new member is added to the

feature space we need to decide whether it will become a blue square or a red triangle
(classification). In order to decide we have a few options. One option would be to check

the green circle’s nearest neighbour. From the feature space we can clearly see that in
this case that would mean the green circle would become and red triangle - this is

nearest neighbour. However the issue with this method is that it doesn’t take into
account the fact that while red triangle may be the nearest class, the blue squares have

more strength in locality in comparison. With kNN we check for the k nearest classes
instead. Taking an odd number for k, say three, we look at the 3 closest classes to the

green circle. We see that the three closest classes are 2 red triangles and 1 blue square
so it becomes a red triangle. Taking k to be five, we would have 2 red triangles and 3

blue squares, making the green circle become a blue square.

�
Page � of �50 71

�
Figure 32 - Matching of SIFT features between and extracted painting and its reference

Summary

This section describes the theory behind the individual components of the application
and how they fit together. It examines the 5 stage painting extraction technique that was

used to remove the background from the image and isolate the painting, and the
matching algorithm comprised of SIFT and kNN matching to match the painting to its

correct reference in the on board database. In the next section of this report we will look
at how the application performed from both a perspective of successfully matching

paintings to their correct reference and in terms of the time it took to find a match.

�
Page � of �51 71

Testing and Results

In this section of the report we will look at the results produced by the final
implementation of the application. This will be broken down into multiple parts discussing

the success rate at which paintings were extracted, individual test cases, successful
matching rates, and the speed in which it took to typically match a painting to a

reference painting. By analysing the results and how each part of the application
performed individually we can determine where the strengths and weaknesses lie in the

application’s implementation, where improvements can be made, and what worked well
in achieving the end goals of this project.

In order to test the different components of the application the Stanford Mobile Visual

Search Data Set of museum paintings was used. This consists of over 92 different
paintings photographed using the Droid smartphone device’s camera. Each reference

also contains a reference image of a high quality scan or photograph of the painting itself
to be matched against.

Painting Extraction

For this part of the results we will first look at two test cases for the painting extraction.
One where the painting was successfully detected and extracted, and one where the

painting was not correctly detected and extracted and how that affected the result
produced in the matching stage of the application’s pipeline. For the purposes of this

project I am defining a successful extraction of a painting to be when the painting in its
entirety is separated from its the majority of its background. If a painting is only partially

extracted, missing a sizeable chunk of what makes up the painting then it is considered
a non-successful extraction. It is still considered a successful match if small parts of the

frame and/or background are still present in the extraction.

Test case 1 - Successful Extraction

The following images illustrate the test case for a successful painting extraction for one

particular painting. As we can see from the second image the largest contour detected
�

Page � of �52 71

from the process of Gaussian blurring, Canny, and dilation has managed to capture the

outline of the paintings frame. While not perfect in this case due to the detection of the
small shadow cast by the frame at the bottom of the painting, it is still good enough for

the painting to be successfully extracted from the background of the image when the
coordinates, height, and width of the largest contour are used to form a bounding box for

extraction. Following extraction this painting was then correctly matched to its
corresponding reference painting.

�

Figure 33 - Original input image of painting captured with user’s smartphone

�
Page � of �53 71

�
Figure 34 - Largest external contour filtered out from other contours

�
Figure 35 - Bounding box drawn using coordinates of contour with largest area

�
Page � of �54 71

�
Figure 36 - Extracted painting from image

Test case 2 - Unsuccessful Extraction

In this case we see an example of a painting that has not been extracted successfully as
the top half of the painting has not been included in the detection of its border. This is

likely due to a few factors. First of which is likely due to the bright glare on the surface of
the painting’s glass, which is leading to the detection of other edges we don’t care about

(i.e the edge between where the bright light from the glare and the actual painting itself).
The second is that the weaker edges on the left and right hand side of the painting are

not being detected by the by the edge detector. As we can see for the bottom two
figures, the edges of the frame have not joined up and instead the largest connected

contour ends up being the the contour of the bottom part of the frame connected to
elements in the painting and the large light of the glare. This results in a bounding box

that does not encompass the entire painting and a failure to extract the whole painting
from its background.

�
Page � of �55 71

�
Figure 37 - Poorly detected edges following dilation and Canny

�
Figure 38 - Poorly detected frame of painting

A way to rectify this and to successfully identify the painting would be to lower the lower
threshold of the hysteresis procedure in the Canny edge detector. Lowering it from 100

to 10 results in the detection of some of the more weaker edges that we may wish to
detect. Lowering the threshold allows for more edges to fall between the upper and

lower thresholds of the hysteresis procedure. These edges will be detected as they are
directly connected to a pixel whose gradient value is above the upper threshold.

As in the case in this painting the frame is very subtle making it hard to detect. The

images below detail their detection when this lower threshold has been lowered.

�
Page � of �56 71

�
Figure 39 - Improved edge detection of weaker edges by lowering lower threshold of the

hysteresis procedure

In the case of this painting, using the original parameters for Canny it was not correctly
matched to its correct reference but upon increasing the edge sensitivity and getting a

successful extraction it was matched successfully to its correct reference painting.

Another typical downside of the painting extraction technique is the inclusion of some
external elements to the painting that we do not care about. While this is negligible in

most cases, some of the paintings with the larger more elaborate frames resulted in the
�

Page � of �57 71

extraction of large portions of the scene we don’t care about which in turn negatively

affects the accuracy of the matching for paintings with those particular frames.

Take the example below of the following painting with the large golden frame.

�
Figure 40 - Poorly detected painting

�

Figure 41 - Canny edge detection and dilation

�
Page � of �58 71

�
Figure 42 - Poorly detected painting in extraction phase containing too many external

elements

In this case the combination of the large elaborate frame and dark shadows caused by
poor indoor illumination has led to the detection of edges and dilation of those edges to

connect together elements in the scene that are not actually connected which has led to
the incorrect extraction of the painting. In this case features that will not aid the matching

phase will be detected and interfere negatively with the matching algorithm. In this
particular case the painting was not matched correctly and no strong match was found.

In order to rectify this one could increase the threshold required for edges to be detected
in order to not detect these external non-existent edges.

From looking at these two failure cases we can see how tweaking the various

parameters of the various components of the application can result in more favourable
results for particular test cases. However, looking at the big picture these changes do not

always bode well for the overall results of the application, often lowering them to a
degree (for instance, increasing the edge sensitivity of Canny resulted in a drop from

58% success rate to 49%). One of the downfalls of an application such as this is the fact
that you can spend an endless amount of time tweaking different parameters of different

�
Page � of �59 71

parts of the application and testing to see what the optimum combinations are in terms of

both efficiency and performance.

Overall results for painting extraction

Overall the results the painting extraction phase produced were in most cases quite

usable for the matching phase. While many paintings did contain some external
elements, it was found that 90% were extracted successfully, with only 10% of

extractions missing significant parts of the painting. However of those 90% were the
painting was extracted in its entirety there was usually some external elements included

as well. Some of which were negligible but some extractions contained external
placards, shadows cast by other paintings, and other smaller objects in the scene that

we would not wish to detect.

Conclusion

In this section of the report we looked at two typical test cases for the painting extraction

technique developed for this application and how it performed in a typical successful
extraction case and in two cases where it failed and why. From the failure test cases we

can see where the technique falls short and some potential areas for improvement.
Finally looking at the overall results we can see that the extraction technique worked

quite well for extracting the painting from its background but often included some
external unwanted features in this extraction.

Painting Matching

In this section of the results we will look at the success rate of the painting matching

technique using SIFT and kNN matching to match the SIFT features between the
extracted painting and its reference. It was found that a painting was more likely to

matched correctly following a successful extraction from the background of the image.
This was due to the fact that SIFT features of external elements were not detected and

�
Page � of �60 71

either not enough matches were found or some of the SIFT features were incorrectly

matched to SIFT features calculated in the reference paintings.

It was also found that the overall success rate for matching paintings to their reference
following the extraction and matching phase (i.e the entire pipeline of the application)

was 58%. In total, 53 of the 92 paintings were correctly matched to their reference. In
order to evaluate the matching technique used (SIFT + kNN) we will again look at some

typical successful match cases and some unsuccessful match cases. By doing this we
will hopefully be able to identify the strengths and weaknesses of the technique and

where potential improvements could be made in order to improve the procedure and
increase the match rate.

Test case 1 - correctly matched extracted painting to reference

�
Figure 43 - Example of a successful match

In the above example we see a typical case where an extracted painting has been
correctly matched to its reference. Numerous SIFT features have been found and

matched between the two paintings far surpassing the set threshold of 10 matched
features in order to trigger a strong match in the application. This is likely due to good

extraction of the target painting whose viewpoint and perspective is quite similar to that
of the reference image. The scene is also quite well illuminated, with no artefacts such

as shadows or glares to interfere with the matching technique.

�
Page � of �61 71

Test case 2 - incorrectly matched extracted painting to reference

�
Figure 44 - Example of an unsuccessful match

In the above example of the unsuccessful match we can see that a number of SIFT

features have been found in the extracted painting. In this case a strong match
surpassing the threshold has not been found so the best possible match has been

returned by the application. Many of the key-points found here have been incorrectly
matched to one particular key-point in the reference image. This is largely due to the

poor illumination of the painting itself in the photograph, the large glare on the paintings
frame, and poor detection of good SIFT features for matching, all of which have been

incorrectly matched.

Average time taken to find a match

It was found that the average time taken for a painting to be matched to a reference

painting was 3.34 seconds. This slower than expected matching time is due to two main
bottlenecks identifiable in the application. The first being that the SIFT features, key-

points, and descriptors of each reference painting should be serialised in order to avoid
having to calculate them each time for each reference every time we wish to identify a

painting. This is explored in more detail in the ‘Future work’ section of this document.
Essentially when an image is captured and the painting extracted, in order to match it

�
Page � of �62 71

against a reference painting, SIFT features must be calculated for every reference

painting it is compared to which takes significantly more processing time than it would
take if this data was serialised beforehand.

The second bottleneck is to do with paintings who fail to find what is known as a ‘strong

match’. In this application any extracted painting and reference that when compared
using kNN matching to have more matching SIFT features than the set threshold of 10 is

considered a good match and returned instantly. Failing to find a strong match, the
application will loop through all of the reference paintings and keep track of the painting

with the most matching key-points. While sometimes successful, this is usually the case
when a painting will not be successfully matched to its reference for one reason or

another and is another big part of the reason why the average painting match time was
higher than expected. In some cases it can be found that to match a painting for which a

strong match is not found may take up to ~4.5 seconds.

The graph below illustrates how long it took in seconds for each painting in the dataset
to be matched to a reference painting. Note that not all of these matches are successful

matches i.e that the extracted painting was matched to its correct reference.

�
Page � of �63 71

�
Figure 45 - Chart of time taken to match each painting in the dataset

�
Page � of �64 71

Future work

The application itself is not fully finished and there are a number of improvements and

additions that were to made in order to improve the accuracy, efficiency, and
presentation of the final program.

Serialisation of reference painting SIFT feature data

In order to increase the overall performance of the application the descriptors and key-
points for the reference paintings could be pre-computed and stored in the onboard

database. This would improve the speed at which the reference painting is compared to
the references in the matching stage of the application as it would no longer have to

compute SIFT features for each reference painting each time a request to match a
painting is made. It would also improve the scalability of the application as it would no

longer increase in time complexity as the dataset of reference paintings gets larger and
larger resulting in more computations in finding SIFT features. This was attempted

during the duration of the project but was unfortunately unsuccessful due to storing
issues using SQLite.

Categorisation of Paintings

Another way to increase the efficiency and speed of the application would be to
implement another step to the matching phase whereby the reference paintings would

be categorised by some attribute prior to any matching. For example, the paintings could
all be divided up into categories based on how much of the colour red was in each

painting - ‘low’, ‘medium’, and ‘high’ amounts of red. Then when a painting is extracted
the application could check the level of red in the painting and only match against

paintings in the corresponding category, ruling out the other two.

�
Page � of �65 71

Other Improvements

Improvements and additions can be added to the application in terms of the app’s UI and

design. The implemented UI was quite a basic layout of buttons and image views to be
filled in with the relevant extracted and matched paintings. A more appealing and

responsive material design could have been implemented in order to improve the
application in this respect. Actual information of the paintings contained in the app’s

onboard database must also be added for it to be useful in gaining more information
about them such as the painting’s title, artist, year etc.

Another feature that was originally planned for the application was that of GPS tracking

to allow for the identification of non-painting related artworks such as statues that would
be located in a museum or art gallery space. In order to identify them the application

would grab the device’s current GPS coordinates in order to determine which piece of
artwork the user was looking at.

Finally in order for the application to be usable in different art galleries and museums

there would be options to download the reference paintings for a particular gallery built
into the app. Similar to an in app purchase, the galleries themselves would be able to

provide the reference paintings and their respective data available to download via the
app where users could pull it down and then use it as an electronic guide for their

particular establishment.

In summary, much of these additions to the application were either attempted at some
point or were not feasible given the time frame of the project itself but would have been

implemented given a larger time frame. Without them the application is still quite
functional however they would have improved it on both a performance and appearance

level if implemented.

�
Page � of �66 71

Conclusion

The main goals of this project were met as an application capable of recognising and
identifying a set of known paintings was successfully developed for a mobile device.

Currently museums and art galleries still rely on brochures, tour staff, and tape
recordings to deliver information about the paintings hanging on their walls. The

application proposed in this report aims alleviate the reliance on such antiquated ways to
draw information from one’s surroundings using the smartphone devices that most of us

carry around with us now on a day-to-day basis.

This project aimed to develop an Android application capable for recognising and
identifying paintings in an art gallery or museum setting. While many mobile computer

vision applications related to object detection exist, many utilise the mobile device as
simply a node for taking in input, sending it elsewhere for processing, and receiving the

output result for displaying. For this project the entirety of the processing and
computation takes place on the mobile device itself and while not perfect in terms of

efficiency, performance, or accuracy shows that such an application may be viable as a
dedicated application on the mobile platform if developed for accordingly.

The limitations of this project mainly lay in the technical aspects of the main algorithm

developed in terms of accuracy and performance. Given the timeframe of the project
some work was left incomplete which would have addressed some of these issues

especially in regards to performance where serialisation of the data and further pre-
processing of the data set would have made a huge impact on the speed in which

extracted paintings could be matched to a reference painting. In terms of accuracy,
further steps could be taken before utilising SIFT to match paintings based on colour.

Despite these limitations the results produced by the final application at the end of this

project were promising enough to suggest that such an application may be viable on a
mobile platform without relying on any backend system to do the background image-

processing and computer vision related computations.

�
Page � of �67 71

Bibliography

1. Reinhard Klette. Concise Computer Vision. Springer, 2014

2. Rick Penwarden. The Rise of the Smartphone, 2014. https://fluidsurveys.com/wp-
content/uploads/2014/11/The-Rise-Of-The-Smartphone.pdf

3. Why Can’t We Take Pictures In Art Museums? Art News, 2013. http://
www.artnews.com/2013/05/13/photography-in-art-museums/

4. Expensive Journals Drive Academics to Break Copyright Law. NPR, 2016. http://
www.npr.org/2016/02/20/467468361/expensive-journals-drive-academics-to-
break-copyright-law

5. Vincent Gire, Sharareh Noorbaloochi. Painting Recognition using Camera-phone
Images.

6. Theophile Dalens, Josef Sivic, Ivan Laptev. Painting Recognition From Wearable
Cameras.

7. Niki Martinel, Christian Micheloni, and Gian Luca Foresti. Robust Painting
Recognition and Registration for Mobile Augmented Reality.

8. Mark S. Nixon and Alberto S. Aguado. Feature Extraction and Image Processing.
Academic Press, 2008, p. 88.

9. Cornell. Computer Vision: Filtering, 2013 http://www.cs.cornell.edu/courses/
cs6670/2011sp/lectures/lec02_filter.pdf

10. S. Seitz - CSE 455, Washington edu
11. OpenCV Documentation. Canny Goals. http://docs.opencv.org/2.4/doc/tutorials/

imgproc/imgtrans/canny_detector/canny_detector.html
12. OpenCV Documentation. Edge Theory. http://docs.opencv.org/2.4/doc/tutorials/

imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html
13. Kenneth Dawson-Howe. A Practical Introduction to Computer Vision with

OpenCV, 2014.
14. OpenCV Documentation. SIFT. http://opencv-python-tutroals.readthedocs.io/en/

latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html
15. OpenCV Documentation. Contour Hierarchy. http://docs.opencv.org/3.1.0/d9/d8b/

tutorial_py_contours_hierarchy.html#gsc.tab=0
16. OpenCV Documentation. Contours. http://docs.opencv.org/3.1.0/d4/d73/

tutorial_py_contours_begin.html#gsc.tab=0

�
Page � of �68 71

https://fluidsurveys.com/wp-content/uploads/2014/11/The-Rise-Of-The-Smartphone.pdf
http://www.artnews.com/2013/05/13/photography-in-art-museums/
http://www.npr.org/2016/02/20/467468361/expensive-journals-drive-academics-to-break-copyright-law
http://www.cs.cornell.edu/courses/cs6670/2011sp/lectures/lec02_filter.pdf
http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html
http://docs.opencv.org/3.1.0/d9/d8b/tutorial_py_contours_hierarchy.html%23gsc.tab=0
http://docs.opencv.org/3.1.0/d4/d73/tutorial_py_contours_begin.html%23gsc.tab=0

17. OpenCV Documentation. kNN. http://opencv-python-tutroals.readthedocs.io/en/

latest/py_tutorials/py_ml/py_knn/py_knn_understanding/
py_knn_understanding.html

18. John Canny. A Computational Approach to Edge Detection, 1986.
19. David Lowe. Distinctive Image Features from Scale-Invariant Key-points, 2004.

20. Stanford Mobile Visual Search Dataset: Museum Paintings. http://
web.cs.wpi.edu/~claypool/mmsys-dataset/2011/stanford/mvs_images/

museum_paintings.html
21. Lei Xu. A New Curve Detection Method: Randomised Hough Transform, 1990.

�
Page � of �69 71

http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_ml/py_knn/py_knn_understanding/py_knn_understanding.html

Appendix
Demo
A demo of the final application can be found at the following URL
https://www.youtube.com/watch?v=SDjxd8QDUWc

Matching via colour using histograms

In order to match the paintings, a solution was explored whereby RGB histograms of the
extracted painting and references would be compared to find a match.

Each of the three channels (red, green, and blue) would be represented by 255 bins for

each intensity value.

�
Figure 46 - Example of an RGB histogram for a painting

Once computed the histogram of the extracted painting would be compared to the pre-
computed RGB colour histograms of the reference paintings.

�
Page � of �70 71

https://www.youtube.com/watch?v=SDjxd8QDUWc

In order to find the best match for the extracted painting, we would use the earth mover’s

distance (EMD) metric to judge which histogram was closest in comparison to the
extracted painting’s histogram.

Intuitively the easiest way to understand how EMD works is to consider multiple
separate piles of sand. Imagine you are then assigned one pile and asked to find its

closest match. The only moves you are allowed to make are to either move a single
grain to or from your pile to another pile. So in order to find the closest match you would

see which other sand pile you can make look exactly like yours in the fewest moves as
this would indicate it was the sand pile that was most like yours and thus the best match.

This what we essentially do when comparing the RGB histograms EMD to see which
painting’s histogram is likely the same as the extracted painting. We would expect the

colour distributions to be quite similar given they are the same painting with the same
colours, however we would also expect the distributions to be shifted one way or another

due to factors such as illumination differences between the painting and its reference.

�
Page � of �71 71

