
Notification Abstraction: An info-bead
modeling approach to personalised

notification management

Author:
Kieran Fraser

Supervisor:
Prof. Owen Conlan

A thesis submitted in fulfillment of the requirements
for the degree of

M.A.I. in Computer Engineering

to the

University of Dublin, Trinity College

Submitted to the University of Dublin, Trinity College,
May, 2016.

http://www.johnsmith.com
http://www.jamessmith.com
http://www.university.com


i

Declaration of Authorship
I, Kieran Fraser, declare that the following dissertation, except where otherwise
stated, is entirely my own work; that it has not previously been submitted as an
exercise for a degree, either in Trinity College Dublin, or in any other University;
and that the library may lend or copy it or any part thereof on request.

Signed:

Date:



ii

Summary
With the evolution of the social web and ubiquitous computing, there has been an

unprecedented increase in the amount of notifications being pushed at mobile users.
Research has shown that the incoming notifications distract the user severely from
their current task, regardless of whether the notification is read or not. A signifi-
cantly high influx in notifications has also been shown to resonate negatively with
those receiving the notifications.

In this project, a framework is proposed to manage the incoming notifications
of a user by delivering them in a contextually relevant manner. This involves the
creation of an intelligent system which attempts to predict whether a user should
receive a notification immediately or at some other contextually relevant time. In or-
der to achieve this, both the notification and the user are modeled and the contextual
relationship between them is analysed.

For the purposes of this project, the development of the Notification Management
System (NMS) was split into three parts, which together form an end-to-end solu-
tion: notification capture, notification uplift and delivery simulation. The decision to
split the NMS into three parts was to enable the project to focus on the development
of the intelligent framework which would be implemented in the NMS. This intelli-
gent framework is comprised of an info-bead model implementing a Mamdani Fuzzy
Inference System (FIS).

The first application, NAbsMobile, was developed for the first part of the project,
notification capture. Its main function was to capture real-world notification data
which could be later used to test the NMS. It was important that the data being used
to test the framework was extracted from real-world scenarios, as this would aid in
the feasibility study of the proposed solution. NAbsMobile was built as an Android
application and was deployed on the mobile phones of two volunteers for a significant
period of time which enabled a sufficient amount of rich data be captured.

The second application, NAbsUplift, was developed for the second part of the
project in order to maximize the privacy of the collected data-sets and prepare the
data for simulation in the NMS. The main functionality of NAbsUplift is comprised
of an interface to allow a user to create and update a set of uplift terms for their
notifications, a means to extract the notification data from an SQLite database and
convert it to an easily editable format for uplift, and finally, an interface for tracking
a user’s personal rankings of the uplift terms, which is later used in the inference
mechanism of the NMS. The NAbsUplift application enables the owner of the notifi-
cation data-set to manually uplift their own notifications thus ensuring sensitive data
is kept private. The application was developed in Java and implemented an SQLite
database for storing the ranking data, the Apache POI library for exporting the no-
tifications to an Excel spreadsheet and JavaFx for the development of a Graphical
User Interface (GUI).



iii

The final application, NAbsDesktop, was developed for the final part of the project
which was comprised of managing incoming notifications on behalf of the user. This
involved simulating incoming notifications using the uplifted notification data-sets
provided by the two volunteers and evaluating the results output by the NMS. The
development of the NAbsDesktop application first involved the creation of a generic
info-bead library with which to model the notification and user. It was then necessary
to implement a FIS within each uniquely developed info-bead attribute. This was ac-
complished using jFuzzyLite, a Java fuzzy logic control library. Once again an SQLite
database was implemented for persisting data within the application and Apache POI
was used for importing the uplifted notification data-sets. JavaFx was used for cre-
ating a GUI through which simulation results could be viewed. The performance of
the NMS in handling the notification data was different for both volunteers suggest-
ing bias in the system. The evaluated results for the author’s data-set were quite
good with a high percentage of notifications being delivered at user-expected con-
textually relevant times. In contrast, relatively few of the supervisor’s notifications
were being effectively managed as many notification delivery times failed to meet
user expectations. Three reasons were proposed for the low percentage success rate
of the supervisor, the first being an insufficient amount of data available in their
Google Calendar, the second being that the static ranking system was incapable of
effectively modeling a dynamic user, and the third being the static fuzzy membership
functions were failing to effectively reflect the user’s expected behavior.

It was concluded that the combination of the info-bead modeling approach and
fuzzy inference system was effective on the author’s data-set, but further research
is required in order to enable the framework to scale effectively and manage the
notifications of a wider range of users’.



iv

Abstract
Managing the growing influx of notification data being pushed at mobile phone

users is an increasing necessity in today’s world of social media and ubiquitous com-
puting. The challenge of effectively managing a diverse range of notification types,
and analysing their current context with relation to an individual user, is a difficult
task.

This dissertation proposes a notification management framework which hopes to con-
textually deliver notifications at the peak opportune time of the user, thus relieving
them of distractions caused by contextually irrelevant notifications.

The proposed design is implemented using an info-bead modeling approach and fuzzy
inference system and the final solution is evaluated through a comparison between
simulated and expected results for two real-world notification data-sets.

This dissertation concludes that the solution is effective when rich data sources are
available and the fuzzy inference system is adequately personalised to the user.



v

Acknowledgements
To begin I would first like to thank my supervisor Owen Conlan for his constant

help, guidance and enthusiasm throughout the course of this project. His unwavering
support ensured I remained focused and motivated to completion.

I would also like to acknowledge the huge support of my family and friends through-
out the year. In particular my parents, Barry and Edel, and my aunt, Therese, with-
out whom success would not have been possible.

Finally, I would like to thank everyone who took the time to discuss and/or proof-
read my thesis with me. Your contributions were invaluable.



vi

Contents

Declaration of Authorship i

Summary ii

Abstract iv

Acknowledgements v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State of the Art 7

3 Design 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Mobile Application (NAbsMobile) . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 App Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Design Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Data Extraction & Uplift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Predefined Terminology . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 NAbsUplift Application Design . . . . . . . . . . . . . . . . . . . . 21
3.3.4 Design Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Notification Management System (NAbsDesktop) . . . . . . . . . . . . . 22
3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Info-Beads & Info-Pendants . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Social Media Data Harvesting . . . . . . . . . . . . . . . . . . . . . 28
3.4.4 Inference Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.5 Contextual Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.6 Design Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



vii

4 Implementation 43
4.1 NAbsMobile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 NAbsUplift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 NAbsDesktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Evaluation 68
5.1 NAbsMobile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.3 Results & Observations . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 NAbsUplift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 NAbsDesktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Results & Observations . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Conclusion 82

A Notification Uplift 86

B Results - Author 87

C Results - Supervisor 91

D Fuzzy Inference System 93

Bibliography 97



viii

List of Figures

1.1 Notification Management Pipeline . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The structure of the CUMULATE server [Brusilovsky, Sosnovsky, and
Shcherbinina, 2005]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The dynamic privacy-enabling personalisation infrastructure [Wang et
al., 2006]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Privacy-enabling personalisation process [Wang et al., 2006]. . . . . . . . 11
2.4 Internal structure of an info-bead [Dim, Kuflik, and Reinhartz-Berger,

2015]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Group Model for "Geese" classification of visitors [Dim, Kuflik, and

Reinhartz-Berger, 2015]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Example heuristic rule of the knowledge base of the medical consulta-

tion system [Dim, Kuflik, and Reinhartz-Berger, 2015]. . . . . . . . . . . 15

3.1 High level notification management system design. . . . . . . . . . . . . 16
3.2 Notification interception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 The high level design of info-bead functionality. . . . . . . . . . . . . . . 23
3.4 Info-bead model functional design. . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Info-bead example scenario (partial). . . . . . . . . . . . . . . . . . . . . . 27
3.6 Fuzzy Inference System (FIS). . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Membership function for "senderImportance" (Note: an updated mem-

bership function was used in the NMS and can be found in appendix
D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Example fuzzification for ”senderImportance”. . . . . . . . . . . . . . . . 35
3.9 Sender info-bead FIS Knowledge Base (from Matlab’s Fuzzy Logic Tool-

Box). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.10 An example of the logical AND alpha-level cut process. . . . . . . . . . . 37
3.11 An example of the fuzzification and alpha-level cut of rule 2 found in

the Sender info-bead knowledge base. . . . . . . . . . . . . . . . . . . . . 38
3.12 An example of the composition process of output fuzzy sets from rules

1 and 2 found in the Sender info-bead knowledge base. . . . . . . . . . . 39
3.13 An illustration of two defuzzification methods - Centroid and Mean of

Maxima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Declaration of the NotificationListenerService in the Manifest. . . . . . . 44



ix

4.2 NAbsMobile SQLite schema. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Permission declared in the Manifest for access to external storage. . . . 45
4.4 Exporting the local SQLite database to the external SD card. . . . . . . . 45
4.5 Screenshots of the NAbsMobile application. . . . . . . . . . . . . . . . . . 46
4.6 Function for extracting the notification data from SQLite database. . . . 48
4.7 Screenshot of the NAbsUplift application through which notification

data can be viewed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8 Database schema for the uplift terminology term set. . . . . . . . . . . . 49
4.9 Screenshot of the NAbsUplift application through which the uplift ter-

minology can be edited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.10 Function for extracting the notification data from SQLite database. . . . 50
4.11 Excerpt from the function which imports the notification data from the

Excel spreadsheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.12 NAbsDesktop (info-bead model) database schema. . . . . . . . . . . . . . 54
4.13 Excerpt from SenderInfoBead.java. . . . . . . . . . . . . . . . . . . . . . . 54
4.14 Functions to save the info-bead values in the database and to push the

inferred data to all other subscribed info-beads (SenderInfoBead.java). . 55
4.15 Info-bead model design, initial push pattern. . . . . . . . . . . . . . . . . 56
4.16 The SenderInfoBead "listener" list and functions for the Observer de-

sign pattern implementation. . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.17 Function used by the NMS for pushing an incoming notification into

the info-bead model framework (NotificationInfoBead.java) . . . . . . . . 58
4.18 Function invoked when an info-bead is pushed data (SenderInfoBead.java) 58
4.19 The Sender info bead inference function (SenderInfoBead.java) . . . . . 60
4.20 Two functions which contribute to converting a users schedule to a crisp

input value for the FIS (EventInference.java) . . . . . . . . . . . . . . . . 61
4.21 The attributeImportance, eventRelevance and senderRelevance mem-

bership function implementations (SenderFuzzy.java). . . . . . . . . . . . 62
4.22 The knowledge base of heuristic rules implemented in the FIS (Sender-

Fuzzy.java). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.23 The implemented logic for finding a point in a user’s schedule where a

delivery should be made (AlertInfoBead.java). . . . . . . . . . . . . . . . 64
4.24 The NAbsDesktop home screen. . . . . . . . . . . . . . . . . . . . . . . . . 64
4.25 The NAbsDesktop simulation screen. . . . . . . . . . . . . . . . . . . . . . 65
4.26 The NAbsDesktop application. . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Analysis of which applications were most popular for delivery of noti-
fications and a breakdown of the number of notifications per day over
the 68 day period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Analysis of the notification subject breakdown for a particular day (Jan-
uary 20th). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



x

5.3 Comparison between total notifications and correctly classified notifi-
cations over a number of evaluated days. . . . . . . . . . . . . . . . . . . 78

A.1 Author’s uplift term importance ranking. . . . . . . . . . . . . . . . . . . 86
A.2 Supervisor’s uplift term importance ranking. . . . . . . . . . . . . . . . . 86

B.1 Results for Jan 20th. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.2 Results for Jan 21st. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
B.3 Results for Jan 22nd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.4 Google Calendar of author for Jan 20th - Jan 22nd. . . . . . . . . . . . . 90

C.1 Results for Dec 2nd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
C.2 Google Calendar of supervisor for December 2nd. . . . . . . . . . . . . . 92

D.1 The senderImportance membership function of the FIS in the Sender
info-bead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

D.2 The eventRelevance membership function of the FIS in the Sender info-
bead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

D.3 The knowledge base of the FIS in the Sender info-bead. . . . . . . . . . . 93
D.4 The output membership function of the FIS in the Sender info-bead. . . 94
D.5 The subjectImportance membership function of the FIS in the Subject

info-bead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
D.6 The eventRelevance membership function of the FIS in the Subject info-

bead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
D.7 The knowledge base of the FIS in the Subject info-bead. . . . . . . . . . 94
D.8 The output membership function of the FIS in the Subject info-bead. . . 95
D.9 The senderContext membership function of the FIS in the Alert info-bead. 95
D.10 The subjectContext membership function of the FIS in the Alert info-bead. 95
D.11 The appImportance membership function of the FIS in the Alert info-

bead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
D.12 The knowledge base of the FIS in the Alert info-bead. . . . . . . . . . . . 96
D.13 The output membership function of the FIS in the Alert info-bead. . . . 96



1

Chapter 1

Introduction

1.1 Motivation

The modern era of technology has expanded increasingly towards smart devices mak-
ing decisions on behalf of a user (Knijnenburg et al., 2012). This shift in the responsi-
bility of decision making has caused expectations of technology to rise exponentially
[Gartner’s Hype Cycles for 2015]. Consumers now demand services which not only
equal human expertise, but also surpass it. Artificial Intelligence (AI) has seen a
huge surge in popularity in recent times, as AI agents are now mastering and de-
feating humans in age-old games such as GO and Chess [Silver et al., 2016]. Recent
breakthroughs from massive corporations, such as Google and Facebook, have in-
spired developers to once again push the boundaries between man and machine so
that tasks which were once impossible to entrust to a computer, now seem achiev-
able. For example, these companies are investing in smart technology in order to
give the consumers the exact information they are looking for at a given time, in or-
der to maximize their interest and productivity on their social platforms. This form of
personalisation is borne through recommendation systems that analyse patterns in
consumer behavior and attempts to anticipate their desired needs. Through interact-
ing with technology such as this on a regular basis, consumers are quickly adjusting,
classifying it as normal, and expecting it in every other technological interaction.

One such task that has yet to be fully entrusted to a machine to operate in an
intelligent way, is the management of incoming notifications [Fischer et al., 2013]. In
a world which is being increasingly dominated by data, how can we expect a machine
to identify the information which is contextually useful and necessary for a user at
a particular point in time, from that which is superfluous and distracting? Until re-
cently this would have been deemed impossible, as a machine wouldn’t have sufficient
data about a person to make an informed decision. However, with the development
of the Social Web, people now pour out their lives onto the internet through social
media platforms where their data accumulates and is made readily available for use
through open standard API’s [Murugesan, 2007]. The task at hand, however, is still
a daunting one. With the rapid rise in mobile usage throughout the world, it has
become normal for vast amounts of information to be at our fingertips 24 hours a day,



Chapter 1. Introduction 2

365 days a year. It is not sufficient that this information be available whenever we
call on it. It is now being physically “pushed” at us multiple times a day and from
multiple sources, commanding our attention and our time. Push notifications from
various social media sites, email accounts and other mobile apps, fight continuously
for precedence. The problem with this scenario is that it occurs in real-time, with
no awareness or empathy for the consumer of the information [Pielot, Church, and
Oliveira, 2014]. The point is such that, while the information being sent may be
something that the consumer wants to see, it may not be necessary for them to see
it at the particular time the notification was “pushed” to them. Intercepting, con-
textually categorizing, and adapting notification delivery based on current consumer
needs, is therefore the key motivating factor behind this project.

1.2 Research Question

The key problem to be found with notification delivery is the context. The nature
of notifications are to alert a user to a particular piece of information. A user will
have normally subscribed to these notifications and so the user will generally have
a vested interest in the information they contain. However, the information is not
always of interest to them at the particular time the notification was sent. A person’s
mood, interests, activities and physical position in the world (to name but a few), are
all fluid and dynamic characteristics of a user. This constant change of users needs
and desires, and changes in consummation of information, remains fluid day by day,
hour by hour, minute by minute.

The notifications being sent to consumers, lack this fluidity. The sender of the
notifications dictates what is sent to the user and when it is sent. While the what of
the notification is perfectly valid, as the user will have subscribed to the information
being sent to them (giving them a certain amount of control over what information
they are receiving), the when of the notification lacks any dynamic input from the
user at all, rendering the system unintelligent. Short of blocking all notifications
completely, or choosing a fixed time of day for a particular notification to be sent,
a user has very little control over the delivery of notifications. This project aims to
provide a solution to this issue by addressing the following question:

How can notifications be effectively managed in a real-world context, such
that their delivery is at the peak opportune time of the user?

The peak opportune time of the user relates to a number of variables which are
constantly changing: For example, the current physical position of the user, their
current activity or their current mood. While all these aspects of a user are constantly
changing, conversely, the notification remains static. Like the user, it also has a
number of characteristics which define, it such as it’s subject matter, it’s sender and



Chapter 1. Introduction 3

the time it was sent, but unlike the attributes of the user, these will always remain
unchanged once the notification is sent. There will therefore be, over a period of
time, a particular moment when the relationship between the user’s attributes and
the notification’s attributes are at the highest possible level of harmony. So take,
for example, a user who is currently involved in an activity that correlates directly
with an incoming notification. The notification could be delivered to the user straight
away. Conversely, a notification’s greatest harmonization with a user’s attributes may
occur at a future point in time, such that the notification would need to be withheld
until that point in time - for example, a social message sent to a user while they are
in a meeting, can wait until the user breaks for lunch.

There are a number challenges which arise by addressing this question such as
the means of gathering sufficient data on the user in order to infer the peak opportune
time of the user, verifying the validity of this data as the user’s characteristics change
over time and even evaluating the ethical implications involved in allowing a machine
dictate when a user receives their information.

1.3 Goals and Objectives

The main goal of the project was to develop an end-to-end solution that captures and
manages real-world notifications effectively, such that their delivery is at a contextu-
ally relevant time for users. This meant developing a framework for modeling user
and notification data, as well as a means to combine both models and infer the de-
livery time of a notification. As the proposed solution is quite broad and expands
into many areas, the main goal is split into a number of smaller goals, each with
corresponding objectives, which relate to a particular stage in the Notification Man-
agement Pipeline (NPM) (figure 1.1).

FIGURE 1.1: Notification Management Pipeline

The goals are:

1. Gather real-world notification data

The first goal is the accumulation of notification data. This goal is of pivotal
importance, as without a sufficient amount of good quality data to test with, the
Notification Management System (NMS) cannot be built. It is also important for



Chapter 1. Introduction 4

evaluation purposes that the test data used be captured in the real-world so as
to accurately simulate real-world conditions for the system to run against. This
will effectively test the performance of the system in an environment close to
reality. This goal relates to the first step in the NMP whereby the notifications
must first be intercepted before they reach the user. The objectives associated
with this goal:

• Create a mobile application for capturing notifications.

• Integrate the application onto the mobile phones of a number of test users
for a fixed period of time.

• Export the accumulated data from the mobile phones, to an easily accessi-
ble and editable format, for development purposes.

2. Harvest user data from various sources

The second goal is the harvesting of user data from various social media outlets.
This goal involves identifying useful sources of information that can be used to
link a user with a notification, and integrating the relevant API’s with user/no-
tification models. The data harvested must be sufficient enough to accurately
describe the user’s characteristics at a point in time. For example, an activity a
user is currently involved in at a point in time could be identifiable from their
Google Calendar. Their current relationships (family, friends, colleagues) could
be identified through their Facebook profile. Their current interests or work
habits could be derived from Instagram and LinkedIn accounts. This goal is as-
sociated with the second stage of the NMP. The objectives associated with this
goal are:

• Identify relevant social media outlets.

• Integrate the chosen API’s into the Notification Management System (NMS).

• Select the minimum necessary and relevant information from each social
graph and store the information in the NMF for use in the user and notifi-
cation models.

3. Develop a user/notification model

The third goal is the development of both a user and notification model. The
user model describes the user at a particular moment in time. The notification
model will describe the incoming notifications that are received. The success of
notification delivery is dependent on the accuracy of modeling the user at a par-
ticular point in time. This goal encapsulates experimentation into the amount
of data necessary to sufficiently model a user for notification management. The
question of whether or not the selected social media outlets provide enough rel-
evant data on the user to accurately model them at a particular point in time,



Chapter 1. Introduction 5

will become more apparent at this stage. This goal is associated with the third
stage of the NMP, where the data gathered from social media in the previous
stage, is integrated with the developed info-bead model of the user/notification.
The info-bead model is the state-of-the-art modeling concept, which is being ex-
perimented with throughout this project, and it is through this concept that the
user and notification models will be expressed. The objectives associated with
this goal are:

• Create a library for the various info-bead model components.

• Develop a framework of interconnected custom info-beads necessary for
building the NMS.

• Uplift and classify the notification and social media data where necessary.

• Integrate the sensor input data with the info-beads (social media API’s and
accumulated notification data)

• Persist the data such that experimentation and testing can be carried out.

• Develop a GUI which can manipulate the beads for ease of testing and
visualization.

4. Develop an inference mechanism to contextually deliver notifications

The fourth goal is comprised of the development of an inference mechanism
which combines various attributes of both the user and notification models, to
infer the importance and relevance of a notification at a particular time. It is
also used to determine the next best contextually relevant moment the notifica-
tion should be delivered. The Mamdani Fuzzy Inference System (FIS) is chosen
for this task and, as it has never before been combined with the info-bead model
for notification management, is part of the novel solution this project attempts
to explore. This goal maps to the fourth and fifth stages of the NMP, and is the
intelligent part of the framework. The objectives associated with this goal are:

• Create a heuristic knowledge base for each info-bead component based on
its purpose.

• Map relevant user data to incoming notification data and determine con-
textual relevance.

• Integrate a fuzzy inference library to carry out fuzzification, inference, com-
position and defuzzification.

• Map the dufuzzified result to a contextually relevant time for delivery.

5. Scale the developed framework to ascertain effectiveness

The final goal of the project is to scale the NMS by testing it with multiple users in
order to evaluate its performance in a real-world environment, and ascertain whether



Chapter 1. Introduction 6

or not the framework works for users of differing characteristics and differing incom-
ing notification types. The objectives of this goal include:

• Capture real-world notifications from additional users.

• Integrate the new user data from various sources into the info-bead model.

• Uplift user and notification data using the same predefined term set.

• Run simulations with the same inference mechanism but with the new data
integrated in the info-bead model to evaluate the performance.

1.4 Overview

So far the main concepts defining the foundations of the project have been discussed,
such as the motivation, the underlying research question and the goals/objectives set
to be achieved. The following chapters will build on this foundation, a notification
management framework, which is to be the novel contribution of this project.

Chapter 2 discusses the state-of-the-art which provides a solid grounding in the
current state, progress and performance of similar systems to date. This chapter
analyses current modeling methods and explores the info-bead model in depth with
a particular focus on previous implementations.

Chapter 3 describes the design methodology behind the various stages of the
project. This therefore covers the plan of harvesting and persisting data across the
various applications to be built, as well as ensuring the highest standards of ethics
and privacy are maintained throughout the process. It also details the functionality
necessary for each component of each application in each stage of the project.

Chapter 4 outlines the implementation of the design, and details the technical
aspects of the framework in greater depth. The topics discussed in this chapter span
from the development of the mobile application capturing notifications, to the final
desktop application which is powered by the info-bead model framework and FIS.

Chapter 5 evaluates the results of the NMS, as well as the methodology used to
develop the it. This chapter critically analyses the experiments and tests, in order
to ascertain whether the system can set high standards in a real world environment,
and whether the venture of notification management through the combination of an
info-bead model and fuzzy inference engine is possible.

Chapter 6 has some final concluding thoughts on the project as a whole. This
chapter discusses the achievements of the project, as well as the limitations and ob-
stacles which occurred. Future work to be explored and, recommendations for doing
so, is also discussed.



7

Chapter 2

State of the Art

At the beginning of this project, a number of design choices regarding technologies
and methodologies had to first be made in order to structure a feasible solution for
the problems surrounding contextual notification delivery, discussed in the previ-
ous chapter. Discovery of these technologies and methodologies was accomplished
through identifying applicable trends within the realms of user modeling, artificial
intelligence, fuzzy logic and data privacy. This chapter aims to discuss various state-
of-the-art approaches to problems similar to those found in this project, through an-
alyzing the technologies and methods applied, as well as the results which they pro-
duce.

An important aspect of this project will revolve around modeling data - for in-
stance, the incoming notification and the user to whom the notification is to be de-
livered. User modeling dates back to the late 1970’s, in which user information was
stored and contained completely within an application, with little distinction between
user-modeling and other general application functions [Kobsa, 2001]. In the early
90’s Kobsa authored the term “User Modeling Shell System”, sparking the develop-
ment of reusable user models [Kobsa, 2007]. More recently, agent-based user models
are being developed to address situations where more information is needed to make
certain inferences on a user (for example in highly adaptive user-models which re-
quire large amounts of user specific data), and so collaboration between agents occurs
as the need arises in real-time. An example of this would be I-Help, a collaborative
environment for seeking help among peers, implemented using distributed agents
which gather individual models on a user in different contexts [Vassileva, Mccalla,
and Greer, 2003]. The design from which I-Help was derived, stemmed from the ar-
gument that in modern times it is no longer applicable to have a single user model
for a user, as it would fail to remain consistent in the current world of distributed
computing. This is especially true in the context of this project, as users, subscribed
to a number of different notification sources, generally have different user accounts
for each source, all of which contribute to a different side of the user and there-
fore model the user differently under different conditions and in different scenarios.
I-Help also implemented a distributed architecture (made up of multi-agent "match-
makers"), which enabled the scalability of the system to remain intact, no matter



Chapter 2. State of the Art 8

the additional load. Similarly, the advantages of using a decentralized model for in-
dependent functionality such as data gathering, is discussed by Kobsa and Yimam
[Yimam and Kobsa, 2000] in their design of DEMOIR1 [(Yimam-Seid and Kobsa,
2003)], which implements a number of "Expertise Indicator Source Gatherers" which
act as independent agents sourcing data in order to "inform" the modeling compo-
nents of their framework. Also concluded from the design of DEMOIR, is a process
of choosing from either a centralized, decentralized or hybrid model architecture,
for applications derived through previous experiences with expert recommender sys-
tems. The process, involving three steps, enabled a flexible solution with regard to
the DEMOIR framework, to become apparent:

• identify system requirements and tasks.

• analyze architectural alternatives to centralized and decentralized approaches.

• specify the central features of the proposed application and identify the flexible
solution that accommodates these features.

This process raised questions in the design stage of this project whereby, for the
purposes of the simulation software being developed for notification management,
a centralized user modeling approach was implemented. The underlying framework
being used, the info-bead model, still enables a decentralized expansion to still be pos-
sible however. In contrast with the hybrid architecture implemented in the DEMOIR
framework, and the distributed architecture implemented in I-Help, many user mod-
eling systems tend to use a standalone centralized approach [Fink and Kobsa, 2000].
Two such examples would be Personis [Kay, Kummerfeld, and Lauder, 2002] and
CUMULATE [Brusilovsky, Sosnovsky, and Shcherbinina, 2005].

CUMULATE is a user modeling server which stores information regarding stu-
dent actions generated from an e-learning platform and, through inferences made
by agents with access to the data on the server, forms a user "student" model. Ev-
ery component of KnowledgeTree, a distributed e-learning architecture, that has a
direct interaction with the student, sends information pertaining to student actions
to the server. The server then processes every "event" and sends any inferred infor-
mation regarding the student model, back to any interactive component wishing to
adapt/personalize itself to the user.

For this purpose the server has two protocols - one to receive incoming information
in the form of "events" about the user, and one to send information regarding the user
to the components who initiated the requests. Uniquely, the CUMULATE server
doesn’t discard the "event" information once it is processed, but stores it, and makes
it available to a number of inference agents who assert various attributes of a user

1DEMOIR - Dynamic Expertise Modeling from Organizational Information Resources - framework
to develop and test expertise modeling algorithms



Chapter 2. State of the Art 9

- such as their "interests" or "motivation level". This architectural design is quite
similar to the design implemented in this project, and is illustrated in figure 2.1.

FIGURE 2.1: The structure of the CUMULATE server [Brusilovsky,
Sosnovsky, and Shcherbinina, 2005].

User model servers have become increasingly more important as growth in ubiqui-
tous computing occurs and an important factor to consider with this is the privacy of
user data and the amount and type of data that is being used in order to model users
[Brar and Kay, 2004]. Personis, similar to CUMLATE, is a user modeling server.
However, Personis places an emphasis on the need for transparency in the modeling
process. The Personis server empowers the user to monitor the data which is being
gathered on them, and it also gives them control over it. The processes involved in
gathering the data, and the purposes for which it is being used, are also available to
the user through the system which strives for complete openness between user and
modeling application. An emphasis is also placed on the security of the system, as
the user modeling component of any adaptive hypermedia system is arguably, accord-
ing to Kay and Brar, most vulnerable due to the sensitive "evidence" data which it
gathers. Personis also aims to act as a central server for all applications requiring
personalisation for an individual, such that when a user enters a new application,
there is no delay due to there being no information on the user yet available. A Per-
sonal Jazz Channel was developed to test the concept of the Personis server through
which users would be recommended various songs, artists and albums depending on
their tastes. The key aspect of the developed application was a scrutability interface,
accessible via a "Profile" button, where the user could view and control the personal
data which was being gathered on them.

Hand in hand with increasing the security and privacy of personalisation systems



Chapter 2. State of the Art 10

comes difficulties with maintaining performance. Kobsa and Wang discuss the impli-
cations of providing user modeling servers which both provide an optimal level of
personalisation to requesting applications and yet still adhere to privacy laws in the
various constituencies through which they are accessed [Wang and Kobsa, 2007]. The
proposed architecture is one which encapsulates a number of personalisation meth-
ods in different components [Wang et al., 2006]. The system chooses the component
with a personalisation method which adheres to the current privacy laws in place
but also performs the personalisation best for the user out of all other valid compo-
nents. Figure 2.2 is an illustration of the implemented architecture developed using
an architecture-level configuration management system, ArchStudio.

FIGURE 2.2: The dynamic privacy-enabling personalisation infrastruc-
ture [Wang et al., 2006].

The external user-adaptive applications in figure 2.2 query the User Modeling
Server (UMS) and request personalised user information while also providing up-
dates to the particular user model of the current user. The UMS is made up of a
directory component comprised of two systems, Scheduler and Representation, a Se-
lector and a number of User Modeling Components (UMCs). The Scheduler system
manages communication between the external application and the UMC. The Repre-
sentation system tracks the user information passed to the UMS. The Selector makes
a decision, based on the privacy constraints of the connected user, which UMC is cho-
sen.

An example of the privacy-enabling user modeling server is found integrated with
a social networking website, UniversalFriends, where users are offered a person-
alised list of potential friends located globally around the world [Wang et al., 2006].
As users span different countries and continents, privacy laws differ greatly from
user to user. Individuals also may have restraints on what data they wish to offer
to the application for use. The privacy-enabling UMS therefore manages the privacy
expectations of the users. Different UMC’s require different types of data pertaining



Chapter 2. State of the Art 11

to the user, such as demographic information or on-site behavior for example, and
also implement different inference mechanisms, such as fuzzy controllers, rule base
reasoning and machine learning. Depending on the data required and method of in-
ference used the selector chooses only the UMC which adhere to the particular users
privacy constraints and as such the privacy of the user is maintained. Figure 2.3
illustrates the process whereby 3 users from different countries, and with differing
privacy constraints, have access to different selections of UMC’s from the full pool.

FIGURE 2.3: Privacy-enabling personalisation process [Wang et al.,
2006].

So far a number of user modeling applications having been discussed, the key
aspects of which revolve around privacy, accessibility, scalability, reusability and the
use of inference agents. The info-bead user model, which is implemented in this
project as the user model approach of choice, has the flexibility to incorporate all of
these aspects, and more, into one coherent modeling system [“User Modeling Criteria
and the Info-bead User Modeling Approach”].

The info-bead user modeling approach is a component-based software develop-
ment approach whereby a user model is made up of atomic elements named info-
beads which hold single attribute values of a user [Dim, Kuflik, and Reinhartz-
Berger, 2015]. Info-beads can be joined through connections named info-links to form
info-pendants which are made up of multiple info-beads connected by info-links to in-
fer a single attribute value held by the root info-bead. Info-links are the protocols
used to exchange attribute data between info-beads. The combination of info-beads
and info-pendants make up the attributes used to generate generic user models.
Combinations of user models, additional info-beads and info-pendants make up group
models. In the context of this project, contextual notification delivery, an info-bead
could be created to hold a particular attribute of a notification, such as the Sender of



Chapter 2. State of the Art 12

the notification. A users current location might also be an attribute held by another
info-bead. The location info-bead could be converted to an info-pendant as there are
multiple means to determine a users current location. For instance, there could be
separate GPS, WiFi and calendar info-beads all of which are connected to the "user
location" info-bead to collectively infer the users location. By this means not all the
data need be present for the "user location" info-bead to be able to infer the users
location (e.g. if the GPS info-bead couldn’t get the users location via the GPS sensor
for instance, the information provided by the WiFi info-bead would still be enough
to infer the users location. Kobsa discusses this aspect of ubiquitous computing, and
in particular user modeling in mobile devices, where the model needs to be able to
perform with uncertain or partial data [Kobsa, 2007].

Dim, Kuflik and Reinhartz-Berger describe the info-bead to be made up of three
parts:

1. Operational

The operational part of the info bead is responsible for the input and output
of "evidence" data. This is achieved through internal interfaces, which other
info-beads can invoke to pass information, or through external API’s, such as
those provided by Facebook or Google for instance. The operational part of the
info-bead also contains an inference mechanism which is used to convert the
"evidence" data to an atomic/composite value. The info-beads pass information
in the form of Triplets which are made up of an id, a detection-time and an
information item. The information item encapsulates a number of attributes
describing the evidence/inferred data which is being exchanged such as the type,
accuracy, confidence value, the units used, the previous evidence it was derived
from, the time of inference, the length of time it is valid for and so forth.

2. Metadata

This part of the info-bead contains information describing the purposes of the
info-bead, the data it holds, the developer who built it and varying other at-
tributes which could be harnessed by internal or external artificial agents to
determine the use of the info-bead in a specific context and apply it.

3. Control

The control part of the info-bead is responsible for a number of housekeeping
functions such as the activation or deactivation of the info-bead, authorizing
access to other info-beads, defining info-link communication settings (comprised
of pull, push and notify) and various other maintenance tasks.

The internal logical flow of the info-bead is illustrated in figure 2.4.
An example application of the info-bead user model in practice is also discussed

by Dim, Kuflik and Reinhartz-Berger whereby a social behavior analysis application



Chapter 2. State of the Art 13

FIGURE 2.4: Internal structure of an info-bead [Dim, Kuflik, and
Reinhartz-Berger, 2015].

is implemented in the Hecht archeology museum. This museum is equipped with
various proximity sensor technology which the info-bead user model leverages as
sensor evidence data in order to infer a particular behavior type about the visitors in
the museum [Dim and Kuflik, 2014]. There are three info-beads collecting evidence
data from the various sensors located around the museum: the "location" info-bead,
"proximity to other visitors" info-bead and "azimuth" info-bead. Data is gathered
and inferred in these three info-beads and pushed onward to subsequent info-beads.
The location data is pushed to the "TOA" info-bead in order to derive the time of
arrival of visitors at certain locations within the museum. The azimuth data is used
to determine the visitors orientation at exhibits. All the inferred data is pushed to a
final info-bead which infers the behavior type of the visitor(s). The example given is
that of a pair of visitors classed as "Geese" (one person of the pair tends to lead the
other from exhibit to exhibit). This is inferred using the time of arrival data, as one
of the pair will arrive at a location just before the other, and the proximity data, as
both visitors will remain in close proximity to each other. Figure 2.5 illustrates the
simplified info-bead Group Model (GM) for a pair of visitors classified as "Geese".

Dim and Kuflik also describe the potential of using the info-bead model approach
in mobile applications in a ubiquitous environment [Kuflik, Mumblat, and Dim, 2015].
The info-bead model is flexible such that, if info-beads are developed generically, they
can be reused depending on the context of the application which wishes to use it.
Info-beads can be added and removed depending on the context. They can also be
searched by artificial agents due to their rich metadata parts. The inference system
within the bead is also very flexible as it supports any number of mechanisms the
developer wishes to deploy. Subsequently the info-bead user model approach can eas-
ily integrate the privacy-enabling personalisation approach proposed by Kobsa and
Wang, previously discussed, by simply removing info-beads from the user model if
their inference mechanism or data collection method conflicts with a users privacy
constraint.



Chapter 2. State of the Art 14

FIGURE 2.5: Group Model for "Geese" classification of visitors [Dim,
Kuflik, and Reinhartz-Berger, 2015].

In the context of this project, employing a user model alone won’t enable the man-
agement of notifications. Intelligence is required if the system is to actively decide
whether notifications should be sent to the consumer now or at a contextually rel-
evant time later. The info-bead model approach has been designed such that each
info-bead contains an inference mechanism, essentially classing the info-bead model
as a distributed artificial intelligent system [Iancu and Popirlan, 2010]. Each info-
bead can be viewed as an artificial agent as it can sense various aspects within its
environment and also act upon them [Russell and Norvig, 2003]. For instance, a
particular info-bead could be deployed in a house to detect temperature levels. The
temperature would be sent to the info-bead via "sensor" evidence data. An inference
would then be made by the info-bead to determine whether the temperature is above
or below "comfortable". The info-bead then might instruct an air-conditioner to speed
up or slow down based on the result.

In order to make decisions the info-beads must assert a decision based on the
evidence data it receives. Fuzzy logic controllers are one such inference mechanism
that may be used as a solution to the problem of notification management. The clas-
sification of whether or not a notification is important enough to send to a user is
a vague concept. Fuzzy logic deals with managing uncertainty in expert systems
[Zadeh, 1983]. Fuzzy expert systems have been most notably been implemented in
the medical sector to aid in the diagnosis process of patients [Phuong and Kreinovich,
2001]. Within the realms of medicine the knowledge which is used to diagnose pa-
tients is generally uncertain as is the relationship between symptoms and diseases
[Vetterlein and Ciabattoni, 2010]. Linguistic terms are used to record the current
physical states of patients for example, as they are sometimes difficult to express
quantitatively. Consequently, the only data available for diagnosis could be a linguis-
tic variable comprised of: "patient is suffering from a strong abdominal pain". This is



Chapter 2. State of the Art 15

a vague concept as different people have differing views on what constitutes "strong".
CADIAG-IV (Computer Assisted Diagnosis) is a medical consultation system which
aids internal medicine by implementing fuzzy logic concepts to deal with the uncer-
tain knowledge surrounding medicine [“Patient specific adaptation of medical knowl-
edge in an extended diagnostic and therapeutic consultation system”]. CADIAG-IV
uses fuzzy sets and membership functions to transform observed data and test re-
sults into linguistic variables. Medical knowledge is then expressed in the form of
antecedent-consequent rules in a knowledge base as illustrated in figure 2.6.

FIGURE 2.6: Example heuristic rule of the knowledge base of the med-
ical consultation system [Dim, Kuflik, and Reinhartz-Berger, 2015].

Subsequently, under the compositional rules of fuzzy inference [Zadeh, 1973],
rules in the knowledge base, which were true to a certain degree depending on the
vague inputs, are aggregated and a fuzzy number is output. This fuzzy number can
then be mapped to a proposed examination to be carried out on a patient. MedFrame
[Sageder et al., 1997] is one such application which implements this medical consul-
tation system. The system is also composed of an explanation tool which illustrates
how it came to a specific diagnosis.

Fuzzy inference systems can also be used to guide medical practitioners dur-
ing the treatment of cancer [Saleh, Barakat, and Awad, 2011]. The fuzzy Decision
Support System (DSS) suggested by Saleh, Barakat and Awad implements a Mam-
dani inference method to identify the individual patient risk status in treatments for
breast cancer. Six input variables undergo Fuzzification, Inference, Composition and
Defuzzification in order to obtain a subsequent output variable representing risk.

In this chapter various state-of-the-art technologies were discussed accompanied
by real-world applications of those technologies. Of those discussed, this project aims
to implement the info-bead model approach to manage notifications contextually. A
Mamdani fuzzy inference system is proposed as the inference mechanism of choice
for the info-bead model. This is a novel approach toward notification management
and the performance of the proposed framework design discussed in the following
chapter is the main focus of this project.



16

Chapter 3

Design

3.1 Introduction

FIGURE 3.1: High level notification management system design.

The main goal of this project is to deliver notifications in a contextually relevant
manner, minimize disruption, and maximize transparency and control to ensure the
user never feels their privacy is invaded, but also receives notifications at the most
contextually relevant moment. There are a number of steps involved in achieving this
goal. These steps span from data collection, data uplift and user modeling, to context
mapping, inference and notification delivery. The main design element is that of the
Notification Management System (NMS), which contains the info-bead model frame-
work that functions as the brain of the system. It also acts as a pipeline which guides
the incoming notifications through a specific path which results in a delivery at the
right time for the user. The high level design of this framework can be seen in figure
3.1.



Chapter 3. Design 17

3.2 Mobile Application (NAbsMobile)

FIGURE 3.2: Notification interception.

3.2.1 Overview

The first step in the design process is to intercept and redirect incoming notifications
(figure 3.2). In order to achieve this a mobile application was developed which has ac-
cess to users incoming notifications as well as permission to read the multiple layers
of data it provides. In conjunction with having access to the notification data, user
data can also be gathered from the phone at this stage which will later aid in the
inference process.

The proposed design of this mobile application doesn’t include integration with
the underlying NMS. It was decided that in order to keep the privacy of data to a
maximum and to ensure completion of the project in full, that it would be better to
use the mobile application as a separate entity with which to capture the data neces-
sary to test with, and then develop the intelligent framework in a desktop application
where security and control could be exploited to a higher degree. Therefore the data
which is collected in the mobile application must be transferred to a desktop envi-
ronment and plugged into the NMS and subsequent info-bead model framework for
the system to be complete. Sending of notifications can then be simulated and subse-
quently intercepted by the system mimicking real time scenarios. For development
purposes, this allows refinements to be made to the model and inference algorithms
under stable and repeatable conditions so that performance can be evaluated and
improved upon.

3.2.2 App Design

The design of the mobile application (NAbsMobile - Notification Abstraction Mobile)
is as follows:

• NAbsMobile senses an incoming notification.



Chapter 3. Design 18

• The notification details are logged and stored in a database on the phone - this
includes various fields which describe the notification: the time and date the
notification is received, the sender, the application through which the notifica-
tion is received, the subject line of the application (named ”ticker text” in the
Android environment) and the body of the notification message.

• The notification is then allowed to proceed to alert the user. (Note - in a real
world scenario, with the NMS integrated onto the phone itself, destroying the
notification would be the logical course of action at this point as it can be later
recreated and sent to the user at a contextually relevant time. However, in
this circumstance, as destroying the notification would result in the user never
getting the notification, it is allowed to continue to alert the user).

It is also worth noting at this point, that data such as a user’s current location
could also be pulled from the phones GPS coordinate’s and stored for later use. This
would require the user to have their GPS turned on at the time the notification is
delivered to the phone, which is not always the case. While the location wasn’t logged
in this particular project (although it would be recommended for future studies as it
provides an additional data source to use in the inference process), it was considered,
and it raised an interesting point with regard to the NMS. It must be able to operate
even if data is missing. It cannot simply rely on all the data being available all the
time as this will vary from user to user. If the info-bead model framework is to be
scalable to multiple users (which is the final goal of the project) then it must be flex-
ible enough to deal with missing data. This is also true of the incoming notification
data. Each notification is unique, as they are sent at different times, from different
people, through different vendors and with different subjects and context. There is no
guarantee that the information within the notification is complete. The framework
must therefore be built to handle discrepancies which may occur.

The mobile application falls into the first stage of the Notification Management
Pipeline which is related to the goal of gathering real-world notification data. Vol-
unteers must be recruited at this stage so that real world notification data can be
harvested from them and subsequently used to test whether their notifications can
be effectively managed. Two volunteers were used throughout this project, the author
and the supervisor. Both subjects had the NAbsMobile application installed on their
phones for a period of time whereby the application was able to observe all incoming
notifications and log the details in a database located on each individual’s phone.

3.2.3 Design Ethics

The use of volunteers and the act of harvesting their personal data via notifications
raised a number of ethical issues which needed to be addressed before proceeding.

1. Informed consent



Chapter 3. Design 19

This was the initial task to complete before integrating the mobile application
on both phones. Both volunteers had to be aware of exactly what data was going
to be harvested from their phones and how it was going to be used. Also, the
installation of the application itself would require modifying the users’ phones
in an irreversible way (Android debugger mode needed to be switched on), and
hence, all this information had to be made clear before proceeding, so as to give
the volunteers a fair opportunity to decline participation. As both volunteers
have a vested interest in the project and were aware of the risks involved, this
step was straightforward, but nonetheless important.

2. Integrity and disruption

Also to consider before continuing with the NAbsModile’s installation on the
supervisor’s phone, was the functionality of the application which resulted in
destroyed notifications. The first version of the application (installed and used
by the author on their phone) had the functionality of logging and destroying
notifications completely (which resulted in an interesting psychological exper-
iment). The supervisor however required the notifications to still get through
once their details were logged - hence the functionality of the application had
to change slightly. Ethically, it was important that the notifications were not
tampered with in any way and were delivered in full to the user in the same
manner as though no logging process took place at all. If this was not the case
the application could have caused major inconveniences to the volunteer.

3. Security

The third and final point to consider before installing the application was the
security of the users’ data being collected and stored on the phone. Ethically,
the responsibility of ensuring the users’ data remains private sits with the de-
veloper - hence it was important to design the application such that the data
could not be easily stolen or even viewed through the phone itself (in the un-
likely event that the phone was stolen). The application is designed to store
the data within the NAbsMobile application database on the phone. The appli-
cation has been designed to have no internet permissions set - hence it cannot
communicate via the internet which limits the amounts of online attacks which
could occur. It also has no physical sensory permissions, meaning data cannot
be transferred via NFC or Bluetooth. It has been designed so that the only
means of exporting the data is through the application itself via an "Export to
Database" button. This exports the data to a database accessible via USB.



Chapter 3. Design 20

3.3 Data Extraction & Uplift

3.3.1 Overview

The next step in the design process is to extract the data collected in step one and in-
tegrate it into the NMS. In an ideal world this would be a simple matter of allowing
the system access the database exported from the mobile application however, the
notification data at this point is in a raw form and so is of little use. Passing the raw
information to the inference mechanism would make it extremely difficult to come to
a solution regarding the notifications delivery date and time. It would require addi-
tional steps of parsing the text of the notification and performing multiple processes
of semantic analysis on it, in order to ascertain the meaning behind it. This, as shall
be discussed later in Chapter 6, will be a task for the future on this project. For
the time being a certain number of assumptions can be made in order to concentrate
fully on the end-to-end framework which is being developed and in particular the
key aspect of the project, which is the exploration of the info-bead model combined
with the fuzzy inference mechanism. By assuming that future work will be done on
automating the processes of finding meaning behind the notifications, it allows for
notifications to be manually classified by a predefined terminology, in order to both
abstract away the sensitive raw data from which they’ve been derived, but also to
give them context and meaning which can be related to the user model derived from
social media outlets.

Before carrying out the uplift on the notification data, it first must be extracted
from the two individual mobile phones on which it has been gathered. The mobile ap-
plication was designed to export its data via USB. This means that the database can
be stored on a computer. However, it still lacks the functionality to be easily viewed or
edited. In order to carry out the uplift, a simple desktop application, NAbsUplift, was
therefore developed to extract the data from the database and insert it, along with a
drop-down of predefined terms, into an Excel spreadsheet. Through this application,
the uplift process on notifications can be done quickly and with minimum effort and
error. The list of predefined terms is also then saved for future reference.

3.3.2 Predefined Terminology

In order to abstract away the sensitive data within the notifications and provide a
means to map notification data to user attributes, a predefined set of terms was cre-
ated and used to uplift the notifications (the full set of terms can be found in Ap-
pendix A). This set of terms was created by first studying the gathered notifications,
and subsequently categorizing them in general terms, in a manner which described
them at a high level and did not give away any personal information pertaining to
the user. This process was done individually by the author and supervisor on their
own data-set of notifications respectively in order to get an overlapping set of terms



Chapter 3. Design 21

which covered all notifications in both data-sets. It also ensured that the notifica-
tion data gathered was only worked upon by the owner of the notification data which
aided in keeping the intrusion of privacy to a minimum. It was also necessary as the
best person to classify the notifications was the owner themselves as they were the
only person who knew the full context of the notification and its potential meaning.
Of course, if a different person were to classify the notification data, they could come
up with differing results, hence a certain amount of bias is present in both data-sets.

As both the author and the supervisor are unique, with different interests, family
commitments and age profiles, it is to be expected that the notifications being classi-
fied separately will end up having a different terminology. For example, the author,
a student, will have "college" down for a majority of notification subjects, while the
supervisor, a member of the academic community within the college, won’t have a
need for college, but will instead have "work". It is necessary to include both terms
in the completed terminology, as without both terms a data-set wouldn’t be properly
uplifted.

3.3.3 NAbsUplift Application Design

The design for the application which carries out the process of uplifting the data-sets
is simple. The user is first able to import their notification database (exported from
the mobile application, NAbsMobile) into the NAbsUplift application which parses
the data and stores it locally. It then provides an interface for the user to browse
their notifications one by one so that the user can accumulate a list of terms that
describe their notifications in a general sense. There is then an interface for the user
to also add and remove terms from the terminology data-set. The application then
has the functionality to convert the notification data into an easily editable form - an
Excel spreadsheet - along with the list of predefined terms, which the user can set to
each notification and hence apply the uplift.

3.3.4 Design Ethics

The uplift application was a necessary aspect of this project as it ensured the data
being used by both volunteers remained absolutely private. It also aids in the scal-
ability of the project as, if and when more test subjects are needed, the application
can be distributed to the applicants for them to use and prepare additional test data,
without sensitive data ever being passed to the developers of the project. This section
of the project, enhances the ethical integrity of the project, while also enabling the
project to scale to more test users with minimum effort.

Two main ethical questions arose within this section of design:



Chapter 3. Design 22

1. Who should carry out the uplift on the notification data?

The first question is one which sparked the design of the uplift application. It
was argued that the developer of the project couldn’t be the person to classify
the notifications of the supervisor, as the context surrounding the notifications
would be unknown - hence the accuracy of the uplift would be jeopardized. Sub-
sequently, it was agreed that the best person to carry out the uplift would be the
owner of the notification data, for they would know the context of each notifica-
tion best. It would also mean that no other person would view their sensitive
data which would keep intrusion on their privacy to a minimum. Once the data
would be uplifted, the sensitive data could be erased leaving only the uplifted
values behind, which is the only data necessary for the NMS to work. In this
manner, no-one but the owner of the data would have access to the sensitive in-
formation. However, this method also relies heavily upon the owner of the data
to correctly classify and uplift their data. It requires them to be completely
honest about the context of the notifications, regardless of the subject matter or
adverse knock-on effects it could have. This is a tough ask for volunteers who
are not completely invested in the project (as the author and supervisor are).
This leads to the second ethical question.

2. How is the uplift integrity to be verified?

As discussed in the first question, keeping the privacy of the volunteers notifica-
tion data to a maximum is a high priority. However, in doing so, there is a drop
in the accuracy of the uplift process. Ideally there would be a second reader
observing the notification uplift process, verifying the accuracy of the results,
or giving a different point of view on the uplift (to avoid any bias which may
occur when choosing from the predefined term list for example). Having a sec-
ond reader, one unrelated to the notifications, would breach the privacy of the
user however - hence, it is avoided. This means that complete trust is placed in
the volunteer to uplift the data to the best of their ability and to the fullness of
their knowledge. It is clear that there is a give and take between maximizing
the privacy of the user’s notifications and maximizing the accuracy of uplifted
values chosen.

3.4 Notification Management System (NAbsDesktop)

3.4.1 Overview

As discussed earlier, the NMS is designed as an end-to-end solution. However, some
assumptions are made in order to effectively make this so. We are assuming for exam-
ple that the raw notification data which the NMS is pulling from, will be uplifted. For



Chapter 3. Design 23

this assumption, the NAbsMobile application was created for gathering the raw no-
tification data. The NAbsUplift application was then created for manually uplifting
the raw notification data and preparing it for simulation. While these two elements
were created outside of the actual notification management application, they are still
an integral part of the overall end-to-end application. Ideally they would be part of
the application itself (discussed in greater detail in Chapter 6), but by segregating
the components in this manner it allows for complete concentration to be placed on
the main aspect of this project: the info-bead model and fuzzy inference process.

FIGURE 3.3: The high level design of info-bead functionality.

Figure 3.3 illustrates the functional elements in the high level design of the NMS
(the prototype application of which is named NAbsDesktop) which are to be encapsu-
lated by the info-bead model framework. This diagram shows that the user model,
which is derived from social media plugins, and the notification data, which is taken
from the mobile application (NAbsMobile in this case), are plugged into a system
which carries out the analysis and contextual mapping of the data. Calculation of
the contextually relevant delivery time is then the output of this system. All these
elements are broken down into basic functions which are slotted into inter-connected
info-beads and info-pendants. Figure 3.4 illustrates how the info-bead model frame-
work, in the case of this NAbsDesktop, is functionally designed.

As discussed in Chapter 2, the info-bead model is made up of a number of com-
ponents. The info-beads themselves are comprised of operational, control and meta-
data parts, and can be combined together to form info-pendants and group models.
Through use of info-beads, entities with a range of attributes can be modeled and
interlinked. In this case there are two entities which must be modeled. The first
entity is the (incoming) Notification. The Notification entity is made up of a number



Chapter 3. Design 24

FIGURE 3.4: Info-bead model functional design.

of attributes such as: the sender of the notification, the application which the noti-
fication was received through, the subject, the body of the notification (the raw text)
and the time and date which the notification was received. Hence, from figure 3.4 the
notification model is made up of the red beads. The second entity is the User. The
User entity is made up of a number of attributes such as: the users current location
and the current activity they are engaged with. Of course additional attributes can
be added to provide an even greater level of detail. However, this requires a greater
number of data sources to be integrated in the system. The blue info-beads in figure
3.4 model the User.

Again from figure 3.4 it can be seen that there are a number of beads connected
to the notification-attribute info-beads1 via inward and outward directional arrows.
These arrows are the info-links between the info-beads. The info-links connect beads

1notification-attribute info-beads - these are info-beads which describe the various attributes of the
(incoming) Notification entity, such as the Sender info-bead or the App info-bead.



Chapter 3. Design 25

together and are defined by a communication protocol of either push (solid arrows),
pull (dotted arrows) or notify (not currently used within the developed framework).
In the case of the notification-attribute info-beads the incoming info-links come from
three main sources: Facebook, Google and the Notification info bead. The Face-
book and Google "clouds" are both, in this case, classified as sensor data2 which
the notification-attribute info-beads pull upon when necessary, in order to make in-
ferences. The info-beads are also connected to a Notification info-bead. The com-
munication method between the Notification info-bead and the notification-attribute
info-beads is a push from the Notification info-bead to the notification-attribute info-
beads. The Notification info-bead simply contains the raw data from the notification
data-set collected from the NAbsMobile application and is uplifted via NAbsUplift
application. To simulate an incoming notification, this raw data is sent to the Notifi-
cation info-bead, which activates the rest of the info-bead system. It then proceeds to
push the data of the incoming notification outwards to the notification-attribute info-
beads. In each notification-attribute, info-bead inferences are made based on the data
it is programmed to receive, and it then pushes this information onward to any info-
bead which is subscribed to the info-beads push events. Through this method, the
inferences make there way through the network and end up in the Alert info-bead.

The user-attribute info-beads3 (blue beads) are also connected via info-links to
sensor information and other info-beads. The location info-bead for instance takes in
GPS coordinates and a WiFi connection which could be found via the users mobile
phone. This information can then be used to generate the users location. The user
attribute info-beads are connected to the alert info-bead via a pull communication
method. This means that the beads only offer their data to the alert bead when asked
for it. As the Alert info-bead is only activated when an incoming notification occurs,
this information is only pulled upon when all data from the notification attributes
has been inferred and pushed to the alert info-bead. With the combination of both
notification inferences and user inferences, the alert info-bead carries out additional
inference logic to calculate at what point the notification should reach the user.

3.4.2 Info-Beads & Info-Pendants

As previously discussed, the info-beads are made up of three significant parts, each
responsible for a certain functionality. The operational part of the info-bead is re-
sponsible for receiving evidence data4, programmatically using it to make an infer-
ence and subsequently creating an atomic or composite attribute. It consequently
sends the inferred attribute as a Triplet to other info-beads or an external consumer.

2sensor data - an info-bead model concept which regards any data provided to an info-bead, which is
not coming directly from an info-bead, as sensor data.

3user-attribute info-beads - these are info-beads which describe the various attributes of the User
entity, such as the Activity info-bead or the Location info-bead.

4evidence data - an info-bead model concept of the raw data used to make inferences.



Chapter 3. Design 26

As illustrated in figure 3.4, the process as described above, corresponds to the op-
erational part of the Notification info-bead (the green bead), which is invoked by the
incoming notification. The evidence data from the simulated incoming notification is
passed to the Notification info-bead and is comprised of the uplifted sender, subject,
time/date, body and application values of the notification. The Notification info-bead
infers which value is which and sends the information as triplet via push info-links
to the appropriate notification-attribute info-beads (red beads).

A similar scenario occurs again for each notification-attribute info-bead. The oper-
ational part of each info-bead receives the incoming evidence data from the Notifica-
tion info-bead, however, in this scenario, the info-bead also pulls additional evidence
data from another sensor source: Facebook and/or Google. The Notification info-bead
activates the "getEvidence" function of each notification-attribute info-bead, and,
from within this function, the notification-attribute info-beads also pull data from
Facebook and/or Google using the relevant API’s.

For example, a typical scenario would be that a notification has been sent by a
particular entity, a family member for instance. In this scenario (illustrated in figure
3.5) the notification sender attribute would have been uplifted to "family" from within
the NAbsUplift application. This notification would be simulated as being sent in the
NMS and all the evidence data of the notification (sender, subject, application etc.)
would be fired at the info-bead model framework entry point - the Notification info-
bead (Step 1 in figure 3.5). The Notification info-bead would parse this data (Step
2) and send the uplifted sender data - which would be "family" in this case - to the
Sender info-bead (Step 3). The Sender info-bead would store the evidence data re-
ceived from the Notification info-bead, and also pull information from the Google API
(Step 4), such as calendar information which would help the info-bead determine if
the current event a user is attending is related to the sender of the notification. Us-
ing the information received from both the calendar and the Notification info-bead,
the Sender info-bead would then make an inference as to the importance and contex-
tual relevancy of the sender of the notification (Step 5). This value of importance and
relevancy would then be sent as a triplet to the Alert info-bead (Step 6), which would
save this piece of evidence data for its inference process (Step 7).

The control part of the info-bead is responsible for the activation/deactivation of
the info-bead, the authorization for other info-beads to access its data, the autho-
rization to send information to other info-beads, the definition of its communication
protocols (push/pull/notify) and the continuous updating of the info-beads internal
settings.

The control parts of the info-beads in figure 3.4 are invoked continuously as in-
formation filters through the info-beads and the settings and states of the info-beads
change. The first time the control part of the Notification info-bead is invoked is when
an incoming notification is fired at the Notification info-bead during the simulation



Chapter 3. Design 27

FIGURE 3.5: Info-bead example scenario (partial).

process. At this point the Notification info-bead sets its activation mode to "ON" and
continues its inference process. The same occurs for each remaining info-bead. They
are only activated when they are contacted or touched by the incoming notifications
path filtering through the info-bead model. Potentially this means that there could be
many info-beads inactive at any time if the information isn’t relevant to the info-bead
in question.

The final part making up the info-bead is the meta-data part. This part describes
the functionality of the info-bead and allows it to be easily understood by developers,
as well as easily searched. Use of the meta-data part of the info-bead hasn’t been
exploited to its full potential in this project. However, Chapter 6 discusses the future
possibilities that this offers in terms of scalability and expansion of the info-bead
model.

Currently the meta-data part of the info-bead supports various fields such as the
name of the info-bead, the version, the resources used within the info-bead, the trust-
worthiness of the info-bead and contact details of the creator of the info-bead. This
information is being set for each info-bead within the NMS’s info-bead model frame-
work however it is not being used for any inference functionality within the NMS
but for ease of understanding how a particular info-bead fits into the info-bead model



Chapter 3. Design 28

framework as a whole. Future plans will include intelligently searching for an ap-
propriate info-bead based on the evidence/inferred data provided in order to further
automate the system.

3.4.3 Social Media Data Harvesting

The previous section outlined in some detail the design for the info-bead model and
the means by which information flows through the framework to eventually reach
a user in the form of a contextually delivered notification. This is the backbone of
the NMS. An integral part of the process is accessing additional data pertaining to
the user for use in making inferences about a particular attribute of a notification.
This is an important step in the design of the NMS as it provides the much needed
additional data necessary to contextually link the notification with the user. For
example, the Sender info-bead makes an API request to the users Google calendar
to find events the user is currently subscribed to. Based on the relevancy between
current or upcoming events and the "sender" evidence data received by the info-bead,
an importance/relevancy value attributed to the sender of the notification will be
inferred. This inferred value is set to be between 0 and 1 (0 being a less important or
irrelevant notification, and 1 being very important or relevant) and is pushed to the
next info-bead(s) from within a Triplet. The scale of 0 to 1 was chosen simply because
it suited the fuzzy inference mechanism implemented in the info-beads.

The data sources chosen for use within the system are easily accessible, with open
API’s readily available, and they contain a large amount of rich data from which
information can be gleaned about a user’s attributes. For example, using Google
Calendar information, such as the users location, activity and who they’re with at
any given time, can be accounted for. This of course is dependent on the engagement
a particular user has with social media. For the purposes of this project it is assumed
that a user has a high level of engagement with their Google calendar, updates their
schedule regularly, and adds information such as the subject of the event and the
people it engages with in the description of the event. These assumptions are quite
specific and may not translate completely to a real world situation. However, for the
purposes of testing the info-bead model and the FIS, these assumptions are adequate.

The Facebook API was also integrated into the info-bead model framework of the
NAbsDesktop application, however it was not used as the project dealt simply with
using the users Google calendar for inferring the importance of the notification at-
tributes. Future work on the project will include adding a greater number of infer-
ences based on Facebook’s social graph.



Chapter 3. Design 29

3.4.4 Inference Mechanism

Overview

The inference mechanism integrated into each info-bead of the info-bead model, is
perhaps one of the most important logical functions within the NMS. The inference
mechanism is the intelligent part of the system which links data together in a con-
textual manner.

Within the operational part of each info-bead there is an inference function which
applies logic to the evidence data to infer an atomic or composite value. One of the
advantages of the info-bead model is the flexibility to implement any number of in-
ference mechanisms. There is no restriction on the type of inference mechanism that
can be used and this is a powerful characteristic of the info-bead model as it enables
developers of info-beads to use whichever inference mechanism works best for the
particular info-bead being developed, and also whichever inference mechanism they
are most comfortable implementing.

There are a number of inferences that need to be made throughout the system in
order to achieve the main goal of delivering a notification contextually to the user.
The greater amount of data available to the system, the greater number of inferences
can occur, meaning that the delivery of the notification can be judged to a finer degree.
For this project, data used in the inference mechanism was gathered from 3 main
sources, some of which have already been discussed in previous sections:

1. Incoming notification data-set - the notification data gathered by the NAbsMo-
bile application on both the author and supervisor.

2. Google calendar data-set - the Google calendar data of both the author and the
supervisor.

3. Ranked uplift term-set - the perceived importance of each uplifted term value.

The incoming notification data-set provides 5 attributes which can be used in the
inference process. These are:

• Sender - the person who sent the notification.

• Subject - the subject line of the notification (named "ticker text" by Android).

• Body - the body of the notification (the actual message contained in the notifi-
cation).

• Application - the application the notification was received through.

• Date - the date and time the notification was received.



Chapter 3. Design 30

The Google calendar provides data on the user’s current schedule. Accessed via
a RESTful API, Google provides the user’s schedule in the form of Event objects.
Queries can be made to get the next N events for a particular user. In this case, the
key data used from each Event object is:

• Start Date - the start date and time of the event.

• End Date - the end date and time of the event.

• Description - the description of the event (as discussed in the previous section,
it is assumed the user will have added the subject of the event and the people
known to be associated with the event, to this field in their uplifted value form).

• Location - the location where the event is to take place.

The third and final data source is the ranked uplift term set. This is comprised of
the set of terms created by the author and supervisor when assessing their respective
notification data-sets. These terms are given a ranked value dependent on their
perceived (by the author and supervisor) importance.

The perceived importance of each uplift term value for the author and supervisor
can be found in Appendix A.

Fuzzy Logic

Fuzzy logic is a multi-valued logic derived from fuzzy set theory to deal with reason-
ing which is approximate as opposed to precise. It is a system for dealing with vague
concepts. Fuzzy set theory involves classifying things as part of a set to a certain
degree. In contrast with traditional logic which can describe things only in binary
forms of true or false, fuzzy logic has the ability to use approximate values, such as a
degree of truth or a degree of false.

As some decision making and problem solving tasks are difficult to understand
quantitatively, it makes sense to tackle them instead in such a way that it is easy
for humans to understand. In this case, identifying which notifications should be al-
lowed to reach a user straight away, and which notifications should wait for a later
time, is a difficult problem to solve quantitatively. A binary method to tackle the
problem would be to classify notifications as either "important and deliver now" or
not "important so deliver later". But this throws up a number of problems. To what
degree of "later" should the notification be delivered? Do we need to set a fixed num-
ber of minutes to wait for the notification to try and reach the user again? This is also
not a realistic view of notifications. While there will be notifications which definitely
should be classified as either "important" or "not important", there will also certainly
be notifications which fall into the grey area of being neither fully important or fully
unimportant. Consequently, this means that the problem of classifying notifications



Chapter 3. Design 31

is a vague or fuzzy problem. We could, naturally, create a third set, named "neutral",
in-between the important and unimportant sets, which would catch the remaining
types of notification, however if we instead allow membership of all these sets be a
continuous function such that a notification can be part of a class to a certain degree,
the accuracy in describing notification importance will be greater, and consequently,
the notification can be delivered more precisely.

The proposed inference mechanism to be implemented in each info-bead is as
follows:

FIGURE 3.6: Fuzzy Inference System (FIS).

Figure 3.6 illustrates a Fuzzy Inference System (FIS). A FIS has 4 main steps
which contribute to crisp input values being mapped to an inferred crisp output value.
These 4 steps are as follows:

• Fuzzification

• Inference

• Composition

• Defuzzification

Note: Every implemented membership function and knowledge base within all
the info-bead FIS’s are illustrated in Appendix D.



Chapter 3. Design 32

Fuzzification

Due to the fuzziness of the problem in identifying which notification is contextually
important, the inference system of each info-bead is designed in such a way that
heuristic and common sense rules are the significant drivers. In order to be able
to implement these rules, the quantitative problem must first be converted to a lin-
guistic one. Hence, the crisp values5 associated with the data sources mentioned in
the Overview of section 3.4.4, must first be mapped to linguistic variable sets. This
process is known as "fuzzification". Fuzzification is achieved through the use of mem-
bership functions6 of predefined shape and parameters.

Recalling figure 3.4 from section 3.4, there are a number of info-beads which are
modeling various attributes of the notification. These are the red beads in the il-
lustration - "Sender", "Subject", "Body", App” and "Date". Each of these info-beads
contain an implementation of a Mamdani Fuzzy Inference System (FIS) and the crisp
input values that are used for the inference process are contained within the evidence
data received from the Notification info-bead and the Google calendar API. Recalling
that the value pushed from the Notification info-bead to the notification-attribute
info-beads is an uplifted term value, and the data received from the Google Calendar
API is an Event object, these two data types clearly won’t work with the FIS as they
are not crisp inputs. Therefore, some work first needs to be done to convert these
values (string and object) to a crisp (real number) value (step 1 in figure 3.6).

The uplifted term value received from the Notification info-bead is easy to convert
to a crisp value as it has already been prepared. This is the data-set which was
created by the author and supervisor ranking the importance of the uplifted terms.
The info-bead simply searches the received uplifted term value in this data-set to find
the corresponding importance value (a ranking between 1 and 10), and it then has a
crisp value for the uplifted term that can be used with the FIS. The significance of
using this value in the system is due to it holding contextual meaning between the
notification and the user, as it was chosen by the user as a mark of importance on
the uplifted value. A highly ranked uplifted value would increase the chances of the
notification making it through to the user sooner. For example: the Notification info-
bead would send the uplifted value of "family" to the Sender info-bead. The info-bead
would search the ranking data-set for the importance of "family" perceived by the
author (appendix A), and would receive the value of 10. This value is then divided by
10 in order to convert it to a crisp input value between 0 and 1 (the purpose of which
is to satisfy the fuzzy logic library implementation of the FIS used in the project -
jFuzzyLite [Rada-Vilela, 2014]). As 10 is the highest possible ranking, the ranking

5crisp value - a precise value. In contrast with a fuzzy value which would be imprecise or vague and
may have a range of values.

6membership function - this is a curve mapping input crisp values to a membership value between
0 and 1. The membership value determines the strength of association a crisp value has with the
particular set the membership function was created to describe.



Chapter 3. Design 33

value found to correspond to the uplifted value (which is provided as evidence from
the Notification info-bead), will always be divided by 10. The name of the crisp value
described in this example would be "senderImportance", as it signifies the importance
of the sender from the user’s perspective. Similarly for the remaining notification-
attributes, the crisp values would be called "subjectImportance" or "appImportance"
and so on. As "sender", "subject" and "app" are simply the notification attributes
which are being checked for contextual relevance through inferred importance, we
will call this first crisp input value attributeImportance.

The reason for querying the Google Calendar API from within the notification-
attribute info-bead is to ascertain whether or not the evidence data received from the
Notification info-bead is contextually relevant to the user. For example: if a user gets
a notification regarding a social event that is happening next week, and has a sched-
ule comprised of work related events all day, then the importance of the "subject"
attribute of the notification should drop significantly, leading to the notification be-
ing delivered at a later stage (perhaps when the work related events are over). This
requires the concept of the subject’s contextual importance in relation to scheduled
events to be represented as a second crisp input value in the FIS. In this example the
crisp value is called eventRelevance. This value is derived by completing the following
steps:

• Query the API to receive the next 10 events in the users schedule (this was
found to approximate two days of events).

• Check if the description of each event contains the uplifted term set (provided by
the Notification info-bead as evidence data pushed to the notification-attribute
info-bead). If there is a keyword match, then the event is contextually relevant.

• Rank all the events (on a scale from 0 to 1) based on their importance and
their relevance to the time and date the notification was delivered (events which
may have matched contextually with the uplifted value may still be much later.
Hence importance would decrease).

• The value for the maximum ranked event is the new crisp input describing the
contextual importance of the uplifted value with respect to the user’s scheduled
events.

As the two crisp values are now in the correct form and scale, a rational number
between 0 and 1, the first step of the FIS, fuzzification, can begin (step 2 in figure
3.6). In this step the two crisp values are mapped to a linguistic variable. The set of
linguistic variables for the first crisp input, attributeImportance, is comprised of:

• Not Important (NIP)

• Important



Chapter 3. Design 34

• Very Important (VIP)

The set of linguistic variables for the second crisp input, eventRelevance, is com-
prised of:

• Not Relevant

• Relevant

• Very Relevant

The relationship between these two input variables has yet to be defined (this will
be done in the following step), however the result of combining both input variables
will result in a number of output membership functions corresponding to additional
linguistic variable sets. The output after combining a particular attributeImportance,
"senderImportance" for example, and its corresponding eventRelevance would result
in a specific output of attributeContext, or in this case "senderContext". This output
value is the inferred value describing the contextual relevancy and importance of
the sender of the notification. For example - a ”senderImportance” of ”VIP” and an
eventRelevance of ”Very Relevant” might result in a ”High” ”senderContext” meaning
that the sender of the notification is both important in terms of the ranking the user
gave them, and also contextually relevant to the user at this point in time, based on
their calendar schedule. The output linguistic variables, are as follows:

• Low

• Medium

• High

FIGURE 3.7: Membership function for "senderImportance" (Note: an
updated membership function was used in the NMS and can be found

in appendix D.

The mapping of crisp values to linguistic terms occurs in the fuzzification process
through a membership function which classifies the crisp input value as belonging
to the linguistic term sets to a certain membership degree µ (a value between 0 and



Chapter 3. Design 35

1). A membership of 0 would signify that the crisp value is not a member of the set
while anything greater than 0 signifies the value is a member of that set to some
degree. The membership functions can be shaped to describe the linguistic term they
are associated with, which gives the developer the scope to use any mathematical
model which makes sense for the linguistic term in question. An example of the
membership function used for "senderImportance" is illustrated in figure 3.7:

In figure 3.7 the crisp input value is translated to linguistic variables NIP, Im-
portant or VIP. Figure 3.8 illustrates an example of how this occurs. The red line
has a crisp value input of 0.1 on the x-axis. This intersects the NIP function at a
y-axis value of approximately 0.7, hence this crisp input value belongs to the linguis-
tic variable set of NIP with a membership degree of 0.7. The green line has a crisp
value input of 0.25 on the x-axis. This intersects both the NIP and the Important
membership functions, therefore this input value is a member of both these linguis-
tic variable sets, the degree of which can be found by finding the corresponding y-axis
value at the point of intersection: µ(NIP) ≈ 0.2, µ(Important) ≈ 0.4.

Once fuzzification of the input values is complete, the system now has linguistic
variables which correspond to real world values with which to manipulate and make
inferences. This is a key point, as it allows heuristic knowledge to be applied easily
in the following steps.

The complete portfolio of membership functions for all variables used throughout
the info-bead model framework can be found in Appendix D.

FIGURE 3.8: Example fuzzification for ”senderImportance”.

Inference

Recalling from the illustration of the FIS in figure 3.6, once fuzzification is complete,
the next step in the process of fuzzy inference is creating a knowledge base of heuris-
tic rules (step 3). The outputs from the fuzzification block are the linguistic variables
which the crisp inputs have been mapped to. However, in order for the inference block
to relate the input and output variables together and form an inference, it must be
provided with a rule block which defines the relationships between the variables.



Chapter 3. Design 36

There were a number of options to choose from when selecting which type of FIS
to implement. Subsequently, it was chosen to implement a Mamdani FIS as it would
enable the use of linguistic rules. This meant that the relationships between the
input and output variables within the FIS could be defined using natural language
- the advantages of this of course being that the heuristic rules could be expressed
easily when developing the system. Another option here would have been to use the
Takagi-Sugeno-Kang FIS which has an advantage over Mamdani due to its increased
computational efficiency. However, as the NMS is not yet embedded in a mobile
device, it was deemed unnecessary. This choice should be revisited when the NMS is
to be installed on a mobile device and increased computational efficiency becomes a
necessity.

The knowledge base is comprised of a number of linguistic rules which are used
to perform approximate reasoning, based on fuzzy set theory. These rules are in the
form of antecedent-consequent (IF-THEN) clauses, both of which are "fuzzy" (both
antecedents and consequent have a degree of certainty), and they contain the human
intelligence that govern the various situations which can occur through incoming
notifications. For example, figure 3.9 illustrates the knowledge base integrated into
the Sender info-bead FIS. The individual rules are easy to understand, due to the use
of linguistic variables within IF-AND-THEN clauses. The antecedents of rule 1 would
be the membership value "senderImportance" has with the NIP set, combined with
the membership value eventRelevance has with the Not Relevant set. The resulting
consequent will then result in "senderContext" having a certain membership value
for the Low set. One of the key points of the fuzzy inference process is that more than
one rule in the knowledge base can fire at a time. In traditional Boolean logic all the
antecedents would have to be true for a rule to fire. However, with fuzzy logic the
antecedents can be partially true resulting in a number of rules firing to a certain
degree (this will be discussed in the composition stage).

FIGURE 3.9: Sender info-bead FIS Knowledge Base (from Matlab’s
Fuzzy Logic ToolBox).

The inference stage of the FIS therefore, involves determining which rules in the
knowledge base are to fire (step 4 in figure 3.6). It accomplishes this using the mem-
bership function (µ) values determined from the fuzzification stage. It evaluates the
degree to which the antecedents are true. For example: rule 1 would only fire if



Chapter 3. Design 37

"senderImportance" had a membership value greater than zero for the NIP set, and
eventRelevance had a membership value greater than zero for the Not Relevant set.
Recalling the membership functions for both NIP and Not Relevant, illustrated in
Appendix B, this would occur whenever the crisp input value for "senderImportance"
is less than 0.4, and also when the eventRelevance crisp input value is less than 0.4.

The logical AND linking both antecedents determines the form of the consequent
output function. Logical AND translates to taking the minimum membership value
from the antecedents and applying it as an alpha-level cut on the output function.
An alpha-level cut is a restriction on a function to ensure it does not exceed a given
"alpha" value on the y-axis. This means that by applying an alpha-level cut to an
output function, the maximum membership (µ) a value can have for that particular
linguistic variable set, is limited. Figure 3.10 is an example of an alpha-level cut
being applied to rule 1 of the knowledge base, occurring in the inference process of
the Sender info-bead FIS. The first graph is the membership function for NIP fuzzy
set, the second graph is the membership function for Not Relevant fuzzy set, and
the third graph is the membership function for the fuzzy output set Low (the dotted
blue line being the original Low membership function). As illustrated, there are two
crisp inputs of 0.3 and 0.25 for ”senderImportance” and eventRelevance respectively.
The two crisp values are fuzzified to a µ value of 0.2 and 0.6 respectively. As both
antecedent µ values are greater than zero, rule 1 can fire. Hence the output is cal-
culated by applying a logical AND to both antecedents. This translates to taking the
minimum µ value of 0.2 and 0.6, 0.2, and applying an alpha-level cut to the output
Low membership function. This creates a new output membership function capped
at 0.2 for this particular rule (illustrated by the green line in figure 3.10). The next
step is to combine all the output membership functions of all the rules which were
found to fire, in order to create the output membership function of the FIS.

FIGURE 3.10: An example of the logical AND alpha-level cut process.



Chapter 3. Design 38

Composition

Due to the fuzzy nature of the problem, notifications can fall into many different cat-
egories of importance and relevancy. The previous steps provide solutions for describ-
ing the notifications in terms of a degree of importance and relevancy, and drawing
up a set of rules that dictate what should occur for various situations. However, no-
tifications can fulfill the requirements of multiple rules at a time meaning multiple
rules will fire (at different strengths) leaving the system with multiple output func-
tions. In order to be able to convert the inferences made back into a real world value
that can be used in the NMS, these multiple output functions need to be combined
into one single output membership function - one which describes the full extent of
fired rules and strengths and which can be used by the system to calculate a tangible
result.

Composition is the second part of the inference step (step 4 of figure 3.6), deter-
mining the degree to which each rule in the knowledge base is fired. In essence,
the composition process calculates the contribution and influence that each rule has
on the overall output membership function of the FIS. Figure 3.11 demonstrates once
again the fuzzification and alpha-level cut, but for rule 2 (which would have also fired
for the given crisp input values from the example in figure 3.10). Figure 3.12 then
illustrates the composition process involved for combining both fired rules into one
output fuzzy set. Hence, composition is achieved by aggregating the output functions
of all the fired rules. In this manner the individual strengths of all the fired rules are
described by the final output fuzzy set.

FIGURE 3.11: An example of the fuzzification and alpha-level cut of
rule 2 found in the Sender info-bead knowledge base.

Defuzzification

The final step of the FIS is to defuzzify the output fuzzy membership function into
a real number which can be used by the NMS for identifying the importance and



Chapter 3. Design 39

FIGURE 3.12: An example of the composition process of output fuzzy
sets from rules 1 and 2 found in the Sender info-bead knowledge base.

relevance of the notification. This process can be achieved by a number of means, two
such popular methods are:

1. Mean of Maxima - this method calculates the crisp output value to be the mean
of the maximum values of the output fuzzy set.

2. Centroid - this method calculates the crisp output value to be the mean of the
entire range of output fuzzy set values - essentially getting the center of gravity
of the area under the curve created by the output fuzzy function. This method
requires integration over the curve. Hence it takes greater computational power
than the Mean of Maxima method.

Both methods are illustrated in figure 3.13. For the purposes of this project the Cen-
troid method was chosen, as it yields results with greater accuracy than that of the
Mean of Maxima method when used with the Mamdani inference implementation
[Wang and Chen, 2014]. The crisp value that is returned for the illustrated example
in figure 3.12, is 0.4. This value is saved in the Sender info-bead as the inferred value.
The info-bead then provides this as evidence data to the Alert info-bead which car-
ries out further inferences based on all the notification-attribute info-bead inferred
values, as well as the user information it receives.

The examples used to step through the stages of the FIS system in this section
were mainly specific to the Sender info-bead. There are similar systems deployed in
the remaining notification-attribute info-beads. There is also a final FIS deployed in
the Alert info-bead, which carries out the final inference on all the individually in-
ferred data attributes to discern whether the notification is important and relevant.
There is an extra step in the Alert info-bead to translate the crisp output value re-
ceived from the FIS to a contextual delivery time. This process will be discussed in
the next section.



Chapter 3. Design 40

FIGURE 3.13: An illustration of two defuzzification methods - Centroid
and Mean of Maxima.

3.4.5 Contextual Delivery

The previous sections outline how the value of a notification’s importance and rele-
vance can be determined by the FIS and expressed as a crisp value. The final crisp
value output by the Alert info-bead however, must be translated to an actual delivery
time for the notification. This is achieved by creating five categories which the Alert
info-beads FIS output can fall into, each with a unique delivery method (these five
categories were implemented as the output linguistic variables in the FIS of the Alert
info-bead, and can be found in figure D.13 in Appendix D):

• Now - Interrupt the user and deliver the notification.

• Very Soon - At the next break in the users schedule, deliver the notification.

• Soon - At the next free period (a break consisting of a few hours) in the users
schedule, deliver the notification.

• Later - At/Before the next contextually relevant event in the users schedule that
the notification is linked with, deliver the notification.

• Much Later - Identical to the Later category.

The above delivery mechanism is dependent on the users Google Calendar and in
order for the contextual deliveries to be accurate, the user must engage with their
calendar and keep it up to date. If, in the above rules, it is found that the users
current location doesn’t match with their calendars information, or if there is nothing
scheduled for the user at the time of the incoming notification, it is assumed the user
is currently free and notifications which previously fell into the Very Soon or Soon
categories are delivered to the user instantly.



Chapter 3. Design 41

3.4.6 Design Ethics

During the design of the NMS a number of ethical dilemmas arose, mostly surround-
ing the privacy and use of the users data. The NMS required a number of input data
sources in order to function, most of which contain sensitive information pertaining
to the user, which was necessary to be protected - for instance: the uplifted notifica-
tion data provided by the two volunteers (the author and the supervisor), the data
provided via the Google Calendar API, and also the ranking data provided on the
uplifted terms. While some of this information is more sensitive than others, it is all
private data belonging to the user, and although the two volunteers agreed for it to
be used for the purposes of this project, the design of the application has to ensure
that the data is sufficiently protected, and that any sensitive information used is only
openly accessible to those directly involved in the project.

In addition to data privacy, the use of the data is also of ethical importance. For
instance, will the inferences made within the NMS cause the user to miss some of
their notifications? Could incorrect inferences occur due to misinterpretation of the
data resulting in an inaccurate model of the user being used to deliver notifications?
Could the system be biased towards some notifications and skew delivery in favour
of a particular sender or application? These questions all raise legitimate concerns
especially as some of these scenarios could occur accidentally. The key to resolving
any issues such as these is to keep the process of the inference and use of the data as
transparent and open as possible, giving the user the option to intervene, and have
an input to the system if they deem it necessary. The ranking system used to infer
the importance of uplifted terms is an example of the users input into the system.
In this manner, the system can be fine tuned by the user themselves to suit there
preferences.

The use of social media integration with the NMS means that users personal
accounts must be accessed. Google provides a secure API for accessing the data.
However, they also require user credentials to be provided. To minimize the risk of
using multiple user credentials, just one account was used for the Google Calendar
integration. This account was set up for the purposes of this project and contains
separate calendars, one each for both volunteers. The volunteers personal/work cal-
endar data was then added to the relevant account calendar, allowing any sensitive
event information to be first removed, so as to protect the user’s privacy.

3.5 Summary

This chapter discussed the design methodologies behind the various components that
make up the full end-to-end notification management solution. This included:



Chapter 3. Design 42

• NabsMobile - The mobile application that captures the real-world notification
data.

In this section the motivation behind the design decision to separate out the
capture of real-world notifications and the management of the notifications, was
discussed. The approach of gathering real-world notification data through the
use of volunteers was also explained, as were the ethics involved with this pro-
cess.

• NabsUplift - The application used to aid in the notification uplift process.

In this section the necessity of uplifting the notification to a predefined termi-
nology, was examined. The design behind how the application would maximize
users privacy and scale easily was also analysed, as was the method behind the
design of the predefined terminology. Finally the ethical implications of devel-
oping this application were also studied.

• NabsDesktop - The desktop application implementation of the Notification Man-
agement System.

In this section the novel aspect of the project design, the info-bead model and
fuzzy inference combination, was explored. This included a discussion on the
info-bead model framework design for the NMS, the FIS design for the indi-
vidual info-beads within the framework(the Sender info-bead FIS taken as an
example), the social media integration design and the ethics surrounding all
aspects of the NMS.



43

Chapter 4

Implementation

4.1 NAbsMobile

As discussed in Chapter 3, the motivation behind the NAbsMobile application was to
gather a data-set of real-world notifications for use in testing the performance of the
NMS, and in particular, to aid in the evaluation of the effectiveness of the info-bead
model and fuzzy inference combination.

In order to capture real-world notifications, the NAbsMobile application had to
be installed upon the mobile phones of volunteers willing to have their notifications
observed on an ongoing basis. Two volunteers were used for this project - the author
and the supervisor.

NAbsMobile was designed as an Android application using Android Studio. In the
first version of the application the following requirements, set out during the design
phase, were implemented:

1. The application should log the key attributes of the Notification entity.

2. The application should store the data gathered in a secure database locally on
the phone.

3. The application should have the functionality to export the database of notifica-
tion data to a computer.

4. The application should delete notifications once the data has been logged so that
the user does not receive any notifications.

5. The application should provide the user with a means to view all the captured
notifications.

The first requirement involves enabling the application to observe all incoming
notifications and extract the necessary data from them. In order to, achieve this
the NotificationListenerService had to be implemented. This is an Android service
which is notified by the system when a new incoming notification is delivered to the



Chapter 4. Implementation 44

phone. This service is first declared in the application’s Manifest1 file with a number
of permissions necessary for the application to use the service on the phone it has
been installed. An Intent filter2 is also added to the services declaration, so that
when a notification is sensed by the system, the NotificationListenerService is found
within the NAbsMobile application on the phone and is started. Figure 4.1 illustrates
the declaration in the Manifest. Note that the permission being set ensures that the
only entity that can bind to the applications service, is the Android system on which
the phone is being run. Hence, no external force (e.g. from the internet) can take
control of this service and read or modify the incoming notifications.

1 <service android:name=".NotificationListener"
2 android:label="@string/service_name"
3 android:permission="android.permission.BIND_NOTIFICATION_LISTENER_SERVICE">
4 <intent-filter>
5 <action android:name="android.service.notification.

NotificationListenerService" />
6 </intent-filter>
7 </service>

FIGURE 4.1: Declaration of the NotificationListenerService in the Man-
ifest.

With the NotificationListenerService now declared, the next step is to implement
the service within the application and apply the functionality to log the notification
data. A NotificationListener class is created, which extends the NotificationListen-
erService for this purpose. Within the NotificationListener class, the onNotification-
Posted() function belonging to NotificationListenerService, is overridden and the in-
coming notification (in the form of an object called StatusBarNotification in Android)
is sent to a database helper class for data extraction and storage. Once the notifica-
tion is stored it is then deleted from the phone. Hence, the notification is no longer
available for viewing by the user. It also no longer alerts the user - hence removing
all notification functionality from the users phone.

In order to store the notification data within the phone securely over a long period
of time ( which was necessary in order to gather enough data for the project exper-
iments) a long term storage solution needed to be implemented. For this reason an
SQLite database was created within the application. The schema for the database
contains only a single entity, the Notification (illustrated in figure 4.2)

The packageType reference in the schema relates to the application through which
the notification was received. For example, Facebook Messenger notifications would
appear as "com.facebook.orca", and WhatsApp messages would appear as "com.whatsapp".

1AndroidManifest.xml - This is a mandatory file included in the application’s root folder which pro-
vides the Android system with essential information pertaining to the developed application (e.g. per-
missions).

2Intent Filter - an Android term - specifies the types of intents that an activity, service, or broadcast
receiver can respond to.



Chapter 4. Implementation 45

FIGURE 4.2: NAbsMobile SQLite schema.

It was not always clear from the string alone as to which application was being refer-
enced. Hence, some research into application names also had to be carried out when
the project reached the uplift stage.

Once the information pertaining to the notification was stored within the appli-
cations SQLite database, there needed to be a method of extracting the data onto a
computer for continued manipulation. This required the SQLite database to be made
exportable to the phone’s external SD card. Again, for this functionality, permissions
first have to be defined in the applications Manifest (figure 4.3).

1 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

FIGURE 4.3: Permission declared in the Manifest for access to external
storage.

1 private void exportDB(){
2 File sd = Environment.getExternalStorageDirectory();
3 File data = Environment.getDataDirectory();
4 ...
5 String currentDBPath = "/data/"+ "intercept.notification.notify" +"/

databases/"+DatabaseHelper.DB_NAME;
6 String backupDBPath = DatabaseHelper.DB_NAME;
7 ...
8 try {
9 source = new FileInputStream(currentDB).getChannel();

10 destination = new FileOutputStream(backupDB).getChannel();
11 destination.transferFrom(source, 0, source.size());
12 }
13 ...
14 }

FIGURE 4.4: Exporting the local SQLite database to the external SD
card.

Figure 4.4 illustrates the export function which converts the current local SQLite
database to a File object, and "streams" it to the external SD card destination. By
implementing this functionality, the database is now accessible on a computer via a
USB connection with the phone.



Chapter 4. Implementation 46

(A) NAbsMobile home screen. (B) NAbsMobile list screen.

FIGURE 4.5: Screenshots of the NAbsMobile application.

A final piece of functionality was also added to the application for viewing the list
of logged notifications in the database from within the application itself. This was
used mainly to ensure that notifications were being correctly captured from the all
possible applications stored on the phone. This required the creation of a simple fetch
query fired at the local SQLite database to retrieve all attributes of the notification,
and an Android ListView layout for displaying all the notifications to the user with
an interactive scroll-bar.

This concludes all necessary implementation necessary for version 1 of the NAb-
sMobile application. The only difference in features in version 2 of the application,
was to remove the deletion of notifications after storage of the notifications attributes
occurred. This allowed for notifications to alert the user and still be viewable in the
status bar of the phone. Screenshots of the application are illustrated in figure 4.5.

4.2 NAbsUplift

Following from Chapter 3, the next step in the projects design was to prepare the
data for input into the NMS. This requires the development of the second application
of this project, NAbsUplift.

The motivation behind NAbsUplift was that it would aid the user in the uplift
process and maximize the security and privacy of the user’s data. This application
is designed with scalability in mind as it enables the project to span to additional
test users’ if necessary while keeping sensitive information secure. Therefore, the



Chapter 4. Implementation 47

application needed to be able to carry out a number of specific functions for this
purpose:

1. Import the SQLite database of notifications exported from the NAbsMobile ap-
plication.

2. Provide the user with an interface to explore the notifications within the database,
so they can note what, if any, new uplift terms are needed for their data-set.

3. Provide the user with an interface enabling them to view, add and remove terms
from the uplift terminology.

4. Export the data in an editable form, along with the terminology set to be used
by the user for uplift.

It was chosen to create this application using the Java programming language
and, as the application is required to have user interaction, it was decided to use
JavaFX for the user-facing GUI. JavaFX is a set of graphic and media packages that
adds rich design and functionality components to an applications front-end. Apache
Maven is also implemented as the build automation tool of choice for the application
in order to ease the management of the applications dependencies.

In order to implement the first requirement of the NAbsUplift application, an
SQLite JDBC3 driver had to be added to the project in order for the application to
be able to establish communication with a database. Once added, a connection is
then made to the exported SQLite database containing the notification data using
the SQLite JDBC driver (line 5 of figure 4.6). Once a connection is successful, a sim-
ple SELECT query is run against the database to retrieve the necessary data. In
order to temporarily store the data locally within the context of the NAbsUplift ap-
plication a Notification class is first created to hold the notification attributes which
are extracted from the database (sender, subject, app, body and date). The result
set returned from the query is then iterated over and, for each row in the set, a No-
tification object is created and its attributes are set according the the data values
extracted (lines 9-19 of figure 4.6). The Notification object is then added to the list of
notifications.

The second requirement of the application which involved creating the user-interface
for viewing the notification data was implemented using the JavaFX platform. A
number of text fields were created to show the data values of each Notification at-
tribute and navigational buttons were implemented for the user to navigate through
the list of notifications. Based on the values which appeared they would then be able
to decide which uplift terms might be necessary for their data-set. Figure 4.7 is an
illustration of the applications front-end implementation.

3JDBC - Java Database Connectivity, an API defining how an application accesses a database (im-
plemented specifically for Java).



Chapter 4. Implementation 48

1 private static void loadFromDatabase(ArrayList<Notification> list){
2 ...
3 try {
4 Class.forName("org.sqlite.JDBC");
5 c = DriverManager.getConnection("jdbc:sqlite:NotificationDB.db");
6 stmt = c.createStatement();
7 String sql = "SELECT * FROM notifications";
8 ResultSet rs = stmt.executeQuery(sql);
9 while(rs.next()){

10 Notification notif = new Notification();
11 notif.setId(rs.getInt(1));
12 notif.setSender(rs.getString(2));
13 String packageType = rs.getString(3);
14 notif.setPackageType(packageType);
15 notif.setSubject(rs.getString(4));
16 notif.setBody(rs.getString(5));
17 notif.setDateTime(formatDate(rs.getString(6)));
18 list.add(notif);
19 }
20 ...
21 }

FIGURE 4.6: Function for extracting the notification data from SQLite
database.

FIGURE 4.7: Screenshot of the NAbsUplift application through which
notification data can be viewed.

At this point of the project, a prototype version of the info-bead model framework
was also being developed and refined from within the data uplift application (as all
the data necessary for the model’s development was available for the first time in the



Chapter 4. Implementation 49

project). For this reason additional fields pertaining to user data were also created
for the user to input various values and test the performance of the info-bead model.
This was a good platform and starting point for developing the info-bead model as
certain failures came about in implementing the model which were later rectified
when developing the NAbsDesktop application. For example, the implementation
of info-links were incorrectly developed, meaning the communication between the
info-beads broke down: the push, pull and notify methodologies were not working
correctly. This was later rectified by applying the observer design pattern (which will
be discussed in greater detail in the next section).

The third requirement for the application which enables the user to edit the up-
lift terminology was implemented by creating an additional JavaFX window which
contains editable text fields for all the uplift term categories: Sender, Package (which
translates to the application the notification was sent through), Subject, Body and
Date. The user can add or remove uplift terms for each category as they see fit. In
order to persist the uplift terminology an SQLite database is created for the NAb-
sUplift application containing tables for each category. Each table has a column for
uplifted terms and also a column for a corresponding ranking for a terms importance
relevant to the particular user. This is effectively generating the source of data used
within the inference mechanism in the NAbsDesktop application. The schema for the
SQLite database are illustrated in figure 4.8 and the front-end GUI is displayed in
figure 4.9.

FIGURE 4.8: Database schema for the uplift terminology term set.

The final requirement of the data uplift application is to provide the functional-
ity to export the notification data in an editable format to enable the user to uplift
the data. This is achieved in the NAbsUplift application through the implementa-
tion of the Apache POI library which enables the reading and writing of Microsoft
Office formats, through Java. The library is added as an external dependency using
Maven and an additional JavaFX ”Export” button is added to the user interface. Once
clicked by the user the list of Notification objects is iterated over and the attributes
of each notification are added to rows in an Excel spreadsheet, each attribute in an
individual cell (lines 9-17). Adjacent to the cell with the notification attribute value a



Chapter 4. Implementation 50

FIGURE 4.9: Screenshot of the NAbsUplift application through which
the uplift terminology can be edited.

drop-down box is created and populated with the uplifted terminology for the partic-
ular category the attribute falls under (lines 18-23, figure 4.10). This is accomplished
by querying the local SQLite database containing the uplifted terminology. The file
is then exported as an Excel file (line 25).

1 private static void exportToExcel(ArrayList<Notification> notifications){
2 ...
3 XSSFWorkbook wb = new XSSFWorkbook();
4 XSSFSheet sheet = (XSSFSheet) wb.createSheet("Notification Uplift");
5 XSSFRow row;
6 int rowId = 0;
7 Cell cell;
8 CreationHelper createHelper = wb.getCreationHelper();
9 for(Notification nab : notifications){

10 row = sheet.createRow(rowId++);
11 cell = row.createCell(0);
12 cell.setCellValue(nab.getSender());
13 cell = row.createCell(2);
14 cell.setCellValue(nab.getPackageType());
15 cell = row.createCell(4);
16 ...
17 }
18 validationHelper = new XSSFDataValidationHelper(sheet);
19 CellRangeAddressList addressList = new CellRangeAddressList(0,

notifications.size(),1,1);
20 constraint = validationHelper.createExplicitListConstraint(senderArray);
21 dataValidation = validationHelper.createValidation(constraint, addressList

);
22 dataValidation.setSuppressDropDownArrow(true);
23 sheet.addValidationData(dataValidation);
24 ...
25 FileOutputStream fileOut = new FileOutputStream("uplift.xlsx");
26 }

FIGURE 4.10: Function for extracting the notification data from SQLite
database.

This concludes the implementation of the functionality required for the NAbsU-
plift application. The user can subsequently uplift the notification data from the



Chapter 4. Implementation 51

resulting exported Excel file with minimum effort. Once the user has set each noti-
fication attribute an uplifted value, the original data value of the notification can be
deleted, as it is now no longer needed. In this manner the user’s sensitive informa-
tion is kept private and never has to be sent to developers or those involved with the
project.

4.3 NAbsDesktop

The main application to be developed in this project is the Notification Management
System (NMS) which aims to effectively manage a users notifications by delivering
them at a contextually relevant time. NAbsDesktop is the application discussed in
this section and it is this project’s implementation of a NMS.

The previous sections of this chapter discussed the development of two applica-
tions which were necessary to prepare the notification data which is pivotal for the
NAbsDesktop application to work. Without the notification data, the application has
no data to use for simulating incoming notifications. Similarly without the uplifted
term-set and rankings, the application can’t accurately infer the delivery times of the
notifications. For this reason, the NMS implemented in this section is completely de-
pendent on the accomplishments of the previous two applications. One of the future
goals of this project would be for the capture and uplift of the notifications to occur in
a single NMS application. However, this was not the aim of this project as the focus
is largely on the performance of the info-bead model and fuzzy inference framework.
Therefore, the requirements of this application focus on developing an application for
exploring the performance of this framework, and are as follows:

1. Simulate incoming notifications.

2. Provide an interface for viewing and editing the current incoming notification.

3. Provide an interface for viewing and editing the current users state.

4. Display the final delivery decision to the user.

These are simply high level requirements for the NAbsDesktop application to function
but they are dependent on the development of the underlying info-bead model and
fuzzy inference framework, which will be discussed in detail throughout this section.

As with the previous application, NAbsDesktop is developed with the Java pro-
gramming language and uses Apache Maven for managing external dependencies.
The additional dependencies added to the pom.xml4:

4POM - Project Object Model are, an XML representation of a Maven project. All the dependencies
of the project are defined in this file for example.



Chapter 4. Implementation 52

• EclispeLink - An open source persistence framework which enables Java to ac-
cess, persist and manage the data of a database using JPA5. Within the NAbs-
Desktop application a number of objects need persisting, such as the individual
info-beads for example. EclipseLink enables a POJO6 to be created and mapped
to the info-bead entity of the applications database.

• FasterXML - A JSON library for Java issued by the Jackson Project. This li-
brary is used within the NAbsDesktop application for converting Java objects to
JSON and vice versa.

• Apache POI - A Java library for reading and writing Microsoft Office formats.
This library is used within the NAbsDesktop application for importing the up-
lifted notification data from an Excel spreadsheet provided by the user.

• Google API Client - A library which provides all the functionality necessary to
integrate any Google service with an application. In this application, Google
Calendar is queried using this library in order to get a users schedule and sub-
sequently create inferences for contextually relevant notification deliveries.

• jFuzzyLite - A fuzzy logic control library for Java [Rada-Vilela, 2014]. This
library provides the components necessary for building the Fuzzy Inference Sys-
tem within the NAbsDesktop application.

• JavaFX - A GUI library for Java applications. This library is again, as with the
previous application, used for implementing the front-end of the application.

The NAbsDesktop application can be broken down into two segments. The front-
end of the application, built using JavaFX to provide the user with the results of the
system, and the back-end of the application in which the info-bead model and fuzzy
inference framework is implemented.

4.3.1 Back-end

The back-end of the application is made up of a number of components. The first
component is that which handles the importation of the notification data which has,
at this point, been uplifted and stored in an Excel spreadsheet. The function which
handles this process implements, once again, the Apache POI library. Figure 4.11 il-
lustrates an excerpt from the import function which iterates over all the notifications
in the spreadsheet and adds them to a list of UpliftedNotification objects. The Uplift-
edNotification object entity describes the incoming notification which will be fired at
the info-bead model.

5JPA - Java Persistence API, a Java Object to Relational Mapping (ORM) standard used for accessing
and managing data between Java objects and relational databases.

6POJO - Plain Old Java Object.



Chapter 4. Implementation 53

1 ...
2 while (row!=null)
3 {
4 UpliftedNotification notif = new UpliftedNotification();
5 notif.setNotificationId(i);
6 Cell cell = row.getCell(1);
7 notif.setSender(cell.getStringCellValue());
8 notif.setSenderRank(getRank(sender, notif.getSender()));
9 ...

10 list.add(notif);
11 i++;
12 }
13 ...

FIGURE 4.11: Excerpt from the function which imports the notification
data from the Excel spreadsheet.

Once the notification data has been loaded into the NMS, the next step is to create
the applications info-beads. Recalling figure 3.4, the necessary info-beads for the
system include the initial Notification info-bead, the notification-attribute info-beads
(Sender, Subject, Body, App and Date) and an Alert info-bead.

As the info-beads must be persisted throughout the application, the first step
regarding their development is to create a library of generic entity classes which
each individual info-bead class can subsequently extend and/or implement. In this
manner, the info-bead structure, main functional components and associating data
(all discussed in Chapter 2) can be standardized and stored.

First created is a generic info-bead class which contains data attributes such as
the info-beads name, communication mode, activation status, list of beads it is au-
thorized to send or receive information from, keywords associated with the particu-
lar info-bead and its evidence/inferred data. The full database schema for the info-
bead model is illustrated in figure 4.12 (an SQLite database is implemented for the
NAbsDesktop application in order to persist the info-bead data). Also added to the
info-bead class are the functions which are common to all info-beads such as:

• inferInfoBeadAttr() - the function which contains the logic for making inferences
based on the provided evidence data and subsequently creating new atomic at-
tributes within the info-bead.

• storeInfoBeadAttr() - the function which contains the logic for persisting the
info-bead attributes in the database. Any operations that must be carried out on
the data are done in this function before the info-bead is saved in the database.

In addition to the generic info-bead class, two separate Java interfaces7 are also
created:

7Java interface - similar to the Java class, but an interface can only contain function definitions. It
cannot implement functions.



Chapter 4. Implementation 54

FIGURE 4.12: NAbsDesktop (info-bead model) database schema.

• BeadInputInterface - this interface contains one method definition, getEvidence(),
which is used by each info-bead for receiving data (this could be via a push from
another info-bead or additionally it could be called by the info-bead itself, in
order to gather information from sensor sources such as the users Google Cal-
endar).

• BeadOutputInterface - this interface also contains one method definition, send-
ToConsumer(), which is used by each info-bead for sending data to other info-
beads or external sources.

The next step in development, is to create the individual classes for each info-
bead illustrated in figure 3.4. For example, a SenderInfoBead class is created for the
Sender info-bead. This class extends InformationBead, the generic info-bead class,
and implements BeadInputInterface, BeadOutputInterface and Runnable8(figure 4.13).

1 ...
2 @Entity
3 @DiscriminatorValue("Sender")
4 public class SenderInfoBead extends InformationBead implements

BeadInputInterface, BeadOutputInterface, Runnable{
5 ...

FIGURE 4.13: Excerpt from SenderInfoBead.java.

All remaining individual info-bead classes are created in the same manner, giving
each info-bead the basic functionality required for the info-bead model framework to

8Runnable - this is Java interface implemented by classes whose instances intend to be executed by
a thread.



Chapter 4. Implementation 55

function, but enough flexibility that each individual info-bead can implement differ-
ent logic and achieve its own unique task. Common functionality shared throughout
all info-beads includes the storeInfoBeadAttr() function, the logic of which is applied
generically, as it simply persists the JPA Entity (the info-bead class in question),
and the sendToConsumer() function , which simply pushes inferred data to all other
info-beads subscribed to updates from the invoked info-bead. Both functions are il-
lustrated in figure 4.14.

1 @Override
2 public void storeInfoBeadAttr() {
3 EntityManager em = App.getEntityManager();
4 em.getTransaction().begin();
5 em.persist(this);
6 em.getTransaction().commit();
7 }
8
9 @Override

10 public void sendToConsumer(String senderId, Date sentTime, Triplet
outputData) {

11 for(BeadInputInterface listener : senderListeners){
12 listener.getEvidence(senderId, sentTime, outputData);
13 }
14 }

FIGURE 4.14: Functions to save the info-bead values in the database
and to push the inferred data to all other subscribed info-beads (Sender-

InfoBead.java).

EclipseLink handles the persistence of the POJO’s. Hence, once a persistence.xml9

file containing all individual info-beads is defined within the application, saving the
info-bead objects can be concisely implemented via lines 3-6 in figure 4.14. Communi-
cation between info-beads is instrumented by the sendToConsumer() function. Once
again recalling figure 3.4, it can be seen that, in this model, all illustrated info-links
connecting the individual info-beads have a directional communication protocol of
push. In order to implement this in the info-bead model framework, the Observer
software design pattern is used. This pattern essentially propagates changes in one
object through to a list of dependent objects. The Observer design pattern is imple-
mented in the info-bead model framework as follows:

• A list of "listeners" is first added to each info-bead. These "listeners" are other
info-beads that have subscribed to receive updates from the invoked info-bead.
For example, the Notification info-bead has five other info-beads subscribed to
its push events (figure 4.15). The type of object the list is defined to hold is one of
BeadInputInterface which results in polymorphism10 being achieved as multiple

9persistence.xml - the deployment descriptor file for persistence using JPA. It declares the classes to
be persisted as well as the database connection details.

10Polymorphism - the ability to process objects differently depending on their data-type or class.



Chapter 4. Implementation 56

object types can now be added to the list as long as they have implemented the
BeadInputInterface. This is necessary as, in the case of the Notification info-
bead, there are five types of object being added to the list: SenderInfoBead,
SubjectInfoBead, BodyInfoBead, AppInfoBead and DateInfoBead.

• At the point of instantiation of an info-bead, the list of subscribed "listeners" are
added via an addListener() function defined within the info-bead (figure 4.16).

• A push event is executed from the info-bead’s sendToConsumer() function, fig-
ure 4.14. Within this function, the list of subscribed "listener" info-beads are
iterated over and for each info-bead, their getEvidence() function is invoked and
data is exchanged through the function’s input parameters.

• Depending on the purpose of the "listener" info-beads, once their getEvidence()
function has been invoked, it can then carry out additional inferences on the ev-
idence data received and pass it on to its own "listener" info-beads via the same
method. In this manner the data is pushed through the info-bead model until
it reaches an info-bead with the functionality to alert the user, if the inferences
so permit.

FIGURE 4.15: Info-bead model design, initial push pattern.

This concludes the generic functionality common to each info-bead in the frame-
work. Individual info-beads have additional functionality contained within their in-
ferInfoBeadAttr() and getEvidence() functions which are unique to the particular info-
bead in question. For this project there was a limit to the number of info-beads that
could be implemented completely within the scope of the project. Hence, the Notifica-
tion, Sender, Subject and Alert info-beads were given priority as they complete a path
from the uplifted notification through to the user with a well grounded inference on
importance and context being made.



Chapter 4. Implementation 57

1 ...
2 private List<BeadInputInterface> senderListeners = new ArrayList<

BeadInputInterface>();
3
4 public void addListener(BeadInputInterface bead){
5 this.senderListeners.add(bead);
6 }
7
8 public void removeListener(BeadInputInterface bead){
9 this.senderListeners.remove(bead);

10 }
11 ...

FIGURE 4.16: The SenderInfoBead "listener" list and functions for the
Observer design pattern implementation.

Notification info-bead

The Notification info-bead is the uplifted notifications first point of contact with the
info-bead model framework. The purpose of this info-bead is to distribute the uplifted
notification to all other info-beads which require the information. In order to achieve
this, additional purpose-specific logic is implemented within this info-bead:

• receivedNotification() is an additional function added to the Notification info-
bead so that the NMS can simulate an incoming notification by passing it to
the uplifted notification data. Within the NAbsDesktop application, the uplifted
notifications are saved as UpliftedNotification objects - hence this is the input
parameter to the receivedNotification() function. However, in the future, this
can be as flexible as the system requires.

• Within the receivedNotification() function the uplifted notification data is con-
verted to a JSON string which can then be stored in the InformationItem of the
Triplet to be distributed to all other subscribed info-beads (figure 4.17).

Sender & Subject info-beads

These notification-attribute info-beads both make inferences on the evidence data,
the incoming uplifted notification, provided by the Notification info-bead. The infer-
ences made are specific to the attribute of the notification the info-bead has been cre-
ated to model. Hence, within the Sender info-bead, inferences will be made surround-
ing the importance and context of the sender of the notification. Both info-beads make
inferences using a similar Fuzzy Inference System (FIS) which is invoked within the
inferInfoBeadAttr() function. As an example, the logic within the SenderInfoBead
object is as follows:



Chapter 4. Implementation 58

1 public void notificationReceived(UpliftedNotification notification){
2
3 Date receivedNotificationDate = new Date();
4 Triplet operational = new Triplet();
5 operational.setDetectionTime(receivedNotificationDate);
6
7 InfoItemFields information = new InfoItemFields();
8 ObjectMapper mapper = new ObjectMapper();
9 String notificationString = null;

10 try {
11 notificationString = mapper.writeValueAsString(notification);
12 } catch (JsonProcessingException e) {
13 e.printStackTrace();
14 }
15 information.setInformationValue(notificationString);
16 information.setInfoValidFrom(receivedNotificationDate);
17
18 operational.setInformationItem(information);
19 this.setOperational(operational);
20
21 storeInfoBeadAttr();
22 sendToConsumer(this.getId(), receivedNotificationDate, operational);
23 }

FIGURE 4.17: Function used by the NMS for pushing an incoming noti-
fication into the info-bead model framework (NotificationInfoBead.java)

1 @Override
2 public void getEvidence(String senderId, Date sentTime, Triplet inputData) {
3 ObjectMapper mapper = new ObjectMapper();
4 try {
5 notification = mapper.readValue(inputData.getInformationItem().

getInformationValue(),
6 UpliftedNotification.class);
7 } catch (IOException e1) {
8 e1.printStackTrace();
9 }

10
11 try {
12 events = GoogleCalendarData.getNextNEvents(10, notification.getDate());
13 } catch (IOException | ParseException e) {
14 e.printStackTrace();
15 }
16 this.run();
17 }

FIGURE 4.18: Function invoked when an info-bead is pushed data
(SenderInfoBead.java)

• As the SenderInfoBead is subscribed to push events from the Notification info-
bead, its getEvidence() function will be invoked through the Notification info-
beads sendToConsumer() function. Once this occurs the notification data, con-
tained within the Triplet passed to the info-bead, is accessible (lines 4-10, figure
4.18). This evidence data is stored locally in the SenderInfoBead and additional



Chapter 4. Implementation 59

sensor sources are polled for additional contextual data. In this case, the users’
Google Calendar is queried and the users’ current schedule is pulled down and
stored in the form of a list of Event objects (lines 12-17). All the data neces-
sary for making inferences is now stored within the info-bead and the FIS can
function. The FIS is started via the run() method. Hence, the computational
overload involved in making the inferences is distributed to a separate thread.

• Within the run() method, four main tasks are dealt with in a specific order.

1. If there have been no errors with getting the data (recall that if data isn’t
available then there is no need for the info-bead to be active as inferences
can’t be calculated) then the state of the info-bead is set to active.

2. The info-bead inferInfoBeadAttr() method is invoked.

3. The info-bead sendToConsumer() method is invoked so as to send the in-
ferred information to all subscribed info-beads, thus pushing the data fur-
ther up the info-bead model chain.

4. The info-bead storeInfoBeadAttr() method is invoked so as to persist the
state of the info-bead.

The storeInfoBeadAttr() and sendToConsumer() functions remain unchanged from
implementations previously discussed, but the inferInfoBeadAttr() function will differ
for each info-bead depending on the information they attempt to infer. The Sender-
InfoBead inferInfoBeadAttr() function is illustrated in figure 4.19.

Recalling from Chapter 3 - Section 3.4.4 - Fuzzification, the two crisp inputs of
the FIS, attributeImportance and eventRelevance must be in a specific format: a real
number between 0 and 1. Lines 4-10 of figure 4.19 illustrates the logic which converts
the Event objects retrieved from the Google calendar query to the correct crisp input
format. This is done through the getEventImportance() method which is passed the
list of Event objects, the attribute the info-bead is making inferences on (the "Sender",
in this case), and the uplifted notification data. Within this function the complete list
of Event objects is iterated over and a value is assigned to each event based on its:

1. contextual relevance with the sender of the notification - found by attempting to
match the uplifted sender value from the notification with a value in the events
description (lines 1-6 , figure 4.20). A value of 0 is assigned to the event if there
is no match. If there is a match, the value is assigned using point 2.

2. contextual relevance between the time the notification was delivered and the
start time of the event - a value is derived for this using the following equation
(implemented in lines 8-15, figure 4.20):

1− currentEventDiff

maxEventDiff
(4.1)



Chapter 4. Implementation 60

1 @Override
2 public void inferInfoBeadAttr() {
3
4 double eventInput = EventInference.getEventImportanceValue("Sender",

events, notification);
5
6 if(eventInput == 0.0){
7 eventInput = 0.00001;
8 }
9

10 SenderFuzzy senderFuzzy = new SenderFuzzy();
11 double senderInput = (double) notification.getSenderRank()/10.0;
12 double inferredValue = senderFuzzy.processSender(senderInput, eventInput

);
13
14 Triplet operational = new Triplet();
15 InfoItemFields info = new InfoItemFields();
16 info.setInformationValue(String.valueOf(inferredValue));
17 operational.setInformationItem(info);
18 operational.setDetectionTime(new Date());
19 this.setOperational(operational);
20 }

FIGURE 4.19: The Sender info bead inference function (SenderIn-
foBead.java)

In equation 4.1 currentEventDiff is the difference in time (minutes) between
the incoming notification and the event start time, and maxEventDiff is the dif-
ference in time (minutes) between the incoming notification and the last event
received (the event furthest away in the users schedule. Note: a fixed number
of events can only be retrieved from the Google Calendar, and in this project
the number is set at 10 - which relates to approximately 2 days for the two
volunteers. This value should be dynamic depending on the sparsity of a users
calendar).

By placing a value on each event using the above two methods, events are es-
sentially ranked depending on how far into the future they are, and whether or not
they are relevant to the sender of the notification. Therefore, the crisp input value is
the value of the event with the maximum ranking (cel = contextual event list: those
events which had a match between the uplifted sender value of the notification and
the event description):

maxcel(1−
currentEventDiff

maxEventDiff
) (4.2)

Line 11 of figure 4.19 illustrates the remaining crisp input, attributeImportance,
being prepared for the FIS. This is the ranking given to the uplifted value by the
user and is stored within the SQLite database within NAbsDesktop (editable via the
user-interface provided, which is discussed in section 4.3.2). With both input values



Chapter 4. Implementation 61

1 private static boolean hasContextMatch(String calendarDescr, String
notification, String attribute){

2 if(calendarDescr.contains(notification)){
3 return true;
4 }
5 else return false;
6 }
7
8 private static double applyRating(CalendarEvent event,
9 long maxTimeDiff, long incomingTimeDiff){

10 if(incomingTimeDiff < 0 ){ // ensure that the ongoing event is
calculated correctly

11 incomingTimeDiff = 0;
12 }
13 double result = (double) (maxTimeDiff - incomingTimeDiff)/maxTimeDiff;
14 return result;
15 }

FIGURE 4.20: Two functions which contribute to converting a users
schedule to a crisp input value for the FIS (EventInference.java)

now in the correct format, they can be passed to the FIS through function sender-
Fuzzy.processSender(), in order to determine the relevance and importance of the
sender attribute (line 12).

The FIS is implemented in the project using the jFuzzyLite library. A fuzzy in-
ference class is created for each info-bead that requires a FIS (e.g. SenderFuzzy).
On initialization of the SenderFuzzy class for instance, the FIS is initialized and
parameters for the 4 stages of a FIS (Fuzzification, Inference, Composition and De-
fuzzification) are configured:

• Fuzzification - the membership functions for the two crisp inputs and the corre-
sponding senderRelevance output are implemented as illustrated in figure 4.21.
Lines 4-6, 11-12 and 20-22 define the shapes and limits of all the linguistic vari-
able functions. These correspond to the membership functions developed with
the Matlab Fuzzy Logic Toolbox, which were illustrated as examples in Chapter
3 (also found in the Appendix).

• Inference - the knowledge base containing the heuristic rules is implemented as
illustrated in lines 1-8 of figure 4.22.

• Composition & Defuzzification - these two stages of the FIS are configured on
line 10 of figure 4.22. The fourth input parameter to the engine.configure()
method, is the accumulation configuration (defining how the output fuzzy sets
of all the fired rules are aggregated). The parameter is defined as "Maximum",
which is an S-norm (models the union of fuzzy sets demonstrated in the exam-
ples of Chapter 3 - figure 3.12). The fifth parameter to the engine.configure()



Chapter 4. Implementation 62

1 senderImportance = new InputVariable();
2 senderImportance.setName("SenderImportance");
3 senderImportance.setRange(0.000, 1.000);
4 senderImportance.addTerm(new Triangle("NIP",0.000,0.000,0.400));
5 senderImportance.addTerm(new Triangle("IMPORTANT",0.200,0.500,0.800));
6 senderImportance.addTerm(new Triangle("VIP",0.600,1.000,1.000));
7
8 eventRelevance = new InputVariable();
9 eventRelevance.setName("EventRelevance");

10 eventRelevance.setRange(0.000, 1.001);
11 eventRelevance.addTerm(new Rectangle("NOTRELEVANT", 0.000, 0.5, 1.0));
12 eventRelevance.addTerm(new Triangle("RELEVANT", 0.5, 1.001, 1.0));
13
14 senderRelevance = new OutputVariable();
15 senderRelevance.setEnabled(true);
16 senderRelevance.setName("SenderRelevance");
17 senderRelevance.setRange(0.000, 1.000);
18 senderRelevance.fuzzyOutput().setAccumulation(new Maximum());
19 senderRelevance.setDefuzzifier(new Centroid(200));
20 senderRelevance.addTerm(new Triangle("LOW",0.000,0.250,0.500));
21 senderRelevance.addTerm(new Triangle("MEDIUM",0.250,0.500,0.9));
22 senderRelevance.addTerm(new Triangle("HIGH",0.400,1.000,1.000));
23 engine.addOutputVariable(senderRelevance);

FIGURE 4.21: The attributeImportance, eventRelevance and senderRel-
evance membership function implementations (SenderFuzzy.java).

method is the defuzzification method implemented, and in this case, for reasons
discussed in Chapter 3, the "centroid" method is chosen.

1 RuleBlock ruleBlock = new RuleBlock();
2 ruleBlock.addRule(Rule.parse("if SenderImportance is NIP and EventRelevance

is NOTRELEVANT then SenderRelevance is LOW", engine));
3 ruleBlock.addRule(Rule.parse("if SenderImportance is IMPORTANT and

EventRelevance is NOTRELEVANT then SenderRelevance is HIGH", engine));
4 ruleBlock.addRule(Rule.parse("if SenderImportance is VIP and EventRelevance

is NOTRELEVANT then SenderRelevance is HIGH", engine));
5 ruleBlock.addRule(Rule.parse("if SenderImportance is NIP and EventRelevance

is RELEVANT then SenderRelevance is LOW", engine));
6 ruleBlock.addRule(Rule.parse("if SenderImportance is IMPORTANT and

EventRelevance is RELEVANT then SenderRelevance is HIGH", engine));
7 ruleBlock.addRule(Rule.parse("if SenderImportance is VIP and EventRelevance

is RELEVANT then SenderRelevance is HIGH", engine));
8 engine.addRuleBlock(ruleBlock);
9

10 engine.configure("Minimum", "", "Minimum", "Maximum", "Centroid");

FIGURE 4.22: The knowledge base of heuristic rules implemented in
the FIS (SenderFuzzy.java).

Once the FIS has been configured, the crisp inputs are passed to the sender-
Fuzzy.processSender() function (line 12, figure 4.19). This function is defined in
SenderFuzzy.java and simply passes the two input parameters through the FIS, and



Chapter 4. Implementation 63

returns the final crisp inferred output value to the info-bead which sends the value
on-wards through the info-bead model via the sendToConsumer() method. This con-
cludes the description of the additional functionality implemented in the notification-
attribute info-beads. Each FIS is unique to the specific info-bead it is modeled for.
However, the methodology used does not change. A similar FIS is also implemented
in the Alert info-bead, but in contrast to the example above, it has a greater amount
of crisp input values (these will be the crisp inferred output values from each indi-
vidual notification-attribute info-bead). Hence also a greater amount of rules in its
knowledge base.

Alert info-bead

The final piece of functionality to discuss with regard to the back-end of the NAb-
sDesktop application and info-bead model framework, is the logic which deals with
converting the final crisp output value from the FIS in the Alert info-bead to a contex-
tual delivery point in the users schedule. This is done by once again iterating over the
user’s scheduled events which were drawn from their Google Calendar. Depending
on the threshold the inferred value falls under, a different logic will apply (discussed
in Chapter 3, section 3.4.5). The threshold values map to linguistic variables of now,
very soon, soon, later and much later which are implemented in the FIS - hence it is
the FIS which determines which bracket the notification falls under and ultimately
how the notification is delivered. Figure 4.23 illustrates the implementation.

Finally, line 26 of 4.23, sends the result to the front-end of the application. In the
case of NAbsDesktop, the front-end of the application is simply for testing and eval-
uation purposes, the functionality of which will be discussed briefly in the following
section.

4.3.2 Front-end

The front-end of the application was implemented using the JavaFx platform to pro-
vide an interface for simulating notification delivery. This includes functionality for
loading a data-set of existing notifications stored in an Excel spreadsheet, as well as
creating ad-hoc notifications from within the application interface. An interface for
editing the data-set of uplifted term rankings is also provided, as well as functional-
ity for the application to provide feedback on the notifications inferred delivery time
once a notification has been passed through the NMS.

Figure 4.24 illustrates the home screen of the NAbsDesktop application whereby
a user can choose from a number of notification data-sets provided by both volunteers
participating in the project.

Once a data-set is chosen, the user can navigate to the simulation screen, figure
4.25, where a notification’s attributes can be edited if desired before submitting it for



Chapter 4. Implementation 64

1 // now - interrupt
2 if(inferredValue<6.0){
3 result = result + "Notify now "+this.getPartNumber()+"\n";
4 // verysoon - next break
5 }else if(inferredValue<60){
6 if(userLocation == 1.0){ // if there’s an event on
7 result = result + "at next break - "+App.getNextBreak()+" - "+this.

getPartNumber()+"\n";
8 }
9 else{

10 result = result + "Notify now "+this.getPartNumber()+"\n";
11 }
12 // soon - next free period
13 }else if(inferredValue<90){
14 if(userLocation == 1.0){
15 result = result + "Notify next free period - "+App.getNextFreePeriod()+"

- "+this.getPartNumber()+"\n";
16 }
17 else{
18 result = result + "Notify now "+this.getPartNumber()+"\n";
19 }
20 // Later & Much Later
21 }else{
22 result = result + "Notify next contextual relevant event - "+App.

getNextContextRelevant()+" - "+"\n";
23 }
24 System.out.println(result);
25 App.result = result;

FIGURE 4.23: The implemented logic for finding a point in a user’s
schedule where a delivery should be made (AlertInfoBead.java).

FIGURE 4.24: The NAbsDesktop home screen.



Chapter 4. Implementation 65

simulation of delivery. An interface is also provided which shows the user’s current
status. This takes the form of an event from the user’s Google Calendar. If the
user had no event scheduled at the time of the notification delivery, then the user
attributes will be unknown.

FIGURE 4.25: The NAbsDesktop simulation screen.

Figure 4.26a depicts the ranking screen of the application where a user can up-
date the rankings of the notification uplift terminology which is used throughout the
inference process. Lastly, figure 4.26 illustrates the notification delivery screen where
the result of the NMS appears via a message detailing when the notification would
arrive.

4.4 Summary

Throughout this chapter the implementation of the various components contributing
to the NMS, were discussed. This included the development of a number of appli-
cations involved in the data capture, data preparation and concept evaluation of the
project. The development of these applications were structured by the requirements
set out in Chapter 3 - design. The following is a brief summary of the application
implementation:



Chapter 4. Implementation 66

(A) The rankings uplift screen. (B) The notification delivery screen.

FIGURE 4.26: The NAbsDesktop application.

1. NAbsMobile

As discussed, this application was first to be implemented and was for the pur-
poses of data capture. This mobile application was developed, using Android, for
installation on the phones of two volunteers of the project. Data was gathered
on a local SQLite database within the phone and extracted via USB. Privacy
and security were two key aspects of the implementation.

2. NAbsUplift

This application was implemented for the purposes of enabling the volunteers
to uplift their own data without sensitive information being divulged. As de-
scribed, it was developed as a desktop application using Java and JavaFx.
An SQLite database was created to store the uplift terminology and Apache
POI was used to convert the data in the exported SQLite database to an Ex-
cel spreadsheet for uplift. Key aspects surrounding this application were once
again privacy and security, but also scalability.

3. NAbsDesktop

The final application was the NMS, which integrated the prepared data from
the previous two applications, in order to simulate incoming notifications, and
attempt to manage them on behalf of the user by delivering them at the most
contextually relevant time. It was developed using Java and JavaFx once again,
and also implemented a SQLite database with which to persist the data. User
data was integrated with the system by querying a RESTful API using the



Chapter 4. Implementation 67

Google Client library. Apache POI was used to import the Excel spreadsheet
of uplifted notification data provided by the user. In order to model and manage
both the notifications and the user, an info-bead model framework was created,
which included a Mamdani FIS (implemented using the jFuzzyLite library).



68

Chapter 5

Evaluation

5.1 NAbsMobile

The NAbsMobile application was the proposed implementation of the first stage of
the Notification Management Pipeline (figure 1.1), "Intercept incoming notifications".
This was the data capture stage of the project and it was an important step, as the
NMS required real users’ notification data in order to evaluate how it would perform
under real-world conditions. The NAbsMobile application was installed on the de-
vice of both volunteers (the author and the supervisor) for a period of approximately
10 weeks (68 days) from November 30th 2015 to February 5th 2016. The following
sections are the evaluation of various aspects of the project.

5.1.1 Method

The best method of evaluating the NAbsMobile application is through evaluating the
resulting data-sets (obtained from the two volunteers) which were acquired through
the application. To accomplish this, there are a number of key data quality metrics
relevant at this stage of the project which are considered [Pipino, Lee, and Wang,
2002].

1. Accessibility

The accessibility of the data is the degree to which data is available and easily
accessible. This was an important design aspect of the application, as the data
had to be easily and quickly extracted from the device for the uplift stage of
the project. For the uplift to be successful the user needed to have a clear idea
of the context surrounding the notifications. Hence, the turnaround on getting
the data from the NAbsMobile application into the NAbsUplift application was
important. As discussed in the previous chapter, there is an interface through
which a user can view the accumulated data-set at any time on their mobile
device. The data itself however, can’t easily be manipulated or edited while
on the mobile phone - hence there is also functionality to export the data to a
desktop device through a USB connection.



Chapter 5. Evaluation 69

2. Believability

The believability of the data is the extent to which the data is trustworthy. In
this case, the application was designed to extract the data from the notification
and log it exactly as it appeared, with no interaction from the user. This is an
important dimension to measure, as the trustworthiness of the data is critical
to the performance of the following two applications involved in the project.
If the data is not to be trusted by the users’, then the uplift process could be
compromised by the user deciding a notification-attribute value is wrong, and
thus uplifting it incorrectly. Also, as inferences are being later made on the
notification data captured by the NAbsMobile application, if it is considered
untrustworthy, then the NMS can’t hope to satisfy a user by recommending a
delivery time for a notification.

3. Completeness

The completeness of the data-set is the degree to which data is not missing.
There were five key attributes that the NAbsMobile application attempted to
log from a users incoming notification: the sender, the subject, the body (of
the message), the application and the date/time the notification was delivered
to the user. Completeness is an important metric to track, as it ensures the
NAbsMobile application is logging and storing the data as per the functionality
entails. However, there is some flexibility allowed in the result of analyzing
completeness, as some notification types simply lack data. For example, some
emails are sent without a subject line because the sender forgot to assign one
while sending the notification. This is not an error in the quality of the data, but
a characteristic of the nature of the notification data. Hence, a low completeness
value for the data-set may be interpreted as acceptable in this case.

The above three data quality dimensions will be used to assess both data-sets
acquired from the NAbsDesktop application, in order to ascertain its performance at
capturing a user’s real world notifications.

5.1.2 Procedure

The procedure for carrying out the data quality assessments outlined above, involves
applying the following functions [Pipino, Lee, and Wang, 2002] to each obtained data-
set:

1. Accessibility
max(0, 1− td − tr

te − tr
) (5.1)

• td = the time the data was delivered to the user.

• tr = the time the data was requested by the user.



Chapter 5. Evaluation 70

• te = the time from which the data is no longer useful (expired).

2. Believability
min(Tds, Tc, Te) (5.2)

• Tds = a trustworthiness rating (between 0 and 1) associated with the data
source. In this case, the data source being the NAbsMobile application.

• Tc = a trustworthiness rating (between 0 and 1) associated with a common
standard. In this case the common standard is the Android system which
normally sends the users their notifications.

• Te = a trustworthiness rating based on experience. In this case, a rating
based on the users own experience with other applications which offer a
similar service to NAbsMobile (gives the user a notification which origi-
nated from another application e.g. Chrome browser notifications).

Note: ratings were given by the two volunteers to whom the data belonged.

3. Completeness

1− cellsempty

cellstotal
(5.3)

• cellsempty = the number of empty cells in the data-set.

• cellstotal = the number of total cells in the data-set.

5.1.3 Results & Observations

The resulting output from the NAbsUplift application were two data-sets, one from
each volunteer within the project:

1. Author’s data-set

This data-set had a total of 1982 notifications over the period of 68 days. The
average number of notifications per day therefore amounts to 29.1, which trans-
lates to approximately 29 interruptions to the user throughout a single day,
which is quite significant.

Through studying the data-set which was procured through NAbsMobile, trends
surrounding notification delivery can be derived for a particular user. For ex-
ample, figure 5.1a illustrates the applications through which the user receives
notifications, with the most popular applications being most apparent as the
largest "bubble". Analysis into the application usage of the user can help detect
which application is used on a regular basis, and which applications could be re-
served for specific purposes. For example, in the context of notification delivery,



Chapter 5. Evaluation 71

(A) Notifications by applications. (B) Notifications by day.

FIGURE 5.1: Analysis of which applications were most popular for de-
livery of notifications and a breakdown of the number of notifications

per day over the 68 day period.

if a notification is sent through an application that is used solely for "family"
purposes, then this individual application could receive a higher ranking than
others. In this manner, notifications can be understood to a greater degree and
delivered to the user more accurately. Similarly with 5.1b, specific types of days
could be categorized, depending on the number of notifications being delivered,
and the load could be distributed more evenly within the context of the user’s
schedule. Insights such as that also illustrated in 5.2, which gives a breakdown
of the type of notification subjects which are delivered per hour, give not only
an increasingly granular view of notifications but also of the user themselves.
Hence the derived user model can also be improved using this data. In the scope
of this project, analysis on the data-sets was not implemented, as it shifts focus
from the performance of the info-bead model and fuzzy inference framework.
However, it is recommended that this data analysis should be used as input to
the system to replace the manual ranking system currently in place. More will
be discussed on this matter in chapter 6.

The following are the results of the data quality metrics discussed in the previ-
ous section:

(a) Accessibility

The results from the accessibility metric are good, due to the fact that te
is quite large, compared to the time required to access the data ("access
the data", in this case, meaning exporting the SQLite database from NAb-
sMobile to the computer and browse/edit it using NAbsUplift or an SQLite
browser). te, in this case, is a flexible value, as the notification data will
only begin to become less useful once the user has forgotten the context



Chapter 5. Evaluation 72

FIGURE 5.2: Analysis of the notification subject breakdown for a par-
ticular day (January 20th).

which surrounds it. Hence, while a low value ranging from a few days to
a week would be recommended, it is not strictly required. The value for td
was, experimentally, found to be approximately 4.3 minutes. This essen-
tially means that the fraction in equation 5.1 will tend toward 0 and the
equation will evaluate to an approximate accessibility of maximum value
1.

(b) Believability

The result of the believability metric for this data-set is 0.6. This is the
minimum value found of the three believability variables from equation
5.2 for this data-set rated by the author: Tds = 0.8, Tc = 0.9, Te = 0.6. This
value translates to the data source being 60% trustworthy, which means
there is room for improvement on the transparency of the application. Po-
tentially this value indicates that, if a user is skeptical with regard to the
competency of a system to collect their notification data without error, a
user may not trust the full management of their notifications to a NMS.

(c) Completeness

The result of completeness for this data-set is 0.99 (of a maximum value of
1). For equation 5.3 it was found that cellempty = 98 and celltotal = 9910. The
98 empty cells were all due to an error in the Sender column of the data-set.
It was found that some, but not all, of the Facebook Messenger notifications



Chapter 5. Evaluation 73

were being logged without a sender. This is simply a fault between how
some notifications are being captured by the NAbsMobile application. The
value of completeness for the data-set in total is quite good and ensures
that the uplift process has maximum potential of being correct.

2. Supervisor’s data-set

This data-set had a total of 1192 notifications over the period of 68 days. The
average number of notifications per day therefore amounts to 17.5. It must be
noted that for this user, not all social media user accounts had push notifications
active during the 68 day period. Hence, this would not be a complete picture of
the number of notifications this user receives on a daily basis. Nonetheless, 17
distractions throughout a day is a significant amount. The accessibility of this
data-set is identical to the previous data-set. The following are the results of
the remaining metrics:

(a) Believability

The result of the believability metric for this data-set, is 0.5. This is the
minimum value found of the three believability variables from equation
5.2 for this data-set rated by the supervisor: Tds = 0.6, Tc = 0.8, Te = 0.5.
This value translates to the data source being 50% trustworthy, which is a
further 10% less than the previous data-set, again highlighting the empha-
sis which needs to be placed on further transparency throughout the NMS,
and also perhaps empowering the user to have a greater input into the
delivery mechanism. There is an element of this already designed in the
NAbsDesktop application, as the user must enter a ranking of the uplifted
terms. However, this could be expanded.

(b) Completeness

The result of completeness for this data-set is 0.99 (of a maximum value of
1). For equation 5.3 it was found that cellempty = 61 and celltotal = 5960. The
61 empty cells were made up of 60 errors in the Sender column and 1 error
in the Subject column. Again the errors in the Sender column can be ac-
counted for by the fault in NAbsMobile discussed previously, and the error
in the Subject column is simply due to an email sent without a subject line
(which is not a data quality issue as it is a characteristic of this particular
notification). The value of completeness for the data-set in total, is again,
quite good for this data-set.

This concludes the evaluation of the NAbsMobile application. The application
functioned as per required and the resulting quality of the obtained data-sets were
acceptable for use in the NMS. The insights into user behavior and the nature of



Chapter 5. Evaluation 74

notification delivery gained from analyzing these data-sets, was also invaluable, and
will become useful in future work on this project.

5.2 NAbsUplift

The NAbsUplift application is used for preparing the notification data for input into
the NMS. This application ensured that user data remained secure, while also en-
abling the uplift process to occur quickly and with minimum effort for the user. An-
other key aspect of this application was to also maintain the uplift terminology, and
gather a users ranking on the uplift terms, which is pivotal for the inference mech-
anism of the NMS. Subsequently, the output of this application was two data-sets,
which were to be input to the NMS.

There is less to evaluate with this application, as its functionality is less verbose
than that of NAbsMobile. The main purpose behind this application is to protect
the privacy of the users’ data, while extracting it from the SQLite database output
from NAbsMobile and prepare it for manual uplift by the user (and enable the project
to easily scale to a greater number of test users if necessary, while maintaining an
acceptable level of data privacy).

The application succeeded in these tasks as the notification data is extracted and
placed in an easily editable form, an Excel spreadsheet, for the test users to uplift.
A key aspect of this application was also the management of the uplifted terms. The
term set, having being stored in an SQLite database, was easily accessible via the
interface of the application.

In conclusion, the NAbsUplift application was functional, coherent and added in-
creased privacy to the users’ data, by minimizing the exposure of the sensitive data
to others, and enabling the test user to carry out their own manual data uplift.

5.3 NAbsDesktop

NAbsDesktop is the application which encapsulates the info-bead model and fuzzy
inference framework, whose performance with regard to inferring contextual delivery
times (given the users notification input data) is the main interest of this project. The
following sections discuss the results of the NMS and a number of observations which
were made regarding these results.

5.3.1 Method

The method of evaluating the performance of the NMS, was to select a number of
interesting days from both the author and supervisor’s data-sets, and compare the
simulated results from the NMS with the expected results created by the two volun-
teers. This required the following steps:



Chapter 5. Evaluation 75

• Using the Google Calendar schedule of both volunteers, select a number of char-
acteristically different days for evaluating the NMS. This includes days which
were well cataloged in Google Calendar. as well as days which were closer to
empty and increasingly vague.

• Both volunteers assign a value to each notification before it is simulated within
the NMS. This value represents the expected delivery method they believe best
matches the context of their notification. The assigned value is limited to a
number within the range of 1 - 5, each figure representing a delivery method as
such:

1. Deliver the notification immediately.

2. Deliver the notification at the next break in the user’s schedule.

3. Deliver the notification at the user’s next free period (nothing scheduled
for a period greater than 30 minutes).

4. Deliver the notification at the next contextually relevant event.

5. Deliver the notification at the next contextually relevant event (reserved
generally for notification’s of least importance).

• Each notification is simulated using the NMS and the result is recorded and
compared to the expected value. Any discrepancy between the expected and
simulated result is then evaluated by the volunteer and either accepted as an
error or categorized as a permissible error. A permissible error is one which
does not match the expected result, but also one which the user will accept in
the context of the notification. Through this comparison two new metrics can
be calculated:

1. Strict Correctness Ratio

correcttotal
notificationstotal

× 100 (5.4)

This is the percentage of correct inferences made by the NMS over the
total number of notifications. This value illustrates the effectiveness of
the system to correctly categorize the notifications in a manner such that
replicates the user themselves. Naturally, the higher the SCR percentage,
the more intelligent the system.

2. Permissible Correctness Ratio

(correcttotal + permissibletotal)

notificationstotal
× 100 (5.5)

This is the percentage of the sum of correct deliveries and permissible er-
rors over the total number of notifications. This is a slightly more flexible



Chapter 5. Evaluation 76

Date Correct
Delivery

Permissible
Errors

Undeniable
Errors

Total
Notif.

S.C.
Ratio

P.C.
Ratio

Jan 20th 21 9 4 34 61.7% 88.2%
Jan 21st 26 5 10 41 63.4% 75.6%
Jan 22nd 26 5 3 34 76.4% 91.1%
Jan 25th 18 2 5 25 72% 80%
Jan 26th 20 5 3 28 71.4% 89.2%
Jan 27th 20 0 2 22 90% 90%
Jan 28th 19 4 6 29 65.5% 79.3%
Jan 29th 26 4 2 32 81.2% 93.7%

Avg: 22 4.3 4.4 30.6 72.7% 85.8%

TABLE 5.1: Simulation results of select days from author’s data-set

Date Correct
Delivery

Undeniable
Errors

Total
Notif.

S.C.
Ratio

Dec 2nd 4 23 27 14.8%
Dec 10th 4 31 35 11.4%
Dec 16th 7 11 18 38.8%

Avg: 5 21.7 26.7 21.7%

TABLE 5.2: Simulation results of select days from supervisor data-set

metric and is used to judge whether the proposed NMS would satisfy users
in a real world environment, on the publication of this report. Naturally, it
is the objective to strive to increase the SCR. However, the PCR is a good
early indicator of acceptable notification delivery results.

5.3.2 Results & Observations

The results of the implementation of the above method is illustrated in tables 5.1
and 5.2. An extract of the underlying data from which these tables were derived,
can be found in appendix B for the author’s results, and appendix C for the supervi-
sor’s results. Google Calendar extracts for both individuals, can also be found in the
respective appendices.

Immediately clear from these results is that the system seems to be biased to-
wards the author. There are a number of reasons why the results achieved by the
author in table 5.1 are superior, the first of which is the scheduling of the user’s cal-
endar. The design of the NMS is, presently, very dependent on the population of a
user’s schedule in their Google Calendar. Through comparing figures B.4 and C.2 in
appendix B and C respectively, it is clear that the calendar of the author is popu-
lated to a greater extent as opposed to that of the supervisor’s. As there is a greater



Chapter 5. Evaluation 77

amount of information available to the system pertaining to the user’s location, ac-
tivity, and who they are with in the author’s calendar, it enables the system to make
increasingly accurate inferences of whether or not the notifications should be sent to
the user at the particular time the notification is sent.

For instance, a notification was sent to the author at 9:53am on the 21st of Jan-
uary (figure B.2 of appendix B). The notification was from a close friend and the sub-
ject matter was that of a social nature. Checking the author’s calendar it can be seen
that this notification was sent during a college lecture. Naturally, as the notification
is not contextually relevant to the author’s current activity of "work", the notifica-
tion can wait. The period of time before the notification is delivered is dependent on
the importance of the person who sent it, the application through which it was sent,
and also the context of the remaining events in the users schedule. In this case, a
notification sent by a close friend will be delivered at the break of the user’s current
activity - hence the value of 2 being assigned as the delivery method. If there was
no activity scheduled for the user at this point in time, the notification would have
been immediately delivered to the user, as the system assumes if nothing is currently
scheduled, then the user is free and available (Note: this is assumed only for notifi-
cations with a delivery method of 3 and below). For example, on the 20th of January,
the user was sent a social notification through Tinder at 12:51pm. This notification
is correctly immediately delivered to the user as there is nothing scheduled for the
author between 12:30pm and 2pm. The NMS assumes the user is free and available
to see the notification. Had this notification been sent during the author’s lecture, it
would be expected that the notification would not reach the user immediately. Hence,
it would have a delivery method of 1 or 2.

Comparing the above scenario with a contextually similar scenario from the su-
pervisor’s result set, it can be seen that the lack of detail in the calendar greatly
diminishes the effect of the NMS. For example, the supervisor received a number of
notifications between 4pm and 5:30pm, which were expected to be delivered at the
user’s next break in their current activity or their next free period (greater than 30
minutes). The corresponding schedule of the user, as perceived in the supervisor’s
calendar however, is that they are completely free and available for all notifications
whose delivery methods would have been classed as 2 or 3 if there had been an event
scheduled. Consequently, all these notifications are sent to the user immediately.
This highlights the necessity for the NMS having a very broad and granular level of
data available to it in order to perform well. Naturally, if the system had access to
other data sources which could enable the system to verify the user’s current activity
(such as location data), then those errors associated with the incorrect classifications
of notification deliveries, as those given in the example above, could be avoided.

Another reason for the bias of results towards the author over the supervisor, may
be the formulation and combination of the membership functions and ranking system



Chapter 5. Evaluation 78

used within the FIS. As the author is the developer of the system, there could be a
bias in the heuristic logic used to develop the membership functions/knowledge base.
Further experimentation is needed to explore the results of variation in membership
functions and their effects on the results of the NMS for a greater test bed of users.

Aside from the bias in the system, the NMS seems to manage the author’s notifica-
tions in a consistently accurate manner, with an overall SCR average of 72.7%. This
is quite a promising figure for the system, as it illustrates that the info-bead model
and fuzzy inference combination can be quite competent at managing real-world noti-
fications. Furthermore, the system has a PCR average of 85.8%, which is high enough
to tempt implementing the system within a prototype for immediate use. Figure 5.3
also demonstrates that the difference between total and correct notifications remains
consistent, no matter the flux in the number of notifications received, meaning that
the system is dependable at its current level of performance.

FIGURE 5.3: Comparison between total notifications and correctly clas-
sified notifications over a number of evaluated days.

By delving deeper into the analysis of particularly interesting days of the author’s
result set of notifications, a number of characteristics of the system can be highlighted
(and used for focusing future work). For example, in figure B.1 in appendix B, there
are 4 undeniable errors made by the system while classifying notification deliveries.

• The first of these is a work notification delivered at 1:23pm. It was expected to
deliver this notification later at a contextually relevant time, as opposed to im-
mediately, as simulated. The reason for the simulated value is most likely due to



Chapter 5. Evaluation 79

there being nothing scheduled for the author at the particular time of delivery.
However, as the sender is automatic (which is ranked low by the author, ap-
pendix A) and the subject isn’t contextually relevant, then it would be expected
that the notification should be assigned a less important delivery method than
1. Most likely, as the user has a scheduled event which is contextually relevant
to "work" quite soon, this notification was marked as relevant in the context
of time. This incorrect classification, highlights the subtleties through which
the system is attempting to navigate and the fact that the system does strug-
gle with outlying scenarios. A work notification, from an application which is
ranked highly and sent at a time contextually relevant to a work related event,
is usually deliverable immediately, as simulated in the example. However it is
the edge case whereby a notification fulfills the criteria but still shouldn’t be
sent, that needs to be explored and improved upon in the future.

• The second undeniable error made, was a social notification sent from a friend
and delivered at 4:52pm. This corresponds to being delivered during the au-
thor’s college lecture. As the notification is social and it was delivered via Face-
book, it is safe to assume that the notification should not interrupt the user.
However, in this case, it was set a delivery method of 1. The "college" event is
connected with the sender of the notification, as the author’s friends are also
in attendance. However, it would be assumed that the subject of "social" would
mean the notification should wait for the break in schedule. The reason be-
hind this notification slipping through, could be the events scheduled later in
the day, two being social events ("badminton" and "drinks"). Hence, their addi-
tional contextual relevancy (while minor, as these events are later in the day)
could have been enough to tip the balance of when the notification was deliv-
ered. This particular scenario highlights the necessity for greater granularity
in data. If the sender was known to the system on a personal level, then in-
dividual people could be distinguished and a greater level of control achieved.
For example, the individual friend sending the message, may not be linked to
the social events later in the day - hence there would be a decreased contextual
relevancy contributing to the delivery method for the social notification. Using
the broad uplift terms such as "friend" and "social" has been an aspect of this
project’s attempt at keeping sensitive data private. However, it is clear that
with the increase in privacy, there also comes the price of a decrease in perfor-
mance. Future work will need to explore the relationship between these two
variables, in order to maximize the potential of the NMS.

• The third undeniable error was another social notification sent by a friend
through Whatsapp at 7:27pm. This notification was delivered while the au-
thor was studying, and as such, shouldn’t have been immediately delivered, but



Chapter 5. Evaluation 80

delivered instead at the break between the scheduled events. Again, as this no-
tification is classed as social and as it is nearing contextual relevancy (the event
of "drinks" beginning just an hour later), it could have been mistakenly given
a high importance value. As discussed previously, more information regarding
the user and the notification, would help classify notifications which arise in
this type of scenario better.

• The final error was a work notification being delivered at 11:35pm. This no-
tification was neither contextually relevant (as its subject was that of "work")
nor important (as its sender value is "automatic"), yet it was delivered imme-
diately. This again highlights the dependency of the system on the data it is
provided with. There are no events scheduled in the author’s calendar for this
time. Hence, the system assumes the user is free and available. While it might
be expected that if the user is free during the day that this email would be per-
fectly suited to being delivered (as the user has nothing else scheduled anyway),
late at night when the user is at home, a "work" notification is not especially
relevant or desired. This highlights an interesting point. The uplift rankings,
as implemented in this project, remain fixed for the user throughout the day.
This is not completely accurate, as a user’s perception of what is important may
change throughout the day. For example, work might have a high importance
ranking during the hours of 9am to 5pm, but a much lower value throughout
the rest of the day. Future work will therefore be necessary on creating a sys-
tem of dynamically classifying the ranking list of the user, in order to model the
users in an increasingly accurate fashion.

Overall the performance of the NMS was quite good when tested on a number of
days which were varying in complexity and context. It is clear from the comparison
between the author and supervisor’s results, that future work needs to be directed
towards expanding the generality of the system, to enable it to accurately manage
notifications on behalf of a broader spectrum of users. The results and observations
above, do prove the concept of the info-bead model and fuzzy inference system. Al-
though there is clearly bias in the system described in this project, implementing
a form of analysis on past user data and integrating it with the fuzzy membership
functions and ranking system, would most likely yield results as seen above by the
author.



Chapter 5. Evaluation 81

5.4 Summary

In this chapter, the results of all the various aspects of the project were discussed.
This spanned from the data-sets produced by the NAbsMobile application, to the
privacy encapsulated by the NAbsUplift application, and finally to the contextual
delivery simulations output by the NAbsDesktop application.

A number of observations regarding performance and future work were also dis-
cussed with regard to to the results of these applications. This included metrics on
the quality of the data-sets created, as well as metrics on the performance of the NMS
managing real-world notifications. A number of scenarios within the result set of the
NAbsDesktop application were also discussed, as well as the logic surrounding the
decision making process. All observable discrepancies within the system were also
analyzed.



82

Chapter 6

Conclusion

The main goal of this project was to develop a system which would manage a user’s
notifications by delivering them in a contextually relevant manner. The proposed so-
lution was to implement an info-bead modeling approach and fuzzy inference system
to act as an intelligent framework between incoming notifications and the user. A
number of objectives were outlined at the beginning of the project to structure the
development of the info-bead model and fuzzy inference framework. These objectives
were also created to ensure the feasibility of the solution was properly evaluated
while the overall goal of the project was achieved. The objectives, as stated in Chap-
ter 1, and conclusions on completion are as follows:

1. Gather real-world notification data

It was necessary to accumulate a data-set of real-world notifications in order to
test the feasibility of the proposed info-bead model and fuzzy inference system
design. To ascertain whether the design could perform in practice, real notifica-
tion data needed to be captured, stored and be accessible to the NMS. For this
purpose, NAbsMobile, an Android application, was developed to log the details
of incoming notifications. The mobile application performed well in practice and
was able to accumulate sufficient notification data from two volunteers for the
purposes of testing the NMS. The application also adequately met ethical expec-
tations as it ensured the gathered data was secure at all times. A criticism of
NAbsMobile did surface while evaluating the application however. The believ-
ability between the user and the resulting data-set produced by the application
was moderate at best. User’s didn’t seem to fully trust the application to com-
petently capture all their notifications and log them accurately in the data-set.
From this finding it is clear that user’s may not completely wish to relinquish
control of their incoming notifications to an autonomous agent. It is suggested
that a hybrid model comprised of automation and a certain level of user input is
the solution to allow the process of capturing notifications and delivering them
to a user become, to a greater degree, more transparent. For example, the user
input could include permitting the user to match delivery methods to particu-
lar categories of notifications. A recommendation for future work on gathering



Chapter 6. Conclusion 83

notification data would be to log additional data with the notification such as
the users location and the time lapse between the notification being delivered
and read. The greater amount of information available to the NMS, the greater
accuracy with which the contextual delivery can be inferred. This will also lend
insights into the behavior of the user and enable increasingly accurate user
models to be implemented. For the purposes of this project, the functionality
for intercepting notifications was built as a separate application so as to sim-
plify and focus development of the info-bead model framework and FIS. Future
work on the NMS should concentrate on developing a NMS within a mobile de-
vice, combining the functionality expressed by the three separate applications
discussed in this paper: NAbsMobile, NAbsUplift and NAbsDesktop.

2. Harvest user data from various sources

To accurately infer when to deliver a notification, an accurate and dynamic user
model needed to be created and constantly updated with sources of informa-
tion pertaining to the user’s current state. For this purpose a number of data
sources, in addition to the notification data-set, had to be integrated with the
info-bead model framework. In the scope of this project a user’s Google Calender
was harvested in order to deduce their current activity. This was implemented
by sending requests to the Google Calendar API. The quality of the information
received back from the Calendar API was completely dependent on the user
keeping their online schedule up to date and enriched with data which the NMS
could use for contextually matching notifications. Once the user’s Calendar was
relatively well populated the NMS was able to sufficiently manage user notifi-
cations. The user’s themselves were also used as data sources. Uplifted terms
were given rankings and this data was used within the inference mechanism
to determine the importance of notification attributes. The ranking data had
one significant flaw in that it wasn’t dynamically updated to reflect the users
current state at every point of notification delivery. The rankings were taken
as general importance values for the uplift terms and, as such, reduced the
accuracy of the decisions chosen by the NMS. For example, "work" notifications
during the day could be important but during out-of-office hours the importance
value could, potentially, have dropped. Future work on the NMS should include
automatically inferring the uplift term rankings through analysis of a user’s
social media connections and previous notification habits.

3. Develop a user/notification model

This objective involved modeling the notification and user using the info-bead
modeling approach. Various attributes of the notification were modeled using
info-beads, such as the Sender info-bead and the Subject info-bead for exam-
ple. The user, in contrast, wasn’t modeled through info-beads in the scope



Chapter 6. Conclusion 84

of this project. Instead, the user’s Google Calendar was used to provide the
notification-attribute info-beads with contextual information pertaining to the
user, such as their current activity. This was a design choice made early in the
project in order to simplify development to enable concept be evaluated. Future
work on the project should include the separation of the notification and user
models in order to provide a cleaner definition of both entities. This will enable
the user model to be reusable across any number of other applications, not nec-
essarily in the domain of notification management. Similarly it will enable the
notification model to be reused for purposes other than just managerial. The
implemented info-bead model was nonetheless effective and, as a generic info-
bead model library was created during this project, future work on adapting the
created model should progress more quickly.

4. Develop an inference mechanism to contextually deliver notifications

A Mamdani Fuzzy Inference System was implemented as the inference mecha-
nism of choice for the info-beads within this project. The FIS is the intelligent
part of the info-bead which infers an attribute value, in this case an impor-
tance value pertaining to a notification attribute, such as "Sender Importance".
The implemented FIS used the ranking data provided by the user and a value
related to an event’s timeliness, obtained from the user’s Google Calendar, as
inputs to the system. The FIS performed well for one volunteer, the author,
and less so for the second volunteer, the supervisor. It was reasoned that the
membership functions mapping the ranking values to heuristic variables would
need to be dynamic (as opposed to fixed, as they are in this project) and adapt
to individual users. This could be achieved by analysing the behavior of a user
and their notifications. The FIS was competent at managing user notifications
for the author hence the concept of combining the info-bead model with a FIS
was an adequate solution to the problems surrounding notification delivery. Fu-
ture work involving the combination of fuzzy inference, as demonstrated by this
project, and machine learning, so as to analyse patterns in user/notification be-
havior, should be the next step of investigation in the area of notification man-
agement.

5. Scale the developed framework to ascertain effectiveness

This objective was achieved only in part as the framework, while tested using a
second data-set, requires further testing on a much larger scale to better eval-
uate its performance over a wider range of users. The performance of the NMS
on the second data-set was poor compared to that of the first. Reasons for the
drop in performance were, as discussed in Chapter 5, possible bias built into
the system in the form of fixed membership functions, static rankings failing to
capture the users dynamic importance contexts throughout the day and a lack



Chapter 6. Conclusion 85

of data in the users Google Calendar. The former two reasons are aspects of
the NMS which can be improved upon through additional development and re-
search. The latter reason can only potentially be minimized through searching
for additional data sources on the user, but in reality the NMS’s performance
will always be restricted by the granularity of data provided by the user.

The majority of the objectives described above were fully accomplished through-
out the project and a NMS was built, tested and evaluated using real-world notifica-
tion data thus verifying the concept of an info-bead model and FIS as a solution to
contextual notification management.



86

Appendix A

Notification Uplift

FIGURE A.1: Author’s uplift term importance ranking.

FIGURE A.2: Supervisor’s uplift term importance ranking.



87

Appendix B

Results - Author

FIGURE B.1: Results for Jan 20th.



Appendix B. Results - Author 88

FIGURE B.2: Results for Jan 21st.



Appendix B. Results - Author 89

FIGURE B.3: Results for Jan 22nd.



Appendix B. Results - Author 90

FIGURE B.4: Google Calendar of author for Jan 20th - Jan 22nd.



91

Appendix C

Results - Supervisor

FIGURE C.1: Results for Dec 2nd.



Appendix C. Results - Supervisor 92

FIGURE C.2: Google Calendar of supervisor for December 2nd.



93

Appendix D

Fuzzy Inference System

FIGURE D.1: The senderImportance membership function of the FIS in
the Sender info-bead.

FIGURE D.2: The eventRelevance membership function of the FIS in
the Sender info-bead.

FIGURE D.3: The knowledge base of the FIS in the Sender info-bead.



Appendix D. Fuzzy Inference System 94

FIGURE D.4: The output membership function of the FIS in the Sender
info-bead.

FIGURE D.5: The subjectImportance membership function of the FIS
in the Subject info-bead.

FIGURE D.6: The eventRelevance membership function of the FIS in
the Subject info-bead.

FIGURE D.7: The knowledge base of the FIS in the Subject info-bead.



Appendix D. Fuzzy Inference System 95

FIGURE D.8: The output membership function of the FIS in the Subject
info-bead.

FIGURE D.9: The senderContext membership function of the FIS in the
Alert info-bead.

FIGURE D.10: The subjectContext membership function of the FIS in
the Alert info-bead.



Appendix D. Fuzzy Inference System 96

FIGURE D.11: The appImportance membership function of the FIS in
the Alert info-bead.

FIGURE D.12: The knowledge base of the FIS in the Alert info-bead.

FIGURE D.13: The output membership function of the FIS in the Alert
info-bead.



97

Bibliography

Brar, Ajay and Judy Kay (2004). Privacy and security in ubiquitous personalized ap-
plications. School of Information Technologies, University of Sydney.

Brusilovsky, Peter, Sergey Sosnovsky, and Olena Shcherbinina (2005). “User Model-
ing in a Distributed e-Learning Architecture”. In: Proceedings of the 10th Inter-
national Conference on User Modeling. UM’05. Edinburgh, UK: Springer-Verlag,
pp. 387–391. ISBN: 3-540-27885-0, 978-3-540-27885-6. DOI: 10.1007/11527886_
50. URL: http://dx.doi.org/10.1007/11527886_50.

Dim, Eyal and Tsvi Kuflik (2014). “Automatic Detection of Social Behavior of Mu-
seum Visitor Pairs”. In: ACM Trans. Interact. Intell. Syst. 4.4, 17:1–17:30. ISSN:
2160-6455. DOI: 10.1145/2662869. URL: http://doi.acm.org/10.1145/
2662869.

Dim, Eyal, Tsvi Kuflik, and Iris Reinhartz-Berger. “User Modeling Criteria and the
Info-bead User Modeling Approach”. In:

— (2015). “When User Modeling Intersects Software Engineering: The Info-bead
User Modeling Approach”. In: User Modeling and User-Adapted Interaction 25.3,
pp. 189–229. ISSN: 0924-1868. DOI: 10.1007/s11257-015-9159-1. URL: http:
//dx.doi.org/10.1007/s11257-015-9159-1.

Fink, Josef and Alfred Kobsa (2000). “A Review and Analysis of Commercial User
Modeling Servers for Personalization on the World Wide Web”. In: User Modeling
and User-Adapted Interaction 10.2, pp. 209–249. ISSN: 1573-1391. DOI: 10.1023/
A:1026597308943. URL: http://dx.doi.org/10.1023/A:1026597308943.

Fischer, Joel E et al. (2013). “Understanding mobile notification management in collo-
cated groups”. In: ECSCW 2013: Proceedings of the 13th European Conference on
Computer Supported Cooperative Work, 21-25 September 2013, Paphos, Cyprus.
Springer, pp. 21–44.

Gartner’s Hype Cycles for 2015. https://www.gartner.com/doc/3111522?ref=
unauthreader&srcId=1-3478922254. Accessed: 2016-05-18.

Iancu, Ion and Claudiu-Ionut Popirlan (2010). “Mamdani Fuzzy Logic Controller with
Mobile Agents for Matching”. In: Proceedings of the 11th WSEAS International
Conference on Nural Networks and 11th WSEAS International Conference on Evo-
lutionary Computing and 11th WSEAS International Conference on Fuzzy Sys-
tems. NN’10/EC’10/FS’10. Iasi, Romania: World Scientific, Engineering Academy,
and Society (WSEAS), pp. 117–122. ISBN: 978-960-474-195-3. URL: http://dl.
acm.org/citation.cfm?id=1863431.1863451.

http://dx.doi.org/10.1007/11527886_50
http://dx.doi.org/10.1007/11527886_50
http://dx.doi.org/10.1007/11527886_50
http://dx.doi.org/10.1145/2662869
http://doi.acm.org/10.1145/2662869
http://doi.acm.org/10.1145/2662869
http://dx.doi.org/10.1007/s11257-015-9159-1
http://dx.doi.org/10.1007/s11257-015-9159-1
http://dx.doi.org/10.1007/s11257-015-9159-1
http://dx.doi.org/10.1023/A:1026597308943
http://dx.doi.org/10.1023/A:1026597308943
http://dx.doi.org/10.1023/A:1026597308943
https://www.gartner.com/doc/3111522?ref=unauthreader&srcId=1-3478922254
https://www.gartner.com/doc/3111522?ref=unauthreader&srcId=1-3478922254
http://dl.acm.org/citation.cfm?id=1863431.1863451
http://dl.acm.org/citation.cfm?id=1863431.1863451


BIBLIOGRAPHY 98

Kay, Judy, Bob Kummerfeld, and Piers Lauder (2002). “Adaptive Hypermedia and
Adaptive Web-Based Systems: Second International Conference, AH 2002 Málaga,
Spain, May 29–31, 2002 Proceedings”. In: ed. by Paul De Bra, Peter Brusilovsky,
and Ricardo Conejo. Berlin, Heidelberg: Springer Berlin Heidelberg. Chap. Per-
sonis: A Server for User Models, pp. 203–212. ISBN: 978-3-540-47952-9. DOI: 10.
1007/3-540-47952-X_22. URL: http://dx.doi.org/10.1007/3-540-
47952-X_22.

Knijnenburg, Bart P et al. (2012). “Explaining the user experience of recommender
systems”. In: User Modeling and User-Adapted Interaction 22.4-5, pp. 441–504.

Kobsa, Alfred (2001). “Generic User Modeling Systems”. In: User Modeling and User-
Adapted Interaction 11.1, pp. 49–63. ISSN: 1573-1391. DOI: 10.1023/A:1011187500863.
URL: http://dx.doi.org/10.1023/A:1011187500863.

— (2007). “The Adaptive Web: Methods and Strategies of Web Personalization”. In:
ed. by Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. Berlin, Heidelberg:
Springer Berlin Heidelberg. Chap. Generic User Modeling Systems, pp. 136–154.
ISBN: 978-3-540-72079-9. DOI: 10.1007/978-3-540-72079-9_4. URL: http:
//dx.doi.org/10.1007/978-3-540-72079-9_4.

Kopecky, Dieter, Klaus-Peter Adlassnig, and Andrea Rappelsberger. “Patient specific
adaptation of medical knowledge in an extended diagnostic and therapeutic con-
sultation system”. In:

Kuflik, Tsvi, Yevgeni Mumblat, and Eyal Dim (2015). “Enabling Mobile User Mod-
eling: Infrastructure for Personalization in Ubiquitous Computing”. In: Proceed-
ings of the Second ACM International Conference on Mobile Software Engineering
and Systems. MOBILESoft ’15. Florence, Italy: IEEE Press, pp. 48–51. ISBN: 978-
1-4799-1934-5. URL: http://dl.acm.org/citation.cfm?id=2825041.
2825049.

Murugesan, S. (2007). “Understanding Web 2.0”. In: IT Professional 9.4, pp. 34–41.
ISSN: 1520-9202. DOI: 10.1109/MITP.2007.78.

Phuong, Nguyen Hoang and Vladik Kreinovich (2001). “Fuzzy logic and its applica-
tions in medicine”. In: International journal of medical informatics 62.2, pp. 165–
173.

Pielot, Martin, Karen Church, and Rodrigo de Oliveira (2014). “An in-situ study of
mobile phone notifications”. In: Proceedings of the 16th international conference
on Human-computer interaction with mobile devices & services. ACM, pp. 233–
242.

Pipino, Leo L, Yang W Lee, and Richard Y Wang (2002). “Data quality assessment”.
In: Communications of the ACM 45.4, pp. 211–218.

Rada-Vilela, Juan (2014). fuzzylite: a fuzzy logic control library. URL: http://www.
fuzzylite.com.

http://dx.doi.org/10.1007/3-540-47952-X_22
http://dx.doi.org/10.1007/3-540-47952-X_22
http://dx.doi.org/10.1007/3-540-47952-X_22
http://dx.doi.org/10.1007/3-540-47952-X_22
http://dx.doi.org/10.1023/A:1011187500863
http://dx.doi.org/10.1023/A:1011187500863
http://dx.doi.org/10.1007/978-3-540-72079-9_4
http://dx.doi.org/10.1007/978-3-540-72079-9_4
http://dx.doi.org/10.1007/978-3-540-72079-9_4
http://dl.acm.org/citation.cfm?id=2825041.2825049
http://dl.acm.org/citation.cfm?id=2825041.2825049
http://dx.doi.org/10.1109/MITP.2007.78
http://www.fuzzylite.com
http://www.fuzzylite.com


BIBLIOGRAPHY 99

Russell, Stuart J. and Peter Norvig (2003). Artificial Intelligence: A Modern Approach.
2nd ed. Pearson Education. ISBN: 0137903952.

Sageder, B et al. (1997). “The knowledge model of MedFrame/CADIAG-IV”. In: Stud-
ies in health technology and informatics 43 Pt B, 629—633. ISSN: 0926-9630. URL:
http://europepmc.org/abstract/MED/10179742.

Saleh, Ahmed Abou Elfetouh, Sherif Ebrahim Barakat, and Ahmed Awad Ebrahim
Awad (2011). “A fuzzy decision support system for management of breast cancer”.
In: IJACSA Editorial.

Silver, D. avid et al. (2016). “- Mastering the game of Go with deep neural networks
and tree search”. In: - 529.- 7587, pp. ––489.

Vassileva, Julita, Gordon Mccalla, and Jim Greer (2003). “Multi-Agent Multi-User
Modeling in I-Help”. In: User Modeling and User-Adapted Interaction 13.1-2, pp. 179–
210. ISSN: 0924-1868. DOI: 10.1023/A:1024072706526. URL: http://dx.doi.
org/10.1023/A:1024072706526.

Vetterlein, Thomas and Agata Ciabattoni (2010). “On the (Fuzzy) Logical Content
of CADIAG-2”. In: Fuzzy Sets Syst. 161.14, pp. 1941–1958. ISSN: 0165-0114. DOI:
10.1016/j.fss.2009.09.011. URL: http://dx.doi.org/10.1016/j.fss.
2009.09.011.

Wang, Yang and Yanyan Chen (2014). “A comparison of Mamdani and Sugeno fuzzy
inference systems for traffic flow prediction”. In: Journal of Computers 9.1, pp. 12–
21.

Wang, Yang and Alfred Kobsa (2007). “User Modeling 2007: 11th International Con-
ference, UM 2007, Corfu, Greece, July 25-29, 2007. Proceedings”. In: ed. by Cristina
Conati, Kathleen McCoy, and Georgios Paliouras. Berlin, Heidelberg: Springer
Berlin Heidelberg. Chap. Respecting Users’ Individual Privacy Constraints in
Web Personalization, pp. 157–166. ISBN: 978-3-540-73078-1. DOI: 10.1007/978-
3-540-73078-1_19. URL: http://dx.doi.org/10.1007/978-3-540-
73078-1_19.

Wang, Yang et al. (2006). “PLA-based Runtime Dynamism in Support of Privacy-
Enhanced Web Personalization”. In: Proceedings of the 10th International on Soft-
ware Product Line Conference. SPLC ’06. Washington, DC, USA: IEEE Computer
Society, pp. 151–162. ISBN: 0-7695-2599-7. URL: http://dl.acm.org/citation.
cfm?id=1158337.1158689.

Yimam, Dawit and Alfred Kobsa (2000). “Centralization vs. decentralization issues in
internet-based knowledge management systems: experiences from expert recom-
mender systems”. In: The Workshop on Internet-scale Software Technologies July
13-14, 2000, Irvine, Ca.

Yimam-Seid, Dawit and Alfred Kobsa (2003). “Expert-Finding Systems for Organiza-
tions: Problem and Domain Analysis and the DEMOIR Approach”. In: Journal of

http://europepmc.org/abstract/MED/10179742
http://dx.doi.org/10.1023/A:1024072706526
http://dx.doi.org/10.1023/A:1024072706526
http://dx.doi.org/10.1023/A:1024072706526
http://dx.doi.org/10.1016/j.fss.2009.09.011
http://dx.doi.org/10.1016/j.fss.2009.09.011
http://dx.doi.org/10.1016/j.fss.2009.09.011
http://dx.doi.org/10.1007/978-3-540-73078-1_19
http://dx.doi.org/10.1007/978-3-540-73078-1_19
http://dx.doi.org/10.1007/978-3-540-73078-1_19
http://dx.doi.org/10.1007/978-3-540-73078-1_19
http://dl.acm.org/citation.cfm?id=1158337.1158689
http://dl.acm.org/citation.cfm?id=1158337.1158689


BIBLIOGRAPHY 100

Organizational Computing and Electronic Commerce 13.1, pp. 1–24. URL: http:
//dx.doi.org/10.1207/S15327744JOCE1301_1.

Zadeh, L.A. (1983). “The role of fuzzy logic in the management of uncertainty in ex-
pert systems”. In: Fuzzy Sets and Systems 11.1, pp. 199 –227. ISSN: 0165-0114.
DOI: http://dx.doi.org/10.1016/S0165-0114(83)80081-5. URL: http:
//www.sciencedirect.com/science/article/pii/S0165011483800815.

Zadeh, Lotfi A (1973). “Outline of a new approach to the analysis of complex systems
and decision processes”. In: Systems, Man and Cybernetics, IEEE Transactions on
1, pp. 28–44.

http://dx.doi.org/10.1207/S15327744JOCE1301_1
http://dx.doi.org/10.1207/S15327744JOCE1301_1
http://dx.doi.org/http://dx.doi.org/10.1016/S0165-0114(83)80081-5
http://www.sciencedirect.com/science/article/pii/S0165011483800815
http://www.sciencedirect.com/science/article/pii/S0165011483800815

	Declaration of Authorship
	Summary
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Research Question
	Goals and Objectives
	Overview

	State of the Art
	Design
	Introduction
	Mobile Application (NAbsMobile)
	Overview
	App Design
	Design Ethics

	Data Extraction & Uplift
	Overview
	Predefined Terminology
	NAbsUplift Application Design
	Design Ethics

	Notification Management System (NAbsDesktop)
	Overview
	Info-Beads & Info-Pendants
	Social Media Data Harvesting
	Inference Mechanism
	Contextual Delivery
	Design Ethics

	Summary

	Implementation
	NAbsMobile
	NAbsUplift
	NAbsDesktop
	Back-end
	Front-end

	Summary

	Evaluation
	NAbsMobile
	Method
	Procedure
	Results & Observations

	NAbsUplift
	NAbsDesktop
	Method
	Results & Observations

	Summary

	Conclusion
	Notification Uplift
	Results - Author
	Results - Supervisor
	Fuzzy Inference System
	Bibliography

