
TRINITY COLLEGE DUBLIN

Classifying the Quality of Questions and

Answers From Stack Overflow

by

Geoffrey Hodgins

A dissertation submitted in partial fulfillment for the

degree of Masters of Computer Science

in the department of

Integrated Computer Science

Computer Science and Statistics

Submitted to the University of Dublin, Trinity College, May 2016

Declaration of Authorship

I, Geoffrey Hodgins, declare that the following dissertation, except where otherwise

stated, is entirely my own work; that it has not previously been submitted as an exercise

for a degree, either in Trinity College Dublin, or in any other University; and that the

library may lend or copy it or any part thereof on request.

Signed:

Date:

i

Summary

This dissertation aimed to discover indicators of quality, and to use this knowledge to

correctly classify the quality of questions and answers from Stack Overflow. The pro-

liferation of technical questions and answers on Q&A websites such as Stack Overflow

means there is more information available than ever. However, the ease of publishing

such information also tends to mean the quality varies significantly. The job of moderat-

ing Stack Overflow is left to the community, which is an extremely time-consuming job

for what are essentially volunteers. Stack Overflow performs some basic quality analysis

and automation, but this is an area where improvement would have many benefits to not

only Stack Overflow, but many other domains where the quality of text is important.

Posts from Stack Overflow are labelled with their respective quality levels, which are

inferred from other attributes in the data such as the score of a post. These labels allow

the extracted features to be used to predict the quality of new and unseen posts. These

features are extracted using several techniques such as readability indexes, basic counts,

character n-grams, and sentiment analysis. Readability indexes attempt to estimate

the complexity of a text. Basic counts find how many times something occurs in the

text, such as code tags or words. Character n-grams generate features by counting the

frequency of character sub-strings in the text, eg. “the” → [“t”, “h”, “e”, “th”, “he”,

“the”]. Sentiment analysis estimates how positive or negative the emotion is, and how

objective or subjective the text is. Machine Learning techniques are leveraged to discover

empirical evidence and anecdotal insight. Supervised machine learning algorithms train

on the extracted features of quality labelled questions and answers. Specifically, Random

Forests are used due to their white-box nature, which allows the internal workings to be

interpreted, analyzed, and visualized.

Promising quality classification performance and interesting insights are found. These

results indicate that many of the features found strongly correlate with the quality of

questions and answers, and are statistically significant in all cases tested, showing that

a noticeable difference or pattern is found. These results come in several forms. Tables

of performance metrics showing the recall, precision, and F1 score for each class for

question and answer quality classification are useful for comparing the performance of

the classifiers. The F1 scores for question and answer quality prediction were 0.45 and

0.42 respectively, which is a significant improvement over a baseline prediction rate of

0.25 for a 4 label classification. However, the performance for the two good quality

labels is far better than the performance for the two bad quality labels. This leads to

further analysis into why this might be and why the lack of deeper content validation is

a prime suspect for this inaccuracy. The behaviour of the classifiers is visualized in the

form of confusion matrices, and histograms showing how important individual features

ii

iii

are in correctly predicting the quality. The tables containing distribution statistics of

the features shows how they vary and correlate across the quality classes for questions

and answers.

Based on these results, a number of areas for further work are outlined that would greatly

benefit this research area. These suggestions include improving tools for technical text

data, and content analysis. An argument could be made that the content of a question or

answer is the most important influence on the perceived quality of a question or answer

by a person. However, this kind of functionality is by no means easily implemented

with the current open tools, and is more akin to the cutting edge analysis performed by

IBM’s Watson. To achieve truly accurate quality analysis in the future, major research

will need to focus on validation of the information contained in a question or answer.

However, regardless of how advanced these techniques become, quality will always remain

a subjective notion that varies from person to person. This means that achieving perfect

performance is not plausible or probable. In an ideal system, the accuracy of the quality

classifications will be comparable to that of a subject matter expert. The work performed

in this dissertation is a step along the way to this becoming a reality.

TRINITY COLLEGE DUBLIN

Abstract

Integrated Computer Science

Computer Science and Statistics

Masters of Computer Science

Classifying the Quality of Questions and Answers From Stack Overflow

by Geoffrey Hodgins

This dissertation aims to discover indicators of quality, and to use this knowledge to

correctly classify the quality of questions and answers from Stack Overflow. The pro-

liferation of technical questions and answers on Q&A websites such as Stack Overflow

means there is more information available than ever. However, the ease of publishing

such information also tends to mean the quality varies significantly. The job of mod-

erating Stack Overflow is left to the community. Stack Overflow performs some basic

quality analysis, but this is an area where improvement would have many benefits to not

only Stack Overflow, but many other domains where the quality of text is important.

Machine Learning techniques are leveraged to discover empirical evidence and anecdotal

insight. Specifically, Random Forests are used due to their white-box nature, and fea-

tures such as readability indexes and similarity measures were engineered from raw text

data. Promising quality classification performance is found, along with interesting in-

sights from analyzing the Random Forest classifier. Based on these results, a number of

areas for further work are outlined that would greatly benefit this research area. These

suggestions include improving tools for technical text data, and content analysis.

Acknowledgements

I would like to thank my supervisor, Dr. Carl Vogel, for his guidance throughout this

dissertation. He has helped shape its direction from when it was merely a rough idea in

my head, to the implementation that it is now. My parents, Victor and Olwen, deserve

a huge amount of credit for supporting me through the last five years of college, and the

entirety of my life. I would also like to thank Lillian Hayes, for her constant support

and stream of food and coffee.

v

Contents

Declaration of Authorship i

Summary ii

Abstract iv

Acknowledgements v

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 What Is the Purpose Of This Dissertation? 1

1.2 Why Classify Question and Answer Quality? 2

1.3 How Successful Was This Dissertation? . 3

1.4 Roadmap . 4

2 Related Works 5

2.1 Classifying Question Quality . 5

2.2 Insight into Successful Answers . 6

2.3 Quality Code, Quality Question . 7

2.4 Emojis and Hedging Affecting Perception of Quality 8

3 Methodology 9

3.1 Data . 9

3.1.1 Where to Find the Dataset? . 10

3.1.2 What is in the Dataset? . 10

3.1.3 Why Use this Dataset? . 12

3.1.4 Managing the Data . 13

3.1.5 Insights Into The Data . 16

3.2 Machine Learning . 19

3.2.1 Supervised Learning . 20

3.2.2 Data Representation . 22

vi

Contents vii

3.2.3 Feature Engineering and Extraction 26

3.2.4 Preprocessing . 32

3.2.5 Training and Testing Strategies . 33

3.2.6 Decision Trees . 34

3.2.7 Random Forests . 36

3.3 Methods of Evaluation . 37

3.3.1 Performance Measures . 37

3.3.2 Computational Complexity . 40

3.3.3 Statistical Significance in Machine Learning 41

4 Implementation 42

4.1 Data Management . 43

4.2 Machine Learning Pipeline . 46

5 Results 53

5.1 Predicting the Quality of Questions . 54

5.2 Predicting the Quality of Answers . 55

6 Evaluation 62

6.1 Predicting Quality . 63

6.2 Evaluation of Methodology . 66

6.3 Alternative Approaches . 69

6.4 Further Work . 71

7 Conclusion 73

Bibliography 75

List of Figures

3.1 7zip listing command showing more details about the archive 14

3.2 7zip extract command inflates the compressed archive 14

3.3 PostgreSQL query for score distribution 18

3.4 PostgreSQL query for correlation between viewcount and score 18

3.5 The supervised learning process. [NLTK, 2015] 21

3.6 Perceptron updating its linear boundary as training examples are added
Goodspeed [2015] . 22

3.7 Illustration of a Decision Tree - “Will they Buy The Product?” 35

3.8 Visualized Example of a Random Forest 37

3.9 Example of Binary Classification Confusion Matrix 39

3.10 Example of Multiclass Classification Confusion Matrix 39

4.1 SQL CREATE TABLE For Posts Table 44

4.2 SQL CREATE INDEXES For Posts Table 45

4.3 generate parsed xml function using ElementTree’s iterparse interface . . . 45

4.4 Python Script Used to Import “Posts.xml” into Postgres Database 45

4.5 PostgreSQL Query Used To Generate Question Quality Dataset 46

4.6 PostgreSQL Query Used To Generate Answer Quality Dataset - Includes
Parent Question . 47

4.7 “get long word count” function as an example of the efficient implemen-
tation of the StackOverflowTextAnalysis class 48

4.8 Constructing a CountVectorizer analyzer that generates preprocessed char-
acter N-Grams of length 3 and 4 characters 49

4.9 Dictionary representation of extracted engineered features 49

4.10 Stratified splitting of the data into 70% training data, and 30% testing data 50

4.11 Visualization of a Decision Tree from the Question Quality Random Forest 51

5.1 Normalized Confusion Matrix for Question Quality 55

5.2 Feature Importances for Question Quality 57

5.3 Normalized Confusion Matrix for Answer Quality 58

5.4 Feature Importances for Answer Quality 61

viii

List of Tables

1.1 Count of New Questions and Answers Per Month in 2014 and 2015 3

3.1 Schema of the Posts dataset . 11

3.2 Rules for Partitioning Question and Answer Quality 16

3.3 Distribution of Question and Answer Quality 16

3.4 Engineered Features Used for Predicting Quality 27

3.5 Expected Age for Each US Grade Level 29

3.6 Flesch Reading Ease Mapping . 30

3.7 LIX Norms for Swedish for interpreting text difficulty 32

5.1 Classification Report for Question Quality 54

5.2 Question features Statistics - Median, Mean and Standard Deviation . . . 56

5.3 Classification Report for Answer Quality 57

5.4 Answer Features Statistics - Median, Mean and Standard Deviation . . . 60

ix

Chapter 1

Introduction

1.1 What Is the Purpose Of This Dissertation?

This dissertation aims to discover indicators of quality, and to use this knowledge to cor-

rectly classify the quality of questions and answers from Stack Overflow. Stack Overflow

is a popular questions and answers (Q&A) website (a Stack Exchange Q&A community)

where users exchange knowledge about various topics related to programming. As of

May 2016, there are more than 5.5 million users. These users have asked 12 million

questions, supplied 19 million associated answers, and left 48 million comments on these

posts. About 73% of the questions on Stack Overflow are answered. [StackExchange,

2015a] [StackExchange, 2015b] Whilst this figure is quite impressive, why are 27% of the

questions on Stack Overflow not answered? [Asaduzzaman et al., 2013] What features of

questions attract users to answer them? Why do some questions receive more answers

and why are some answers of a higher quality? There are many questions here that are

of interest that may be answered by delving into the data. The core of this dissertation

is to explore quality, and how it varies in questions and answers and in the process,

discovering insight into the subjective measures of quality in an individual community

such as Stack Overflow. The central question of this dissertation is “Can the quality of

a question or answer be predicted at the time of creation using just its text?”.

1

Chapter 1 Introduction 2

1.2 Why Classify Question and Answer Quality?

The quality of the content provided by Q&A websites varies, and ranges from high-

quality to low-quality. This low-quality content can also be abusive or dangerously

ignorant/misleading in addition to merely being a poor question or answer. The job of

moderating Stack Exchange Q&A’s is left to the community and its moderators, and

is an extremely time-consuming job for what are essentially volunteers. Stack Overflow

performs some basic quality analysis and automation, but this is an area where improve-

ment would have many benefits to not only Stack Overflow, but many other domains

where the quality of text is important. This dissertation delves into the problem of an-

alyzing and classifying the quality of questions and answers. Through this, it is possible

to discover what affects a question’s or answer’s quality, and how the process of quality

monitoring can be at least partially automated. Additionally, the techniques should

generalize across multiple domains including other Stack Exchange Q&A communities.

Stack Overflow is rapidly growing both in the size of its community and the amount of

posts it maintains. As the community continues to grow, the rate of new posts will only

increase. The Stack Exchange Data Explorer, a query was run outputting how many new

posts (questions and answers) have been created per month in 2014 and 2015. [Hodgins,

2015a] The output of this query is shown in table 1.1 on page 3, illustrating how difficult

it is to monitor the quality of each and every post.

There are many applications for the techniques that are part of this research. Q&A

forums could use these techniques to analyze the quality of the questions and answers

as they are posted in order to identify and stop low quality (possibly abusive or spam)

posts from being created. These techniques could be used to analyze the quality of

technical documentation for software, if built into a continuous integration environment

for software engineering, they could reject commits unless the documentation meets a

certain quality standard. Journals could check that submitted papers meet the style

and quality standards before being manually read by an editor. A search engine could

even use these techniques as an additional quality metric for indexing online content.

Page 2 of 78

Chapter 1 Introduction 3

Year Month QuestionCount AnswerCount

2014 1 259862 366526

2014 2 260462 352897

2014 3 289103 375051

2014 4 274175 348076

2014 5 258159 313942

2014 6 238820 285422

2014 7 255455 312292

2014 8 236526 288915

2014 9 242139 291649

2014 10 252152 299617

2014 11 244719 288977

2014 12 228868 277938

2015 1 241315 287328

2015 2 242689 287014

2015 3 274107 317014

2015 4 266915 331192

2015 5 261572 321582

2015 6 265432 319613

2015 7 274544 330984

2015 8 255120 307888

2015 9 252880 301136

2015 10 267426 312286

2015 11 256791 294466

2015 12 246929 293671

Table 1.1: Count of New Questions and Answers Per Month in 2014 and 2015

1.3 How Successful Was This Dissertation?

This dissertation results in promising quality classification performance, indicating that

many of the features found strongly correlate with the quality of questions and answers.

The results are statistically significant in all cases tested, showing that a noticeable dif-

ference or pattern is found. These results are evaluated, generating several interesting

insights. The benefits and limitations of the techniques used are discussed, and alter-

native approaches are suggested to circumvent them. The content of this dissertation

is a significant foundation for others to learn from and build upon. Regardless of how

Page 3 of 78

Chapter 1 Introduction 4

advanced these techniques become, quality will always remain a subjective notion that

varies from person to person. Ideally, the accuracy of the quality classifications would be

comparable to that of a subject matter expert. While the accuracy of quality classifica-

tion is far from perfect, the empirical and anecdotal evidence presented in this document

shows that it is a significant step in the right direction. Therefore, this dissertation can

be deemed a success, as it has performed and evaluated its core goals.

1.4 Roadmap

Section 1, Introduction starting page 1, just explained what the purpose of this disser-

tation is and why this is something that is useful to do.

Section 2, Related Works starting page 5, lays a foundation of work and knowledge in

this domain that this dissertation builds on.

Section 3, Methodology starting page 9, gives an overview of the data that is the heart

of this dissertation and discusses the important techniques used throughout this disser-

tation in order to accomplish the stated goals.

Section 4, Implementation starting page 42, discusses the implementation details of the

methods and techniques listed above. This section includes concrete details about how

the analysis was carried out and the system was built.

Section 5, Results starting page 53, shows the results generated by the implementation

and analyzes the significance and outcomes of them.

Section 6, Evaluation starting page 62, evaluates and discusses how successful the dis-

sertation was, both in terms of empirical results and in general.

Section 7, Conclusion starting page 73, summarizes the purpose, arguments, and results

of the dissertation.

Page 4 of 78

Chapter 2

Related Works

This section discusses related works to this dissertation. Some share the goal of analyzing

a question and/or an answer’s quality, whereas others do not share the same goal but

find insight into an important element of our task. These are just some of the related

works important to this dissertation, there are many insightful papers in the last several

years in this space showing that it has become an area of much interest in both academia

and industry. This dissertation hopes to build on the discoveries of the these papers, so

that useful insights can be provided to others asking similar questions in the future.

2.1 Classifying Question Quality

Ponzanelli et al. [2014a,b] analyze Stack Overflow questions in order to predict quality

at the time of creation. The first paper concentrates on understanding what metrics

influence the quality of a question. Decision trees are utilized to do this as their output

can be easily interpreted, allowing the authors to gain intuition about question quality.

However, the Decision tree is succeeded by the use of a genetic algorithm for the purpose

of classification. The second paper focuses on detecting low quality posts, and also uses

a genetic algorithm. The full data dump as of September 2013 containing 5,648,975

questions was filtered and categorized into 4 separate classes; Very good, Good, Bad,

and Very bad. Very Good/Good questions had to have an accepted answer, not be closed

or deleted, and have a positive ranked score. Bad questions had to have a negative score,

and Very bad questions were closed or deleted. Questions with the score of 0 are assumed

5

Chapter 2 Related Works 6

to have not attracted enough interest from the community to evaluate and classify their

quality with the information available. After the filtering, 1,262,959 questions were

left in the data set across the 4 categories. Three feature metric sets are used; Stack

Overflow, readability, and popularity metrics. Stack Overflow metrics include simple

metrics such as URL/Email count and body length. Readability metrics include more

complex structural and readability metrics such as word and sentences count, percentage

of code, and Automated Reading Index (ARI). Popularity metrics include metrics such

as reputation of the author and number of badges, including specifically question and

answer badges. A linear quality function was learned for each metric set using genetic

algorithms implemented with the framework JGAP. Popularity and readability metrics

are found to be the most effective. However, readability is found to be effective alone

and therefore seems to be highly correlated with quality. This dissertation utilises a

subset of these predictor metrics with a focus on textual metrics at time of posting as a

solid foundation for analyzing the quality of not just questions, but also answers.

2.2 Insight into Successful Answers

Presentation quality, time and social factors are all commonly studied predictors of

question and answer success on Q&A platforms. Calefato et al. [2015] suggests that

affective factors also strongly influences an answers success. Affective factors are emo-

tional factors which can negatively or positively affect learning. The paper investigates

how Stack Overflow users can increase the chance of getting their answer accepted, fo-

cusing on actionable factors that can be acted upon by users when writing an answer

and making comments. The actionable factors in the model include presentation qual-

ity, affect, time and social. Each of these factors has predictor variables used to filter

low quality posts. Presentation quality is important in order to comply with the com-

munity standards for answers. Presentation predictors include length, uppercase ratio,

code snippets, and URL count. Affect predictors include sentiment metrics (positive

vs negative polarity) and emotion intensity. Care must be taken with sentiment in the

technical domain however, as many sentences that a technical user would not judge to be

negative are predicted as such. Time predictors include arrival order, and time taken to

answer since the question was posted. Expert users tend to be the fastest contributors,

as there is a high probability that the first answer will be accepted. Additionally, the

Page 6 of 78

Chapter 2 Related Works 7

longer the wait time for an answer the less likely it is for an answer to be eventually

accepted. Reputation predictors include the author’s reputation, and their number of

badges. The results of this study recommends potential contributors to be prompt in

replying, to comply with the Stack Overflow presentation quality standard by includ-

ing code snippets and URLs for providing contextual information, to avoid a negative

attitude towards information seekers, and to follow-up in the comments with a positive

discussion. Recommended further work from this study is to investigate to what extent

emotions and personality traits shown in questions influence the answering behavior and

to evolve sentiment detection for domain-specific applications such as a technical Q&A

platform like Stack Overflow. In our work, the important predictors identified above

can be used to aid in predicting both question and answer quality.

2.3 Quality Code, Quality Question

Duijn et al. [2015] analyze code fragments from Stack Overflow questions in order to

improve the classification of high and low quality questions. Stack Overflow guidelines

state the best questions contain a bit of code but not entire software programs, ideally

just enough code for others to reproduce the problem. Analyzing the code fragments in

isolation achieves similar performance to classification based on a wider set of metrics.

They combine the code-to-text ratio, and code only metrics such as code readability.

By using roughly 30 metrics questions were classified as either ’good’ or ’bad’ with an

accuracy of approximately 80%. The metrics used for classification are a combination

of readability metrics, metrics based on the constructs found during qualitative analysis

(such as the use of “==” in Java, a common mistake when comparing objects), and the

number of errors reported by a formatting style checker. Three classification algorithms

were tested; decision tree, logistic regression, and random forest. In order to determine

the most important features they used the feature importance of the random forests

algorithm, metrics correlations, and created a decision tree analysis. Important code

metrics related to question quality are those most important for general code readability,

such as length of the lines, whitespace occurrence or number of formatting errors. The

Pearson correlations also show that certain constructs should be avoided, such as print

line statements that have a relatively high negative correlation with score, indicating that

these subtract value from the code fragment. This paper shows incentive to analyse code

Page 7 of 78

Chapter 2 Related Works 8

contained in Stack Overflow questions and answers, in addition to all the other prediction

metrics mentioned previously.

2.4 Emojis and Hedging Affecting Perception of Quality

Vogel and Sanchez [2012, 2013, 2015] delve into how hedging can influence the success

of posts and how to discover and annotate hedges, including on Q&A platforms. They

provide evidence “that forum posts using hedges are more likely to get high ratings

of their usefulness”. Hedges are “linguistic expressions whose contribution to sentence

meaning is a modulation of the accuracy of the content they embed”. This means

that authors can manipulate readers interpretation of their question or answer by using

these linguistic hedges, particularly singular first person epistemic phrases. Examples

of singular first person epistemic phrases are; I think, I dont know, I know. Examples

of words conveying non-phrasal hedging are; appear, seem, sometimes, suggest, unclear,

think. Significantly, hedges are not just linguistic terms but can also be in the form

of “emoticons” or “emojis”. An example of an emoji is a “smiley”, which is a stylized

representation of a smiling humanoid face and looks like “:)”. Emojis have become an

increasingly common and important part of communicating in online communities, and

are powerful indicators of sentiment. “Posts with no hedges are the ones awarded least

kudos.” This means it is important to take this into account when predicting the quality

of a post, as it is essentially the perceived quality of the post being predicted, which

hedges affect.

Page 8 of 78

Chapter 3

Methodology

The Methodology section discusses the Stack Overflow data and important techniques

used throughout this dissertation. The primary step necessary for this dissertation is to

aggregate training and testing data to analyze and learn from. The data must also be

in a format and storage medium that allows easy and flexible interaction and analysis.

Methodology directly related to the Stack Overflow data such as where to find the data,

what is in it, why to use it, managing it, and insights into the data is covered in the

Data section. Next, machine learning techniques will be utilised to extract features, to

generate a model using supervised machine learning techniques, and to use this model

to perform classification. The methods used to do this are covered in in the Machine

Learning section starting on page 19. The results of these methods will then be analyzed

to gain insight into how indicative they are of quality of questions and answers from

Stack Overflow, and how accurate the predictions of the model are on new and unseen

data. Methodology for performing this analysis is covered in the Methods of Evaluation

section starting on page 37.

3.1 Data

The Stack Overflow dataset of posts is central to this dissertation. Therefore this section

is solely dedicated to the following:

• Where to Find the Dataset?

• What is in the Dataset?

9

Chapter 3 Methodology 10

• Why Use this Dataset?

• Managing the Data

• Insights Into The Data

3.1.1 Where to Find the Dataset?

The Stack Overflow dataset can be found on the Internet Archive’s website. [Stack-

Exchange, 2015c] The Internet Archive is a non-profit that was founded to build an

Internet library. Its purposes include offering permanent access for researchers and oth-

ers to historical collections that exist in digital format. Importantly for this dissertation,

they maintain a dump of all user-contributed content on the Stack Exchange network.

Each site is formatted as a separate archive consisting of XML files zipped via 7-zip

using bzip2 compression. Each site archive includes Posts, Users, Votes, Comments,

PostHistory and PostLinks. This archive appears to currently update the dataset every

2 months or so. There are specific attribution requirements associated with this data,

in that the author of the content and Stack Overflow must be digitally and visually

accredited for it. This dissertation focuses on the Stack Overflow Posts dataset, and was

downloaded on 03/01/2016. Since then, an update has been made to this dataset. This

update occurred on the 01/03/2016 and updates the dataset with content from January

and February 2016.

3.1.2 What is in the Dataset?

The StackOverflow dataset contains vast amounts of real world data from the Stack-

Overflow StackExchange Q&A domain. As mentioned previously in the introduction, as

of May 2016 there are more than 5.5 million users who have asked 13 million questions,

supplied 19 million answers, and left 48 million comments on these posts. [StackEx-

change, 2015a] The first and last posts contained within it are from and 31/07/2008

03/01/2016 respectively.

The dataset’s schema is documented in the Stack Exchange Data Explorer and on a

“meta.stackexchange.com” post. Meta Stack Exchange is where users of StackExchange

Q&A domains can discuss bugs, features, and support issues that affect the software pow-

ering all 155 Stack Exchange communities. [StackExchange, 2015d] Table 3.1 Schema of

Page 10 of 78

Chapter 3 Methodology 11

Key Description

Id Unique identifier for each question or answer

PostTypeId 1 = Question, 2 = Answer

AcceptedAnswerId Id of the accepted answer for a question

ParentId Id of the question an answer is associated with

CreationDate Datetime of the post creation

Score Number of Upvotes−Downvotes for a post

ViewCount Times the post was viewed

Body Text of the question or answer (HTML)

OwnerUserId User Id of the post

LastEditorUserId User Id of the last editor of the post

LastEditorDisplayName User display name of the last editor of the post

LastEditDate Datetime of the most recent edit to the post

LastActivityDate Datetime of the last action on the post

Title Title of a question (null if answer)

Tags Associated tags of the question, eg. 〈Java〉, 〈Android〉,
〈MachineLearning〉, etc

AnswerCount Number of answers for the question (null if no answers)

CommentCount Number of comments on post

FavoriteCount Number of times the post has been favorited

ClosedDate Datetime when the post was closed (null if the post is open)

CommunityOwnedDate Datetime when the post was community wikied

Table 3.1: Schema of the Posts dataset

the Posts dataset found on page 11 shows the schema of the Posts dataset, and briefly

describes each attribute.

Unfortunately, deleted posts are not included in the Posts.xml file from the archive.

Certain information from deleted posts can be obtained from the “PostsWithDeleted”

table, which can be accessed at “http://data.stackexchange.com/stackoverflow/” [Stack-

Exchange, 2015b]. However, when a post is deleted only a subset of its attributes are

stored. In particular, the “body” attribute is not present and therefore information

about deleted questions is not particularly useful to this dissertation. When a post is

deleted, the Id, PostTypeId, ParentId, CreationDate and DeletionDate are the only at-

tributes present. Even though the important information is missing from these posts

to be part of the quality analysis themselves, some of the information provided could

Page 11 of 78

Chapter 3 Methodology 12

lead to interesting analysis. It would be interesting to understand whether a question

or answer is more likely to be deleted (Number of deleted questions or answers divided

by Number of questions or answers), and whether it can be predicted if a post will be

deleted or not. Deleted answers have a ParentId attribute which points to the question

they answered. The number of deleted answers for a question may help to infer the

quality of a question.

3.1.3 Why Use this Dataset?

Within the Stack Overflow dataset is a treasure trove of technical data, with massive

amounts of user generated questions and answers to learn from. The quality of the

dataset is high (important attributes are not missing) due to the tireless work of mod-

erators and administrators, although real world data will always tend to have noise.

Analyzing real world data is far more interesting, and telling of how effective techniques

and implementations really are. Carefully controlled data, common in research settings,

will often highlight the best of the technique whereas real data will make the technique

deal with things like noise and missing information. The technical text domain also adds

a lot of complexity to natural language processing, as many of the existing tools were

developed with social media platforms such as Twitter in mind. The Stack Overflow

data set is increasingly used in machine learning research, which allows comparisons to

be made about the applicability of techniques to the data. This data set shows the

applicability of the methods to a specific real-world technical-domain data problem, and

also to a well studied data set that allows other researchers to compare metrics and

develop intuitions about the techniques.

There are many hidden questions and answers in the data. As mentioned previously in

the introduction, about 73% of the questions on Stack Overflow are answered. Imme-

diately, the question “why are 27% of the questions on Stack Overflow not answered?”

appears. Other questions like “what features of questions attract users to answer them?”,

and “why do some questions receive more answers” This dissertation attempts to un-

cover and answer interesting questions such as this by delving into the data. However,

the core of this dissertation is to explore the quality of posts, and how it varies in ques-

tions and answers from Stack Overflow. The rest of this section will explain how this is

enabled by the Stack Overflow dataset.

Page 12 of 78

Chapter 3 Methodology 13

Attributes such as “Score” and “ClosedDate” allows the inference of quality, even though

there are limitations and issues with this (discussed in 3.1.5 Insights Into The Data).

Therefore by setting varying ranges of conditions on these attributes, the continuous

scale can be transformed into seperate quantised sets that represent different levels of

quality. Ponzanelli et al. [2014a] states that a large amount of variance in quality is seen

within a set when questions are binned to two quality levels of “bad” and “good”, so

much in fact that four bins are used instead. Therefore, the approach in this dissertation

is to partition both questions and answers into four quantized categorical quality levels.

These categorical levels of quality are “very good”, “good”, “bad”, and “very bad” for

the purposes of this dissertation. This means that there are millions of posts from which

to discover what affects a question’s or answer’s quality in a technical domain. If more

work is done in this area, an accurate process for automated quality analysis and similar

real-world tasks could be engineered. Additionally, the techniques should generalize

across multiple domains including other Stack Exchange Q&A communities.

3.1.4 Managing the Data

Since Stack Overflow is by far the most popular domain of the Stack Exchange net-

work, its associated files are separate rather than combined into a single archive to

limit size limitations as much as possible. The file with Stack Overflow’s posts data

is“stackoverflow.com-Posts.7z”. Figure 3.1 on page 14 shows the 7zip listing command.

The compression/encoding information, size of the archive, and the size that the files

will be once inflated is shown by this command. Figure 3.2 on page 14 shows the 7zip

extract command inflating the archive, extracting the uncompressed “Posts.xml” file.

The extraction took roughly 23 minutes to complete on a laptop (4th Generation i7,

SSD), and the 8GB compressed archive inflated to a 40GB xml file called “Posts.xml”.

This quantity of data can be difficult to handle with traditional tools on a laptop.

XML is quite verbose and is not an optimal format for analytics and machine learning.

This leads to the process of extracting a subset of the data and transforming it into

a preferable format, sometimes known as “Extract Transform Load” (ETL). Initially,

this process was performed using various Python scripts that would accomplish specific

filtering or transforming tasks. This method worked ok until several scripts later there

was a mess to manage and more advanced operations were taking too much engineering

Page 13 of 78

Chapter 3 Methodology 14

\$ 7z l stackoverflow.com-Posts.7z

Listing archive: stackoverflow.com-Posts.7z

--

Path = stackoverflow.com-Posts.7z

Type = 7z

Method = BZip2

Solid = -

Blocks = 1

Physical Size = 8512952500

Headers Size = 122

Date Time Attr Size Compressed Name

------------------- ----- ------------ ------------ ------------------------

2016-01-04 16:27:37A 42327180776 8512952378 Posts.xml

------------------- ----- ------------ ------------ ------------------------

42327180776 8512952378 1 files, 0 folders

Figure 3.1: 7zip listing command showing more details about the archive

\$ 7z e stackoverflow.com-Posts.7z

Processing archive: stackoverflow.com-Posts.7z

Extracting Posts.xml

Everything is Ok

Size: 42327180776

Compressed: 8512952500

Figure 3.2: 7zip extract command inflates the compressed archive

time. Remembering the running order became tedious, and performing operations that

were simple in databases, such as joins, were needed. Performing these operations in a

dynamic (slower) language such as Python, and without indexes lead to some painful

performance. This prompted the switch to using a database. Utilizing a database table

with several indexes massively improved the process of managing the data.

Postgres [PostgreSQL, 2016] was identified as an ideal database due to its proved per-

formance for large amounts of data and easy to use interfaces. While creating, pop-

ulating and managing tables in a database is additional overhead, it provides flexi-

bility and power for managing the data. Queries can be created to dynamically pull

subsets of the data with various conditions in a flexible manner. Alternatively, man-

aging the data with flat files and Python is initially low overhead (quick and dirty)

Page 14 of 78

Chapter 3 Methodology 15

but in the long run proves difficult to manage and unwieldy as the preprocessing tasks

grow. Indexes are a common way to enhance database performance. An index al-

lows the database server to find and retrieve specific rows much faster than it could

do without an index, but indexes also add overhead to the database system as a

whole, so they should be used sensibly. Without indexes, a simple query such as

“SELECT title FROM posts_table WHERE id = 4;” would result in a full table scan

row by row in order to get a single title from a post with id 4, which is extremely in-

efficient for tables as they grow and get larger. However, by creating an index like so,

“CREATE INDEX posts_table_id_index ON posts_table (id);”, Postgres can look

up the index for the id rather than scanning the entire table. The reason there is over-

head for indexes, is that the index needs to be updated as the table information changes,

and there is also a storage overhead to the index. PostgreSQL provides several index

types, each having their own strengths and weaknesses, including B-tree, Hash, GiST,

SP-GiST, GIN and BRIN. B-tree and Hash indexes are two of the most commonly used

indexes. B-trees can handle equality and range queries (“<”, “>”, “=”, and combi-

nations of) on data that can be sorted into some ordering. Constructs equivalent to

combinations of these operators, such as BETWEEN and IN, can also be implemented

with a B-tree index search. Also, an IS NULL or IS NOT NULL condition on an index

column can be used with a B-tree index. Hash indexes can only handle simple equality

comparisons, but are extremely efficient at doing so. Therefore, it is important to under-

stand what kind of queries columns will be used in, in order to choose the correct kind

of index. If a column is only used for equality conditions, than hash will be the fastest.

However, if a column is used in more complex queries containing range conditions and

the like, a more flexible index will be needed such as a B-tree index.

A Python script was developed in order to correctly parse the Posts.xml file and insert

it into Postgres, creating the necessary indexes. This script is covered in more detail

in the Implementation section starting on page 42. Once the data is loaded into the

database and the indexes are built, queries will be flexible and efficient. SQL queries

can be created in order to extract the quality subsets of data (“very good”, “good”,

“bad”, and “very bad” for both questions and answers) into CSV files, making them

easy and efficient to read in Python using common tools. These datasets can be used

as aggregated training and testing data for a supervised learning algorithm to discover

what affects a question’s or answer’s quality. Several attributes are used to filter the

Page 15 of 78

Chapter 3 Methodology 16

Quality Question Rules Answer Rules

Very Bad score < 0 Closed score <= −2
Bad score < 0 score = −1
Good 0 < score <= 6 Accepted Answer 0 < score <= 6
Very Good 7 <= score Accepted Answer 7 <= score

Table 3.2: Rules for Partitioning Question and Answer Quality

Quality Question Count Answer Count

Very Bad 28611 4958
Bad 126436 25655
Good 404099 974005
Very Good 12534 21256

Table 3.3: Distribution of Question and Answer Quality

posts into these four quality datasets. Table 3.2 Rules for Partitioning Question and

Answer Quality on page 16 shows the unique rules for both questions and answers

in order to achieve this partitioning. Posts are filtered by a number of attributes to

generate these sub-datasets; “CreationDate” to extract posts from a particular timeline,

“PostTypeId” to extract either questions or answers, “LastEditDate” to filter if a post

has been edited, “Score” to find posts in the designated range of Upvotes−Downvotes

for the respective quality partition, “AcceptedAnswerId” to check if a question has an

accepted answer, and “ClosedDate” to check if a post is open or closed. Table 3.3

Distribution of Question and Answer Quality on page 16 shows the distribution of the

quality classes when paritioned using the rules defined in table 3.2. Edited posts are

removed as the quality changes overtime, leading to an underlying movement in the

quality that is measured while the score is an aggregation across all of the iterations of

the post. If edited posts were included, this could lead to noisy and misleading data

where the score and real quality of the post are “out of sync”.

3.1.5 Insights Into The Data

When it comes to Machine Learning, there is very much a “garbage in, garbage out”

mentality, in that it learns from the data and assumes it is perfectly true. If the training

data is noisy and misrepresentative of what the model will be predicting, then the train-

ing data was garbage and the end result model’s predictions will be garbage. Therefore

it is important to understand the data involved in the machine learning well to ensure

that it is suitable for the task. In this dissertation, the dataset contains real posts from

Page 16 of 78

Chapter 3 Methodology 17

Stack Overflow. As long as correct sampling is performed, the training data will be per-

fectly representative of the data to be classified. However, the dataset does not actually

contain a quality label for which to partition on. This can be worked around by inferring

a quality label using several of the contained attributes as was mentioned in the previous

section. This is not without its problems, as these rules are fairly arbitrary heuristics

developed as the result of experience using Stack Overflow. Rules such as good and very

good questions having accepted answers and positive scores are mostly common sense

in their reasoning, and that the differentiate between a bad and very bad question is

not its score but that is has been closed. Some of these rules/ranges are born out of the

desire to obtain a sufficient number of samples in each category, not scientific reasoning.

What this potentially leads to is the creation of noisy subsets of data, where the actual

quality that an experienced user or moderator of Stack Overflow would assign to a post

does not match the inferred quality of the post. Therefore, training on this will lead to

incorrectly learned rules for predicting quality, leading to incorrectly classifying unseen

questions and answers.

Since the “Score” attribute of posts is significantly used in order to derive a quality

measure, it is important to understand it. Score is the normalized version of upvotes−

downvotes from the “Votes” table. It can be negative or positive, corresponding to

whether the post has more upvotes or downvotes. The query listed in figure 3.3 shows

that the most negative score for a post is -125, and the most positive score is 11955. The

mean is 0.93 and the distribution of scores is a positively skewed normal distribution.

This means that the most common scores are in the center around the score of 0, but

that as the normal distribution pans out the positive direction has more scores than the

negative direction. The popularity of topics, authors, and other related factors will affect

the score of a post. The more attention a post has, the more viewers there are to either

upvote or downvote it. This means that the more popular a post is, the more likely it

is to make it into one of the two extreme quality categories. The following PostgreSQL

query listed in figure 3.4 calculates the correlation of a post’s viewcount and its score for

the years 2014 and 2015. The correlation returned was 0.50795, which is a significant

amount of correlation in the positive direction. This means that as viewcount increases,

there is a strong correlation in the increase of score. There is a dual-action effect here

though, in that high-quality posts should receive more attention, but that posts with

attention should receive more quality indicating votes.

Page 17 of 78

Chapter 3 Methodology 18

SELECT score, COUNT(score)

FROM posts

WHERE

creationdate >= timestamp ’2014-01-01 00:00:00’ and

creationdate < timestamp ’2016-01-01 00:00:00’

GROUP BY score

ORDER BY score

;

Figure 3.3: PostgreSQL query for score distribution

SELECT corr(viewcount, score)

FROM posts

WHERE

creationdate >= timestamp ’2014-01-01 00:00:00’ and

creationdate < timestamp ’2016-01-01 00:00:00’

;

Figure 3.4: PostgreSQL query for correlation between viewcount and score

The subjective nature of quality is another particularly important influence on the anal-

ysis of this data due to the fact that putting a value on quality is open to interpretation

and will vary from person to person, even between extremely experienced users or mod-

erators (perhaps more so!). It is important to consider what quality is in different

domains and communities, and therefore it is important to consider what quality is in

this context. The following are some hypotheses of what might affect quality, and will

be investigated further later in this dissertation. Readability is important as questions

must be clear and understood in order to receive clear and correct answers. Correspond-

ingly, answers must be understandable in order for the original poster and others to gain

information from it. As Stack Overflow is a programming community Q&A, there will

often be questions about code, therefore good questions and answers may involve code

snippets in order to replicate or give examples. However, they should not contain whole

programs as they will be difficult to follow and take considerably more time to debug.

It can also annoy some in the community as if a question essentially asks for help, and

then copy-pastes all their code in it is seen as being lazy and wanting someone else to

do their work for them. The sentiment of a post could also be an important indication

of quality, as insulting or rude behaviour will be seen negatively. The length of a post

can indicate the amount of content and effort that has gone into a post, and therefore

its quality.

Page 18 of 78

Chapter 3 Methodology 19

If the datetime attributes of the dataset were timezoned, then the time of posting may

indicate some interesting things about a post. However, no timezone information is

included so attributes such as CreationDate do not indicate a local time of posting for

the author. The time which a post is created could indicate the quality of a post. For

example, a question asked at 4am local time may be strewn with errors and confusing to

a reader in comparison to a question asked at 2pm. This would also serve to give some

location information away about the poster, which is not ideal for privacy concerns or

other political factors.

In corpus linguistics, a hapax legomenon (hapax/es), is a word that occurs only once

within a context. This context could be in an entire language, in the works of an

author, or in a single text. The term is sometimes incorrectly used to describe a word

that occurs in just one of an author’s works, even though it occurs more than once in

that work. Hapaxes are quite common, as predicted by Zipf’s law, which states that the

frequency of any word in a corpus is inversely proportional to its rank in the frequency

table. For large corpora, about 40% to 60% of the words are expected to be hapax

legomena. In the fields of computational linguistics and natural language processing

(NLP), especially corpus linguistics and machine learning, it is common to disregard

hapaxes (and sometimes other infrequent words), as they are likely to have little value

for computational techniques. This disregard has the added benefit of significantly

reducing the memory use of an application, since by Zipf’s law many words are hapaxes.

However, the number of hapaxes is likely to be even higher in technical data like the

Stack Overflow posts due to the explosion in number of nouns describing computer

science related things. Topics will often have topic specific terminology, and as there are

many separate topics present in the data, this will lead to many hapaxes.

3.2 Machine Learning

The research in this dissertation is based in the field of Machine Learning and Natural

Language Processing. This section covers the related methodology utilized to achieve the

goals of this dissertation; to learn what features are indicative of quality, and to predict

the quality of questions and answers. The first example of a machine learning program

was created in 1952 by Arthur Samuel. It played the board game checkers, learning

the best moves to make in various scenarios from past games. Then in 1957 Frank

Page 19 of 78

Chapter 3 Methodology 20

Rosenblatt invented the Perceptron, an example of which is shown in figure 3.6 on page

22, and in 1967 pattern recognition was implemented with a type of algorithm called the

nearest neighbour. These events marked the beginning and significant early development

of Artificial Intelligence and Machine Learning. The 1990’s then brought the advent of

a statistical data-driven approach that has led to the Big Data revolution. Machine

Learning comes in various forms; Supervised, Semi-Supervised and Unsupervised. The

core difference between these is whether the input data has labels to train from. For

example, unsupervised learning algorithms do not take labelled input and train from it,

they often are given unlabelled data to cluster into logical clusters or groups. The next

section discusses supervised learning as it is utilized in this dissertation.

3.2.1 Supervised Learning

Supervised Learning methods take labelled data as input. For example, input might be

a dataset containing information about people such as their age, gender, and a boolean

value stating whether they bought a product. This boolean value can be used as what is

known as a target label, and enables an algorithm to learn to predict the value of it for

new and unlabelled information by finding patterns in the other attributes. For example,

the supervised learning algorithm may learn that males under the age of 35 but over 21

are very likely to buy the product. Thus, when new and unlabelled data that states a

person is 28 and male is to be predicted, the algorithm will predict that they will buy

the predict. Sometimes the raw attributes will result in lacklustre predictions. Feature

engineering (also known as feature extraction) can be used to create new and useful

features to learn from, often greatly increasing prediction accuracy. Feature engineering

is discussed further in 3.2.3 Feature Engineering and Extraction starting on page 26,

however a simple example will be given here following the above context. If instead of the

age of a person, the date of birth in the format of “DD/MM/YYYY” as an unstructured

string was given, this would make this attribute quite difficult for an algorithm to learn

from. Each combination of day, month, and year would be seen as a separate random

string rather than a combined ordering. However, useful features can easily be engineered

from this data. The most obvious feature is that the age can be calculated from this

date of birth attribute and used in the training process. Once all the desired features are

present, the data must be transformed into a machine understandable representation, as

the learning algorithm won’t understand the significance of things like words. More on

Page 20 of 78

Chapter 3 Methodology 21

data representation is covered in 3.2.2 Data Representation on page 22. Once the data

is in an appropriate representation, a supervised learning algorithm will be able to take

the labelled data as input and learn how to predict a chosen target variable. Once the

training has occurred and generated a model, often referred to as fitting the model, it

can be used to make predictions on unlabelled data. This process is shown in figure 3.5

on page 21.

Figure 3.5: The supervised learning process. [NLTK, 2015]

Classification is a more specific type of prediction, which is essentially the task of pre-

dicting one or more classes/categories rather than a continuous number, which is known

as regression. This dissertation focuses on the classification of text documents into four

categories of quality, also known as labels or classes. Classification of text documents is

also sometimes coined as document classification. The documents to be classified may

be text documents, images, music or many others, but when the type of document clas-

sification is not explicitly stated then text classification is generally implied. Supervised

document classification is when examples of the correct classification for documents are

given to train on. Multiclass classification is when multiple classes can be assigned in

the same prediction, but are not used in this dissertation. An example of when multi-

class classification is useful is in topic extraction. Documents can have multiple topics

within them, so limiting the prediction to labelling it with a single topic class would

immediately be incorrect. Predicting a single class is often referred to as hard classifica-

tion. When classification can predict levels of membership to multiple classes it is often

referred to as soft classification. Figure 3.6 on page 22 shows a perceptron updating its

Page 21 of 78

Chapter 3 Methodology 22

Figure 3.6: Perceptron updating its linear boundary as training examples are added
Goodspeed [2015]

linear boundary as training examples are added as part of a classification of dogs or cats.

It learns how to weight the attributes “size” and “domestication” in order to classify

whether a new unlabelled animal is a dog or cat.

3.2.2 Data Representation

In order for algorithms to learn from data and make prediction on data, it must be in a

machine understandable representation. Feature vectors are a common way to structure

input to a machine learning algorithm. Feature vectors are an n-dimensional vector

of numerical features that represent an object. Machines do not understand human

concepts by default. Machines will not understand the significance of words or what

Page 22 of 78

Chapter 3 Methodology 23

they mean in the same way a native speaker would. Machines are not be able to look at

an image and identify objects from it as people do. Therefore this information must be

encoded for a machine in a representation that it understands, and that representation is

in numbers, binary to be precise. Obviously, we do not look at things like paintings as an

array of numbers, but that is exactly how it must be (and is) represented for a computer,

with each pixel of an image represented by a number. Feature names (which are most

likely initially encoded as strings) are mapped to indices. Take the example from the

previous section, the feature names (dog, cat) will be represented as the numbers (1, 2).

For inspection purposes when performing tasks such as visualization, these indices can

be mapped back to their string representation. For the feature values themselves, there

are two main types of data that need to be represented; numerical and categorical. This

section also covers how text data is in turn represented in the form of numerical and

categorical features.

Numerical data is already represented in a format amenable to machine learning, except

for performing the mapping of its feature names. Although, similarly to other types of

data or perhaps even more so, performing some preprocessing or normalization on the

raw numerical data will lead to far better results.

There are two types of categorical variables; nominal and ordinal. A nominal categorical

variable has no intrinsic ordering to the categories, and tends to be the default type

when talking about categorical data in general. For example, hair color is a categorical

variable having a number of categories (blonde, brown, brunette, red, etc), and there

is no inherent ordering. An ordinal categorical variable has a clear ordering of the

categories. An example of this is a mapping of temperatures to labels such as very hot,

hot, cold, and very cold. Even though these can can order these from lowest to highest,

the spacing between the values may not be the same across the levels of the variables.

The quality categories (very good, good, bad, very bad) used in this dissertation are

also an example of of a categorical variable, or more specifically as an ordinal categor-

ical variable, but for the purposes of this dissertation this distinction should not make

too much of a difference. Categorical information does not have an obvious numerical

representation, as categories are a list of unique labels that each represent something.

This something could be a range of numbers, a colour, the size label on clothing, a

Page 23 of 78

Chapter 3 Methodology 24

species of animal, a type of flower, etc. For instance, three labels in the category of

animals could be [dog, cat, horse].

A common method for turning categorical information into useful features for machine

learning is called One-Hot encoding. One-Hot encoding creates a new boolean feature

(value of the feature is either 1 or 0) for each distinct category label, if a specific category

label is present than its feature value is 1, 0 if not. Taking the previous example, this

means that 3 new features would be created with either the value of 1 or 0 to represent

the labels dog, cat and horse. There are several other types of categorical encoding used,

although somewhat less common. [McGinnis, 2015] Ordinal coding assigns an integer to

each category, creating a category-integer mapping similar to the feature name indices

mapping mentioned above. Ordinal coding implies an order to the variable that may

or may not actually exist. Binary encodes the categories as ordinal, but then converts

the integers into binary code and performs one-hot encoding on the digits. This encodes

the data in fewer dimensions than one-hot but with some distortion of distance. Other

methods such as Sum and Helmert compare means of the dependent variable for the

different categories of levels, but they are not used in this dissertation.

In order to use machine learning algorithms on text data, it must first be transformed

into a machine understandable representation. The bag-of-words model is a popular sim-

plifying representation that represents text as the multi-set of its words, disregarding

grammar and word order but maintaining multiplicity. It is essentially a term-frequency

vector with its dimensions equal to the number of unique words in the data, each en-

try the number of occurrences of a particular word in a document. It embodies the

essentialism and reductionist view of text data in that it reduces a text document down

to the individual objects that represent it, and does so in an isolated manner without

any concept of relationship between objects. The bag-of-words model is commonly used

in methods of document classification, where the occurrence of each word is used as a

feature for training a classifier. This occurrence can be represented in multiple ways,

in that it could either exist or not exist, or could be a form of the number of times

it occurred. The bag-of-words approach is not the only representation, there are other

representations that try to model similarity-based information and other kinds of rela-

tionships from the data. Text documents are commonly represented by the bag-of-words

model, however not all of the words are discriminative or characteristic which essentially

Page 24 of 78

Chapter 3 Methodology 25

becomes noise. Documents can be represented using a richer feature set of term frequen-

cies, named entities and term pairs. Term Frequencies is the complete vocabulary set

of the document corpus after the stop-words removal and words stemming operations.

Named entities includes names of people, organizations, locations, etc. Term pairs takes

only only those term associations which have statistical significance for the document

corpus to maintain a compact feature set. Word co-occurrence matrices can also be used

to describe how words occur together. This captures the relationships between words,

which is powerful when trying to identify relationships between documents that contain

these words. Many techniques can be used to extract and infer interesting information

from a piece of text. For example a useful weighted bag-of-words feature representation

can be generated by transforming a bag-of-words using term frequency inverse document

frequency (TF-IDF). TF-IDF weights the values based on the product of each word oc-

currence in each text (term frequency) and the inverse of the word occurrences across

texts (inverse document frequency). TF-IDF finds the words that have a more significant

effect on what category the document is in, and also removes the issue of uneven docu-

ment length and frequency of categories in the training sets. The term frequency (TF)

component of TF-IDF is a measure of the frequency of a term in a document. [Luhn,

1957] The simplest term frequency tf(t, d) is the raw frequency of a term in a document,

which is the number of times that term t occurs in document d. If we denote the raw

frequency of t by f(t, d), then the simple term frequency scheme is tf(t, d) = f(t, d),

where tf is term frequency. Other measures of frequency include include boolean, log

scaled, and augmented frequency. Boolean is when tf(t, d) = 1 if t occurs in d and

tf(t, d) = 0 otherwise. Log scaled tf(t, d) = 1 + log(f(t, d)), or zero if f(t, d) = 0. Aug-

mented frequency is when the raw frequency is divided by the maximum raw frequency

in the document, such that tf(t, d) = 0.5 + 0.5 · ft,d
max{ft′,d:t′∈d}

. The inverse document fre-

quency (IDF) component is a measure of whether the term is common or rare across all

documents. [Sparck Jones, 1988] It is the logarithmically scaled inverse fraction of the

documents that contain the word, obtained by dividing the total number of documents

by the number of documents containing the term, and then taking the logarithm of that

quotient. The equation for this is idf(t,D) = log N
1+|{d∈D:t∈d}| where N is the total num-

ber of documents in the corpus N = |D|, |{d ∈ D : t ∈ d}| is the number of documents

where the term t appears. Combining these two components gives term frequency in-

verse document frequency (TF-IDF) is calculated as tfidf(t, d,D) = tf(t, d) · idf(t,D). A

high value of TF-IDF is reached by a high term frequency and a low document frequency

Page 25 of 78

Chapter 3 Methodology 26

of the term in the whole collection of documents. The TF-IDF function filters out very

common words due to the IDF’s log function. As a term appears in more documents

the ratio inside the log will approach 1, causing the IDF to approach 0. TF-IDF is a dot

product between TF and IDF, resulting in the same. Character N-Grams is like the bag-

of-words representation, but instead can be viewed as a bag-of-characters representation.

[Cavnar et al., 1994] Instead of splitting on word boundaries and using them (or n-grams

of them) as features, it uses n-character splits as features. The primary advantage of

this approach is that it is ideally suited for text coming from noisy sources, such as user

generated content with many non-natural language aspects to it such as technical data

with code and markup, as is in Stack Overflow posts. This dissertation makes heavy

use of Character N-Grams as they prove to be very effective, and are discussed further

in the next section, Feature Engineering and Extraction.

3.2.3 Feature Engineering and Extraction

An important part of the process of supervised learning is feature engineering. Feature

engineering uses domain knowledge of the data to generate new features that are not part

of the raw data. Feature engineering often improves the accuracy of the classification,

however it is both difficult and expensive in terms of man-hours, or compute cycles

if automated in some way. There is also a danger of over-engineering and over-fitting

a model through excessive feature engineering. A simple example of an engineered

feature would be calculating the count of words per sentence from a piece of raw text.

It is important to use features that accurately predict the quality of a question or an

answer to make accurate predictions. Table 3.4 on page 27 shows the features that were

extracted in order to classify quality in this dissertation and a description of each. The

rest of this section discusses how some of these features are extracted focusing on text

similarity, sentiment analysis, and readability indexes.

The text similarity measures between two pieces of text, whether it be title-body or

body-body similarity, use Term Frequency Inverse Document Frequency (TF-IDF) to

create the term-frequency vectors, and cosine similarity to calculate a similarity between

the two vectors. TF-IDF has been discussed already, when explaining how to represent

textual data. Cosine similarity is a measure of similarity between two vectors of an

inner product space that measures the cosine of the angle between them.. The cosine

Page 26 of 78

Chapter 3 Methodology 27

Feature Description

Body Length Count of characters of the post (HTML)

Spelling Error Count Count of spelling errors in body

Email Count Count of e-mail addresses in post

Url Count Count of URLs in the post

Uppercase Percentage Percentage of uppercase characters

Lowercase Percentage Percentage of lowercase characters

Spaces Count Count of spaces

ARI 4.71 ∗ characterswords + 0.5 ∗ words
sentences − 21.43

Flesch Reading Ease 206.835(1.015 ∗ words
sentences)(84.6 ∗ syllableswords)

Flesch-Kincaid Grade (0.39 ∗ words
sentences) + (11.8 ∗ syllableswords)− 15.59

Gunning Fog Index 0.4(words
sentences + PercentageComplexWords)

SMOG Index
√

(complexwords ∗ 30
sentences) + 3

Coleman Liau Index (0.0588 ∗ characterswords)− (0.296 ∗ words
sentences)− 15.8

LIX words
periods + longwords∗100

words

RIX longwords
sentences

Sentiment Polarity [-1.0, 1.0], [Negative, Positive]

Subjectivity [0.0, 1.0], [Objective, Subjective]

Lines of Code Count of lines between tags 〈code〉
Code Percentage Percentage of a posts lines that are code

Number of Code Tags Count of 〈code〉 tags

Number of P Tags Count of 〈p〉 tags

Character N-Grams “the” → [“t”, “h”, “e”, “th”, “he”, “the”]

Title Length Count of characters in the title of a question

Title-Body Similarity Similarity of a question’s title and body

Is Title Capitalized True if the title begins with a capital letter

Q&A Body Similarity Similarity of an answer’s and its associated question’s bodies

Table 3.4: Engineered Features Used for Predicting Quality

Page 27 of 78

Chapter 3 Methodology 28

similarity of two documents ranges from 0 to 1, since the term frequencies (TF-IDF

weights) cannot be negative.

Readability measures are ways of predicting the complexity of a piece of text. Research

has shown that the two main factors that affect the difficulty of reading and compre-

hending text are lexical and syntactical difficulty. [Klare, 2000] Lexical difficulty refers

to how difficult or rare the words are, as words that are simpler or short are often more

easily understood. Lexical difficulty is often predicted using word length in characters

or syllable count, but sometimes also using word lists mapping words to their difficulty.

The former methods have an obvious weakness, in that not all long words or polysyl-

labic words are difficult. Syntactical difficulty refers to how difficult the sentences are,

as longer, more complicates sentences will be less comprehensible than short and simple

sentences. Syntactical difficulty can be predicted using measures such as the average

number of words (or hard/easy words) per sentence. These formulas are often vali-

dated by comparing the consistency of their predictions with each other, or comparing

them with an outside measure of readability such as an experts opinion (an experienced

teacher) on a texts readability level.

Many readability indexes approximate a U.S. grade level to understand the text. A

breakdown of grade levels in the U.S with expected ages is shown in table 3.5 on page

29. Flesch Reading Ease is one of the few which does not do this, but even its output

can be converted into an approximate grade using a simple table as shown in table

3.6 on page 30. There are many factors that affect how the output of a readability

formula is interpreted. The most important of these is who the target audience is.

Specifically, what age and education level, what is the text domain, and what is the

purpose of the reader. For example, a piece of text designed to help a child learn to

read should be very simple. Conversely, a Masters student who wishes to further their

knowledge in Machine Learning may want a text filled with lots of useful information

and domain specific language, which naturally will score a high complexity prediction

from readability indexes. In the former example, a piece of text that is predicted as

simple may not be appropriate for the Masters student in this particular situation, but

a simpler blog post on the same topic might be at another time or for a more casual

learner. Therefore, whether the text is complex or simple is not necessarily always bad

or good, but depends on the context. The context of Stack Overflow will vary from

question to question, but complex questions and answers can be expected due to it be

Page 28 of 78

Chapter 3 Methodology 29

Age (Years) Education level

5-6 Kindergarten

6-7 First Grade

7-8 Second Grade

8-9 Third Grade

9-10 Fourth Grade

10-11 Fifth Grade

11-12 Sixth Grade

12-13 Seventh Grade

13-14 Eighth Grade

14-15 Ninth Grade

15-16 Tenth Grade

16-17 Eleventh grade

17-18 Twelfth grade

18-22 College

Table 3.5: Expected Age for Each US Grade Level

a Q&A website for programmers on domain specific topics. Next, some examples of

readability indexes used in this dissertation will be discussed.

The Automated Readability Index (ARI) was published by E. A. Smith and R. Senter

in November 1967 [Senter and Smith, 1967]. The research was done in association with

Aerospace Medical Research Laboratories of the US Airforce. The ARI was devised to

enable measures of readability to be calculated as the text was typed. Impulses from

a typewriter would activate counters which record the number of letters, words and

sentences contained in the passage. From this, the average word length and average

sentence length are calculated. These variables can be used to compute a readability

index that reflects the difficulty of the text. The formula for the Automated Readability

Index is 4.71 ∗ characterswords + 0.5 ∗ words
sentences − 21.43, where characters

words calculates the average

number of characters per word and words
sentences calculates the average number of words per

sentence. The advantage of relying on the number of characters rather than syllables is

that they are far easier to count for computers. Like many other readability indexes,

ARI outputs an estimate of the grade level that the text would be appropriate for.

Flesch Reading Ease is considered as one of the oldest and most accurate readability

formulas. Rudolph Flesch developed this formula in 1948. The Flesch Reading Ease

Page 29 of 78

Chapter 3 Methodology 30

Flesch Reading Ease Education level Difficulty

90-100 5th Grade Very Easy

80-89 6th Grade Easy

70-79 7th Grade Fairly Easy

60-69 8th and 9th Grade Standard

50-59 10th to 12th Grade Fairly Difficult

30-49 College Difficult

0-29 College Graduate Very Confusing

Table 3.6: Flesch Reading Ease Mapping

Formula is a simple approach to assess the grade-level of the reader. This formula is

best used on school text, but is used by many US Government Agencies, including the

US Department of Defense. [Kincaid et al., 1975] Flesch Reading Ease can be calculated

using the formula 206.835(1.015∗ words
sentences)(84.6∗ syllableswords). words

sentences calculates the average

sentence length, and syllables
words calculates the average number of syllables per word. Flesch

Reading Ease outputs a number between 0 and 100, the higher the number the easier

the text is to read. The table 3.6 on page 30 contains a mapping of output to difficulty

labels.

Flesch-Kincaid Grade improves upon the Flesch Reading Ease Readability Formula.

Rudolph Flesch and John P. Kincaid are co-authors. In 1976, the US Navy modified

the Reading Ease formula to produce a grade-level score by applying the Flesch Grade-

Scale formula, or the Kincaid formula. The formula for the Flesch-Kincaid Grade is

(0.39 ∗ words
sentences) + (11.8 ∗ syllableswords)− 15.59, where words

sentences calculates the average length

of sentences and syllables
words calculates the average number of syllables per word. Like other

grade level based readability indexes, a score of x means that the text is suitable reading

for a student in year x of grade-school in the American school system. Theoretically,

the lowest grade level score could be -3.4, but this is highly unlikely in practice as there

are no real passages where every sentence consists of a one-syllable word.

The Gunning Fog Index was developed by Robert Gunning, who was a graduate from

Ohio State University. Gunning published the formula in a book in 1952 called “The

Technique of Clear Writing”. [Gunning, 1952] Gunning observed that most high school

graduates were unable to read. His opinion was that the problem primarily stemmed

Page 30 of 78

Chapter 3 Methodology 31

from a writing problem rather than a reading problem, that newspapers and busi-

ness documents were full of “fog” and unnecessary complexity. The core principle

of the Gunning Fox Index is that sentences should be short and simple, rather than

long and complicated sentences. The formula for Gunning Fox Index is 0.4(words
sentences +

PercentageComplexWords), where words
sentences calculates the average words per sentence,

and the percentage of complex words is the percentage of words that are made up of

three syllables or more but are not proper nouns, not combinations of easy words or

hyphenated words, or two-syllable verbs made into three with -es and -ed endings. How-

ever, this can be seen as one major flaw with the Gunning Fox Index as it assumes that

all multi-syllabic words are difficult, which is not necessarily true.

The SMOG Index was developed by G Harry McLaughlin in 1969 in an article, “SMOG

Grading A New Readability Formula in the Journal of Reading”. [Mc Laughlin, 1969]

The formula for the SMOG Index is
√

(complexwords ∗ 30
sentences) + 3, where complex

words is the count of words with three or more syllables.

The ColemanLiau Index was developed by linguists Meri Coleman and T. L. Liau. [Cole-

man and Liau, 1975] The formula was to help the U.S. Office of Education calibrate the

readability of all textbooks for the public school system. Similarly to the Automated

Readability Index, but unlike most of the other grade-level predictors, the ColemanLiau

relies on characters instead of syllables per word. Instead of using syllable/word and

sentence length indices, Meri Coleman and T. L. Liau understood that counting charac-

ters is far simpler for computers than counting syllables or sentence length. According to

Coleman, “There is no need to estimate syllables since word length in letters is a better

predictor of readability than word length in syllables.”. The formula for the Coleman

Liau Index is (0.0588 ∗ characterswords)− (0.296 ∗ words
sentences)− 15.8, where characters

words calculates

the average number of characters per word and words
sentences calculates the average number

of words per sentence.

The “Lasbarhetsindex” (LIX) is a Swedish readability measure developed by Swedish

scholar Carl-Hugo Bjrnsson to calculate the difficulty of text in Swedish comprehensive

school. However, it has often proven to work across many foreign texts leading it to be

used on languages such as English. The formula for LIX is LIX words
periods + longwords∗100

words ,

where words
periods calculates the average number of words per period, colon or capital first

letter, and longwords∗100
words calculates the percentage of long words out of all the words,

Page 31 of 78

Chapter 3 Methodology 32

LIX Text Difficulty

20 Very Easy

30 Easy

40 Medium

50 Difficult

60 Very Difficult

Table 3.7: LIX Norms for Swedish for interpreting text difficulty

where long words are considered words of more than 6 letters. The equal weighting of

these variables contributes to its computational efficiency, and the calculation should be

consistent as long words are calculated by character length, not syllables. It is potentially

this reason that it bypasses the problem of counting syllables, that it works well across

multiple languages. Bjrnsson created a table of norms for Swedish to interpret text

difficulty from Lix scores, this table 3.7 can be found on page 32. RIX is another

readability index, and merely simplifies the LIX formula to longwords
sentences , which calculates

the average number of long words per sentence, where long words are words of more

than 6 letters as per LIX.

3.2.4 Preprocessing

Preprocessing is an important step in the data mining process. The phrase “garbage in,

garbage out” holds true in many machine learning processes. Data often contains issues

such as out-of-range values, impossible data combinations, missing values, and too much

variance. Depending on the algorithm used, these issues could cause wildly inaccurate

and therefore misleading results. If there is much irrelevant and redundant information

present or noisy and unreliable data, then knowledge discovery during the training phase

is more difficult. Data preparation and filtering steps can take considerable amount of

processing time. Preprocessing includes cleaning, normalization, and transformation, of

the raw data.

Feature scaling is a method used to standardize the range of independent variables or

features of data and is also known as data normalization. One method of feature scaling

is to scale the features to be within a minimum and maximum value, this is called min-

max scaling. The equation for min-max scaling is Xnorm = X−Xmin
Xmax−Xmin

. Another similar

Page 32 of 78

Chapter 3 Methodology 33

method is to scale features so that the absolute values are less than a maximum value,

which is known as max absolute scaling.

In computational linguistics, lemmatisation is the algorithmic process of determining

the lemma for a given word. A lemma is the base form of a word, for example words

such as “written”, “writing”, and “writes” can all be lemmatized to “write”. Since the

process may involve complex tasks such as understanding context and determining the

part of speech of a word in a sentence it can be a hard task to implement a lemmatiser.

A simpler and similar technique is stemming, the difference is that a stemmer operates

on a single word without knowledge of the context, and therefore cannot discriminate

between words which have different meanings depending on part of speech. However,

stemmers are typically easier to implement and run faster, and the reduced accuracy

may not matter for some applications. For example, a stemmer might have simple rules

to remove word endings such as “ing”, “ed”, or “s”.

3.2.5 Training and Testing Strategies

Once the data has been preprocessed and is in the form of feature vectors, it can be used

to train and test supervised machine learning models. Training and testing data must

be kept separate, as the test data is supposed to be completely new and unseen when

the prediction accuracy of the learning model is tested. If there is data leakage of the

test data into the learning process, the performance metrics will be artificially boosted.

There are many different training and testing strategies that can be used to accomplish

this.

Splitting the data into a train-test split in a specific ratio, such as 70%/30%, is the

simplest of these strategies. This separates the data so that the training phase learns

from the learning data alone, and not the testing data. This means that the test data is

completely unseen, and therefore provides a realistic test of how the model will perform

on real-world new and unseen data.

Cross-validation is a more robust model validation technique for assessing how the results

of a statistical analysis will generalize to an independent data set. K-fold cross-validation

randomly partitions the data into k equal sized folds. Of the k folds, a single fold is

retained as the validation data for testing the model, and the remaining k − 1 folds

Page 33 of 78

Chapter 3 Methodology 34

are used as training data. The cross-validation process is then repeated k times across

all of the different unique permutations of the folds. The k results from the folds can

then be averaged to produce a single estimation. The advantage of this method over

the traditional train-test split method is that all observations are used for both training

and validation, and each observation is used for validation exactly once. The process

of rounds reduces variability and therefore obtains a more reliable performance metric.

Stratified k-fold cross-validation is a slight modification, in that the folds are selected

so that, in the case of classification, each fold contains roughly the same proportion of

each class label. This means the samples from a balanced dataset will also be balanced,

which is ideal for prediction problems.

3.2.6 Decision Trees

Decision Trees (sometimes known as Classification Trees when used for classification)

are attractive because amongst other data mining methods, decision trees have various

advantages. They are simple to understand as they can quite easily visualized and

graphed, to the extent that they are considered a white-box model meaning that the

results are easily explained due to the inherent boolean logic. They require little data

preprocessing such as normalisation and are efficient and robust in use. In fact, tree

based learning algorithms are very unique in the trait of being scale-invariant. Pruning

is a technique that can be used to fix inherent problems such as overfitting, not many

algorithms have an easy post-processing fix for this. Figure 3.7 illustrates a decision

tree that decides whether someone will buy a product based on age, education status,

and credit rating. They have been studied extensively in the past several decades, and

are used in practical applications. [Quinlan, 1986] [Ho, 1995] Decision Trees are trees in

which non-leaf nodes are labeled with the input features, the arcs coming from a node

labeled with a feature are labeled with each of the possible values of the feature, and

each leaf of the tree is labeled with a class or a probability distribution over the classes.

Learning occurs by splitting the source set into subsets based on an attribute value.

This process is repeated on each derived subset in a recursive manner called recursive

partitioning. The recursion is completed when the subset at a node has all the same

value of the target variable, or when splitting no longer adds value to the predictions.

This process of top-down induction of decision trees (TD-IDT) is an example of a greedy

Page 34 of 78

Chapter 3 Methodology 35

Figure 3.7: Illustration of a Decision Tree - “Will they Buy The Product?”

algorithm, and it is by far the most common strategy for learning decision trees from

data.

Node impurity is a common method for selecting splits in a Classification Tree. It is

calculated by looking at the total decrease in node impurities from splitting the variables

averaged over all the trees, and uses Gini impurity. However, this method is biased

towards variables with more categories. Gini impurity is a measure of how often a

randomly chosen element from the set would be incorrectly labeled if it was randomly

labeled according to the distribution of labels in the subset. It reaches its minimum

(zero) when all cases in the node fall into a single target category. To compute Gini

impurity for a set of m items, suppose i ∈ {1, 2, ...,m}, and let fi be the fraction of

items labeled with value i in the set. Gini impurity can be computed by summing the

probability fi of each item being chosen times the probability 1 − fi of a mistake in

categorizing that item, IG(f) =
∑m

i=1 fi(1− fi).

As a result of using this method of split selection, decision trees have the ability to

estimate how important features are in the classification process. The relative rank

(depth) and frequency of a feature in a tree can be used to estimate feature importance

with respect to the predictability of the target variable, which in this dissertation is

Page 35 of 78

Chapter 3 Methodology 36

quality. Features at the top of the tree split a larger fraction of the input samples than

features further down the tree, and therefore can be seen as more important to the

prediction than the lower splits. Every time a split of a node is made on variable m,

the Gini impurity criterion for the two descendant nodes is less than the parent node.

Adding up the Gini decreases for each individual variable over all trees in the forest gives

a fast variable importance that is often very consistent with the permutation importance

measure.

3.2.7 Random Forests

The general method of Random Forests was first proposed by Ho [1995]. Decision trees

are attractive classifiers for several reasons, in particular their high execution speed. But

trees derived with traditional methods often cannot be grown to arbitrary complexity

for possible loss of generalization accuracy on unseen data. The limitation on complexity

usually means suboptimal accuracy on training data. Essentially, the method is to build

multiple trees in randomly selected subspaces of the feature space. Trees in, different

subspaces generalize their classification in complementary ways, and their combined

classification can be monotonically improved. Therefore, a Random Forest classifier

uses a number of decision trees in order to improve the classification rate.

Random forests are a combination of tree predictors such that each tree depends on the

values of a random vector sampled independently and with the same distribution for

all trees in the forest. The generalization error for forests converges as such to a limit

as the number of trees in the forest becomes large. The generalization error of a forest

of tree classifiers depends on the strength of the individual trees in the forest and the

correlation between them. Using a random selection of features to split each node yields

favorable error rates that are robust with respect to noise. Internal estimates monitor

error, strength, and correlation and these are used to show the response to increasing

the number of features used in the splitting. Internal estimates are also used to measure

variable importance. If Gini node impurity is used across all of the trees in the Random

Forest, the feature importance estimate that can be calculated from this will become

more reliable as variance is reduced, even more so as the number of trees is increased.

These ideas are also applicable to regression. [Breiman, 2001] A visualized example of

a Random Forest is shown in figure 3.8 on page 37.

Page 36 of 78

Chapter 3 Methodology 37

Figure 3.8: Visualized Example of a Random Forest

3.3 Methods of Evaluation

This section covers methods that be used to evaluate the implementations in order to

compare how they perform with each other and other implementations. Computational

complexity is discussed as an important validation to ensure that an implementation is

tractable. Then performance measures for machine learning algorithms are discussed,

these are important to discover the optimal techniques to solve the problem of predicting

question and answer quality.

3.3.1 Performance Measures

It is important to define how the performance of the algorithms used will be measured

so that empirical results can be recorded and compared. There are many metrics to

choose from, each with their own advantages and disadvantages. Additionally, some are

more appropriate for different types of machine learning. This dissertation focuses on

the classification branch of machine learning, and therefore metrics for classification will

be focused on.

Many classification metrics are functions of four base metrics; True Positive, False Pos-

itive, True Negative, and False Negative. These metrics can be explained using an

Page 37 of 78

Chapter 3 Methodology 38

example of a binary classification with classes True and False. True positives are when

True is predicted and True is the actual class. False positives are when True is predicted

but False is the actual class. True negatives are when False is predicted and False is the

actual class. False negatives are when False is predicted but True is the actual class.

Recall, precision and F1 score are commonly used metrics that build upon these base

metrics. Recall is the fraction of the documents that are relevant to the query that are

successfully retrieved. The formula for recall is Relevant ∩ Retrieved
Relevant , or TP

TP+FN . However,

merely by returning every document a recall of 100% can be achieved. Therefore, it

is useful to also calculate the number of non-relevant documents returnd. Precision

is the fraction of retrieved documents that are relevant to the query. The formula

for precision is Relevant ∩ Retrieved
Retrieved or TP

TP+FP . F1 score combines recall and precision

as the square of the geometric mean divided by the arithmetic mean. The formula

for F1 score is 2 ∗ Precision∗Recall
Precision+Recall or 2 ∗ TP

2TP+FP+FN . When recall and precision are

close, it is approximately an average of two, therefore roughly an equal combination of

them. F1 score is a special case of the general Fβ measure Fβ measure Fβ = (1 + β2) ·
Precision·Recall

β2·Precision+Recall . Two other commonly used F measures are the F2 measure, which

weights recall higher than precision, and the F0.5 measure, which puts more emphasis

on precision than recall. As suggested by this, recall and precision tend to be considered

as a trade off.

A confusion matrix is a table layout that visualises the performance of a classification

model by displaying the actual and predicted points in a nxn grid, where n is the number

of classes in the classification. The X-axis is the label that the model predicted, and

the Y-axis is the true label. Confusion matrices use either a count in or colour intensity

of each square to indicate the number of percentage of samples predicted in a grid.

The confusion matrix for a binary (n = 2) classification is shown in figure 3.9 on page

39. The confusion matrix for a multiclass classification is shown in figure 3.10 on page

39. [WSO2, 2016] Confusion matrices allows which points are correctly classified and

which points are incorrectly classified to be identified. The points in the grids with

matching actual and predicted classes are the correct predictions. The green grids in

the previously mentioned figures are the grids of correctly classified points. Ideally, all

other grids should have zero points.

Feature Importances of the random forest can be visualized using histograms. In the

Page 38 of 78

Chapter 3 Methodology 39

Figure 3.9: Example of Binary Classification Confusion Matrix

Figure 3.10: Example of Multiclass Classification Confusion Matrix

results chapter, feature importances diagrams have the name of each feature listed along

the Y-axis, the importance of feature is on the X-axis, and all of the feature importances

sum to 1. It provides an intuitive visualization of what the most important features are

when predicting quality of questions and answers.

Bradley [1997] discusses evaluating machine learning algorithms using ROC (Receiver

Operating Characteristic). ROC curve is commonly used for the evaluation of super-

vised machine learning algorithms. The Area Under the ROC Curve (AUC) is commonly

Page 39 of 78

Chapter 3 Methodology 40

used as a measure of classifier performance. AUC exhibits a number of desirable prop-

erties when compared to overall accuracy; increased sensitivity in Analysis of Variance

(ANOVA) tests, a standard error that decreases as both AUC and the number of test

samples increases, decision threshold independent invariant to a priori class probabili-

ties, and it gives an indication of the amount of work done by a classification scheme

giving low scores to both random and one class only classifiers. AUC actually represents

the probability that a randomly chosen positive example is correctly rated ranked with

greater suspicion than a randomly chosen negative example. The paper concludes with

the recommendation that AUC be used in preference to overall accuracy when single

number evaluation of machine learning algorithms is required.

3.3.2 Computational Complexity

Efficiency of these algorithms is critical due to the tendency to be performed in con-

junction with large amounts of data. Understanding the resource needs of the algorithm

when it comes to CPU and memory in particular is important, and also how long it takes

to run the algorithm. An algorithm could be the most accurate method there is to clus-

ter data, but if it is intractable to run it on anything bigger than a toy data set than it

will never be used. Garey and Johnson [1979] discusses the theory of NP-Completeness,

and a distinction is made between two particular causes of intractability. The first is

that the problem is so difficult that the solution is exponential, and the second is that

the solution is required to be so extensive that it cannot be described with an expression

having length bounded by a polynomial function of the input length. This second type

of intractability can be regarded as a signal that the problem is not defined realistically,

because we are asking for more information than we could ever hope to use. It is the

first kind of intractability here that is often faced when analysing text data, as this is

inherently difficult. For example, graph based methods are NP-Complete problems, and

are common in Machine Learning. Many classical machine learning algorithms, such

as Support Vector Machines (SVM) and Logistic Regression, assume simpler models to

make them tractable (ie. that they run in polynomial time, O(p(n)) for some polyno-

mial function p, where n is used to denote the input length). Random Forests were

chosen because they can map some interesting and complex relations, while remaining

computationally tractable.

Page 40 of 78

Chapter 3 Methodology 41

3.3.3 Statistical Significance in Machine Learning

Yeh [2000] discusses statistical significance testing for metrics like recall, precision and

balanced F-score. This process is a necessary part of empirical machine learning and

natural language processing. Unfortunately, many commonly used tests often under-

estimate the significance and so are less likely to detect differences that exist between

different techniques. This underestimation comes from an independence assumption

that is often violated. Thankfully, there are some useful tests that do not make this

assumption, including computationally-intensive randomization tests that are utilized

in this dissertation.

Ojala and Garriga [2010] proposed a test they call “test 1”. This tests whether the

classifier has found a significant class structure, or in other words a real connection

between the data and the class labels. Test 1 does this by permuting the target labels

of the data, training and testing on different folds many times randomly. This should

simulate a “coin toss” prediction for the target label, which can then be compared with

the engineered solution to calculate statistical significance.

Page 41 of 78

Chapter 4

Implementation

This section details how the above methodology can be implemented in order to accom-

plish the goals of this dissertation; predicting the quality of questions and answers, and

gaining insight into indicative features of quality. There are two main functional compo-

nents to the implementation of this dissertation; data management and machine learning.

The data management component involves obtaining, storing, processing, and interact-

ing with the data. Much of these tasks were discussed in the Methodology section, but

more detailed implementation aspects of these tasks are discussed here. This involves

using the Postgres database and how the data is parsed into it from the archived XML

file with the Python program “PostsXML2Postgres.py”. The more specific aspects of

the SQL queries used in this dissertation are also covered. The machine learning compo-

nent uses the quality datasets that are created using the data management component of

the dissertation, and outputs results of how successful the classification was and insights

such as which features were most important for doing so. There are three main programs

that are used in the Machine Learning component; “QuestionQualityAnalysis.py”, “An-

swerQualityAnalysis.py”, and “StackOverflowTextAnalysis.py”. Several other Python

programs were written in order to do complementary analysis, such as calculating the

feature distribution statistics across questions and answers, or calculating word counts

across posts in order to find hapaxes.

The source code for this dissertation can be found in the following Github repository:

• https://github.com/ghodgins/stackoverflow-quality-analysis [Hodgins, 2015b]

42

Chapter 4 Implementation 43

4.1 Data Management

The first task is obtaining the dataset itself, and was explained in the Methodology

section. The Stack Overflow dataset can be found on the Internet Archive’s website.

[StackExchange, 2015c] Once downloaded, the archive can be inflated to obtain the

“Posts.xml” file, which is a 40GB file containing millions of posts in XML format. This

is not particularly easy to work with, as it is a huge file in a less than ideal format. A

Python script was developed in order to correctly parse the Posts.xml file and insert it

into a database, also creating indexes to make queries efficient and flexible. PostgreSQL

was chosen as the database because it is a powerful and open source database that has

more than 15 years of active development, a proven architecture, and simple to use.

Postgres has earned a strong reputation for reliability, data integrity, and correctness in

both academia and industry. It is also highly scalable in the sheer quantity of data it can

manage, meaning it perfectly suits applications looking to leverage it for pure data man-

agement purposes. There are active PostgreSQL systems in production environments

that manage in excess of 4 terabytes of data. [PostgreSQL, 2016]

“PostsXML2Postgres.py” utilizes the ElementTree XML library and “psycopg2” to parse

and insert the data into the database table. However, before data can be inserted into a

table, it must first be created. The program creates the table and appropriate indexes

using the SQL listed in figure 4.1 on page 44, and figure 4.2 on page 45 respectively.

The ElementTree XML library was chosen for the XML parsing functionality because it

is a simple and efficient API for parsing and creating XML data. ElementTree will store

every parsed XML node in memory in order to build the document tree, but this will

not scale to parsing a 40GB file on a reasonably provisioned machine. The ElementTree

“iterparse” interface parses an XML section into an element tree incrementally, and

reports what is happening on each event. Therefore, the ElementTree “iterparse” class

was chosen, but previously parsed nodes were freed as it went which resulted in a memory

efficient “streaming style” parser. This implemented function is listed in figure 4.3

generate parsed xml function using ElementTree’s iterparse interface on page 45. This

was used to parse 40GB from the Posts.xml file and insert batches of posts of a 1000

posts at a time into the Postgres database. This was done to avoid storing lots of

posts in memory at once, and to prevent the database table from being overloaded with

inserts. “psycopg2”, a Python-PostgreSQL Database Adapter, was used to perform the

Page 43 of 78

Chapter 4 Implementation 44

DROP TABLE IF EXISTS Posts CASCADE;

CREATE TABLE Posts (

Id int PRIMARY KEY ,

PostTypeId int not NULL ,

AcceptedAnswerId int ,

ParentId int ,

CreationDate timestamp not NULL,

Score int ,

ViewCount int ,

Body text ,

OwnerUserId int ,

LastEditorUserId int ,

LastEditorDisplayName text ,

LastEditDate timestamp ,

LastActivityDate timestamp ,

Title text ,

Tags text ,

AnswerCount int ,

CommentCount int ,

FavoriteCount int ,

ClosedDate timestamp ,

CommunityOwnedDate timestamp

);

Figure 4.1: SQL CREATE TABLE For Posts Table

inserts. It is a wrapper for “libpq”, which is the official PostgreSQL client library. The

“mogrify” functionality correctly transforms and binds Python values for PostgreSQL

queries, making the process robust and seamless for a Python developer. Figure 4.4

on page 45 lists a run of the Python script used to import the “Posts.xml” file into the

“Posts” table in the Postgres “stackoverflow” database. This process took approximately

65 minutes in total to complete. Once the data has been loaded into the table, SQL

queries can be used to manage the data in an extremely powerful and flexible way.

Now that the data has been loaded into the table, the data can be analyzed in interesting

ways such as the queries described in 3.1.5 Insights Into The Data to calculate the

distribution of score and the correlation between the score and view count of a post.

More importantly, the quality subsets for questions and answers (very good, good, bad,

and very bad) can be extracted from the table using SQL queries. For both of the

following queries, “order by RANDOM()” is used to shuffle the posts, as they dataset

comes ordered by date. If not shuffled, this might lead to a sampling error, say if a

Python program took the first N posts from one of the outputted CSV files. Figure 4.5

Page 44 of 78

Chapter 4 Implementation 45

CREATE INDEX posts_post_type_id_index ON Posts (PostTypeId)

WITH (FILLFACTOR = 100);

CREATE INDEX posts_score_index ON Posts (Score)

WITH (FILLFACTOR = 100);

CREATE INDEX posts_creation_date_index ON Posts (CreationDate)

WITH (FILLFACTOR = 100);

CREATE INDEX posts_owner_user_id_index ON Posts (OwnerUserId)

WITH (FILLFACTOR = 100);

CREATE INDEX posts_answer_count_index ON Posts (AnswerCount)

WITH (FILLFACTOR = 100);

CREATE INDEX posts_comment_count_index ON Posts (CommentCount)

WITH (FILLFACTOR = 100);

CREATE INDEX posts_favorite_count_index ON Posts (FavoriteCount)

WITH (FILLFACTOR = 100);

CREATE INDEX posts_viewcount_index ON Posts (ViewCount)

WITH (FILLFACTOR = 100);

CREATE INDEX posts_accepted_answer_id_index ON Posts (AcceptedAnswerId)

WITH (FILLFACTOR = 100);

Figure 4.2: SQL CREATE INDEXES For Posts Table

def generate_parsed_xml(filepath):

xml reader iterable

fxml = iterparse(filepath, events=("start", "end"))

xml = iter(fxml) # turn it into an iterator

event, root = xml.__next__() # get the root element

for event, elem in xml:

if(event == "end" and elem.tag == "row"):

yield elem.attrib

clear the children nodes of the root to avoid memory consumption

root.clear()

Figure 4.3: generate parsed xml function using ElementTree’s iterparse interface

\$ python3.5 PostsXML2Postgres.py

Pre-processing...

Pre-processing took 0.024 seconds.

Processing data...

Table processing took 3271.920 seconds.

Post processing...

Post processing took 680.914 seconds.

Figure 4.4: Python Script Used to Import “Posts.xml” into Postgres Database

Page 45 of 78

Chapter 4 Implementation 46

COPY (

select id, parentid, creationdate, score, viewcount,

title, tags, answercount, commentcount,

favoritecount, closeddate, communityowneddate, body

from posts

where

creationdate >= timestamp ’2014-01-01 00:00:00’ and

creationdate < timestamp ’2016-01-01 00:00:00’ and

posttypeid = 1 and

lasteditdate is null and

closeddate is [not] null and

[acceptedanswerid is not null and]

{SCORE_RANGE}

order by RANDOM()

) TO ’/tmp/questions-{QUALITY}.csv’ WITH CSV HEADER;

Figure 4.5: PostgreSQL Query Used To Generate Question Quality Dataset

on page 46 lists the PostgreSQL query used to generate the question quality datasets.

This query returns all of the questions from the years 2014 and 2015 that are unedited,

and then varies depending on the variable “SCORE RANGE”, whether the condition

for “closeddate” is set to filter for null or not null, and whether “acceptedanswerid” is

included to be not null. The pattern of these variables follows the ruleset for question

quality laid out in table 3.2 on page 16 in the 3 section. Figure 4.6 on page 47 lists the

PostgreSQL query used to generate the answer quality datasets. This dataset contains

not only data about each answer, but each answer’s parent question too. Again, answers

are filtered on whether they are from the years 2014 and 2015, unedited, and within

the “SCORE RANGE” that is set according to the aforementioned table 3.2 on page

16. However, the question that the answers are associated must also match all these

conditions apart from the “SCORE RANGE”. Once these queries are run, there will be 4

datasets each for questions and answers corresponding to the four quality classes. These

datasets can be used as training and testing data from the machine learning component

of this dissertation.

4.2 Machine Learning Pipeline

The Machine Learning component of this dissertation handles the preprocessing, fea-

ture extraction, learning, prediction, and visualization functionality of this dissertation.

The term “pipeline” is often used in this context because these functions can often be

Page 46 of 78

Chapter 4 Implementation 47

COPY (

select

a.id as id,

a.body as body,

q.id as parentid,

q.title as parenttitle,

q.body as parentbody

from (

select id, parentid, body

from posts

where creationdate >= timestamp ’2014-01-01 00:00:00’ and

creationdate < timestamp ’2016-01-01 00:00:00’ and

posttypeid = 2 and

lasteditdate is null and

{SCORE_RANGE}

) a

join (

select id, title, body

from posts

where creationdate >= timestamp ’2014-01-01 00:00:00’ and

creationdate < timestamp ’2016-01-01 00:00:00’ and

posttypeid = 1 and

lasteditdate is null

) q

on (a.parentid = q.id)

order by RANDOM()

) TO ’/tmp/answers-parents-{QUALITY}.csv’ WITH CSV HEADER;

Figure 4.6: PostgreSQL Query Used To Generate Answer Quality Dataset - Includes
Parent Question

viewed as one atomic black box component, where data is input into the pipeline and

output after an arbitrary number and kind of processing stages have occurred along the

way. There are many technologies available that provide Natural Language Processing

(NLP), Machine Learning, and visualization functionality that can be leveraged. Python

is a very popular language for these purposes, with a burgeoning communing developing

libraries for these purposes such as Numpy, Scipy, Matplotlib, TextBlob, BeautifulSoup,

NLTK (Natural Language Toolkit), and Scikit-Learn. As mentioned in the introduction

to this section, there are three main programs that are used in this component; “Ques-

tionQualityAnalysis.py”, “AnswerQualityAnalysis.py”, and “StackOverflowTextAnaly-

sis.py”. StackOverflowTextAnalysis encapsulates the feature extraction functionality

that is used to analyze Stack Overflow questions and answers. This class is used in the

other two programs that analyze questions and answers respectively, in order to reduce

Page 47 of 78

Chapter 4 Implementation 48

def get_long_word_count(self):

compute value if not previously done

if self.long_word_count is None:

self.long_word_count = 0

for word in self.get_words():

if len(word) >= 7:

self.long_word_count += 1

value previously computed, return it

return self.long_word_count

Figure 4.7: “get long word count” function as an example of the efficient implemen-
tation of the StackOverflowTextAnalysis class

code duplication. The class implements efficient and reliable methods for extracting the

engineered features such as readability indexes, and character N-Grams. For each post

that it analyzes, the necessary calculations will only be performed once, such that if

multiple methods need to know how many words in the text have more than 6 charac-

ters it will only need to be calculated for the first call of the function, and then that

function acts as a getter. Figure 4.7 on page 48 shows an example of how the class is

written to accomplish this, specifically the function “get long word count” which is used

in multiple other functions as part of their calculations.

This dissertation heavily relies on Scikit-Learn [Pedregosa et al., 2011] and its related

dependencies. It was developed as a production ready tool for machine learning appli-

cations, whereas NTLK and many other related libraries have their origins as a learning

tool in academia. Scikit-Learn has incredibly useful abstractions, helper classes, and

harnesses that provide much of the functionality a developer would have to implement

using other tools.

The “CountVectorizer” class converts a collection of text documents to a matrix of token

counts, where the tokens are words or characters, and the counts are the frequency of

their occurrence. If an a-priori dictionary or an analyzer that does some kind of feature

selection is not provided, then the number of features will be equal to the vocabulary

size found by analyzing the data. Constructing an object with the CountVectorizer class

that preprocesses the text (eg. lowercasing) and extracts character N-Grams is shown

in figure 4.8 on page 49. This analyzer returns the frequency of the extracted character

N-Grams, and can be used as features for predicting the quality of posts. The easiest

Page 48 of 78

Chapter 4 Implementation 49

self.char_ngrammer = CountVectorizer(

analyzer=’char’, ngram_range=(3, 4)

).build_analyzer()

Figure 4.8: Constructing a CountVectorizer analyzer that generates preprocessed
character N-Grams of length 3 and 4 characters

{

’sota_ari’: 23.114285714285714,

’sota_body_length’: 145,

’sota_body_text_length’: 145,

’sota_code_percentage’: 50.0,

’sota_coleman_liau_index’: 31.241428571428568,

’sota_email_count’: 0,

’sota_flesch_kincaid_grade’: 97.0014285714286,

’sota_flesch_reading_ease’: 97.0014285714286,

’sota_gunning_fog_index’: 5.6571428571428575,

’sota_is_title_capitalized’: True,

’sota_lines_of_code’: 1,

’sota_lix’: 14.142857142857142,

’sota_lowercase_percentage’: 81.9672131147541,

’sota_num_code_tags’: 1,

’sota_num_p_tags’: 2,

’sota_rix’: 0.5,

’sota_sentiment’: 0.2,

’sota_smog_index’: 6.872983346207417,

’sota_spaces_count’: 17,

’sota_spelling_error_count’: 1,

’sota_subjectivity’: 0.2,

’sota_title_body_similarity’: 0.0,

’sota_title_length’: 59,

’sota_uppercase_percentage’: 2.459016393442623,

’sota_url_count’: 1

}

Figure 4.9: Dictionary representation of extracted engineered features

way to generate many different features was to create a Python dictionary with feature

names and values aggregated, an example of which is shown in figure 4.9 on page 49.

However, Scikit-Learn’s supervised learning algorithms (known as estimators) cannot

use this format as input, but instead need a feature vector representation of the data.

Thankfully there is a helper class for this called “DictVectorizer”. DictVectorizer trans-

forms lists of feature-value mappings (dictionary) to vectors that can be used with

Scikit-Learn estimators. When feature values are strings, this transformer will do a

binary one-hot coding. Features that do not occur in a sample will have a zero value in

the resulting vector.

Now that the extracted features are represented in a compatible format for Scikit-Learns

estimators, the data can be used for training and testing. There are various training

Page 49 of 78

Chapter 4 Implementation 50

X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(

X, Y, train_size=0.7, random_state=31, stratify=Y)

Figure 4.10: Stratified splitting of the data into 70% training data, and 30% testing
data

and testing strategies for which Scikit-Learn provides harnesses. Figure 4.10 on page 50

shows “cross validation.train test split” being used to perform a stratified split of the

data into training and testing subsets, where X notates the features data and Y notates

the corresponding labels. This separates the data so that the training phase learns from

the learning data alone, and not the testing data. This means that the test data is

completely unseen, and therefore provides a realistic test of how the model will perform

on real-world new and unseen data. K-Fold equally divides all the samples into k groups

called folds. The estimator learns using k − 1 folds, and the fold left out is used for

testing. This can be used in a rotating fashion so that it learns and tests for all of the

unique permutations of the folds. Each fold is constituted by two arrays: the first one

is related to the training set, and the second one to the test set. StratifiedKFold is a

variation of k-fold which returns stratified folds, each set containing approximately the

same percentage of samples of each target class as the complete set.

This dissertation used the Random Forests supervised learning algorithm, and leverages

Scikit-Learn’s “RandomForestClassifier” implementation. In contrast to the publication

[Breiman, 2001] that the implementation is based on, the Scikit-Learn implementation

combines classifiers by averaging their probabilistic prediction, instead of letting each

classifier vote for a single class. The parameters used were simple, between 100 and 10000

decision trees were used, out-of-bag samples were used to estimate the generalization

error, the built in parallel feature was used, and the max depth of the tree was sometimes

set to a value between 2 and 8. Figure 4.11 on page 51 shows a visualization of a decision

tree from the random forest used to classify question quality. This example is from a

model that had its max depth of trees set to 3, but good classification accuracy was still

reached due to the number of decision trees training being increased. Smaller trees are

faster to train, and therefore more decision trees can be trained in the same amount of

time than if the trees were larger.

Normalization was implemented using the classes “MaxAbsScaler” and “MinMaxScaler”,

however as Random Forests are robust in that little pre/post-processing needs to be

Page 50 of 78

Chapter 4 Implementation 51

Figure 4.11: Visualization of a Decision Tree from the Question Quality Random
Forest

done, little difference was noticed and scaling was left out of the processing pipeline.

The former scales each feature individually such that the maximal absolute value of

each feature in the training set will be 1.0. The latter scales and translates each feature

individually such that it is in the given range (parameter named “feature range”) on the

training set. Therefore, if passed the tuple (0, 5), it will scale the features to a value

between 0 and 5, however the value of this defaults to 0 and 1.

Scikit-Learn sklearn.cross validation.permutation test score implements test 1 from the

paper “Permutation Tests for Studying Classifier Performance” [Ojala and Garriga,

2010]. This test aims to discover if the classifier has found a significant class struc-

ture, or in other words if the classifier has found a correlation between the data and the

class labels. It does this by permuting the target labels of the data, training and testing

on different folds many times randomly. This should simulate a “coin toss” prediction

for the target label, which can then be compared with the engineered solution to calcu-

late statistical significance. The more rounds or permutations that this test is allowed

to run for, the more accurate and reliable the results should be. However, the test is

extremely computationally intensive as it does N rounds of training and testing on the

supervised learning algorithm on all of the data.

In certain cases, NLTK was used for its preprocessing implementations, such as stemming

and lemmatization. TextBlob was used to calculate the sentiment and subjectivity.

BeautifulSoup is a powerful HTML and XML parser, and was used to process the posts

in order to extract information such as how many code and paragraph tags existed.

Numpy and Scipy were used as they are Scikit-Learn dependencies, and provide efficient

Page 51 of 78

Chapter 4 Implementation 52

data structures and processing routines. They are also extremely useful for arranging

values and plots for visualization using tools such as Matplotlib, which was used to

generate most of the graphs seen in the Results section.

Page 52 of 78

Chapter 5

Results

This section lists the main results from this dissertation, and provides some insight

and analysis into these results. Both tables and graphs are used to make the results

data more digestible. The metrics and visualisations used here are explained in the

Methodology section, starting on page 9. These results have been generated by what

is described in the Implementation section starting on page 42. These results contain

classification reports, confusion matrices, feature importances histograms and tables

showing the distribution of features across the different quality categories for questions

and answers. These results allow the the techniques such as the learning algorithms

to be empirically judged and compared. The Evaluation section discusses these results

and the rest of the dissertation in a more holistic manner. The classification of both

quality and answers prove to be statistically significant results, with a worst case p

value of 0.019 across all runs. Increasing the amount of data and permutations used in

the significance test would improve the classification results and significance level even

further, however computational resources and time are a finite resource. The baseline

accuracy (coin toss) for this 4 label classification is 0.25. The following results were

all generated using 4900 samples per quality level, making the total sample size 19600

questions or answers for each of the classifications. This sample size was chosen in order

to keep the categories and amount of data consistent because it is roughly the smallest

category size across all the quality distributions, as shown in figure 3.3 on page 16. The

question quality classification was run with up to 12000 samples per class, but this would

mean a comparison between classifying question and answer quality would not be fair.

53

Chapter 5 Results 54

Precision Recall f1-score

verybad 0.38 0.23 0.28
bad 0.44 0.40 0.42
good 0.44 0.62 0.52
verygood 0.57 0.62 0.59

avg / total 0.46 0.47 0.45

Table 5.1: Classification Report for Question Quality

5.1 Predicting the Quality of Questions

Table 5.1 shows the question quality classification report. As mentioned in the Method-

ology, recall is the fraction of the documents that are relevant to the query that are

successfully retrieved, precision is the fraction of retrieved documents that are relevant

to the query, and F1 score is a combination of the two. The “verygood” and “good”

classes have the most successful classification rates, with an F1 score of 0.59 and 0.52 re-

spectively. The “bad” class prediction rates is where the accuracy begins to significantly

tail off, with the worst accuracy occurring for the classification of “verybad” quality

questions.

The confusion matrix graph shown in figure 5.1 shows how the predicted quality of

questions compares to the ground truth of the questions in a visually intuitive way.

The same tailing off can be seen along the diagonal in the confusion matrix as in the

classification report. This graph provides a very intuitive look into the behaviour of

the question quality model. It can be seen that many of the verybad quality questions

are being misclassified as good quality questions. A hypothesis for this is that the

surface level features such as readability indexes and the length of the text can separate

the quality of the higher quality questions, but once the content is of a low quality it

overrides any other factor. As this dissertation does not do any content level analysis,

this will lead to misclassified questions.

The feature importance graph shown in figure 5.2 shows how important the contribution

of each feature in the set has towards correctly predicting the quality of questions. This is

one of the most useful outputs in terms of gaining insight into what features are indicative

of quality, and what the subjective view of quality is in a community. Readability indexes

appear to be strongly correlated with question quality as several of them appear near

the top of the feature importances. The number of code tags (counted both as the

Page 54 of 78

Chapter 5 Results 55

Figure 5.1: Normalized Confusion Matrix for Question Quality

“sota num code tags” engineered feature and as character n-grams like “cod”) and the

body text length appear highly important.

Table 5.2 shows the distribution of the features (except for character n-grams) used to

predict question quality, by calculating each ones median, mean and standard deviation.

This table shows interesting patterns, such as the median, mean, and standard deviation

for Flesch Reading Ease all going up as the quality decreases from verygood to verybad

question quality.

5.2 Predicting the Quality of Answers

Table 5.3 shows the answer quality classification report. The behaviour of classifying the

quality of answers is very similar to the behavior of classifying the quality of questions.

The “verygood” and “good” classes have the most successful classification rates. The

“bad” class prediction rates is where the accuracy begins to significantly tail off, with

the worst accuracy occurring for the classification of “verybad” quality answers. The

Page 55 of 78

Chapter 5 Results 56

V
er

y
G

o
o
d

G
o
o
d

B
ad

V
er

y
B

ad

F
ea

tu
re

M
ed

ia
n

M
ea

n
S

D
M

ed
ia

n
M

ea
n

S
D

M
ed

ia
n

M
ea

n
S

D
M

ed
ia

n
M

ea
n

S
D

ar
i

1
6.

24
21

.7
8

23
.4

5
17

.5
2

24
.6

26
.9

7
15

.5
24

.8
6

32
.4

8
12

.8
2

20
.5

7
29

.2
9

b
o
d
y

le
n

gt
h

8
36

.5
1
18

8.
19

13
95

.6
3

88
1.

5
12

45
.8

7
13

79
.6

6
63

9.
5

11
13

.6
6

17
01

.6
46

8.
0

80
5.

89
13

29
.7

7

b
o
d
y

te
x
t

le
n

g
th

6
99

.0
1
02

8.
56

13
16

.3
1

75
2.

0
11

00
.1

1
13

10
.3

2
55

4.
5

10
08

.8
8

16
31

.9
1

39
6.

0
72

5.
59

12
64

.0
7

co
d

e
p

er
ce

n
ta

g
e

40
.0

40
.5

4
24

.2
9

50
.0

46
.6

8
24

.9
1

50
.0

46
.8

6
27

.0
6

44
.4

4
43

.1
7

25
.6

1

co
le

m
an

li
au

in
d

ex
1
2.

05
13

.1
5

7.
45

11
.4

5
12

.2
9

5.
91

10
.8

6
11

.7
3

6.
01

10
.0

5
10

.5
3

5.
44

em
ai

l
co

u
n
t

0.
0

0
.0

8
3.

71
0.

0
0.

04
1.

16
0.

0
0.

02
0.

26
0.

0
0.

03
0.

67

fl
es

ch
k
in

ca
id

gr
ad

e
9.

6
13

.4
2

17
.2

2
10

.1
7

15
.2

20
.2

8.
73

15
.4

4
24

.3
2

7.
2

12
.5

3
21

.9
5

fl
es

ch
re

a
d

in
g

ea
se

7
5.

64
67

.0
2

49
.3

9
77

.4
1

67
.0

6
54

.8
6

81
.0

6
67

.4
9

64
.0

2
85

.6
8

75
.9

57
.3

4

gu
n

n
in

g
fo

g
in

d
ex

1
5.

95
19

.9
7

17
.8

2
17

.0
7

22
.4

1
21

.1
5

15
.3

8
22

.4
5

25
.6

1
13

.2
5

19
.3

4
23

.2
4

is
ti

tl
e

ca
p

it
al

iz
ed

1.
0

0
.8

9
0.

31
1.

0
0.

85
0.

35
1.

0
0.

82
0.

39
1.

0
0.

83
0.

38

li
n

es
of

co
d

e
5.

0
14

.6
7

27
.4

6
9.

0
18

.6
7

29
.7

4
5.

0
20

.0
1

44
.9

4
1.

0
13

.8
35

.9
3

li
x

4
6.

91
56

.7
3

44
.5

9
49

.4
4

62
.5

1
52

.8
6

44
.8

8
62

.5
1

63
.9

4
40

.0
54

.6
6

58
.0

1

lo
w

er
ca

se
p

er
ce

n
ta

g
e

7
0.

45
68

.5
4

7.
99

67
.3

9
65

.4
6

9.
71

68
.2

4
65

.5
10

.6
9

69
.9

6
66

.7
7

10
.2

9

n
u

m
co

d
e

ta
g
s

2.
0

2
.9

3.
69

2.
0

2.
45

2.
67

1.
0

1.
37

1.
92

1.
0

1.
01

1.
5

n
u

m
p

ta
gs

4.
0

4
.3

3
2.

8
4.

0
4.

2
2.

48
3.

0
3.

28
2.

31
2.

0
2.

78
2.

01

ri
x

5.
0

7
.1

4
10

.3
5

5.
25

7.
79

10
.6

9
4.

25
7.

44
11

.6
7

3.
5

5.
87

10
.1

8

se
n
ti

m
en

t
0.

05
0
.0

5
0.

17
0.

05
0.

05
0.

17
0.

04
0.

05
0.

18
0.

05
0.

07
0.

19

sm
og

in
d

ex
1
2.

49
13

.5
8

4.
99

12
.6

2
13

.8
4

5.
39

11
.6

6
13

.0
4

6.
05

10
.7

5
11

.7
2

5.
36

sp
ac

es
co

u
n
t

1
25

.0
1
98

.8
5

31
8.

75
13

9.
0

23
2.

92
32

0.
11

10
3.

0
23

2.
28

44
6.

13
74

.5
16

7.
83

39
4.

17

sp
el

li
n

g
er

ro
r

co
u

n
t

9.
0

20
.2

7
42

.4
7

11
.0

22
.8

8
45

.8
7

8.
0

22
.3

8
52

.9
7

5.
0

13
.9

6
36

.3
1

su
b

je
ct

iv
it

y
0.

44
0
.4

4
0.

19
0.

44
0.

44
0.

19
0.

41
0.

41
0.

22
0.

41
0.

4
0.

23

ti
tl

e
b

o
d

y
si

m
il

a
ri

ty
0.

25
0
.2

7
0.

15
0.

21
0.

24
0.

14
0.

21
0.

24
0.

16
0.

23
0.

25
0.

17

ti
tl

e
le

n
g
th

51
.0

54
.0

3
19

.9
6

50
.0

52
.3

8
18

.9
3

46
.0

49
.6

9
20

.1
45

.0
48

.0
4

19
.3

9

u
p

p
er

ca
se

p
er

ce
n
ta

ge
3.

46
4
.1

2.
65

3.
55

4.
44

3.
43

3.
31

4.
23

3.
66

3.
09

3.
82

3.
01

u
rl

co
u

n
t

0.
0

0
.7

6
1.

45
0.

0
0.

6
1.

35
0.

0
0.

45
1.

58
0.

0
0.

29
0.

88

T
a
b
l
e
5
.2
:

Q
u

es
ti

o
n

fe
a
tu

re
s

S
ta

ti
st

ic
s

-
M

ed
ia

n
,

M
ea

n
a
n

d
S

ta
n

d
a
rd

D
ev

ia
ti

o
n

Page 56 of 78

Chapter 5 Results 57

Figure 5.2: Feature Importances for Question Quality

Precision Recall f1-score

verybad 0.34 0.23 0.27
bad 0.43 0.36 0.39
good 0.39 0.48 0.43
verygood 0.54 0.68 0.60

avg / total 0.43 0.44 0.42

Table 5.3: Classification Report for Answer Quality

minor difference here is that the tail off is more significant with answers than it is with

questions. This may be due to the fact that it is clearer when an answers is wrong than

a question being “wrong”. Following on from the same hypothesis as with questions,

this dissertation is unable to verify content level quality and therefore the overriding

incorrectness of the information will not be detected.

The confusion matrix graph shown in figure 5.3 shows how the predicted quality of

answers compares to the ground truth of the answers in a visually intuitive way. The

same tailing off of performance can be seen along the diagonal in the confusion matrix

Page 57 of 78

Chapter 5 Results 58

Figure 5.3: Normalized Confusion Matrix for Answer Quality

as in the classification report as the quality class moves towards verybad. This graph

provides an intuitive look into the behaviour of the answer quality model. It can be

seen that many of the verybad quality answers are being misclassified as good quality

answers.

The feature importance graph shown in figure 5.4 shows how important the contribution

of each feature in the set has towards correctly predicting the quality of answers. This is

one of the most useful outputs in terms of gaining insight into what features are indicative

of quality, and what the subjective view of quality is in a community.The length of the

answer can be seen as an important feature of quality. An interesting feature shown as

the 6th most important is “sota answer question body similarity”, which calculates the

word similarity between an answer’s body and its associated question’s body. There are

multiple potential aspects of quality that this feature may be picking up on, however it

is most likely that an answer is covering the questions asked. It may also be a sign that

using similar, understandable, and common terminology leads to a higher scored answer.

Alternatively, if an answer repeated the questions as a quoted list answer each one in

Page 58 of 78

Chapter 5 Results 59

order, this feature would also score highly. Readability indexes also appear highly here,

as shown in figure 5.2 previously. Code and paragraph tags are also highly important

as they also were with questions.

An interesting indicator of quality that the character n-grams extracted was whether

“rel=nofollow” was present on links or not in the answer body. In summary, Stack

Overflow puts this tag on links in questions and answers so that they will not benefit

the linked page on search engines. [Bondy, 2015] This means that spammers have less

incentive to spam their links, and also has the resulting effect that Stack Overflow pages

will not be increasing the rank of its competitors’ sites. The Stack Overflow community

pressured this to change though, and a policy began that high score and high profile

posts would have these nofollow tags removed from their links. Therefore, this is a highly

accurate indicator of high quality posts. However, it is cheating in the context of this

dissertation, as the goal is to classify the quality of posts at the time of their creation.

As this nofollow tag will always be present at the time of creation, this feature will not

be helpful when always predicting newly posted questions and answers.

Table 5.4 shows the distribution of the features (except for character n-grams) used to

predict answer quality, by calculating each ones median, mean and standard deviation.

This table shows interesting patterns, such as the median and mean for body and body

text length decreasing as the quality decreases from verygood to verybad answer quality.

Page 59 of 78

Chapter 5 Results 60

V
er

y
G

o
o
d

G
o
o
d

B
ad

V
er

y
B

ad

F
ea

tu
re

M
ed

ia
n

M
ea

n
S

D
M

ed
ia

n
M

ea
n

S
D

M
ed

ia
n

M
ea

n
S

D
M

ed
ia

n
M

ea
n

S
D

an
sw

er
q
u

es
ti

o
n

b
o
d

y
si

m
il

ar
it

y
0.

16
0.

19
0.

14
0.

16
0.

19
0.

15
0.

13
0.

17
0.

15
0.

13
0.

17
0.

15

a
ri

15
.8

2
20

.1
2

17
.1

8
15

.7
3

20
.8

6
18

.9
4

14
.5

1
20

.6
4

31
.9

7
13

.5
5

18
.3

19
.3

7

b
o
d
y

le
n

gt
h

50
9.

0
75

4.
09

88
3.

0
49

0.
0

67
3.

61
68

3.
65

32
8.

5
49

0.
26

70
8.

58
29

1.
0

42
8.

95
60

4.
91

b
o
d

y
te

x
t

le
n

g
th

39
2.

0
61

3.
24

79
1.

58
38

2.
0

54
7.

41
62

0.
05

25
7.

0
40

8.
01

65
4.

86
22

7.
0

35
8.

91
57

2.
54

co
d

e
p

er
ce

n
ta

g
e

39
.2

1
39

.5
2

22
.7

9
40

.0
42

.2
23

.4
9

50
.0

45
.3

4
23

.3
1

50
.0

45
.0

9
22

.4
8

co
le

m
an

li
au

in
d

ex
12

.1
7

12
.7

6.
4

11
.8

5
12

.2
7

6.
01

11
.5

6
12

.4
2

7.
31

10
.9

5
11

.6
4

6.
92

em
a
il

co
u

n
t

0.
0

0.
01

0.
33

0.
0

0.
01

0.
25

0.
0

0.
01

0.
26

0.
0

0.
01

0.
1

fl
es

ch
k
in

ca
id

g
ra

d
e

9.
07

12
.0

12
.7

9
9.

02
12

.5
9

14
.1

4
8.

05
12

.1
9

24
.2

8
7.

41
10

.5
5

14
.4

6

fl
es

ch
re

a
d

in
g

ea
se

77
.5

3
72

.2
39

.6
4

77
.9

5
71

.9
2

40
.4

1
81

.6
3

72
.8

9
66

.6
1

84
.0

7
78

.3
2

43
.3

3

g
u

n
n

in
g

fo
g

in
d

ex
15

.4
8

18
.8

8
13

.4
5

15
.4

3
19

.5
9

15
.1

5
14

.1
7

18
.9

9
25

.3
6

13
.6

2
17

.4
2

15
.3

5

li
n

es
of

co
d

e
3.

0
7.

81
17

.0
3

3.
0

7.
58

14
.0

4
2.

0
7.

12
15

.4
8

2.
0

6.
44

15
.3

5

li
x

45
.6

2
53

.8
5

33
.5

9
45

.2
7

55
.2

4
37

.7
4

41
.7

5
53

.6
1

63
.3

7
40

.5
3

49
.6

5
38

.4
4

lo
w

er
ca

se
p

er
ce

n
ta

g
e

70
.9

68
.5

1
9.

3
70

.9
68

.0
10

.2
8

70
.5

6
67

.5
9

10
.4

1
70

.6
5

67
.6

6
10

.4
4

n
u

m
co

d
e

ta
g
s

2.
0

2.
93

3.
81

1.
0

2.
34

3.
05

1.
0

1.
21

1.
72

1.
0

1.
05

1.
41

n
u

m
p

ta
g
s

2.
0

3.
06

2.
58

2.
0

2.
65

2.
0

2.
0

2.
07

1.
63

2.
0

1.
95

1.
54

ri
x

4.
67

6.
37

6.
79

4.
5

6.
27

6.
63

4.
0

6.
05

12
.6

8
3.

5
5.

24
7.

23

se
n
ti

m
en

t
0.

03
0.

06
0.

2
0.

03
0.

07
0.

19
0.

0
0.

07
0.

21
0.

0
0.

07
0.

21

sm
o
g

in
d

ex
12

.4
9

13
.0

3
4.

73
12

.4
9

12
.9

6
4.

65
11

.2
5

12
.2

9
5.

53
10

.7
5

11
.6

6
4.

81

sp
ac

es
co

u
n
t

67
.0

11
8.

15
20

3.
32

66
.0

10
6.

26
14

6.
19

44
.0

84
.5

6
23

3.
83

39
.0

72
.7

5
15

9.
45

sp
el

li
n

g
er

ro
r

co
u

n
t

5.
0

10
.0

2
17

.5
5.

0
9.

24
16

.2
4

4.
0

7.
8

15
.1

3
4.

0
6.

74
13

.7
1

su
b

je
ct

iv
it

y
0.

41
0.

4
0.

26
0.

4
0.

39
0.

26
0.

37
0.

35
0.

28
0.

37
0.

35
0.

29

u
p

p
er

ca
se

p
er

ce
n
ta

g
e

3.
11

4.
06

3.
59

2.
99

4.
22

4.
44

3.
0

4.
24

4.
48

2.
9

4.
27

4.
84

u
rl

co
u

n
t

0.
0

0.
75

1.
31

0.
0

0.
7

1.
23

0.
0

0.
5

1.
12

0.
0

0.
42

1.
01

T
a
b
l
e
5
.4
:

A
n

sw
er

F
ea

tu
re

s
S

ta
ti

st
ic

s
-

M
ed

ia
n

,
M

ea
n

a
n

d
S

ta
n

d
a
rd

D
ev

ia
ti

o
n

Page 60 of 78

Chapter 5 Results 61

Figure 5.4: Feature Importances for Answer Quality

Page 61 of 78

Chapter 6

Evaluation

This Evaluation section evaluates how successful this dissertation has been in terms of

empirical results, anecdotal evidence, and the significance of these findings to academic

and industry settings. The success with which the quality of questions and answers was

classified is evaluated, followed by the evaluation of the chosen methodology.

Without research being applied to do something useful, can the findings really be sig-

nificant or matter? This is particularly important in a field such as Machine Learning,

which is founded in solving very practical problems such as email spam and financial

markets. Ensuring that techniques and theory discovered in the process of machine

learning research are communicated well and made useful to its intended application

area is critical to making the research truly matter. The paper “Machine Learning

that Matters” [Wagstaff, 2012] aims to start a discussion about how “machine learning

research has lost its connection to problems of import to the larger world of science

and society”, and what changes need to be made to put the focus back on machine

learning that matters. A hyper-focus on artificial benchmark data sets is one thing that

distances research from real world application. While a novel idea may be superior to

other methods on that particular data set, it may not necessarily transfer directly to

real world data sets in specific problem domains. It is perfectly acceptable for a paper

to test and report the results on these benchmark data sets, but perhaps more effort

should be made on testing the research on real data to aid in the transfer of research to

application. Another point from this paper is the hyper-focus on abstract metrics with

the intention of allowing comparison of these metrics across domains. These abstract

62

Chapter 6 Evaluation 63

metrics ignore problem-specific details to allow cross domain comparison, however this

is assuming that the performance across domains is comparable at all.

The example of this Wagstaff uses is that “80% accuracy on iris classification might be

sufficient for the botany world, but to classify as poisonous or edible a mushroom you

intend to ingest, perhaps 99% (or higher) accuracy is required”. Just because metrics

have the same range across domains, does not mean that they have the same meaning

and apply in the same manner. In the same way, while 100% accuracy sounds great

for this classification problem, it may only need to be semi-reliably accurate in order to

find useful applications in the real-world. As stated previously, the baseline accuracy

(coin toss) for this 4 class classification is 0.25 and the classification results prove to be

statistically significant with a worst case p value of 0.019 (significance is when p ¡ 0.05).

This is further proof that the techniques used in this dissertation have found insight

into features of quality and can provide a useful prediction of a question’s or answer’s

quality.

6.1 Predicting Quality

The central research question of this dissertation was “Can the quality of a question or

answer from Stack Overflow be predicted at the time of creation using just its text?”.

The answer to this appears to be yes, with empirical and anecdotal evidence to support

it. The classification reports for both question and answer show a significantly more

accurate prediction than random guesses would achieve. Additionally, this dissertation

aimed to discover what features are indicative of quality and has been successful in doing

so. The feature importances histogram graphs show what features were important for

correctly predicting the quality of both questions and answers. By leveraging white-box

techniques such as tree based learning algorithms, interesting insight can be gained by

visualizing and analyzing what was learned and how it performed on real data. The

outcome of these results shows that these techniques are successful enough to have

practical, real world applications.

An important aspect of evaluating the performance of these classifiers is understanding

why the misclassifications may be occurring. An interesting and noticeable difference

Page 63 of 78

Chapter 6 Evaluation 64

found is that the performance of classifying the quality of questions is better than an-

swers. One hypothesis for this is that the quality of an answer depends on the question,

whereas the quality of a question does not depend on its answers. This adds an extra

dimension of variability to the quality of an answer. Additionally, this ties back to an

earlier point in that the engineered features in this dissertation do not account account

for the content level of a post, especially for answers where their quality is directly

correlated to many factors related to content. For an answer to be of a high quality,

its content must cover and correctly answer the associated question’s content. Diving

deeper into how the content of a post will affect the classification accuracy in this dis-

sertation may lead to a greater understanding of quality in general. The surface level

features such as readability indexes and the length of the text may be able to separate

the quality of the higher quality questions and answers, but once the content is of a low

quality it overrides any other factor. These low quality questions and answers may have

incorrect information, or may be abusive/ignorant in nature. As this dissertation does

not do any content level analysis, this will lead to misclassified questions and answered.

An example using the two types of features just mentioned would be where the surface

level features detect a post that has ideal readability index and length values, but the

information in the post is completely wrong causing the community to downvote it.

Quality is a somewhat subjective attribute that will vary from person to person. This

means that the target label to be predicted for each post will vary depending on who

is judging its quality. Even between experts, it may be difficult to reach a consensus

on the judgement of a posts quality. This means that even the “golden standard” of

classification of quality is very unlikely to be 100% accurate. The reference to a “golden

standard” refers to the case where a very experienced user of Stack Overflow is the

classifier, or whether an incredibly advanced implementation of machine learning is the

classifier. When subjectivity is added to the problem of trying to predict something,

it is no longer a problem where 100% accuracy could be expected. To gain an idea of

the accuracy this system may be expected to achieve, a set of posts from each of the

quality bins could be presented to experienced users for classification. The results of this

experiment would give a good idea of what the “golden standard” for this classification

might be.

Added to this argument of a subjective view of quality, is that the quality labels that

are to be learned from and predicted are not even labelled by an expert, or at all for

Page 64 of 78

Chapter 6 Evaluation 65

that matter. The labels are inferred from several attributes in the dataset, the main one

being the attribute “score”. By inferring quality, this allows us to perform an analysis on

what are features of quality and can it be predicted for questions and answers. However,

due to this process, it has to be questioned whether the pure quality of a post is being

inferred, or the quality mixed with other factors such as popularity. The score that

a post obtains is heavily correlated with the number of views it receives, as shown in

figure 3.4 in the data section. To some degree, this results in the situation of building

on shaky foundations. The accuracy of these labels comes into question, but these are

the challenges that must be faced when trying to analyze real data. The process can

be messy, and sometimes certain assumptions must be made to get real work done. In

this case, this assumption seems to have paid off as the empirical results appear to make

sense in many cases. For example, it makes sense that the length of a question or answer

might correlate with the quality, due to the fact that the length probably correlates with

effort. The results of this dissertation seem to back up this hypothesis. The results that

suggest this are the feature importances and feature distribution tables, shown in figures

5.2, 5.4, and tables 5.4, and 5.4.

Miller [1956] suggests that there is a limit to the amount of information that we can

accurately remember or process. Perhaps there is a similar magic range of distinct

information that should be in a question or answer so that it is readable and digestible,

whilst comprehensive enough to provide enough information to the community. If Miller

[1956] is correct, then the ideal number of chunks of information would be within the

range of 5 to 9, 7 plus or minus 2. This could be an interesting hypothesis to explore,

although it would be challenging to identify how many ’chunks’ or separate pieces of

information there are present. However, counting the number of code and p tags in a

Stack Overflow post may be a close enough approximation. If this possibility is explored

further, an interesting pattern emerges. If the mean calculation for the number of p

and code tags found in a question from table 5.2 are summed together for each of the

quality labels, then verygood has just over 7 chunks, good has roughly 6.5 chunks, bad

has about 4.5, and verybad has around 3.8 chunks. This means that verygood and good

would be in the ideal chunk range, whereas bad and verybad have less than the ideal

amount of information chunks. Interestingly, similar behaviour occurs with answers.

If the mean calculation for the number of p and code tags found in a answer from

table 5.4 are summed together for each of the quality labels, then verygood has around

Page 65 of 78

Chapter 6 Evaluation 66

6 chunks, good has roughly 5 chunks, bad has about 3.3, and verybad has around 3

chunks. Again, this means that verygood and good would be just about in the ideal

chunk range, whereas bad and verybad have less than the ideal amount of information

chunks.

Ponzanelli et al. [2014a,b] analyze Stack Overflow questions in order to predict quality

at the time of creation. They were provided with a list of features that Stack Overflow

used at the time to identify poor quality questions. These features were body and title

length, emails count, uppercase and lowercase percentage, spaces count, tags count, text

speak count, title body similarity, capital title, and Urls count. It is unlikely that this

is a comprehensive list, especially as this dissertation’s research is set a few years later.

However, this list is assumed to be roughly the features that Stack Overflow use. The

quality of the content varies from high to low-quality. The job of moderating Stack

Exchange Q&A’s is left to the community. Stack Overflow performs some basic quality

analysis, but this is an area where improvement would have many benefits. Therefore,

the results of this dissertation suggest that Stack Overflow should additionally implement

checks for features such as the number of paragraphs and code blocks, character n-grams,

readability indexes, and text similarity measures.

6.2 Evaluation of Methodology

The methodology choices were a key influence on the success of this dissertation. Data

management methods were chosen for their flexibility and efficiency of managing and

interacting with the Stack Overflow data. Machine Learning methods were chosen for

their effect on the performance of the quality classification, and transparency with re-

gards to gaining insight into what affects this performance. By analyzing what was

affecting the performance of the quality classification, the features of quality and how

they vary between the quality classes could be discovered.

First of all, Python was the language of choice for this dissertation. Python is a dynamic

high-level library that comes with the usual speed versus development ease trade-off that

many similar languages share. Everything apart from some shell scripts and the SQL

queries was written in Python. This turned out to be a great decision, due to the ease

with which Python can be written and maintained, and due to the amazing libraries

Page 66 of 78

Chapter 6 Evaluation 67

and community around it. Many 3rd party libraries were utilized in this dissertation,

and when issues occurred there was an active community with a mass of experience to

help developers solve them. And yes, Stack Overflow posts were indeed used to help

solve these problems as they were encountered. The reality of choosing another less

popular, more esoteric, technology would mean running into bugs and lack of features

that had not necessarily been run into before. This means it would be likely that more

development and research time would be spent on fixing issues and implementing things

from scratch, even if the functionality that it does provide is far more suited for this

project. Julia [Bezanson et al., 2014] is one such language, and “combines expertise

from the diverse fields of computer science and computational science to create a new

approach to numerical computing”. Julia is designed to be written like a high-level

language, but have the efficiency of a machine level language such as C. It is beginning

to gain a large community, particularly with the Machine Learning community. Julia has

many machine learning packages in development, and even has a Scikit-Learn interface

package in active development. However, they are all quite young and unstable. Another

alternative would have been to use a distributed compute framework such as Hadoop or

Spark for this project. However, Python was a great decision as development time is at a

premium in a dissertation setting, and the trade-off in performance for less development

time is a worthwhile one.

Leveraging Postgres and SQL to do the heavy lifting of the data management freed up

a lot of time for the core research of this dissertation. Previously, an assortment of

Python scripts were utilized to parse and extract the required data. This was time con-

suming from a management, engineering, and running-time perspective. Databases are

optimized for this, and by loading the data into Postgres and creating indexes it became

efficient in those three aspects for the necessary analysis, interaction, and extraction of

data. In that respect, its likely there would have been less progress in the core research

of this dissertation if this move to a database had not been made. This goes to show

it is extremely important to define efficient data management processes for data related

projects.

Feature engineering was one of the most significant and time-consuming tasks of this

dissertation. For example, once the hypothesis for the quality of an answer depends

on both the question and answer was established, a feature could be engineered to

explore this. Information such as the title and body of each answer’s associated question

Page 67 of 78

Chapter 6 Evaluation 68

was added to the dataset for classifying the quality of classification. A feature that

measured the similarity between the answer’s body and its associated question’s body

was calculated. This feature proved to be one of the most important features for correctly

predicting the quality of an answer, as shown in figure 5.4. The computational time of

these engineered features was significant, as there were thousands of posts to calculate

them for. A parallel map was used to speed up the embarrassingly parallel problem of

calculating independent features for each post by utilizing multiple cores. Character N-

Grams were found to be both powerful, and quite efficient to generate. The generation

of character n-grams is essentially extracting many sub-strings of characters from a piece

of text and keeping count of the frequency of each. The generation of the other features

involves more complex operations, but this computation is warranted for the gain in

accuracy and insight that was achieved. Eventually, a CPU bottleneck will occur and

certain techniques will not be tractable as the amount of data to be processed grows.

However, CPU is not the only finite resource, as there are significant memory constraints

to be circumvented also.

Some of the core machine learning methods used in this dissertation require the whole

dataset to be stored in memory at once. This is not a scalable solution, but there are

many techniques for avoiding the issue. Some algorithms in Scikit-Learn implement

a method called “partial fit”, which implements an online learning version of the al-

gorithm. Online learning refers to the ability of an algorithm to train on the data in

multiple segments rather than all at once. This means that only a subset of the entire

data needs to be stored in memory at a time. Unfortunately, Random Forests in Scikit-

Learn do not implement this function, even though Random Forests learn in batches,

and therefore are unable to perform online learning. This presents an issue as the need

for learning from more and more data increases. This issue did not particularly affect

the outcome of this dissertation, however it is something to consider for future works

that aim to iterate on these methods.

The choice of supervised learning algorithm was an important one. Random Forests

were chosen because they are efficient, robust, and intuitive, and easy to tune. The

tuning parameters include options for setting the maximum depth of the decision trees,

the number of decision trees, the minimum number of samples at a split or leaf node

depth, or the number of features to use. Most of these parameters have fairly predictable

and understandable results, and allow the performance, accuracy, and behaviour to all

Page 68 of 78

Chapter 6 Evaluation 69

be adjusted. Random Forests are scale invariant, meaning that they are able to deal

with each feature having different scales, something that can massively affect other al-

gorithms accuracy. This removes much of the normalizing process that usually proceeds

the learning phase, and therefore removes another moving part that can affect the re-

sults positively or negatively. It also means that the features remain in their natural

ranges, which is ideal for analyzing and gaining insight into how the features vary for

quality. Random Forests are considered white-box models, largely due to the boolean

logic inherent in the decision trees. They provide an interesting look at what values of

the features are turning points for the various levels of quality, and the relationships

between them. As shown in figure 4.11 on page 51, the Visualization of a Decision Tree

from the Question Quality Random Forest, the first decision node contains a boolean

condition for the feature “num code tags”. If there are 2 or less code tags found the

True branch will be taken and the boolean condition checking the length of the body is

calculated next. If there are 3 or more code tags, then the False branch is taken and

the feature Gunning Fog Index is checked next. By tracing these decisions to the leaf

nodes, insight into the relationships between these features and how they affect quality

is gained.

6.3 Alternative Approaches

This section tries to suggest alternative approaches to circumvent some of the limitations

within this dissertation. These limitations stem from the nature of the data and the

nature of the chosen methodology.

The choice was made to leave edited posts out of the analysis, due to the fact that the

quality is therefore changing with each iteration. It would be interesting to include edited

questions and answers and observe what affect this has on the results. Additionally,

by correlating timestamps from the “PostHistory” and “Votes” table, neither of which

are used in this dissertation, it is possible to attribute upvotes and downvotes to each

particular version. This also opens up a whole new research question of how edits affect

the quality over time. The PostHistory table contains updates to posts, including edits

to their body and title. The Votes table contains each vote for each post over time.

The score attribute in the Posts table aggregates these votes over time to a single score

Page 69 of 78

Chapter 6 Evaluation 70

calculated using the aggregated upvotes minus the aggregated downvotes. This leads to

another alternative approach.

As mentioned in the evaluation of quality prediction, inferring the quality from attributes

such as the score has its limitations. However, by using more detailed rules to infer

quality this issue could potentially be reduced. For example, it might be valid that a

post with 3 upvotes and 0 downvotes is of a higher quality than a post with 5 upvotes

and 2 downvotes. These both result in posts with a score of 3, but the makeup of that

score is different. That the ratio of upvotes to downvotes might matter with respect to

quality is essentially the idea here. Testing which leads to a better classification score

would be interesting, but does not necessarily make it a more accurate inference. More

inference rules could also be used, such as author reputation or the count of answers

(for questions) and comments. The rules of inference are not grounded in science, so it

would be worth looking into these further, and how varying them affects the results.

Focusing more on the score attribute, an interesting alternative approach would be to use

treat the quality prediction problem as a regression problem rather than a classification

problem. Instead of using heuristics to quantize the posts into quality levels, train a

regression model on score and predict the actual score of a new post. If quality levels

are desired, the output score could then be quantized.

With regards to the scalability of the technology in this dissertation, using a distributed

computing framework such as Spark [Zaharia et al., 2010] on a cluster of nodes would

provide a scalable architecture with which to develop on. MLlib [Meng et al., 2015] is a

powerful machine learning library that supports many distributed learning algorithms.

This would allow a massive amount of information to be efficiently processed compared

to a local Python solution. Spark even has a library called Sparkit-Learn which copies

the Scikit-Learn interface so that programs written for the latter can run on the former

with minor modification.

In order to try increase the classification accuracy, an alternative algorithm could be

selected. Ponzanelli et al. [2014b] switches from tree methods to genetic algorithms. Al-

though many other methods will not give such an interesting insight into how the quality

of questions and answers are predicted, they may provide a more accurate classification.

Neural Networks (or deep learning methods) are considered black-box methods, in that

they can be validated as working but it is not possible to know why or how. What they

Page 70 of 78

Chapter 6 Evaluation 71

lose in intuitiveness, they often gain in performance. Neural Networks are often lauded

for their accuracy, and it would be interesting to see if they improve significantly on the

current implementation using Random Forests.

6.4 Further Work

This dissertation has answered the main questions it set out to, however as a result there

are new and interesting questions to answer. This section discusses the most promising

research avenues to pursue in the area of this dissertation. These include areas that are

severely lacking, important, or nice-to-haves.

An argument could be made that the content of a question or answer is the most impor-

tant influence on the perceived quality of a question or answer by a person. Therefore

it may seem odd that this dissertation does no such analysis. That is, not surprisingly,

because analyzing whether or not information is correct is difficult, or more specifically,

not easily implemented with the current open tools. This kind of functionality is akin

to what IBM’s Watson computer is trying to achieve. [Ferrucci, 2011] Watson can be

asked questions and it tries to answer or solve them. It does this by learning from

huge amounts of unstructured natural language data on a subject from materials such

as Word documents, PDFs and web pages. When a question is asked, it will evaluate

what is being asked. Then it will look at its knowledge base and answer using a ranked

selection of possible answers and their supporting evidence. To do all this, it performs

extremely cutting edge analysis on the grammar and context of the text to extract the

meaning. With the current pace of research, this functionality may be available to a

masters student in the near future, however it is unfortunately not currently available.

Regardless of this, the key to accurate quality analysis is to be able to validate whether

the content is correct and other such information.

Related to the above, is the idea that a question and answer should share a similar

topic distribution if the answer is properly answering the question. Topic modelling is

a technique that can be used to extract clusters of topics from text data. Once topic

modelling is run across the questions and answers, their distributions can be compared.

If they are closely matched, then it might be likely that the answer is stating relevant

Page 71 of 78

Chapter 6 Evaluation 72

information. This could be used as an additional engineered feature for predicting the

quality of posts, and would make a useful addition to this system.

Sentiment analysis is rather lacking in effectiveness for technical data at this time. Most

such tools are developed and trained to be effective for data from social media sites

such as Facebook and Twitter. The sites often have short text with simple language,

expressing strong emotions and opinions. Technical language will often differ on both

accounts, and things such as tech jargon can cause the overall sentiment to be incorrect.

More research should be performed into how to correctly identify the emotions in a

technical post, or how to judge the subjectivity of the text more accurately. This analysis

should also include such phenomena as hedging and politeness.

This dissertation analyzed a filtered set of posts from the years 2014 and 2015. With

more computational resources and by using more scalable technology, it would be ex-

tremely interesting to analyze the entire dataset. This number of posts would completely

overwhelm many laptops, desktops, and servers. However, 40GB of posts would be light

work for a well provisioned Spark cluster. A common piece of wisdom in machine learn-

ing is that more data beats a more complex algorithm. The results from this process

could be far more comprehensive and interesting, than using the smallish sample size

used in this dissertation for practical reasons.

This dissertation chose the technical domain of Stack Overflow for the quality analysis.

Transferring these techniques to another domain or community such as Facebook and

Twitter would be very interesting. In this case, it may be more applicable to try and

predict the popularity of the post, through the metrics of likes, comments, re-tweets,

replies, etc. It would be interesting to see not only if they work by re-training on the

new domain and testing the performance of the classification, but to train on a different

set of data or a combination of the sites data, and then test on a different site or all of

the sites.

Page 72 of 78

Chapter 7

Conclusion

This dissertation aimed to discover indicators of quality, and to use this knowledge to

correctly classify the quality of questions and answers from Stack Overflow. Both of

these goals were achieved quite successfully, with empirical and anecdotal evidence to

back them up. The results provide a measure of how well each feature indicates quality,

and several accuracy measures for the classification process. The F1 scores for question

and answer quality prediction were 0.45 and 0.42 respectively, which is a significant

improvement over a baseline prediction rate of 0.25 for a 4 label classification. However,

the performance for the two good quality labels is far better than the performance for

the two bad quality labels. The reason for this was evaluated, and the hypothesis of

These results proved to be significant, meaning that these techniques have found a real

pattern in the data. Therefore, the problem of predicting the quality of a piece of text

is solvable.

This dissertation will hopefully be utilized as a foundation for further work in this

area, from which others can learn from and build upon to further the classification

accuracy and gain more insight about quality. The outcome of this dissertation shows

that these techniques are successful enough to be used in some real world applications,

and that there is a huge amount of scope for this area to be improved. Moderating

Stack Overflow is a time-consuming task essentially performed by volunteers form the

community. Improvements in analyzing the quality of Stack Overflow posts to the point

where it could be automated would have many benefits. For example, the moderators

jobs would become far easier as some of the more obvious low quality posts would be

73

Chapter 7 Conclusion 74

closed or deleted, and high quality posts would be noticed more. Therefore, the quality

of the content would be massively improved, benefiting the millions of users of Stack

Overflow. Many of the same techniques can be applied to other domains such as the

expert website “Quora”, or the customer support industry.

Improving to a high-level of classification performance will likely require new and cutting

edge methods to be developed and released, especially for the task of content analysis and

validation. Not only have the techniques used been described and evaluated, but a set

of alternative approaches and further work has been listed in order to circumvent some

of their limitations. These include both minor modifications to the methodology, and

significant changes in the approach and architecture of the project. However, regardless

of how advanced these techniques become, quality will always remain a subjective notion

that varies from person to person. This means that achieving perfect performance is

not plausible or probable. In an ideal system, the accuracy of the quality classifications

will be comparable to that of a subject matter expert. The work performed in this

dissertation is a step along the way to this becoming a reality.

Page 74 of 78

Bibliography

Asaduzzaman, M., Mashiyat, A. S., Roy, C. K., and Schneider, K. A. (2013). Answer-

ing questions about unanswered questions of stack overflow. In Proceedings of the

10th Working Conference on Mining Software Repositories, MSR ’13, pages 97–100,

Piscataway, NJ, USA. IEEE Press.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2014). Julia: A fresh

approach to numerical computing.

Bondy, B. (2015). Stackoverflow amongst nofollow web abuse sites.

”https://brianbondy.com/blog/104/stackoverflow-amongst-nofollow-web-abuse-

sites”.

Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of

machine learning algorithms. Pattern recognition, 30(7):1145–1159.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.

Calefato, F., Lanubile, F., Marasciulo, M. C., and Novielli, N. (2015). Mining successful

answers in stack overflow. In Proceedings of the 12th Working Conference on Mining

Software Repositories, MSR ’15, pages 430–433, Piscataway, NJ, USA. IEEE Press.

Cavnar, W. B., Trenkle, J. M., et al. (1994). N-gram-based text categorization. Ann

Arbor MI, 48113(2):161–175.

Coleman, M. and Liau, T. L. (1975). A computer readability formula designed for

machine scoring. Journal of Applied Psychology, 60(2):283.

Duijn, M., Kučera, A., and Bacchelli, A. (2015). Quality questions need quality code:

Classifying code fragments on stack overflow. In Proceedings of the 12th Working

75

Bibliography 76

Conference on Mining Software Repositories, MSR ’15, pages 410–413, Piscataway,

NJ, USA. IEEE Press.

Ferrucci, D. A. (2011). Ibm’s watson/deepqa. SIGARCH Comput. Archit. News, 39(3):–.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. New York: W. H. Freeman and Co.

Goodspeed, E. (2015). A diagram showing a perceptron updating its linear boundary as

more training examples are added. ”https://en.wikipedia.org/wiki/Perceptron/”.

Gunning, R. (1952). The Technique of Clear Writing. McGraw-Hill, New York.

Ho, T. K. (1995). Random decision forests. In Document Analysis and Recognition,

1995., Proceedings of the Third International Conference on, volume 1, pages 278–

282 vol.1.

Hodgins, G. (2015a). https://data.stackexchange.com/stackoverflow/revision/413629/528335/count-

of-new-questions-and-answers-since-a-specified-year.

Hodgins, G. (2015b). Github repository for stackoverflow-quality-analysis.

https://github.com/ghodgins/stackoverflow-quality-analysis.

Kincaid, J. P., Fishburne Jr, R. P., Rogers, R. L., and Chissom, B. S. (1975). Derivation

of new readability formulas (automated readability index, fog count and flesch read-

ing ease formula) for navy enlisted personnel. Technical report, DTIC Document.

Klare, G. R. (2000). The measurement of readability: Useful information for communi-

cators. ACM J. Comput. Doc., 24(3):107–121.

Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of

literary information. IBM Journal of Research and Development, 1(4):309–317.

Mc Laughlin, G. H. (1969). Smog grading-a new readability formula. Journal of reading,

12(8):639–646.

McGinnis, W. (2015). Beyond one-hot: an exploration of categorical vari-

ables. ”http://www.willmcginnis.com/2015/11/29/beyond-one-hot-an-exploration-

of-categorical-variables/”.

Page 76 of 78

Bibliography 77

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J.,

Tsai, D., Amde, M., Owen, S., et al. (2015). Mllib: Machine learning in apache

spark. arXiv preprint arXiv:1505.06807.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our

capacity for processing information. Psychological review, 63(2):81.

NLTK (2015). Learning to classify text. http://www.nltk.org/book/ch06.html.

Ojala, M. and Garriga, G. C. (2010). Permutation tests for studying classifier perfor-

mance. J. Mach. Learn. Res., 11:1833–1863.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Courna-

peau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Ponzanelli, L., Mocci, A., Bacchelli, A., and Lanza, M. (2014a). Understanding and

classifying the quality of technical forum questions. In Proceedings of the 2014 14th

International Conference on Quality Software, QSIC ’14, pages 343–352, Washing-

ton, DC, USA. IEEE Computer Society.

Ponzanelli, L., Mocci, A., Bacchelli, A., Lanza, M., and Fullerton, D. (2014b). Improving

low quality stack overflow post detection. In Proceedings of the 2014 IEEE Inter-

national Conference on Software Maintenance and Evolution, ICSME ’14, pages

541–544, Washington, DC, USA. IEEE Computer Society.

PostgreSQL (2016). Postgresql. http://www.postgresql.org/.

Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1(1):81–106.

Senter, R. and Smith, E. (1967). Automated readability index. Technical report, DTIC

Document.

Sparck Jones, K. (1988). Document retrieval systems. chapter A Statistical Interpre-

tation of Term Specificity and Its Application in Retrieval, pages 132–142. Taylor

Graham Publishing, London, UK, UK.

StackExchange (2015a). http://stackexchange.com/sites.

StackExchange (2015b). https://data.stackexchange.com/.

Page 77 of 78

Bibliography 78

StackExchange (2015c). https://archive.org/details/stackexchange.

StackExchange (2015d). http://meta.stackexchange.com/questions/2677/database-

schema-documentation-for-the-public-data-dump-and-sede.

Vogel, C. and Sanchez, L. M. (2012). Epistemic signals and emoticons affect kudos. 3rd

IEEE Conference on Cognitive Infocommunications, pages 517–522.

Vogel, C. and Sanchez, L. M. (2013). Imho: An exploratory study of hedging in web

forums. Proceedings of the SIGDIAL 2013 Conference, pages 309–313.

Vogel, C. and Sanchez, L. M. (2015). A hedging annotation scheme focused on epistemic

phrases for informal language. Proceedings of the IWCS Workshop on Models for

Modality Annotation, pages 9–18.

Wagstaff, K. L. (2012). Machine learning that matters. In In Procs of ICML.

WSO2 (2016). Model evaluation measures. https://docs.wso2.com/display/ML100/Model+Evaluation+Measures.

Yeh, A. (2000). More accurate tests for the statistical significance of result differences.

In Proceedings of the 18th Conference on Computational Linguistics - Volume 2,

COLING ’00, pages 947–953, Stroudsburg, PA, USA. Association for Computa-

tional Linguistics.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark:

Cluster computing with working sets. In Proceedings of the 2Nd USENIX Confer-

ence on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA,

USA. USENIX Association.

Page 78 of 78

	Declaration of Authorship
	Summary
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 What Is the Purpose Of This Dissertation?
	1.2 Why Classify Question and Answer Quality?
	1.3 How Successful Was This Dissertation?
	1.4 Roadmap

	2 Related Works
	2.1 Classifying Question Quality
	2.2 Insight into Successful Answers
	2.3 Quality Code, Quality Question
	2.4 Emojis and Hedging Affecting Perception of Quality

	3 Methodology
	3.1 Data
	3.1.1 Where to Find the Dataset?
	3.1.2 What is in the Dataset?
	3.1.3 Why Use this Dataset?
	3.1.4 Managing the Data
	3.1.5 Insights Into The Data

	3.2 Machine Learning
	3.2.1 Supervised Learning
	3.2.2 Data Representation
	3.2.3 Feature Engineering and Extraction
	3.2.4 Preprocessing
	3.2.5 Training and Testing Strategies
	3.2.6 Decision Trees
	3.2.7 Random Forests

	3.3 Methods of Evaluation
	3.3.1 Performance Measures
	3.3.2 Computational Complexity
	3.3.3 Statistical Significance in Machine Learning

	4 Implementation
	4.1 Data Management
	4.2 Machine Learning Pipeline

	5 Results
	5.1 Predicting the Quality of Questions
	5.2 Predicting the Quality of Answers

	6 Evaluation
	6.1 Predicting Quality
	6.2 Evaluation of Methodology
	6.3 Alternative Approaches
	6.4 Further Work

	7 Conclusion
	Bibliography

