
TRINITY COLLEGE DUBLIN

MCS DISSERTATION

Narrative Entity & Relation
Alignment: Structuralist Analysis In

Natural Language Processing

Author:
NEIL HYLAND
Student No. 11511677

Supervisor:
DR. CARL VOGEL

A dissertation submitted in fulfillment of the requirements
for the degree: Integrated Masters In Computer Science

at the
School Of Computer Science & Statistics

Trinity Term (May 2016)

https://www.tcd.ie/
https://www.cs.tcd.ie/Carl.Vogel/
https://www.scss.tcd.ie

i

Declaration Of Authorship
I, Neil Hyland, declare that the following dissertation (“Narrative Entity & Relation
Alignment: Structuralist Analysis In Natural Language Processing”) except where
otherwise stated, is entirely my own work; that it has not previously been submitted
as an exercise for a degree, either in Trinity College Dublin, or in any other Univer-
sity; and that the library may lend or copy it or any part thereof on request.

Signed:

Date:

ii

TRINITY COLLEGE DUBLIN

Abstract
Computer Science Department

School Of Computer Science & Statistics

Integrated Masters In Computer Science

Narrative Entity & Relation Alignment: Structuralist Analysis In Natural
Language Processing

by Neil Hyland

“Structuralist Analysis” is a linguistic approach to understanding text, pioneered
by the French anthropologist Claude Levi-Strauss in the 1960s. It aims to represent
the structure of a text (e.g. a narrative or story) in a formal manner: a table of
data points describing major events in the order they occurred (the rows) and their
shared themes (the columns).

The research undertaken for this work was to devise and implement a possible
set of algorithms or procedures to perform structuralist analysis computationally,
with the desired output being matrices describing the structure of narrative Ele-
ments (events occurring in the text) and Entities (people/places/things etc. . .). This
was achieved with a four-stage process: where Elements were generated from the
text (1), then processed using the K-Means statistical clustering algorithm to ap-
proximate the aforementioned thematic grouping (2), Entities were generated from
mentions in the text (3), and then all Element and Entity data is combined into an
output form of a two-dimensional matrix in the style of Lévi-Strauss’ original ta-
ble approach, and a three-dimensional spatial matrix representing the position and
alignment of Entities relative to the Elements they were found in (4).

The findings of this work can be summarised as follows: computationally imple-
menting structuralist analysis is feasible, and with further development could yield
a new and different approach to modelling text data for the purposes of comparison,
aggregation, summarisation or other use.

HTTPS://WWW.TCD.IE/
https://www.scss.tcd.ie

iii

Acknowledgements
I would like the give special thanks to my project supervisor: Dr. Carl Vogel, for

providing the dissertation topic and supporting my investigation of it.

iv

Contents

Declaration Of Authorship i

Abstract ii

Acknowledgements iii

List Of Figures vi

List Of Abbreviations vii

1 “SUMMARY & JUSTIFICATION” 1
1.1 Introduction . 1
1.2 Problem Domain . 2
1.3 Structuralism In Linguistics . 2
1.4 Structuralist Analysis . 3
1.5 Aims . 5
1.6 Potential Uses . 6
1.7 Report Structure . 7

2 “STATE OF THE ART” 8
2.1 Background Research . 8

2.1.1 Structural Anthropology . 8
2.1.2 The Raw & The Cooked . 9
2.1.3 Introduction To The Structuralist Analysis Of Narrative 9
2.1.4 Modelling Propp & Lévi-Strauss In A Meta-Symbolic Simulation

System . 9
2.2 Available Tools . 10

2.2.1 Stanford CoreNLP . 10
2.2.2 Apache OpenNLP . 10
2.2.3 GATE . 11
2.2.4 Apache UIMA . 11
2.2.5 NLTK . 12

2.3 Expected Requirements For System . 13
2.4 Tool Selection . 15

2.4.1 Ease-Of-Use . 15
2.4.2 Complexity . 16
2.4.3 Functionality . 17
2.4.4 Final Choice . 17

v

2.5 Stanford CoreNLP (In Detail) . 18

3 “THE APPROACH” 20
3.1 Overview . 20

3.1.1 Narrative Elements . 20
3.1.2 Narrative Entities . 21
3.1.3 High-Level Process Description 21

3.2 Element Extraction . 22
3.3 Element Grouping . 25

3.3.1 K-Means Clustering With Cosine Similarity 26
3.3.2 Computing Similarity With Verb Frequencies 27
3.3.3 Computing Similarity With Weighted Verb/Adjective Frequencies . 28

3.4 Entity (Named/Mention) Extraction 29
3.4.1 Narrative Entity Creation With Named Entities 29
3.4.2 Narrative Entity Creation With Co-References (Mentions) 30
3.4.3 Merging The Named Entity/Co-Reference Approaches 31

3.5 Matrix Creation (Post-Processing On The Datasets) 32
3.6 Matrix Organisation . 33

3.6.1 2D (Element) Matrix . 33
3.6.2 3D (Entity) Matrix . 34

3.7 Comparison Investigation . 35
3.7.1 Column Matching . 36
3.7.2 Column Scoring . 37

3.8 Evaluation . 37

4 “NOTES ON THE IMPLEMENTATION” 39
4.1 Architecture . 39
4.2 Utility Framework & Supporting Libraries 41
4.3 CoreNLP Data Extraction . 43
4.4 Element, Entity & Mention Extraction 46
4.5 Clustering . 49
4.6 Matrices & Output/Presentation . 56
4.7 System Review . 57

5 “OUTCOME & REFLECTION” 59
5.1 Results . 59
5.2 Problems Encountered . 64
5.3 Future Work . 65
5.4 Conclusion . 66

A “EXAMPLE TEXTS” 67

B “EXAMPLE OUTPUT” 68

Bibliography ix

vi

List Of Figures

1.1 Mytheme example by Lévi-Strauss. 4

2.1 CoreNLP architecture [Manning et al., 2014]. 19

3.1 Initial idea for narrative Element. 20
3.2 Initial idea for narrative Entity. 21
3.3 Element extraction process flow. 22
3.4 Element creation from sentence (stages). 23
3.5 Using lemmas to generalise important words. 24
3.6 Element grouping process flow. 25
3.7 Frequency vector & cosine similarity example. 28
3.8 Mention (co-reference) extraction & Entity creation. 30
3.9 Combined NER and CRA system for creating narrative Entities. . . . 31
3.10 Result datasets to matrices. 32
3.11 Mock-up of 2D Element Matrix. 33
3.12 Mock-up of 3D Entity Matrix. 34

4.1 System architecture overview. 40
4.2 Guava features used in system. 41
4.3 Java GUI front-end screenshot. 42
4.4 CoreNLP data layout. 43
4.5 K-Means implementation. 49
4.6 Output of matrix data to file(s). 56

5.1 Raw Element data examples. 59
5.2 2D Element Matrix example (indices only). 60
5.3 2D Element Matrix example (verbs only). 61
5.4 Raw Entity data examples. 62
5.5 3D Entity Matrix example (plotted with GNUplot). 63

vii

List Of Abbreviations

NLP Natural Language Processing
SA Structuralist Analysis
NER Named Entity Recogniser (Recognition)
CRA Co-Reference Analysis
POS Part-Of-Speech
API Application Programming Interface
IDE Integrated Development Environment
ML Machine Learning
UI User Interface
GUI Graphical User Interface

viii

Dedicated to my parents, who saw fit to entertain the
prospect of me spending a fifth year in college, chasing a
slightly more prestigious qualification than a Bachelors

Degree. . .

1

Chapter 1

“SUMMARY & JUSTIFICATION”

This chapter outlines the problem domain of “structuralist analysis” pertaining to
natural language text processing and the goals of using such an approach when
analysing text.

1.1 Introduction

This dissertation intends to explore usage of the linguistic/anthropological tech-
nique of structuralist analysis (abbreviation: “SA”) as a computational model for rep-
resenting the underlying structure of processed text (i.e. the “narrative” or “story
flow” of a piece of text; the arrangement of events and corresponding entities).

This notion (SA) has existed as a form of scholarly analysis of myth, folklore and
prose since the 1960s, and has historically been performed by hand to define the
resultant structure of a text. Attempting to model some way of performing SA com-
putationally is a non-trivial problem when dealing with the complexity of human
language and the myriad of possible forms of narrative structure.

The following sections describe the field of SA in detail, providing a background
in the analytical technique: what it is, how it’s performed traditionally, what’s the
use of automating such an approach, and (if SA proves to be feasible computation-
ally) what can such an approach be used for in the wider world of computer science
and industry?

It is important to note that – as mentioned above – SA is an open, non-trivial
problem. There may not exist a satisfiable solution to performing SA today, but the
work this dissertation represents should be considered a step forward in attempting
it.

Chapter 1. “SUMMARY & JUSTIFICATION” 2

1.2 Problem Domain

The Oxford Dictionary Of Philosophy defines structuralism as “the belief that the
phenomena of human life are not intelligible unless except through their interre-
lations. These relations constitute a structure, and behind local variations in the
surface phenomena there are constant laws of abstract culture.” [Blackburn, 2008]

Structuralism as a concept exists in many forms across different academic disci-
plines, from psychology to sociology and anthropology. The single common facet of
structuralism across these fields is the focus on understanding the fundamental com-
ponents of a “structure” – be it social, literary or even biological – and their inter-
relations. This presents the uninformed reader with a somewhat daunting plethora
of possible interpretations/definitions of structuralism given by different disciplines.

To avoid confusion, the concept of structuralism explored in this dissertation be-
longs to the field(s) of linguistics and anthropology. That is, structuralism refers to
understanding the “structure” of human language (and by extension, human cul-
ture).

Furthermore, the primary source for this definition of structuralism is the French
anthropologist Claude Lévi-Strauss, whose seminal work Structural Anthropology
forms the basis for the practice of “structuralist analysis” (SA) in this dissertation.
Lévi-Strauss’ techniques for SA will be explored in Section 1.4, and a literature re-
view of his work is presented in the next chapter: Section 2.1.

For all intents and purposes, structuralism and its application SA represent the
problem domain of this dissertation.

1.3 Structuralism In Linguistics

Linguistic structuralism concerns itself with the sentence as its fundamental unit of
discourse – as opposed to traditional linguistics which examines the elements that
comprise words and their arrangement in said sentences. The idea behind this ap-
proach is that, fundamentally, a story (or other text-based work) is a collection of
sentences upon which some form of narrative structure is imposed.

Chapter 1. “SUMMARY & JUSTIFICATION” 3

“Structuralist analysis” of language is based on linguist Ferdinand de Saussure’s
study of the underlying system of language (the “langue”) as opposed to the use of
language (the “parole”) [de Saussure and Riedlinger, 1983]. The most important
idea of de Saussure’s work is that words cannot be understood outside of their con-
text. Structuralists then, generally view the aforementioned system of language in
terms of sentences, only dipping back into sub-sentence analysis to extract impor-
tant concepts and entities within the given text.

In this way, structuralism is used to examine the context of a body of text (a sto-
ry/essay/report etc. . .) and aims to achieve greater understanding through both
analysing the structure (the system or “langue”, to use de Saussure’s earlier notion)
of the text, and also perform comparisons with different versions of the same text,
perhaps even extending it to compare similarities/differences between wholly dif-
ferent texts.

1.4 Structuralist Analysis

The anthropologist Claude Lévi-Strauss developed the idea of structuralism from de
Saussre’s work, himself even coining the term. He turned his study to the mytholo-
gies and folklore of the world, and sought to understand the “common language”
of myth, by attempting to compare myths from one or more cultures for similar pat-
terns or recurring concepts. In this way, myth or story is considered as a collective
whole, rather than fixating on narrow elements within a single tale.

The linguistic nature of his analysis led him to extend the classical units of lan-
guage, the original. . .

• “Phonemes” (simple sounds, e.g. letters).

• “Morphemes” (basic elements of grammar).

• “Lexemes/Sememes” (words).

Were complemented with a new linguistic construct, the. . .

• “Mytheme” (basic element of myth/story/narrative).

This was conceived by Lévi-Strauss as a derivation from the existing units (Phonemes,
Morphemes, Lexemes) [Lévi-Strauss, 1963] so that now individual grammatical units

Chapter 1. “SUMMARY & JUSTIFICATION” 4

compose words, said words compose sentences, said sentences compose Mythemes,
and these Mythemes describe the structure of the narrative.

These Mythemes are arranged by sequence and similarity into a matrix structure,
ordered horizontally and vertically, respectively, upon which one can see the po-
tential for performing operations over several of such matrices (e.g. comparison,
aggregation etc. . .). Below is an example of the matrix-based/tabular Mytheme lay-
out using the story of Oedipus Rex...

FIGURE 1.1: Mytheme example by Lévi-Strauss.

“We thus find ourselves confronted with four vertical columns, each of which in-
cludes several relations belonging to the same bundle. Were we to tell the myth, we
would disregard the columns and read the rows from left to right and from top to
bottom. But if we want to understand the myth, then we will have to disregard one
half of the diachronic dimension (top-to-bottom) and read from left-to-right, column
after column, each one being considered as a unit.” [Lévi-Strauss, 1963]

Chapter 1. “SUMMARY & JUSTIFICATION” 5

To simplify:

• The output of such a process (SA) can be treated as a table or matrix of narra-
tive elements (in this case Mythemes).

• The narrative elements are ordered vertically by order of appearance in the
text, and horizontally by general “theme” or category (see in Figure 1.1 the
grouping of “killing” events together as an example).

• As can also be seen in Figure 1.1, each row comprises a single element (Mytheme).
Do however note that the rightmost column is not part of the table/matrix –
merely some notes on the text.

The sequential ordering of each row can be generated by iterating over the sen-
tences in order of when they appear during Mytheme construction (i.e. the chrono-
logical order). The similarity ordering (“thematic” grouping) of the columns is a
more complex problem for a computational system however, as in the example
given the categories are derived from academic study of the myth.

The main hurdle of the dissertation is how to produce analytical output compa-
rable to a scholar’s study of the same corpus (body of text). Lévi-Strauss’ examples
given in his books are the results of careful – more importantly: human – thinking.
To simulate or approximate this study is not a straightforward solution.

1.5 Aims

With Lévi-Strauss’ process in mind, the aims of dissertation can be summarised as
follows. . .

• Investigate the possibility of performing SA computationally.

• Develop an approach, process or set of algorithms to enable a practical imple-
mentation of SA.

• Attempt to implement the described process using existing language process-
ing tools and other computational techniques.

• Evaluate the attempt(s) made and discuss the potential for future work.

Chapter 1. “SUMMARY & JUSTIFICATION” 6

1.6 Potential Uses

Structuralism deals with understanding and reasoning about the underlying struc-
ture of text (be it myth/story/essay etc...). Imbuing language processing tools with
the ability to compute and reason about the structure of text on a more abstract level
not only improves formal analysis, but has a number of more general uses in text
aggregation and comparison systems.

There are a number of potential areas that such a novel (to computer science and
natural language processing) technique might benefit. At the core of all of these ap-
plications is the potential for structural comparison, i.e. algorithms for comparing
and contrasting the data generated from SA. Should SA prove to be feasible, it is
entirely possible future research could yield such comparison systems. Below are
some examples, along with relevant justifications. . .

RECOMMENDER SYSTEMS:

Using Lévi-Strauss’ SA techniques to model the structure of processed text can
potentially be used to compute the structural similarity of different texts. Imple-
menting such a system in – say – an e-book marketplace could provide recommen-
dations or suggestions on structurally similar stories, comparing texts not just on
tagged metadata like theme or genre.

AGGREGATION SYSTEMS:

Modelling the structure of analysed text(s) can be used in aggregation systems
to better identify similarities between texts. Gathering structurally similar articles
on a topic for a person who prefers to read text written with a certain (structural)
layout is one example application.

SUMMARISATION SYSTEMS:

In a similar manner to aggregation, document summarisation techniques could
also benefit from SA-generated data. One may use the structural data as a frame-
work or guide to help generate automated summaries or abridgements of text.

Chapter 1. “SUMMARY & JUSTIFICATION” 7

1.7 Report Structure

The remainder of this dissertation write-up is structured as follows: the second
chapter provides a brief literature review of the main texts behind structuralism and
structuralist analysis. The same chapter also details the available natural language
processing tools, what is required from them for conducting this dissertation re-
search, how were they compared/contrasted, and a more detailed explanation of
the final tool(s) selected.

The third chapter describes in detail the SA approach developed from a theoret-
ical perspective (no real code or implementation details, only high-level processes).
The fourth chapter describes relevant parts of the practical implementation of the
SA approach from the third chapter.

Finally, the fifth chapter provides some results and discussion thereof. The work
done is evaluated against the aims specified in chapter one. Additionally, problems
encountered, limitations of the approach/design, and potential future work is ex-
plored before concluding.

8

Chapter 2

“STATE OF THE ART”

This chapter provides an overview of the key texts of structuralism pertaining to
Lévi-Strauss’ analytical process, the requirements initially derived from the problem
domain for this dissertation, and the process of examining and selecting suitable
tools/libraries to use in satisfying the aforementioned requirements.

2.1 Background Research

In order to acquire a working knowledge of structuralism and related linguistic anal-
yses, several major books in the field were sourced. Some to provide the theoretical
grounding in structuralism, others to aid in developing a practical application of sto-
ry/narrative analysis. The following section provides a brief background on these
texts. . .

2.1.1 Structural Anthropology

Lévi-Strauss’ primary text on structuralism, Structural Anthropology covers a variety
of topics relating to language, culture, art and myth – documenting the perspective
of SA (“structuralist analysis”) on each of those. The section of this book most rele-
vant to the dissertation project is Part 3: where mythology and religion are subjected
to his analyses [Lévi-Strauss, 1963].

The basic framework of his approach (discussed in Section 1.4) is detailed in said
part(s) – the Mytheme, organising Mythemes into matrices, and deriving the structure
of the underlying mythic/narrative language from that. Thus this book formed the
primary area of background research, as Lévi-Strauss’ entire process is described
within.

Chapter 2. “STATE OF THE ART” 9

2.1.2 The Raw & The Cooked

This book by Lévi-Strauss applies his structuralist ideas to a case study of Amerindian
mythology and folklore, mainly the relationship between cultural concepts of food
and language [Lévi-Strauss, 1969]. In this book he applies de Saussure’s earlier
techniques of structural linguistics to his analysis of the tribal stories. The study of
these myths provide a good example of the process of structuralist analysis (SA).

2.1.3 Introduction To The Structuralist Analysis Of Narrative

The post-structuralist Roland Barthes’ essay on narrative analysis brings together a
number of linguists’ work on understanding story and presents a combined process
for approaching narrative [Barthes, 1975].

Although Barthes’ work dates from a much later period in linguistics (one where
structuralism has largely been superseded) his retrospective of previous forms of
analysis lend additional context to the structuralism of Lévi-Strauss.

2.1.4 Modelling Propp & Lévi-Strauss In A Meta-Symbolic Simula-

tion System

A paper published by the University Of Wisconsin in 1974 details attempts to trans-
fer some of the ideas of Lévi-Strauss and the linguist Vladimir Propp to an abstract
system for performing computation and logical reasoning [Klein et al., 1974].

This paper is the closest previous work to the concept of implementing Lévi-
Strauss’ analyses in computational systems – though aimed at generating myths
from a set of linguistic rules instead of applying linguistic analyses to myths. That
being said however, it does provide extra insight into the structuralism of Lévi-
Strauss and how such analysed myths and legends are reduced to abstract rule sets
and basic structural concepts.

Chapter 2. “STATE OF THE ART” 10

2.2 Available Tools

In order to build a system for performing SA, existing natural language processing
(abbreviation: “NLP”) tools needed to be researched and evaluated, as the informa-
tion required for performing SA is generated through existing NLP processes.

Each of these tools/libraries were considered for the project. In the end, CoreNLP
was chosen as the best tool to build the analyser system atop (evaluation and final
selection is discussed later in Section 2.4).

2.2.1 Stanford CoreNLP

The Stanford CoreNLP toolkit is a suite of Java-based linguistic analysis tools de-
signed to be easily configurable with a range of possible functionality. The toolkit
primarily operates on plain text – though with additional parser setup XML-formatted
data is readable.

“[CoreNLP] can take raw human language text input and give the base forms of
words, their parts of speech, whether they are names of companies, people, etc. . . ,
normalize and interpret dates, times, and numeric quantities, mark up the structure
of sentences in terms of phrases or word dependencies, and indicate which noun
phrases refer to the same entities. . . Its analyses provide the foundational build-
ing blocks for higher-level and domain-specific text understanding applications.”
[Stanford, 2016]

CoreNLP is provided as a set of Java libraries (.JAR files) representing the natural
language processor along with the models each algorithm was trained with. It’s
usage is possibly the simplest of all the examined tools: create a pipeline object,
configure it with desired tasks, then execute over a set of input data (text). Further
details on CoreNLP are provided in Section 2.5.

2.2.2 Apache OpenNLP

The Apache NLP toolkit is a competitor to CoreNLP known as OpenNLP, similarly
distributed as a Java library. “It supports the most common NLP tasks, such as to-
kenisation, sentence segmentation, part-of-speech tagging, named entity extraction,

Chapter 2. “STATE OF THE ART” 11

chunking, parsing, and co-reference resolution.” [Apache, 2011–2014]

OpenNLP execution is slightly more cumbersome than CoreNLP: each task re-
quires a model (algorithm) object to be initialised and passed the input data. This
is a far less “out-of-the-box” approach compared to CoreNLP, which executes all
desired NLP tasks in one pass, but nonetheless flexible.

2.2.3 GATE

GATE (“General Architecture for Text Engineering”) is a collective framework of
language processing tools available in a number of different forms. GATE is pro-
vided as an IDE (integrated development environment), a collaborative web app,
a cloud platform, a Java library (“GATE Embedded”) and even an abstract model
for describing “robust and maintainable services” (i.e. language processing archi-
tecture) [Cunningham et al., 2011].

The version of GATE most applicable to the dissertation topic is the GATE Em-
bedded Java library [GATE, 1995-2015], which provides a wider range of features
than CoreNLP or OpenNLP. As well as CoreNLP and OpenNLP’s functionality,
some of the more advanced GATE features include. . .

• Specialised Data Structure Modelling.

• Visualisation.

• Machine Learning Framework Integration.

• Gazetteer tools (looking-up real-world definitions of places or concepts for ad-
ditional context during analysis).

GATE actually implements OpenNLP internally, so when considering OpenNLP
the decision was made to instead evaluate the combined OpenNLP/GATE suite
against the other options.

2.2.4 Apache UIMA

The UIMA project (“Unstructured Information Management Architecture”) is an-
other open-source offering from Apache for language processing. Unlike CoreNLP
or OpenNLP (which are single libraries one can plug into a Java program) UIMA

Chapter 2. “STATE OF THE ART” 12

provides a general framework for the management and execution of unstructured
(read: linguistic) information processing [Apache, 2006–2015].

UIMA is divided into three elements: “Frameworks”, “Components” and “In-
frastructure”. Frameworks comprise UIMA’s Java and C++ language implementation
and their interoperability, in addition to the high-level architecture of the UIMA sys-
tem. Components encompass the individual processing tools like annotators or infer-
ence systems. Finally, Infrastructure gathers together to management systems and
server platforms for execution [Apache, 2008].

As UIMA is more a gel for binding existing toolkits together into a single plat-
form, for instance OpenNLP and GATE are compatible with UIMA workflows.
Whether or not such an architectural system is useful given the scope of the dis-
sertation project is discussed in Section 2.4.

2.2.5 NLTK

NLTK (“Natural Language Tool-Kit”) is a Python-based NLP library designed for
research and education in linguistics, cognition, artificial intelligence and machine
learning “with a suite of text processing libraries for classification, tokenisation,
stemming, tagging, parsing, and semantic reasoning, [and] wrappers for [other]
industrial-strength NLP libraries.” [Bird, Klein, and Loper, 2009] NTLK was con-
sidered as an alternate to the primarily Java-based CoreNLP and OpenNLP/GATE.

Chapter 2. “STATE OF THE ART” 13

2.3 Expected Requirements For System

The overall goal: to design some form of SA (“structuralist analysis”) system within
the time constraints of the dissertation period, gave rise to a number of expectations
that were then formalised as general requirements.

The choice of library to develop the SA system with introduced the need for de-
sign requirements that each potential tool had to be evaluated against. These were
not hard, technical criteria – more a set of rules of thumb to avoid spending too
much time pursuing the wrong approach or learning the wrong functionality in the
chosen library.

Thus, some key areas that needed to be examined were specified:

• Ease-Of-Use (i.e. is the tool easy to configure, execute and retrieve data from?).

• Complexity (i.e. is the tool understandable, is there room for extension or
modification?).

• Functionality (i.e. does the tool offer the necessary features that are expected
to factor into the process of SA?).

Each of these areas acted as a guiding category for evaluating the third-party
libraries mentioned in Section 2.2 (CoreNLP, OpenNLP, NLTK etc. . .). Whichever
tool satisfied enough of each category would be chosen as the base for the practical
implementation.

A second consideration arose regarding the specifics of the SA approach: what
data would be necessary, what algorithms would be needed, what platform and/or
programming language best supported this?

From the onset, it was known that any forms of NLP related to the following
information would be necessary:

• Sentence Annotation (splitting sequences of tokens into sentences).

• Part-Of-Speech & Quotation Annotation (“POS”, recognising quotes or pas-
sages of spoken dialogue).

• Lemma Annotation (generating canonical meanings for each word/token).

Chapter 2. “STATE OF THE ART” 14

• Named-Entity Recognition (“NER”, identifying individuals, places, concepts
by name in the text).

• Co-Reference Analysis (“CRA”, identifying multiple expressions referring to
the same “thing”).

• Mention Analysis (using the NER or CRA processes to build a list of “men-
tions” i.e. mapping references to entities).

The data types produced from these procedures comprise the rough set of inputs
that a SA system would (conceivably) be required to operate over. Whether any of
the third-party tools could supply all the desired data is discussed in the next sec-
tion (2.4).

Additionally, the programming language used to develop the SA implementa-
tion must be considered. Not just a syntactic preference – the availability of extra
third-party libraries pertaining to algorithms, data structures or just plain old usabil-
ity improvements is an important concern. As both Java (for CoreNLP, OpenNLP
and GATE) and Python (for NLTK) have plenty of open-source libraries for statistics,
machine learning, algorithms and specialised data structures, this doesn’t present as
big a problem when compared to other, less-rich programming language environ-
ments.

As has been mentioned earlier, these initial design requirements are not to be
taken as a final, strict set of criteria. They instead should be seen as a loose set of
guidelines for choosing the right tool(s) for achieving the aims of this dissertation
set out in Section 1.5.

Chapter 2. “STATE OF THE ART” 15

2.4 Tool Selection

Each of the mentioned third-party libraries was compared based on the three given
categories in Section 2.3: Ease-Of-Use, Complexity, and Functionality. The decision
was made to go with Stanford’s offering (CoreNLP) at the end. The reasons for
doing so are elaborated in this section, but first: a write-up of the pros and cons of
each tool. . .

2.4.1 Ease-Of-Use

ADVANTAGES (CORENLP):

• Easy to setup & configure (simple pipeline options to enable/disable features).

• Information can be retrieved per-document or per-sentence (maps easily to the
concept of Mytheme generation).

DISDVANTAGES (CORENLP):

• If running with many features enabled, performance and memory consump-
tion is excessive.

ADVANTAGES (OPENNLP/GATE):

• Easy-to-modify standalone classes per parser/analyser structure.

• Most of the same functionality of CoreNLP, with similar concepts behind them.

• GATE provides an IDE to learn about functionality as well as embedded Java
library.

DISADVANTAGES (OPENNLP/GATE):

• Cannot easily access base OpenNLP components when using the GATE tools,
hampering flexibility.

• Limited documentation for OpenNLP on some of the features listed as an ex-
pected requirement (Section 2.3).

ADVANTAGES (NLTK):

• Simple API for performing analyses.

• Python more flexible than Java when programming.

DISADVANTAGES (NLTK):

• Less familiarity with Python brings a greater learning curve to usage.

Chapter 2. “STATE OF THE ART” 16

2.4.2 Complexity

ADVANTAGES (CORENLP):

• Lots of parsing & analytical steps performed in a single function call.

• Can be treated as more of a “black box”, i.e. provide input, expect output with
no need to worry about the internals.

• Consistent, system-wide format for output data.

DISDVANTAGES (CORENLP):

• Any problem encountered with features not easily solvable without deep code
inspection & refactoring.

• Somewhat counter-intuitive (at first) method for retrieving data.

ADVANTAGES (OPENNLP/GATE):

• Functionality implemented in a layered system, different analytical processes
running atop one another (easy to understand).

• Extensive documentation for GATE processes (not OpenNLP however).

DISADVANTAGES (OPENNLP/GATE):

• Harder to implement some analyses in OpenNLP (requires special configura-
tion to target specific algorithm unless using GATE).

• GATE systems more complex to configure & execute, output data also not uni-
formly organised.

ADVANTAGES (NLTK):

• Accompanying book for learning the system & providing examples.

• Python API simple to read and try out.

DISADVANTAGES (NLTK):

• Dealing with the Python language’s idiosyncrasies may affect implementation
if unfamiliar.

Chapter 2. “STATE OF THE ART” 17

2.4.3 Functionality

ADVANTAGES (CORENLP):

• Satisfies all of the initial expected requirements (Section 2.3).

DISDVANTAGES (CORENLP):

• Lacks the greater variety of functionality expressed by GATE (although may
not be very useful).

ADVANTAGES (OPENNLP/GATE):

• Satisfies most (if not all) of the initial expected requirements.

DISADVANTAGES (OPENNLP/GATE):

• Additional GATE tools unusable as library (e.g. GATE Embedded provides no
GUI or visualisation system), reducing its distinctiveness from CoreNLP.

• Have to manually create, configure & execute components for performing dif-
ferent analyses.

ADVANTAGES (NLTK):

• Satisfies most of the initial expected requirements (similar to OpenNLP/GATE).

DISADVANTAGES (NLTK):

• Have to manually create, configure & execute components for performing dif-
ferent analyses (similar problem to OpenNLP/GATE).

2.4.4 Final Choice

All three main third-party libraries (CoreNLP, OpenNLP/GATE and NLTK) proved
to be able to support many features needed for implementing SA. This meant that
personal preference for programming language, method of utilisation and docu-
mentation factored into the selection as much as any technical concerns. The toolkit
finally chosen was Stanford’s CoreNLP suite, as it provided all of the necessary func-
tionality in the form most suitable to the existing skill set of the author.

Chapter 2. “STATE OF THE ART” 18

INTEGRATING UIMA?

The other tool examined: Apache UIMA, was considered as a framework for
managing any/all subsystems used to perform SA. It was apparent that in a more
formally-designed scenario, using UIMA as a management system for a SA tool
would be beneficial. However, as the nature of this dissertation is an open investiga-
tion into applying SA computationally, such a formal design could not be conceived
of at the onset. As such, UIMA was left out of the selection.

2.5 Stanford CoreNLP (In Detail)

CoreNLP provides a set of specialised text annotators through a pipeline API. That
is: a singular object representing the NLP system that is configured once with the
desired annotator options, then executed over text data (extracted from file or other
sources). Each of these annotators are described below [Manning et al., 2014]:

• “tokenize” (divides the text into a sequence of tokens).

• “cleanxml” (removes any XML tags from input text).

• “ssplit” (splits & groups the token sequences into a sequence of sentences).

• “truecase” (determines the correct case information for text).

• “pos” (labels tokens with their “Part-Of-Speech”).

• “lemma” (generated the base – canonical – forms of tokens).

• “gender” (adds possible gender flags to names).

• “ner” (recognises named entities in the text, e.g. nouns).

• “regexner” (implements named-entity recognition over tokens with regular
expressions).

• “parse” and “depparse” (performs syntactic analysis and dependency pars-
ing).

• “sentiment” (sentiment analysis of text).

• “dcoref” and “hcoref” (implements mention detection and co-reference anal-
ysis).

Chapter 2. “STATE OF THE ART” 19

Each of these annotators can be enabled/disabled depending on use case.

FIGURE 2.1: CoreNLP architecture [Manning et al., 2014].

From the available annotators, “Part-Of-Speech” (POS), “Named-Entity Recog-
nition” (NER), “Lemma”, Sentence (“ssplit”) and “Co-Reference Analysis” (CRA)
are the most important to this dissertation.

20

Chapter 3

“THE APPROACH”

This chapter details the theoretical portion of the dissertation – that is, the algorith-
mic and procedural approach to creating a SA system using current NLP tools.

3.1 Overview

In developing this approach to SA, two key concepts were defined, representing the
resultant object/data types created by the analysis. The follow subsections explain
these concepts, and provide a high-level overview of the SA process. . .

3.1.1 Narrative Elements

An “Element” in this system represents a sentence-level narrative event or event(s).
A more low-level analogue to the Mytheme of Lévi-Strauss’ process – where – instead
of a small number of abstracted narrative points, a larger number of these Elements
are used to represent the story structure.

FIGURE 3.1: Initial idea for narrative Element.

From the onset, it was deemed necessary to reduce in complexity and sophisti-
cation the original Mytheme concept, with the potential for aggregating them into
larger representational objects if the approach proved feasible. Section 4.4 goes into
further detail on the make-up of Elements and their data.

Chapter 3. “THE APPROACH” 21

3.1.2 Narrative Entities

An “Entity” (as per the name) represents some person, place or thing involved in
the events of the text. Entities are the counterpart to narrative Elements in the text,
as Entities are arranged in relation to the Elements (read: sentences/events) they are
part of.

FIGURE 3.2: Initial idea for narrative Entity.

Initially, two NLP techniques were considered to provide input to Entity creation:
“Named-Entity Recognition” (NER) and “Co-Reference Analysis” (CRA). The pros
and cons of both approaches are discussed in Section 3.4, along with implementation
details of Entity creation in Section 4.4.

3.1.3 High-Level Process Description

The approach to Lévi-Strauss’ analysis may be broken into several phases. . .

• “Pre-Process” (apply existing NLP tools to corpus).

• “Analysis” (consume data from Pre-Process phase and perform SA – several
sub-steps involved).

– Extract information from NLP output.

– Build datasets of co-references, mentions or named-entities (narrative En-
tities).

– Select useful sentences for Element creation.

– Construct narrative Element dataset.

– Build matrix of narrative Element/Entities from extracted datasets.

– Repeat for all corpora.

• “Post-Process” (collect and tidy the information generated in the Analysis phase).

Chapter 3. “THE APPROACH” 22

As mentioned earlier in Section 1.4, the final output of this process is a multi-
dimensional (matrix) representation of the structural elements of the text. This is
not the sole possible output however, and other forms of result data are discussed
in Section 4.6.

The Pre-Process phase primarily consists of feeding input data from an existing
tool (CoreNLP) into the Analysis and Post-Process phases. As such, one can assume
the data used as input in the processes described in subsequent sections of this chap-
ter as readily available and ready for analysis.

3.2 Element Extraction

The creation (or “extraction”) of narrative Elements from the pre-processed corpus is
described with the following diagram. . .

FIGURE 3.3: Element extraction process flow.

Chapter 3. “THE APPROACH” 23

Figure 3.3 shows the high-level approach to extracting text Elements from CoreNLP’s
output annotations. The relevant annotations are:

• Sentence (treats the corpus as a set of sentences – not a single body of text – for
the purpose of iteration).

• Part-Of-Speech (“POS”: identifies important words in sentences, namely verbs
and adjectives, which indicate the presence of important narrative features).

• Lemma (provides the canonical – i.e. tense-less – version of important words
identified by the POS annotations).

Elements are constructed from so-called “candidate” sentences, i.e. those which
contain possibly important word types (such as verbs or adjectives). A sentence is
ignored (or rejected) if it’s merely a “fragment”, i.e. containing no verbs, adjectives
or other indicators of narrative events/actions. The POS annotations [Toutanova et
al., 2003] are used to check if such words exist or not, and thus determine whether
each sentence is a candidate or a fragment.

FIGURE 3.4: Element creation from sentence (stages).

Once processed, a candidate sentence is used to create a new narrative Element.
The idea behind this hinges on the fact that the structure of a narrative (or similar
piece of text) is defined by the events and actions contained within. So Elements are
created from sentences where action occurs to advance the narrative, better simpli-
fied as: where verbs are present, or “where things happen”.

The index of the candidate sentence used to create an Element is also noted, as
this is a useful value for ordering the resultant data. As per Lévi-Strauss’ descrip-
tion of SA, our lower-level Mytheme-analogues (the narrative Elements) are laid out
in ascending order, mirroring the order of events in the text. The second part of Lévi-
Strauss’ approach – grouping of mechanically- or thematically-related Elements, which
accompanies sequential ordering – is explained in Section 3.3.

Chapter 3. “THE APPROACH” 24

FIGURE 3.5: Using lemmas to generalise important words.

Finally, it is important to note that the tenses of the “important” words are dis-
regarded. Using the Lemma annotation produced by CoreNLP, the dictionary form
of each word can be stored, enabling a degree of uniformity across Element data.
This is used in later steps once Elements start to be compared based on verbs (and
sometimes adjectives) contained.

Chapter 3. “THE APPROACH” 25

3.3 Element Grouping

The grouping (or “clustering”) of narrative Elements generated from the previous
step is described with the following diagram. . .

FIGURE 3.6: Element grouping process flow.

Chapter 3. “THE APPROACH” 26

Figure 3.6 shows the use of statistical clustering to generated “groups” of Ele-
ments. In this case a set of n Elements are clustered into a superset of m “Element
Groups”. The following sections explain the process in more detail. . .

3.3.1 K-Means Clustering With Cosine Similarity

The process of grouping is achieved through the use of statistical clustering algo-
rithm(s) over the Element data. K-Means was chosen as the desired algorithm due to
its ubiquity in statistical computing. Applying K-Means clustering to the Elements
generated from the previous stage creates a rough approximation of the grouping
of like Mythemes in SA, albeit on a much lower (simpler) level. From these clusters
the columns of the resultant matrix/table can be derived.

K-Means [Macqueen, 1967] is an unsupervised learning algorithm that takes an
input dataset, specified target number of clusters (to assign data points to), and a
target number of iterations. A simple example of its execution is presented below:

1. Place k points into the space represented by the data point being clustered.
These are the initial group centroids.

2. Assign each data point to the group with the closest (shortest calculated dis-
tance) centroid.

3. When all data points are assigned to the k centroids, recalculate their positions.

4. Repeat steps 2 & 3 until the centroids are no longer moving. This provides a
set of partitioned data where each data point is assigned to one (and only one)
centroid – from which groups can be labelled.

Typically, K-Means is used to cluster spatial data (points, vectors, etc. . .). How-
ever, it is not restricted to that particular type. Figure 3.6 shows a different approach,
where – when two Elements are being compared for likeness – the stored verb (and
adjective) data is used to create “frequency vectors”.

These frequency vectors represent the number of occurrences of the aforemen-
tioned “important” words (verbs/adjectives) between the two Element word sets.
Instead of using a Euclidean distance calculation between spatial vectors as the com-
parison system between Elements in K-Means, the cosine similarity between the fre-
quency vectors is computed. This allows the clustering of non-spatial data.

Chapter 3. “THE APPROACH” 27

“Cosine similarity of two vectors is computed by dividing the dot product of the
two vectors by the product of their magnitudes. The cosine of the angle between the
vectors ends up being a good indicator of similarity because at the closest the two
vectors could be – 0 degrees apart – the cosine function returns its maximum value
of 1. It’s worth noting that because we are calculating similarities and not distances,
the optimisation objective in this function is not to minimize the cost function, or
error, but rather to maximize the similarity function.” [Zong, 2013]

Use of cosine similarity in K-Means has historically been applied alongside tf-
idf weighting (otherwise known as “term-frequency inverse-document-frequency”),
which produces multidimensional data from the entire text for document clustering
[Balabantaray, Sarma, and Jha, 2015]. The approach detailed in this dissertation
discards this notion, instead performing the similarity computation between the fre-
quency vectors derived from narrative Elements during the K-Means process.

3.3.2 Computing Similarity With Verb Frequencies

The first – naïve – approach to similarity calculation takes only the verb sets from
the two input Elements:

1. Retrieve set of verbs A from Element a, where A 6= ∅.

2. Retrieve set of verbs B from Element b, where B 6= ∅.

3. Create set C, where C = A ∪ B.

4. C must not be ∅, if it is⇒ return 0 (i.e. no similarity).

5. Create vectors x and y, where [length(x) = length(y) = size(C)]. These are the
so-called frequency vectors of the Element verb sets.

6. Count frequencies of verbs in set A, storing results in corresponding offsets of
vector x.

7. Count frequencies of verbs in set B, storing results in corresponding offsets of
vector y.

8. Compute cosine similarity between x and y.

9. Repeat (steps 1-to-8) for all remaining distance calculations in K-Means.

Chapter 3. “THE APPROACH” 28

FIGURE 3.7: Frequency vector & cosine similarity example.

3.3.3 Computing Similarity With Weighted Verb/Adjective Frequen-

cies

An improvement over the initial similarity calculation, this algorithm incorporates
the adjective sets from the input Elements in addition to the verb sets:

1. Compute cosine similarity between verb frequency vectors as per steps 1-to-8 of
previous algorithm, i.e. Intermediate result r1 = CosSim(Ax, By). Where x and
y are the frequency vectors derived from A and B respectively.

2. Compute the cosine similarity between adjective frequency vectors in a simi-
lar manner to the previous step, i.e. Intermediate result r2 = CosSim(Ai, Bj).
Where i and j are the frequency vectors derived from A and B respectively.

3. Apply pre-defined weights to intermediate results: r1 = r1 × w1 and r2 = r2 ×
w2. Where w1 and w2 are the weights applied to verb and adjective similarities
respectively.

4. Sum the resultant similarity results: Result r = r1 + r2.

5. Normalise the result back into the range 0.0 <=> 1.0, in this case: Final Result
R = r ÷ 2.0.

6. Use this result (R) as the signifier of similarity.

Combining weighted similarity values allows one to bring some additional contex-
tual information into the similarity calculation, instead of the raw verb frequencies
being the only indicator of similarity.

Chapter 3. “THE APPROACH” 29

3.4 Entity (Named/Mention) Extraction

Two approaches were considered for the narrative Entity extraction phase, listed
below:

• Using Named-Entity Recognition (NER) to identify information for Entity cre-
ation.

• Using Co-Reference Analysis (CRA) to identify information for Entity creation.

Both could potentially satisfy basing the Entity creation system upon. In the
end however, CRA was chosen as the definitive source of Entity data, the reason(s)
discussed in the following sections. . .

3.4.1 Narrative Entity Creation With Named Entities

A NER system produces a set of “Named Entities”, representing tangible people,
places, concepts or (other) things present in the text [Finkel, Grenager, and Man-
ning, 2005]. The NER system used by CoreNLP provides such “Named Entities” as
a set of names matched with identifiers (describing what type of “thing” it could be,
e.g. person, number, city etc. . .).

Thus it’s possible to use the extracted data from the NER system to generate the
narrative Entities needed by the SA process:

1. Get “name-identifier” object from NER system.

2. Create new Entity with the object’s name.

3. For all sentences in the text, match the name with the Entity to produce a list
of locations the Entity existed as part of.

4. Repeat steps 1-to-3 for all NER-recognised objects.

The goal behind finding out where each of the Entities are located is to be able
to map out the Element/Entity data in a multi-dimensional form (see Section 3.5 and
Section 3.6).

A problem arises when the text lacks sufficient proper nouns. The NER system
fails to recognise otherwise completely valid potential Entities in the text. This ap-
proach is therefore less capable than a co-referential system.

Chapter 3. “THE APPROACH” 30

3.4.2 Narrative Entity Creation With Co-References (Mentions)

As an alternative to the use of the NER system, CRA produces a set – not of “Named
Entities”, but of “Mentions” – representing objects or things referenced in multiple
places throughout the text [Lee et al., 2011]. As such, CRA is preferable to NER for
the SA process.

FIGURE 3.8: Mention (co-reference) extraction & Entity creation.

Each Mention generated by CoreNLP comprises an integer key alongside its in-
ternal set of references (or “mentions”) to sentences it was found in. Also included
is the “representative” mention, i.e. the particular mention that the system reckons
best describes the particular object/thing [Raghunathan et al., 2010].

When creating a new narrative Entity, either the integer key or representative
mention is suitable for uniquely identifying said Entity. This approach is superior
to using a NER system, but still has some pitfalls in that on occasion mentions will

Chapter 3. “THE APPROACH” 31

not be correctly identified or inadvertently duplicated if there exists a significant
enough difference in the phrasing.

3.4.3 Merging The Named Entity/Co-Reference Approaches

A potential third way explored in the process of evaluating NER and CRA as En-
tity generators is the possibility of combining the two approaches, in an attempt to
improve the robustness of the SA system.

FIGURE 3.9: Combined NER and CRA system for creating narrative
Entities.

Although this combined approach was not implemented for this project, it re-
mains a potential improvement to the SA system. See also Section 5.3 for a discus-
sion of future work.

Chapter 3. “THE APPROACH” 32

3.5 Matrix Creation (Post-Processing On The Datasets)

The resultant datasets of Entities and grouped Elements can be represented with sev-
eral matrix structures, both mimicking the tabular style of Lévi-Strauss’ SA exam-
ples, and modelling the structural relations between narrative Entities in the anal-
ysed text.

Two matrices can be created by passing over the generated Element/Entity data:

• 2D “Element Matrix” (lower-level analogue to the Mytheme matrix of Lévi-
Strauss).

• 3D “Entity Matrix” (spatial representation of the Entities present in the text
relative to the Elements they were found in).

These matrices form the output of the SA system, i.e. the final result data that
can then be written to file, or used to build other analytical systems on top of. Sec-
tion 3.7 discusses the initial groundwork for a structural comparison system using
the matrix output.

FIGURE 3.10: Result datasets to matrices.

Chapter 3. “THE APPROACH” 33

3.6 Matrix Organisation

The organisation of the two result matrices (Element and Entity) created by the SA
system are detailed in this section, with some notes on their structure and data
used. . .

3.6.1 2D (Element) Matrix

The 2D Element Matrix can be treated as a table for the sake of simplicity. As the
narrative Element objects are considered a more rudimentary version of the Mytheme
component of SA, this “table” acts as the rudimentary Mytheme matrix, describing
the order and structure of events occurring throughout the text(s).

FIGURE 3.11: Mock-up of 2D Element Matrix.

As can be seen in Figure 3.11, the X- and Y-axes mirror the row and column for-
mat of Lévi-Strauss’ examples – where the columns represent the grouping together
of associated Elements based on the clustering information generated, and the rows
are laid out in ascending order of event position in the text. Each row – in keeping
with Lévi-Strauss’ approach – contains only one Element, and one can re-tell the ba-
sic sequence of events in the text by iterating over the matrix, row-by-row.

As there exists only one Element per row, this table can be treated as a sparse
matrix for convenience of storage.

Chapter 3. “THE APPROACH” 34

3.6.2 3D (Entity) Matrix

As opposed to the Element Matrix, this multidimensional spatial matrix presents the
Entity information generated by the SA system, a representation not part of the orig-
inal process devised by Lévi-Strauss, but useful for modelling the presence, relation-
ships and identity between narrative Entities and the Elements (read: sentences/text
events) they’re found in.

FIGURE 3.12: Mock-up of 3D Entity Matrix.

The above mock visualisation of the Entity Matrix (Figure 3.12) shows an exam-
ple of the way Entities are positioned relative to Elements. One can see that both the
X- and Y-axes are the same as the 2D Element Matrix, extended with the Z-axis as
indicators of Entity presence.

The colour-coding is as follows: red/orange faces mark the Elements correspond-
ing to the previous matrix type, while blue faces mark whether or not one or more
Entities existed in the sentence(s) the Element(s) were derived from. Each “column”
along the Z-axis matches a distinct Entity generated by the SA system, as such this

Chapter 3. “THE APPROACH” 35

axis can extend quite far back depending on the size of the text and volume of iden-
tified Entities.

The 3D row/slice labelled “example” (highlighted with a red Element and blue
Entities) is given as an example of how each Entity is either flagged as “present” or
“not present” per Element. Do note that the position of the Entity data points are
fixed to the (X, Y) co-ordinates of the Element they’re associated with, while the Z
co-ordinate is (as mentioned earlier) based on the particular Entity.

Again, as with the 2D Element Matrix, this spatial arrangement is easily reducible
to a sparse data structure. Another point to note is the exact nature of the Z-axis
Entitiy range; as mentioned in Section 3.4, Entities can be uniquely identified either
by a representative “mention” or integer key roughly denoting at what point the
co-reference(s) used to generated the Entity were deemed to be co-references by the
CRA system. Using this integer key (which usually starts at 0, and increments by
1 per each new co-reference chain extracted) as the Z-axis value is a simple way to
convert the Entity dataset to part of the Entity Matrix.

3.7 Comparison Investigation

One of the potential uses of the result matrices generated from the SA process is for
performing comparisons between analysed texts, to ascertain structural similarity
or identify differences. Although such a system was not implemented for this dis-
sertation, some initial investigation was conducted into its feasibility, with a couple
of possible ideas noted in this section. See also Section 5.3 for a discussion on future
work.

A comparison stage can be considered a potential “fifth” phase of the SA system,
coming after Element Extraction, Element Clustering, Entity Extraction and Matrix Cre-
ation/Organisation. During the course of the dissertation research there was a small
amount of time devoted to investigating potential approaches for performing struc-
tural comparisons between the matrix data, though only the 2D Element Matrix was
examined as the 3D Entity Matrix presented a far more complex problem.

Comparing the Element Matrices of two texts presents the following problems:

• No guarantee of common Elements or Element Groups between the texts.

Chapter 3. “THE APPROACH” 36

• If there are sufficiently similar Element Groups, the order of the Element columns
will not be the same.

• Does each column get compared “in a vacuum” or does the data of multiple
columns factor into each other for the purpose of comparing them?

These problems were examined and some initial ideas were put forward to re-
solve them, mainly involving reducing the scope of the comparison system to per-
form simple scoring between two columns, one from each text’s matrices, attempt-
ing to reduce the complexity of such a process.

As such, two steps were explored near the end of the dissertation research. . .

1. “Column Matching” (attempting to identify closely-linked columns, i.e. those
containing similar “themes” or important words).

2. “Column Scoring” (attempting to produce a similarity score for compared
columns, which could possibly be aggregated across them all for a final re-
sult).

To re-iterate: the concept of a structural comparison system was only roughly
laid out before time constraints forced it to be left out of the practical implementa-
tion (and thus, the main part of this dissertation). The ideas developed so far are
mentioned below. . .

3.7.1 Column Matching

For two input matrices (i.e. the Element Matrices from the two texts being compared),
a cache of all the important words (i.e. verbs, adjectives etc. . .) is made alongside
Elements during the extraction phase. This per-column cache is used to compute
similarity between columns using a similar approach to the Element Clustering dis-
tance function: where several frequency vectors of important words are passed to a
cosine similarity function.

The results of these “column similarity” calculations are then used to order each
set of column-to-column mappings descending from highest similarity value to low-
est. Picking from this list of column-to-column mappings one can create a rudimen-
tary basis for comparing said columns.

Chapter 3. “THE APPROACH” 37

3.7.2 Column Scoring

A less-developed idea for the comparison system, the concept of “scoring” each
column for structural similarity was briefly considered with the following steps:

1. Using column mappings from previous (Column Matching) stage, compare in-
dividual columns between the two Element Matrices.

2. Ignore other columns an focus on just the structural similarities between those
in questions. This is to reduce the complexity of performing such a compari-
son.

3. For each Element in the columns, compute similarity (possibly with existing
method of cosine similarity) and add to a running score.

4. Running score is of “positive” (above a certain similarity threshold – repre-
senting likeness) and “negative” (below a certain similarity threshold – repre-
senting difference) values.

5. Running scores (positive and negative) are combined in a – as of now unspeci-
fied – manner that produces a final score on the similarity between the columns.

6. Repeat steps 2-to-4 for all outstanding column mappings.

The potential algorithm(s) for this stage were still being investigated but no ap-
proach was settled on before the end. It therefore remains only a theoretical pro-
posal.

3.8 Evaluation

This chapter has provided an overview of the theory-side of the dissertation, de-
scribing the high-level details of the structuralist analysis (SA) approach devised.
The next chapter goes into detail on the practical implementation (what hurdles
were encountered, how were certain systems actually implemented etc. . .). How
the implementation and its results were evaluated against the theoretical process
just described is an important matter to discuss before entering the next chapter.

To summarise, the four key stages of the SA system that were laid out have been
implemented (see the upcoming Section 4.4 and Section 4.5):

• Element Extraction (3.2).

Chapter 3. “THE APPROACH” 38

• Element Clustering (3.3).

• Entity Extraction (3.4).

• Matrix Creation/Organisation (3.5 & 3.6).

The Comparison System (3.7) stage and some of the improvements to the Entity Ex-
traction stage (3.4) remain in an unfinished state. These incomplete designs have less
bearing on the overall satisfaction of the problem of structuralist analysis described
in the introduction (1.4), therefore they can be placed to one side when considering
the success of this initial research into applying the techniques of Lévi-Strauss com-
putationally.

A test case of structurally analysing text is carried out in Section 5.1 of the fi-
nal chapter, this provides a set of output data (the matrices mentioned earlier) that
can be contrasted with the original concept of Lévi-Strauss’ Mytheme Matrix, to help
gauge how close this work got to mirroring the scholarly application of SA.

39

Chapter 4

“NOTES ON THE IMPLEMENTATION”

This chapter details the practical portion of the dissertation – that is, the program-
ming, development and experimentation conducted during the implementation of
a SA system using current NLP tools.

4.1 Architecture

The architecture of the practical implementation roughly mirrors the Pre-Process,
Analysis and Post-Process phases described in Section 3.1.

To summarise:

• Pre-Process.

– Text loading.

– CoreNLP execution over loaded text.

• Analysis

– Element Extraction.

– Element Clustering.

– Entity Extraction.

• Post-Process

– Matrix Creation/Organisation.

– Final output (e.g. to file).

Figure 4.1 on the next page shows the overall design of the system, the compo-
nents of which will be discussed over the remaining sections of this chapter.

Chapter 4. “NOTES ON THE IMPLEMENTATION” 40

FIGURE 4.1: System architecture overview.

From the above diagram we can see the overall flow of data operations in the
SA system. Input texts are passed into the Pre-Process components and processed
by CoreNLP. This intermediate data is then transferred over to the Analysis compo-
nents which perform the actual process of structuralist analysis on the data. Finally,
the resultant datasets are combined into the output matrices by the Post-Process com-
ponents.

As has been mentioned, the entire system is built using the Java programming
language, as CoreNLP and some of the other third-party libraries chosen are Java-
based. There are several build systems available for Java that provide easy incorpo-
ration of third-party libraries (Maven and Gradle for instance), so combining all of
these components was not an issue.

Chapter 4. “NOTES ON THE IMPLEMENTATION” 41

4.2 Utility Framework & Supporting Libraries

To support the execution of CoreNLP and the SA system, a small set of helper tool-
s/classes were developed in Java to provide some user interactivity (e.g. a simple
UI), and to glue together the different third-party libraries and their data formats.
Two of the main libraries (apart from CoreNLP) used as a part of this were JavaML
and Guava.

The JavaML (“Java Machine Learning”) library was used to provide the statisti-
cal algorithms necessary for the project (clustering in particular). JavaML provides
a common set of machine learning algorithms with a degree of customisability (im-
portant for this implementation), allowing users to modify and extend its function-
ality. [Abeel, Peer, and Saeys, 2009]. The modified K-Means implementation used
for the dissertation project is detailed further in Section 4.5.

Also, to improve upon the current Java standard library, the Google core Java
libraries (known as “Guava”) were used. Guava provides additional functionality
for commonly-used features like collections, concurrency, caching, string processing
and more [Bourrillion and Levy, 2015]. Guava was used to provide better versions
of the standard Java sets, and also provides support for tabular data structures – and
their associated functions – instead of just plain multi-dimensional arrays.

FIGURE 4.2: Guava features used in system.

Both of these supporting libraries were incorporated into the components of the
Analysis phase.

Chapter 4. “NOTES ON THE IMPLEMENTATION” 42

Part of the utility framework to manage the execution of CoreNLP and the SA
processes involved the breaking-up of the actual input text data into several (po-
tentially cache-able) objects. The set of corpora (or source texts) was structured as
follows. . .

• “Raw” (input directly from text file(s), not processed or analysed at all).

• “Processed” (i.e. CoreNLP-generated annotations from raw text).

• “Analysed” (data produced by the SA process).

This was primarily to allow the retention of the CoreNLP-generated data for
texts already processed, as re-running the entire CoreNLP pipeline on the same texts
every time consumed a huge amount of time as CoreNLP executed each of its an-
notation algorithms over the text – the effect was even worse when using a longer
text as input. In this way, one could select the intermediate CoreNLP data for use in
different analyses, without wasting time on unnecessary execution.

To support this, a simple graphical user interface (abbreviation: GUI) was im-
plemented in Java using the default Swing toolkit. The threefold split of each text
(Raw/Processed/Analysed) can be seen in Figure 4.3.

FIGURE 4.3: Java GUI front-end screenshot.

Chapter 4. “NOTES ON THE IMPLEMENTATION” 43

4.3 CoreNLP Data Extraction

The data produced by the CoreNLP annotators needed to be retrieved and handled.
As can be seen from Figure 4.4 the annotated text data is returned as a hash map
(or similar variant), where the keys are literally the unique definition for the Java
class(es) required and the data is the actual class, which can also comprise sub-maps
of further key-value pairs.

FIGURE 4.4: CoreNLP data layout.

These annotation classes all present the same interface, allowing the same kind
of queries be passed to CoreNLP for all manner of information. Nested objects pro-
duced by the CoreNLP maps can be used to order the data from document-wide,
sentence-wide to sub-sentence-wide, depending on the nature of the annotation.

Per-sentence and sub-sentence annotated data extraction code is shown below. . .

/∗
∗ CODE SNIPPET :
∗ e x t r a c t S e n t e n c e A n n o t a t i o n s (Annota t i on c o r e n l p _ d o c u m e n t)
∗ /

for (CoreMap sentence : corenlp_document . get (CoreAnnotations .
SentencesAnnotation . c l a s s))

{
/ / s e n t e n c e a n n o t a t i o n example :
i n t index = sentence . get (CoreAnnotations . SentenceIndexAnnotation .

c l a s s) ;

/ / i t e r a t e o v e r t o k e n s (words) example :
for (CoreLabel token : sentence . get (CoreAnnotations . TokensAnnotation .

c l a s s))
{

/ / pa r t−o f−s p e e c h example :

Chapter 4. “NOTES ON THE IMPLEMENTATION” 44

S t r i n g pos_tag = token . get (CoreAnnotations . PartOfSpeechAnnotation
. c l a s s) ;

i f (pos_tag . conta ins ("VB"))
{

/ / i s a v e r b
}
e lse i f (pos_tag . conta ins ("AD"))
{

/ / i s an a d j e c t i v e
}
e lse
{

/∗ e t c . . . ∗ /
}

/ / lemma example :
S t r i n g lemma = token . get (CoreAnnotations . LemmaAnnotation . c l a s s) .

toLowerCase (Locale . ENGLISH) ;

/∗ do o t h e r s t u f f wi th i n d i v i d u a l t o k e n s ∗ /
}

/∗ do o t h e r s t u f f wi th s e n t e n c e ∗ /
}

In a similar manner, document-wide information (i.e. that which is gathered across
the entire text – such as co-reference/mention data) can be accessed thusly. . .

/∗
∗ CODE SNIPPET :
∗ e x t r a c t M e n t i o n s (Annota t i on c o r e n l p _ d o c u m e n t)
∗ /

Map<Integer , CorefChain > c o r e f e r e n c e s = corenlp_document . get (
CorefCoreAnnotations . CorefChainAnnotation . c l a s s) ;

for (Map. Entry <Integer , CorefChain > c o r e f e r e n c e : c o r e f e r e n c e s . e n t r y S e t ()
)

{
i n t index = c o r e f e r e n c e . getKey () ;
CorefChain c o r e f = c o r e f e r e n c e . getValue () ;

/ / o r a l l ment i ons in co−r e f e r e n c e c h a i n :

Chapter 4. “NOTES ON THE IMPLEMENTATION” 45

for (CorefChain . CorefMention mention : c o r e f .
getMentionsInTextualOrder ())

{
/∗ do s t u f f wi th e a c h ment ion ∗ /

}

/ / g e t r e p r e s e n t a t i v e ment ion :
CorefChain . CorefMention repr_mention = c o r e f . getRepresentat iveMention

() ;
S t r i n g repr_mention_str = repr_mention . mentionSpan ;

/∗ do o t h e r s t u f f wi th co−r e f e r e n c e c h a i n s ∗ /
}

Chapter 4. “NOTES ON THE IMPLEMENTATION” 46

4.4 Element, Entity & Mention Extraction

Narrative Element Java implementation. . .

/∗
∗ CODE SNIPPET :
∗ N a r r a t i v e Element (c l a s s l a y o u t)
∗ /

public c l a s s TextElement
{

/ / " i m p o r t a n t " word l i s t s (p o s s i b l e e x e m p l a r s f o r s i m i l a r i t y
compar i s on) :

private Lis t <Str ing > m_verbs ,
m_adject ives ,
m_nouns ;

/ / o r i g i n a l (raw) s t r i n g from t e x t :
private S t r i n g m_original_sentence ;

/ / i n d e x o f s e n t e n c e (in t e x t) f o r e l e m e n t o r d e r i n g p u r p o s e s :
private i n t m_sentence_index ;

/∗ methods : g e t t e r s , s e t t e r s e t c . . . ∗ /
}

Element objects are created at the sentence level, so the example CoreNLP data
extraction shown in Section 4.3 can be used to retrieve and store the requisite data:

/∗
∗ CODE SNIPPET :
∗ TextE l ement => c r e a t e E l e m e n t F r o m S e n t e n c e (CoreMap s e n t e n c e)
∗ /

{
m_verbs = new ArrayList <Str ing > () ;
m_adject ives = new ArrayList <Str ing > () ;
m_nouns = new ArrayList <Str ing > () ;

m _ o r i g i n a l _ s t r = sentence . get (CoreAnnotations . TextAnnotation . c l a s s) .
r e p l a c e ("\n" , " ") ;

m_sentence_index = sentence . get (CoreAnnotations .
SentenceIndexAnnotation . c l a s s) ;

for (CoreLabel token : sentence . get (CoreAnnotations . TokensAnnotation .
c l a s s))

{

Chapter 4. “NOTES ON THE IMPLEMENTATION” 47

S t r i n g pos_type = token . get (CoreAnnotations .
PartOfSpeechAnnotation . c l a s s) ;

S t r i n g lemma = token . get (CoreAnnotations . LemmaAnnotation . c l a s s) .
toLowerCase (Locale . ENGLISH) ;

i f (pos_type . conta ins ("NN"))
{

m_nouns . add (lemma) ;
}
e lse i f (pos_type . conta ins ("VB"))
{

m_verbs . add (lemma) ;
}
e lse i f (pos_type . conta ins ("AD"))
{

m_adject ives . add (lemma) ;
}

}
}

Narrative Entity Java implementation. . .

/∗
∗ CODE SNIPPET :
∗ Co−R e f e r e n c e / Mention (E n t i t y d a t a h a n d l e r from CoreNLP)
∗ /

public c l a s s TextMention
{

/ / s e t o f s e n t e n c e i n d i c e s ment i ons were found in :
private Set <Integer > m_sentence_indices ;

/ / s e t o f s e n t e n c e s c o v e r i n g a l l p o s s i b l e p e r m u t a t i o n s o f t h e ment ion
:

private Set <Str ing > m_var iant_s t rs ;

/ / i n d e x from CoreNLP ment ion c h a i n :
private i n t m_coref_index ;

/ / name (i . e . r e p r e s e n t a t i v e ment ion) :
private S t r i n g m_name ;

/∗ methods : g e t t e r s , s e t t e r s e t c . . . ∗ /
}

These Entity objects are created by retrieving the requisite information from CoreNLP
(as seen in the co-reference extraction example in Section 4.3).

Chapter 4. “NOTES ON THE IMPLEMENTATION” 48

/∗
∗ CODE SNIPPET :
∗ TextMention => crea t eMent ionFromCoRe fCha in (i n t c o r e f _ i n d e x , C o r e f C h a i n

c o r e f)
∗ /

{
m_coref_index = coref_ index ;
m_sentence_indices = new HashSet<Integer > () ;
m_var iant_s t rs = new HashSet<Str ing > () ;

for (CorefChain . CorefMention mention : c o r e f .
getMentionsInTextualOrder ())

{
/ / s u b t r a c t ’ 1 ’ from s e n t e n c e number t o match s e n t e n c e i n d e x in

o t h e r c l a s s e s :
m_sentence_indices . add (mention . sentNum − 1) ;
m_var iant_s t rs . add (mention . mentionSpan) ;

}

/ / r e t r i e v e & s t o r e r e p r e s e n t a t i v e ment ion :
CorefChain . CorefMention representat ive_ment ion = c o r e f .

getRepresentat iveMention () ;
m_name = representat ive_ment ion . mentionSpan ;

}

. . .

/∗
∗ CODE SNIPPET :
∗ TextMention => g e n e r a t e F r o m T e x t (Annota t i on c o r e n l p _ d o c)
∗
∗ C r e a t e s & c a l l s ’ c r ea t eMent ionFromCoRe fCha in () ’ f o r e a c h CoreNLP−

i d e n t i f i e d co−r e f e r e n c e / ment ion c h a i n .
∗ /

{
mentions = new ArrayList <TextMention > () ;
Map<Integer , CorefChain > c o r e f e r e n c e s = corenlp_doc . get (

CorefCoreAnnotations . CorefChainAnnotation . c l a s s) ;

for (Map. Entry <Integer , CorefChain > c o r e f e r e n c e : c o r e f e r e n c e s .
e n t r y S e t ())

{
mentions . add (new TextMention (c o r e f e r e n c e . getKey () , c o r e f e r e n c e .

getValue ())) ;

Chapter 4. “NOTES ON THE IMPLEMENTATION” 49

}

/∗ s t o r e ment ion l i s t a s member d a t a ∗ /
}

4.5 Clustering

The K-Means algorithms provided by JavaML allows users to customise the dis-
tance and comparison functions by inheriting from a certain class. This allows the
frequency vector cosine similarity computation to replace the traditional spatial ap-
proach.

FIGURE 4.5: K-Means implementation.

/∗ ∗
∗ CODE SNIPPET :
∗
∗ He lpe r c l a s s f o r KMeans c l u s t e r i n g o f T e x t E l e m e n t s .
∗ Uses c o s i n e s i m i l a r i t y f o r d i s t a n c e measur ing in a l g o r i t h m .
∗ /

public c l a s s KMeansHelper implements DistanceMeasure
{

/ / Cons tant member d a t a :
private f i n a l double m_min_val ,

Chapter 4. “NOTES ON THE IMPLEMENTATION” 50

m_max_val ;

/ / L i s t o f n a r r a t i v e e l e m e n t s from
private Lis t <TextElement > m_elements ;

/ / C o n f i g u r a t i o n s e t t i n g s :
private boolean m_use_adject ives ;
private double m_verb_weight ,

m_adjective_weight ;

/∗ ∗
∗ U t i l i t y f u n c t i o n t o c r e a t e a JavaML−c o m p a t i b l e d a t a s e t f o r running

t h e KMeans a l g o r i t h m .
∗ JavaML i n s t a n c e s c o r r e s p o n d t o t h e l i s t i n d e x o f e a c h TextElement ,

which i s r e s o l v e d in
∗ t h e d i s t a n c e measurement method .
∗
∗ @return JavaML d a t a s e t o f i n s t a n c e s c o r r e s p o n d i n g t o T e x t E l e m e n t s .
∗ /

public Dataset createCompatibleData ()
{

i f (m_elements != null)
{

Dataset data = new Defaul tDataset () ;

for (i n t i = 0 ; i < m_elements . s i z e () ; ++ i)
{

double [] new_attrs = new double [1] ;
new_attrs [0] = (double) i ;

Ins t ance new_inst = new DenseInstance (new_attrs) ;
data . add (new_inst) ;

}

return data ;
}
e lse
{

System . e r r . p r i n t l n (" Cannot c r e a t e JavaML dataset , no
TextElements to process ! ") ;

return null ;
}

}

Chapter 4. “NOTES ON THE IMPLEMENTATION” 51

/∗
∗ Method t o c o n v e r t l i s t o f d a t a s e t s (e a c h r e p r e s e n t i n g a c l u s t e r)

t o TextE l ement a r r a y s / l i s t s .
∗ /

public Lis t <TextElementGroup> convertClustersToGroups (Dataset []
kmeans_data)

{
L i s t <TextElementGroup> groups = new ArrayList <TextElementGroup > ()

;
i n t c l u s t e r _ n o = 0 ;

for (Dataset data : kmeans_data)
{

TextElementGroup new_group = new TextElementGroup (c l u s t e r _ n o)
;

for (Ins tance i n s t : data)
{

i n t element_index = (i n t) i n s t . value (0) ;
new_group . addTextElement (m_elements . get (element_index)) ;

}

groups . add (new_group) ;
++c l u s t e r _ n o ;

}

return groups ;
}

/∗ ∗
∗ Custom d i s t a n c e f u n c t i o n .
∗ /

public double measure (Ins tance x , Ins tanc e y)
{

i f (x . noAtt r ibutes () != y . noAtt r ibutes () ||
x . noAtt r ibutes () != 1 || y . noAtt r ibutes () != 1)

{
System . e r r . p r i n t l n (" Cannot compute s i m i l a r i t y , d i f f e r e n t l y−

s ized i n s t a n c e s passed to funct ion ! ") ;
return 0 . 0 ;

}

/ / Get e l e m e n t s from i n s t a n c e s :
TextElement elem_x = m_elements . get ((i n t) x . value (0)) ,

Chapter 4. “NOTES ON THE IMPLEMENTATION” 52

elem_y = m_elements . get ((i n t) y . value (0)) ;

double r e s u l t = 0 . 0 ;

/ / Per form s i m i l a r i t y c o m p u t a t i o n :
i f (m_use_adject ives)
{

r e s u l t = C o s i n e S i m i l a r i t y . computePairOfLists (elem_x .
getVerbLis t () ,

elem_y .
getVerbLis t ()
,

elem_x .
g e t A d j e c t i v e L i s t
() ,

elem_y .
g e t A d j e c t i v e L i s t
() ,

m_verb_weight ,
m_adject ive_weight

) ;
}
e lse
{

r e s u l t = C o s i n e S i m i l a r i t y . computeLists (elem_x . getVerbLis t () ,
elem_y . getVerbLis t ()) ;

}

return r e s u l t ;
}

/∗ ∗
∗ Comparison be tween computed s i m i l a r i t y v a l u e s .
∗ /

public boolean compare (double x , double y)
{

/ / H i g h e s t s i m i l a r i t y v a l u e i s ’ 1 ’ , s o f i r s t e l e m e n t s h o u l d be
l a r g e r than s e c o n d :

return (Double . compare (x , y) > 0) ;
}

/∗ o t h e r member methods : g e t t e r s , s e t t e r s e t c . . . ∗ /
}

Chapter 4. “NOTES ON THE IMPLEMENTATION” 53

The cosine similarity calculations themselves are performed by a utility class
shown below. . .

/∗ ∗
∗ CODE SNIPPET :
∗
∗ U t i l i t y c l a s s f o r c a l c u l a t i n g c o s i n e s i m i l a r i t i e s .
∗ /

public c l a s s C o s i n e S i m i l a r i t y
{

/∗ ∗
∗ Computes t h e c o s i n e s i m i l a r i t y be tween two v e c t o r s / a r r a y s o f

f l o a t i n g −p o i n t v a l u e s .
∗
∗ NOTE: I f l e n g t h s a r e d i f f e r e n t , d o e s not compute (r e t u r n s ’ 0 ’) .
∗
∗ @param vec1 F i r s t i n p u t v e c t o r / a r r a y .
∗ @param vec2 Second i n p u t v e c t o r / a r r a y .
∗
∗ @return Value o f c o s i n e s i m i l a r i t y .
∗ /

public s t a t i c double compute (f i n a l double [] vec1 , f i n a l double [] vec2
)

{
i f (vec1 . length != vec2 . length)
{

return 0 . 0 ;
}

double dot_prod = 0 . 0 ,
norm1 = 0 . 0 ,
norm2 = 0 . 0 ;

for (i n t i = 0 ; i < vec1 . length ; ++ i)
{

dot_prod += vec1 [i] ∗ vec2 [i] ;
norm1 += Math . pow(vec1 [i] , 2) ;
norm2 += Math . pow(vec2 [i] , 2) ;

}

return (dot_prod / (Math . s q r t (norm1) ∗ Math . s q r t (norm2))) ;
}

/∗ ∗

Chapter 4. “NOTES ON THE IMPLEMENTATION” 54

∗ Compute t h e c o s i n e s i m i l a r i t y be tween two s t r i n g l i s t s (i . e .
f i n d i n g match ing words) .

∗
∗ NOTE: I f l e n g t h s a r e d i f f e r e n t , d o e s not compute (r e t u r n s ’ 0 ’) .
∗
∗ @param s t r 1 F i r s t i n p u t l i s t .
∗ @param s t r 2 Second i n p u t l i s t .
∗
∗ @return Value o f c o s i n e s i m i l a r i t y .
∗ /

public s t a t i c double computeLists (f i n a l Lis t <Str ing > s t r 1 , f i n a l Lis t
<Str ing > s t r 2)

{
/ / Guava s e t c r e a t i o n u t i l i t i e s :
Set a l l _ s t r s = new ImmutableSet . Builder <Str ing > () . addAll (s t r 1)

. addAll (s t r 2) .
bui ld () ;

double [] count1 = new double [a l l _ s t r s . s i z e ()] ,
count2 = new double [a l l _ s t r s . s i z e ()] ;

i n t i = 0 ;

for (Object s t r : a l l _ s t r s)
{

count1 [i] = (double) C o l l e c t i o n s . frequency (s t r 1 , s t r) ;
count2 [i] = (double) C o l l e c t i o n s . frequency (s t r 2 , s t r) ;

++ i ;
}

return compute (count1 , count2) ;
}

/∗ ∗
∗ Compute t h e c o s i n e s i m i l a r i t y be tween two p a i r s o f s t r i n g l i s t s

wi th w e i g h t s .
∗
∗ NOTE (1) : I f l e n g t h s a r e d i f f e r e n t , d o e s not compute (r e t u r n s ’ 0 ’)

.
∗
∗ NOTE (2) : Weight v a l u e s a r e c lamped in t h e range (’ 0 . 0 ’ => ’ 1 . 0 ’) .
∗
∗ @param s t r 1 a F i r s t i n p u t l i s t o f f i r s t p a i r .

Chapter 4. “NOTES ON THE IMPLEMENTATION” 55

∗ @param s t r 1 b F i r s t i n p u t l i s t o f s e c o n d p a i r .
∗ @param s t r 2 a Second i n p u t l i s t o f f i r s t p a i r .
∗ @param s t r 2 b Second i n p u t l i s t o f s e c o n d p a i r .
∗ @param we igh t1 Value t o modi fy match count o f f i r s t p a i r o f i n p u t

l i s t s .
∗ @param we igh t2 Value t o modi fy match count o f s e c o n d p a i r o f i n p u t

l i s t s .
∗
∗ @return Value o f c o s i n e s i m i l a r i t y .
∗ /

public s t a t i c double computePairOfLists (f i n a l Lis t <Str ing > st r1a ,
f i n a l Lis t <Str ing > str1b ,
f i n a l Lis t <Str ing > st r2a ,
f i n a l Lis t <Str ing > str2b ,
f i n a l double weight1 ,
f i n a l double weight2)

{
double s i m i l a r i t y 1 = computeLists (s t r1a , s t r 1 b) ,

s i m i l a r i t y 2 = computeLists (s t r2a , s t r 2 b) ,
f i n a l _ s i m i l a r i t y = 0 . 0 ,
weight1 = Math . max (0 . 0 , Math . min (1 . 0 , weight1)) ,
weight2 = Math . max (0 . 0 , Math . min (1 . 0 , weight2)) ;

f i n a l _ s i m i l a r i t y += (s i m i l a r i t y 1 ∗ weight1) ;
f i n a l _ s i m i l a r i t y += (s i m i l a r i t y 2 ∗ weight2) ;
f i n a l _ s i m i l a r i t y /= 2 . 0 ;

return f i n a l _ s i m i l a r i t y ;
}

}

Below is an example of the setup & execution of the K-Means clustering algo-
rithm for grouping narrative Elements. . .

/∗
∗ CODE SNIPPET :
∗ Example o f TextE l ement c l u s t e r i n g us ing c u s t o m i s e d K−Means .
∗ /

{
L i s t <TextElement > tex t_e lements = / / <= e l e m e n t s g e n e r a t e d from

CoreNLP document a n n o t a t i o n s

KMeansHelper kmeans_helper = new KMeansHelper (text_e lements , f a l s e) ;

Chapter 4. “NOTES ON THE IMPLEMENTATION” 56

/ / K−Means with 10 t a r g e t c l u s t e r s , 100 i t e r a t i o n s , and t h e custom
d i s t a n c e u t i l i t y c l a s s :

KMeans kmeans_algo = new KMeans (1 0 , 100 , kmeans_helper) ;

Dataset [] kmeans_result = kmeans_algo . c l u s t e r (kmeans_helper .
createCompatibleData ()) ;

L i s t <TextElementGroup> text_element_groups = kmeans_helper .
convertClustersToGroups (kmeans_result) ;

/∗ do s t u f f wi th grouped e l e m e n t s ∗ /
}

Given both the list of grouped Elements and Entities, one can then re-iterate over
them and produce the 2D and 3D output matrices. The following section elaborates
on the output process.

4.6 Matrices & Output/Presentation

The output from the Entity Extraction and Element Clustering stages of the SA system
can be transformed into matrices simply enough by iterating over the generated
data. For Element Matrices this is using the index of the group each Element is as-
signed to against the sentence index of the Element (data produced by the stages
outline in Section 4.4 and Section 4.5).

For Entity Matrices, the same indices for Element groups and sentence order is
retained, with the remaining axis derived from the set/list of Entities identified –
where the maximum Z-value is the size of the set, and each point along the Z-axis
indicates the presence of a specific Entity.

FIGURE 4.6: Output of matrix data to file(s).

Chapter 4. “NOTES ON THE IMPLEMENTATION” 57

Serialising these matrices to file is done into either a .CSV file (for Element Matri-
ces) or a GNUplot .DAT file (for Entity Matrices). Both of these files serialise only the
indices of their respective data, where the remaining information corresponding to
each Element or Entity can be written out to other secondary files (.XML or .TXT for
example).

The reason for this is that specialised data formates like .CSV files cannot easily
store all of the requisite object data in a neat way. So – in order to write out as much
data as possible – extra files in a less-rigid format are used.

For the purposes of visualisation, Element Matrix .CSV files can be loaded into
any spreadsheet program (Microsoft Excel, LibreOffice Calc etc. . .) and viewed from
there. For the Entity Matrix however, GNUplot-compatible files were output in or-
der to create 3D visualisations of the data. GNUplot is a cross-platform command-
line tool for performing data visualisation [Williams and Kelley, 2015]. It was used
in this implementation due to the ease of reading in plain text-formatted numeric
data as input.

Section 5.1 shows examples of such visualisations and some of the raw data used.

4.7 System Review

A number of important implementation details were laid out in this chapter, in-
cluding code snippets from the system for key pieces of functionality. This imple-
mentation covered the four phases of the SA process defined in the third chapter,
and overall each of these areas were implemented relatively successfully (as per the
stated design goals at least). A quick summary and review of the implementation
of the key phases makes up the remainder of this section. . .

ELEMENT EXTRACTION & CLUSTERING:

The narrative Elements – as mentioned throughout this write-up – are a lower-
level version of the Mytheme as defined by Lévi-Strauss. Thus the major deviation
from the academic approach to SA is the greater number of sentence-based Elements
representing the event structure of the text.

Chapter 4. “NOTES ON THE IMPLEMENTATION” 58

The other area under consideration is the nature of the clustering achieved using
statistical methods, which – while allowing a general, content-agnostic grouping of
data – does not exactly match the scholarly creation of thematic categories. As such
the exists a difficulty in examining common aspects of multiple texts due to the un-
predictable types of the resultant groups.

Overall however, the implementation does present a useful process for generat-
ing structural data from text – even when looking at how well Lévi-Strauss’ tech-
niques were or weren’t performed. The code snippets seen in Section 4.4 show us
that it’s not too complex a problem to expand on, some ideas on which are described
in the next chapter.

ENTITY EXTRACTION:

As the narrative Entity concept is an extension to the original techniques es-
poused by Lévi-Strauss, its harder for us to judge its suitability as part of imple-
menting SA. That being said, the use of Entity data to extend the dimensions of the
output matrices into a model of Entity/Element “relations” provides additional data
to use for future work.

MATRIX CREATION/ORGANISATION:

As mentioned earlier, because the Elements constitute a modified “simpler” ver-
sion of the Mythemes, the Element Matrix acts as a “simpler” version of the Mytheme
matrix/table. This is not particularly limiting as again, further improvements to
Element Extraction could allow for more complex data structures covering a wider
range of information from the text. Eventually bringing the computational process
of SA closer to its manual academic equivalent.

The Entity Matrix meanwhile, acts as an extension to the Element Matrix for align-
ing narrative Entities. As it’s a new conception not previously laid out by Lévi-
Strauss there isn’t much to evaluate against the original aims.

59

Chapter 5

“OUTCOME & REFLECTION”

This chapter wraps up the work carried out over the dissertation and discusses the
resultant system(s) implemented, the limitations of said system(s), as well as any
outstanding investigations and possible future improvements to implementing SA.

5.1 Results

This section displays a sample use case of SA data output, using one of the Grimm’s
fairytales “The Wolf & The Fox” as input (in keeping with the myth/folklore theme
of the Lévi-Strauss’ original works). The text for this is public domain and can be
sourced from: http://www.sacred-texts.com/neu/grimm/ht28.htm. Other
example datasets are listed in the Appendices (A and B).

FIGURE 5.1: Raw Element data examples.

http://www.sacred-texts.com/neu/grimm/ht28.htm

Chapter 5. “OUTCOME & REFLECTION” 60

Figure 5.1 provides a look at some of the raw data generated for Element objects in
the system. Shown is the original source sentence the Elements are made from, and a
couple of “important” word sets identified per-Element. Each of the verbs extracted
are shown as their lemmas (canonical forms), and one can see the usefulness of
lemma annotation – e.g. Element 20 in Figure 5.1 has archaic English terms being
correctly reduced to lemmas compatible with the more modern terms in the rest of
the text.

FIGURE 5.2: 2D Element Matrix example (indices only).

Figure 5.2 shows the 2D Element Matrix represented as a table of Element indices.

Chapter 5. “OUTCOME & REFLECTION” 61

This was generated by configuring the K-Means clustering algorithm with 5 target
clusters as the desired number of result Element groups.

This table was created from the .CSV output from the SA system, cleaned-up in a
spreadsheet program – adding some colouring to help highlight the Element group-
ings. The table’s similarity to the structure of the Mytheme matrix example in Section
1.4 can be considered a rough approximation, as mentioned before the narrative El-
ements constitute a lower-level data structure than Lévi-Strauss’ Mythemes.

FIGURE 5.3: 2D Element Matrix example (verbs only).

This table (Figure 5.3) shows the same Elements as Figure 5.2, but the data dis-
played are the sets of verbs used to cluster the Elements. The topmost – grey – row
(after the group names) lists the prevalent verbs, i.e. the best indicators of common-
ality between the Elements of the same group.

One can see in both instances that the Element clustering is lopsided (i.e. groups
1 and 2 have the majority of the narrative Elements) due to over-abundance of simple
verbs like “be”. This is discussed further in Section 5.2.

Chapter 5. “OUTCOME & REFLECTION” 62

FIGURE 5.4: Raw Entity data examples.

The above example of raw Entity data (Figure 5.4) shows the use of CRA (Co-
Reference Analysis) to produce mentions shared across several sentences. Each
mention (potential Entity) is shown with a representative mention, list of variants
(also containing the representative mention) and the sentences each one was found
in.

The effectiveness of the CRA system in CoreNLP can be seen by looking at the
diverse range of mentions correctly identified, . Though one can see (in Entities 2
and 130) that sometimes the CRA incorrectly separates what should be one mention
into several due to inescapable statistical error in the algorithm.

Chapter 5. “OUTCOME & REFLECTION” 63

FIGURE 5.5: 3D Entity Matrix example (plotted with GNUplot).

The 3D Entity Matrix plot shown in Figure 5.5 provides a visual representation
of the Entity alignment within the structure of the text. As with the Element Matrix
before it, one can see the lopsidedness of the clustering algorithm (a limitation ex-
plored in the next section). Despite this, the 3D plot helps explain the structure of
the Entities and their mentions in Elements of the text.

AIMS ACHIEVED:

As set out in Section 1.5 and reviewed in Section 4.7, the aims of this dissertation
were to try and re-create Lévi-Strauss’ process of structuralist analysis (SA) computa-
tionally. As has already been discussed, the Element Matrix output does come close
to something resembling SA, while the Entity Matrix output lends additional rela-
tional information to the previous data.

Both of these have promise in working towards more completely analysing the
structure of text, and could be modified and extended to increase both the range of
information available to process and output, as well as improve the accuracy and
robustness of the system. The overall evaluation of the attempt then, is that while
there needs to be much work done to improve such a system, the process of SA is
feasible as a model of understanding text computationally.

Chapter 5. “OUTCOME & REFLECTION” 64

5.2 Problems Encountered

Some of the problems encountered in the practical implementation of SA are noted
here. . .

CLUSTERING ISSUES:

In Section 5.1: Figure 5.2 and Figure 5.3 exhibit an asymmetrical or “lopsided”
clustering of narrative Elements. This occurs when commonly-used verbs in sen-
tences take precedence over the more unique verbs when performing Element simi-
larity computation using cosine similarity.

The frequency vectors cannot understand how relevant a particular verb is to the
sentence an Element is created from. Therefore high-frequency but unimportant
verbs can skew the clustering. There is no clear way to resolve this in the current
system, only expanding the scope of the similarity computation to other types of
data can fix it.

DEPTH OF INFORMATION (DETAIL):

This is more a limitation of the solution that a straight-up problem, but the lack of
deeper (read: more comprehensive) language data being used hampered attempts
at modelling higher-level linguistic constructs and producing better Element com-
parisons. The best example of this is the narrative Element objects, lacking a lot of
the complexity of Lévi-Strauss’ Mytheme notion.

Time constraints, both in the upskilling on CoreNLP and changes/reviews made
to the approach as problems arose, slowed progress on the foundational aspects of
SA, preventing more work being done on exploring better analyses. If a longer pe-
riod of time was allocated to investigation this problem would surely be mitigated.

COMPLEXITY:

One of the more vague problems during the dissertation research was the in-
creasing complexity of finding working solutions to parts of SA as the project pro-
gressed. The obvious example of this is the proposed comparison system, which

Chapter 5. “OUTCOME & REFLECTION” 65

would require an entire research project on its own to complete – as it contains a
number of very open problems with no clear solution.

5.3 Future Work

Some of the proposed systems (such as the ideas for comparing matrices in Section
3.7) were not implemented due to time constraints and complexity of investigation.
Mentioned in this section are some of the areas for performing future work. . .

COMPARISON SYSTEM:

The initial concepts for the SA-based comparison system have been mentioned in
Section 3.7, namely the Column Matching and Column Scoring stages. Further stages
or refinements to the initial stages are necessary before attempting to realise such a
system.

CULLING DATA:

One of the possible optimisations to the approach described in this report is the
culling (i.e. removal) of datums viewed as too minor to contribute to the analysis.
An immediate example would be the rejection of the large volumes of simpler ver-
b/adjective data that negatively affects the clustering of Elements.

In order to do so, some kind of user-defined heuristic could be used to determine
importance of particular words, allowing the frequency vectors be narrowed in scope
and – hopefully – broadened in uniqueness, enabling better “thematic” results in
the grouping of Elements.

AGGREGATING Elements:

As has been mentioned throughout the report, the narrative Elements defined in
this implementation act as a simplified analogue to the Mythemes of Lévi-Strauss. In
order to bring the current narrative Elements closer to the notion of the Mytheme, a
system for aggregating or “collapsing” Elements into larger objects is required.

Chapter 5. “OUTCOME & REFLECTION” 66

EXTENDING Elements & Entities:

There is far more to be done to extend the notion of the narrative Elements and En-
tities, first and foremost the use of additional data provided by CoreNLP. An exam-
ple of this which may prove useful is the use of sentence-level dependency parsing,
which builds a graph of each sentence and establishes which parts (i.e. sub-strings)
depend on others. Comparing and computing similarity based on this information
could be improve the overall accuracy of the system, and lend new forms of inter-
action between Elements and dependent Entities.

As was also mentiond in Section 3.4, combining the CRA and NER systems pro-
vided by CoreNLP into a more robust Entity extraction system would be of great
benefit.

The above propositions for future work are but a small number of potential im-
provements and new developments in implementing SA computationally.

5.4 Conclusion

The research presented in this dissertation write-up attempted to broadly approx-
imate the SA process developed by Claude Lévi-Strauss. Section 1.5 set out the
general goals of this project; with Section 3.8, Section 4.7, and Section 5.1 evaluating
the approach designed and implemented during this research.

The overall conclusion is that the initial work done holds promise. Applying
Structuralist Analysis (SA) using current natural language processing (NLP) tools has
been shown to be feasible, at least in some rudimentary form. It is the expectation
of this author that further development and expansion of the notion will provide an
alternative method of understanding text in computational systems.

67

Appendix A

“EXAMPLE TEXTS”

In addition to the example given in Section 5.1, a few extra examples are included
in this report. This appendix lists the examples provided in Appendix B, along with
the relevant links to sources. . .

1) GRIMM FAIRYTALES (RAPUNZEL):

Another Grimm fairytail in keeping with the mythic/folkloric theme of the ori-
gins of SA, this one longer and more widely-known. E-Book version can be sourced
from Project Gutenberg (https://www.gutenberg.org) and raw HTML text ver-
sion available at http://www.sacred-texts.com/neu/grimm/ht06.htm.

2) ENTERTAINMENT NEWS ARTICLES (BBC):

Several randomly-chosen articles from the BBC (“British Broadcasting Corpora-
tion”) archives related to entertainment news are provided to showcase the use of
the SA system on traditionally non-mythic/narrative texts:

• “Duran-Duran Show Set For US T.V.”

• “Pupils To Get Anti-Piracy Lessons”

• “U2 To Play At Grammy Awards Show”

Sources for these articles are the BBC “Full Text” corpus available here: http:
//mlg.ucd.ie/datasets/bbc.html [Greene and Cunningham, 2006].

https://www.gutenberg.org
http://www.sacred-texts.com/neu/grimm/ht06.htm
http://mlg.ucd.ie/datasets/bbc.html
http://mlg.ucd.ie/datasets/bbc.html

68

Appendix B

“EXAMPLE OUTPUT”

1) RAPUNZEL:

Appendix B. “EXAMPLE OUTPUT” 69

Appendix B. “EXAMPLE OUTPUT” 70

Appendix B. “EXAMPLE OUTPUT” 71

Appendix B. “EXAMPLE OUTPUT” 72

2a) DURAN-DURAN SHOW SET FOR US T.V.:

Appendix B. “EXAMPLE OUTPUT” 73

Appendix B. “EXAMPLE OUTPUT” 74

2b) PUPILS TO GET ANTI-PIRACY LESSONS:

Appendix B. “EXAMPLE OUTPUT” 75

Appendix B. “EXAMPLE OUTPUT” 76

2c) U2 TO PLAY AT GRAMMY AWARDS SHOW:

ix

Bibliography

Abeel, Thomas, Yves Van de Peer, and Yvan Saeys (2009). “Java-ML: A Machine
Learning Library”. In: J. Mach. Learn. Res. 10, pp. 931–934. ISSN: 1532-4435. URL:
http://dl.acm.org/citation.cfm?id=1577069.1577103.

Apache (2006–2015). Apache UIMA. Apache Software Foundation. URL: https://
uima.apache.org/ (visited on 11/12/2015).

— (2008). Unstructured Information Management Architecture (UIMA), Version 1.0. work-
ing draft 5. OASIS UIMA Technical Committee.

— (2011–2014). Apache OpenNLP Developer Documentation. OpenNLP Development
Community. URL: https://opennlp.apache.org/documentation/1.6.
0/manual/opennlp.html (visited on 11/10/2015).

Balabantaray, Rakesh Chandra, Chandrali Sarma, and Monica Jha (2015). “Docu-
ment Clustering Using K-Means & K-Medoids”. In: CoRR abs/1502.07938. URL:
http://arxiv.org/abs/1502.07938.

Barthes, Roland (1975). “New Literary History (Vol. 6, No. 2, On Narrative & Narra-
tives)”. In: The Johns Hopkins Univeristy Press. Chap. (Introduction To The Struc-
tural Analysis Of Narrative).

Bird, Steven, Ewan Klein, and Edward Loper (2009). Natural Language Processing
With Python. O’Reilly Media.

Blackburn, Simon (2008). Oxford Dictionary Of Philosophy. 2nd (revised). Oxford Uni-
versity Press.

Bourrillion, Kevin and Jared Levy (2015). Guava: Google Core Libraries For Java. Google.
URL: https://github.com/google/guava (visited on 04/01/2016).

Cunningham, Hamish et al. (2011). Text Processing With GATE (Version 6). The Uni-
versity of Sheffield, Department of Computer Science.

de Saussure, Ferdinand and Albert Riedlinger (1983). Course In General Linguistics.
(reprint). Open Court Publishing.

Finkel, Jenny Rose, Trond Grenager, and Christopher Manning (2005). “Incorporat-
ing Non-local Information Into Information Extraction Systems By Gibbs Sam-
pling”. In: Proceedings Of The 43rd Annual Meeting On Association For Computa-
tional Linguistics. ACL ’05. Ann Arbor, Michigan: Association For Computational

http://dl.acm.org/citation.cfm?id=1577069.1577103
https://uima.apache.org/
https://uima.apache.org/
https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html
https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html
http://arxiv.org/abs/1502.07938
https://github.com/google/guava

BIBLIOGRAPHY x

Linguistics, pp. 363–370. DOI: 10.3115/1219840.1219885. URL: http://
dx.doi.org/10.3115/1219840.1219885.

GATE (1995-2015). GATE: A Full-Lifecycle Open-Source Solution For Text Processing.
The University of Sheffield, Department of Computer Science. URL: https://
gate.ac.uk/sale/tao/splitch7.html (visited on 11/11/2015).

Greene, Derek and Pádraig Cunningham (2006). “Practical Solutions To The Prob-
lem Of Diagonal Dominance In Kernel Document Clustering”. In: Proc. 23rd In-
ternational Conference On Machine learning (ICML’06). ACM Press, pp. 377–384.

Klein, Sheldon et al. (1974). Modelling Propp & Levi-Strauss In A Meta-Symbolic Simu-
lation System. Tech. rep. University Of Wisconsin, Computer Science & Linguistic
Department.

Lee, Heeyoung et al. (2011). “Stanford’s Multi-pass Sieve Coreference Resolution
System At The CoNLL-2011 Shared Task”. In: Proceedings Of The Fifteenth Con-
ference On Computational Natural Language Learning: Shared Task. CONLL Shared
Task ’11. Portland, Oregon: Association For Computational Linguistics, pp. 28–
34. ISBN: 9781937284084. URL: http://dl.acm.org/citation.cfm?id=
2132936.2132938.

Lévi-Strauss, Claude (1963). Structural Anthropology. (reprint). Basic Books.
— (1969). The Raw & The Cooked. (reprint). Harper & Row, Publishers Inc. & Jonathan

Cape Ltd.
Macqueen, J.B. (1967). “Some Methods For Classification & Analysis Of Multivariate

Observations”. In: In 5th Berkeley Symposium On Mathematical Statistics & Proba-
bility, pp. 281–297.

Manning, Christopher D. et al. (2014). “The Stanford CoreNLP Natural Language
Processing Toolkit”. In: Association For Computational Linguistics (ACL) System
Demonstrations, pp. 55–60. URL: http://www.aclweb.org/anthology/
P/P14/P14-5010.

Raghunathan, Karthik et al. (2010). “A Multi-pass Sieve For Coreference Resolu-
tion”. In: Proceedings Of The 2010 Conference On Empirical Methods In Natural Lan-
guage Processing. EMNLP ’10. Cambridge, Massachusetts: Association For Com-
putational Linguistics, pp. 492–501. URL: http://dl.acm.org/citation.
cfm?id=1870658.1870706.

Stanford (2016). Stanford CoreNLP Repository. Stanford NLP Group. URL: https:
//github.com/stanfordnlp/CoreNLP (visited on 11/29/2015).

Toutanova, Kristina et al. (2003). “Feature-Rich Part-Of-Speech Tagging With A Cyclic
Dependency Network”. In: Proceedings Of The 2003 Conference Of The North Amer-
ican Chapter Of The Association For Computational Linguistics On Human Language

http://dx.doi.org/10.3115/1219840.1219885
http://dx.doi.org/10.3115/1219840.1219885
http://dx.doi.org/10.3115/1219840.1219885
https://gate.ac.uk/sale/tao/splitch7.html
https://gate.ac.uk/sale/tao/splitch7.html
http://dl.acm.org/citation.cfm?id=2132936.2132938
http://dl.acm.org/citation.cfm?id=2132936.2132938
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
http://dl.acm.org/citation.cfm?id=1870658.1870706
http://dl.acm.org/citation.cfm?id=1870658.1870706
https://github.com/stanfordnlp/CoreNLP
https://github.com/stanfordnlp/CoreNLP

BIBLIOGRAPHY xi

Technology - Volume 1. NAACL ’03. Edmonton, Canada: Association For Com-
putational Linguistics, pp. 173–180. DOI: 10.3115/1073445.1073478. URL:
http://dx.doi.org/10.3115/1073445.1073478.

Williams, Thomas and Colin Kelley (2015). Gnuplot 5: An Interactive Plotting Program.
http://gnuplot.sourceforge.net/.

Zong, Jonathan (2013). K-Means Clustering With tf-idf Weights. URL: http://jonathan
zong.com/blog/2013/02/02/k-means-clustering-with-tfidf-

weights (visited on 12/30/2015).

http://dx.doi.org/10.3115/1073445.1073478
http://dx.doi.org/10.3115/1073445.1073478
http://gnuplot.sourceforge.net/
http://jonathan-zong.com/blog/2013/02/02/k-means-clustering-with-tfidf-weights
http://jonathanzong.com/blog/2013/02/02/k-means-clustering-with-tfidf-weights
http://jonathan-zong.com/blog/2013/02/02/k-means-clustering-with-tfidf-weights

	Declaration Of Authorship
	Abstract
	Acknowledgements
	List Of Figures
	List Of Abbreviations
	``Summary & Justification''
	Introduction
	Problem Domain
	Structuralism In Linguistics
	Structuralist Analysis
	Aims
	Potential Uses
	Report Structure

	``State Of The Art''
	Background Research
	Structural Anthropology
	The Raw & The Cooked
	Introduction To The Structuralist Analysis Of Narrative
	Modelling Propp & Lévi-Strauss In A Meta-Symbolic Simulation System

	Available Tools
	Stanford CoreNLP
	Apache OpenNLP
	GATE
	Apache UIMA
	NLTK

	Expected Requirements For System
	Tool Selection
	Ease-Of-Use
	Complexity
	Functionality
	Final Choice

	Stanford CoreNLP (In Detail)

	``The Approach''
	Overview
	Narrative Elements
	Narrative Entities
	High-Level Process Description

	Element Extraction
	Element Grouping
	K-Means Clustering With Cosine Similarity
	Computing Similarity With Verb Frequencies
	Computing Similarity With Weighted Verb/Adjective Frequencies

	Entity (Named/Mention) Extraction
	Narrative Entity Creation With Named Entities
	Narrative Entity Creation With Co-References (Mentions)
	Merging The Named Entity/Co-Reference Approaches

	Matrix Creation (Post-Processing On The Datasets)
	Matrix Organisation
	2D (Element) Matrix
	3D (Entity) Matrix

	Comparison Investigation
	Column Matching
	Column Scoring

	Evaluation

	``Notes On The Implementation''
	Architecture
	Utility Framework & Supporting Libraries
	CoreNLP Data Extraction
	Element, Entity & Mention Extraction
	Clustering
	Matrices & Output/Presentation
	System Review

	``Outcome & Reflection''
	Results
	Problems Encountered
	Future Work
	Conclusion

	``Example Texts''
	``Example Output''
	Bibliography

