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Real-time deformation and fracture have been an open area of research for over two

decades, with various approaches being explored in this time.

One of the fastest, and most stable methods, shape matching is a simplified,

position-based physics model, originally proposed over ten years ago that has proven

viability in soft-body simulation that is also extensible to support fracturing of objects.

In this dissertation, I have taken an existing shape matching algorithm supporting

ductile fracture and developed a highly parallel implementation that runs on either

CPU or GPU, and performed a thorough performance analysis to evaluate the solution

and guide future work.
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Chapter 1

Introduction

1.1 Motivation

Modern real-time graphical applications use state-of-the-art effects to improve visuals

to the point that many achieve near photorealism, but environments are still largely

static, with deformation and fracture either very limited in their use, or not present

at all. This leads to a significant disconnect where applications have highly realistic

visuals but without the physical plausibility to make the environment truly believable.

There have been many approaches used in academia to solve this problem and

brittle fracture has been shown to be achievable at real-time speeds in a variety of

ways [20] [22] [14] but soft-body simulation and ductile fracture remain out of scope of

most real-time applications. Though in many cases, these physics simulations may be

run at real-time speeds[16][11][12], they are typically still too costly to be integrated

into a larger interactive application.

Due to the failure of Dennard scaling, there has been a general trend toward multi-

core architectures since 2005, creating an increased demand for more highly threaded

software. In a similar vein, recent CPU generations have seen only minor incremental

performance improvements while GPUs continue to show considerable performance

increases between generations. Due to these facts it is becoming increasingly important

to explore multi-threaded implementations of computationally expensive algorithms,

with particular emphasis on highly parallel GPU implementations.

Clearly then, exploiting the increased parallelism of modern hardware may allow
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for significant performance improvements in many previously explored approaches to

modeling deformation and fracture in a real-time setting, allowing for far richer real-

time simulations.

1.2 Objectives

The main objective of this dissertation is to expand upon the work of Jones et. al[11],

by creating a highly parallel GPU implementation of their clustered shape matching

algorithm, that supports soft-body simulation and ductile fracture.

Profiling this parallelised implementation and comparing it to the baseline perfor-

mance of the CPU implementation will prove whether or not it may provide significant

performance improvement for this algorithm and guide future work in the area.

Since brittle fracture may be modeled as a special case of ductile fracture (with

extremely high material toughness), an efficient enough ductile fracture algorithm may

also be used to simulate brittle fracture, producing a complete solution to handle both

brittle and ductile fracture at real-time speeds would allow the simulation of a far

greater range of physical phenomena and greatly improve the realism and believability

of modern real-time applications.
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Chapter 2

Background Research

2.1 State of the Art

The simulation of fracture mechanics in 3D graphics has been an open area of research

for over two decades [18], with many different approaches explored with their own

advantages and disadvantages but most modern applications still do not simulate frac-

ture in real-time due to the increased complexity of the physics simulation, as well as

not allowing the use of pre-computed global illumination since the changing geometry

would invalidate the pre-computed lighting values.

Many approaches have been found to model deformation and fracture, typically

using pre-calculated models or simplified physics to allow the algorithms to run in

real-time and aiming for permissible physics simulation rather than precise physical

accuracy.

2.1.1 Voronoi Fracture

One of the earliest developed techniques for modelling fracture in real-time was using

voronoi-methods to model brittle fracture. In voronoi fracture, a voronoi tessellation

is used to produce a fracture mesh by splitting the base mesh along the lines of a three

dimensional voronoi tessellation and using the lines of this tessellation to split the base

mesh into multiple new meshes[20].

A major advantage of this method is that the fracture mesh may be precomputed

to reduce the runtime requirements of the application but unfortunately this means
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that there is limited flexibility in the results that may be obtained and this method

has only been used to model brittle fracture.

Recently, Müller et al have developed a variation on this method that allows for far

greater realism while still maintaining real-time speeds[14]. Their approach decomposes

3D objects into compounds of convex shapes based on the the voronoi decomposition of

the space enclosed by the objects that they call a volumetric approximate decomposi-

tion. Unlike a typical voronoi tessellation, however, the voronoi nodes in this approach

may be placed manually by the user rather than being drawn from the base mesh,

allowing far greater control over the simulation.

In their approach, fracture patterns are predefined but fracture geometry is gener-

ated at runtime by aligning the fracture pattern with the impact location and creating

new geometry based on the intersection of the fracture pattern with the volumetric

approximate decomposition. This provides far greater visual fidelity and realism than

naive voronoi methods while also using preprocessing to greatly simplify the algorithm.

2.1.2 Mass-Spring Systems

A more flexible approach is using mass-spring methods to model deformation and frac-

ture. Mass-spring systems are a popular technique for soft-body simulation due to their

relative simplicity and reconfigurability [25]. In these systems, objects are modelled as

a collection of point masses interconnected with springs in a three dimensional mesh

that tend to pull the masses back toward their equilibrium positions. Mass-spring sys-

tems may be difficult to implement in stable manner due to the chaotic interactions of

the different springs but when utilised effectively, they offer a good approximation of

the real-world physics of deformable bodies at real-time speeds.

These systems may be extended to include fracture by placing restrictions on the

lengths of the springs connecting the point masses [24] and removing from the system

those springs that exceed this length.

Recent work by Levine et al. has also shown that concepts from the area of peri-

dynamics may be used to decouple the spring length from the stiffness [12], allowing

for fracture simulation based on stiffness rather than actual spring length. The ability

to have variable spring lengths allows for far richer deformations than would otherwise

be possible, even allowing for somewhat heterogeneous interior structures to simulated
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bodies.

2.1.3 Finite Element Method

Currently, the most physically accurate method for modelling deformation and fracture

is the finite element method. In the finite element method, a volumetric tetrahedral

mesh is formed for all simulation objects and the equations used to model these indi-

vidual tetrahedra are used to construct a system of non-linear equations representing

the dynamics of the full object. Solving this system of non-linear equations represents a

major performance bottleneck and so most real-time implementations use a simplified

version of this method to avoid this step.

The earliest implementations of this method used only linear strain approximations

in the finite element analysis making it far less computationally expensive but this sim-

plification also introduces volumetric discontinuity in larger deformations[6]. Müller et

al. [15] describe a method to use a warped stiffness matrix to allow results comparable

to higher-order simulation with only linear computations, allowing for stable defor-

mations in real-time. In this method, a rotation matrix is calculated for each finite

element and the forces acting on each element are computed in this rotated frame. In

this rotated frame, the deformation of each element is composed of only translation and

scaling components removing the non-linear deformations, the element is then rotated

back to the original frame in its deformed state, as shown in Figure 2.1.

Figure 2.1: Using Warped Stiffness to Approximate Full FEM Analysis[15].

Their later work extended this approach to also deal with fracture by calculating a

stress tensor for each element each frame and if the maximum eigenvalue of this exceeds
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the material stress tensor, the element is fractured. Elements marked for fracture are

then fractured at one of their vertices, the vertex is chosen either at random, or, if one

of the vertices is marked as a crack tip, the fracture occurs at this vertex to simulate

natural crack propagation through the material. A fracture normal is then calculated

as the eigenvector corresponding to the largest eigenvalue of the stress tensor and the

vertex is split into two vertices, one on either side of the fracture plane defined by

the vertex-normal pair. For all adjacent tetrahedra, the original vertex is replaced by

one of the two new vertices depending on which side of the fracture plane the element

centre is [16].

Though it has seen some use in modern video games[19], the finite element method is

generally thought to be too computationally expensive for use in real-time applications.

Chen et al. also developed a method to perform a coarse grained fracture sim-

ulation using the finite element method that is then adaptively refined based on a

material strength field to produce high resolution output meshes[5]. This algorithm

does not currently work in real-time but may represent a future direction for real-time

algorithms.

2.1.4 Position Based Dynamics

All of the previously discussed approaches use force integration where forces acting on

an object are accumulated and used to calculate velocities and positions of objects or

particles at each time step. An alternative to traditional physics is to use position based

dynamics. In position based dynamics, objects are modelled as a system of particles

(or vertex positions), whose positions are manipulated directly, with velocities gained

implicitly from changes to particle positions. The result is a greatly simplified physics

model that aims to be faster than alternatives while still maintaining physics that is

realistic enough to be permissible in a real-time context.

Position based dynamics functions by defining a number of constraints on the po-

sitions of the particles. Each time step then consists of an explicit Euler integration

step that computes new velocities based on applied external forces and new particle

positions based on these velocities. Constraints are then generated based on these

updated positions and an iterative solver projects these constraints onto the newly cal-

culated positions. Finally, the particles are assigned the constrained particle positions
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and their velocities are calculated as (Pt − Pt−1)/∆t. The constraints can be used to

model a variety of interactions as desired by the developer, for example positions may

be constrained based on collisions with other objects in the simulation, or a maximum

level of deformation may be enforced through strain constraints. Since the integration

step of these methods typically acts independently on all of the particles, they are

thought to offer a lot of potential for acceleration through parallelisation.

Shape matching is a form of position based dynamics in which at each time step, the

original shape is matched to the deformed configuration, and each particle is translated

linearly towards its rest position in this deformed frame, as shown in Figure 2.2.

Figure 2.2: Basic Shape-Matching Algorithm[17].

The translation vectors used to transform the original shape into the deformed

configuration are simply the centre of mass of the original and deformed shapes, qi =

x0
i − x0

cm and pi = xi− xcm. The calculation of the rotational vector is somewhat more

involved, first the rest positions and the deformed positions are computed relative to the

object centre of mass in both states, and the matrix A is computed as in Equation 2.1

A =
(
Σimipiq

T
i

) (
Σimiqiq

T
i

)−1
= ApqAqq (2.1)

Aqq is symmetric and so contains only scaling and no rotation, therefore the rotation

matrix R is the rotational part of Apq which is extracted by the polar decomposition

according to Equation 2.2.

Apq = RS

S =
√
AT

pqApq

R = ApqS
−1

(2.2)
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A stiffness parameter limits the amount that particles may be translated back to

their rest state each frame allowing for various materials to be simulated[17]. This

approach is relatively simple to implement, very efficient, and unconditionally stable.

It has been shown that this approach may also be used to model plastic deformation

and a prototype fracture implementation was shown to be possible in Rivers et al.’s

Lattice Shape Matching framework[21].

Recently Jones et al.[11] have developed a clustered shape-matching framework that

supports both plastic and elastic deformations, and real-time ductile fracture.

2.1.5 Clustered Shape Matching For Ductile Fracture

Clustered Shape Matching For Ductile Fracture by Jones et. al [11] adds ductile frac-

ture to their real-time shape matching framework, this framework builds upon the

seminal paper in Shape Matching by Müller et al.[17]. Previous papers by this group

have implemented various other features in this framework, such as a strain limiting

iteration [3], clustering, and collision detection[10].

In this dissertation, I am building upon the work of Jones et al. and so a descrip-

tion of their algorithm is given here for reference. This algorithm consists broadly

of a plasticity step, followed by shape matching, strain limiting, and finally fracture.

Algorithm 1 shows a pseudo-code summary of this method.
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Figure 2.3: A Heart Model is Stretched and Torn in This Framework.

Algorithm 1 Physics time step From Jones et al.[11]

1: for all c ∈ clusters do . Plasticity
2: c.updateP lasticity()
3: if c.shouldFracture() then
4: PotentialFractures.push(c)
5: end if
6: for all p ∈ c.particles do . Shape Matching
7: p.incrementGoalPosition()
8: p.incrementGoalV elocity()
9: end for
10: end for
11: for no. of constraint iterations do . Strain Limiting
12: strainLimitingIteration(clusters)
13: end for
14: for all pf ∈ PotentialFractures do . Fracture
15: splitCluster(c)
16: end for
17: splitOutlierParticles() . Cleanup
18: removeSmallClusters(); removeLonelyParticles()

9



In this method, clusters are created using an approach similar to fuzzy c-means[7][4].

In the first stage, a k-means iteration is performed, iteratively updating cluster mem-

bership by adding particles to the nearest cluster and then updating cluster centres

based on all of the particles in the cluster until cluster membership is no longer chang-

ing. An additional two-step algorithm is then performed, which also takes into account

cluster weights. In this iteration, all particles within a particular radius of a cluster

centre are added, weights are assigned based on the distance from the cluster centre,

and the cluster centre is recomputed based on the weighted particle positions. The

algorithm converges when cluster membership remains constant across iterations. This

approach naturally creates overlapping clusters, a necessity in this algorithm to keep

objects from falling apart into their constituent clusters.

Dynamics is handled primarily by a standard shape matching algorithm but with

an additional strain-limiting iteration step which enforces per-cluster limitations on

strain every time step, which ensures that the forces simulated by the algorithm remain

bounded and that the simulation remains stable. This approach effectively mitigates

the non-linearities that may occur due to effects of multiple overlapping clusters at a

point.

Fracture is handled by testing each frame whether a cluster has been stretched

beyond its elastic limit and if so a fracture normal is computed perpendicular to the

deformation, and the cluster is then split into two separate clusters along this fracture

normal. At this point the program will iterate over the particles of the cluster and

assign them to one of the new clusters based on their current position relative to this

fracture normal. Finally, those particles that belong to clusters on both sides of the

fracture plane are duplicated and their mass is split between the two clusters on either

side of the plane. This functions similarly to Müller et al.’s Finite Element based

fracture described in Section 2.1.3, but uses the Apq matrix from the shape-matching

algorithm as an approximation of the strain tensor for a cluster.

In this dissertation, I have parallelised the physics time step summarised in Al-

gorithm 1, while cluster pre-processing still uses the methods developed by Jones et

al.
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2.2 General Purpose GPU Programming

The two main APIs for GPGPU programming are OpenCL and CUDA, both of which

are capable of running highly parallel code on GPUs but since CUDA is a proprietary

Nvidia technology, it will only run on Nvidia GPUs. OpenCL however, is an open

standard defined by the Khronos group designed for heterogeneous computing meaning

that OpenCL code can be run on various heterogeneous computing devices such as

CPUs, GPUs, or FPGAs. For this reason OpenCL was chosen for this project as it

would allow maximum interoperability and the ability to evaluate the parallel algorithm

on both GPU and CPU hardware.

Since OpenCL is a standard defined by the Khronos group implementations differ

between manufacturers and operating systems, as well as having different conformance

levels on different devices, with the latest offerings from AMD and Intel supporting

OpenCL 2.0 while all Nvidia deices and many others on the market today support only

the OpenCL 1.2 standard[1]. In order to support the vast majority of platforms and

to target multiple test machines, the target OpenCL version of this project was set at

1.2 but further work may explore the use of OpenCL 2.0 features, such as dynamic

parallelism and shared virtual memory. At this time fully supporting all of the major

desktop hardware vendors (AMD, Intel, and Nvidia), would necessitate writing parallel

code in OpenCL 1.2, OpenCL 2.0, and CUDA, switching code path depending on the

platform.

2.3 OpenCL Architecture

The OpenCL platform model consists of a host connected to one or more compute

devices. The compute devices contain a number of compute units, which are further

broken down into many processing elements. Typically the host is a CPU program,

and the compute devices may be CPUs, GPUs, or FPGAs.
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Figure 2.4: OpenCL Platform Model[2].

The processing elements within a compute unit will execute either a single stream

of instructions as SPMD (single program, multiple data), or execute in lockstep as

SIMD (single instruction, multiple data), so that both data parallel and task parallel

programming models are available. The most common usage, and that employed by

this project is to use SPMD to run the same program on different data in parallel.

In this model, programs are written that will execute over a range of work-items and

these programs are called OpenCL kernels.

All memory to be used by the OpenCL kernels must be loaded into buffers to be

used by the compute device and sharing data between host and device memory is

typically a very costly operation. A notable exception is that when using a CPU as a

compute device, the OpenCL memory is allocated on the main system memory and so

a shared pointer may be used between compute device and host.

The OpenCL memory model consists of four memory regions, each serving a differ-

ent purpose.

Global memory allows read/write access to all work-items running on a device.

Constant memory is an area of memory that does not change during the execution

of a kernel, constant memory may only be written to by the host and is typically

implemented as a subset of the global memory area.

Local memory is fully accessible by all work-items in a work-group. Local memory

may be implemented on device as either a dedicated memory space or a partitioned

12



area of global memory depending on the vendor’s implementation.

Private memory is an area of memory visible only to an individual work-item and

is typically used for variables defined within a kernel. An overview of this model is

shown in Figure 2.5.

Of these memory areas, global memory is the largest, slowest memory area, while

local and private memory areas are typically allocated in caches or registers depending

on the implementation and the amount of memory space needed .

Figure 2.5: OpenCL Memory Model [2].

In OpenCL, the state of memory visible to each work-item is not guaranteed to be

consistent across the collection of work-items at all times. This means that reading

from memory may not provide up-to-date data and if many work-items need read/write

access to the same buffer, synchronising threads to ensure memory consistency will

represent a considerable cost to performance.

Atomics for integer operations are also supported for lock-free programming but

floating point atomics are not supported because it is not guaranteed that they will be

supported natively by all devices.
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Chapter 3

Experimental Design

This chapter details the measurements that were made to evaluate the implementation

as well as a brief overview of the devices it was tested on.

3.1 Target Platforms

All of the experiments were performed on two different work-stations to ensure porta-

bility of the implementations and to observe any significant requirements for ideal per-

formance. A summary of the hardware in these different work-stations is summarised

in Table 3.1. All of the data in this table were gathered directly from the hardware

through the OpenCL API.

Test Machine 1 Test Machine 2
Device Type CPU GPU CPU GPU
Vendor Intel Nvidia Intel AMD
Device Xeon E3-1240 Quadro K2000 Core i5 - 4670K Radeon R9 390
Compute Units 8 2 4 40
Clock Speed 3400 Mhz 954 Mhz 3400 Mhz 1040 Mhz
Global Memory Size 17 GB 2 GB 24 GB 8 GB
Global Memory Cache 256 KB 32 KB 256 KB 16 KB
OpenCL Version 1.2 1.2 1.2 2.0

Figure 3.1: System Information of Test Platforms as Reported by the OpenCL API.

The various architectures of the devices on these two platforms allow for testing
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in environments with different limitations to determine the ideal configuration, as well

as any shortcomings that increase the hardware requirements of the implementation.

Though the global memory space available in these devices is highly variable, the

minimum value of 2GB is still more than enough to hold all of the simulation data

in memory so this limitation is not likely to be relevant. Of interest however is that

the GPU memory is typically substantially faster than the system RAM available to

the CPU. The CPUs, however have a far larger cache area devoted to OpenCL global

memory, so they will likely deal considerably better with memory intensive sections of

code.

Unfortunately, due to the heterogeneous nature of OpenCL, the reported values of

compute units has a different meaning across the different devices. For instance, the 8

compute units on the Xeon, compared to the Core i5’s 4 is due to the former supporting

hyperthreading, meaning that there are the same number of physical CPU cores but

the Xeon may achieve greater parallelism in some cases by utilising hardware that

would otherwise be idle [13], which will not give as significant a performance increase

as having double the physical cores on the device. it is also worth noting that due

to the inclusion of SSE vector extensions, these processors are also capable of 4-way

SIMD parallelism allowing far greater throughput on parallel data sets.

Similarly to the CPUs, the GPUs have different definitions of a compute unit with

the equivalent in Nvidia terminology being a Streaming Multiprocessor. In the case of

these two GPUs, the Nvidia chip reports two compute units that map to 384 CUDA

cores while AMD reports 40 compute units, that correspond to 2560 stream processors.

More generally, this means that both of the GPUs have many more SIMD cores per

compute unit allowing for far greater levels of parallelism than one would expect simply

from Table 3.1.

3.2 Measurements

This section details the measurements taken to evaluate the implementation and the

methodology used to gather the data. Platform specific data was gathered using Intel’s

VTune Amplifier, Nvidia’s NSight, and AMD’s CodeXL. Unfortunately a standard tool

to gather this data could not be found so the values reported by these tools are treated

as comparable where possible but some discrepancy is assumed.
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All of the measurements were taken running the broken heart demo as it had the

highest number of particles and clusters of the available demos, as well as having the

most fractures meaning that it represented the best stress-test available. The figures

used here are the average of five executions of the simulation in order to ensure that

these measurements represent the average case and not outlier behaviour.

3.2.1 Frame Time

The main measurement in these experiments is frame time, the amount of time to

simulate and render one frame. No external tools were used for this measurement, the

C++ standard library utility chrono was used for time measurements, which were then

written out to a CSV file upon program exit.

The main performance analysis was performed with both rendering and physics

enabled to measure the speed of the full implementation as it would be used in a real

world application.

3.2.2 Hot Spots

The hot spots in the code where most of the time is being spent were measured for the

Intel and Nvidia devices to determine where the main bottlenecks in the code were but

unfortunately a bug in the AMD profiling software caused it to crash when attempting

to gather the same data.

3.2.3 Memory Analysis

A detailed memory analysis was carried out for the Intel and AMD devices, however

Nvidia’s Nsight did not allow such fine-grained analysis for OpenCL and so no data

was gathered for this device.

The level of granularity of the results is also highly variable between the AMD and

Intel devices so the potential for direct comparisons was limited but where possible,

values recorded on each were compared directly.

16



Chapter 4

Implementation

This section details the main steps required to implement the multi-threaded imple-

mentation. A lot of further development effort was spent tackling platform specific

bugs and ensuring portability across the various devices tested.

4.1 OpenGL Renderer

The implementation by Jones et. al [11] used an open source rendering engine called

Ogre3D to handle the rendering of the particles. This caused a considerably increased

API overhead and provided only partial support for modern OpenGL functionality. To

alleviate this rendering bottleneck and allow for OpenGL and OpenCL interoperability,

a custom renderer was written using OpenGL 3.3 that uses instanced rendering to

efficiently render large numbers of particles each frame. This updated renderer reduced

frame times by approximately 90%.

At the time of writing, the rendering engine is not at feature parity with the Ogre3D

engine. Though fast rendering allows better analyisis of the physics implementation,

more complex rendering effects may be added in a later revision.

4.2 OpenCL Optimisation

Though often considerably faster, a naive GPU implementation of an algorithm using

OpenCL is not guaranteed to be significantly faster. OpenCL kernels are often memory-
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bound and so peak performance will be achieved when the ratio of computation to

memory accesses is large. Also of importance is the memory hierarchy (discussed

in Section 2.2), making good use of the faster private and local memory areas can

significantly reduce the cost of memory accesses, operations bound for global memory

should be kept to an absolute minimum.

A GPU is built for maximum bandwidth and so it is adept at performing a lot

of computations very quickly but execution cores lack the branch prediction hardware

that is ubiquitous on CPUs. In the case of branching execution paths, a GPU will

typically compute the result of both paths and discard whichever is not needed. For

this reason, it is important to keep branching to an absolute minimum when designing

algorithms for use on a GPU so where possible branching code was removed and if

possible, the branching was handled by the host device deciding whether or not to

execute a kernels.

A considerable performance bottleneck of any parallel algorithm is thread synchro-

nisation. The simplest form of synchronisation is to split the algorithm into multiple

kernels so that the state of the global memory space is known to be consistent when

each kernel is dispatched, this means that the synchronisation is handled by the host,

as it will only dispatch a new kernel to the compute device once the previous kernel has

completed processing, effectively limiting the level of parallel processing possible in or-

der to avoid data races. Another approach is to implement mutexes in the kernel code

or to use memory barriers that halt execution of individual work-items until all work

items have reached the barrier command but both of these approaches have shown poor

scaling with increasing number of work-items[8]. For this reason, this implementation

is entirely lock-free, with the host device handling most of the synchronisation and

atomic operations used for the few times that memory synchronisation was necessary

within a kernel.

4.3 Parallel Physics

The original single-threaded implementation consists of many steps that iterate over

either all particles or all clusters in the simulation. The first step in implementing a

parallel implementation was to write an OpenCL kernel for each of these iterations

that would instead run the same code in parallel for each cluster or particle. Much of
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the code base worked reasonably well once implemented in this naive fashion but there

were a number of issues with these preliminary kernels.

The first major issue with this initial implementation was those areas where clusters

iterate over and update all of their particles. In the single-threaded case there is no

issue but in a multi-threaded environment, this will create a data-race as multiple

clusters attempt to update the same particles. For this reason the particle object was

updated so that each particle was aware of its weight value in each of the clusters

to which it belongs so that the kernel may instead run on every particle so that the

work-items will have exclusive access to the particle they are updating. Each particle

can then read values from each of its clusters to update its properties without causing

a data race. This allows for far greater parallelism and avoids the issue of having to

synchronise memory accesses across many work-items. Similarly updating the particle

goals requires the calculation of a matrix T = R (c−Rĉ), where c and ĉ are the current

and original centres of mass of the cluster, and R is the rotation matrix described in

Section 2.1.4. In the parallel implementation, instead of calculating this matrix and

incrementing the goal positions of each particle in the cluster directly, the matrix is

simply stored in memory and accessed by the subsequent particle kernel that performs

the update for all particles in parallel. It was found that the increased parallelism

and lock-free nature of this approach more than offset the cost of the extra memory

operations to store the matrix and re-read it from memory.

Areas where the clusters require read-only access to the particles in order to update

their own properties were left unchanged as this interaction was already thread safe and

it was found that the increased parallelism achieved by running kernels on all particles

was completely mitigated by the time threads spent waiting for exclusive write-access

to each of their clusters.

Where possible, kernels that operated on the same data were then merged to avoid

the API overhead in dispatching a new kernel, and to avoid unnecessarily returning

control to the host device as much as possible. Commonly used data was also loaded

into kernel private memory at the beginning of each kernel to make use of the faster

private memory area rather than performing more expensive accesses to the slower

global memory area.

The fracturing algorithm, (summarised in Algorithm 2) unfortunately affords less

potential for parallelism since it largely operates only on a subset of the full set of

19



Algorithm 2 Fracturing Algorithm From Jones et al.[11]

1: for all f ∈ potentialFractures do
2: if clustershouldfracture then
3: f.cluster.split()
4: for all p ∈ c.particles do
5: for all pc ∈ p.clusters do
6: if dot(p.pos, f.norm) > 0 6= dot(pc.worldCom, f.norm) > 0 then
7: splitParticle(p)
8: end if
9: end for
10: end for
11: end if
12: end for
13: removeSmallClusters()
14: removeLonelyParticles()

clusters and particles. The first step runs in parallel only for each potential fracture,

meaning that the absolute upper limit on the number of parallel threads is equal to

the number of clusters in the simulation, but in practice this is much smaller and in

this implementation was limited to 64 .

The single threaded implementation then iterates over all of the particles in the

affected cluster, and checks all of the clusters this particle belongs to and if any of

these are not on the same side of the fracture as the particle, the particle is split into

two particles, one in each cluster on either side of the fracture plane. For the parallel

algorithm, this step is instead completed as two separate kernels, with the fracturing

cluster simply marking all of its clusters as potentially splitting and in a subsequent

step the particles all run in parallel, testing all of the fracture normals against all of

their clusters. This affords greater parallelism since the algorithm can now run in

parallel on each individual particle with the caveat that it is still iterating over all of

its clusters for each fracture in this simulation step but since the number of fractures

and the number of clusters per particle is relatively small, this was not seen to be a

significant performance bottleneck. Unfortunately, this approach requires a significant

amount of branching and so is not ideal for GPU devices.

The subsequent steps all operate on the entire set of clusters or particles but since

each of these alters the number of clusters or particles, they do require intermediate
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steps to ensure synchronisation between the particles and clusters. For example, after

removing small clusters, an additional step is required in which the particles’ cluster

arrays are cleared and each cluster then atomically adds itself to the cluster array

of each of its particles to ensure that none of the particles are affected by clusters

that no longer exist. A similar step is also run after particles are added or removed

from the simulation. These synchronisation steps are composed of almost entirely

memory operations and so are likely to be a significant performance bottleneck but

unfortunately no way was found to eliminate them entirely.

The changing number of particles and clusters in the fracturing algorithm is also

problematic because, though attempts have been made to implement a dynamic mem-

ory system in OpenCL [23], the OpenCL buffers themselves are of fixed size. For this

reason, bit arrays were implemented that would indicate to the OpenCL device which

particles and clusters are active in the simulation. Therefore, to delete from a buffer

requires only a single AND operation to clear the relevant bit in the bit array giving

O(1) complexity, and insertion into the buffer requires iteration over the bit array until

the first zero index is found, resulting in worst-case O(n) complexity (excluding the

cost of the write operation). This approach requires prior knowledge of what the maxi-

mum size of the buffers should be, which will vary depending on the simulation objects

and the interactions modelled. In this implementation the buffer sizes were set as 1.5

times the number of clusters and particles present at the beginning of the simulation

and this has been found to avoid buffer overflow but it is possible that these buffers

may be tuned better to minimise memory use.

4.4 Shortcomings

Due to time constraints collision detection and response was not implemented and

so certain simulations that were supported in the original implementation are not

supported in the OpenCL parallel implementation. This is unfortunate because the

algorithm lends itself well to fast and accurate collision detection due to the natural

space partitioning of the clusters and particles that make up the simulation objects.

It is also worth noting that though OpenCL is designed as a heterogeneous comput-

ing framework, methods often exhibited different behaviour across different platforms

leading to considerable issues ensuring portability of code, including a major re-write
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when adding support for CPU devices because some of the C++ wrapper API meth-

ods used incompatible default values, and so large amounts of initialisation and kernel

execution code had to be implemented instead with different C methods. Even with

this fallback however, there are still many points where the code diverges and uses a

different path depending on whether the compute device is a CPU or GPU, and even

different methods for loading data into buffers depending on whether the target GPU

is an AMD or Nvidia device. Future work may explore the potential of newer technolo-

gies like OpenGL 4+ compute shaders or the Vulkan API to allow true portability, at

least between different GPU devices.
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Chapter 5

Results

Jones et al. include many sample scenes to be run with their application, ranging in

complexity from simple deformations to fractures caused by multiple projectiles. Due

to time constraints not all have been tested to work with this new implementation but

those that have are listed in Table 5. The total dataset from which the results in this

chapter were drawn is available in Appendix 1 for reference.

Example # Particles # Clusters CPU - ST CPU - MT GPU
Broken Heart 20132 100 31.82 17.6 28.17
Twisting Bar 5317 40 10.67 6.05 42.96
Twisting Bar Fracture 5317 40 11.15 6.63 42.81

Figure 5.1: Summary of Test Scenes Showing Average Frame Times For Different
Configuration of This Application (measured on Core i5 and R9 390 devices).
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5.1 Frame Times

This section explores the differences between the different configurations in the time

taken to simulate and render each frame. This is the primary metric used to evaluate

the different configuations of this project.

5.1.1 Test Machine 1

On the first test machine, the multi-threaded GPU implementation was the slowest

configuration to complete the physics calculations, but is the fastest to complete the

rendering step.

This is a surprising result since the far larger number of cores on the Nvidia GPU

should allow it to perform substantially better in highly parallel applications. It would

seem from these results that core count is not the primary bottleneck of the algorithm

as the Nvidia device would show far better peformance if that were the case.

When the simulation is running on the GPU, the entire particle buffer remains

resident in the GPU memory, avoiding costly data transfers and leading to rendering

times that are approximately half of the other two configurations. As can be seen from

Figure 5.3, however, this rendering efficiency has an insignificant effect on the total

fame times.

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

frame

ti
m
e(
m
s)

Physics Time Step

0 50 100 150 200 250 300 350
0

2

4

6

frame

Rendering Time

OpenCL - GPU
Single-Threaded CPU
Multi-Threaded CPU

Figure 5.2: Physics and Rendering Performance in Various Configurations on Test

Machine 1.
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On the CPU side, the multi-threaded implementation showed an average of 40%

improvement over the original single-threaded implementation due to increased CPU

utilisation improving processing throughput in the physics time step. Though a signif-

icant performance increase, this shows a less than linear improvement with increasing

core count and suggests there may be low core utilisation in the multi-threaded imple-

mentation.
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Figure 5.3: Relative performance of different implementations on Test Machine 1.

Also of note is that the frame-times in the case of the multi-threaded CPU are far

more stable, not suffering from the substantial increases in frame times that the GPU

and the single-threaded CPU implementations exhibit as soon as the object begins

fracturing. This is arguably more important than the actual reduction in frame times

as it shows more of an ability to scale with increasing complexity of the simulation.
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5.1.2 Test Machine 2

On the second test machine the GPU executed the physics time step in slightly lower

time than the single threaded CPU implementation and showed a substantial improve-

ment in rendering times resulting an average improvement of 9.9% over the single-

threaded CPU implementation. However, once again the multi-threaded CPU was

shown to be substantially faster despite the slower rendering times.
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Figure 5.4: Physics and Rendering Performance in Various Configurations on Test

Machine 2.

The multi-threaded CPU performed almost identically as on the first test machine,

showing that the impact of hyper threading on the overall speed was negligible for this

algorithm.
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Figure 5.5: Relative performance of different implementations on Test Machine 2.

As expected, the R9 390 performs considerably better than the Quadro K2000 but

as Figure 5.5 shows, the GPU implementation still under performs, showing clearly

that the algorithm cannot scale effectively with increasing core-count.

5.2 Hotspot and Memory Analysis

Figure 5.6 shows the miss rates in the last level cache for the Intel CPUs and the AMD

GPU, as mentioned in Section 3.2.3 the same data was not available for the Nvidia

GPU and so it was omitted from this plot. It is expected that the Intel CPUs would

perform better in these circumstances due to the vastly larger cache area allocated to

OpenCL global memory on the Intel devices but the difference shown is significantly

more substantial than could be expected.

This is likely to do with the fact that, on a hardware level the difference in caches

between the devices is even more substantial than the 16x difference shown in Table 3.1,

the R9 390 has only 1 MB of L2 cache shared between all compute units while the Xeon

chip and the Core i5 have 8 MB and 6 MB L3 Caches respectively that are shared

between all CPU cores, giving a far greater ratio of cache space to execution cores and
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allowing them to almost completely avoid loads from the system RAM for the duration

of the simulation.

By analysing values for individual kernels it was found that the worst case cache

performance was experienced in short kernels that simply read and update a single

value, exhibiting an especially poor ratio of memory operations to ALU instructions.

Another significant issue is those kernels in which clusters are updated based on values

held by all of their particles. This is likely due to the fact that the position of a

particle in the buffer is not guaranteed to be related to its spatial positioning leading

to a largely random access pattern by the cluster kernels that is likely to cause some

thrashing of the small cache on the GPU. This behaviour could be improved by storing

particles in a BSP tree or similar spatial partitioning scheme, or by storing all of the

particle attributes in separate buffers to improve locality of reference.

Figure 5.7 shows how this difference of cache architecture affects the AMD GPU,

showing that the vast majority of time is spent on memory operations while the vector

and scalar ALUs perform relatively little work. Clearly this is why the algorithm does

not scale effectively with increased core counts since the main bottleneck is memory

accesses.
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Figure 5.6: Average Percentage of Misses in the Last Level Cache for the Intel and

AMD Devices.
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Cycles per instruction is a useful metric as it shows how quickly instructions are

passing through the CPU pipeline. Ideal values of CPI are less than or equal to one,

meaning that at least one instruction is finishing execution in every clock cycle. A low

CPI indicates that the hardware in the CPU is being utilised effectively and instructions

are not stalled in one pipeline stage for a significant amount of the clock cycle. A high

CPI indicates a large amount of stalls due to slower operations relative to the amount

of faster operations that are passing through the pipeline. Figure 5.8 shows the CPI

values for each kernel in the simulation running on the Core i5 device split up by

whether they operate on all clusters or all particles, the percentage of misses in the last

level cache is also shown to illustrate that many of the largest bottlenecks are driven

by a large proportion of cache misses.

It can be seen from Figure 5.8 that one of the particle kernels suffers from par-

ticularly high CPI owing largely to the miss percentage in the last level cache. This

illustrates a significant disadvantage to this algorithm as this kernel is used to reset

the particle goal positions and velocities for each frame, which are then accumulated

based on cluster positions. This is essentially worst-case performance since the kernel

consists of almost exclusively memory operations and must be executed before any

other kernels in the physics time step.

This illustrates a major issue with the algorithm used. The particle kernels typically

require access to the cluster buffer and vice-versa, meaning the data in these buffers
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Figure 5.8: CPI and LLC Miss % For All Kernels on the Core i5 Device.

must be updated many times throughout each time step. Of the top four cluster kernels

by CPI value, three of them are simply updating cluster values that the particles will

be accessing in subsequent kernels. This requirement for synchronising data over the

course of a single time step is a considerable performance bottleneck and a significant

challenge to effectively implementing parallelised clustering.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The parallel implementation of clustered-shape matching presented here achieves best-

case performance increases of approximately 40% but due to memory bottlenecks, fails

to scale on GPU devices and exhibits generally poor cycles per instruction on multicore

CPU devices.

As can be seen in Section 5.2, the requirement to keep properties in sync between

particles and clusters results in many areas where there is a significant memory bot-

tleneck limiting the performance increase that may be gained from parallelism. The

CPUs tested managed to mitigate this bottleneck somewhat through their deeper cache

hierarchy and large L3 cache shared amongst all cores but the overall performance is

still significantly limited. Therefore, for this particular algorithm a multi-core CPU

performs far better than a many-core GPU but it may be possible to implement the

same rich simulation of deformation and fracture using position-based-dynamics while

also avoiding this memory bottleneck, by using spatial partitioning to increase the

cache efficiency of the algorithm.

In Figure 5.4 a non-negligible reduction in rendering time is observed from keeping

all of the data resident in GPU memory for the duration of the simulation, allowing data

transfers across the PCIe bus to be avoided. Maintaining this increased performance is

further motivation for a parallel implementation that is not memory bound, and may

be executed effectively on GPU devices.
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Particle based dynamics then does offer a great potential for parallelisation but

this clustered approach has considerable limitations in the performance gain that may

be archived due to the significant memory overhead necessary to keep data consistent

across particles and clusters.

6.2 Future Work

As mentioned in Section 2.2, improved performance may be achieved by implementing

different code paths depending on the hardware present, especially advantageous would

be allowing the use of OpenCL 2.0 on AMD GPUs and CUDA version 5+ for Nvidia

GPUS. Better performance may be achieved by using a different framework depend-

ing on the platform, while also allowing a measurement of the potential performance

improvement from these more modern APIs. An aternative method would be to use

OpenGL 4 compute shaders or the new Vulkan API, perhaps performing a comparison

to determine the relative performance of the different APIs.

Adding parallelised collision detection, such as the implementation of Greß et al. [9]

would allow the parallel implementation to simulate more complex scenes, and bring

the parallel implementation to feature parity with the single-threaded implementation.

Improved rendering, and in particular, an efficient method for particle skinning

could greatly improve the appearance of the simulation, and add to its viability for use

in real-time applications.
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Appendix1 - Detailed Results

This section shows the full dataset from which the results were drawn. Again all figures

were recorded executing the broken heart demo program.
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Nvidia Quadro K2000 Profiler Data

kernel Device Time (s) min(s) avg(s) max(s)

TestOutsideTiltingPlane 0 0 0 0

TestOutsideTwistingPlane 0 0 0 0

ClearParticleGoals 0.26 2.41 · 10−4 2.89 · 10−4 3.7 · 10−4

UpdateClusterPlasticities 3.54 3.85 · 10−3 3.92 · 10−3 7.64 · 10−3

UpdateParticleGoals 0.94 9.31 · 10−4 1.04 · 10−3 1.1 · 10−3

ZeroParticleGoalPositions 0.25 5.48 · 10−5 6.88 · 10−5 1.23 · 10−4

StrainLimitingIteration 9.4 2.55 · 10−3 2.61 · 10−3 2.68 · 10−3

StrainLimitingGoalUpdate 3.86 9.43 · 10−4 1.07 · 10−3 1.15 · 10−3

UpdateParticleVelocities 0.13 1.17 · 10−4 1.39 · 10−4 1.7 · 10−4

UpdateClusterComs 1.29 1.4 · 10−3 1.43 · 10−3 1.47 · 10−3

FracturePotentialSplits 4.53 · 10−2 4.88 · 10−6 5.03 · 10−5 6.46 · 10−3

SplitParticles 0.81 4.32 · 10−5 9.02 · 10−4 6.36 · 10−2

SplitOutliers 0.62 6.23 · 10−4 6.88 · 10−4 8.04 · 10−3

CullSmallClusters 0.39 3.98 · 10−4 4.37 · 10−4 4.55 · 10−4

RemoveLonelyParticles 4.49 · 10−2 4.18 · 10−5 4.98 · 10−5 5.66 · 10−5

ClearParticleClusters 7.04 · 10−2 3.14 · 10−5 3.91 · 10−5 6.98 · 10−5

ClearClusterMembers 9.64 · 10−3 6.04 · 10−6 1.07 · 10−5 1.6 · 10−5

CountClusters 5.15 2.82 · 10−3 2.86 · 10−3 3.02 · 10−3

CountClustersPerParticle 1.11 1.03 · 10−3 1.23 · 10−3 1.35 · 10−3

UpdateClusterProperties 5.69 3.1 · 10−3 3.16 · 10−3 3.27 · 10−3

UpdateClusterTransforms 4.46 1.6 · 10−3 1.65 · 10−3 1.7 · 10−3

MovingPlaneInteraction 0.21 1.84 · 10−4 2.29 · 10−4 3.01 · 10−4

TwistingPlaneInteraction 0 0 0 0

TiltingPlaneInteraction 0 0 0 0

UpdateFpAndCom 1.13 1.19 · 10−3 1.25 · 10−3 1.28 · 10−3
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Core i5 Profiling Data

Hotspots

kernel Utilisation Time (s) Instructions Retired CPI Rate

ClearClusterMembers 0.54 1.04 · 109 1.9

ClearParticleClusters 2.4 5.87 · 109 1.44

ClearParticleGoals 1.18 2.35 · 109 1.83

CountClusters 0.1 2.22 · 108 1.68

CountClustersPerParticle 0.39 1.75 · 109 0.79

CullSmallClusters 0.38 3.44 · 108 3.9

FracturePotentialSplits 3.62 2.7 · 109 4.87

MovingPlaneInteraction 0.54 2.07 · 109 0.96

RemoveLonelyParticles 1.09 5.41 · 108 7.39

SplitOutliers 0.54 5.47 · 108 3.6

SplitParticles 2.2 6.24 · 109 1.29

StrainLimitingGoalUpdate 2 · 10−4 4.76 · 106 0.4

StrainLimitingIteration 0.29 5.28 · 108 1.96

UpdateClusterComs 6.26 1.17 · 1010 1.92

UpdateClusterPlasticities 2.19 1.82 · 109 4.32

UpdateClusterProperties 1.11 2.17 · 109 1.85

UpdateClusterTransforms 3 · 10−3 5.1 · 107 0.37

UpdateFpAndCom 0.35 4.04 · 108 2.84

UpdateParticleGoals 1.65 3.27 · 108 18.11

UpdateParticleVelocities 4.2 1.01 · 1010 1.5

ZeroParticleGoalPositions 0.53 2.21 · 109 0.88
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Memory

kernel CPU Time Loads Stores L3 Misses L3 Miss Percent

ClearParticleClusters 0.13 1.44 · 107 2.4 · 107 0 0

ClearParticleGoals 0.72 3.76 · 107 6.54 · 107 4.72 · 106 12.55

CountClusters 1.57 2.15 · 108 1.72 · 108 5.4 · 106 2.51

CountClustersPerParticle 1.51 4.45 · 108 3.69 · 108 2.2 · 106 0.49

CullSmallClusters 0.43 2.2 · 108 2.08 · 108 3.2 · 105 0.15

FracturePotentialSplits 5.62 · 10−2 3.52 · 107 1.71 · 107 9.6 · 105 2.73

MovingPlaneInteraction 0.7 2.97 · 108 2.01 · 108 1.44 · 106 0.49

RemoveLonelyParticles 0.6 2.81 · 108 1.44 · 108 2 · 106 0.71

SplitOutliers 0.31 2.61 · 108 8.85 · 107 1.68 · 106 0.64

SplitParticles 0.36 3.14 · 108 9.49 · 107 4 · 106 1.28

StrainLimitingGoalUpdate 3.29 2.14 · 109 5.48 · 108 3.44 · 106 0.16

StrainLimitingIteration 7.01 3.12 · 109 7.74 · 108 2.32 · 107 0.74

UpdateClusterComs 0.5 2.9 · 108 1.13 · 108 3.2 · 106 1.11

UpdateClusterPlasticities 2.08 4.9 · 108 9.78 · 107 2.33 · 107 4.76

UpdateClusterProperties 2.65 9.39 · 108 5.92 · 108 3.53 · 107 3.76

UpdateClusterTransforms 2.49 1.29 · 109 6.64 · 108 2.77 · 107 2.14

UpdateFpAndCom 1.44 7.03 · 108 2.12 · 108 1.97 · 107 2.8

UpdateParticleGoals 2.23 6.37 · 108 1.9 · 108 1.24 · 106 0.19

UpdateParticleVelocities 2.27 4.22 · 108 1.54 · 108 1.48 · 106 0.35

ZeroParticleGoalPositions 0.46 7.68 · 107 5.65 · 107 5.2 · 105 0.68
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kernel L1 Bound L2 Bound L3 Bound DRAM Bound

ClearParticleClusters 8.12 · 10−2 2.74 · 10−3 0 8.07 · 10−3

ClearParticleGoals 6.24 · 10−2 4.83 · 10−3 2.37 · 10−2 0.5

CountClusters 0.48 7.07 · 10−3 2.99 · 10−2 0.29

CountClustersPerParticle 0.62 0 2.03 · 10−2 4.84 · 10−2

CullSmallClusters 0.21 0.12 1.19 · 10−2 3.88 · 10−2

FracturePotentialSplits 0.15 5.88 · 10−2 0.1 0.3

MovingPlaneInteraction 0.29 3.69 · 10−2 7 · 10−2 0.25

RemoveLonelyParticles 0.24 2.93 · 10−2 0.13 0.31

SplitOutliers 7.11 · 10−2 5.36 · 10−2 0.14 0.3

SplitParticles 4.11 · 10−2 1.04 · 10−3 6.16 · 10−2 0.31

StrainLimitingGoalUpdate 4.96 · 10−2 0 4.21 · 10−2 0.17

StrainLimitingIteration 7.86 · 10−3 6.95 · 10−3 0.11 0.13

UpdateClusterComs 0.11 0 0.16 0.12

UpdateClusterPlasticities 6.72 · 10−3 2.33 · 10−2 8.22 · 10−2 0.2

UpdateClusterProperties 5.47 · 10−3 9.82 · 10−3 7.84 · 10−2 0.21

UpdateClusterTransforms 4.08 · 10−2 1.65 · 10−2 0.19 0.26

UpdateFpAndCom 6.22 · 10−3 2.3 · 10−2 0.17 0.22

UpdateParticleGoals 2.58 · 10−3 3.08 · 10−3 5.03 · 10−2 8.58 · 10−2

UpdateParticleVelocities 2.03 · 10−3 2.03 · 10−3 0.13 0.15

ZeroParticleGoalPositions 9.28 · 10−2 2.77 · 10−3 2.86 · 10−2 6.73 · 10−2

37



Xeon Profiling Data

Memory

kernel Memory Bound Loads Stores LLC Miss Count

ClearClusterMembers 8.48 · 10−2 0.13 2.76 · 107 1.73 · 107

ClearParticleClusters 0.67 0.56 4.68 · 107 6.96 · 107

ClearParticleGoals 1.47 0.72 1.49 · 108 1.46 · 108

CountClusters 1.79 0.69 3.96 · 108 3.18 · 108

CountClustersPerParticle 0.81 0.39 3.42 · 108 2.99 · 108

CullSmallClusters 3.43 · 10−2 0.32 2.52 · 107 1.9 · 107

FracturePotentialSplits 0.53 0.57 2.26 · 108 1.38 · 108

MovingPlaneInteraction 0.85 0.46 2.86 · 108 2.1 · 108

RemoveLonelyParticles 0.26 0.47 2.12 · 108 8.33 · 107

SplitOutliers 0.42 0.24 3.49 · 108 1.04 · 108

SplitParticles 7.29 0.2 1.49 · 109 3.53 · 108

StrainLimitingGoalUpdate 9.53 0.16 3.92 · 109 1.07 · 109

StrainLimitingIteration 2.14 0.26 2.72 · 109 9.7 · 108

UpdateClusterComs 0.99 0.23 5.36 · 108 1.42 · 108

UpdateClusterPlasticities 3.27 0.23 1.03 · 109 5.35 · 108

UpdateClusterProperties 3.04 0.28 1.56 · 109 9.34 · 108

UpdateClusterTransforms 1.05 0.34 1.35 · 109 4.66 · 108

UpdateFpAndCom 1.85 0.24 5.6 · 108 1.34 · 108

UpdateParticleGoals 2.5 0.23 7.27 · 108 2.37 · 108

UpdateParticleVelocities 0.23 0.35 1.01 · 108 4.97 · 107

ZeroParticleGoalPositions 0.31 0.35 1 · 108 9.16 · 107
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R9 390 Profiling Data

Memory

kernel CacheHitPercent MemUnitBusyPercent MemUnitStalledPercent WriteUnitStalledPErcent

ClearClusterMembers 2.99 0.32 1.21 · 10−2 4.69 · 10−3

ClearParticleClusters 1.83 2.14 1.78 2.2

ClearParticleGoals 29.69 11.16 7.74 4.25

CountClusters 18.38 8.3 1.28 0.1

CountClustersPerParticle 48.41 37.07 16.97 9.47

CullSmallClusters 44.22 10.07 1.66 3.6 · 10−2

FracturePotentialSplits 4.53 0.46 6.44 · 10−3 5.05 · 10−3

MovingPlaneInteraction 31.57 10.24 2.27 1.16

RemoveLonelyParticles 1.83 3.56 8.48 · 10−4 4.68 · 10−3

SplitOutliers 23.4 28.93 11.48 12.11

SplitParticles 2.74 3.37 2.52 · 10−3 7.04 · 10−3

StrainLimitingGoalUpdate 21.1 26.12 5.32 5.6

StrainLimitingIteration 17.37 8.14 0.29 3.82 · 10−3

UpdateClusterComs 20.23 8.22 0.44 5.78 · 10−3

UpdateClusterPlasticities 25.04 10.43 0.68 8.49 · 10−3

UpdateClusterProperties 26.84 10.67 0.66 3.44 · 10−3

UpdateClusterProperties 26.84 10.67 0.66 3.44 · 10−3

UpdateClusterTransforms 17.25 8.11 0.52 4.89 · 10−3

UpdateFpAndCom 19.17 8.23 0.67 5.81 · 10−3

UpdateParticleGoals 33.67 34.25 11.03 8.06

UpdateParticleVelocities 9.3 7.19 1.94 1.08

ZeroParticleGoalPositions 1.85 2.1 1.74 2.09
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ALU Utilisation

kernel VALUUtilizationPercent VALUBusyPercent SALUBusyPercent

ClearClusterMembers 89.61 0 0

ClearParticleClusters 99.94 8.73 · 10−2 8.73 · 10−2

ClearParticleGoals 99.92 0.11 9.59 · 10−2

CountClusters 60.67 7.21 · 10−2 7.62 · 10−2

CountClustersPerParticle 61.84 0.53 0.52

CullSmallClusters 75 3.55 · 10−2 4.5 · 10−2

FracturePotentialSplits 48.07 1.96 · 10−3 1.57 · 10−3

MovingPlaneInteraction 92.29 0.26 0.72

RemoveLonelyParticles 95.36 9.51 · 10−2 0.13

SplitOutliers 50.7 0.76 0.77

SplitParticles 96.49 0.17 0.48

StrainLimitingGoalUpdate 61.95 1.49 1.39

StrainLimitingIteration 61.44 0.13 5.8 · 10−2

UpdateClusterComs 62.4 8.73 · 10−2 5.69 · 10−2

UpdateClusterPlasticities 61.95 0.13 4.8 · 10−2

UpdateClusterProperties 61.32 0.14 5.74 · 10−2

UpdateClusterProperties 61.32 0.14 5.74 · 10−2

UpdateClusterTransforms 61.94 0.13 4.78 · 10−2

UpdateFpAndCom 62.39 8.74 · 10−2 5.71 · 10−2

UpdateParticleGoals 62.5 0.87 0.64

UpdateParticleVelocities 99.92 0.13 6.79 · 10−2

ZeroParticleGoalPositions 99.94 9.62 · 10−2 6.83 · 10−2
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