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Dissertation Summary

Software-Defined Networking(SDN) is a networking architecture, that is proposed to

decouple the complex control functions out of the network switching elements and form

a separate control layer. Thus, the infrastructure in network elements can carry out less

complex forwarding operations and the control layer can programme this infrastructure,

based on the control policies directed by the network applications. OpenFlow is an SDN

approach, that provides a centralised controller for the underlying OpenFlow switches.

OpenFlow switches are equipped with flow tables, that can be managed by the con-

troller through an interface,OpenFlow protocol. OpenFlow yields a lot of benefits to the

network, including, a global view of the network for better network control, flow-based

traffic control, clear separation between the infrastructure and the control layer for easy

conversion of business needs into low-level instructions and proactive management deci-

sions. Information-Centric Networking(ICN) is a future internet architecture aims to shift

the internet architecture from ’host-centric’ to ’content-centric’, by keeping the content

as the first primitive in network communication, instead of addressing the end-points.

ICN is gaining a lot of interest from the industry and academic research due to its ability

to solve a number of performance issues, that are faced by today’s Internet due to the

enormous increase in the amount of data being handled on the Internet. ICN provides

a number of benefits, including, mobility, secured contents, improved content availability

and multicast communication. Recently, researchers commenced the idea of integrating

OpenFlow and ICN in order to practice the benefits of one over the other. There are

some thoughts in literature to integrate OpenFlow and ICN, without modifying any of

the architectures under consideration. They involve workarounds and plugins, that need

a lot of efforts and fail to provide a clean state integration of OpenFlow and ICN. On

the other hand, a number of studies tried to extend OpenFlow to some extent, to enable

ICN features, but they lack in the amount of ICN functionalities that are supported and
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the scope of the extensions was minimal. Most of the studies remain conceptual. This

dissertation aimed to study the potential of OpenFlow to support ICN, by creating an

OpenFlow-based control plane for the ICN network. This is achieved by designing an in-

tegration solution ’OF-ICN’, by extending the necessary OpenFlow elements: OpenFlow

switch, OpenFlow controller and OpenFlow protocol, with the ICN functionalities and

ICN data structures. OF-ICN is implemented using an open source Python OpenFlow

controller, POX. The OpenFlow switch component provided by POX is extended to in-

clude ICN-related data structures: Forwarding Information Base, Pending Interest Table

and Content Store. Similarly, the OpenFlow controller component is extended with the

name-based routing database and a cache to store contents. POX’s OpenFlow library is

modified to introduce new messages, actions and events, to be used between the switch

and the controller. The implementation of OF-ICN is evaluated by benchmarking the

ICN functionalities supported by it and also by comparing its behaviour with a number

of existing ICN implementations. The results show that, with the necessary modifications

to the underlying elements and library, a clean state integration between OpenFlow and

ICN can be achieved and, OpenFlow can provide a control plane to manage the underlying

ICN-enabled network. In addition to providing an experimental solution for integrating

OpenFlow and ICN, this dissertation has also contributed towards a complete analysis of

existing literature towards combining OpenFlow and ICN and reported the gaps identified

in them. It also ensured to utilise the generic ICN architecture which can be adapted to

any specific ICN implementation. A modularized code is produced out of this disserta-

tion, which can be separated into modules and plugged into a relevant codebase. This

study has identified the ICN naming scheme, scalability and security as future research

directions over the proposed approach.
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OpenFlow is a Software-Defined Networking (SDN) approach, that is used to separate the

data plane and the control plane of a network. This is achieved by defining and separating

the network communication into different flows and by controlling the paths of these flows

using OpenFlow. The work on the OpenFlow protocol currently focuses and relies on

IP-based networking. Information-Centric Networking (ICN) is an alternative Internet

architecture, that provides network communications based on the named contents instead

of addresses as in current Internet architecture. However, current ICN approaches lack

the definition of a control plane and current OpenFlow specifications do not support the

control of ICN flow by default. Therefore, this study analyses the potential of OpenFlow

in supporting ICN and tries to port ICN functionalities in OpenFlow by modifying and

extending OpenFlow components; switch, controller and the protocol. The results from

this study reveal that, upon making necessary modifications to the underlying protocol,

OpenFlow can successfully support ICN functionalities by making forwarding and caching

decisions for ICN flows in the network.
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that OF-ICN provides essential ICN functionalities

• Chapter 7 - This chapter derives the conclusion based on the evaluation results

shown in the previous chapter and also sets the future research directions
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Chapter 1

Introduction

Software-Defined Networking(SDN) is a network architecture paradigm, that decouples

the complex network control and management operations of the network elements from

their forwarding operations[2]. These separated control and management functions will

form a control layer for the underlying network elements. OpenFlow is an SDN approach,

that follows the principles of SDN and, provides a centralised controller and a program-

ming interface for the network switches, that are OpenFlow-enabled[3]. OpenFlow pro-

vides a clear separation between the control policies and the switch infrastructure so that

the switches can be less complex and carry out the essential forwarding operations. Open-

Flow divides the network communication into various ’flows’ to provide better control and

traffic engineering [3]. Information-Centric Networking(ICN) is a future Internet archi-

tecture that shifts the network architecture from being ’host-centric’ to ’content-centric’

[4]. ICN provides network communication by keeping the ’data’ or ’content’ as the first

primitive and enables the network to fetch the content from anywhere in the network using

a ’name’ to identify the content [5]. ICN aims to provide better availability of content in

the network resulting in better user experience and minimal network traffic to the content

producer [4]. OpenFlow, by default, has the complete support for the IP-based network

communication flows. However, none of the OpenFlow specifications has the support for

controlling ICN flows [6, 7, 8, 9]. On the other side, ICN architectures have no definition
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of a centralised control plane to enhance the controlling process for the ICN networks

[5]. There are some studies in literature, which tried integrating OpenFlow and ICN by

either providing an overlay solution or providing workarounds on OpenFlow with extra

modules or plugins for handling ICN flows [10, 11]. There are very fewer considerations

to move OpenFlow towards a clean state ICN support [12, 13, 14], but the scope and

the supported ICN functionalities are minimal. This dissertation studies the potential

for the OpenFlow to support ICN by extending the essential OpenFlow elements with

ICN features. To achieve this, this study aims to create an OpenFlow-based control plane

using an OpenFlow controller, POX [15] and, modifies it based on the proposed solutions.

The following section outlines the background of OpenFlow and ICN, followed by the

aims of this project. Next section presents an abstracted view of the literature outlining

the gaps, followed by the approach proposed by this dissertation to fill those gaps. Specific

project contributions are listed in the following section and this chapter concludes with a

list of terminology that will be used throughout this report.

1.1 Background

This section describes the background details on SDN, OpenFlow and ICN.

1.1.1 SDN and OpenFlow for ’Today’

Network switches are the network elements that help to connect machines to the network

and are essential in network operations between these machines [16]. The network oper-

ations include packet lookup, packet switching and packet buffering activities [1, 17]. A

switch has two main components to carry out these operations: a ’datapath’ which is used

to forward the packets in the network and a ’control block’ to make decisions on switch

configurations and operations, which includes management protocols like SNMP [18] and,

routing protocols like OSPF [19] and BGP [20]. These components are tightly coupled to

a network switch, leading to a closed architecture, wherein the data plane and the control
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plane are packed together by the vendor. Moreover, the switch interfaces are not exposed

to the outer world. This closed-nature of switches, delays the process of experimenting

new networking architectures on the network switches [1]. Furthermore, the network op-

erators have to manually enter the control policies into the switch infrastructure. This is a

complex process of converting the high-level logics into low-level switch implementations

[21]. These manual operations are error prone and therefore, attempting new innovations

on the network switches is hindered, resulting in ’Internet ossification’ [22]. Businessmen

must wait for a long period of time, for their ideas to be realised in the network.

Figure 1.1: Comparison between a closed switch and SDN architecture

SDN aims to provide a solution for this problem, by decoupling the complex network

control and management operations of the switches, from the forwarding operations and,

forming a separate control layer [2]. Figure 1.1 shows the comparison between a closed

switch and SDN architecture. Through this, SDN tries to realise a less complex data

plane layer, that can be programmed by the centralised control layer. A network op-

erator can build applications over this control layer, which use the interfaces provided

by the control layer to programme the underlying switches [23]. The intelligence of the
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network is abstracted into this control layer and used to control the elements with the

aim of getting a better quality of service out of the network. This also helps to realise

the frequently changing business needs with little programming efforts instead of a whole

painful hardware change or upgradations. SDN is welcomed by many industries like data

centres, to have a better control over the underlying storage elements [2]. SDN helps

for the continuous evolution of the networking architectures. SDN can be compared to

earlier ’Active Networks’ [24] which tried providing an experimental network architecture

through special packets called ’capsules’ which carry network programs along with the

ordinary messages and the networks elements that process them, will execute those pro-

grams in their machines. The problems with active networks are isolation, performance

and complexity. SDN has the better performance and clear separation logic compared to

active networks [22].

In order to enable the control functions that are outside the switch box, to act on

the switch, SDN suggests abstracting the switch knowledge into a ’substrate’ [1] which

can be acted upon and programmed by the control layer. Thus, from outside the switch

box, the control plane will look for of this substrate for it to successfully transfer the

control policies into programs. ’OpenFlow’ [3] helps to realise this SDN switch ’substrate’

in terms of ’Flow table’. OpenFlow is a Software-Defined Networking architecture which

abstracts the intelligence of the network elements into a centralised controller so that the

network elements can be simple and concentrate on forwarding operations. OpenFlow

also provides the interface for the switch and the controller to communicate with each

other, which requires both of them to understand the OpenFlow protocol.

An OpenFlow switch is equipped with a flow table. A flow table generalises the

knowledge and current state of the network switch. The flow table consists of flow entries

which decide on how to handle the network flows. A flow can be any definite form of

network traffic (for example, the packets that are destinated for a particular application ,

all HTTP packets, all packets routed to a particular country) [1]. The OpenFlow controller

programs this flow table to change the behaviour of the switch. The ’TCAM’ [25] in a
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switch, can be utilised to implement the flow table on it. The reason for the popularity

of OpenFlow is that it is being implemented by many vendors compared to other SDN

implementations [26] and it provides the following major benefits [3, 22] to the network:

• Centralized control of the underlying network, that simplifies the network controlling

process of the network operators

• Flow based operations, that help to realize better traffic control in the network

• Less-complex network elements, that can be programmed by the control layer

• Clear separation between the infrastructure and the control policies, so that the

business ideas can be easily converted into controlling applications over the control

layer.

• Load balancing for the better traffic engineering in the network

• Pro-activeness of the controller

Thus, altogether the control plane and the substrate will form an operating system

for the underlying network with an abstracted view of both the control functions and the

switching infrastructure [27]. The substrate in the switch focuses on executing the in-

structions from the controller, while the instruction programmability and the innovations

are carried out in network operating system and the controlling applications [1].

1.1.2 ICN for ’Tomorrow’

In the same time, when OpenFlow was proposed and became popular in supporting IP

flow-based communication, on the other side people started realising a need for a change

in the Internet architecture from being ’host-centric’ to ’content-centric’ [4]. In 2006,

Van Jacobson, first put forward this idea of internet architecture change in a google

talk ’A new way to look at networking’ [28]. He mentioned that the entire Internet

users community started realising that the internet which is originally designed to solve
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telecommunication needs, started facing serious performance issues recently. When the

internet users care more about ’what’ they are retrieving, the internet cares about from

’where’ it is retrieving[5]. When the applications and the amount of data evolve drastically

the internet architecture remained the same and started showing performance issues while

trying to retrieve exabytes of data over the network from the content producers [29].

The Internet is subject to a sudden rise in the amount of data being handled which

is termed as ’flash crowds’ and it is mostly due to the mobility of the devices connected

to the internet [5]. Mobile IP [30], a patch to achieve mobility with the existing architec-

ture of Internet, increased the complexity of the overall architecture of the Internet [29].

’Information dissemination’ is the primary motto of today’s Internet. This has become

more complicated especially when the Internet has to keep up with the user experience

and service agreements. The increased demand for data and the fact that the internet

users are caring more about the data and less about the location of the data, are the

main driving forces behind the architecture proposed by [4], which is originally termed

as ’Content-Centric Networking’ and recently generalised as ’Information-Centric Net-

working’ (ICN) [31]. ICN results in a receiver-driven communication. The network is

responsible for locating the information which is requested by the user[32]

The ICN depends on ’Named Data Objects’ [5] which can be any data chunk on the

internet which is accessible through the network with a name. In contrary to the IP

protocol, which revolves around the host addresses to provide communication between

two entities to retrieve data, ICN puts forward the content which is requested by the

user. Thus, it releases the constraint of getting the data only from the producer [29].

The user can get the intended data anywhere from the network and the integrity of the

content is taken care by the content itself through digital signatures [4].

In ICN, all the contents are given names and they are retrieved based on these names.

When a user wants to retrieve a piece of information, the user has to send out request for

the information using its name and the network finds the relevant information for the user

using the requested content name. The motivation behind this is that, users nowadays
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are interested in the content and they are not worried from where they are getting the

content, but still the IP infrastructure resides on addresses. ICN can be compared with

a dedicated content distribution technology like P2P [33], which is an overlay technology

and content dissemination technology like CDN [34]. The network satisfies the client who

requested for the content, with any copy of the content on the network, not restricting to

the content from the producer [5].

ICN is gaining a lot of attention from research activities and the research interest

is constantly growing on it. The reason behind the attractiveness of ICN is that the

benefits which are given by it to the internet; mobility support, secured content-based

communication, improved content availability and multicast communication. ICN enables

the end users to be satisfied by the network layer itself. ’Load balancing’ through packets

aggregation is another significant benefit of ICN [35]. ICN is best suited for today’s

internet to focus on efficient content distribution and mobility [5]

1.2 Project Motivation

As explained before, both OpenFlow and ICN, have their own benefits in their respective

fields. The main motivation behind this study is a thought of realising an integration

between these two technologies to apply benefits of one on the another. For example,

flow-based communication feature of OpenFlow can be applied to ICN, to have better

control over the ICN communication and, content-awareness feature of ICN can be applied

to OpenFlow, to make it move towards the future internet architecture. As shown in the

following ’literature synopsis’ section, even though there are a number of existing works

on integrating OpenFlow with ICN, they remain as the overlay approaches or do not

provide a clear picture of achieving a clean state integration. We believe that there is a

need for providing such a clear picture in terms of ’proof of concepts’ for the integration,

that can be enhanced along the line when both the technologies are matured.
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1.3 Literature Synopsis

Information-Centric Networking(ICN) and Software Defined Networking(SDN) are two

popular networking paradigms, that are predominantly considered for both the indus-

try and the academic research activities [34]. Information-Centric Networking aims to

change the internet architecture from being host-centric to content-centric by putting

the contents as primary primitives in the communication, meanwhile, Software-Defined

Networking helps to adapt and experiment new network technologies and protocols by

separating the controlling plane from the forwarding infrastructure. Recently. there has

been an increased interest among the researchers to merge both of these platforms to

exploit the benefits provided by both of them [36]. Most of the studies exploited the

similarities between them in order to get best of these two architectures. Even though

few functionalities match between them, clearly there are many differences in the ap-

proach and the way they are implemented. Thus, it requires an immense study about

both the platforms before talking about how they can be combined. Because of the fact

that both the technologies are emerging in the industry, there are a lot of different solu-

tions for integrating them [37, 38, 39, 40]. A number of studies produced non-extensions

approaches, by providing an overlay of ICN on OpenFlow or, by developing a wrapper or

plugin to provide ICN functionalities over OpenFlow. These studies come with a number

of drawbacks which include; processing delays due to additional plugins, IP fields seman-

tic changes due to overlay approaches and dependency on IP address instead of content

names. On the other hand, a number of studies tried extending the OpenFlow to provide

better support for ICN, but most of them have provided only minimal information on the

possible extensions and few of them restricted their scope to either the OpenFlow switch

or the OpenFlow controller. So, clearly, there is a need to study a complete extension

procedure for OpenFlow in order to provide maximum support for ICN functionalities.
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1.4 Project Aims

This dissertation aims to provide a solution for the question : How to create a control

plane for ICN with existing standard, such as OpenFlow, in order to realise a clean state

integration between OpenFlow and ICN ?

In particular, this study aims :

• To study the architectural differences between two emerging technologies, OpenFlow

and ICN

• To focus on the research works on combining OpenFlow and ICN, particularly fo-

cusing on the research works carried out on integrating the technologies

• To give attention to the functional areas which are not covered enough in the pre-

vious research activities

• To formulate the problems or challenges behind the integration process

• To design and implement the formulated solutions and produce a modularized code

base

• To evaluate the solutions by comparing with existing ICN implementations

1.5 Project Approach

This dissertation proposes ’OF-ICN’ that extends the essential OpenFlow elements; Open-

Flow switch, OpenFlow controller and the OpenFlow protocol, with ICN functionalities

and features, in order to create an OpenFlow-based control plane for the ICN network.

This dissertation presents a design where the OpenFlow elements are equipped with

ICN-related components as follows:

• ICN-enabled OpenFlow switch
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– A data structure to provide in-network caching

– A data structure to store breadcrumbs for forwarded user requests

– A data structure to store next-hop routes for content names

– Ability to traverse the content name from the packet

• ICN-enabled OpenFlow controller

– A data structure to store contents

– A data structure to store routing details for content names

• Content producers and consumers, enabled to send packets with content names

We use open source python OpenFlow controller, POX, to implement the proposed de-

sign. We exploit the switch, controller and the protocol library modules provided by POX

to realise the solution. We evaluate our solution by ensuring that the necessary ICN func-

tionalities are provided by it and by comparing it with an existing ICN implementation,

CCN [41] and its prototyping tools, CCNPing [42] and Mini-CCNx [43]

1.6 Project Contribution

This dissertation provides a complete analysis of the research works towards combining

OpenFlow and ICN and, list the drawbacks and gaps that are identified in them. Instead

of constructing the necessary ICN functionalities from a specific implementation of ICN,

this dissertation considers the generic ICN architecture and derives the experimental

functionalities from it. Also, this study presents the necessary extensions to OpenFlow, for

it to handle ICN flows and, the algorithms behind these extensions. This project produces

a modularized implementation using POX components to provide separate modules, that

can be plugged in easily in a relevant codebase.

10



1.7 Terminology

This section provides a quick view on the major terminologies related to our study and

they will be used in the forthcoming chapters.

• OpenFlow : A Software-Defined Networking approach that provides a centralised

control plane layer for the underlying switching network and an interface to com-

municate with the switches

• Switch : A network element that connects devices in the network and forwards

packets between them

• OpenFlow Switch : A switch that supports OpenFlow ’flow table’ and commu-

nicates with the controller through OpenFlow protocol

• ICN-enabled OpenFlow Switch : A modified OpenFlow switch that supports

ICN-related functionalities and features

• Controller : A network element that has the global view of the underlying network

of switches and, communicates the controlling decisions to it

• OpenFlow Controller : An OpenFlow element that forms the control layer for

the underlying network of OpenFlow switches

• ICN-enabled OpenFlow Controller : A modified OpenFlow controller which

supports ICN-related functionalities and features

• OpenFlow protocol : An interface for the OpenFlow switch and the OpenFlow

controller to communicate with each other. It is a set of messages, actions and

events which the OpenFlow switch and the OpenFlow controller should obey

• OpenFlow Message : OpenFlow messages are agreed OpenFlow protocol mes-

sages, which the OpenFlow switch and the OpenFlow controller can use to commu-

nicate with each other
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• Interest packet : A user request packet to retrieve a content that contains the

name of the content. This is an ICN packet

• Data packet : A packet that is sent in response to an interest packet. This is an

ICN packet that carries the content

• Flow table : An OpenFlow substrate of the switch that contains the forwarding

rules for the switch. It contains a list of flow entries

• Flow entry : An entry in OpenFlow flow table which contains three fields: Match,

Action, Counter

• Match : A field in the flow table which is a set of header fields against which a

packet’s header fields can be compared with

• Matching : A process of comparing the packet’s header fields with the flow table

entries(with each flow entry’s ’match’ field)

• Action : A field in the flow table that instructs the switch on what to do with a

matched packet

• Counter : A field in the flow table that increments for every packet that matches

with a flow entry

• ICN : An Internet architecture which identify ’Named data objects’ in the network

using the content names, instead of addressing the end-point

• Named data object : Any chunk of data in the network which can be identified

by a name identifier

• Cache : Internal memory that is used for storage

• Routing database : The database that stores routing information for different

content names
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• Content Store : In short, it is called ’CS’. ’Content Store’ is an inbuilt cache

exploited by a switch to store named contents

• Pending Interest Table : In short, it is called ’PIT’. ’Pending Interest Table’ is

an ICN table structure which is used by the ICN-enabled switch to store the interest

packets which are sent upstream by it and pending to receive a data packet

• Forwarding Information Base : In short, it is called ’FIB’. FIB is similar to

OpenFlow’s flow table. FIB is an ICN data structure that stores next-hop route

information for content names

• Face : A face is an abstraction of an interface through which the ICN switch

can receive and send packets. A face can connect with an application, a process, a

device or the Internet

• POX : An OpenFlow controller, which provides the software version of essential

OpenFlow elements(switch, controller, library) for prototyping and experimentation

• Event : An event triggers based on the OpenFlow message received by the POX

components

• Event handler: A piece of code that handles an event

• Southbound interface : In SDN and OpenFlow jargon, a ’southbound inter-

face’ is the interface through which the controller connects to a switch. OpenFlow

protocol is a southbound interface

• Host : Any end-user device that connects with a switch
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Chapter 2

State of Art

This chapter analyses the existing works that are carried out in the areas concerned by

this dissertation. On a top level view, the literature related to this study is divided into

six major sections as follows:

1. Information-Centric Network(ICN) : This section outlines the major ICN

implementations, ICN-based tools, ICN-based routing protocol and a quick view of

the interest and data processing

2. OpenFlow, an SDN approach : This section talks about the major OpenFlow

software-switch implementations, major OpenFlow controller implementations and

a number of OpenFlow-based tools

3. Functional similarities and variations : This section presents the major fea-

tures between ICN and OpenFlow that are similar and the features which are dif-

ferent from each other

4. Initiatives in industry : This section lists some recent industrial projects that

are working towards integration between OpenFlow and ICN

5. Non-extension-based approaches : This section analyses the OpenFlow-ICN

integration approaches, that tried realising the integration without changing the
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OpenFlow components and their implementation features. This section ends with

a summary of these non-extension approaches and their drawbacks

6. Extension-based approaches : This section analyses the approaches, that tried

extending or modifying the OpenFlow protocol in order to enable it with ICN func-

tionalities. This section ends with a summary of these extension approaches and a

discussion on it

2.1 On Information-Centric Network

Information-Centric Networking shifts the current internet architecture from dependency

on IP addresses to dependency on named contents [4]. That said, all the contents (each

and every chuck of the content) are named in the ICN world. The content name can

be hierarchical, containing the named components to denote different levels of accessible

data or, it can be a flat name, identifying a single file [34]. Once the contents are named,

a user who likes to access a content anywhere in the network has to express an interest

towards the content. This interest will pass through the network hop by hop until it

reaches a copy of the content. Once the content is identified, it will be sent back to the

user who requested the content. There are many implementation of ICN including; NDN

[44], CCNx [45], and CONET [46]. These major implementations are outlined here:

2.1.1 NDN

Internet Protocol(IP) is designed to solve telecommunication’s problems [47]. NDN is an

ICN approach, which is designed with the objective of solving the problems with IP, while

handling exabytes of data. NDN architecture works based on the ’named data objects’ and

identify them on the network by their names. NDN can also be used as an overlay over IP

or it can entirely replace IP. Thus, it is called an ’universal overlay’ to IP [44]. According

to Zhang et al(2010), NDN architecture suggests separating the routing functions from
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forwarding functions and, enable continuous research on the routing protocol, while the

underlying switching network can be equipped with NDN-related forwarding operations.

NDN is not restricting the network applications with a specific naming scheme. The

applications can follow any naming scheme that is suitable for them. One of the objectives

of NDN is to improve the ’reception rate’ of the destination by improving the amount

of successful request deliveries to the destination. NDN is forked from PARC’s CCN

implementation, CCNx, and it added new features and language supports [31]

2.1.2 NFD

’NDN Forwarding Daemon’ (NFD) is based on the NDN approach and follows the NDN

protocol. Recently, the entire code of CCNx is moved to NFD and additional features

are added to it. One such improvement is to support TLV(Type-Length-Value) format

for the packet structures. Now, NFD has become the core component of NDN [48]. It is

a ’forwarder’ daemon that reads an interest packet and, finds out the next-hop for the

packet and then, forwards the packet towards the content [49]

2.1.3 NLSR

’Named-data Linking State Routing(NLSR)’ protocol is a primary routing protocol for

NDN [50]. It provides the routing information based on the content name prefixes. It

is achieved by NLSR, by providing a ranking for the forwarding paths which is an en-

hancement to NDN’s ’adapative forwarding strategy’ [29]. The variation of OSPF routing

protocol, OSPFN [51] is initially utilised for providing routing information for NDN net-

work. NLSR is developed later and it differs from other routing protocols, in that it

uses NDN’s interest and data packets to send routing updates, whereas, OSPFN identi-

fies routers based on IP address. The other major difference is that, NLSR can provide

multiple next-hop routes for a router using a ’Dijkstra algorithm’ [52] and for a content

name using prefix LSA. In contrary, OSPFN can provide only a single next-hop route for
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a content name. NLSR helps the NDN nodes to build the topology of the network and

to disseminate routing packets into the network.

2.1.4 CCNx

In 2009, Jacobson together with ’Palo Alto Research Center’ (PARC) announced an

implementation for Content-Centric Networking(CCN) architecture under the project,

CCNx [4]. The NDN and CCNx architecture are functionally equivalent as NDN is

actually a fork from CCNx project. CCNx was originally designed to be utilised in

data centres and small sensor networks. Like NFD, CCNx also supports TLV format for

encoding the messages to send them on the wire [45]. CCNx names the data as ’content

objects’ and identify it using a ’Labeled Content Identifier (LCI)’ [45].

2.1.5 CONET

[46] CONET provides an integration approach to realise ICN architecture, in which, IP

layer is extended to include content-based information in it. To achieve this, ’IP op-

tion’ field in an IP packet is exploited to carry content-related information(for example,

content identifier). CONET solution for ICN works between different sub-networks and

the CONET border nodes are kept at each sub-network to handle CONET packets. The

border nodes forward the packets based on the content names contained in the packets.

Thus, only the border nodes act upon the content name and route the packet towards

the next border node close to the content copy. Within each sub-network, the routing

is carried out based on the type of the network(eg., IP). CONET architecture does not

provide bi-directional communication, as it does not store state information in the net-

work elements along the path of the requests. Instead, the architecture suggests adding

CONET based packet traversal addresses to the packet itself. The data packet uses this

information in the interest packet to traverse back to the requester. CONET also provides

a ’Name Routing System’ (NRS) [12] to look up for an unrecognised packet during the
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routing process.

2.1.6 An ICN node

Despite many implementations of ICN concepts, the basic working culture is same in all

the implementations [34]. This dissertation studies the general ICN architecture based

on the common features for all the different ICN implementations. In order to achieve

an ICN communication, two packets are involved [4]. One is called ’Interest’, which

expresses the need of the requester. The requester can be a machine on the same network

or an application process running on the same machine. The interest packet contains the

name of the content to be retrieved. This interest packet traverses the network towards

the content. The other packet is ’Data’, which is the actual content response for the

interest. A data packet contains the name of the content, the actual data and the security

signatures. The data packet traverses in the reverse path of the interest in the network

until it reaches the user, who requested the content. Intermediate nodes that forward the

ICN packets are termed as ICN nodes and each ICN node use three data structures to do

interest forwarding : Forwarding Information Base(FIB), Pending Interest Table(PIT)

and Content Store(CS) [41]. ’FIB’ is the table, that contains the next hop information

for a list of contents. ’PIT’ is the table, that contains information about the interests that

are forwarded upstream by the node towards corresponding data. ’CS’ is a table, that

stores the content received by the node and forwarded towards the user. The interfaces

through which the interests are received by the ICN node are called ’Faces’ [5]. Figure

2.1 shows the architecture of an ICN node.

2.1.7 Expressing the interest

Once an ICN node receives an ’Interest’ through a face, the node extracts the content

name(prefix) from the packet and, searches in the CS, for a copy of the data by performing

’longest prefix match’ [39]. If it matches with a CS entry, the corresponding content is
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Figure 2.1: An ICN node and its elements

encapsulated in a ’Data’ packet and sent back in the interface through which the interest

is received. If there is no match, then the node checks for a match in PIT. If an entry

matches in PIT, which means an interest has already sent for the content. The current

interface is added to the list of interfaces which are waiting for the same data. If there

is no match in PIT, then the node checks for a match in FIB table. If an entry matches

with FIB, then the corresponding next hop face is used for forwarding the interest packet.

The node puts the interest packet in the corresponding face. Each ICN node, that is on

the path towards the content will process the interest in the same way. After forwarding

the interest, the node adds an entry in PIT with the requested prefix and the interface

which is waiting for the content. By this, the interest packets leave ’breadcrumbs’ on the

path they are travelling in the network [53].

2.1.8 Bi-directional communication

In ICN, not only the producers of the content, but also the intermediate network elements

store the content [29]. Each ICN node forwards the interest packet so that it reaches either

the producer of the content or an intermediate node, that has stored a copy of the content.

19



Once the content or a copy of the content is reached, the content is encapsulated in a

data packet and sent back to the requester in the reverse path following the breadcrumbs

(PIT entries) left by the interest in the intermediate ICN nodes. Each intermediate ICN

node, when it receives a data packet, checks for the PIT entry. If there is a match with

PIT entry, it puts the data packet in the waiting interfaces. After putting the data in the

interfaces, it deletes the PIT entry and thus, the content satisfies the interest. If no PIT

entry exists for a data, the data is dropped assuming that the interest is expired before

the data arrival. In addition, each ICN node on the reverse path stores that content in

its cache. Thus, further interests for the same content do not travel all the way to the

producer, but any nearest ICN node which cached the content satisfies the interest by

sending back the cached content [28].

2.1.9 Tools

This section describes the background of some of the recent ICN prototyping tools.

• Mini-CCNx : ’Mini-CCNx’ [43] is a prototyping tool based on ’Mininet’ [54],

to realize CCNx implementation. The main motive of Mini-CCNx is to provide

flexibility and exactness(fidelity) to ICN experiments. In Mini-CCNx, ICN nodes

are connected through ’virtual Ethernet links’ but in a single machine, which can

be a laptop. It works on real CCNx code, that overlays TCP or UDP connections.

If CCNx code is updated, Mini-CCNx will automatically use the new code. Thus it

provides smooth integration to the real network environment, because of which, it

comes under the category of ’emulator’. Mini-CCNx provides both the options of a

configuration file and GUI to create topologies for experiments. Using Mini-CCNx,

hundreds of various ICN topologies can be built on a single machine. CCNx code

allows Mini-CCNx to use ’ccnd’ [55] daemon to enable FIB, PIT and CS in the node.

Like Mininet, Mini-CCNx isolates the experiment from the network connections

through virtualisation approach. The notable difference between Mininet and Mini-
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CCNx is that, Mini-CCNx connects virtual ICN nodes in a point to point fashion

instead of utilising switching elements [56]

• Mini-NDN :

Like Mini-CCNx, ’Mini-NDN’ [57] is also based on ’Mininet’ architecture. It is an

emulator helps to realise ICN implementation in terms of ’NDN’ architecture, un-

like Mini-CCNx, which works on ’CCNx’ architecture. Mini-NDN runs ’NFD’ and

’NLSR’ code on top of virtualized nodes, to provide a prototype of NDN architec-

ture. Mini-NDN tries to provide an emulation environment that is close to real

network environment [49]. This tool is developed out of a strong need for a test-

ing environment during the development of NLSR and, extended from Mini-CCNx.

Mini-NDN also provides two ways to define the required topology. One is the config-

uration file and another one is GUI component. Using either of the options different

network configuration parameters like bandwidth, delay and packet loss rate can be

configured for the topology to be used [31]. The Mini-NDN code is available as an

open source code in GitHub [57].

2.2 On OpenFlow

OpenFlow is a pioneer in realising SDN concept, by defining the specification for the

switches with new features and interfaces, to improve the programmability in them [3].

The main aim behind OpenFlow is to support experimentation of new addressing and

routing protocols as well as new network architectures [1]. OpenFlow does this by ex-

ploiting the flow tables of the switches and by controlling them using a specialised control

plane layer called ’controller’ [26]. Thus, the main components involved in OpenFlow are

’OpenFlow switch’ with flow tables, ’secure channel’(SSL) to connect with a controller

and, the ’OpenFlow protocol’ to define standard message structures between the switch

and the controller. An OpenFlow ’flow table’ has match fields (tuples) to match against
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the incoming packet, an ’action set’ to act upon the matched packet and ’counters’ to

keep track of the number of packets being processed. The switch can communicate with

the controller if it is not able to find a flow entry for a packet, by sending a part or the

complete packet(as per the configuration) to the controller. The controller will decide on

how to forward the packet and push down a flow rule which is saved in the switch’s flow

table. Then the packet will be sent back to the switch and processed by it, based on the

rules sent by the controller [3]. Figure 2.2 shows the comparison between a legacy switch

and an OpenFlow-enabled switch.

Figure 2.2: Relation between SDN and OpenFlow [1]

2.2.1 OpenFlow software switches

There are a number of software implementations of OpenFlow switch specifications in-

cluding reference switches and virtual switches. The major ones are quoted below :

Open vSwitch is a widely used Linux-based multilayer SDN switch, that comes

with the OpenFlow support [58]. Unlike usual network switches, Open vSwitch supports

virtual machines and works over the hypervisors running in those virtual machines. It
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comes with a daemon that runs over the ’kernel datapath’ from which it receives the

packets and match against the flow table. The daemon communicates with the controller

using OpenFlow protocol. Open vSwitch comes with the support for both the kernel and

user space switching operations.

CPqD [59] is a switch, which is a tweaked version of Ericsson’s software switch. When

many of the hardware switches support OpenFlow 1.0, in order to increase the research

activities and innovations using latest OpenFlow specifications, CPqD software switch

is built upon OpenFlow version 1.3 and this switch is generally called ’OpenFlow 1.3

software switch’. This switch comes with the following software components; datapath,

OpenFlow protocol library, secure channel to connect with controller and a console-based

tool to configure the switch

2.2.2 Controller implementations

’Controller’, in general, is one of the main components on SDN, which handles and op-

erates on the abstracted view of the network topology [60]. Controller resides in the

control plane or the control layer and, directs the working nature of the underlying net-

work infrastructure. The SDN controller is exploited by the network administrator or the

network operator to change the controlling aspects of the network or even program the

infrastructure mechanism [2]. The OpenFlow controller is an SDN controller, that guides

the switches, that are connected to it and, makes decisions for the switches to forward

packets in the network. Being an SDN controller, OpenFlow controller has the view of the

entire network that is being connected to it and, it maintains the abstracted statistical

and capability information of the network elements that are connected to the network [39].

Using this information, the OpenFlow controller will make the forwarding resolutions for

the switch that requested for it. The controller can reside on the same machine where

the switch is running or it can run on a separate machine [21]. The controller can be a

centralised one in which all the information about the network will be stored in that cen-
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tralised controller and the decision-making process will be by the same controller. On the

other side, the controller can be a decentralised one, in which the control plane is divided

into a number of machines which store the distributed information about the switch and

the forwarding decisions will be taken in a collaborative way involving all the necessary

controllers in the decision-making process [2]. In either way, the OpenFlow switch and

the OpenFlow controller are connected through the ’OpenFlow protocol’, that specifies

the messages that can be passed between the switch and the controller. The OpenFlow

controller is expected to maintain a routing table whose subset will be stored in the flow

table of the switches [26]. A switch will contact the controller whenever it is not able to

decide on how to forward a packet and the controller will use the routing table to identify

a destination for the packet and, push a flow entry down to the switches, for them to

process the packet and then forward it to the corresponding destination.

Software-Defined Networking outlines the need for the network operating system to

control and manage the underlying network using a high-level abstracted view of the

network, instead of low-level control actions [27]. These networking operating systems

are expected to provide a programming interface through which the underlying network

elements can be managed and controlled. The network applications can be built over

these operating systems and the applications exploit the abstracted view maintained by

the network operating system and make controlling decisions [23]. The network operating

system takes the responsibility of communicating the control decisions to the network

elements through the programming interface. These network operating systems are the

controllers in general and the programming interface provided by them, is the protocol

[61].

A lot of implementations of OpenFlow controller are available, that vary in the lan-

guage, supported OpenFlow version and the performance. Few details about some of the

OpenFlow controllers are listed below:

• NOX is an OpenFlow controller implemented using C++ language and, it was
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developed at the same time when the OpenFlow is developed. NOX is seen as the

first OpenFlow controller. Nox supports OpenFlow 1.0 and it comes with a set

of applications to create the abstracted view of the underlying switches, to insert,

delete and modify entries in the switches’ flow tables and to invoke events based on

the changes in the underlying network [61] .

• POX is an OpenFlow controller derived from NOX and developed in Python lan-

guage. POX controller aims at providing an easy and flexible environment for car-

rying out SDN experiments and research activities. POX works on the component-

based model, where all the network elements and activities are realised as individual

components, that can be separated and used wherever the need is. Like NOX, POX

also helps to develop network management applications over the programming in-

terface, to make controlling decisions for the network under control. POX supports

OpenFlow 1.0 [62] .

• There are a number of other OpenFlow-based controllers including; Ryu [63], Flood-

Light [64] and OpenDayLight [65]. Like POX, Ryu is a component-based OpenFlow

controller which supports a number of OpenFlow versions; 1.0,1.2,1.3,1.4 and 1.5.

Ryu also supports multiple programming languages to create network control appli-

cations. Floodlight is a Java-based OpenFlow controller, that uses JAVA or REST

API for communications and expresses network applications as services. OpenDay-

Light is a multi-vendor SDN controller, that aims in controlling the interoperability

between the SDN implementations [60] .

2.2.3 Tools

• Mininet : Mininet [54] is a fast prototyping tool to realise Software-Defined

Networking architecture. Unlike a simulator, which is not close to real world envi-

ronment, Mininet achieves this closeness to the real world by using the real code,

that will be used in production base and builds the network on top of it. Mininet
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operates on the basis of virtualizing the underlying operating system into multiple

processes and ’namespaces’, which allows it to provide support for hundreds and

thousands of switches in a single laptop. Mininet aims to provide an easy proto-

typing platform for new ideas including new network protocols, modification to the

protocols and even new network architecture [66]. OpenFlow, being a major real-

isation of SDN, Mininet provides complete support for various OpenFlow versions

and switch types. For example, the user can either select a kernel-space switch or

an user-space switch based on the requirement. It also comes with the support for

a number of OpenFlow controller including, NOX and POX. Mininet switches can

be connected to a local controller or to a remote controller. It provides interactive

tools for the users to directly interact and configure the network prototype under

experimentation

2.3 On functional similarities and variations

This section covers the functional similarities and variations between OpenFlow and ICN

architectures.

2.3.1 On packet format

OpenFlow is mainly designed to operate on IP-based packets [3]. It also supports other

transport layer protocol packets like TCP and UDP. Current OpenFlow switches in the

market are equipped to support IP packets [17]. When they receive a packet, the packet

headers will be parsed and matched against the flow table entries. IP packets contain

various header fields like source address, destination address, Type of Service(TOS) and IP

options. OpenFlow supports almost all of these header fields in addition to the Ethernet,

TCP and UDP fields. Starting with the support for a subset of packet header fields,

OpenFlow (as per the current specification OpenFlow 1.5.0 ) now supports almost all the

fields in the packet header including IPv6 fields [67]
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The packet format is important because, it decides on how the packet is going to be

forwarded by the switch. A lot of switches drop the packet when they cannot recognise the

format of the packet and, there is no rule for them to forward the unrecognised packet to

a controller [3]. The term ’unrecognised’ here can denote a packet, that does not match

any of the rules in the switch or, the packet with a format which the switch does not

understand. The later case is subjective and differs in different switch configurations and

working methodologies. When the IP packets contain details about end-point addresses,

ICN packets contain details about the data or the content that is requested [4].

There are many ways to express the content name which will be discussed in the

following sections. The overall point that has to be considered here is that the ’content

naming’ in ICN is still under research and consideration and, there is no solid finalisation

on how the ’content name’ should be expressed in an interest packet [29]. That said, the

packet format which depends on the content name will also change for different naming

methodologies.

As already mentioned, OpenFlow has no support for ICN packets yet [67]. In addition,

there is no easy way to decide on what ICN packet format OpenFlow should support when

the ICN packet format itself not yet standardised. There are a number of workaround

solutions in the industry for the OpenFlow to recognise content names (in general ICN

specific packets):

- Hashing the content name and including them in one of the OpenFlow-recognised

fields like IP destination or transport port fields [10]

- Converting the content name into an IP address so that it can be included in the IP

fields [68]

- Using the IP option field to carry ICN related information (Note : Most of the

OpenFlow specification does not read IP options) [37]

- Adding a tag to the IP packet with the ICN content name information, that can be

untagged at egress switch [69]
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2.3.2 On matching

’Packet matching’ is the process, that decides, what will happen to a packet after reach-

ing the switch. OpenFlow switches are equipped with flow tables in order to do this

process [26]. A flow table is a container for flow entries where each entry contains a rule,

instructions and counters. A ’rule’ is a set of header fields, that the switch should match

against an incoming packet. The header fields can be wild-carded in a rule for the all

the packets to match with that rule. The switch will parse the incoming packet, extract

the packet headers and match against the corresponding fields in the flow table. When

a packet matches a corresponding flow table entry, the instructions associated with that

flow entry will be executed. The instruction can be an action to send the packet to next

table for processing or, it can be the one asking the switch to drop a packet or, it can

be the one asking the switch to send the packet to the controller or, it can be any other

actions. The flow entries are created or pushed to a switch by the controller which is

giving the responsibility for the control plane to decide on how the switch should act on

a packet. The counters in the flow entries are for statistical purposes. When a packet

matches a flow entry, corresponding counters will be incremented in order to keep track

of the statistical information [21]. This statistical information can be used by a control

layer to make controlling decisions.

The matching process is important as it decides how the switch is going to operate

and, it gives the provision for abstracting the intelligence from the switch and providing

them as mere rules for them to follow upon. In ICN, ’matching’ is a ’pipeline’ process,

where the various ICN-based data structures(FIB,PIT,CS) are utilised and the content

prefix is matchched with the tables for a ’longest prefix match’ [35]

2.3.3 On forwarding

The main aim of Software-Defined Networking(SDN) is to separate the forwarding in-

frastructure and routing intelligence so that the network elements like switches will take
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care of forwarding process alone and the control plane can take the responsibility of guid-

ing the switch with the forwarding and routing decisions [2]. In a simplified way, the

forwarding processing in a switch is to send out a packet out to a particular port or

interface. As mentioned in the previous section, this forwarding process purely depends

on the matching process. Mostly the instructions in the flow entries are to forward the

matched packet to a particular destination. OpenFlow switches are by default with some

forwarding rules (depends on the vendor) and further flow entries are pushed down by the

controller as the switching process takes place. OpenFlow switches can forward a packet

in different ports, that can be physical ports or virtual ports [70]. There are many virtual

ports supported by OpenFlow. For example, OFPP CONTROLLER is a virtual port,

that asks the switch to send the packet to the controller and, OFPP INPORT is a virtual

port, that guides the switch to send the packet back in the incoming port. There are

many such virtual ports available in the OpenFlow specification. As far the OpenFlow

is considered, there is no differentiation between the packet which queries a destination

or the packets that carry some data towards the requester [3]. All the packets carry a

source address and destination address and OpenFlow purely matches based on them and

other fields that are used for matching. Thus the response from the destination also will

be treated as a normal packet and matched upon the flow table. There are no packet

’breadcrumbs’ left for the OpenFlow to decide where to the send the response for a re-

quest packet, that is sent upstream. This semantic is opposite to ICN methodology, in

which the response packets are aligned with the interest/query packets and, the switches

are expected to store some breadcrumbs for the response to reach back the requester [4].

As far as OpenFlow forwarding is considered, flow table is the major structure used for

deciding on the forwarding action. The controller is expected to have the overall routing

table from which the controller decides when a switch is not able to find a matching entry.

In ICN, ’Forwarding Information Base’ plays a major role in deciding where to the packet

next. This table holds the content names, for the packets to be matched upon and the

next-hop route to send the corresponding packet towards the content copy [29].

29



2.3.4 On caching

Caching is a process of storing some information in the available buffer capacity in a

network element . OpenFlow switches are endowed with the capability to cache the flow

entries [21]. OpenFlow specification does not specify caching any details other than the

flow entries, assuming the fact that the buffer size of the switches will be less. The buffer

is a small memory that comes along with the network elements to store some processing

information which can be temporary or permanent. OpenFlow exploits this buffer to

store forwarding rules in the switch. The buffer size differs between different switches and

between different vendors. There are some switches which are available in the market that

has a lot of inbuilt buffer memory which can be exploited. OpenFlow switches will be

able to store flow entries that can be accommodated within the allocated buffer memory.

If the flow table reaches its size then the controller has to take actions to either drop some

entries or replace some entries based on some algorithm [71]. ’In-network caching’ is one

of the key functionality of ICN, which allows the network elements to store some content

in their memory in order to send the response to the requester as quickly as possible

instead of sending the query all the way to the destination as happens in IP forwarding

[72]. ICN architecture suggests the network elements to store popular content when they

forward a content for the first time so that later interests or requests are satisfied by them.

2.4 On initiatives from industry to integrate Open-

Flow and ICN

This section outlines two European projects that recently focus more on realising ICN

functionalities over OpenFlow.

30



2.4.1 OFELIA

’OpenFlow in Europe - Linking Infrastructure and Applications’ (OFELIA) is a part of

7th framework programme European project [73]. This is the framework used for real

network evaluations of the experiments on controlling the underlying network and, this

is operational from August 2011. It provides islands of various networks, for realising

different experiments on them. For example, ’CNIT’ is an island, that is focusing on

Information-centric networking experiments [74]. These islands provide virtualised end

hosts, that act as data plane for the OpenFlow controller which decides on forwarding

rules. OFELIA provides the control framework for the experimenters to register with

the facility and, provides a UI for them to run experiments. The basic idea behind

OFELIA is to control the routing of ICN interest and data packets and efficiently realise

in-network caching using SDN standards [37]. CONET is experimented over OFELIA by

mapping the content names into fixed length tags, that are transported in UDP source

and destination ports (because OpenFlow cannot read IP options) [74]. There are two

directions of work being carried out in OFELIA to enable ICN communications over SDN

and they are named as ’Short term’ and ’Long term’. These approaches are outlined in

the sections : 2.5.1 and 2.6.2. The project deliverables from OFELIA are named under

the term ’EXOTIC’[75].

2.4.2 ALIEN

’Abstraction Layer for Implementation of Extensions in Programmable Networks’ (ALIEN)

[76] is a major research activity on developing a ’Hardware Abstraction Layer’ (HAL),

that allows the non-OpenFlow compatible network elements to be placed in OpenFlow

control framework. [77] evaluated the ALIEN HAL by integrating it with OFELIA’s ICN

implementation on using CONET architecture over OpenFlow framework.

31



2.5 On non-extension approaches

Figure 2.3: Non-extension approaches on OpenFlow and ICN integration - Timeline map
from 2012 to 2016

Two different approaches are considered in literature to enable OpenFlow to support

ICN functionalities. One is to overcome the limitations of OpenFlow by suggesting ad-

ditions and extensions to build new specifications, supporting new features. The other

one is to use legacy OpenFlow elements and, try to work around it, to make it support
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ICN functionalities. Former approach will be discussed in next section. In this section,

let us take a look at the research activities on the latter approach, that tried to achieve

ICN communication in OpenFlow without modifying it. This section will discuss the

advantages and disadvantages of these solutions on reaching the futuristic goal of making

OpenFlow support ICN. We believe that discussing the pros and cons of non-extension

approaches will provide the need and motivation for the experiments on the OpenFlow ex-

tension approach. Figure 2.3 shows a summary of these approaches in year based timeline

along with section numbers.

2.5.1 Short term OFELIA approach

In 2012, Blefari-Melazzi et al, suggested a ’short-term’ solution to implement ICN in

OFELIA testbed [37] [73]. It is an integration approach to support one of the most popular

ICN implementations, CONET architecture in SDN field [46]. The CONET architecture

suggests adding an ’IP option’ in normal IP packets, with the ICN information so that

they can be used to search content in the network. Most of the OpenFlow standard

implementations are not capable of parsing IP options. In order to overcome this weakness

of OpenFlow and still to support ICN communication, the author suggested the border

nodes at each CONET subsystem to add a tag to the packet based on the ICN information

contained in the packet. It is suggested to insert the tag as one of the packet fields which

is supported by OpenFlow so that OpenFlow network can act on the packet [37]. This

solution changes the semantics of the IP fields and it requires ’tagging’ and ’un-tagging’

at each level, which is a costly process. It assumes that the underlying subsystems are IP

based subsystems, as the border nodes still work with IP addresses, which may not be a

possible solution for ICN clean state implementation.
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2.5.2 Wrapper

A similar solution is provided by Nguyen et al., who proposed to hash the content names

into an integer and, replace it in any of the IP fields in the packet, which OpenFlow

can handle. This conversion is carried out by a separate module called ’wrapper’ which

reads the ICN interests the switch receives, hash the content prefix into an IP field in the

packet and sends back the packet to the switch so that OpenFlow can process it [78][10].

This solution avoided the need for changing the IP protocol itself unlike previous CONET

based solution, that suggested adding an IP option to store ICN values, but it still suffers

from the problem of changing the semantics of the existing IP field by replacing it with

ICN based details.

2.5.3 SDN-NDNFlow

Like the ’wrapper’, in [11], a solution called ’NDNFLow’ is introduced with additional

plugins for both switch and controller in order to operate on the interest packets. ’ND-

NFlow’ operates on a second application specific layer parallel to OpenFlow. A separate

communication channel and a controller module are involved in the already existing Open-

Flow communication channel and process. The controller is wrapped with an additional

ICN module and the Open vSwitches are enabled with ICN capabilities through one of

the ICN implementations, CCN and its CCNx daemon. In this solution, switches need

to make additional connections and handle different message protocols. Adding an ex-

tra module over the controller to handle ICN module may result in conflicting decisions

between the modules and, result in a processing delay.

2.5.4 Fixed identifiers

In the same year, Syrivelis et al., suggested using unique ’fixed sized labels’ called ’for-

ward identifiers’, that are actually LIPSIN identifiers, that work with ’publish-subscribe’

systems [38]. These identifiers identify a forwarding path between a subscriber and a
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publisher, instead of identifying the content. This identification is not aligning with the

general ICN architecture. The controller is flooded with this solution in order to assign

or resolve forwarding identifiers in the packets, based on the forwarding path for that in-

formation retrieval. Even though it helps to retrieve information over the network, it still

identifies a path to the producer, instead of the content, which falls behind supporting ef-

ficient in-network caching. In a similar way, but to identify the content as well, in [79], an

additional identifier called ’data identifier’, is introduced which is a fixed length identifier

to identify the data that has to be retrieved. Both the forwarding and data identifiers will

be put in the IP packet fields, which the OpenFlow can understand. Again, this changes

the semantics of the IP fields and also involves costly encoding and decoding processes

for those identifiers.

2.5.5 Hierarchical hashing

All the above solutions suggested to use fixed length flat hash values or identifiers to

identify a particular content, thus, resulting in a large number of individual identifiers to

identify a large number of contents in the network. In [80], a ’hierarchical hash value’

is suggested instead of a flat hash value in order to provide ’Longest Prefix Match’ for

the content names and, to enable content name prefix ’aggregation’ in the forwarding

tables. An alternative to hashed names is suggested in [81] using ’Protocol Oblivious

Forwarding’ (POF) [82], which eliminates name-to-hash tag mapping by processing the

content names using the bytes in the packet.

2.5.6 Service-based overlay approaches

There are a number of overlay solutions in which ICN functionalities are implemented over

existing IP networks, to realise and experiment ICN in a short term, with the available

technologies and legacy systems. In [68], existing ICN networks on the internet are con-

sidered as separate domains, that provide ICN services with ’public network addresses’.
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A controller, with global knowledge of such domains, is suggested. The user who is try-

ing to retrieve a content from an ICN domain should send an interest to the switch and

the switch forwards the packet to the controller. Controller decides on the ICN domain

responsible for the content and returns the public network address of that domain to the

switch. Then the communication takes place between the switch and the ICN domain.

Similarly in [83], Ravindran et al., realised ICN as a service, wherein, content producers

register the service with the orchestrator, which can be an SDN controller. The users

access the content by querying the controller. Controller ’flooding’ is the major drawback

with this approach, as it is seen as the only and the central resolution entity in this so-

lution. These solutions still carry address information of the destination domains or the

services unlike general ICN approach.

2.5.7 CoLoR based controller

A controller based on ’Couple service Location and inter-domain Routing(CoLoR)’ ar-

chitecture is introduced in [40]. CoLoR, as the name says, is an SDN controller that

separates forwarding operations from routing operations of the network elements [84].

Like the approach suggested by Vahlenkamp et al., and Ravindran et al., the ICN net-

work is seen as a separate domain, that provides the ICN service and, it is identified by a

domain identifier which is stored in the controller. This controller is almost an extended

one compared to OpenFlow, to enhance caching in the network. A controller similar to

DNS is illustrated in [85], that could perform ’name-to-address’ resolution. Until the

packet reaches the controller, it is handled in ICN paradigm. After they reach the con-

troller and get resolved into the source addresses, controller informs the source about the

user address, who requested the content. The source, then forwards the data directly to

the user which is not the methodology suggested by ICN. Additionally, it increases the

controller traffic by routing all the packets to it for resolution.
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2.5.8 Cache-based approaches

Bacher et al., put forward a central SDN controller to improve scalability in ICN networks,

that involve live and multimedia content dissemination. He suggested the controller to

have a global knowledge about the network and to proactively cache content in the network

elements that are connected to it. In this way, popular contents will be pushed down in

the network near the users so that the reliability will be increased and network traffic

will be reduced during popular content broadcasts. This work suggests a control plane

similar to an OpenFlow control plane [86]. [80] suggests caching in the controller instead

of OpenFlow switch, which may result in controller flooding and inefficient in-network

caching. [82] extends POF protocol to enhance the caching capability of the switches, but

remains agnostic to the implementation architecture of the switches. [87] proposes to use

data centres as cache storage, instead of relying on switch’s inbuilt memory. The main

motto of this solution is to use the existing legacy network elements and to overcome

the low storage memory issue of them, which might degrade the performance due to low

line-speed processing. Some of the ICN implementations suggest the switches to cache

whatever data that goes through them. Taking the hardware switch storage capacity

into considerations many implementations have exercised a strategy layer that decides

on what data should be cached in the switches. This decision would be carried out by

running a cache management algorithm in the control plane. Wang et al., suggested one

such solution by making the controller to decide on the popularity of the content using

a ’linear network coding’ algorithm and additionally involving cooperative switches that

communicate among them to share caching details [71] .

2.5.9 CRoS

In a completely different way from all those explained earlier, which use the existing non-

ICN communication packets to communicate between switch and controller, Torres et

al., introduces a controller scheme called ’Controller-based Routing Scheme’ (CRoS), that
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provides a control layer, that runs on top of NDN architecture and, the communication

between switch and controller employs interest and data packets [88]. The controller

makes routing and forwarding decisions based on the signalling information incorporated

in the packets, which may eventually result in huge packets being carried in the network

and, may result in network congestion. In addition, a lot of encoding and decoding efforts

should be made to parse the signalling information.

2.5.10 Proxy

There are a number of past research works which relied on ’proxies’ in addition to the

switches, in order to overcome the problem of switches not being able to do ’deep packet

inspection’ [89] to read content names or other ICN related information in the packet. A

recent work, [90] is a notable one, in which proxies with ’distributed hash table’ (DHT) are

proposed, that store details about the nearest caching machines that have stored content

in them. The distributed hash table is proposed to improve the scalability of the ICN

network to store a large number of content names. When the switch receives a packet,

it forwards it to the proxy, which extracts the content name from the packet and checks

against the distributed hash table. If it identifies an entry for the nearest cache, that has

stored the requested content, the packet will be forwarded to the cache to retrieve the

content. If not, the packet will be forwarded to any nearest cache and in turn, the cache

will forward it to the nearest server that may serve the content. In this way, the interest

travels through the network towards the content producer. A proxy may get overloaded

or flooded when the switch has to send all the packets to it for resolution and the solution

is agnostic to the algorithms to be followed during such situations. Like DHT, which

resolves the scalability issues of forwarding table entries at the infrastructure level, [36]

indicated the need for a ’distributed controller’ as well, to incorporate increasing number

of content names that have to be stored in routing databases.
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2.5.11 Summary

This section presented various solutions in literature, to solve the problem of supporting

ICN functionalities in SDN framework. Limiting the scope to one of the most successful

SDN realisations, OpenFlow, this section studied the workarounds and overlay approaches

applied over OpenFlow to make it support ICN functionalities without changing the

underlying specification. The solutions include,

1. adding a specific tag to the packets based on the requested content name

2. substituting one of the IP header fields with ICN information

3. providing wrappers and plugins around switch and controller to support ICN packets

4. placing proxies and additional sub-nets to handle ICN packets, which the switches

cannot handle

5. providing IP-based addresses to ICN domains

6. depending on costly infrastructure like data centres

The major claim of all these approaches is to realise ICN implementation in short time

period using the legacy network components and by engaging workarounds for the Open-

Flow limitations. Many of these approaches are successful in providing this short term

ICN realisation but they result in a lot of drawbacks, when the question of standardisation

and future internet architecture support put in front of them. The main drawbacks of

these solutions include,

1. additional efforts to create ICN tags

2. costly encoding and decoding operations on tags

3. IP field semantic changes due to substitution with ICN information

4. processing delays due to additional modules and plugins
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5. costly requirements to place extra machines like proxies in the network

6. still being based on IP-based addresses

OpenFlow is an evolving protocol and it is designed to operate on IP-based packets. It

is true that changing or extending the OpenFlow protocol to provide support for non-IP

based packets like ICN, is a complex process but, if there are no enough efforts now to

modify the OpenFlow protocol to provide ICN support, it would be more difficult and

would require more efforts to change it in future, when the internet architecture changes

to ICN instead of IP. Moreover, these workarounds and hacks have to be revised for every

new specification of OpenFlow which is again a process that requires a lot of efforts.

None of the above approaches tried to provide a clean state solution for the limitations

of OpenFlow in order to handle ICN flows.

Agreeing to many of these drawbacks, there are a number of studies in the literature,

that tried to move OpenFlow towards a clean state realisation of ICN, by incorporating

some modifications to the underlying protocol. These approaches will be analysed in the

next section.

2.6 On extension based approaches

The previous section discussed the non-extension and overlay approaches to enable legacy

OpenFlow implementations to support ICN related functionalities. This section covers the

experiments, that tried to provide clean state ICN implementation in SDN framework,

by extending OpenFlow elements; switch, controller and the OpenFlow protocol itself.

Figure 2.4 shows a summary of these approaches in year based timeline along with section

numbers.
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Figure 2.4: Extension based approaches on OpenFlow and ICN integration - Timeline
map from 2012 to 2016
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2.6.1 Metadata extraction

In 2013, Chanda et al., proposed improving ’traffic engineering’ of the networks, using

content names, instead of locations, by extending the OpenFlow controller that can act

upon metadata extracted by additional proxies in the network [14] [91]. The switches are

directed by the controller to send all the packets to the nearest proxy that is equipped

to extract ’metadata’ from the packets. The metadata contains information about the

content name of the data to be retrieved. The proxies communicate with the OpenFlow

controller using the extended messages, in order to extract and send the metadata. Proxy,

being the single point of failure and, the proxy flooding with the packets from the switches

for metadata processing are the main drawbacks of this approach. Additionally, this

approach operates on HTTP requests, instead of operating on ICN interest and data

packets. Similar to Chanda et al., [92] proposed to extend the OpenFlow controller with

new actions to invoke cache storage and retrieval. This solution heavily depends on the

server locations, as the controller tries to map the name to IP address of the destination,

by parsing the HTTP request. Also, the author suggests that if the controller has no

information on a cache server that can satisfy the request, the controller has to forward

the request directly to the destination server by reading the server name from the URL.

This solution is more or less a ’Content Delivery Network’ than an ICN solution.

2.6.2 Long term OFELIA approach

A long-term alternative for the short term approach proposed by [37] is introduced for the

discussion, that suggested extending OpenFlow protocol and packet matching criteria to

accommodate ICN methods, packets and procedures in [93]. This suggestion considered

the ’CONET’ architecture for ICN and compared the ’Naming Resolution System’(NRS)

of CONET with the OpenFlow controller and pinpointed that the OpenFlow controller

could be extended to act like CONET’s NRS and support both IP and ICN packets

in the network. [12] outlined the weakness of the OpenFlow switches to match upon
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arbitrary length field and introduced a fixed length tag in the packet representing the

data to be fetched. OpenFlow is extended to provide ICN functionalities by exploiting

the ’experimenter’ messages of OpenFlow, that operate on ’JSON’ syntax [75]. OpenFlow

being a binary protocol, all the messages should be represented in binary format. This

work did not provide the binary equivalents of those JSON messages. These extensions

based on experimenter option and JSON messages are presented in [75], that used the

IP addresses to identify next hops and servers instead of the faces. This is against the

basic requirements of ICN. This solution is being experimented over OFELIA testbed.

This approach assumed the existence of ICN enabled switches and, remained agnostic

to their implementation and architecture [69]. This approach opened the gate for the

discussion on extending OpenFlow interface for supporting ICN, but the feasibility of the

implementation of this approach is not discussed as part of this work.

2.6.3 Vendor messages

A less complex realisation of the above long term approach is being experimented in OFE-

LIA, by exploiting the ’vendor message’ option in OpenFlow [94] The vendor messages

are introduced in OpenFlow to carry arbitrary information. Each vendor can use this op-

tion to send their own arbitrary information between OpenFlow controller and the switch.

This approach will not be helpful to realise a generic solution that can be implemented

by any vendor. We feel that, using the vendor messages for each vendor to realise ICN

related operations will result in interoperability issues, while integrating products from

different vendors. OpenFlow is a vendor-neutral SDN standard [95]. The extensions that

are proposed over it, should preserve this property of OpenFlow.

2.6.4 Cache improvements

One direction of supporting ICN in SDN by extending OpenFlow switches is introduced

in [96] with a different controller and a separate cache server, to hold the cache details of
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the underlying network. The controller communicates with the cache server and makes

routing decisions. Even though the approach suggests extending the switches to exer-

cise ICN functionalities, it remains agnostic to the controller design. Using a controller

other than OpenFlow controller with OpenFlow switches and a separate caching entity

will overload the switches with additional operations to communicate with both the en-

tities in different ways. A solution to use CCN switches, along with the legacy IP-based

switches in a campus to reduce the traffic in the campus network gateway that connects

to the Internet is proposed in [72]. An OpenFlow controller is claimed to be used to

make caching decisions based on the frequently accessed contents. The study provides a

number of caching algorithms to be exercised by the controller but remains agnostic to

the implementation approach behind the controller and how the controller communicates

with the CCN switches.

2.6.5 Network-level interest aggregation

ICN-enabled switch’s PIT is the key player in enabling node-level interest aggregation. In

a capsule view, when a request is waiting for a content in an ICN node, further requests

which the node receives will not be forwarded further. Instead, those incoming requests

will be stored in the PIT by making a list of waiting-faces. Researchers have proposed

a further improvement in this by experimenting a network level interest aggregation.

This process exploits an OpenFlow controller to decide upon few things in addition to

forwarding decisions [97]. They are:

1. which interests to be stored in PIT

2. which is the best content store to store a particular content

3. which is the best path to send a content packet based on the factors; topology, cost

metrics, link delay and bandwidth availability

4. how to utilise the network resources effectively
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2.6.6 A view on the switch

When none of the above studies presented the ICN packet structures and switch archi-

tecture, in one of the ’NDN hands-on workshops’, [13] outlined the logical structure of

ICN-enabled OpenFlow switch and, ICN-based interest and data packets with the hashed

content URL. This work mentions that, overlaying ICN over IP may not provide full ad-

vantage of ICN benefits. It adds that, new naming schemes and OpenFlow extensions

to realise in-network caching and, new actions, may result in clean state implementation

of ICN by providing an alternative to IP. A similar ICN-enabled OpenFlow Switch ar-

chitecture is realised in [98], utilising multiple tables to support content storage, pending

interest lists and forwarding information. The packet structure suggested in this work

is same as that of the structures suggested by [13]. OpenFlow protocol extensions on

messages and actions, other than caching messages are not presented by this work. This

work also remains agnostic to packet matching, controller responsibilities, feasibility and

implementation details of the approach. Extending the OpenFlow to allow interoperation

between multiple ICN implementations is suggested in [99], where the switches assign a

tag to the packets based on the ICN network from where they receive the packets. These

packets will be sent to the controller and the controller makes the forwarding decisions

based on packet tags and decides to which ICN domain the packet has to be sent.

2.6.7 Summary

This section analysed the existing suggestions in literature for providing a clean state ICN

implementation over OpenFlow SDN framework. Each approach extended or modified the

OpenFlow elements to a certain extent to provide ICN functionalities in the network. The

solutions include,

1. long term experiment in OFELIA using OpenFlow experimenter messages

2. traffic engineering enhancements using proxy-based metadata extraction through

extended controller messages
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3. cache improvement using extended actions

4. controller directed ICN inter-operation

5. network level interest aggregation

The obvious advantage of these approaches over the non-extension approaches out-

lined in the previous section is that, these approaches initiated the healthy discussion of

modifying the underlying OpenFlow protocol towards future internet architecture sup-

port, instead of living up with the OpenFlow limitations and using workarounds. On

the other side, when we compare the amount of work being carried out in creating those

workarounds and the amount of work being carried out in providing clean state ICN over

OpenFlow, the latter case is minimal. Further in those minimal experiments, the scope

of extension is small. Some gaps in those experiments are:

1. some experiments assumed for ICN-enabled switches and tried extending the control

plane alone

2. the other group of experiments extended the OpenFlow switches but used a differ-

ent controller other than the OpenFlow controller with additional communication

channels

3. Few of the above solutions have used experimenter and vendor messages to experi-

ment extensions, that might be difficult to standardise for all the OpenFlow vendors

in the market

4. in documentation level, many of these works remain agnostic to implementation

details

5. few studies remain agnostic to design and feasibility of the proposed architecture

6. In an abstracted level, many of these works remain conceptual without providing

the feasibility results.
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This dissertation aims to address many of these drawbacks. The problem formulation

and the proposed solutions are captured in the next chapter.
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Chapter 3

Problem Formulation

The previous chapter described the literature that contributed towards porting ICN func-

tionalities over OpenFlow and summarised the limitations and drawbacks of the same.

Clearly, there is a need for a better understanding to visualise how a clean state con-

trol plane can be created for ICN, based on existing standard such as OpenFlow. This

chapter presents the primary approach of this dissertation in order to show how such a

control plane can be created, by considering all the necessary OpenFlow elements. The

chapter starts with giving an abstracted view of the approach that will be provided to fill

up the architectural differences between the two technologies under consideration. The

next section talks about whereby this approach is different from many of the existing

approaches, followed by the primary targets of this dissertation in order to realise the

proposed approach. Finally, the challenges that are expected out of the proposed solution

are listed

3.1 Abstracted view of the solution

The overall objective of this study is to enable OpenFlow to provide a control plane for

the underlying ICN-enabled OpenFlow infrastructure. This study tries to realise it in a

clean state way, instead of overlay approaches as listed in the previous chapter. In order
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to achieve that, the key solution is to fill the architectural gaps between the technologies.

Figure 3.1 shows the main architectural differences between ICN and OpenFlow and it

depicts how our approach ’OF-ICN’ fills those differences. In a highly abstracted way, the

solution is to take the features of ICN and include them within the OpenFlow architecture.

By means of this approach, both ICN and OpenFlow capabilities can be achieved.

Figure 3.1: OF-ICN : Abstracted view of the proposed solution

3.2 Difference from existing approaches

As discussed in the previous chapter, most of the integration approaches in the industry

are not providing a clean state implementation of an ICN-enabled OpenFlow control

plane. Most of them are overlay approaches with extra wrappers and plugins that involve

a lot of processing and cannot get the benefits of both the technologies together. A

number of works tried building an ICN methodology outside the OpenFlow and yet tried

connecting them through a different channel other than the normal OpenFlow channel.

We believe that these approaches will not be a move towards the final aim of standardising

OpenFlow to support ICN. Thus, our approach differs in a way that it builds ICN within

OpenFlow by carrying out some modifications or extensions to it, in order to make it

progress towards standardisation. This difference in the approach is shown in Figure 3.2.
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Figure 3.2: Difference between existing approaches and OF-ICN

3.3 Targets

This section lists the targets for this study to experiment with the proposed approach.

This section is divided into two types of goals; design goals and implementation goals.

The design-level goals of the dissertation are:

• Use ICN-based packets which labeled information instead of addressing an end host

• Introduce faces abstraction in OpenFlow to receive and send ICN packets

• Enable OpenFlow switch to match a packet with its flow-based forwarding table

using the content name in the packet

• Enable OpenFlow switch with multiple tables to support basic ICN-based data

structures that are used to do packet forwarding operation

• Enable OpenFlow switch to exploit its cache to store content

• Enable OpenFlow controller to store name-based routing information and to store

content in its cache

• Introduce new actions in OpenFlow switches to act upon ICN-based data structures

• Introduce new messages in OpenFlow protocol library for the switch and the con-

troller to communicate ICN-related information
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• Introduce new events and handlers in OpenFlow controller to handle ICN-related

messages from switch

The implementation-level goals of the dissertation are:

• Provide a software-based experimentation code with the proposed solution

• Analyse and consider the existing extensions on OpenFlow while implementing the

new extensions

• Keep the OpenFlow standards while creating new messages, actions and events

• Provide modularized code components to plugin into testing environment at any

time

The following section lists some of the challenges that we foresee in the proposed

approach and a number of possible solutions that can be applied to overcome these chal-

lenges. The later chapters will discuss how well the proposed approach handled these

challenges as part of the experimentation.

3.4 Challenges

OpenFlow and ICN put forward some challenges for them to be integrated in order to

support ICN flows. These challenges are listed below:

• OpenFlow for non-IP

OpenFlow is designed to operate over IP packets and match against the IP and

transport protocol header fields. So far, OpenFlow has been extended to provide

support for VLAN tags, MPLS tags and to support circuit switching, which is again

realised as overlays over IP [70]. When OpenFlow was announced, it was claimed to

support non-IP packets as well, but there are only very few experiments over it which

almost revolve around IP-based packets. We try to change the OpenFlow switch
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behaviour so that it can recognise a non-IP packet, by constructing the packets as

raw Ethernet packets and making the switch to deal with them

• Binary protocol

OpenFlow switch and the controller communicate through a secure channel and

OpenFlow is a binary protocol where all the messages are packed into binary code

and unpacked at the receiving end, into the original format [58]. This is to ensure

the additional security of the messages on the wire. The events, which the switch

sends to the controller and the actions which the controller sends as messages to the

switch are all get converted into binary codes and converted back into normal format

at the receiving end. So, at the implementation level, the new messages and actions

should be packed properly so that the receiving end will be able to parse them and

invoke modules based on them. This is a difficult process as a single bit change in

the message packing may send a wrong message to the controller and the packet

may not be processed on time. This will result in more packets getting dropped and

can affect the quality of service of the underlying network. Our study analyses the

packing and unpacking methodology being used in OpenFlow for different types of

messages and implement those methodologies over new messages and actions being

created as part of the experimentation

• Variable name size

This is a challenge put forward by both ICN and OpenFlow. Unlike IP prefixes,

which are of fixed size, ICN names are variable in size and there is no proper

standardisation on the ICN naming schemes yet. In addition, OpenFlow is not

equipped yet to match a variable-sized header field with its flow table. It can only

match with fixed sized header fields as with IP packets. A number of solutions are

there to support ICN names in OpenFlow by hashing or tagging the name into an

IP field, as mentioned in the previous chapter, but still, there is no solution to make

OpenFlow support an arbitrary name field. A proper solution for this issue can
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only be provided when the naming methodology is standardised for ICN. As part

of this experimentation, we are making the switch to traverse the content names in

the packets assuming that the switches are equipped to do deep packet inspection.

3.5 Summary

This dissertation addresses the problem of providing a clean state integration of OpenFlow

and ICN so that an OpenFlow-based control plane can be created for an ICN network.

This dissertation analyses the ways to create such a control plane for ICN, by studying

the existing literature works on integrating OpenFlow and ICN and, by plotting the archi-

tectural differences between OpenFlow and ICN. It proposes a solution called ’OF-ICN’,

wherein the ICN functionalities are ported over in OpenFlow architecture, by extending

the necessary OpenFlow elements and through which, it derives an ICN-enabled Open-

Flow control plane for the underlying ICN-enabled OpenFlow switches.
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Chapter 4

Design

This chapter presents the design choices that are proposed for this dissertation. The first

section describes the functional architecture, by depicting the main functional topology,

that we use throughout the experimentation. The second section portrays the architec-

tural design of the modified OpenFlow switch. It also details the proposed messages and

actions that are added to the switch functionality. The third section portrays the design

of the modified controller along with the information on messages that are added or ex-

tended to the existing controller functionalities. The last section talks about the packet

design that we use for the study and the chapter concludes with a summary.

4.1 Functional architecture

Figure 4.1 shows the network topology that we use for experimenting the proposed OF-

ICN approach. As shown in Figure 4.1, the topology has two hosts: ’Host 1’ and ’Host 2’.

Either of the hosts can be a consumer or producer of a content. For most of our experiment

evaluations, Host 1 will be the consumer and Host 2 will be the producer. There are two

OpenFlow switches, that are part of our design. These switches are modified to enable

ICN capabilities as per our approach. The switches are named as ’ICN Switch 1’ and ’ICN

Switch 2’ and referred as ’Switch 1’ and ’Switch 2’ in further chapters for light reading
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purpose. As shown in Figure 4.1, each modified OpenFlow switch has the following three

basic ICN-based elements to support ICN flows: Content Store(CS), Pending Interest

Table(PIT) and Forwarding Information Base(FIB). Host 1 is connected to Switch 1 and

Host 2 is connected to Switch 2. Both the switches are connected to each other as well.

The switches are also connected to the modified OpenFlow controller as shown in Figure

4.1. The modified OpenFlow controller contains the following elements in order to make

forwarding and caching decisions for ICN-enabled OpenFlow switches: cache and ICN-

based routing database. The design of the switch and controller components are explained

in following sections.

Figure 4.1: Functional architecture : OF-ICN design components

4.2 Switch design

This section presents the architectural and functional details of the new switch elements

that are introduced as part of our solution, followed by the details on the messages and

actions, that are introduced to the modified switch.
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4.2.1 Forwarding Information Base

Every ICN-enabled OpenFlow switch(OF-ICN switch) has a Forwarding Information

Base(FIB) table which helps in making forwarding decisions at the switch level. Each

entry in FIB is a combination of OpenFlow match, OpenFlow action and counter fields.

The ’match’ field contains content names to match against the incoming packets. If the

content name in the interest packet matches an entry in the table, then the corresponding

list of OpenFlow actions in the ’action’ field will be executed on that packet. An action

can instruct the switch to send the packet out in a particular face. ’OF-ICN’ switch sup-

ports a number of ICN-related actions which will be listed in later sections. The ’counter’

field of an FIB entry will be incremented upon every packet that matches with that entry.

Figure 4.2 shows the FIB table structure.

Figure 4.2: FIB structure

4.2.2 Pending Interest Table

Pending Interest Table(PIT) is the one that helps the switch to save ’breadcrumb’ for the

interest packet that is sent upstream towards the content. As the name suggests, PIT

stores the pending interests which have to be satisfied with contents. Through this table,

the contents consume the interests. PIT consists of two fields: ’OpenFlow match’ and
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’waiting faces’. Like FIB, the match field contains content names to match against the

content packets. If a content packet matches with an entry, it will be sent in the faces

that are waiting for it. The switch adds the incoming face to the waiting list, when an

interest packet is forwarded towards an upstream face. Figure 4.3 shows PIT structure.

Figure 4.3: PIT structure

4.2.3 Content Store

Content Store(CS) is a logical view of switch’s ’internal cache’ to store the contents. Each

entry in the content store contains an ’OpenFlow match’, that denotes the content name

that can match with the packet and, ’data’, that is the content that can satisfy the interest.

If an incoming interest packet matches an entry in the content store, the corresponding

data will be sent back towards the incoming face. Content store is populated by a number

of ways: 1) When a switch receives a data packet corresponding to an interest packet, it

can store that content in the cache 2) The switch can store the contents announced by the

hosts that are connected to it 3) The controller can push the content down to the switch

for it to satisfy any upcoming interests for that content. Figure 4.4 shows the ’Content

Store’ table structure.
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Figure 4.4: Content Store structure

4.2.4 Face

The ’face’ is an abstraction of an interface through which the switch can receive or send

packets in the network. A face can be connected to an internal application, an Ethernet

wire or a device. Every face in the switch is identified by a fixed length identifier. The

controller has the overall view of the faces that a switch has and, uses it to take forwarding

decisions. In Figure 4.1, Switch 1 is connected to Host 1 through F1(Face 1) and it is

connected to Switch 2 through F2(Face 2)

4.2.5 Extended messages

The new messages that are introduced as per our solution and the existing OpenFlow

messages, that are modified as per our requirement are listed below. These messages are

triggered by the modified OpenFlow switch:

CONTENT ANNOUNCEMENT

OF-ICN switch invokes this message to the controller in order to register the availability

of a content in the network. The switch can send this message to the controller whenever

it receives a ’content publication’ message from a host or the switch caches a content in

its content store. The message contains the content prefix and the switch’s identifier.
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The controller extracts this information from the message and stores them in its routing

database. Thus, this message helps the controller to study the switch that is responsible

for a particular content.

CS FULL

OF-ICN switch sends this message to the controller, whenever the content store is full.

This can be realised anytime when the switch tries to add a new entry to the cache and

finds that the cache is full. This message plays the role of an ’event notifier’ and helps

to delegate the caching decision responsibility to the controller.

FIB FULL

The memory capacity differs between the switches. The low-capacity switches are ex-

pected to store a limited number of flow rules in their FIB [26]. In this case, the controller

has to take the major responsibility of deciding on the flow rules that have to be stored

in the switches. Moreover, when the switch’s FIB is full, the controller has to take some

actions to manage the FIB. For example, the controller can ask the switch to clear the FIB

or it can ask the switch to delete the least used entry from the FIB. In order to achieve

this, the switch has to inform the controller whenever its FIB is full. This FIB FULL

message is useful for this purpose and helps the switch to notify the controller when the

switch realises that its FIB table is completely filled and there are no more spaces to fill

new entries.

FIB REPLY

The switch sends this message as a reply to the FIB request message that is sent from the

controller. The controller usually requests for FIB REPLY when the switch connects it

or at any time it wants to recalculate its routing information. The FIB REPLY message

carries the flow entries from switch’s FIB table which includes the following fields: content

name, actions list and counter.
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FIB MOD NOTIFICATION

Whenever the switch makes some changes to the FIB, it has to notify the controller about

the modification. This helps to keep the global view maintained by the controller to be

in sync with the underlying datapath. This message is sent by the switch, when it adds

an entry to the FIB, deletes an entry from the FIB or makes some changes to the existing

flow rules based on FLOW MOD messages from the controller. This message is also

considered as an acknowledgement from the switch in response to the flow rule pushed by

the controller to it.

FEATURES REPLY

This is an existing OpenFlow message which is used to announce the capabilities of the

switch to the controller [6]. This is modified based on our requirement and allows the

switch to announce ICN-related capabilities to the controller. The ICN-related capabilities

include; the number of faces supported by the switch, the number of tables supported

and the caching capability of the switch. This can also be extended to include more

information. For example, the switch memory capacity can also be announced as part

of this message. This message is triggered as a response to the FEATURES REQUEST

message from the controller during the switch-controller handshake phase.

4.2.6 Extended actions

The new actions that are introduced as per our solution and the existing OpenFlow

actions, that are modified as per our requirement are listed below. These actions are

executed by the modified OpenFlow switch:

ADD PIT

OF-ICN switch invokes this action to add an entry into its ’Pending Interest Table’(PIT),

whenever it forwards an interest packet in an output face. This action takes a content
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prefix and a list of faces and, adds them into the PIT as a new entry. This is an internal

action invoked by the OpenFlow switch and not exposed to the controller

REMOVE PIT

When the OpenFlow switch receives a data packet, it retrieves the faces from PIT, that

are waiting for that content. The data packet will be sent in these waiting faces. Once

the data packet is sent out, the switch invokes the REMOVE PIT action to remove the

corresponding PIT entry, as the interest is already satisfied by the content. This action

takes the content prefix as a parameter and deletes the corresponding entry from PIT

OUTPUTFACE

The switch executes this action to send interest packet or data packet out in a face. This

action takes a ’face id’ as the parameter. OpenFlow controller adds this action into an

FIB MOD message and sends it to the switch. This action will be stored in the action

field in the corresponding FIB entry. When an interest packet matches the corresponding

entry in FIB, the switch executes this action, retrieves the face and send the packet out in

that face. During the transmission of a data packet, the switch will pass the ’waiting face

id’, that is retrieved from the PIT to this action. The action will send the data packet in

that face back to the requester.

CLEAR CS

This action is invoked, when the switch receives ’CLEAR CS’ message from the controller.

The switch receives the instruction to clear out the content store, as a response to the

notification of the switch to the controller when the content store is full. This can also

be a direct instruction from the controller, if the controller expects to push some popular

multimedia content to the switches and it wants to clear the caches from the switches.

This action deletes all the entries from the switch’s content store.
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DELETE LEAST FIB

This switch action is triggered when the controller sends an instruction to delete the

FIB entry that is used the least among all the FIB entries. The switch receives such an

instruction as a response to the notification sent by the switch to the controller when its

FIB is full. The controller can also send an instruction to make some space in the switch’s

FIB in order to push a new flow modification rule. In both the cases, the switch queries

for the least value in the counter field in FIB table and deletes the corresponding entry

4.3 Controller design

Controller is the entity, that handles forwarding decisions for the underlying datapath

infrastructure and there are many SDN-based controllers available in the market [60].

OpenFlow, being one of the leading SDN innovations, has its own controller to control

underlying OpenFlow switches [3]. The OF-ICN controller is equipped with a ’Routing

database’, which can be the superset of the forwarding tables of all the switches that are

connected to it. The controller uses this routing database to decide on where to send a

packet, which the switch has sent to it. Based on this decision, the OpenFlow controller

pushes flow rules to the switches that are in the route path and, sends the packet back to

the corresponding switch that queried the controller. Then the switches in the path, can

forward that packet based on the rules sent to them by the controller.

We are using the OpenFlow controller, but extend it to perform ICN related function-

alities over ICN packets. The following sections describe the new messages and actions

that are supported by our OF-ICN controller.

4.3.1 Routing database

’Routing database’ is same as that of a routing table in the legacy OpenFlow controller

and it stores routing information based on the content names. This table is used to store
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reachability information for every content name in the network that the controller knows

about. For example, it can store the identifier of the switch, that has cached the content

or, that is the nearest one to the content producer. This information is expected to be

populated by any name-based routing protocol (for example, NLSR [50]) that runs on the

network. This database will also be updated based on the content announcements from

the switches connected to the controller. The controller queries this database whenever a

switch sends an interest packet to it, based on the content name available in the packet.

The controller will push the flow rules based on the routing information present in the

routing database for that content name. In order to achieve this process, the necessary

fields that are considered as part of our routing database design are : ’content name’ and

’route’ associated with the content name. The route can be the switch identifier which

is connected to the controller, that announced the content to it or it can be a number

of intermediate switches that form a path to reach the content. The routing database

structure is shown in Figure 4.5.

Figure 4.5: Structure of controller routing database

4.3.2 Controller cache

One of the main objectives of ICN is to enable ’in-network caching’ in the network, to

improve the availability of the content near the end-users. Even though the switches

are expected to store some content in their cache to provide better availability in the

network, the storage differs between the switches and it depends on the memory capacity

of the switches [25]. We can not expect the switches to store a lot of content, that keeps

increasing day by day. We propose the OF-ICN controller to exploit the cache in the

machine where it is running, to store the content published by the switches and hosts.

63



This is to increase the content availability of many switches which are connected to the

controller, as they can retrieve the required information from the controller itself, instead

of reaching out to the content producer. When a controller receives an interest packet

from a switch, it checks its own cache for the availability of the content. If the content

for that request is available in its cache, the controller can send the data directly to the

switch to satisfy the content requester as soon as possible. This can significantly reduce

the Round Trip Time(RTT), otherwise required if the switch has to reach out to any other

in-network cache or the content producer. This cache can also be used to push content

to the underlying switches in a ’proactive’ way when the controller suspects an upcoming

huge need for a particular content (for example, upcoming popular show broadcast). The

controller cache also has a field called ’priority’, that denotes the popularity of a content.

If the controller receives a popular multimedia content, it will store that content in its

cache with a possible highest priority. An algorithm that runs in the controller frequently

monitors the priority of the contents in the cache and proactively pushes the highest

priority content to the underlying switches, to reduce transmission delay in the network.

The structure of controller cache is shown in Figure 4.6.

Figure 4.6: Structure of controller cache

4.3.3 Extended messages

The new controller-triggered messages, that are introduced as per our solution and the ex-

isting controller-triggered OpenFlow messages which are modified as per our requirement

are listed below:
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PACKET IN

In OpenFlow, this is the message which the switch sends to the controller if it has no

matching entry for a packet in its flow table [6]. This message is extended to send the

content name to the controller, in addition to other protocol fields. The controller extracts

the content name from this message and, uses it to query its cache and routing database,

for any information on that content name.

ADD CS ENTRY

This message allows OF-ICN controller to disseminate content to the switches in a proac-

tive way. As explained earlier, when the controller is expecting a huge demand for a

content or it has identified the next content in the sequence for a previously requested

interest, it pushes the content down to the switches for them to store in their caches. This

will help to improve the availability of the content near the users during the high content

demand scenarios. The ADD CS ENTRY message contains the content prefix and the

corresponding content. These details are sent from the controller to the switch in the

binary format.

CLEAR CS

This message helps OF-ICN controller to make the switch clear its cache. This message

can be invoked as a response to CS FULL message from a switch. It is also a part of

the algorithm, that runs in the controller and makes caching decisions for the underlying

switches. For example, when the controller has some popular content to push to the

switches and, when the cache in a switch is filled with less popular contents, the controller

can send this message. It will instruct the switch to clear its cache so that the controller

can push new data to it.
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DATA FROM CONTROLLER CACHE

This message is utilised by the OF-ICN controller to send data back to the switch, that

requested for an interest packet resolution and, the controller itself has the data for that

interest in its cache. This message contains the content prefix and the corresponding data

to be sent to the requested switch. When the switch receives this message it will invoke

two actions. One is to send the data back in the waiting faces and the other one is to add

the content to the cache. This caching decision can be made locally in the switch or by

the controller

FIB MOD

This message is an extension of OpenFlow’s ’FLOW MOD’ message [7] supports pushing

down fib flow rules from the controller to the switch. This message is based on the

information retrieved by the controller, from the routing database, for a particular interest

sent by the switch to it. The controller frames the FIB MOD message with the content

prefix and the next-hob face for the switch to sent out the interest packet. This message

is pushed to the switch and gets added into its FIB, if there is no existing entry for that

content prefix. Otherwise, it modifies the existing entry in FIB with the new rule.

FIB REQUEST

The OpenFlow controller is expected to have a global view of the underlying datapath

[22], which is a group of connected switches in our case. When a switch initializes with

the controller, it informs the controller about the contents which can be reached through

it. This can be compared with a ’publishing’ operation. This is achieved by informing

the FIB details of the switch to the controller. Thus, when the switch connects to the

controller, the controller sends an FIB REQUEST to the switch, asking it to send the FIB

details in an FIB REPLY message. Not only during the handshake, at any time when

the controller needs to get FIB details from a switch to make any controlling decisions, it
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can send out this message and, get the FIB details back in the reply from the switch.

DELETE LEAST FIB

This is a response message from the controller for the ’FIB FULL’ message from one of

the connected switches. This message instructs the switch to find out the FIB entry which

is used least among all the FIB entries and delete the entry. In our approach, this message

is expected to be triggered only when the switch sends an ’FIB FULL’ message, but this

message can also be used by the controller to clear out some FIB entries in the connected

switches before it pushes FIB MOD entries for any new high-demand content.

4.4 Packet design

All the different ICN implementations share one basic feature in common, which is to

support ICN-based packets [80]. In a most general view, an end user in an ICN network

sends out a request for a content in terms of an ’interest’ packet and gets back the content

in terms of a ’data’ packet. The another important packet type that is used to publish

or announce the content in ICN network is ’content announcement’ packet, which helps

to register the content in the ICN network. Following this generic ICN approach, our

solution also comes with these three basic ICN-based packets; Interest, Data and Content

Announcement. Limiting the scope of this study to the basic ICN functionalities, our

packets carry the necessary information to enable those functionalities in the network. As

shown in Figure 4.7, an ’interest’ packet contains the content name(prefix) of the content

to be fetched, along with the packet headers. A ’data’ packet contains the content name

and the actual content(data) corresponding to that name. The ’content announcement’

packet contains the content name which is being registered and the identifier of the switch

which is sending the announcement message to the controller on behalf of an end host.

The message packets which are communicated between the switches and the controller

retain the message structure proposed by OpenFlow [6]; OpenFlow header which identifies
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the type of the packet, followed by the payload which contains the actual information.

Figure 4.7: OF-ICN packet structures

4.5 Reactive processing algorithm

This section delineates the steps carried out by OF-ICN using the proposed design to

fetch a content from the network. The controller sends the flow rules on a request from

the switch, which is a ’reactive’ process. The steps are visually shown in Figure 4.8 and

they are explained below:

Figure 4.8: OF-ICN reactive processing sequence
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• Scenario : The topology is depicted in Figure 4.8. ’Host 2’ produces a content

named ’/host2/video2/v1’ . ’Host 1’ requests for the same content by sending a

request to the switch ’Switch 1’, to which it is connected to.

• Bootstrap : We assume that Host 2 has already published the content that is

named’/host2/video2/v1’, to ’Switch 2’, as it is connected to Switch 2. Switch 2 has

added an entry in its FIB, with the content name and the face that connects Host 2,

as the next-hop route. Switch 2 has also announced this content to the controller.

Thus the controller has the routing information for the content as shown in Figure

4.8.

• Step 1 : Host 1 creates an interest packet with the content name ’/host2/video2/v1’.

This interest packet can be compared to a request (say., an HTTP request). In our

case, it is an ICN Ethernet packet with the content name.

• Step 2 : Host 1 sends the interest packet to Switch 1 as it is connected to it.

• Step 3 : Switch 1 extracts the content name from the packet. It checks in

its ’Content Store’ for a matching entry by comparing the content name with the

’match’ field. In our case, the ’CS’ has no entry for ’/host2/video2/v1’.

• Step 4 : Switch 1 checks the ’Pending Interest Table’ if it has any interests which

are already waiting for the same content. As this is the first interest, there will not

be an entry in PIT in this case.

• Step 5 : Switch 1 checks the ’Forwarding Information Base’ if it has the forwarding

route for the content name. In our case, Switch 1 will not have a matching entry in

FIB.

• Step 6 : No match in any of the switch tables.

• Step 7 : Switch 1 prepares a ’PACKET IN’ message with the extracted content

name and sends it to the controller.
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• Step 8 : Controller checks for the routing information for the content name, in

its routing database.

• Step 9 : Controller gets back the routing information. In our case, the identifier

of Switch 2 will be returned for the content ’/host2/video2/v1’.

• Step 10 : Controller pushes a ’FIB MOD’ message to Switch 1, stating that, for

the interest packets named ’/host2/video2/v1’, Switch 2 is the route. It also sends

back the interest packet to Switch 1.

• Step 11 : Switch 1 stores the FIB rule from the controller and adds a PIT entry

for the interest, before forwarding it to Switch 2.

• Step 12 : Switch 1 sends the interest packet out in the face which is connected

to Switch 2.

• Step 13 : Switch 2 receives the interest and checks in its CS for a matching

content. In our case, Switch 2 has not cached the content yet.

• Step 14 : Switch 2 then checks in its PIT for any pending interests for the same

content name. Because this is the first interest, there will not be an entry in PIT.

• Step 15 : Switch 2 checks in its FIB for the next-hop information.

• Step 16 : Switch 2 finds out that the face, that connects to Host 2 is the next-hop

route for the interest with the content name ’/host2/video2/v1’.

• Step 17 : Switch 2 sends the interest packet out in the face that connects to Host

2.

• Step 18 : Host 2 recognises the interest packet, as it produces the content. It

creates a data packet with the content and sends back to Switch 2.
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• Step 19 : Switch 2 sends the data packet back to Switch 1 in the face that connects

to it. This is possible because Switch 2 would have stored a PIT entry with the face

that connects to Switch 1 as waiting-face, before forwarding the interest to Host 2.

• Step 20 : Switch 1 receives the data packet. It checks its PIT and retrieves the

waiting face, which is the face that connects to Host 1. It sends the data packet out

in the face that connects to Host 1.

• Step 21 : Host 1 receives the data, which it requested for.

4.6 Summary

OF-ICN design is presented in this chapter. We port the basic ICN-based data structures

into OpenFlow switch and OpenFlow controller, to enable them to process ICN packets.

We introduce new messages and actions to OpenFlow protocol, to communicate ICN-

related information between the switch and the controller. A functional topology is shown

in Figure 4.1 with the modified OpenFlow elements:

• OF-ICN switch (ICN-enabled OpenFlow switch)

– Content Store : To store ICN contents (data objects)

– Pending Interest Table : To store the information about the interests, that

are sent upstream in the network

– Forwarding Information Base : To store next-hop forwarding details for

content names

• OF-ICN controller (ICN-enabled OpenFlow controller)

– Routing database : To store routing information for content names

– Cache : To store contents in the controller
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• End-hosts : End hosts are enabled to send out ICN interests and to receive ICN

data packets

The architecture and the functionality of all the extended components are briefed in

this chapter. New messages and actions that are introduced to OpenFlow as part of our

design are categorized into ’switch-based’ and ’controller-based’ and, their architecture

and functionality are detailed under the corresponding category. The packets we use in

OF-ICN are divided into following categories: Interest, Data, Content Announce-

ment and OpenFlow message packets. The structure of each of these packets are

portrayed. In order to derive the basic functionality over the proposed design, an algo-

rithm is presented for ’reactive processing’, using the OF-ICN switches and controller,

along with a diagram, depicting the sequence of communications takes place in the pro-

cess.
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Chapter 5

Implementation

This chapter describes the implementation details of this dissertation. It starts with a

section that outlines the technical architecture of the experiment, followed by the sections

that explain the test environment and different components involved in the implementa-

tion. This chapter also speaks about the methodology to create new messages and actions

which are proposed as part of our approach, followed by the basic commands to run the

code from GitHub. A summary concludes the chapter.

5.1 Technical architecture

Figure 5.1 shows the technical architecture of our implementation. The figure demon-

strates the switch and controller components using a Python implementation of an Open-

Flow controller, POX. This section presents the environment, technologies used and the

components involved in the implementation. Figure 5.1 is divided into two sections. On

the left, it is the OpenFlow switch components and on the right, it is the OpenFlow

controller components.

The following section introduces the main platform POX, which is used for our exper-

iment and about its core components.
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Figure 5.1: Implementation Architecture - Switch (Left side) and Controller (Right side)
components
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5.2 POX

POX [62] is a realisation of an OpenFlow controller, in Python language. It is a networking

framework used to prototype and experiment SDN-based networking architectures and

applications. It is derived from NOX, a popular OpenFlow controller implementation in

C++. POX works on component-based methodology in which every module is visualised

as a component that is registered into POX core, which is again a parent component. The

current stable version of POX supports OpenFlow 1.0 wire protocol and nicira extensions

[58], to support a number of OpenFlow 1.2 features. Even though POX initially provided

only an OpenFlow API and controller implementations, it now has basic switch datapath

implementations as well. Thus, we utilised POX to develop both switch and controller

components. Our main motto of extending the OpenFlow interface is realised with a new

set of messages and actions, by modifying the OpenFlow library provided by POX .

5.2.1 Core

As mentioned before, POX requires the modules to be registered as components into its

’core’ component. When POX boots, it prepares the core components and attaches all

the registered components to it. This is helpful for the components to refer or use other

components by just retrieving them from the core. Multiple instances of a component

can also be registered with the core object. We have created a controller component

and a switch component and added them to the POX core object. Each component can

have multiple modules to support its functionality. Our controller component has the

following modules: Connection manager, OpenFlow message handler, event trigger, event

handler, cache manager and routing database manager(Topology manager). Similarly, our

OpenFlow switch component has the following modules: Connection manager, OpenFlow

message handler, action handler, pipeline processor, table handler and the packet handler.

These modules are illustrated in figure 5.1 and they will be explained in the following

sections.
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The following code snippet from our implementation shows how an instance of a switch

module can be added to the POX core object

def icnswitch1 (dpid = "123"):

"""

Launches an ICNSwitch

"""

from pox.core import core

core.register("datapaths", {}) #This adds current instance of the

switch module to POX core under

the name "datapaths"

Adding a component to POX core, also helps a component to listen for an event

from the other component just by mentioning the event name instead of mentioning the

component name. An event is a special kind of notification based on OpenFlow messages

which will be explained in the forthcoming sections. The following code snippet from

our controller module shows how the controller listens for ’ConnectionUp’ event, that is

triggered when a switch connects to the controller:

core.openflow.addListenerByName("ConnectionUp", start_switch)

#here ’start_switch’ is the event handler function that has to be called

for ConnectionUp event

5.3 Test environment

Keeping the POX networking platform as the base, the following components or entities

are required for the demonstration of our approach:

• OpenFlow software switch
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• OpenFlow controller implementation

• OpenFlow interface

In order to simplify the complexity of implementation and to provide better clarity

in understanding, we exploited the fact that POX provides support for all the above

components through its component-based architecture.

Installation requirements:

We have used a 64 bit single machine with Ubuntu 14.04.4 LTS(trusty) installed

in it. This Ubuntu distribution is downloaded from http://releases.ubuntu.com/14.04/.

Ensuring that the user has administrative privilege is very important as many packages,

modules and processes in the setup, run with admin permissions. The packages which are

required in order to run our setup are listed down along with the terminal commands to

download and install them:

• python-setuptools : sudo apt-get install python-setuptools

• JDK : sudo apt-get install default-jre , sudo apt-get install default-jdk

Ensure that either open JDK 7 or Open JDK 8 is installed by the previous com-

mands. This can be checked using ’java -version’ in the terminal. If not, install the

required JDK version by explicitly mentioning it in the command. For example, to

install JDK 8 use the commands: sudo apt-get install openjdk-8-jdk , sudo apt-get

install openjdk-8-jre

• Git : sudo apt-get install git

Git is required to get the basic setup files from the respective repositories. After

installing the git, configure it using the following commands: git config –global

user.name ”username” , git config –global user.email ”email”

• PyCharm : sudo apt-get install pycharm
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All our setup and development files are in Python. An IDE like ’PyCharm’ is

helpful to write better python code as Python is very strict about code formatting

like ’indentations’. The above command would install premium version of Pycharm

with 30 days trial period. The following command is used to install free version of

PyCharm : sudo apt-get install pycharm-community

• Wireshark : sudo apt-get install wireshark

Wireshark is a packet analyser used to dissect and inspect the packets transmitted

through the network [100]. If POX is installed through mininet, mininet also has

a provision to install Wireshark along with it. Otherwise, it can be installed using

the command given above. Once the Wireshark is installed, it can be invoked using

the command ’sudo Wireshark’ from the terminal

• tkinter : sudo apt-get install python-tk

Tkinter [101] is a GUI tool to visualise python dictionaries and tables in differ-

ent views like ’TreeView’. By default, many Python installations come along with

Tkinter package. If not, it can be installed using the command given above

• POX : git clone https://github.com/noxrepo/pox.git

POX can be run as a standalone networking framework as it provides all the neces-

sary components like OpenFlow software switch, OpenFlow controller and protocol

API in terms of libraries. POX controller is installed by default while installing

Mininet or it can be installed using the source code from git repository using the

command given above. If the above command is executed from the home directory,

it will create a directory named ’pox’ with all the necessary source code in them.

The latest stable release of POX when this study is carried out is ’carp’

5.3.1 Logical entities

Our setup has the following entities for the demonstration of the proposed approach:

78



• Two ICN-enabled OpenFlow switches: Switch 1 and Switch 2. Switch 1 and Switch

2 are connected to each other

• One ICN-enabled OpenFlow controller: Both the switches are directly connected to

the controller

• Two hosts : Host 1 and Host 2 . Host 1 is connected to Switch 1. Host 2 is connected

to Switch 2

5.4 Connections

We studied the basic installation steps and the logical entities that are required for the

implementation, in the previous sections. This section shows how they are connected to

each other in our experiment setup.

Both switches, Switch 1 and Switch 2, are connected to OpenFlow controller directly

using OpenFlow interface. The switches communicate with the controller using the Open-

Flow protocol. As mentioned before, POX fully supports OpenFlow 1.0 protocol and

nicira extensions covering the majority of OpenFlow 1.2 protocol additions. When the

controller boots up, it will listen on a socket for any incoming connections from the

switches. Unlike our datapath infrastructure, which operates through the non-IP commu-

nication, the switches connect to the controller through a socket is based on IP addresses.

In our case, it will be the loopback IP address ’127.0.0.1’ through which the controller

listens for connections on a port say., 6633. The OpenFlow controller and the Open-

Flow switch can also be made to communicate through Layer 2 protocol by converting

the INET sockets into RAW sockets based on the physical interfaces through which the

switches and the controller are connected. This is not shown as part of our implementa-

tion. POX maintains a pool of connection objects and gives out one connection instance

for each switch that is connected to the controller. This is shown as ’Connection Man-

ager’ in Figure 5.1 . This connection instance is responsible for sending and receiving
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OpenFlow messages between the switches and the controller.

Host 1 is connected to Switch 1 and Host 2 is connected to Switch 2 in our imple-

mentation setup. Both the switches are also connected to each other. The connection

between a host and a switch and, the connection between two switches are through raw

sockets that use interfaces for the connection. The interfaces that are available in the

demo machine, ’eth0’ and ’lo’ are utilized for this process. For extra interfaces, multiple

instances of same interfaces are used. For example, to create another virtual interface

over eth0, the following command can be used : ’sudo ifconfig eth0:1 134.226.XX.XXX

netmask 255.255.252.0 broadcast 134.226.XX.XXX’ where the IP address and netmask

have to be changed accordingly. Due to limited availability of interfaces, few interfaces are

reused for the connection between different entity pairs and the packets are differentiated

by an identifier that shows which connection pair the packet belongs to. Each end of a

socket is designated as a Face for the machine from where it originates. The connection

details are shown in Figure 5.2.

Figure 5.2: Implementation of connection between the components in OF-ICN
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5.5 Raw ethernet frames

The previous section showed that how the network entities are connected in our experi-

ment setup. This section depicts the packet structure that will be used for demonstrating

the ICN capabilities in OpenFlow platform.

Existing ICN implementations operate on ’Interest’ and ’Data’ packets. Interest is

the packet that expresses a particular user’s intention to retrieve a content and the data

packet is the actual content that satisfies the interest. Interest packet can be compared

to a ’query’ and the data packet as a ’response’ to the query. Even though the code level

implementation of interest and data packets differ between the ICN implementations,

conceptually they are same. In that context, at a minimal level, interest packet should

carry a content prefix and on the other hand the data packet should carry a content prefix

and the corresponding data. We have exploited this minimality in our experiment such

that our focus would be on making the OpenFlow start supporting the basic essential

requirements of ICN.

ICN is a non-IP protocol and, it is not expected for the packets to carry the content

producer’s IP address in them. At any point of time, the packets can only move from

one machine to another machine in the network in hop-to-hop fashion. This hop-to-hop

transmission takes place until the packet reaches a node that provides a copy of the

content. In order to support the minimal requirement of an ICN-based packet and to

operate on a non-IP platform, we have used raw Ethernet frames to carry the interest

and data packets between the communication entities. At any point in time, the Ethernet

packet with the interest or the data will be transmitted from one machine to the next

nearest one-hop machine towards the data or the requester. The packet structure, that

is used in our implementation is shown in Table 5.1. This is the packet that a host sends

to a switch and gets communicated between the switches as well.
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Table 5.1: OF-ICN Ethernet frame structure

Field Description
Ethernet Source MAC address of the machine which is sending the packet

out in the face
Ethernet Destination MAC address of the machine which is receiving the

packet. This is the machine or device that is connected
to the face of source machine

Ethernet Type Type of the payload. In our case, we send raw Ethernet
payload. So it can be set to ’0x7A05’ or ’0x0805’ or
’0x0801’ where last two denote telecommunication units

Payload Payload is the actual packet that is carried by the Ether-
net frame. In our case, the payload contains raw content
name in interest packets or, raw content name and data
in data packets

5.6 Threads

After studying the packet structure in the previous section, in this section let us discuss

how threading is used in our experiment for the processing of packets by the network

elements.

Python ’threading’ is used in our experiment to keep the hosts and switches listening

for interest and data packets in separate threads. This is essential in order to make the

network entities to do multiple operations at the same. While a switch is receiving an

interest from a face , it can also receive a data packet from another face, for an interest

which is already sent upstream towards the content. Threading is implemented as part

of ’packet handler’ shown in figure 5.1. When the packet handler receives a packet, it

examines the type of the packet and, hands over to the corresponding thread depends

on the type of the packet. Each socket in a switch that connects to a face, runs in a

separate thread in order to send and receive data packets in that face without interfering

the switch operations in other faces.

Additionally, each switch and controller connection runs in a separate IOWorker

thread which is a part of the ’Connection manager’ shown in figure 5.1 . This IOWorker

thread takes care of connecting the switches and the controller in different sockets, send-
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ing message packets out in the sockets and buffering incoming message packets from the

sockets. These workers allow the switches to execute other actions instead of waiting for

the message to go out in the wire or waiting for the message to get buffered completely.

Thus they help for the asynchronous message transmissions between the switches and the

controller

5.7 Table data structures

In the last section, we have seen the required components for the experiment, about their

connection and the packet structure supported by them. Before moving on to how the

packets are processed through messaging and actions, in this section let us discuss the

table structures introduced as part of this experiment and see how they are implemented.

Each switch has the following three tables as part of our experiment: FIB, PIT and

CS as explained in the design chapter. These tables are implemented over Python’s List

data structure which provides essential table based operations like insert, remove , count

and sort. A python class is created as a wrapper around the list for each table to provide

custom operations, which other switch modules can invoke. These wrappers are illustrated

as ’Table handlers’ in figure 5.1 . The table entries are also abstracted into a class such

that each table instance can have any number of table entry instances. A switch creates

an instance of each of these table handlers and calls corresponding functions as per the

action it has to perform. A switch also maintains a dictionary for each table, that holds

the entries that are put on the table. This is implemented to visualise the tables in UI.

All the tables have a ’match’ field which is, of the type ’OFP MATCH’. This field is used

to store content prefix and helps the switch to compare a packet with the table entries.

Some of the other notable fields are: FIB has a field called ’actions’ which is a list of

actions of the type ’OFP ACTION’. PIT has a field called ’faces’ which is a list of faces

waiting for a content. CS table has a field called ’data’ which is a python variable to hold

content.

83



The following code snippets of table constructors portray their implementation struc-

tures :

FIB constructor

#FIB constructor

class FibTableEntry (object):

def __init__ (self, priority=OFP_DEFAULT_PRIORITY,

idle_timeout=0,hard_timeout=0, match=ofp_match(),

actions=[], now=None):

"""

Constructor for FIB table entry

"""

if now is None: now = time.time()

self.created = now

self.last_touched = self.created

self.priority = priority

self.idle_timeout = idle_timeout

self.hard_timeout = hard_timeout

self.match = match

self.actions = actions
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PIT constructor

#PIT constructor

class PitTableEntry(object):

def __init__(self, priority=OFP_DEFAULT_PRIORITY,

idle_timeout=0, hard_timeout=0, match=ofp_match(),

faces=[], now=None):

"""

Constructor for PIT table entry

"""

if now is None: now = time.time()

self.created = now

self.last_touched = self.created

self.priority = priority

self.idle_timeout = idle_timeout

self.hard_timeout = hard_timeout

self.match = match

self.faces = faces
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CS constructor

#Content Store constructor

class ContentStoreEntry(object):

def __init__(self, priority=OFP_DEFAULT_PRIORITY,

idle_timeout=0, hard_timeout=0, match=ofp_match(), data="",

now=None):

"""

Constructor for Content Store table entry

"""

if now is None: now = time.time()

self.created = now

self.last_touched = self.created

self.priority = priority

self.idle_timeout = idle_timeout

self.hard_timeout = hard_timeout

self.match = match

self.data = data

5.8 Pipeline processing

The previous sections explained the packets used in the experiments and the table struc-

tures in a switch. It also showed, how they can be constructed using python scripts. This

section outlines the implementation details behind the packet processing operation utilis-

ing the methods to carry out pipeline processing. This is shown as ’Pipeline Processing’

in figure 5.1 . Table 5.2 shows the knowledge of a switch in terms of major fields, which

are required for the switch to process an ICN packet.
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Table 5.2: OF-ICN switch state

Field Description
dpid The datapath identifier that uniquely identifies the

switch in the network especially to the controller. Con-
troller can retrieve this id from the connection object
when the switch is connected to it

switch name The internal name for the switch which can be communi-
cated to the controller and the hosts that are connected
to the switch as an additional identifier

miss send len This is the field used to decide how much information
has to be sent to the controller when there is a packet
miss. In order to send the entire packet to controller,
this field has to be increased

fib table This field is used to hold the instance of FIB table for
each switch. This field is initiated by using an initiation
method called ’init fib table’

pit table This field is used to hold the instance of PIT table for
each switch. This field is initiated by using an initiation
method called ’init pit table’

content store This field is used to hold the instance of the content
store cache for each switch. This field is initiated by
using an initiation method called ’init content store’

faces This is the list of datapath connections the switch has
through a number of faces. In our implementation, this
list stores the sockets that are connected to different
faces

faces to dev This field stores the identifiers of the entities that are
connected to the switch through its faces. For example
in our case, for switch 1, this list has the identifiers of
host 1 and the switch 2, which are connected to switch
1 through its faces

ofp handlers This is the list of python functions that handle different
OpenFlow messages received from the controller

action handlers This is the list of functions that can handle different
actions that are invoked internally in the switch and
through the OpenFlow messages received from the con-
troller
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When the switch receives a packet the Ethernet header and payload part of the packet

are extracted and separated. The Ethernet header contains Ethernet protocol which

indicates what type of packet the payload contains. Our experiment is handling a non-IP

packet and the non-IP packets come under the Ethernet protocol ’1402’.

The following algorithm shows the packet identification process carried out by a switch

when it receives a packet in a face

Algorithm - Packet identification process

if ethernet_protocol == 1402 :

payload = extract the payload from the packet

face = incoming face in which the packet arrived

if payload contains ’Interest’ :

extract the content prefix

send (prefix,face) to Interest handler

else if payload contains ’Data’ :

extract the content prefix and the content

send (prefix,content,face) to Data handler

else if payload contains ’Content Announcement’

extract the content prefix

send (prefix,face) to the Content Registration handler

The flow processing for the ’interest’ packet is shown in Figure 5.3 . When an interest

packet is received, the content prefix is extracted from the packet by the switch and an

OpenFlow match object is created. This match object is used to check for entries in the

switch tables involved in the pipeline processing. First, the match object is compared with

entries in Content Store cache of the switch. This matching is carried out by comparing

the content prefix in the match object, with the prefix a cache entry has. If the match

object matches with any of the cache entries, then the corresponding content from the
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Figure 5.3: Interest processing by OF-ICN switch
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cache is retrieved and constructed into a data packet. This data packet is sent back in

the incoming face from where the interest packet is received. If there is no match with

the content store, then the match object is compared with the entries in Pending Interest

Table. If it matches with any of the entries in PIT, then the corresponding list of waiting-

faces will be retrieved. If the current face which received the interest packet is already

in the list then it will not be added again. Otherwise, the incoming face will be added

to the list and the entry will be updated. If the match object does not match with any

of the PIT entries, then it is compared with Forwarding Information Base table. If it

matches with FIB, then the corresponding list of next-hop faces will be retrieved. The

interest packet will be sent in each of the next-hop faces retrieved from FIB. If none of the

tables matches with the interest packet, then a PACKET IN message is created with the

content prefix and sent to the controller that is connected to the switch. The following

pseudo code depicts the process outlined in this paragraph:
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Algorithm - Interest Handler

#Input : content prefix (prefix) , face

match = create an ofp_match with the given prefix

#check 1

check in ’Content Store’ table for an entry that matches the ’match’

if entry.match.prefix == prefix:

content = entry.data

data_packet = prefix + content

send the data_packet back in the requested face

else :

Goto check 2

#check 2

check in ’Pending Interest Table’ for an entry that matches the ’match’

if entry.match.prefix == prefix:

if face in entry.faces:

face is already listed in the pending list. Do nothing

else :

entry.faces.append(face) #Add the face to the waiting list

else :

Goto check 3
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Algorithm - Interest Handler - continued

#check 3

check in ’Forwarding Information Base’ table for an entry that matches

the ’match’

if entry.match.prefix == prefix:

action_list = entry.actions

for action in action_list:

if action == packet_out_in_face:

Send the packet in the out face

Delete the entry from PIT for the corresponding prefix

else:

execute the action

else :

Goto check 4

#check 4

if none of the tables with the interest:

#Send the packet to controller by creating PACKET_IN OpenFlow message

message = ofp_packet_in(prefix,face)

controller_connection.send(message)

The flow processing for a data packet is shown in Figure 5.4 . When a data packet is

received, the content prefix is extracted from the packet by the switch and an OpenFlow

match object is created. The match object is compared with the entries in Pending

Interest Table. This is to check if any interests are waiting to be satisfied by the received

content. The content prefix from the match object is compared with the prefixes stored in
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Figure 5.4: Data processing by OF-ICN switch
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PIT. If it matches with any of the entries in PIT, then the corresponding list of waiting-

faces will be retrieved. For each face in the list, the data packet is sent out in that face

towards the requester who expressed that interest. Once the data packet is sent out in

all the out faces, the corresponding PIT entry is deleted from the table in order to mark

that the interests are consumed by the data packet. If none of the PIT entries matches

with the data packet, then the data packet is dropped assuming that the interest would

have timed out or the data packet should be a duplicate one for already satisfied interest

by a different upstream face. The following pseudocode depicts the process outlined in

this paragraph:

Algorithm - Data Handler

#Input : data_packet

prefix = extract the content prefix from data_packet

match = ofp_match(prefix)

#check 1

check in ’Pending Interest Table’ for an entry that matches the ’match’

if entry.match.prefix == prefix:

waiting_faces = entry.faces

for out_face in waiting_faces:

#Send the data_packet in out_face

out_face.send(data_packet)

#Delete the entry from PIT

delete pit_table[prefix]

else :

Goto check 3

The OpenFlow switches receive content registration announcements from any of the
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end user hosts connected to them. Once a switch receives a content registration packet,

the content prefix is extracted from the packet. An OpenFlow ’content announcement’

packet is created by the switch with the extracted prefix. This OpenFlow message is sent

to the controller to which the switch is connected in order to store the routing information

for the content so that future interests received by any other switches for that content

can be forwarded to this switch. The following pseudo code depicts the process outlined

in this paragraph:

Algorithm - Content Announcement Handler

#Input : content_announcement_packet

prefix = extract the content prefix from content_announcement_packet

#Create OpenFlow message for content announcement

message = ofp_content_announcement(prefix)

#Send the message to controller

controller_connection.send(message)

5.8.1 OFP MATCH

As shown in the algorithms in the last section, the switch creates an OFP MATCH

message, when it receives a packet with the content prefix that the packet has. This match

instance is used by the packet handlers and pipeline processor to match the packet with

the table entries, which is essential for the switch to decide what to do with the packet.

This match structure has the fields that can be compared to the corresponding fields in the

packet header. In order to support IP packets, OpenFlow introduced IP-based fields in

OFP MATCH object including IP source address, IP destination address, IP protocol and

other transport layer fields like TCP source port, TCP destination port, UDP source port

and UDP destination port. From OpenFlow 1.0 to OpenFlow 1.2 protocol specification,
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OpenFlow has undergone a lot of research on adding support to many new packet types

and tags: IPV6, ICMP , MPLS tags and also to support metadata between multiple

tables [6, 7]. Few of these additions are proposed as a separate addendum to OpenFlow

specification and then added to OpenFlow specification 1.2. OpenFlow is continuously

revised at every specification with respect to matching fields and new matching fields

corresponding to packet headers are added at each release of OpenFlow specification.

Even though now OpenFlow supports matching almost all the packet headers in IP-based

headers, still it is lagging in supporting Non-IP based packets, especially with arbitrary

field length.

In order to finalise on a field type and the length to support content prefix in Open-

Flow match, ICN packet format has to be formalised. The truth is that there are many

implementations of ICN in the market and each of them started following a packet struc-

ture that is suitable for that implementation. When we take ICN approach generally,

the packet naming and formalisation are still under active research. We stood one step

back and decided to use a general match variable for the content prefix that will in future

matches with any formalised content prefix field. So, in our case, the prefix match is a

logical field instead of relying on a particular name type or length.

Our flow match structure is shown below:

ofp_match_data = {

’in_port’ : (0, OFPFW_IN_PORT),

’dl_src’ : (EMPTY_ETH, OFPFW_DL_SRC),

’dl_dst’ : (EMPTY_ETH, OFPFW_DL_DST),

’’’

other fields

’’’

’interest_name’:("",OFPFW_PREFIX) #interest_name is the content prefix

}
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5.9 OpenFlow library

OpenFlow library defines the OpenFlow protocol data structures, message and action

structures. This section describes the changes that are applied to OpenFlow protocol to

support ICN based messages and actions.

5.9.1 Adding a message

OpenFlow messages play important role in OpenFlow protocol as they define the commu-

nication between the OpenFlow switch and the controller and, they carry all the relevant

information between them: packets, flow rules and actions. There are some OpenFlow

messages, that only the switch sends to the controller. There are some OpenFlow mes-

sages, that only the controller can send to the switch. Additionally, there are some

OpenFlow messages, that both switch and controller can send. These messages are dif-

ferentiated in POX using corresponding Python decorators. ’openflow s message’, ’open-

flow c message’ and ’openflow sc message’ are the message decorators corresponding to

switch-only, controller-only and both switch-controller messages. The messages are fur-

ther categorized as symmetric and asymmetric messages. The messages which require an

immediate reply from the destination entity is called symmetric and the fire-and-forget

messages are called asymmetric messages. Each OpenFlow message is also assigned a

ofp type value which is a unique identifier for the message and helps to resolve the message

type at the receiving end. In order to make OpenFlow support ICN, few new messages

have to be defined in the library. The following steps are carried out to define a new

message type in OpenFlow library using POX:

1. Created a message class in OpenFlow library file with a constant (ofp type) and

corresponding message decorator as per the need of the message

@openflow_s_message("OFPT_CS_FULL", 22)

class ofp_cs_full (ofp_header):
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_MIN_LENGTH = 18

2. For a message which the switch could send to the controller: In switch module,

created a function to send that particular OpenFlow message to the controller. This

function can be called anywhere from the switch module by passing the respective

message object to it.

def send_cs_full (self):

"""

Send CS_FULL

"""

msg = ofp_cs_full()

self.send(msg)

3. For a message from the controller which the switch could handle :Added a handler for

the message (example, rx fib mod) in switch class which handles when a particular

message is received from the controller. These handlers are denoted as ’Message

Handler’ in figure 5.1

def _rx_fib_mod (self, ofp, connection):

"""

Handles flow mods

"""

match = of.ofp_match(interest_name = ofp.interest_name)

New and extended messages

• The following list is the list of messages created or extended as part of our im-

plementation using the procedure outlined above. Their functionality details are

explained in the design chapter.
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– OFPT CONTENT ANNOUNCEMENT

– OFPT DATA FROM CONTROLLER CACHE

– OFPT CLEAR CS

– OFPT CS FULL

– OFPT FIB FULL

– OFPT FIB MOD

– OFPT FIB REPLY

– OFPT ADD CS ENTRY

– OFPT FIB MOD NOTIFICATION

– OFPT FEATURES REPLY

– OFPT FEATURES REQUEST

– OFPT DELETE LEAST FIB

– OFPT PACKET IN

5.9.2 Binary encoding

All the messages in OpenFlow are communicated through a secure channel [3]. This

is enhanced by encoding the messages at the sender side and decoding them at the re-

ceiver side. OpenFlow library provides the ’packing’ and ’unpacking’ capability for all the

OpenFlow messages. When a particular message is ready to be sent on the wire, it will be

packed by the OpenFlow library in binary format and sent out on the connection. On the

receiving end, the message that is received on the wire will be sent to the unpacker, which

unpacks the message from binary format back to the format it is originally created. Both

the switch and the controller will be involved in packing and unpacking the messages as

they both involve in sending and receiving OpenFlow messages. In the network level, all

the packets are interpreted as a sequence of bytes. So, the ’packing’ operation takes a list
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of values and convert them into a string of bytes and the ’unpacking’ operation takes a

byte string and converts it back into a list of values. Packing the entire message is very

important as a single byte miss might result in receiver interpreting the message differently

or completely ignoring the message. Python has a package called ’struct’ which provides

basic packing and unpacking functionalities. All OpenFlow message classes should have

a ’pack’ method, which is called before sending out a packet. This method should be

modified for each message based on the fields the message contains. ’Struct’ package’s

pack method is called from this method by passing the message fields and the correspond-

ing formats (like short integer, long integer , float). Raw fields need not be sent to pack

method. They can be just added to the data that has to be sent in the wire. Similarly,

every OpenFlow message class should have a unpack method that converts the byte string

back into individual message fields

The following code snippet shows how an FIB MOD message is packed before being

sent in the wire and unpacked after being received from the wire:

def pack(self):

packed = b""

packed += ofp_header.pack(self)

packed += struct.pack("!H", self.face)

packed += self.interest_name

return packed

def unpack(self, raw, offset=0):

offset, length = self._unpack_header(raw, offset)

offset, self.face = _unpack("!H", raw, offset)

offset, self.interest_name = _read(raw, offset, length - 10)

assert length == len(self)

return offset, length
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5.9.3 Adding an action

The OpenFlow messages from the control plane are usually treated as commands to

datapath layer and executed by the switches in the datapath. OpenFlow messages from

controller can result in any one of the following:

1. Add a rule in any of the switch tables

2. Instruct the switch to do an action

3. Instruct the switch to send a packet out in a face

4. Change the switch status by modifying the switch knowledge

OpenFlow library defines all the actions that are supported by the OpenFlow switches

along with a constant to uniquely identify each action. Unlike OpenFlow messages, POX

has a single python decorator for the actions called ’openflow action’, as all the actions

are executed in the datapath. In addition to existing OpenFlow actions, few actions are

added newly for the switch to support ICN functionalities and new tables. In order to

add an action, the following steps are carried out:

1. Created a python class for the action with the decorator ’openflow action’

2. Added a handler for the action (example, action add pit) in switch class, that

handles when a particular action is invoked in the switch. These handlers are

represented as ’Action handlers’ in Figure 5.1

@openflow_action(’OFPAT_ADDPIT’, 900)

class ofp_action_addpit (ofp_action_base):

def __init__ (self, **kw):

3. In order to send an action in a message, controller had to build an object for the ac-

tion using its constructor and pass it to the switch by encapsulating in an OpenFlow

message
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action = of.ofp_action_outputface(face=face)

msg.actions.append(action)

4. Switch could internally invoke an action by creating an action object and handing

it over to the respective handler (for example, action addpit)

def _action_addpit(self, action, packet, in_port):

match=ofp_match(interest_name=action.interest_name)

self.pit_table.add_entry(PitTableEntry(match=match,

ports=action.ports))

New and extended actions

• The following list is the list of actions that are created or extended in our implemen-

tation using the procedure outlined above. Their functionality details are explained

in the design chapter.

– OFPAT ADDPIT

– OFPAT REMOVE PIT

– OFPAT OUTPUTFACE

– OFPAT CLEAR CS

– OFPAT DELETE LEAST FIB

5.9.4 Adding an event and event handler

POX works in ’publish and subscribe’ methodology for handling incoming OpenFlow mes-

sages. A POX component can fire an event(in other words, publish the event) and, another

POX component can catch or listen for the event(in other words, subscribe to the event

). An OpenFlow message, a controller receives will be given to a message handler. This

mapping is realised as follows:
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handlerMap = {

of.OFPT_HELLO : handle_HELLO,

of.OFPT_ECHO_REQUEST : handle_ECHO_REQUEST,

of.OFPT_ECHO_REPLY : handle_ECHO_REPLY,

......

......

#New handlers for new messages

of.OFPT_CS_FULL : handle_CS_FULL,

of.OFPT_CONTENT_ANNOUNCEMENT : handle_CONTENT_ANNOUNCEMENT,

The message handler will extract the message type and convert the message into an

event under the connection object, which maintains the connection between the switch

and the controller. Once the event object is created in the connection object, it will be

raised by the object and the event will be invoked. The component which is listening

for that event will catch the event and execute the handler code. These main functions

are shown as ’Event Trigger’ and ’Event Handler’ at controller side in Figure 5.1 . The

event handlers can then invoke the modules, that are responsible for other operations;

maintaining the routing table or managing the internal cache.

The following steps are carried out to add an event and event handler to the OpenFlow

controller:

1. Created an event class with a unique name (for example, CsFull) by inheriting the

parent Event class of POX.

class CsFull(Event):

"""

Event raised when the Content Store is Full

"""

def __init__(self, connection):

Event.__init__(self)
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2. As OpenFlow connection object between the switch and the controller is responsible

for raising the event, the class name which is created in the above step is added to

the list of the events the connection object can raise. This is achieved by creating

an object for EventMixin POX module in connection class and adding the event

name to it. EventMixin gives the provision to the class which inherited it to raise

an event from its list.

class Connection (EventMixin):

_eventMixin_events = set([

ConnectionUp,

ConnectionDown,

#new events

CsFull,

ContentAnnouncement,

])

3. Created a handler for the event in the controller component to execute a piece a

code as the response for the triggered event (for example, handle CsFull)

def _handle_CsFull (self, event):

’’’

Handles CS Full event

’’’

5.10 Source code

The source code of the complete project is published online in the following GitHub

repository : https://github.com/jeevarajendran/pox
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After cloning above repository into the home folder, the following commands can be

used to invoke different modules involved in the experiment:

Controller :

$ cd pox

$ sudo ./pox.py log.level misc.controller

Switch 1 :

$ cd pox

$ sudo ./pox.py log.level datapaths:icnswitch1

Switch 2 :

$ cd pox

$ sudo ./pox.py log.level datapaths:icnswitch2

Host 1 :

$ cd pox/pox/hosts

$ sudo python host1.py

Host 2 :

$ cd pox/pox/hosts

$ sudo python host2.py

5.11 Summary

This chapter described the implementation details of OF-ICN. The technical architecture

outlined in Figure 5.1, detailed the various components involved as part of our imple-

mentation. We use the open source Python OpenFlow controller, POX, for implementing

our approach. POX provides the following OpenFlow components as separate modules:

OpenFlow switch, OpenFlow controller and OpenFlow protocol library. Each of these
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modules are modified and supported with additional sub-modules to implement the re-

quired functionalities in modularized code blocks. The details of the connection between

the components involved in our implementation, are shown in this chapter.

The following switch components are realized as part of our implementation:

• Connection manager

• OpenFlow message handler

• Action handler

• Pipeline processor

• Table handler

• Packet handler.

The OpenFlow switch is modified to incorporate the ICN-based table structures, which

include, Forwarding Information Base, Pending Interest Table and Content Store. These

structures are implemented using Python’s ’List’ data structure and corresponding Python

dictionaries are developed to query and verify in UI. OFP MATCH field, which is a part

of all the table structures, is explained.

The following controller components are implemented:

• Connection manager

• OpenFlow message handler

• Event trigger

• Event Handler

• Cache manager

• Routing DB manager (Topology manager)
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This chapter also detailed the steps to add a new message, an action, an event or

an event handler to the OpenFlow protocol library and, the changes that should be

applied to the supporting modules are presented. The Ethernet packet frame which is

used to construct the interest and data packets are outlined along with its fields. The

test environment is described along with the necessary packages and the installation steps.

The commands to execute the experiment code from GitHub are listed before this section.
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Chapter 6

Evaluation and Discussion

The main motive of this study is to report the feasibility of OpenFlow to provide ICN

functionalities by creating a control plane for ICN using OpenFlow. As mentioned in the

earlier chapters, even though there are multiple implementations of ICN; NDN, CCN and

NetInf, they all almost provide similar features to furnish network communication though

named contents. Each implementation has its own supporting tools as well. For instance,

most of them support, request forwarding for named contents and provisions for node-level

caching. Keeping the generalisation in mind, instead of using a particular implementation

of ICN while modifying OpenFlow, we have formulated the solutions based on the generic

architecture of ICN. Moreover, the underlying aim of this study is to bring together the

advantages of both OpenFlow and ICN technologies so that one can be benefited by other.

Thus, Basic features of both OpenFlow and ICN are selected as the benchmarking metrics

for the implementation. This section starts by listing the categories considered for the

evaluation process, followed by the test cases utilised to verify the categories and the

discussion on outcomes.
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6.1 Categories

A hidden responsibility of this whole study is to preserve the working features of OpenFlow

which made it be one of most widely used SDN architectures but still, enable it to support

ICN. The modifications and extensions as part of this implementation should abide those

features. In order to evaluate our objectives, we have divided the evaluation process into

three categories: They are:

• Category 1 : Ensure that the modified OpenFlow affords ICN functionalities

• Category 2 : Ensure that the basic features of OpenFlow are still preserved

• Category 3 : Ensure that the implementation is easy to deploy

• Category 4 : Ensure that the modified OpenFlow provides advantages over existing

ICN implementations

These categories are used to benchmark our goals. The following sections present the

items which are kept as marking scales under each of these categories and depicts how

well our modified OpenFlow can support those items.

6.2 Category 1 : ICN functionalities over OpenFlow

The following section outlines the benchmarking points that are used to ensure that the

modified OpenFlow provides the necessary functionalities of ICN and their outcomes:

6.2.1 Labeling content ’vs’ end to end addressing

The very basic principle for any ICN framework is to shift the addressing paradigm from

’host’ to ’content’. Each and every piece of information should be labelled and addressable

in the ICN network. As per OpenFlow, at every decision-making point, the endpoint

address is also taken into consideration in order to help the packet reach its destination
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Table 6.1: Evaluating the presence of content name in OF-ICN

Test Scenario Methodology Result
Test that all the
packets that pass
through the datap-
ath addresses con-
tent instead of end
host

Wireshark packet sniffer

• Start the Wireshark

• Filter with the Ethernet proto-
col

• Capture the packets that are put
by the network elements in the
interfaces under inspection

• Analyse the packets

Ensured that the
Interest and Data
packets which are
communicated be-
tween the switches
and the hosts, carry
the content name and
nowhere they address
the destination end
host IP address

end-point. Our implementation has altered this to support ICN so that the content name

is considered as a primitive for decision making. For the matter of simplicity, we have

used a ’flat’ human readable naming scheme for the data. In order to verify that our ICN

implementation works with named contents at any point of time, we have used ’wireshark’

to verify the packets which pass through our datapath implementation and ensured that

they address the request or the content by its name instead of using an IP address to

address the end point.

Table 6.1 and Figure 6.1 show the test scenario carried out to evaluate this section

6.2.2 Requests aggregation

’Request aggregation’ is the process in which multiple interests for the same content will

be aggregated and collided in a switch that receives those interests [55]. Only the first

interest in that pool will be out on the network looking for the content. These multiple

requests can be from the same machine requesting the same content more than once or,

it can be from multiple hosts which are interested in the same content. In either case, the

switch that receives those interests should recognise them as duplicate interests for the one

which is sent upstream and aggregate them into a list . This process helps to improve the

performance of the network by not flooding with duplicate requests. Our implementation
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Figure 6.1: Labeling content : Snapshot from Wireshark showing the content name in the
packet and the packet is not addressed with the end-point IP address

provides an option to do such interests aggregation by exploiting the ’Pending Interest

Table’ which is one of the switch’s flow processing tables.

Table 6.2 shows the test scenario carried out to evaluate this section and Figure 6.2

shows the results.

Figure 6.2: Evaluating request aggregation : The faces that requested for the same content
are aggregated in a list in PIT

6.2.3 Multicasting

OpenFlow does not support multicasting for IP packets expect there is an overlay network

to provide it [102]. At any point of time, a packet is sent out through a single flow towards

the destination endpoint. This is expected in a network where there is no in-network

storage of the content and only the destination end-point has the content. Whereas, in
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Table 6.2: Evaluating request aggregation procedure

Test Scenario Methodology Result
Test that multiple
requests for the same
content from same
host or different hosts
are getting aggre-
gated in the ingress
switch

Pending Interest Table

• Topology : Connect two hosts
H1 and H2 to Switch S1

• I1 : From H1 send an inter-
est packet for the content name
’/test/h3/video1’ produced by
host H3

• I2 : From H2 send an inter-
est packet for the same content
name ’/test/h3/video1’

• Check the PIT table in Switch
S1 using the UI viewer ’tkinter’

• Check the number of interests
being received by host H3

Ensured that the
interests I1 and I2
are aggregated in
Switch’s PIT and
only the first inter-
est I1 reaches the
producer H3

ICN framework, when there is a provision for in-network caching in the network elements,

it suggests multicasting for ICN packets. Thus, an interest packet can be sent in multiple

faces out from a switch looking for a possible storage of a content. The ’Forwarding

Information Base’ table in our implementation helps to achieve this multicasting by

allowing multiple actions to be executed for a packet match and, each action can send

out the packet in a different face towards the copy of the content.

Table 6.3 shows the test scenario carried out to evaluate this section.

6.2.4 Scalability

Scalability is a big research area which is being considered separately by many research

studies and it has its implications in both the technologies, OpenFlow and ICN [103, 22,

32, 26]. Our implementation objective is to provide the scalability in terms of a number

of switches and hosts that can be connected to the network. Being an OpenFlow switch,

our switch can be connected to a number of hosts which depends on the number of faces
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Table 6.3: Evaluating OF-ICN multicasting functionality

Test Scenario Methodology Result
Test that the modi-
fied OpenFlow switch
can send out inter-
est packets in multi-
ple faces

Forwarding Information Base

• Topology : Consider three
switches S1, S2, S3 connected to
controller

• S1 is connected to S2 and S3
through two different faces F2,
F3

• Connect a host H1 to S1 and
send out an interest packet
named ’test/h3/video1’

• Push flow rule from controller
such that the action list contains
both the faces F2 and F3 of the
switch S1 as output faces

• Ensure that both the switch
S2 and S3 receive the interest
packet by sniffing the interfaces
through Wireshark packet snif-
fer

Ensured that the in-
terest is multicasted
in both the faces F2
and F3 of switch S1
and reaches both the
switches S2 and S3
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available for the switch. Similarly, a switch can be connected to any number of switches as

well through its interface abstraction, faces. The OpenFlow controller can handle multiple

switches, as it hands over each connection to a worker by creating a logical instance of

each switch.

The other direction of scalability is to support the increasing number of content names

and how well the switches can handle them in their forwarding tables. OF-ICN controller

has a superset of forwarding information of the switches so that popular routes alone gets

stored in the FIB of the switches.

6.2.5 Compatibility with IP-packets

One of our responsibilities during the implementation is to provide the new extensions as

an addendum to the existing OpenFlow specification, thus, OpenFlow can still provide

IP-based flow control and on top of it, it can control ICN based flows as well. In order to

achieve this, we have modularized the ICN functionalities such that they do not interfere

with IP-based communications provided by OpenFlow. The OpenFlow switches and

controller are equipped with the modules to differentiate the packets and, hand over to

the handlers based on the packet types. For now, we have the pipeline processing for ICN,

that is separated from IP pipeline processing in order to provide the cordiality between

both operations. In future, we expect to integrate them into one pipeline process and,

provide better mutuality.

Table 6.4 shows the test scenario carried out to evaluate this section.

6.2.6 Flow rule based advantages

Every first unrecognised packet by a switch is expected to be sent out to the controller

for routing resolution. The OpenFlow controller can be a local controller or a remote

controller. In either case, it will impose a delay on the packet transmission including the

time, the packet takes to reach the controller, the time, the controller takes to resolve the
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Table 6.4: Evaluating the compatibility of OF-ICN with both IP and ICN packets

Test Scenario Methodology Result
Test that the mod-
ified OpenFlow can
handle both ICN
and IP packets and
forward them based
on the corresponding
forwarding tables

• Topology : Consider a topol-
ogy where a switch S1 is con-
nected to an OpenFlow con-
troller. Hosts H1 and H2 are
also connected to switch S1.
H2 produces a content named
’/test/h2/file1’ and it has an IP
address assigned to it. Assume
that the switch has details about
both the hosts and the contents
they produce

• Send an IP packet keeping H2’s
IP address as destination ad-
dress

• Send an ICN interest packet for
the content name ’test/h2/file1’

• Ensure that both the packets
reach Host H2

Ensured that both
the IP packet, which
is designated to H2’s
IP address and, the
ICN packet, which is
sent out for the con-
tent produced by H2,
reach the host H2
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packet, the time takes for the flow rules to be pushed to switch and, finally, the time takes

to send out the packet based on the action in the pushed flow rule. Once a flow rule is

pushed down to a switch, further packets that satisfy the same flow rule need not be sent

to the controller, which significantly reduce the overall transmission time for the packet.

Table 6.5 shows the test execution for this scenario.

6.2.7 In-network caching

Current OpenFlow switches can exploit their internal memory to store flow rules for IP-

based flows [21]. Similarly, our proposed ICN-enabled OpenFlow switches are modified to

utilise their memory to store contents. This is achieved by storing the data packets that

are received for the interests. This caching depends on the capacity of the switch and

can be extended by utilising extended memory. In our implementation, we have shown

how this in-network caching can be realised using the ’Content Store’ option. We have

evaluated our implementation to show the time, that is taken to retrieve a content which

is cached in an intermediate switch, will be less than the time taken to retrieve the data

from the content producer, which is shown in Table 6.6 and Figure 6.3

Figure 6.3: In-network caching : The time taken to receive a content from a cache is lesser
than the time taken to receive it from the end-point producer
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Table 6.5: Evaluating the time difference between a controller flow and a flow based on
the flow rule in switch

Test Scenario Methodology Result
Test that the time
taken for an ICN
communication with
flow rule is lesser than
the time taken for
an ICN communica-
tion without a flow
rule in the switch

• Topology : Consider a topol-
ogy where a switch S1 is con-
nected to an OpenFlow con-
troller. Hosts H1 and H2 are
also connected to switch S1.
H2 produces a content named
’/test/h2/file1’. Assume that
the switch has details about
both the hosts and the contents
they produce

• Iteration 1 : Send out an
interest packet for the content
’/test/h2/file’ from H1

• Time 1 : Measure the time
taken for the host to receive the
data

• Iteration 2 : Send out an-
other interest packet for the con-
tent ’/test/h2/file’ from H1

• Time 2 : Measure the time
taken for the host to receive the
data

• Ensure that Time 2 is lesser
than Time 1

Ensured that the time
taken for a 2nd in-
terest packet for the
same content received
through 1st interest,
is lesser due to the
availability of flow
rule in the switch and
the packet is not sent
to the controller for
resolution
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Table 6.6: Evaluating the time difference between a cache flow and cache-less flow

Test Scenario Methodology Result
Test that the time
taken for an ICN
communication for a
content cached in an
intermediate switch is
lesser than the time
taken to a content
which is not cached
and has to be re-
trieved from the con-
tent producer

• Topology : Consider a topol-
ogy where a switch S1 is con-
nected to an OpenFlow con-
troller. Hosts H1 and H2 are
also connected to switch S1.
H2 produces two contents; C1
: ’/test/h2/file1’ and C2 :
/test/h2/image1. Consider that
C1 is cached in the switch S1
and C2 is not cached

• Send out an interest packet for
the content C1,’/test/h2/file1’,
from H1

• Time 1 : Measure the time
taken for the host to receive the
data

• Send out another inter-
est packet for the content
C2,’/test/h2/image1’, from H1

• Time 2 : Measure the time
taken for the host to receive the
data

• Ensure that Time 1 is lesser
than Time 2

Ensured that the time
taken to retrieve C1 is
lesser than C2, as C1
is cached in Switch S1
and C2 is not cached

118



6.2.8 Security

ICN frameworks, when they suggest decoupling the data from the location, take out the

provision of securing the location [4]. This results in the need for the content to carry

security features along with them. In other terms, the security is provided at the content

level. Whereas, in OpenFlow, the communication between the switch and controller takes

place through the secure channel. This is achieved by converting all the messages into

binary format and make them travel through the secure channel [22]. Our implementation

exploits this provision of OpenFlow and, all the new messages and actions are converted

into the binary format before being sent out on the wire. This is ensured by sniffing the

OpenFlow packets using Wireshark packet sniffer.

Figure 6.4 shows the snapshot of Wireshark showing the OpenFlow message ’PACKET IN’

in wire format:

Figure 6.4: Security : New OpenFlow messages are encoded in binary format

6.2.9 Transport

’Flow balancing’ is very important in a network that involves a lot of traffic or during a

popular content broadcast [104]. In an IP network, where each request by a host to reach

another host is treated as an individual end to end communication, providing this flow
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Table 6.7: Evaluating flow balancing with duplicate data packets

Test Scenario Methodology Result
Test that the du-
plicate data packets
are dropped out in a
switch and the con-
sumer receives only
single data packet for
an interest

• Topology : Consider a topol-
ogy where three OpenFlow
switches S1, S2 and S3 are
connected to an OpenFlow
controller. S1 is connected to
S2 and S3 through faces F2 and
F3. S2 and S3 both have the
content C1: ’/test/h2/video1’
in their caches. S1’s FIB has the
entry for ’/test/h2/video1’ with
both faces F2 and F3 listed as
next hop faces. H1 is connected
to S1

• Send out an interest packet for
the content C1, from H1

• Ensure that the host receives
only one data packet for the in-
terest

Ensured that H1 re-
ceives only one data
packet in response to
the interest packet
even though the inter-
est is sent out in both
the faces and the data
packets are arrive in
both the faces

balance is very difficult [3]. On the other hand, ICN claims to achieve this flow balance

in a content-centric network in two ways. One way is to enable a switch to do interest

aggregation. Another way is to provide flow balance over data packets. As mentioned

early, an interest packet can be sent out in multiple faces. This may result in the same

data packet from different sources which have the same copy of the data and, they arrive

in different times. Once the first data packet is sent out in the waiting faces, the PIT

entry for the interest will be deleted from the table. Thus, for any duplicate data packets

that the switch receives from any other faces, there will not be any matching entry in PIT

and thus they will be dropped by the switch. This check helps to avoid duplicate packets

to wander around in the network. This functionality is evaluated through the test case

depicted in Table 6.7.
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6.2.10 Multiple tables support

OpenFlow provided multiple table support from version 1.2 [7]. Even though POX ba-

sically built upon OpenFlow version 1.0 , it supports the Nicira and nexus extensions

which provide the features of OpenFlow 1.2 and above. Exploiting these extensions of

POX, our implementation provides support for multiple tables to realise the necessary

ICN data structures: Forwarding Information Base, Pending Interests Table and Content

Store. The ’pipeline processing’ and ’Table handlers’ use these tables to process the ICN

packets. In our implementation, the tables are initialized by the switch when it is con-

nected to the network. Figure 6.5 from ’Tkinter’ shows that the entries in different tables

as initialized by a switch when it connects to controller:

Figure 6.5: ICN-based multiple tables in OF-ICN switch: CS, PIT, FIB
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6.3 Routing based operations

This section presents the evaluation details for some of the routing-related ICN function-

alities that come under ’Category 1’ :

6.3.1 Forward-by-name

’Forward-by-name’ is the process in which the packet forwarding operation is carried out

using the name contained in the packet, instead of exploiting the source and destination

addresses of the packet [37]. This is evaluated by sending out an interest packet using

Ethernet protocol, with the content name to identify the content and, showing that,

only if the switch or the controller has the content name stored in their forwarding or

routing table, the packet will be forwarded. Otherwise, the packet will be dropped. The

evaluation process is explained in the test case in Table 6.8.

6.3.2 FIB management

’Forwarding Information Base’ of the switches that are connected to the controller is

managed by the controller through OpenFlow interface. One particular FIB management

algorithm that is implemented in our implementation is to send an instruction from the

controller to switch, to delete the least used FIB entry when the switch’s FIB is full.

When the switch notifies the controller when the FIB is filled, the controller instructs

the switch to delete the least used entry by sending out ’DELETE LEAST FIB’ message.

Switch identifies the least used FIB entry by querying for the FIB entry with the lowest

counter value. The test case in Table 6.9 depicts how this feature is evaluated in our

implementation.
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Table 6.8: Evaluating ’Forward-by-name’ operation

Test Scenario Methodology Result
Test that only the
interest packet whose
name can be matched
with FIB of the
switch or the routing
table controller can
be forwarded further.
Otherwise, the packet
should be dropped

• Topology : Consider a topol-
ogy where a switch S1 is con-
nected to the controller. H1
and H2 are connected to S1.
H2 produces a two contents:
C1 : ’/test/h2/video1’, C2:
’/test/h2/image1’. The switch
has the forwarding information
for C1 based on its name. Nei-
ther Switch nor the controller
has the forwarding information
for C2

• Send out an interest packet for
the content C1, from H1

• Ensure that the host receives the
data packet from switch

• Send out an interest packet for
the content C2, from H1

• Ensure that the switch sends
back NOACK packet to the host

Ensured that H1
receives the data
packet for the in-
terest for which the
switch has matching
content name in FIB.
Ensured that for
the interest where
there is matching
content name in
neither switch’s FIB
nor controller cache,
the interest packet
is dropped and
NOACK information
is returned
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Table 6.9: Evaluating FIB management when the switch’s FIB is full

Test Scenario Methodology Result
Test that when
a switch sends
FIB FULL to con-
troller, the lease used
FIB entry is deleted
from the table

• Topology : Consider a topol-
ogy where a switch S1 is con-
nected to the controller. H1 and
H2 are connected to S1. The
FIB of S1 is initialized with 5 en-
tries and the maximum entries
of FIB are set to 5. The low-
est counter value in FIB is ’1’
for 4th entry. Controller has
the forwarding information for a
content C1 produced by H2

• Send out an interest packet for
the content C1, from H1

• When the switch tries to add
flow rule from controller for C1,
Ensure that FIB FULL message
is sent from switch to controller

• Ensure that the controller sends
back ’DELETE LEAST FIB’
message to switch

• Ensure that the switch deletes
the entry with lowest counter
value (in this case, the 4th en-
try in FIB)

Ensured that the
switch sends an
FIB FULL mes-
sage to the con-
troller and the
controller sends back
’DELETE LEAST FIB’
message, by sniffing
the interface through
Wireshark packet
sniffer. Also en-
sured that the switch
deletes the FIB entry
with lowest counter
value by analysing
the FIB table be-
fore and after the
FIB FULL message,
using ’Tkinter’
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6.4 Content based operations

This section presents the evaluation details for some of the content-related ICN function-

alities that come under ’Category 1’ :

6.4.1 Interest and Data forwarding

POX’s switch, controller and library components are modified in our implementation to

support ICN communication using interest and data packets. Using the topology outlined

in Figure 4.1, the ICN-related tables in each switch are initialized with some bootstrap

values. The controller’s routing database and the cache are also initialized with some

initial values. The process starts with sending out interest packet from one host, for the

content produced by another host, connected to a different switch. The process ends when

the first host receives the data packet for the interest. The next iteration is carried out by

sending out interest packet from the second host and the iteration ends when the second

host receives the data. Many numbers of such iterations are carried out to ensure that the

methodology does not break during the process. Table 6.10 explains the process involved

in one iteration of interest-data communication and Figure 6.6. shows the results.

6.4.2 Caching decisions

The switches implemented by us are not distributed. So, the OpenFlow controller, being

the central controlling entity, can decide at any time what to store in the switch’s cache

and what to remove from the cache. For a proof of concept, we have implemented an

algorithm, where the switch can inform the controller when the cache is full through

’CS FULL’ message and, the controller can give an instruction to clear the cache from

the switch. The test case in Table 6.11 and Figure 6.7 illustrate this evaluation process.
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Table 6.10: Evaluating the interest and data forwarding process by OF-ICN
Test Scenario Methodology Result
Test that a host can
send out interest
packets any number
of times for a content
and it receives back
the data packet for
every interest

• Topology : This topology is
same as that of Figure 4.1 . Con-
sider that H2 produces a content
’C’ named ’/test/h2/data/v1’
and the Switch S2 has an-
nounced this content to the con-
troller. Now controller has the
route for ’C’

• Send out an interest packet for
the content C, from H1

• Ensure that Switch S1’s PIT is
updated with an entry for ’C’
from H1

• Ensure that Switch S1’s FIB
is added with an entry for ’C’
when the switch receives the
flow table from controller

• Ensure that host H2 eventually
receives the interest and send
back the data

• Ensure that once the switch re-
ceives the data packet, it up-
dates its content store with the
name for ’C’ and the received
content, which may be ’C’ itself

• Ensure that host H1 finally re-
ceives the content

• Ensure that multiple iterations
of the same process work with-
out any issues

Switch S1’s table
dictionaries are pro-
jected in UI after each
checkpoint in the pro-
cess as mentioned in
’methodology’ col-
umn. Ensured that
S1’s PIT is updated
when an interest is
forwarded. Ensured
that S1’s FIB is
updated with the
forwarding rule from
the controller. En-
sured that S1’s CS
is updated with the
new entry when the
switch receives the
content. We ensured
that the host H1
receives the data
for every interest
packet it sends out
in the network for
the content ’C’ until
otherwise the host is
down or there are no
copies for the content
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Figure 6.6: Evaluation of Interest processing by OF-ICN switch. Procedure in Table 6.10

Figure 6.7: OF-ICN switch clearing the cache when it receives CLEAR CS message from
the controller
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Table 6.11: Evaluating OF-ICN behaviour when the switch’s cache is full

Test Scenario Methodology Result
Test that a host can
send out interest
packets any number
of times for a content
and it receives back
the data packet for
every interest

• Topology : This topology is
same as that of Figure 4.1 .
Switch S1’s Content Store is
bootstrapped with 5 entries and
the maximum number of entries
is set to 5. S1 has the route for
the content ’C’ produced by H2
but not yet cached in S1

• Send out an interest packet for
the content C, from H1

• Ensure that host H2 eventually
receives the interest and send
back the data

• Ensure that once the switch re-
ceives the data packet, it sends
out CS FULL message to con-
troller

• Ensure that the controller sends
back ’CLEAR CS’ message to
switch

• Ensure that S1’s content store
is cleared after receiving the in-
struction from the controller

Wireshark is used to
ensure that the switch
sends ’CS FULL’
message and, the
controller sends back
’CLEAR CS’ mes-
sage. Switch S1’s
table dictionaries
are projected in UI
after each check-
point in the process
as mentioned in
’methodology’ col-
umn. Ensured that
the content store is
filled with 5 entries
when the switch is
initialized and cleared
completely upon re-
ceiving CLEAR CS
instruction from the
controller
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6.4.3 Caching notifications

When a host connects to a switch, it is expected that the host announce the contents it

produces, to the switch. The switch can cache the content, which it receives from the host

and, becomes a routing destination for that content on behalf of the host. This has to be

communicated to the controller, for the controller to update its routing database with the

content name and withthe route to retrieve that content. In our implementation, a switch

sends out ’CONTENT ANNOUCENMENT’ message, whenever it caches a content and

the controller updates its routing database with the necessary information extracted from

the message. For the proof of concept, we have evaluated this scenario by sending out a

content registration message from the host, when it gets attached to the switch and, the

switch eventually sends out an announcement message to the controller. We have queried

the controller routing table with the content name and ensured that the notification from

the switch is updated in the routing database with the content name and the switch’s

identifier as the route for the content.

6.4.4 Proactive caching

’Proactive caching’ is a process in which the controller pushes content into the caches of

the switches. As explained in the implementation chapter, this can be used to ensure that

popular contents are near to the user(for example, in high demand content broadcasting).

We have proposed a cache in OF-ICN controller to store some of the popular contents. The

controller pushes popular contents from it cache to the switches. In order to evaluate this

behaviour, we have exploited the ’priority’ field in controller cache. We have initialized

the controller cache with a content with priority ’1’. The proactive caching algorithm

which runs in the controller periodically checks the priority of the cached contents in

the controller. We ensured that the algorithm identifies this content with priority ’1’

in the cache and makes the controller to push the content to all the switches that are

connected to it, for them to store the content in their cache. The switch’s content store
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is verified before and after this process and, ensured that the priority content is stored by

the switches.

6.4.5 Statistics

Our modified OpenFlow switch is enabled to keep track of the number of interest packets

being processed for every content name stored in the FIB. The OpenFlow controller is

expected to query for statistical data from the switch, for it to update its view on the

underlying network. We have implemented the scenario wherein the controller will ask

for the most used flow from the FIB of a switch. Based on the information returned by

the switch, the controller will update its database and take further actions. For example,

if the highly used flow has reached a benchmark packet count, the controller can push

the content related to that flow, to the switch in order to reduce the round trip time. We

have verified this behaviour with test case shown in Table 6.12.

6.5 Category 2 : Preserve OpenFlow functionalities

This section outlines the benchmarking points to ensure that the OpenFlow’s basic work-

ing methodologies are preserved and additionally, they are used to enhance ICN commu-

nication

POX, being an OpenFlow platform, helps us to preserve the following OpenFlow

functionalities in our implementation with some modifications :

1. Switch-Controller handshake : OpenFlow switches connect with the controller

by swapping some information through messages like HELLO, FEATURES and

CONFIG [6]. We are initializing the switch knowledge during this phase by boot-

strapping the tables and dictionaries associated with the switch. This is verified by

viewing the ICN related tables, after the initialisation phase and, ensuring that the

necessary details are present.
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Table 6.12: Evaluating statistics update from switch to controller

Test Scenario Methodology Result
Test that the con-
troller can query
for the most-used
flow from the switch
and update its local
database. Also, test
that controller can
take caching deci-
sions based on the
statistical data

• Topology : This topology is
same as that of Figure 4.1 . Ini-
tialize a flow packet count vari-
able in controller with a bench-
mark value say, ’50’.

• Send out ’FIB REQUEST’ from
controller

• When the switch replies
with the most used FIB en-
try,compare the packet count
with ’flow packet count’ vari-
able’s value

• Ensure that if the value is
greater than ’50’ controller
pushes the related content to
switch to store in its cache

Ensured that the con-
troller can read the
most used fib entry
from a switch and
compare it with the
local variable. En-
sured that if the value
exceeds the bench-
marked value, it can
verify its own cache
and if there a con-
tent cached for the
corresponding flow, it
can push the content
to switch. Verified
the values of switch’s
content store before
and after executing
this operation and en-
sured that it is up-
dated with the con-
tent pushed from con-
troller
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2. Capability advertisement : During the switch connection with the controller,

it will query for the features supported by the switch. The switch replies with few

details; datapath id, supported number of tables and supported actions. Our im-

plementation modified this information so that the switch can inform about some

additional details like switch name and supported faces. This is verified by exam-

ining the corresponding dictionaries in controller after the handshake phase.

3. Keep-alive with the controller : Controller and switch connection is handled

by a persistent IOWorker in POX. When a switch disconnects and reconnects again,

the switch will automatically search for a controller and connect to it by utilising

the available controller sockets. This functionality is ensured by killing the switch

process multiple times and invoking it again

4. Network functions separation : We have maintained the main objective of

Software-Defined Network platforms of keeping the controlling operations separate

from the forwarding plane. In our implementation, the ICN-enabled OpenFlow

switches carry out only processing and forwarding operations on the ICN packets

based on the knowledge present in the ICN tables. All the controlling operations;

forwarding decisions, caching decisions and FIB management are carried out by

the controller. This is ensured by executing the controller test cases outlined in

Appendix B.2.

5. Flow based operations : OpenFlow defines a flow, based on a rule, that contains

a route for a packet type. It depends on a number of header fields in the packet.

The same flow-level functionality is applied over ICN, by considering the ’content

name’ field in the ICN packets and framing the flows based on these content names,

as they are the main primitives in ICN framework. Ensured that the ICN-enabled

switch process the incoming ICN packets based on the flow rules present in the

switch tables and drop the packets which do not match with any of the flow rules.
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6. Content announcement from the switch instead of a host : As far as ICN

is considered, the end nodes that connect to the network may have to announce

the content directly to the network [29]. In our implementation, it is the switch

that announces content availability to the controller. This can take advantage of

aggregating many content announcements and the switch can send those in a single

message, instead of overloading the controller with many messages. This is ensured

by creating a list of contents names in the CONTENT ANNOUNCEMENT message

and send them altogether by the switch and, ensuring that the controller database

is updated as expected

7. Global view : Unlike other ICN frameworks, ICN-enabled OpenFlow gives the

advantage of providing the global view of the underlying network to a ’network

monitoring application’ or a network operator. This global view is maintained by

the control plane and used to make many controlling decisions including forwarding

rule selection based on the network traffic, dropping a packet, caching decisions, and

adaptive FIB management, unlike the existing ICN implementations, wherein the

ICN daemon mostly takes forwarding decisions. This is verified by all the controlling

test scenarios listed in the tables Table 7.13 and Appendix B.2 .

6.6 Category 3 : Implementation level verifications

Easy Deployment

Using the forked version of POX, we have modified necessary components to incorpo-

rate ICN functionalities over OpenFlow. The code for our implementation is available in

GitHub repository as mentioned in section 5.10 . The deployment is a matter of cloning

the GitHub repository and executing the commands as listed in that section. For easy

evaluation, our implementation is targeted to run on a single machine. Thus all the com-

ponents involved in our implementation; OpenFlow switch, OpenFlow controller and the
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protocol, all run in the same machine sharing the underlying system interfaces and con-

figuration. Being an initiative study, this is done this way to give a better understanding

and easy debugging. If the controller has to be run on a different machine, the switch

command also has to be changed to look for a controller remotely. Due to the lack of

Ethernet interfaces in a single machine, virtual interfaces are being used. If the switches

need to be run on different machines, then the corresponding switch file has to be updated

with the interfaces that are available in the machine in which it is running.

6.7 Category 4 : Compare with existing ICN imple-

mentations

This section evaluates our implementation against one of the most used ICN approach,

CCN. We have used CCN’s ping tool, ’CCNPing’ and, CCN-based prototype, ’Mini-

CCNx’, to compare the functionalities of ’OF-ICN’

6.7.1 CCNx - CCNPing

CCNx provides a daemon ’ccnd’ which can be made running in a node to provide CCN

functionalities. As part of the library, CCNx provides provisions for Face, FIB, PIT,

Content Store and it supports generating interest and data packets. ’ccnping’ is a CCNx

tool, impressed by tcp ’ping’ application. This ccnping tool helps the experimenters to

check the reachability of nodes in CCN environment through interest and data packets.

We have evaluated our implementation against the functionalities provided by CCNx with

respect to CCNPing tool and, the snapshots are provided here. CCNPing has a server

module, that listens in a face for incoming interests for a particular ’named content’ by

adding the content name to the ’ccnd’ daemon. The client module of CCNPing expresses

interests for the named content produced by the server. The ccnd daemon will act upon

the interest and hands it to the server. The server, in turn, sends back the data to the
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client through ccnd daemon. CCNPing application sends the pings in a loop until the

process is killed. We have captured the Round Trip Time (RTT) , the pings take for every

iteration and, compared it with the multiple interests sent out by the host implemented

as part of our implementation. It is revealed that the time taken for the 1st ping iteration

for a content is greater than the time taken for subsequent pings in both CCNx and our

implementation. This is because of the utilisation of cache managed by ccnd daemon in

CCNx and the cache in the switches, as part of our implementation.

Figures 6.8 and 6.9 show the comparison between CCNping and our implementation

for multiple interests from a host:

Figure 6.8: OF-ICN and CCNPing comparison : Snapshot from CCNPing showing the
RTT for multiple pings

Figure 6.8 shows that in CCNx, ccnping for the 2nd iteration takes lesser time(0.607

ms) than the 1st iteration(4.856 ms). Similarly, figure 6.9 shows the snapshot of Host 1

of our implementation, in which 2nd iteration takes less time (0.00030 seconds) compared

to 1st iteration (0.13928 seconds) due to the utilisation of ICN cache in the modified

OpenFlow switch. The values are plotted in the graph in Figure 6.10 .

6.7.2 Mini-CCNx

Mini-ccnx [43] is a mininet based ICN prototyping tool which is based on CCN archi-

tecture. Through CCN daemon, Mini-ccnx provides the basic architectural elements of

ICN; FIB, PIT, and Content Store. It also maintains the advantages that come along
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Figure 6.9: OF-ICN and CCNPing comparison : Snapshot from OF-ICN showing the
RTT for multiple interests from the same host

Figure 6.10: Graph comparing the RTT between CCNPing and OF-ICN for three subse-
quent requests
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with Mininet such as the ability to run in a virtual environment, ability to define multiple

topologies and link parameter modifications [56]. We have verified how well our imple-

mentation matches or differs from the ICN implementation experimented over Mini-ccnx.

We have created a topology using Mini-ccnx, as similar to our design architecture, as

shown in figure 6.11.

Figure 6.11: OF-ICN and Mini-CCNx comparison : Topology used for the experiment

Topology : Figure 6.11 shows that two switches r1 and r1 are connected to each other.

Host h1 is connected to r1 and the host h2 is connected to r2. h1 produces two contents

’test/h2/video1’ and ’/test/h2/video2’. Both r1 and r2 have the forwarding details for

’/test/h2/video1’, while only r2 has the forwarding details for ’/test/h2/video2’.

Test 1 : Host 1 sends out interests for the content ’/test/h2/video1’, for which both

the switches have forwarding details

The behaviour which is showcased in the previous section holds for Test 1, which is

that, the RTT takes for 1st interest for a content is greater than the subsequent requests

in both Mini-ccnx and our solution. This behaviour shows that our implementation is

able to provide the basic ICN functionalities which Mini-ccnx provides with CCNx. This

behaviour is shown in Figure 6.12 and Figure 6.13, and the values are plotted in Figure

6.14 .
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Figure 6.12: OF-ICN and Mini-CCNx comparison : Scenario where all intermediate
switches have enough forwarding details for a content. Mini-CCNx receives content

Figure 6.13: OF-ICN and Mini-CCNx comparison : Scenario where all intermediate
switches have enough forwarding details for a content. OF-ICN host receives content
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Figure 6.14: Graph comparing the RTT between Mini-CCNx and OF-ICN for three sub-
sequent requests

Test 2 : In order to prove one obvious advantage of having a controller over other

ICN implementations, we have verified a scenario in which for a content ’C’, which h2

provides, only the switch r2 has the forwarding route and Switch r1 is agnostic to the

route. Now, h1 is sending out an interest for the content ’C’ to switch r1. We have created

the above scenario in both Mini-ccnx and our solution ’OF-ICN’ and compared how they

reacted to this scenario. The results show that Mini-ccnx ’times out’ for the interests

as the ccnd daemon that runs in switch r1 is not able to identify the forwarding route

for the interest. This is because r1 does not have an entry for the content in its FIB.

Until otherwise a routing protocol again runs and updates the FIBs in all the switches,

Mini-ccnx will not be able to identify where to send the interest, for which one of the

other connected switches in the path has the route. This is shown in Figure 6.15 .

On the other hand, our modified OpenFlow can successfully deliver the interest to the

host H2. Controller’s routing database comes as a solution here. This is because when

r2 receives the content announcement from H2 for ’C’, it updates its FIB and informs

the controller as well. In the other way, controller frequently queries for features from

switches and, updates its routing database. Thus, when r1 finds out that it does not have

a matching entry for the interest from H1, it sends out a query to the controller. The

controller, by scanning its routing database, learns that r2 is the route for the content

and updates switch r1 accordingly. Now, the switch r1 will be able to send the interest
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Figure 6.15: OF-ICN and Mini-CCNx comparison : Scenario where some intermediate
switches have less forwarding details. Mini-CCNx times out

to H2 through r2. This is shown in Figure 6.16 .

Figure 6.16: OF-ICN and Mini-CCNx comparison : Scenario where some intermediate
switches have less forwarding details. OF-ICN host receives content

6.8 Summary

This chapter portrayed the evaluations carried out to verify the proposed OF-ICN ap-

proach. We have divided the evaluation process into four categories :

1. To ensure that OF-ICN provides the essential ICN functionalities
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2. To ensure that the successful OpenFlow features are preserved in our implementation

and they are used to enhance the ICN functionalities

3. To ensure that the implementation is easy to deploy and debug

4. To compare and evaluate OF-ICN with existing ICN prototypes

Under each category, various test scenarios are considered and documented. The test

cases are evaluated with OF-ICN and the results are depicted in this chapter. A summary

of the test cases which are utilised for evaluating our implementation is shown in Table

6.13. Each test case states the test scenario, the result and the OpenFlow messages and,

events or actions that are involved as part of the test case. The test cases that are specific

to the OpenFlow switches and the OpenFlow controller are covered in Appendix B. The

results show that, with the necessary extensions to the OpenFlow elements (OpenFlow

switch, OpenFlow controller and OpenFlow protocol), OF-ICN could successfully provide

an OpenFlow-based control plane for the underlying ICN-enabled OpenFlow switches.

It is shown that, OF-ICN could provide the necessary ICN functionalities, according to

the generic ICN features derived by us, by considering different ICN implementations.

This chapters also depicted that, the successful OpenFlow features are still preserved in

OF-ICN and modified in some places to add ICN-related information to them. The out-

comes out of the comparison between OF-ICN and a number of ICN prototypes reassured

that, OF-ICN could provide enough essential ICN capabilities and, with the presence of

the centralised controller, OF-ICN could show several advantages over the existing ICN

prototypes.
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Table 6.13: Functional Test Cases used to evaluate OF-ICN features

S.No Test Case Sub Test
Case

Action Message/ Event/
Action

1 Content Store
Match

Send Data packet
back in incoming
face

PACKET OUT[FACE]

2 PIT Match Add the incoming
face to waiting list

ADD PIT[FACE]

3 FIB Match Forward the in-
terest in outgoing
face

PACKET OUT[FACE]

4 FIB Match Add the incoming
face to PIT

ADD PIT[FACE]

5 No match in
switch

Controller has
cached data

Send the data
packet from con-
troller to switch

OFPT DATA FROM
CONTROLLER

6 No match in
switch

Controller has
the route

Send Flow Rule to
switch

FLOW MOD[RULE]
PACKET OUT[FACE]

7 Second inter-
est for the
same content

Match with FIB
in the switch and
send the packet in
outgoing face

PACKET OUT[FACE]

8 Data packet Matches with
PIT

Send the data
packet back in the
waiting face

PACKET OUT[FACE]

9 Data packet No match
with PIT

Drop the data
packet

10 Content Store
Full

Message from con-
troller to clear the
cache in switch

OPFT CS FULL
OFPT CLEAR CS

11 Proactive
caching

Cache the content
from controller in
the switch

OFPT ADD CS ENTRY

12 Content An-
nouncement

Store the con-
tent name and the
switch identifier in
controller routing
database

OFPT CONTENT
ANNOUNCEMENT
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Chapter 7

Conclusions

’OF-ICN’ is the experimental solution proposed by this dissertation to provide an OpenFlow-

based control plane for Information-Centric Networking(ICN) platform, in order to realise

a clean state integration between OpenFlow and ICN. This study demonstrated this by

porting the basic ICN functionalities over OpenFlow architecture and showed that the

ICN-enabled OpenFlow controller and the ICN-enabled OpenFlow switch, can successfully

handle ICN communication in terms of flows, using the ICN-enabled OpenFlow protocol.

This is achieved by modifying the following major elements provided by OpenFlow:

• OpenFlow switch

• OpenFlow controller

• OpenFlow protocol

’OF-ICN’ is implemented and evaluated using POX, a Python OpenFlow controller. It

used the switch, controller and the protocol library component modules provided by POX

and, extended them to realise ICN-based functionalities. As part of the evaluation, ’OF-

ICN’ is compared with a number of ICN-based prototypes to ensure that the ICN-enabled

OpenFlow actually provides the core ICN features and moreover, to ensure that the

modified OpenFlow can show benefits over existing ICN implementations in a number of

scenarios. The results showed that, by necessary modifications to the OpenFlow elements,
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the proposed approach OF-ICN, could successfully provide an OpenFlow-based control

plane for ICN-enabled OpenFlow switches. OF-ICN could make forwarding and caching

decisions for the underlying ICN-enabled datapath infrastructure. The comparison with

existing ICN prototypes revealed that, an ICN implementation with a control plane such

as OpenFlow, can show improved packet processing and delivery, compared to the existing

ICN prototypes.

This chapter portrays the contributions of this dissertation towards providing a so-

lution for the integration between OpenFlow and ICN by creating an OpenFlow-based

control plane, followed by the limitations of the study and the future research directions.

Finally, the chapter ends with denoting some of the long term goals for this study.

7.1 Contributions

This section outlines the major contributions of this dissertation towards achieving the

goal of creating an OpenFlow-based control plane for ICN :

• Analysis of gaps

This dissertation has clearly studied the existing works in literature towards realising

a clean state integration between two emerging technologies; OpenFlow and ICN.

The background, various implementations and the tools behind these technologies

are studied as part of this dissertation. In order to give a better formulation, this

study analysed the works that provided a quick realisation of the integration, by

providing workarounds and by not modifying the architecture of OpenFlow and ICN.

The drawbacks of these non-extension approaches are identified and taken as the

root motivation for the works on extension-based approaches. The extension-based

approaches tried to modify OpenFlow to incorporate ICN features. The pros and

cons of these extension-based approaches are analysed and, the gaps are identified

and listed as part of this dissertation.
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• Formulate generic ICN features over OpenFlow

From the gaps identified through the analysis of existing works, this dissertation

segregated the generic ICN-based functionalities and proposed ’OF-ICN’: a solution

to fill these gaps, by modifying the existing OpenFlow architecture, to accommodate

the identified generic ICN functionalities. A clean state integration approach is sug-

gested by this study, instead of relying on workarounds, wrappers or plugins, which

could only provide a short-term overlay realisation of the required functionalities.

• Extensions and algorithms

This dissertation presented the possible extensions to the architecture of the major

OpenFlow elements: OpenFlow switch and OpenFlow controller, to enable them to

support ICN forwarding and caching operations. This is achieved by equipping them

with a new set of data structures to store ICN-related knowledge. The algorithms

to make forwarding decisions for ICN flows as part of the controller, and to execute

forwarding operations for ICN flows as part of the switch, are represented in this

dissertation.

• Extensions to OpenFlow protocol

Having presented the modifications to the OpenFlow switch and the controller, the

dissertation moved on to list the new programming interface components needed to

communicate the ICN-related information between the switch and the controller.

This enabled the proposed approach to have a control layer based on OpenFlow,

to instruct the datapath layer of ICN-enabled OpenFlow switches, and to send and

receive ICN-based details from the underlying network.

• Modularized implementation

To realise the aim of providing a modularized implementation, POX, a software

OpenFlow controller in Python language, is selected by this study, to experiment

and evaluate the proposed approach. This dissertation exploited the software com-
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ponents provided by POX to realise various OpenFlow elements; switch, controller

and the protocol library. All the proposed modifications and extensions on Open-

Flow by this dissertation, are experimented over these components and the modu-

larization is ensured between the components, to enable them to be plugged in into

any future experiments around this study.

7.2 Future works

This section outlines the limitations of this study and future research directions to over-

come those limitations and to provide enhancements:

• Supporting a standardised ICN naming scheme

As outlined in the chapter on literature, the naming scheme for ICN is still an

active research area and there is no global consensus on the naming methodology

to be used to realise a global ICN architecture [29, 44]. Given that, this has been

a challenge to almost all the existing works in the literature on ICN and to the

existing works on integration between OpenFlow and ICN. This challenge applies to

this study as well. We have used Ethernet packets to carry ICN-related information

and enabled the software switches to do deep packet inspection to traverse the ICN-

related information in the packet. We are aware that this will be difficult to convert

into a hardware implementation of the switch, as the current hardware switches

lag deep packet inspection property. We are denoting this naming part as a future

research opportunity over the proposed approach and it can be fully realised when

ICN naming scheme is standardised.

• Performance tuning

Python, as an easy-to-code language, is not optimised well enough to run the code

faster. POX is built completely on Python, which results in slow speed code pro-

cessing in POX. NOX [61] is a counterpart OpenFlow controller to POX, which is
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developed in C++, from which POX is derived. Even though they provide sim-

ilar functionalities, NOX runs better than POX controller in terms of code-level

executions. There are some libraries and tools which are available to improve the

performance of Python (For example, PyPy library [105], Numba [106]). These li-

braries and tools can be used over POX, to improve the performance, which in turn

will provide better processing speed for our approach as well.

• Security and integrity

ICN claims to provide inbuilt integrity and security within each content in the

network, by incorporating digital signature and signature-related information in ICN

packets, and by encrypting the packets. The network elements and the consumers

can utilise these options, to ensure that the content is the intended content and,

it is from the legitimate user. Limiting our dissertation scope to experiment basic

ICN features, we have not provided these options in our implementation, other than

the binary conversion of OpenFlow messages. These security and integrity features

can be built over our approach, to providing the assurance over the contents being

communicated in the network.

• Scalability

SDN and its approach, OpenFlow, suggest a centralised controller to control the

underlying network of switches. When we equip the network with highly capable

ICN-enabled switches, a number of details and actions which the controller has

to handle will increase compared to the traditional IP-based OpenFlow controller.

Thus, there seems to be a need to provide a distributed control layer with a number

of controllers connected, to provide a scalable controlling layer over the underlying

network elements. Few research activities in literature tried to providing such scal-

able control layer which can also be applied to our approach to scaling it better for

future requirements [36]
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7.3 Final remarks

SDN and OpenFlow, are designed to support the current needs of network operators,

developers and researchers. Whereas, ICN gives the awareness to the Internet community,

about the need for an architectural change in the underlying inter-network and it claims

to support the future needs of the Internet users. It is very difficult to deny completely

any of the claims made by both OpenFlow and ICN technologies, as there are a number

of studies and research activities, that prove that those claims are true in some scenario

or the other. The ’future’, which ICN has mentioned, has already arrived and thus, there

is a lot of attention from industry and academia to realise a network that scales well

with the surge of enormous data and is flexible to incorporate new control and traffic

engineering policies. OpenFlow and ICN approaches are picked in this ground and being

actively investigated to port one over the other, to realise a secure network with more

flexibility, availability and high manageability. We believe that this dissertation work,

with its experimental approach and solution, will be a good contribution towards this

goal of integrating both the technologies. We also believe that this study will give a

good starting point to any future research on this platform. Keeping that in mind, a

long-term goal of this study is to provide an addendum document to the latest OpenFlow

specification, by clearly marking the requirements of the OpenFlow switch specification,

to support ICN packet switching. This document should cover the extended components

of OpenFlow switches and the OpenFlow protocol changes, that are needed to control

those switches from a controller, which could be local or remote.
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Appendix A

Abbreviations

Short Term Expanded Term

ICN Information-Centric Networking

SDN Software Defined Networking

FIB Forwarding Information Base

PIT Pending Interest Table

CS Content Store

OF OpenFlow

IP Internet Protocol

NDN Named Data Networking

CCN Content Centric Networking
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Appendix B

Switch and Controller use cases

B.1 Switch use cases

B.2 Controller use cases
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Table B.1: Switch use cases
S.No Test Matching table Expected Result
1 Interest packet received Content Store Match Send the data back to re-

quester
2 Interest packet received PIT Match Add the incoming

face(interface) to the
list of waiting faces

3 Interest packet received FIB Match Forward the interest to
the list of next hop faces

4 Interest packet received No Match Send the interest to con-
troller

5 Data packet received Content Store Match Duplicate content - Do
not add to the cache

6 Data packet received PIT Match Send the data out in the
listed waiting faces

7 Data packet received No PIT Match Drop the packet
8 Content Store Full Send ’CS FULL’ mes-

sage to controller
9 Received ’ADD PIT’

message from controller
Add the entry into PIT
table

10 Received
’ADD CS ENTRY’
message from controller

Add the entry into Con-
tent Store cache

11 Received ’CLEAR CS’
message from controller

Delete all the entries
from Content Store

11 Data packet received
from controller

Send the packet out in
the waiting faces and
cache the content
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Table B.2: Controller use cases

S.No Test Expected Result
1 Received Interest packet from switch Check for the content in controller

cache. If no cache, check for an en-
try in routing database

2 Entry found in controller cache for an
interest

Send the data back to the switch and
push a FLOW MOD message

3 Entry found in routing database Send FLOW MOD and
PACKET OUT messages to switch

4 No information found for the interest Ask the switch to drop the packet
5 CS FULL message received from

switch
Send CLEAR CS message [an algo-
rithm to select the entries to be
deleted]

6 Data packet received Send the data out in the listed waiting
faces

7 Received content announcement from
a switch

Update the routing database
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