Proactive Configuration of Data Centre

Networks for Big Data Processing

Harpreet Singh, M.Sc.

University of Dublin, Trinity College, 2016

Supervisor: Stefan Weber

Various studies have determined that the network is a performance bottleneck in Big

Data processing applications running in the cloud such as Hadoop. Numerous attempts

have been made to alleviate this network bottleneck by traffic engineering during exe-

cution of the applications, using Software-Defined Networking. Such measures of traffic

engineering are overwhelmingly reactive in nature and are bound to induce control traffic

overhead in the network. In this project, we propose a proactive approach for configuring Data Centre Networks as the means to optimize application traffic, specifically Hadoop;

thereby accelerating the execution of applications in the cloud.

We configure the network before execution of the application, to determine if there

is a performance gain when there is no control overhead in the network. The network

is configured proactively, by logging the flow decisions made by the reactive algorithms

from previous studies. These flow rules are subsequently installed in the routing devices

before the execution of the application, after which, the flows are routed reactively. We

demonstrate an average gain in network bandwidth utilization between 11.9% to 59.9%

in comparison to reactive approaches, while Hadoop job completion times are reduced by

10% to 33.5%.

i