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Position-Based Viscoelastic fluid simulation

Yuanqi Huang

University of Dublin, Trinity College, 2016

Supervisor: Dr. Michael Manzke

Deformable material has become an active area in animation. A huge number of tech-

niques have been explored for achieving a large deformation in a more plausible result.

Particle-based representation has its natural advantage for describing reasonable de-

formation. Specifically, deformable materials are supposed to be treated as continuous

flow for more realistic behaviour. Thus research of non-Newtonian fluid has become a

popular area as an alternative solution. Most of these approaches are built upon ex-

isting fluid simulation. Among all the fluid simulation, Position-Based-Dynamic fluid

is a novel method which has a better control over particles but in less complex level.

This dissertation explored the viability of a new method for viscoelastic fluid build-

ing upon PBD fluid model. Two possible approximations (spring and strain tensor)

were implemented for viscosity and elasticity behaviours. The full implementation was

simulated on GPU platform with visualisation. The results showed that spring model

does not fit the PBD, but that strain tensor model works partially. The limitations

and reasons were deeply discussed in many aspects.
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Chapter 1

Introduction

1.1 Background

Fluid animation techniques has been developed 20 years since 1996. Commercial soft-

wares like RealFlow, MAYA, and Houdini are widely used in todays movie effect and

game development industries. Requiring more realistic effect but consuming less com-

putational resources make this a highly popular area in research. Because ad-hoc

particle system method introduced into fluid simulation, fluid simulation has been ex-

tended into a more general physical solution. Gas, cloud, explosion and hair, etc can

be treated as a particle system simulation to some degrees. Even further, particles

have the advantage for large scale deformation object. Considering its better represen-

tation of randomly deformation in general case, many researchers tend to find a unified

particle system for various physical simulation. In fluid simulation area, integration

technique like Semi-Lagrangian advection help to solve Navier-Stokes equation in rel-

atively large time step, which increases the possibility of achieving more complex and

accurate physical behaviour in simulation.

Not only in animation, particle based simulation has also been used in academic

researches a lot, like mechanic or mathematic. Obviously, academic research and com-

mercial use share many common techniques in many aspects. However, unlike most of

the researches, fluid simulation in game industry or movie effect have to consider the

limitation of memory and computation ability in platform all the time. Plausible result

with rich enough features but using less resources requires approximation in physics
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description, novel integration scheme and specially designed data structure. Thus, in

this area, any possible new technique will be tried by combining with previous good

models.

Apart from the performance of fluid simulation, easy to use for Animation artists is

another consideration for invented method. More intuitive parameters and rich features

could help artist obtain better control of the fluid and its different formation.

To sum up, all the factors above involves finding an adequate physics formulation,

which in most cases in differential form, and a numerical approximation scheme to

discretise it.

1.2 Viscoelastic Fluid

Non-Newtonian fluid is an interesting material in our daily life, how to implement it

in graphic animation is popular. Viscoelastic material is one kind of non-Newtonian

fluid, which has both fluid and elastic responses under different conditions. i.e. this

flow show viscosity property when weak force has been applied like honey, toothpaste,

however such material will bounce like a rubber under huge force or tension. As a non-

Newtonian fluid, viscosity acts as a measurement of a fluid’s ability to resist gradual

deformation by force or tension. Anther obvious property is that the particles in the

fluid are large than that in the newtonian fluid in size, therefore, when sudden force

happen, those particles have no time to react and become solid.

The main difference between viscoplastic and viscoelastic is the yield tress. From

the aspect of rheological, viscoplastic material will only deform after the yield stress

has been reached. In the contrast, Viscoelastic material will deform at any application

of stress. Considering this main difference, an reasonable approximate model of yield

stress threshold has to been chosen for simulation.

Unlike traditional newton fluid, whose rate of strain is constant, both of these non-

newton fluids’ rate of strain depend on stress applied. There are several models of

viscoplastic liquids include Bingham plastic, Hershel-Bulkley and Casson [6] As for

viscoelastic models, Maxwell and Kelvin-Voigt model, which provide different degrees

of complexity for realistic behaviour.
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1.3 Framework

For simulating the fluid behaviour in its liquid phase, framework of computational

fluid dynamics(CFD) is required. Generally speaking, the most common model relies

on Eulerian formulation where physical quantities are sampled on regular grid. This

grid-based method suit well for the classical Newton fluid simulation like water. In

this method, the whole space will be subdivided into cells, which shows the potential

drawback that delicate fluid behaviour is limited by the resolution of the grid. The

fundamental basis of all the CFD problem is Navier-Stokes equation. Thus, for single

flow simulation, this equation is always simplified by removing the viscosity terms

to yield the Euler equations. Further simplification, by removing terms describing

vorticity yields the full potential equations [7]. However, the big problem of grid-based

method is that fluid free surface have to be tracked in some way, which brings extra

computation all the time.

Instead of using Eulerian formulation of grid-based framework, this thesis choose

Lagrangian formulation on particle-based representation. The most popular one is

Smoothed Particle Hydrodynamics (SPH), which is introduced by Monaghan [8] in 1977

for astrophysical problem. This method represent fluid into a small volume responded

to forces as a particle. All the particles has certain spacial distance called smoothing

length, over which their physical quantities are smoothed by smoothing kernel. In

other words, individual particle’s physical quantities can been obtained by summing

all the other neighbouring particles’ which lie within the smoothing length. Since the

easy implementation of such framework, and good response for gravity, pressure and

viscosity, this thesis will use such framework for fluid phase simulation.

1.4 Related Work

1.4.1 Discretization technique

In computer graphic field, physical simulation is a well established research topic that

different methods have been developed.

[9] has mentioned Finite Element Method (FEM) , in which the domain of the ma-

terial has been partitioned into distinct sub-domain. Each sub-domain share common
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nodes on boundary with adjacent element. Certain function would be used to control

the behaviour of entire domain but only by finite number of parameters.

Similarly, Finite Differences Method ( FDM ) [10] divide the entire domain into

regular lattice which has challenge with irregular material.

In [11], Finite Volume Method ( FVM )has been used to achieve arbitrary defor-

mation in a geometrically intuitive way.

[12] shows another way of deformable material simulation called boundary element

method (BEM). In which, the partition only be applied on the boundary of the object,

and create n-dimensional non-overlapped elements. A function of displacement will be

interpolated between each nodes. After each displacement, compute 3n linear equa-

tions through desired boundary condition. Such discretisation is widely used in many

engineering areas, but involved many mathematic process.

However, compared to those partition techniques above, particle-based technique

is more intuitive. [13] shows particle-based method for deformation materials simula-

tion. In which they represent a piece of cloth as a set of mass particles with springs

interpolated, integrated particles by Euler integration scheme. Meanwhile, for better

coherent result, artificial viscosity has been added. However, such method is better for

known shape simulation. To solve this problem, [14] point out a general solution for

Geometrically Complex Deformable Solids.

Compared to traditional particle method, [15] has used a more novel way to simu-

lation solid objects, called position-based dynamic. Since the model is highly control-

lable, PBD provides fast and plausible result. Most of force based dynamic follow the

Newton’s second law of motion, either internal and external forces are computed and

accumulated in the time interval. Potential challenge like overshooting and penetra-

tion happen in those implementation all the time. In the contrast PBD could overcome

these problems easily.

No matter for rigid body or deformable objects, the implementation focus on ro-

bust, efficient and plausible solution. Whereas, traditional particle approach calculates

external forces like collision impulse and global force, and internal force including pres-

sure and elastic forces at least twice, which mean 2 levels of integrations will be handled.

Some simulations optimise scheme by using impulse instead of forces to avoid one level

of integration.

Even worse, traditional particle approach control the positions of the vertex in

4



an indirect way. In other words, fluid particles’ positions on screen are result of two

integrations, unrealistic conditions happen frequently and system could suffer numerical

problem. i.e, in collision handling case, it’s not hard to observe that some vertices could

penetrate into others, which could damage the whole system. In the deformable cases,

it’s not hard to find that the whole system energy could exceed, which break the physics

law and will damage the whole simulation as well.

In general, Position-Based-Dynamics has the advantage of controllability which

overcomes collision and overshooting problems easily. Because PBD control the po-

sitions of vertices directly, which not only guarantee staying outside of the collision

objects, but also make vertex-level manipulations more easily.

[16] introduce a new method that how to use position-based dynamic to achieve

deformable material, the method called shape matching(SM). Briefly, it uses particles to

represent certain shape. After each integration, goal translation and rotation has been

calculated by using central point of the shape and it’s configuration. The numerical

positions of particles are resulted from external force like gravity and collision, this

transformation will be modified by goal transformation to match the general shape in

geometric aspect. This SM method help position based dynamic to be a more versatile

solution for both rigid and soft materials.

1.4.2 Non-Newtonian Fluid

For the Non-Newtonian fluid simulation, many particle based simulations have been

introduced.

Simon Clavet in [17] followed SPH framework for particle representation, but op-

timised the material with double density relaxation to adjust positions after artificial

pressure. For the viscoelastic terms, they introduce changeable springs between parti-

cles. Spring force is for elastic phenomenon, adjustable spring rest length is to achieve

plasticity. Viscosity is done by exchanging radial impulse determined by velocity dif-

ference. This method requires special data structure for storing the spring rest length

and adding/removing the springs. This method share the same spring idea as that for

cloth simulation.

Afonso Paiva provided a plausible result in [18] and [2] by adding an extra elastic

force term into a particle based fluid simulation. The fluid simulation used classic
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SPH framework, followed Lagrangian integration, modified final velocity with viscosity

correction and XSPH velocity correction. As for elastic term, they calculated stress

based on stress tensor. Instead of introducing a new elasticity term into the fluid equa-

tion, they change the viscosity coefficient to achieve different behaviour. For melting

model, they use jump number which is linearly proportional to temperature equation

to control the stress force.

[19] followed this method to achieve Jet Buckling simulation. The final result is

pretty plausible.

Tolga G. Goktekin in [20] provide a simple implementation based on fluid simulation

mentioned in [3]. Utilise the Navier-Stokes equation with an additional elastic term,

update the acceleration of the particle every time step. Since computing deformation

is impractical in Euler formulation, they compute strain by integrating strain-rate and

get elastic strain by finding difference of total strain and plastic strain. Von Mises’s

criterion is chosen to determine when plastic flow should occur.

Similar approach as [20] was used in [21].

1.5 Motivation

To find a new way of simulation viscoelastic fluid by using PBD model, this thesis

explored the possibility of embedding Elasticity force and Viscosity force into normal

Position-Based Fluid. This approach has not been tried in the related area. Specifically,

Elasticity force will be calculated in two ways, one is strain tensor elasticity inspired

by [20], another is a response of spring with fixed rest length inspired by [17]. Since the

highly orthogonal nature of elasticity, viscosity and other internal forces in the fluid

mechanics, those two individual internal forces can be applied directly into normal

fluid calculation loop. The reason for using PBD fluid is that PBD is simple model

with direct control on the position of particles. It provides a plausible result with

less resource consumption. If this approach achieve a plausible physical behaviour for

viscoelastic fluid, it will reduce the complexity in computation comparing to using

normal particle-based fluid [20], and will enhance the ability of describing deformable

object for PBD.
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Chapter 2

Fluid Simulation

2.1 Chapter Overview

This chapter discusses the theory and basic knowledge for position-based non-Newtonian

fluid simulation, note that most of those theory works well for Newtonian fluid as well.

In this chapter, only physical and mathematic theory will be included, next chapter

will provide an easy visualisation method. Generally speaking, this implementation

provide a good start point to develop a real-time interactive application for viscoelas-

tic material. As an experimental implementation, the priority of this method would

be put on repeatability and high effectiveness but on physical accuracy.

This chapter start with the discussion on some general concept of flow mechanics in

2.2, which clarify the approximation of Navier-Stokes equation from Newton’s second

law of motion. Meanwhile a brief discussion about the distinctive point of view in

Eulerian and Lagrangian integrations was given, which will help reader to have a better

understanding of governing equation.

After the introduction of the fluid equation, 2.3 would explain the famous Smoothed

Particle Hydrodynamics framework. Section 2.4 tells the Position-based dynamics

general algorithm and its advantages. In 2.5 section, mathematic model of each term in

Navier-Stokes equation is explained in detail, including how to use SPH in calculation.

2.6 discusses the Smoothing kernels that are used in this simulation. 2.7 shows the

implementation algorithm.
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2.2 Governing Equation

2.2.1 Quantities

To describe properties of the fluid particle movement , fundamental quantities including

mass, density, pressure and velocity needs to be updated every time step. The mass

m for each particle specify how much weight it is, directly influence the inertial of the

fluid. The density ρ measures the mass per volume, it’s defined as: ρ ≡ lim4V→L3
4m
4V .

Pressure

Pressure p is a scalar quantity which is defined as a measurement of force per unit

area, in simulation it is always described as: p ≡ lim4A→0
4Fn
4A . The force Fncould be

any external force like gravity, and act in the normal direction on the fluid surface.

Pressure act in all direction inside the water domain, and push all the particle from

high pressure area to lower one until them reaching a balance condition.

Velocity

Velocity V is an another fundamental measure for how fast a particle passes at certain

point in space on certain time. V both specify the scale and the direction, it’s a vector

quantity. The velocity field influence most of the other properties like dynamic pressure

for newtonian fluid, or viscosity force and elastic force for non-newtonian fluid. More

important, instead of acceleration impulse will be directly applied on velocity, which

means final position will relay exclusively on velocity in this model.

Viscosity

Viscosity compensates the difference of particle velocities, which is always proportional

to relative velocity over time. It can be compared to friction to some degrees. Vis-

cosity η is responsible for shear stress, which is a kind of tangential force on the flow

surface. Viscosity can be comprehended as a measure for how much momentum has

been transferred in local area. Viscosity can be stated as dynamic term η ( force) or

kinematic term v = η
ρ
.
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Surface tension

Surface tension σ is the elastic tendency appear on fluid surface which minimise surface

area possible. This phenomenon always happen at the border of different medium (

liquid-air, or various density liquid). Brief explanation is that interface molecules

attracted by greater cohesive force of the neighbouring molecules than the adhesive

force of molecules in air. The inwards force cause the surface of fluid behave as if it

was covered with a elastic membrane.

Shear stress

From two plates model 2.1 point of view, which treat material as two plates with

imaginary fluid in-between, movement of upper plates causes a stress which is parallel

to the fluid surface is called shear stress τ . τ is calculated as: τ = F
A

[
N
m2

]
. Another

variable derived from this model is shear rate γ̇ or D, which is defined as velocity of

upper plate is divided by the distance h between the two plates: γ̇ = (D =)V
h

[
s−1
]
.

Figure 2.1: The Two-plates model - laminar flow taking the shape of infinitesimally
thin layers [1]

From Newton law, the shear stress is shear rate times viscosity: τ = η · γ̇ ⇒ η =
τ
γ̇
.The vital question is whether the viscosity η does or does not change with the change

of shear rate. This question draw a line between the Newtonian and non-Newtonian

fluid behaviour.

9



Figure 2.2: Viscosity function (dynamic viscosity over shear rate): 1 ... Newtonian
liquid 2 ... shear-thinning substance 3 ... shear-thickening substance [1]

As one can find in diagram 2.2, if fluid inner resistance (viscosity) is independent of

the external force, it’s called Newtonian liquid with ideal viscosity ( curve 1). In this

fluid, however large the force applied, the deformation happens immediately.

In the contrast, non-Newtonian liquid’s viscosity changes with shear rate. Some flow

shows shear-thinning behaviour (curve 2). Their viscosity decreases when the shear rate

increases, which mean huge force could make fluid deformed faster. For other flow the

viscosity increases with increasing shear rate, that is called shear-thickening (curve 3).

2.2.2 Newton to fluid mechanics

We all know about the Newton’s second law: F = m · a. This states that an object’s

acceleration a depends on the mass m and the force F applied on. For dynamics

description, Newton’s second law is always interpreted from Lagrangian point of view.

In the classic field theory, Lagrangian specification of field is a way of looking at motion

objects, where observer focus on specific particle along with it over time and space.

This can be visualised as sitting on a bout along with the flow. On the other hand,

Euler specification of field is a way of looking at fluid motion where observer focus on

specific location in space over time. This can be visualised as standing on the bank

and stare at single location of the river.
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In Euler filed, flow velocity could be described as:

u(x, t)

this is a function of position x and time t. Alternatively, it has Lagrangian description:

U(x0, t)

in which x0 is a time-independent vector, particle’s initial position. The two specifica-

tion are related as:

u(U(x0, t), t) =
∂U

∂t
(x0, t)

This relation in flow field provide a useful material derivation ( or called particle deriva-

tion). If we have a velocity field v and some v related function in Euler specification

F (x, t), it’s rate of change can be represented as:

DF

Dt
=
∂F

∂t
+ v · (∇F ) =

∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
+ w

∂F

∂z
(2.1)

∇ donates the gradient with respect to x, ∂F
∂t

expresses local rate of change of F

and v · (∇F ) the convective rate of change of F . This is result of chain rules.

Once get this bridge function, insert acceleration function into this. We got:

F = m
Dv

Dt
= m(

∂v

∂t
+ v · (∇v)) (2.2)

If we replace the mass with density, we could write:

F = ρ(
∂v

∂t
+ v · (∇v)) (2.3)

Until now, we could describe flow force by dividing force applied on fluid into

internal forces and external force like gravity or electromagnetic force:

ρ(
∂v

∂t
+ v · (∇v)) = FInternal + FExternal (2.4)

From here, The fluid is called incompressible when ∇· v = 0 (divergence of velocity

field is zero), meaning that there are no source in the velocity field. Also, since the

pressure force and viscosity force are orthogonal ( one is normal direction of surface,
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another is parallel direction of the surface), we could simply split FInternal into FPressure

and FV iscosity:

ρ(
∂v

∂t
+ v · (∇v)) = FPressure + FV iscosity + ρg (2.5)

The pressure force as mentioned in previous section depends on the difference in

pressure p, which push the flow particles from high pressure area to low pressure area.

Therefore we model them with the negative gradient of the pressure field −∇p, whose

direction is from high to low:

Fpressure = −∇p (2.6)

As for viscosity force, it is simply threat as compensation for the velocity difference.

The Laplacian ∇ · ∇ ( written ∇2) operator measures how far a quantity is from its

neighbours’ average, thus the viscosity is modelled as:

FV iscosity = η∇2v (2.7)

Since we model non-Newtonian fluid, we would modify the Navier-Stokes equation

by adding additional Elastic force FElastic to achieve elasticity behaviour as:

FElasticity = µe∇ε (2.8)

In this, µe mean elastic coefficient, ε is elastic strain tensor.

Combine all of them, we get the Navier-Stokes equation:

ρ(
∂v

∂t
+ v · (∇v)) = −∇p+ η∇2v + µe∇ε+ ρg (2.9)

This equation is a widely popular basis for fluid models. In next section 2.3, SPH

framework principle will be discussed and 2.4 will combine this equation and SPH to

produce mathematic model that this thesis used.
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2.3 SPH

Smoothed Particle Hydrodynamics is a technique introduced by Gingold and Mon-

aghan [8] and Lucy [22] for astrophysical dynamic problems. In the SPH model of

fluid simulation , the value of any physical quantity A(r) at a position r have to be

interpolated from set of neighbouring particles. Its summation interpolation is:

A(r) =
∑
j

Aj
mj

pj
W (|r − rj|, h) (2.10)

As one can notice from the function, the contribution of other particles to the

interested quantity is weighted by the distance to the central particle, which is governed

by the kernel function W mathematically. To save computation, Kernel Function goes

down to zero if the distance is further than the kernel length h ( unlike Gaussian

kernel, where a tiny contribution even at the infinite distance will be included). The

3D kernel looks like diagram 2.3.

Figure 2.3: Quartic smoothing kernel: the particles farther than the smoothing length
h are discarded. [2]

The biggest advantage of SPH is the spatial derivatives can be simply calculated

by using the smoothing kernel. Thus the differentiation of any physical quantity could
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be computed as:

∂A(r)

∂x
=
∑
j

Aj
mj

pj

∂W (|r − rj|, h)

∂x
(2.11)

The gradient becomes:

∇A(r) =
∑
j

Aj
mj

pj
∇W (|r − rj|, h) (2.12)

Similarly, the Laplacian becomes:

∇2A(r) =
∑
j

Aj
mj

pj
∇2W (|r − rj|, h) (2.13)

According to [23], this approximation is called classical gradient approximation

formula (CGAF). This approximation is not perfect for all the quantities of the particle

simulation. Since some basic physical law like symmetry of forces and conservation

of momentum are not guaranteed, we would like to give some modifications to this

approximation.

Derived from derivative rule of a product, we could write gradient as

ρ∇f = ∇(ρf)− f∇ρ

Thus another way of computing gradient with smoothing kernel is approximated as

∇Ai(r) =
∑
j

(Aj − Ai)
mj

pj
∇W (|r − rj|, h) (2.14)

This is called the difference gradient approximation formula (DGAF). This approx-

imation could be similarly apply on Laplacian function in the SPH model.

In many cases of physical description, we have to consider the symmetrical format

of the model. To deal with the symmetric force law, derivative of a quotient function

has been considered:
∇f
ρ

= ∇(
f

ρ
) +

f∇ρ
ρ2
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which leads to a new form of gradient calculation:

∇Ai(r) = ρi
∑
j

mj(
Ai
ρ2i

+
Aj
ρ2j

)∇W (|r − rj|, h) (2.15)

This is called symmetric gradient approximation formula (SGAF) .

When is comes to choice of the proper formula in the simulation, the [23] has

conclusion that DGAF is much more accurate than the other two formula. In their

comparison, the SGAF and CGAF both show great error at the boundary area, and

even increased further along with the test parameter increase. However, one should

note that the conclusion in [23] is drew from a simple comparison, and the condition

is limited.

In this thesis, most of the approximation formula will use DGAF, however only few

of them we choose to use SGAF for the symmetrical consideration.

One may notice that by using SPH, we could simply solve the force equation men-

tioned in last section. The only problem left here is how to choose the correct kernel

function, which will be discussed in the 2.6 section later.
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2.4 Position-based Dynamic

As mentioned in the motivation in the first chapter, this thesis insist to use the PBD

fluid as the foundation for the viscoelastic fluid. The reason to stick on PBD instead

of the more common particle method will be obvious once we know the advantage of

the PBD.

Traditional approach

Traditionally, the when we talk about using particle system for any simulation, we

intuitively treat particle as a smaller solid ball which follow Newton motion law. This

simple way of manipulating particle as solid object is studied widely and researchers

try to a unified way of dealing with all object. However, it is not hard to notice the

conflict here, solid object are almost represented only by shape meshes covered, but

for water-like object, particles inside have totally different behaviour.

In traditional approaches, every particle is controlled by the newton’s second law.

In every time step, accelerate is calculated trough looking for the forces that possible

appear. These forces can be divided into external and internal. Elasticity and viscosity

force are typical internal force which is the main focus of this thesis, Gravity and

collision force is the universal external force that every simulation would have. Through

various force models, the accumulated accelerate will be get and applied to the velocity.

Afterwards, the position can be computed by the velocity.

This typical way of integration actually never modify the position which will be the

outcome for the scene, twice integrations could generate numerical problems. Also less

consideration of treating material as a whole object will bring the overshooting and

energy gain problems along simulation goes. To solve this and get more control, some

model use impulse to direct change velocity.

Another problem is that its really hard to manipulate the object if some position

based moves are used. In scene like water particles are poured onto cloth object ,

collision response at the interface would become a headache. Or the cloth would like to

be attached on the surface of another object. Considering these, a approach which has

direct control of the position and treats all the particles as whole object in microscopic

point of view is needed.
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PBD general approach

The main advantage of PBD is it provides a way which naturally maintain the energy

conservation, and overcome the overshooting. In general way, it treat the material as

a whole and try to use constraints to describe expected behaviours.

The core technique of PBD is the constraints which control the behaviour of the

particles, they directly manipulate the positions. If we have a particle i ∈ [1, . . . , N ]

with position xi and velocity vi, the constraints functions are write as Cj(xi, . . . , xn).

Through the constraints calculation, some parameters are get and it will be applied to

the change of position 4xi.
The general dynamic simulation loop could be model as algorithm 1 with step 4t

Algorithm 1: PBD general simulation loop

1 repeat

2 forall the particles i do

3 vi ← vi +4tfexternal ;

4 end

5 forall the particles i do

6 xpredicti ← xi +4tvi ;

7 end

8 forall the particles i do

9 CollisionConstraints xpredicti ← xi ;

10 end

11 for i < IterationsTimes do

12 forall the particles i do

13 Apply Constraints : xpredicti ← Ci(x
predict
i ), . . . , Cm(xpredicti ) ;

14 end

15 end

16 forall the particles i do

17 vi ← xpredicti −xi
4t ;

18 xi ← xpredicti ;

19 end

20 Some velocity Optimisation and Correction;

21 until Simulation time over ;
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The most important part of this algorithm is the iteration loop in line 11-14. The

estimated positions xpredicti is the manipulated objects, xpredicti are updated in each

iteration loop to satisfy all the constraints Cj(xi, . . . , xn). In this way, the xpredicti will

be converged into a optimised value after iterations.

Once the satisfied xpredicti is got, 16-19 instruction will update velocities by the

difference of position and estimated position accordingly.

The external force in the 1-4 lines manipulate the velocity directly as the normal

way, since the it can not be converted into a constraint. Apart from that, in end line

20, some correction for the velocity may be needed. This is like a compensation for the

velocity directly which guarantee a more reasonable behaviour.

In the whole loop scheme, the constraints are fixed, depending on expected be-

haviour. In other words, this converting all the force calculation or physical equation

into certain proper constraints if possible. Another advantage of this model is the

whole simulation will become more stable, and it does not rely on the time step size,

but rely on shape of constraints.

Considering all these, PBD is supposed to be more flexible, more stable and easier

to implement.
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2.5 Fluid Mathematic model

In this section, mathematic model for Navier-Stokes with SPH will be presented. In

most of the fluid simulation, properties like density, pressure, tension force and incom-

pressibility are achieved in different ways. This thesis strictly followed models in [24],

which are specially designed to fit in the position-based approach.

The algorithm detail could be seen in the 2.6 section, according to the algorithm,

there is no acceleration in the solver, only impulse which modify the velocity directly.

Therefore, we calculate the elasticity force as an internal force density, which has the

same meaning as acceleration.

All the added internal forces will be in a force density format, which could be

directly applied on velocity. The force density is represented as force vector divided by

the density of the particle:

ai =
dvi
dt

=
Fi
ρ(ri)

(2.16)

In which the density can be calculated with smooth kernel function. Note that

density is one of the core quantities in fluid simulation, it will be updated and store

separately in each time loop as follow before other updates:

ρ(ri) =
∑
j

mjW (ri − rj, h) (2.17)

Density and Incompressibility constraints

According to [24], the density relaxation is achieved by the density constraint after

Forces has been applied. This constraint is aim to achieve incompressible behaviour,

which is very important for the fluid simulation. They used a non-linear constraints

From[25], which can be calculated as 2.18 for each particle.

λi = − Ci(pi, . . . pn)∑
k ‖∇pkCi‖2 + ε

(2.18)

ε is a user defined parameter to soften the constraint, the mathematic detail is in
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the [26]. Numerator could be computed as:

Ci(pi, . . . pn) =
ρi
ρ0
− 1 (2.19)

in which the ρi is the density at position ri, ρ0 is the rest density for the particles,

in this thesis, it is defined as a constant parameter. The denominator can be computed

as:

∇kCi =
1

ρ0


∑

j∇kW (pi − pj, h), ifk = i

−∇kW (pi − pj, h) ifk = j
(2.20)

These terms can be simply computed by using the gradient approximation as men-

tioned in section 2.3. The effect of this density constraint is to maintain the incom-

pressibility of the water. By guaranteeing the density of certain area to be a constant

value, tiny displacement will be applied to the position of the particles. After several

iterations each loop, relatively plausible result could be expected. The advantage is

that this is a intuitive way of describing water behaviour, which will be close to the

physical phenomenon naturally.

Tensile pressure

Surface tension is phenomenon at the surface of fluid materials, it can be simply com-

prehended as greater tension force between fluid particle than force between fluid-gas

particles cause surface curves. One can easily note that particle-based simulation could

suffer from this artifact, since no gas particles are simulated. The vacuum outside of

the fluid body does not maintain any force to balance the interface particle, where the

particle will be applied large inwards force from the density constraint in last subsec-

tion.

To solve the tensile problem at the board of fluid body, which caused by asymmetric

density distribution of particles, some researcher[27] use ghost particles wrap the fluid

domain to solve it. Such solution is quite intuitive, adding invisible air particles around

the boundary, but also increase the complexity of the approach. In contrast, the model

in [24] use an artificial pressure constraint which inspired from [28] to solve this artifact:

scorr = −k(
W (pi − pj, h)

W (∇q, h)
)n (2.21)
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in which the |∇q| = 0.1h, it’s a point at some distance inside the smoothing kernel

function. This constraint could be simply comprehended as a compensation force will

be applied on particles with no particles appear within the smoothing kernel radius

which are interface particles. Till now density and tensile pressure constraints will be

applied directly to the position update by SGAF as:

4xi =
1

ρ0

∑
j

(λi + λj + Scorr)∇W (rij, h) (2.22)

Viscosity and Elasticity

Viscosity behaviour is for the velocity difference compensation. By measuring the

difference of the velocities of a pair of particles, we could get the information of the

direction and magnitude of the relative displacement.Thus magnitude of compensate

force is simply proportional to velocity difference. Those falling apart particles will

be pulled together, and getting close particle will be pushed away. In this thesis, it

calculated just as state of art of particle fluid simulation in [3] using DGAF :

F V iscosity
i = η

∑
j

mj
vj − vi
ρj
∇2w(rij, h) (2.23)

In which the η is the coefficient of viscosity, in this thesis, it will be modelled as constant.

Although the behaviour of η determine which type of non-Newtonian fluid it belongs,

this implementation decide to separate elasticity and viscosity as two orthogonal force

terms.

For the Elasticity force in this thesis, two models will be implemented separately.

This section will explain the strain tensor approach, which has many mathematic

equations involved. The another fixed spring model will be explained directly in im-

plementation section, since it’s simple to understand. This strain tensor force followed

method in [20],:

FElasticity
i =

∑
j

mj

ρj

µj − µi
2

Selastici · ∇w(rij, h) (2.24)

Except Selastici term, other terms are easy to calculated in SPH. µi is the elasticity

coefficient of the material. The main problem is the elastic strain tensor term Selastici .
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It is a measurement of deformation of material, normally it can be derived from the

spatial derivative of the deformation function of the material. However, there is no

such function, since the large deformation and randomly motion of this fluid model.

Thus the strain rate is used to compute strain of the object, and the strain tensor at

certain time t will be integrated as:

SElastic = SElastic0 +

∫ t

0

ṠElastic dt (2.25)

the initial tensor S0 will be set to 0, and rate ṠElastic will be calculated from:

ṠElastic = ṠTotal − ṠPlastic = (∇v + (∇v)T )/2− α S ′

‖S ′‖
max(0, ‖S ′‖ − γ) (2.26)

where S ′ is:

S ′ = SElastic − Trace(SElastic)

3
I (2.27)

∇v, the 3× 3 Jacobian matrix, is:

∇v =
∑
j

mj

ρj
(vj − vi)⊗∇W (r, h) (2.28)

⊗ is the outer product, which is important for Jacobian Matrix. ‖S ′‖ is Frobenius

normal. α is elastic decay rate normally set to 2µ. γ is yield point, which is supposed to

determine the different behaviour of plasticity and elasticity. As many matrix related

calculations are involved here, matrix algebra library is needed. The math library used

in this simulation is discussed in implementation chapter.

Velocity correction

The last term that need to add is the Velocity correction after every time step. XSPH

viscosity was used:

vi = vi + c
∑
j

(vi − vj) ·W (r, h) (2.29)
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2.6 Smoothing kernel

The smoothing kernels used is the key factor in the SPH method, it may influence

the speed, stability or even physical outcome of the simulation. Therefore, carefully

choice of the smoothing kernel is a must. In the begging works of SPH, a Gaussian like

functions are used more. It defined as:

W (r, h) = σe−q
2

(2.30)

where q = ‖r‖
h

and σ varies in different dimensions. 1

π
1
2 h

for the 1D, 1
πh2

for the 2D,

and 1

π
3
2 h3

for the 3D. The different order of σ is to simply guarantee the integral of the

kernel is equal to 1(
∫
W (r, h) dr = 1).

However, the Gaussian kernel has some drawbacks for SPH computation. First

is the exponentiation, which makes it computationally expensive for simulation. The

another problem is the small contribution in the part of outside smoothing length h,

which would let the computation happen for far neighbours.

Following widely used kernel functions as mentioned in [3], the Poly6 kernels is :

Wpoly6(r, h) =

 315
64πh9

(h2 − r3)3, 0 ≤ r ≤ h

0, otherwise
(2.31)

related gradient and Laplacian are:

∇Wpoly6(r, h) = −r
945

32πh9
(h2 − r2)2 (2.32)

∇2Wpoly6(r, h) = −r
945

8πh9
(h2 − r2)(r2 − 3

4
(h2 − r2)) (2.33)

As one can notice, those functions are much cheaper than Gaussian ones, and in

this thesis, these kernels are used for everything except pressure force and Viscosity

Force. As mentioned in [3], pressure force approximation will be vanished when two

particles get close, since the gradient kernel approaching zero at 0 value. To solve this,
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they introduced Spiky kernel as follow:

Wspiky(r, h) =

 15
πh6

(h− r)3, 0 ≤ r ≤ h

0, otherwise
(2.34)

its gradient:

∇Wspiky(r, h) = −r
45

πh6r
(h− r)2 (2.35)

The problem for viscosity force is the negative value of the Laplacian function,

which physically means negative compensation will be apply for the particle. The

total conservation of energy will be broken because of the force from nowhere. Thus,

special kernel for viscosity is:

Wviscosity(r, h) =

 15
2πh3

(− r3

2h3
+ r2

h2
+ h

2r
− 1), 0 ≤ r ≤ h

0, otherwise
(2.36)

its Laplacian:

∇2Wviscosity(r, h) = −r
45

πh5
(1− r

h
) (2.37)

For better understanding, these kernels are plotted as 2.4.

Figure 2.4: Wpoly6,Wspiky,Wviscosity kernels function (Thick) , gradient (Thin) and
laplacian (Dash). [3]
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2.7 Implementation algorithm

This section will present the basic algorithm in each integration loop. The whole

algorithm is built upon the PBD fluid simulation described in [29].

Algorithm 2: Simulation loop

Result: Particle Position xi

1 forall the Particle i do

2 Apply External Force : vi ← vi +4tfexternal ;

3 Predict Position: x′i ← xi +4tvi ;

4 Confine particles in boundary ;

5 end

6 forall the Particle i do

7 Clear Neighboring particles ;

8 Search neighbouring particles: Ni(x
′
i) ;

9 end

10 while I < IterationNumber do

11 foreach particle i do

12 Clear 4x : 4x← 0 ;

13 Particle-Particle Collision Handle : 4x← C(x′i, Ni(x
′
i)) ;

14 Calculation Density: ρi(x
′
i, Ni(x

′
i)) ;

15 Apply Density Constraints: 4x←4x+DensityC(x′i, ρi, Ni(x
′
i)) ;

16 Apply Tensile artificial pressure: 4x←4x+ TensileC(x′i, ρi, Ni(x
′
i)) ;

// Apply fixed spring constraint:

4x←4x+ SpringDisplacementC(x′i, ρi, Ni(x
′
i)) ;

17 Apply 4x: x′i ← x′i +4x ;

18 end

19 end

20 forall the particles i do

21 Update Velocity: vi ← x′i−xi
4t ;

22 Apply Internal Force: vi ← fV iscosity(x
′
i, vi, Ni(x

′
i)), fElasticity(x

′
i, vi, Ni(x

′
i)) ;

23 Calculated XSPH Velocity Correction ;

24 Update position xi ← x′i ;

25 end
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As one can notice, this simulation loop is similar to the general PBD model as

described in 2.4. The core techniques are maintained, little modifications has been

applied. Lines 6-9 is the process of neighbours searching, which is extremely important

for the SPH Model. Every calculation that involved smoothing kernel will use the

information of the neighbours. Thus before calculation constraints, we update the

neighbours information for this loop and save it as a list of index. The detail about

the neighbour searching is discussed in implementation chapter.

In the constraints iteration, mainly three constraints are computed here. Note

the collision handle is treated as one kind of constraint. In this thesis, the collision is

implemented very simple, since the limitation of the PBD approach itself, more accurate

collision constraint is needed. The discussion of the collision can be found in 5.6 section.

All the constraints are simply applied to predicted position x′i as the general model.

Note the comment spring constraint line, that is for fixed spring elasticity model. The

detail of that is in algorithm 3 in implementation chapter.

After constraints calculation, the velocity is determined by the difference of the

predicted and previous position. The important modification is the internal force

computation in line 22. This is actually done by several CUDA kernel functions,

detail of mathematic model is discussed in the previous chapter. These two terms will

apply directly on the new velocity and update it. Theoretically, this velocity update is

equal to applying the acceleration as Newton motion law. Apart from internal force,

additional velocity correction is done for more accurate result.
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Chapter 3

Visualisation

For all the fluid simulation, a plausible physical behaviour requires a realistic Rendering

result. Visualisation probably become the crucial part to show a simulation work. It

involves not only the the structure of data but also the better approximation of light

calculation.

In the fluid visualisation, Marching Cube method is most popular one, which con-

structs polygon meshes from iso-surface. This method utilises density of the particles

in 3D which is computed in GPU expensively. In Lagrangian Models, the surface nor-

mally determined by the smoothing kernel functions of particles. On the other hand,

for Eulerian models, zero level set is used for the same purpose.

Mentioned by Mller in [30], a camera-independent way, called screen space Mesh,

is introduced to achieve a water-like result. This method save the memory by only

calculating the particles in the view space and constructing the surface in front of the

viewer.

In this thesis, the rendering for simulation mainly followed [31], which is a prac-

tical rendering method inspired by [30]. In this GDC talk, Green use DirectX as the

rendering API, but in this thesis, OpenGL will be used. Green rendered the particles

directly as spherical sprites instead of generating meshes by Marching cube algorithm

as [30], which is more easy to implement.
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3.1 Rendering pass

In this implementation, the rendering pass is run as diagram 3.1

Figure 3.1: Rendering pass

All the calculation involved happen in the shader program, the only input from

the physical simulation is the position value of the particles. The scene color pass is

the environment color around the water domain. It could be the cube map in many

applications, also it could be any reasonable color from the environment objects. These

colors will be save into the scene map as 2D texture passing to the final water shader
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for blending. In this thesis it simply be treats as a floor with single color. In the

following sections, every important process and method will be discussed in detail.

3.2 Basic knowledge

Render to texture

In this thesis, depth map and other color maps are important for the final rendering

result. The technique help to get those maps is the render to texture. This a useful

and simple technique.

To have a overview of this technique, one must understand the how the frame buffer

work in the modern OpenGL, which is nothing but 2D arrays of pixels. In short, there

are two kinds of framebuffer object(FBO) in the rendering pipeline. One is the default

framebuffer that for displaying on the screen. Another is non-displayable framebuffer,

which store the same information but without showing color on screen.

The second framebuffer object is used in this thesis, since it save the process of

copying information from screen to texture and store all the needed information directly

to texture.

Instead of using screen as the destination of informations, framebuffer-attachable

images are used as the destination. There are two kinds that both are used in this

thesis. One is the Texture Image, the outcome of the rendering will become a texture

map in the end. Another is called Renderbuffer Image, in which OpenGL will perform

offscreen rendering. In this thesis, we only use the Texture Image as the destination,

since we will reuse the datas.

The famebuffer object contains color, depth and stencil information that could be

used. The the way of using the application-created FBO is very similar to the default

FBO, all the ”create”,”bind” ”draw” processes are the same, only difference is that

result will be stored in the Texture Image which ”generated” in the initialisation

phase.

Coordinate transformation

Since the intensive use of the texture map ( depth, thickness, scene maps), how the

transform the coordinate of the texture into the view coordinate is the background
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knowledge.

First thing we have to note is that the texture map a normalised map range from

[0-1] which all the value are stored on. In this thesis, the coordinate of each pixel in

the 3D space can be accessed by transforming the coordinate from the texture map.

Another concept needed is the space transformation in the openGL API, the posi-

tion in world space will be transformed into view coordinate, then clip coordinate,

which is the 2D coordinate show on screen.

Thanks to the way we generate texture maps, which save all the information in

the point of clip coordinate. Thus, there is obvious connection between the texture

coordinate and the clip coordinate ( screen coordinate). The only thing we need

to do is define the function that transform pixel in texture coordinate back to view

coordinate, where we could calculate the phong shading light model.

The core function is showed in following code:

vec3 uvToEye ( vec2 p , f l o a t z ) {
vec2 pos = p ∗ 2 .0 f − 1 .0 f ;

vec4 c l i pPos = vec4 ( pos , z , 1 . 0 f ) ;

vec4 viewPos = i n v e r s e ( p r o j e c t i o n ) ∗ c l i pPos ;

r e turn viewPos . xyz / viewPos .w;

}

This function has two inputs, texture coordinate as vec2, and it’s depth value as float.

By using this, function returns the 3D position vec4 in view coordinate. The first

line is to transform range [0-1] into range [-1,1]. The normalised clip coordinate can be

easily got in line 2. The reason we it can be done like this is that depth value is actually

the z value looking from the screen point of view. Once get the 3D position in clip

coordinate, we multiply the position with inverse matrix of projection transforming

matrix. Finally, the position in the view coordinate can be get by dividing the

position with w value, which give the normalise position.

3.3 Depth Map

In screen space method, the core technique is to build the depth map from the particles

position in shader.
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To do this, we use particular depth shader to render depth map and save it into

texture by frame buffer. In the vertex shader, positions are treated as usual, but pass

the position values in view coordinate to fragment shader. In fragment shader, we

calculate the depth value and change it into clip space. Since we assume the particle as

a perfect sphere, simple geometry calculation is used to get every fragment position on

the sphere boundary. In short, the pixel position interpolated in fragment shader will

be got automatically, which provide the p(x, y) value, after that, Pythagorean theorem

will give the z value if we assume radius of sphere is 1.

Once pixel Positions are computed, all the position will be transferred into clip

coordinate from view space. Finally, all the Z values needs to be rescaled in range of

0− 1 and assigned into gl FragDepth.

3.4 Smooth the Depth map

Once the depth map got, next step is to apply some filter on the map for smoothing the

surface shape of the water. Otherwise, the artifact of individual sphere shape would

be too obvious in the final result.

Silhouette of the water domain is supposed to be saved, but noise is supposed to be

reduced. In other words, strong edge feature saved, but small features averaged. To

achieve this effect, we applied Non-linear bilateral filter to the depth map respectively

in X and Y direction.

Bilateral filter is a edge-preserving noise-reducing technique in image processing,

some image processing software call it Gaussian Blur. In short, this filter replaces

the intensity of each pixel by average intensity difference values of its neighbouring

pixels. The normalised filtered intensity can be calculated as:

ID(i, j) =

∑
k,j I(k, l) ∗ w(i, j, k, l)∑

k,l w(i, j, k, l)
(3.1)

In which the w(i, j, k, l) can be computed as:

w(i, j, k, l) = e
− (i−k)2+(j−l)2

2σ2
d + e

− ‖I(i,j)−I(k,l)‖
2

2σ2r (3.2)

In this thesis, ID is the depth value, and it only considers 6 neighbours separately
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in either X or Y axises. Also terms in w(i, j, k, l) will be simplified as difference of

the depth value and neighbouring distance, both of them are manipulated in texture

coordinate.

In the Shader, most of the work is done in fragment shader. A simple loop will be

used for every pixel to look 6 nearest neighbours of it. Finally the smoothed depth

value will be stored into depth map again. To save computation resources, we chose to

do this in x and y axises separately, although it’s not orthogonal perfectly.

3.5 Thickness map

To make this simple rendering more realistic,it’s better not simply apply transparent

color to the water domain evenly. Since the light will be absorbed by the water, namely

the thickness of the water will influence the color ( or how much we could look trough

it), thickness map will be calculated in this implementation.

The thickness value could be easily get by rendering with glBlendFunc and

glBlendEquation and render it into thickness texture. The source and destination

color factors are both chosen GL ONE, blend equation we simply use GL FUNC ADD

.

3.6 Water Shader

Once uploaded the depth map and thickness map as textures into the final shader,

we are ready to combine them together to create water surface. At this stage, the

rendering approach is like what we render a water or ocean surface on flat polygons.

The only difference is to extract the correct position and normal value from 2D texture

coordinates.

In the Final fragment shader, the normal of the water will be calculated. Just as

the method one use in greyscale map, depth value at each pixel and its four neighbours’

will be use. The change rate of the adjacent depth value 4Z can be treated as hight

gradient of the water. Once 4Zx and 4Zy are got, cross function will give the correct

normal direction. Note that, all the calculation are happen in View coordinate, thus a

coordinateTransfer function is supposed to be pre-defined for convenience .
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After normal vector is calculated out, the pixels color will be determined as phong

shading light model including Ambient, diffuse, and specular light contributions.

The following subsections are going to talk about the reflection and refraction model

which makes the water more realistic.

Fresnel

The the fresnel effect require a model to keep balance between reflection colour and

refraction color. Therefore we use the equation 3.3

Cwater = (1−R)Crefraction +RCreflection (3.3)

Where CWater is the color of the water. R is the reflection coefficient . Follow

Schlick’s approximation, it can be approximated as:

R = R0 + (1−R0)(1− cos(θ))5 (3.4)

R0 is the reflectance of light coming with normal incidence, and con(θ) can be get

as:

cos(θ) = dot(N, v) (3.5)

reflection

As any kind of water shading, reflection color could be divided into 3 major contribu-

tions, namely environment, light source, and self reflect. The model is:

Creflection = Cenvironment + ClightSource + CLocalReflect (3.6)

Environment colour could be get from the cube map, however for simplification in

this thesis, we threat it simply as sky color ( blue ). As for the light source color, we

model it simply as parallel sunlight. Thus, Sunlight reflection color could be calculated

as phong shading model as:

ClightSource = CSunLight(R̂reflection · V̂ToV iew)shininess (3.7)

In which the R̂reflection is the direction vector as a reflection of light on certain
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surface. V̂ToV iew is the direction vector towards to viewer. As for the local reflection

happening in the object itself, it normally requires Ray - Tracing method in fluid

simulation and cost lot more computation. In our thesis, we did not include this part

as contribution for simplification reason.

Refraction

To achieve refraction effect of the water, we converted it into a transparent task. For

better visualisation, thickness of the particles is considered.

First, we computed the thickness value and save it as a 2D texture in screen space.

Followed Beer Lambert law, we attenuate the color of the water depending on the

thickness value. By doing this, those droplets or thin parts of the fluid domain will

show much lighter color. Blending this water color with scene color will achieve a more

realistic half opaque water surface. Since visualisation is not the core of this thesis, we

used this way to approximate refraction effect.
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Chapter 4

Implementation

4.1 GPU and CUDA framework

GPU is designed for large parallel computation since its special hardware structure.

CUDA is Nvida’s Application programming interface for general parallel computation

directly on GPU. As the parallel nature of SPH method for all the particles, utilising

GPU could help physical simulation running in a fast way. However CUDA requires

a relatively careful design for the program flow, different way of access memory could

result in divergent performances.

As mentioned in particle CUDA sample in [4], there are two ways for the grid

problem. One is the atomic operation for building the grid that particle belongs to.

Another is the Sorting method for the grid construction.

In this thesis, Atomic operation method is used for the grid. This method is rel-

atively simple one that in every update time step, there is a kernel function called

UpdateGrid . In the UpdateGrid , one thread per particle is run and it calculate

which grid cell this particle belongs to, and increase the cell counter number by using

the atomicAdd function simultaneously. The 2D diagram for Atomic grid is provided

as 4.1.

There is a potential problem of this method, if too many particles are concentrated

in the same grid, it gonna transfer this method into a serial method( particle will be

handle one after another). To avoid this situation, the maximal number of particles

per grid is limited.
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Figure 4.1: 2D Grid Construction Atomics [4]

4.2 Neighbour Search

As mentioned in the previous section, 3D grid with the side length, which is the same

as smoothing length, will be reconstructed depending on references of that particles

attached.

Such format of the particles will help to reduce neighbour search cost. For certain

particle, its neighbours could only appear on the its adjacent 3 grids, which contains

particles, in one of the three axises. Thus in 3D, the maximal number of the adjacent

cells is 26( 3 × 3 × 3 − 1). In the complexity point of view, this format reduce the

summation from O(n2) to O(nm), m is the maximal number of particles in each cell.

The diagram for 1D as follow 4.2

4.3 Data Structure

As mentioned in above section, program flow should be specially designed for using the

GPU computation, so as the data structure. Since the data structure will influence the

memory allocation directly, modified structure is better than simple arrays.

Generally speaking, there are two memory layouts. One is use an array of particle
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Figure 4.2: 1D Neighbour search in grid form [5]

structure, in which necessary properties are saved. Another one is separate but parallel

array of properties for all the particles. Since every time step, properties of single

particle are needed, it’s better to pack the quantities particle by particle.

Concerning the properties of position based simulation, at least position, velocity

and density are needed to be stored. Among which density is a scale, velocity is a

first-order tensor. Thus we use float and vector( float3 ) to store them, and all of them

are saved as a dynamic array std::vector.

Specifically, the positions are actually allocated in an OpenGL vertex array object

(VBO) so that they can be rendered from directly.

Lastly , to calculate fElastic terms, additional 3 × 3 matrix strain tensor(second-

order tensor) needs to be stored for each time step. Therefore, the structure of each

particle is extended.

The whole fluid are treated as a continuous material instead of focus the behaviour

of individual particles, thus we describe each particle with following quantities in struc-

ture table 4.1

4.4 Math Library

For all the particles calculation, vectors and even matrices will be appear nearly every

step. How to use an efficient linear math library for computation will give a different

result. Also for CUDA, which is a parallel structure processed, there are not too many

options out there.
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Symbols Quantities(unit) Data type

xpredict(t) predicted position (m) float3
v(x, t) velocity (m/s) float3
ρ(x, t) density (kg/m3) float
p(x, t) pressure (N/m2) float
S(x, t) stress tensor (N/m2) mat3

finternal(x, t) internal force density (N/m3) float3

Table 4.1: Table of quantities per particle

In the beginning, there are two popular build-in linear math library which provide

basic but enough linear functions. They are cuBLAS and cuSPARSE, which are GPU-

acceleration version of BLAS and SPARSE Matrix library.

After testing several functions in these, it’s easy to found that their functions are

more suit for large mount of algebra calculation. However, the matrix related calcu-

lations in this thesis are only multiplication, transpose and normalisation, they are

very basic functions. Also, the store and access method in those libraries are too

complicated, which is not suitable for data structure of this simulation.

Considering these, we turned to another popular and powerful library GLM, the

only problem is that we need to replace all the float3 vectors that already used in this

thesis, float3 and glm::vec3 are not compatible.

So in the end, I decided to extend the math helper.h CUDA math library, which

only contain some vector ( float3 ) functions. The comparison of performance on GPU

between GLM and My extented library will be showed in the conclusion chapter later.

4.5 Felastic term

Strain tensor

Inspired by the [20] and [21], in this simulation, elastic force will be calculated as it

mentioned in section 2.4. It will be applied as an internal force after computing external

force.
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Spring represent

Apart from that, inspired by another Position-based viscoelastic fluid simulation [17],

in which they use spring model to represent elastic force, and by adjusting spring rest

length to represent plastic behaviour. Thus, in this thesis, spring interpolated between

particles with fixed rest length is used. This force will be applied directly on the 4p(
change of position) after calculated external force.

Specifically speaking, one more spring constraint will be added as a way to control

the particles. For every particle, we simply add a spring with fixed spring length L

between them and calculated the displacement for it. The displacement magnitude of

the spring force is proportional to the difference of the spring length L and particle

distance r. Further more, we scale the magnitude with ratio of the current spring

length to initial spring length. The detail is in the Algorithm 3

Algorithm 3: Spring Elasticity constraint

Result: Spring Elasticity force

1 After Neighbour searching... ;

2 forall the particles i do

3 foreach particles j in the Neighbours do

4 D ←4t2Kspring(1− Lij/Linitial)(Lij − rij)r̂ij ;

5 4xi ←4xi − D
2

;

6 4xj ←4xj + D
2

;

7 end

8 end
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Chapter 5

Conclusion

5.1 Result

This viscoelastic Fluid simulation is run on Device Nvidia Quadro K2000. With 10000

particles and all the forces applied, the simulation run at around 7.4 FPS ( with

sprite rendering). At the same time without rendering, it runs around 8 FPS. The

performance result could be see in graphic 5.1

As one can easily notice, the FPS go down quickly when the number of particle is

go beyond 2k on this device but become stable around 8 FPS. If the simulation number

goes upper than 18K, simulation will become unstable. Another thing need to point

out here is that it turns out rendering doesn’t take too much computation time down.

The visualisation result is showing as screenshot 5.2 and 5.3

The scene is simulated as a cubic of viscoelastic material in a small invisible cubic

container with a whole in the center. As the result of gravity, the material will be drag

down to the lower level, which is little bigger invisible cubic container. The wall could

be moved back and force to see the reaction of the materials.

As one may notice that this result is not behaving like an object with elasticity,

but viscosity. It more or less shows the artifacts in the simulation, especially when

the material interacts with the boundaries. Actually, no matter spring elastic force or

strain tensor elastic force, both of them don’t apply obvious elasticity to the material

in the end. The possible reasons will be discussed in the next sections.
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Figure 5.1: Performance of simulation on Nvidia Quadro K2000

5.2 Spring Elasticity Problem

As one can notice in the digram 5.4, the spring force did has influence on the material,

however it looks like all the internal force give the same direction force which push all

the material to the conner of the cube, which is not correct. This approach has been

discarded in the early stage of my implementation.

In the thesis, the spring force is simply applied on each particle determined by all

the neighbours it has, however, this may not consider the symmetrical problem in the

beginning. The original method in the paper [17] adjust the spring length in every

time loop, in some cases, the spring will be removed from the data array. The original

method requires the data structure with good research and insert/remove performance

which is not a good fit in this implementation. By adjusting spring length, the previous

spring length memory is needed for every potential neighbour, which means every

particle is supposed to have a memory space for saving all the other particle’s spring.

They whole advection loop will be added O(n2) complexity in the end.

Another thing is that, even without gravity, the whole material still get this accu-
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Figure 5.2: Simulation visualisation result

(a)

(b) Reaction of the moving wall

Figure 5.3: Simulation visualisation results
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(a) With Gravity (b) Without Gravity

Figure 5.4: Simulation with fixed length spring results

mulated force anyhow. However in theory the elasticity is reaction to the deformation

(external force), it is not supposed to happen without force applied. It happened in this

thesis, the reason could be the fixed rest spring length, which is half of the smoothing

length( the neighbour searching length). Note that the major factor of the position

based simulation is the density, and all the quantities is depend on the neighbours (

SPH nature ). Thus the particle’s distribution could be all exceed the fixed spring rest

length all the time. So such behaviour happened.

This spring representation idea is similar as that for cloth simulation, it seems

practical. However the big difference is that particles’ positions in cloth are relatively

fixed, means the springs are actually part of the structure of the cloth, they could

be easily found, they are attached with particles. The fluid model is never fixed,

neighbours changes all the time, which means the spring has to be updated all the

time, if there is no specially designed searching structure as [17], it could not be simply

used for elasticity here.

To sum up, the drawback of using spring elasticity representation is that with

adjustable spring, the data structure does not fit, with fixed spring, the model is not

accurate enough for the elasticity behaviour.

5.3 FElastic Problem

Once when turn to use the strain tensor elastic force, the outcome is much stable

although it’s not perfectly plausible as expected. No matter what combination of
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(a) Viscosity η = 700, Elasticity µ = 104

(b) Viscosity η = 700, Elasticity µ = 106

Figure 5.5: Elasticity effect without Gravity

the elasticity coefficient and other parameters, this simulation doesn’t show too much

elastic reaction. The outcome is not like that in the [20] we followed.

In expectation, the cubic material is supposed to keep the rough shape when it

collide with the solid, when the yield stress is set to high(means the toleration of

deformation is high). But it’s hard to notice the obvious inner force that hold the

shape. It just runs like honey. Thus, there is no bouncing behaviour in simulation.

No obvious bounce dose not mean the Elasticity force has not been correctly im-

plement, it has the effect. Since the PBD is so sensitive to the external force, we zero

out the gravity. The comparison shows the effect 5.5. When the elasticity is increased,

the faces of the cube fall apart orderly outwards center, this because the tension force

on the border particles make the deformation all the time. Theoretically, elasticity

is a force to react deformation, higher elasticity tolerate larger deformation but push

material back into initial shape. The orderly falling apart proof the correct effect of

elasticity, but since no internal force to hold the shape in this model, it can not make

a reasonable physical result as expected.

The reason could be complex. First is the collision response, for achieving better

fluid behaviour, the original fluid simulation use extremely simple collision response,

simply set position to the boundary and velocity to zero. However, this is fine with
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the position based water simulation, since density and artificial pressure will push

particles against each, those stopped boundary particles could be pushed by the tiny

force for compensating density. Thus this delicate balance between particles give a

pretty plausible water feeling, it’s incompressible, but so weak for new elastic force. In

short, there is no practical collision response at boundary, what’s worse is that it’s not

easy to achieve a proper response in PBD.

Unlike shape matching ( one Position-Based approach for deformable object ) , there

is no such a strong inner force between particles which will help to keep the object’s

shape, which means no force will be transmitted from the deformed part to the opposite

side of material. Applying Elasticity contrast the idea behind PBD fluid simulation,

in which particle motion highly depends on the density of the whole material, random

distribution of the particle is used to achieve better water-like behaviour. In other

words, the nature of PBD fluid makes material deformed at every time step, which

hugely damage the effect of the Elasticity force. This simulation shows that simply

apply elasticity force to each particle can not achieve bouncing reaction.

5.4 Math Library Comparison

As mentioned in previous chapter, extended CUDA linear library is used in this simu-

lation. The computation comparison with GLM is given in 5.6.

In this comparison, Matrix-Matrix and Matrix-Vector Multiplication has been tested.

In general, GLM time consumption goes up linearly along with the elements handled

increase. In the contrast, the Helper Math has a exponentially better performance

in calculation.

5.5 Limitation

So far, We could draw the conclusion the applying of the spring and strain elasticity

are not a suitable extension for this position based fluid simulation. As the original

paper [24] said itself, the core controller of particles, namely artificial pressure depend

on the simulation spatial resolution and time-step. Those parameters can not be easily

adjust independently.
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Figure 5.6: Comparison of Math library on CUDA

Apart from the elasticity force term, the position based model itself is designed

as a direct way of control particles, and reduce the twice Euler integration numerical

error. This model needs carefully and mathematically designed constraints to achieve

certain behaviour, like the shape matching (SM ). As mentioned by Miles Macklin

and Matthias Mller( The major researchers for Position-based dynamics) in [32], they

provide a unified particle representation for solid, fluid and deformable object based

on position-based dynamic. These solutions share common idea of constraints, which

treats material as a whole object. In their general solution, it’s easy to transform from

one phase into another by changing constraints, also the interaction among objects are

easy to handle as well. Simply inserting an external term like this thesis is not a good

way to go. In short, it’s not easy to achieve a plausible behaviour without constraints

for the position-based model.
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5.6 Future Work

Collision

As the collision Response is the major cause of deformation, proper collision response

will help the simulation to achieve better result, especially for the PBD model. As

mentioned in[32], the collision response in PBD can not simply be implemented as

other physical simulation. Since nature of PBD, the impulse of the collision will be

zero out in terms of the effect. The possible way is to use a pre-stabilization which

calculated both for predicted and previous position and accumulated the effects.

Constraints

As discussed in previous sections, Constraint is a much better way to control the

Position-based particles. [32] use a multiple shape matching constraints to achieve

large deformation. Thus, a proper constraint for handling the relative displace of

particles could help the Elastic force term. Or in another prospect, a constraint for

force transmitting instead of density is required for this simulation.

Grid Construction

Considering about the grid construction, it’s possible to have a better computation

performance as mentioned in [4]. Instead of using the atomic grid construction, sorting

is even better for the grid calculation. Basically, by utilising the hash value for each

particle cell and storing it as a list. Finally by sorting the list, it’s ready to be used for

certain purpose.

Rendering

Since the simplification of the rendering in this thesis, a lot more improvement could

be made in the future. One thing is the shadow of the water, as one may notice there

is no shadow but light. Any scene will become more realistic with the shadow applied.

Since the sprites of the particles, it’s easy to extend with shadow map. All it needs is

to calculate the shadow map and render it in the final shader. The technique is render

the whole scene again but from the point of light view, through which the water colour

shadow will be calculated and applied in the end. Another effect that could improve
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the whole scene is the Caustic effect. Caustic effect happen when the light go through

translucent material and provide special light patterns, which could be modelled as

[33].
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Appendix

The demo video is at https://youtu.be/X-htZlUCS8k

The source code of simulation and math library test is at

https://github.com/YuanqiH/PositionBasedViscoealsticFluid
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