
Procedural Generation of Narrative Puzzles

by

Barbara De Kegel, B.Sc. (Hons)

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

(Interactive Entertainment Technology)

University of Dublin, Trinity College

September 2016

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Barbara De Kegel

August 30, 2016

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Barbara De Kegel

August 30, 2016

Acknowledgments

Firstly I want to thank my supervisor Mads Haahr for his advice and the interesting

discussions we had over the course of this dissertation. I also want to thank the IET

class, in particular Patrick and Dan, for their camaraderie and their patience with my

endless questions, and Shane, for supporting me at the end. Finally I want to thank

my family for their endless support throughout my education.

Barbara De Kegel

University of Dublin, Trinity College

September 2016

iv

Procedural Generation of Narrative Puzzles

Barbara De Kegel

University of Dublin, Trinity College, 2016

Supervisor: Mads Haahr

Narrative puzzles involve exploration, logical thinking and progressing a story. This

project proposes a system for the procedural generation of such puzzles for use in

story-rich games or games with large open worlds. An extended type of context-free

grammar forms the basis for both the generation algorithm and the puzzle solving.

Each designer-defined rule in the grammar defines a possible behavior of item types in

the game world. Puzzles, which consist of a tree of rules, are generated live on a per

area basis, through recursive generation of inputs for outputs. Given a valid grammar,

the backwards generation guarantees that all created puzzles are solvable. A proof

of concept adventure game was developed to demonstrate some of the possibilities

provided by the generation. Different playthroughs of this game resulted in different

puzzles, integrated into a small 3D world.

v

Contents

Acknowledgments iv

Abstract v

List of Figures ix

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Narrative Puzzles . 2

1.3 Objectives . 3

1.4 Roadmap . 4

Chapter 2 Puzzles and Their Procedural Generation 5

2.1 Traditional vs. Digital Puzzles . 6

2.2 Puzzle Taxonomy . 7

2.2.1 Sokoban-Type Puzzles . 8

2.2.2 Sliding Puzzles . 14

2.2.3 Tile-Matching Puzzles . 16

2.2.4 Mazes . 18

2.2.5 Path-Building Puzzles . 20

2.2.6 Packing Puzzles . 24

2.2.7 Narrative Puzzles . 25

2.2.8 Search Puzzles . 30

2.2.9 Physics Puzzles . 30

2.2.10 Time Manipulation . 32

vi

2.2.11 Logic Puzzles . 33

2.2.12 Word Puzzles . 35

2.2.13 Riddles . 36

2.2.14 Odd One Out . 37

2.2.15 Complete the Pattern . 37

2.2.16 Analogies . 38

2.3 Summary . 38

Chapter 3 Design 39

3.1 Core Concepts . 39

3.2 The Puzzle Items . 41

3.3 The Grammar . 42

3.4 The Puzzle Areas . 46

3.5 Puzzle Generation . 47

3.5.1 Matching Terms . 49

3.5.2 Generation per Game Area . 50

3.6 Puzzle Solving . 52

Chapter 4 Implementation 53

4.1 The Puzzle Items . 54

4.2 The Grammar . 56

4.3 The Areas . 58

4.4 Puzzle Generation . 59

4.5 Puzzle Solving . 60

4.6 The Puzzle Manager . 62

Chapter 5 Evaluation 63

5.1 Proof of Concept Game . 63

5.2 Comparison with the Puzzle-Dice System 65

5.3 Solvability . 67

5.4 Dynamic Difficulty . 67

5.5 Expressivity vs. Usability . 68

vii

Chapter 6 Conclusion 69

6.1 Main Contributions . 69

6.2 Limitations & Future Work . 70

6.3 Final Thoughts . 70

Bibliography 71

viii

List of Figures

2.1 A screenshot from Sokoban. 8

2.2 A screenshot from Stephen’s Sausage Roll (2016). 9

2.3 A screenshot from Fling! (2013). 13

2.4 A screenshot from Rush Hour. 15

2.5 A screenshot from Fruit Dating. 17

2.6 Example of a chess maze for a rook from [1]; E represents the entry tile,

X the exit tile, and the K tiles have knights on them. The left image is

what appears to the player, the right image has the obstructed squares

marked in blue. 19

2.7 A screenshot from BioShock (2007) . 21

2.8 A screenshot from Refraction . 22

2.9 A screenshot from The Talos Principle (2014), showing path-building

with lasers. 23

2.10 A screenshot from The Talos Principle (2014), showing a packing puzzle. 24

2.11 The solution to the Eternity puzzle, copyright 1999 by Christopher Mon-

ckton. 25

2.12 A screenshot from Stranded in Singapore [2] 27

2.13 A screenshot from Cut The Rope [3] . 31

2.14 An example Shinro puzzle. 33

3.1 Abstract representation of the general structure of a rule. 40

3.2 An example puzzle tree. 48

3.3 A layout of how puzzles in different game areas can be interconnected. 50

4.1 The custom editor used for creating and editing puzzle items. 54

ix

4.2 The custom editor used for creating and editing rules. 57

4.3 The custom editor used for creating and editing puzzle areas. 58

5.1 Opening the action menu on a tree, when there is an axe in the player’s

inventory. 64

5.2 After having executed the rule attached to the “Chop Down” action. . 65

x

Chapter 1

Introduction

Procedural content generation (PCG) has always been popular in video games; from

Rogue (1980) to the huge success of Minecraft (2011), it has often been used in the

creation of unique game worlds. Minecraft proved that a game based on PCG could be

compelling, thus setting the stage for modern game industry interest in this technique.

PCG has been increasingly used across a range of game genres and domains. Dwarf

Fortress (2006), a predecessor and influence on Minecraft, procedurally generates a

detailed dwarven lineage at the start of each game, and uses hundreds of layered pro-

cedural systems to create a complex game set in a unique world. The level generation in

the platform game Spelunky (2008) has been praised, for shifting focus from mastering

a level to mastering a set of rules. In the Civilization series, PCG is used to promote

early-game exploration of the world.

Besides world-building, PCG has also been used in the creation of AI-characters.

Crusader Kings II (2012) procedurally generates character traits that alter the NPCs’

decision-making, leading to interesting family dramas, while Shadow of Mordor (2014)

makes players feel like they are fighting specific enemies by generating each enemy’s

characteristics independently.

1

1.1 Motivation

The use of PCG in the creation of puzzles has been limited, and then focused mainly

on puzzles for games that are strictly puzzle games, as opposed to puzzles that are

incorporated into a wider game, such as an RPG. However, it can be a challenge for

game designers to fill large open worlds with engaging content, such as puzzles. This

is also true for games with procedurally generated worlds, such as Minecraft and the

recently released No Man’s Sky (2016). While Minecraft successfully profiles itself as

a crafting sandbox, No Man’s Sky has garnered criticism for being mundane in the

moment-to-moment game play.

Large worlds often suffer from repetitive content, such as a single type of interaction

or puzzle appearing in many different places, e.g. the bypass puzzles in Mass Effect 2

(2010). Even across different games, there are generic puzzle types that will re-appear

as easy add-ins. A system for adding procedurally generated puzzles into the narrative

of such a world could make for a more interesting player experience.

In the context of smaller, story-driven games, puzzle generation can be used to

achieve the goal of re-playability; a common complaint for these types of games is

that they can only really be played once. Changing up the puzzles integrated into the

game’s story could change up the experience without the need for designers to write

branching story lines.

1.2 Narrative Puzzles

Narrative puzzles can be defined as puzzles that form part of the progression of a narra-

tive, whose solutions involve exploration and logical as well as creative thinking. They

are a key component of adventure and story-driven games, and often feature in large

open world games, including RPGs. Narrative puzzles can be viewed as temporary

obstacles to the story’s advancement; though they don’t always have to be solved in

a precise order, certain puzzle sequences will need to be solved before proceeding to

others.

2

Typically narrative puzzles involve making logical connections, though in some cases

players will have to combine items in ways that are not immediately obvious. A good

narrative puzzle should have a satisfying solution, i.e. should make sense to the player

upon being solved. Some examples of narrative puzzle patterns include: combining

two items to make a third, changing the property of an item using an another, and

saying the right thing to convince an NPC.

1.3 Objectives

In order to understand puzzles and the methods used to generate them, the first half

of this dissertation presents a comprehensive review of existing methods for procedural

puzzle generation, structured as a taxonomy of puzzle types. The puzzles examined as

part of this are representative of the spectrum of puzzle types, involving both paper-

based and digital puzzles from a wide range of game genres.

The second half proposes a grammar-based system for the procedural generation

of narrative puzzles, inspired by the Puzzle-Dice system, which is the most significant

current state of the art in this domain. This system is designed with the intention of

being used for the creation of a range of narrative puzzle types. A small adventure game

that incorporates this puzzle generation technique is designed as a proof-of-concept.

The goals for the system for narrative puzzle generation, listed in order of impor-

tance, are:

• Solvable puzzles - All puzzles created by the system should be guaranteed to be

solvable.

• Expressive power - The system should allow for the expression of a range of

narrative puzzle types.

• Flexible difficulty - The designer can influence the difficulty of the puzzles created

by the system.

• Integration - It should be possible to integrate the system, and resulting puzzles,

with existing games.

3

• Usability - The system should be easy to use for a game designer.

1.4 Roadmap

This dissertation starts with a puzzle taxonomy in Chapter 2 that provides the frame-

work for a detailed discussion of previous methods for puzzle generation. This taxon-

omy includes a section on narrative puzzles, but can also be considered a stand alone

review of the literature. Chapter 3 delves into the grammar-based design of the puzzle

generation system created for this dissertation, and Chapter 4 describes an implementa-

tion of that system in Unity, as well as its application to a small proof-of-concept game.

Chapter 5 evaluates the system, by comparing it to the Puzzle-Dice system which is

the current state-of-the-art for the generation of narrative puzzles. Finally, Chapter

6 summarizes the main contributions made by this dissertation and the limitations of

the system, as well as ideas for future work.

4

Chapter 2

Puzzles and Their Procedural

Generation

Previous work on puzzle generation has mostly focused on specific puzzles because cre-

ating a generator requires at least some knowledge of the puzzle rules. Consequently,

this chapter evaluates past research in puzzle generation in the framework of a puzzle

taxonomy. Puzzles are classified according to their rules, and by extension, the cog-

nitive skills needed to solve them. The characteristics of each puzzle type are closely

linked to the challenges posed for generating such puzzles. Naturally there are also

many puzzles that fall in the overlap between two or more categories; ingenuity in

puzzle design often stems from making original combinations of existing mechanics.

Togelius et al. distinguish between algorithms that are constructive and those that

can be described as generate-and-test [4]. Constructive algorithms generate the content

once, performing validity checks at different stages of construction; the Markov chain

is a typical example of such an algorithm. As described later in this chapter, some

generators are generate-and-test, with levels being continuously tested, discarded, and

regenerated, while others are constructive, with solvability guaranteed in the method of

generation. Generate-and-test systems are more open-ended; it is difficult to compute a

crisp threshold for acceptability when output evaluation is based on heuristic functions.

This chapter first looks at some fundamental differences between paper- and computer-

5

based puzzles as they pertain to design decisions. Then the taxonomy section runs

through different puzzle types, providing a description of traits and a discussion of

past procedural generation research, if any. Generation is not feasible for every type,

and for others it is a trivial task that is not worth reviewing in detail.

2.1 Traditional vs. Digital Puzzles

Some puzzle types in the taxonomy existed on paper before they were digitalized, while

others, such as physics-based puzzles can only really exist as video games, due to their

interactive nature. Traditional puzzles are often digitalized as is, such as Sudoku and

crossword puzzles, meaning that there is no change to the base puzzle mechanics and

the skills required for solving. Digitalization can make traditional puzzles more acces-

sible by providing ways to easily undo and check partial solutions.

Different past papers target puzzle generation of both traditional and digital puz-

zles. Some of the distinctions in the methods of generation may be linked directly to

whether or not the puzzles under investigation were digital.

There are a few inherent differences between puzzles games played on a computer

versus in real-life; one of the notable ones is the possibility of brute forcing. Whether

players will be inclined to find a solution through brute forcing is (generally) not an

issue for real-life puzzles, but some computer-based puzzles, such as the maze puzzles

in The Witness (2016), have an interactive feedback system that allows the solver to

try all possible solutions. Brute forcing is not always a negative - The Witness uses

it as a learning mechanism - but for puzzles in which it is undesired, the solver must

be dissuaded by making the cost of brute forcing higher than that of logically arriving

at a solution. There are also computer-based puzzles that do not lend themselves to

brute forcing, typically they are in the path-building category, such as the area puzzles

in The Talos Principle (2014).

Another important difference between paper-based and digital puzzles is the exis-

tence of temporal aspects; digital puzzles can use time as a mechanic or constraint in

a way that on-paper puzzles cannot. Video games can use time pressure to increase

6

the difficulty of a puzzle; this can come in the form of a timer or through setting the

game in an environment that is changing in real-time, e.g. Tetris (1984). Puzzles of

this nature, i.e. those that are real-time, are often called action puzzles, a label that

can be applied across many of the classification categories described below.

There is a distinction to be made between puzzles that use time as a constraint

and those that use time as a puzzle mechanic. While temporal constraints push the

player to quickly find a solution, they do not change the skills the player must use to

arrive at that solution. On the other hand, temporal puzzles require the player to find

solutions that include player-directed manipulation of time, e.g. the puzzles in Braid.

Some on-paper puzzles require the solver to use spatial thinking, e.g. matching a

folded-open cube texture to a drawing of a cube. Spatial thinking in this context can

be described as envisioning the 3D representations of object drawn in 2D. While that

sort of mental exercise has no place in a 3D game world, the player would use spatial

thinking to, for example, conceive of logical placements of items in space to form a

solution. It should be noted that spatial thinking applies to 2D and 3D path-building

puzzles, e.g. Refraction [5].

2.2 Puzzle Taxonomy

While some puzzle video games consists of levels of just one puzzle types, many others

include puzzles from several of the categories described in this taxonomy, or puzzles

that are best defined by the overlap of two categories. For example, The Talos Prin-

ciple includes a mix of mazes, temporal puzzles, construction puzzles and even some

physics-based elements. Puzzles are also present as mini-games in video games that

would not be classified as puzzle games, e.g. hacking in Mass Effect 2 (2010). To this

end, the taxonomy presented here is about puzzle types, closely related to mechanics,

as opposed to, and independent from, game genres.

7

2.2.1 Sokoban-Type Puzzles

This category of puzzles is name after the 1982 Japanese video game in which you push

crates around a constrained grid-based area to get them to goal positions. A defining

factor of this category is that no items/characters are ever lost or added to the board;

the solution exists as a rearrangement of the original configuration. Rearrangement

comprises of moving items around a confined environment, using a limited number of

possible actions, i.e. crates can be only be pushed, not pulled, and only one at a time.

Figure 2.1: A screenshot from Sokoban.

Many variations (descendants) of Sokoban (1982) now exist, and game developer

Stephen Lavelle has even created an HTML5 engine for this type of game: Puzzle-

Script [6]. Lavelle is also the developer of the recently released Stephen’s Sausage Roll

(2016); a game in which you push a sausage across tiles with the goal of grilling each

side exactly once on special grill tiles. The grill tiles function as a variation of the goal

8

tiles; the objects (the sausages) have to touch multiple goal tiles in order for the level

to be completed.

Figure 2.2: A screenshot from Stephen’s Sausage Roll (2016).

The constraints imposed by limited space are a key characteristic of Sokoban puz-

zles. The player has to think a few moves ahead as some lines of play lead to a state

from which the solution is unreachable. In Sokoban the player character can only push,

not pull, blocks, so once a block is in a corner or against a wall, it loses (a) degree(s)

of movement freedom. In practice, Sokoban puzzles often have an undo functionality,

so that the player does not have to restart the game each time they follow a line of

play to a dead end. This facilitates the player’s problem-solving as it allows physical

exploration of solutions. The movement mechanics vary for different puzzle games but

the basic notion of moving one item at a time and avoiding unrecoverable situations is

common.

Well-designed Sokoban puzzles must strike the balance between trivially easy and

impossible, a difficult task for all but experienced Sokoban level designers [7]. Proce-

dural generation can function as an aid to inexperienced puzzle designers. Generally

Sokoban levels do not have many, if any, alternative solutions, so the player must dis-

cover a precise sequence of actions. The problem-solving process involves pursuing

promising sequences, and discarding those that are futile.

Despite the simplicity of the rules, Sokoban can be challenging to solve [8]. Past

9

research has determined that solving Sokoban puzzles is PSPACE-complete zciteculber-

son1999sokoban, meaning among the most difficult one-player games [8]. Automatic

puzzle solvers are not the focus of this chapter, but are relevant insofar that are often

used to test the solvability of a generated puzzle.

Procedural generation of Sokoban-type puzzles has garnered a significant amount of

research interest. Sokoban exhibits compelling challenges in the field of puzzle genera-

tion, including a large space of possible configurations, which hinders search algorithm

traversal, and may make it difficult to guarantee solvability [8]. There is also no good

method to evaluate if an initial state will lead to a non-trivial or interesting solution.

One of the earliest forays into puzzle generation was by Murase et al.; they devel-

oped a program to create Sokoban problems in three stages; generation, checking and

evaluation [9]. In the first stage a level layout is generated by random combination of

templates that are overlapped to guarantee a connected space. The templates are grids

of wall and passageway tiles. Goal positions are randomly placed on legal passageway

tiles, i.e. tiles onto which a player can push an object and crates are added one by one

within range of at least one goal position. The player character is put on a random

passageway tile.

Generated problems are not guaranteed to be solvable so, in stage two, the pro-

gram uses a Breadth First Search (BFS) solver to check for a solution. However this

automatic solver was only able to solve problems with short solution sequences (due

to BFS), so those with long sequences were incorrectly discarded [9]. In the final stage

trivial and uninteresting, albeit legal, levels are discarded according to the following

criteria: the length of the solution sequence, the number of changes in direction of

pushing, and the number of detours.

The results showed that out of 500 generated levels, 44 were deemed good by the

program, but only 14 of those were evaluated as good problems by human experts [9].

One of the main issues with this generation program is that the restriction on solution

length prevents the creation of complex problems.

10

Taylor and Parberry generated interesting Sokoban levels that are guaranteed to be

solvable on the basis of working backwards from the goal positions [7]. Empty rooms

are similarly generated with templates but for a wider range of dimensions; invalid or

low quality rooms, e.g. ones that are disconnected or have large sections of open floor,

are immediately discarded.

Next, a brute force algorithm is used to evaluate all possible combinations of goal

positions. While this can lead to the discovery of compelling levels, it is obviously an

expensive process; the runtime of the algorithm is exponential. For each goal place-

ment, the system finds the furthest possible starting position, i.e. the shortest longest

path, by moving in reverse - ensuring playability [7]. The value of a certain placement

combination is the farthest found path, where distance is measured using the box line

metric, which is the number of unrepeated box pushes. Paths are found using a form of

iterative deepening twice; A* is not suitable because the target is only vaguely defined.

Finally, levels are evaluated according to some heuristics.

The technique employed by Taylor and Parberry generates self-proclaimed interest-

ing levels at the cost of a long generation time (hours or even days). The generation

speed is okay for offline generation, but not great for creating mini-games on the fly,

and the system cannot handle more than 6 boxes. They mention that their methodol-

ogy could be applied for other puzzles, but there would be quite some effort involved

in reducing the amount of game-specific information; as mentioned, a major issue in

puzzle generation efforts.

Taylor et al. performed on auditory Stroop test to investigate whether players pay

as much attention to the generated puzzles from [7] as they do to hand crafted puzzles

by experienced designers [10]. The experiment exploits the fact that attention is a finite

resource; focusing on Sokoban will decrease participants attention on the Stroop test

and vice versa. The results indicated that participants were at least as engaged with

the generated puzzles as with the hand-crafted ones, which may imply that they found

both equally interesting. This is an important finding in showing value in procedurally

generated puzzles.

11

Recently, Kartal et al. developed a method for procedurally generating Sokoban lev-

els of varying sizes and difficulty using a Monte Carlo Tree Search (MCTS) approach

[8]. They divide the puzzle creation problem into two phases: puzzle initialization,

assigning the initial room layout, and puzzle shuffling, determining the goal locations.

Overall, the generation is formulated as an MCTS optimization problem because it has

been successful for other problems with high branching factors and has an “anytime”

property. The latter refers to the fact that the search will return a valid solution re-

gardless of when it is interrupted.

The possible actions at each node in the search tree are: “delete obstacles”, “place

boxes”, “freeze level”, “move agent”, and “evaluate level”. At the start, the board is

composed entirely of obstacles except for one empty tile with an agent. Puzzle initial-

ization takes place until the level is frozen - an action which saves a start configuration.

The puzzle shuffling stage consists of executing the “move agent” action, which simu-

lates Sokoban game rules [8]. Like Taylor and Parberry, Kartal et al. exploit the fact

that generating a puzzle through game play guarantees solvability.

The MCTS approach requires an evaluation function to guide the search. The

researchers chose to use a combination of two metrics; terrain and congestion. The

terrain value is calculated by adding up the number of neighboring obstacles for each

empty tile. The congestion metric is based on the number of boxes, goals and ob-

stacles between each box and its corresponding goal. Higher scores corresponded to

challenging puzzles in many cases, but the metric did not capture all aspects of difficult

Sokoban puzzles.

In addition to the possibility of difficulty tuning, the MCTS method eliminates

the need for human input and addresses the run-time issue seen in other generation

methods. This makes it suitable for online generation of mini-games. Improving the

evaluation metric allows for dynamically presenting puzzles of varying difficulty, and

the nature of the MCTS algorithm even allows multiple such puzzles to be output in

a single run [8].

Assessment of Sokoban puzzles, in terms of difficulty and interest, is a closely re-

12

lated area of research. The ability to tune difficulty depends upon accurate evaluation,

shown to be a non-trivial task for Sokoban puzzles. Kartal et al. provided no formal

validation of their evaluation function; there is still future work to be done on evalu-

ating what makes levels interesting.

Figure 2.3: A screenshot from Fling! (2013).

Fling! (2013) is an example of a puzzle that falls in the overlap of Sokoban-type

and tile-matching puzzles, though more towards the former. In this game you fling

balls into each other to sequentially remove all but one ball from an empty grid. The

balls act in turn as the player character, an obstacle or a crate, when compared with

Sokoban. It is a player character when you use it to fling (push) another ball (a crate)

off the board, but balls can only fling non-adjacent balls of the grid - so those that are

adjacent act as obstacles.

Sturtevant looked at using large-scale breadth-first search for analysis and content

generation for Fling! [11]. He starts by classifying different search approaches and

defining the focus of the paper in the complete/uninformed category; an approach

used when no guidance is available, or when the goal is to enumerate an entire state

space. [11]. This generally refers to brute force searching which uses algorithms like

13

depth-first (DFS) and breadth-first search.

The focus of the research is the development of a tool that can analyze and explore

Fling! puzzles, rather than generating them from scratch, though it can be used for

this. The tool uses an endgame database, generated by iteratively solving all Fling!

boards of sizes 1-10 using a retrograde search approach. For any given board the tool

can determine that following metrics: the number of states legally reachable, using

forward BFS; the legal moves which lead to a goal state, using DFS with endgame

data; and how adding/removing pieces from the board changes the solvability. The

board could be generated entirely at random because the level design rules are much

less strict than for Sokoban. The crux is on creating interesting levels rather than just

solvable ones.

The difficulty of a given Fling! board is most intuitively measured by the number of

reachable states from an initial configuration. Experiments showed a strong correlation

between levels (difficulty) and number of states in the state space. Like for Sokoban,

more domain-specific metrics may be useful, e.g. counting the number of times the

player has to switch from controlling one ball, as the player character, to another.

Overall, the motivation behind Sturtevants work is proposing the use of brute force

search techniques as assistance in the design of interesting puzzle instances. This

includes creating endgame databases and annotating puzzles to discover how changes

to its configuration will influence solvability.

2.2.2 Sliding Puzzles

Sliding puzzles are closely related to Sokoban-style puzzles because they also involve

moving items, or tiles, towards goal positions in a constrained grid-based space. There

are however some differentiating characteristics that qualify this as a different category:

there is no player character and items can be moved in any free direction, making un-

recoverable states rare. Often the grid is square-shaped without obstacles and there

are only a few open spaces to slide a tile onto. Like for Sokoban puzzles, the player

must look a few moves ahead to determine possible winning sequences.

14

Figure 2.4: A screenshot from Rush Hour.

The most well-known examples of sliding puzzles are Rush Hour (1996), the 15-

puzzle and the picture-forming sliding puzzles. Since the movement rules for items on

the board are much less restricted than in Sokoban, players are more likely to stumble

across solution paths by random movement of the tiles. There are generally no “dead-

end” states, which encourages interactivity. Unlike in Sokoban-type puzzles, sliding

puzzles may have one-to-one pairings between items and goal positions, so figuring out

the best mapping is not part of the solving process. In Rush Hour and similar puzzles,

there is one item that must reach one defined goal position - specifically, the red car

must reach the exit in Rush Hour.

The Rush Hour puzzle has been shown to be PSPACE-complete [12], like Sokoban

and exhibits similar challenges in determining the difficulty of a puzzle. Limited work

has been done on the generation of Rush Hour puzzles [13]. Block-sliding puzzles such

15

as Rush Hour can conceivably be generated by starting from the end configuration and

working backwards, in a similar fashion to some of the generation methods described

in the previous chapter. Also like Sokoban, determining what makes a difficult initial

configuration is not straightforward. The number of moves used to play backwards to

a start layout could be greater than the shortest path, so it is not a good metric for

difficulty.

2.2.3 Tile-Matching Puzzles

The player’s object in tile-matching games is to manipulate tiles on a grid in order to

make matches [14]. When a match is made, the corresponding set of tiles disappears,

and the player scores points. Common matching criteria include shapes, colors and

symbols. Puzzles of this category are relatively simple - they have very few rules - and

are often categorized as casual games.

The most popular subcategory of tile-matching game is match-three games, e.g.

Bejeweled, in which players swap the positions of tiles to make a row or column of at

least three matching tiles. This category of puzzles has a low status, perhaps due to

their low barrier to entry, or the large number of similar games that now exists [14].

Most tile-matching puzzles have an element of time pressure which introduces a fail

state; without a timer the puzzles would be too easy. Fail states are important for

making the player feel a sense of achievement.

The initial layout of tiles on the grid, and/or the choice of tiles/piece that ap-

pear during the game are likely always procedurally generated using random number

generators. The generation of these simple tile-matching puzzles is a rather trivial task.

Rychnovsky procedurally generated all the levels for his game Fruit Dating (2014),

a more complex tile-matching puzzle that draws elements from Sokoban and sliding

puzzles Artic1:online. Fruit Dating consists of moving items on a grid-based board

with walls and obstacles, like in Sokoban, with the goal of getting matching characters

onto adjacent tiles. Unlike Sokoban, it lacks a player character, and each action can

affect between zero and all items on the board. Items are moved by swiping in one of

16

Figure 2.5: A screenshot from Fruit Dating.

the four cardinal directions; each swipe will move all objects in the chosen direction,

while they are not blocked by obstacles. This mechanic is similar to that in Threes,

another popular mobile puzzle game.

Fruit Dating overlaps with the Sokoban and sliding puzzle categories because it re-

quires similar cognitive skills for solving; players must anticipate the outcome of moves

to determine if it will be possible to reach a solution. It shares the characteristic that

objects must be rearranged to progress the game.The room of obstacles is a Sokoban

element, while active exploration of the solution space without easily reaching a dead

end is an element of sliding puzzles not shared by Sokoban. As is a common character-

istic of tile-matching games, a matched pair is eliminated, and there are a few items on

the board with special abilities. The challenge for Fruit Dating stems from discovering

a sequence of moves; while this is useful to some extent in tile-matching games there

is generally not a single correct sequence.

Rychnovsky developed a level editor that has the capability to generate new levels

and evaluate the playability and difficulty of any given level. The automatic solver uses

a breadth first search approach with pruning and returns the shortest path. The level

editor interface means that the designer can tweak a generated level, and then re-test

it to make sure it is still playable.

17

The process of generating a Fruit Dating level is divided into two steps; generating

the level structure and placing the on-board items [15]. The level structure is created

by first randomly placing the external wall tiles, i.e. those connected to the border of

the grid, and then the internal ones, i.e. those surrounded by 8 empty tiles. The game

objects, including the pair(s) of fruits that must be matched, are placed randomly

according to predefined weights assigned to empty tiles. The weights are different for

each type of object.

All levels are checked for solvability after generation, and those that are not solvable

are simply discarded. The generation algorithm runs quickly so that is an acceptable

loss. The main issue with this generation approach is that there is no way to control

difficulty, other than by simply adding more items to the board.

2.2.4 Mazes

Mazes are defined in this taxonomy as puzzles that require the solver to find a valid

path from a starting point (entry) to and ending point (exit). A huge variety of puzzles

could be created from rules for safe movement in an otherwise hazardous environment

[1]. These puzzles could have explicit barriers, such as in more traditional mazes, where

the path is obstructed by physical walls, or implicit boundaries, such as in some grid-

based puzzles. Many of the puzzles from the recent video game The Witness (2016) fall

under the second category; the player has to traverse a path through a grid according

to some logical rules.

For most 2D mazes the player can observe the entire puzzle area, and thus it is

possible to locate the solution path before starting to trace it. However 3D mazes may

require the player to physically traverse partial paths to obtain all the information

required to find the solution.

Obstacle course navigation can be classified as a type of maze; the player must

navigate an area along a correct path to reach an endpoint without taking too much

damage. Many obstacle courses are a cross between a maze and a path-building puzzle,

18

where a player must utilize a number of items to create the desired path between entry

and exit.

Figure 2.6: Example of a chess maze for a rook from [1]; E represents the entry tile, X
the exit tile, and the K tiles have knights on them. The left image is what appears to
the player, the right image has the obstructed squares marked in blue.

Ashlock uses an evolutionary algorithm as a puzzle generator for chess-based and

chromatic mazes of varying levels of difficulty [1]. Evolutionary algorithms are well-

suited to creating a large collection of unique puzzles because they can quickly locate

many diverse optima in a complex function. The fitness function, which returns the

value of puzzles in a generation, uses dynamic programming to calculate the minimum

number of steps required to traverse the maze. Dynamic programming is a method for

solving a complex problem by decomposing it into simpler sub-problems, and storing

the solutions to those problems.

Both the chess and chromatic mazes are grid-based and have implicit barriers; play-

ers must figure out which tiles are safe according to the puzzle rules. Entry and exit

squares are marked on the grids. Some tiles in the chess maze contain chess pieces

and the rule is that the player may not traverse any tile that is occupied or covered

according to the behavior of those chess pieces. The player is also assigned a chess

piece, and so must move according to that agent type. In the chromatic puzzle a safe

move consists of continuing onto a tile whose color is adjacent in the color wheel to the

19

tile the player is currently standing on.

These puzzles can work on paper or as part of a video game. For the latter, there

would need to be some kind of repercussion for moving incorrectly or onto an illegal

tile. Punishment can be used by video games to prevent brute forcing. The difficulty

of both puzzles could be determined by the number of moves needed to travel from the

entry to the exit.

The dynamic programming used in determining fitness puzzles works by traversing

a network and recording the cost of arriving at each node. This search allows for com-

puting the path with the minimum number of moves. During evolution, the aim is to

maximize this number of moves. The evolutionary algorithm is straightforward; each

generation, seven population members are randomly selected, and the two most fit out

of those are picked for reproduction, which includes crossover and mutation.

Experiments had a zero rate of duplication of solutions, showing the diversity that

can be achieved with an evolutionary algorithm. The size of the sample space aids in

this, but for smaller sample spaces diversity promoting measures could easily be intro-

duced. Ashlock succeeded in demonstrating the potential of evolutionary computation

with a dynamic programming fitness function for generating puzzles [1]. By adjusting

the dynamic programming code, the techniques described could be used for other types

of puzzles.

2.2.5 Path-Building Puzzles

This type of puzzle requires the player to build a path from a point A to a point B

using a number of provided items. The path could be built for an entity in the world

to traverse, like an enemy AI; tubes, like the BioShock (2007) mini-games; a laser, like

in some Portal (2007) levels; or for the player character themselves.

Path building is somewhat related to mazes but is differentiated mainly by the na-

ture of the game environment; in a maze, the player cannot change the environment,

only find the best path through it, while in a path-building puzzle, the objective is to

20

Figure 2.7: A screenshot from BioShock (2007)

create a new path by altering the environment at the hand of tools or items. For some

of these puzzles the challenge stems from figuring out the correct placement of a limited

number of items while in others there are more items than needed, i.e. decoy items,

and the player must determine which ones are most suitable, in addition to placement.

The latter usually lends itself to multiple possible solutions.

Smith et al. studied the problem of hard constraints in procedural generation, e.g.

that a generated puzzle is necessarily solvable, in the context of the path-building game

Refraction [5]. Many generators have not incorporated a way to guarantee that certain

constraints, including aesthetic or complexity concerns, are satisfied in their output.

In other words, the constraints require the game not only to be solvable, but solvable

under certain prescribed conditions.

Refraction is an educational game that aims to teach proportional reasoning through

a puzzle about re-directing laser beams towards a spaceships. The beams can be bent,

split, etc using different components, the placement of which also trains spatial prob-

lem solving abilities. The game is set in a constrained space formed by asteroids walls.

21

Figure 2.8: A screenshot from Refraction

Smith et al. present two different implementations of three constraint-based arti-

fact generation tools. The tools are for: mission generation, responsible for creating a

general outline with possible level solutions; grid embedding, i.e. translating a mission

to a geometric layout; and seeking alternative solutions to existing puzzle designs [5].

The overall level generator uses the structure defined by Dorman and Bakkes which

distinguishes between missions and spaces; missions are the logical order of goals the

player must accomplish, while spaces are the physical layouts of the levels [16]. This

distinction is valid for many puzzle games, and may be especially useful for approaching

puzzles set in 3D space, such as those in The Talos Principle (2014). While the current

version of Refraction is a 2D grid-based video game, the high-level formulation of the

different components could lend themselves to a 3D adaptation - mission generation

would not need to change.

22

Figure 2.9: A screenshot from The Talos Principle (2014), showing path-building with
lasers.

Smith et al. made two implementations of each of the three tools; the initial im-

plementation is based on constructive or complete-search techniques, such as bounded

depth-first search, while the second, newer implementation is based on answer set

programming (ASP), a form of declarative logic programming, with a Prolog-like syn-

tax, that targets difficult search problems [5]. The ASP-based tools were designed

using choice rules, deductive rules and integrity constraints. Smith et al. found that

declarative languages can be a powerful expressive tool for reliable, controlled puz-

zle generators. Constraint-focused generator design can allow aesthetic failures to be

treated the same as game play failure. Most other generators described in this paper

have not reached the stage of taking aesthetics into account.

In a later study, motivated by the sequel Refraction 2, Smith et al. looked at con-

straining undesirable solutions, which they also refer to as shortcut solutions [17]. In

path-building puzzles the addition of so-called distractor pieces can introduce alter-

native solutions. Since Refraction is an educational game, the designers require tight

control over the puzzle progression; and thus easier alternative solutions are unaccept-

able. Even in non-educational games, unintended solutions can be a designer concern.

Smith et al. added two extensions to the ASP approach developed in [5] in order to

23

solve the high-complexity problem that results from constrained formulations.

2.2.6 Packing Puzzles

A tiling puzzle is a packing problem; a number of shapes must be assembled into a

larger shape, without overlap or gaps. Generally all the provided shapes must be used

to achieve this. The process of fitting the pieces into the larger shape may be en-

tirely based on shape-matching, or it could involve creating a picture out of the images

printed on the pieces, as is the case for jigsaw puzzles.

Figure 2.10: A screenshot from The Talos Principle (2014), showing a packing puzzle.

Unlocking new areas in The Talos Principle requires solving a tiling puzzle with

tetromino pieces. Tetris is an overlap of a tiling and tile matching puzzle (see next sec-

tion); the goal there is to assemble pieces into rectangles without overlap, and matching

tiles into a line shape will cause them to disappear. Tetris is set apart from other tiling

puzzles by its time pressure element, and the inability of the player to move pieces once

they have been placed. Time pressure is a label that can be applied across categories,

rather than being a definition on its own.

A famous example of this category is the Eternity puzzle created by Christopher

Monckton in 1999. Composed of assembling 209 irregular polygons of the same color

into a dodecagon, this puzzle is extremely difficult and came with a 1 million prize for

24

Figure 2.11: The solution to the Eternity puzzle, copyright 1999 by Christopher Mon-
ckton.

whoever could solve it in the first four years. The prize was awarded to two Cambridge

mathematicians in October 2000.

2.2.7 Narrative Puzzles

This category represents puzzles that require the solver to make logical connections

between objects and/or concepts. Players find solutions by exploring the environment

and investigating ways in which objects can be manipulated and combined. These

types of puzzles commonly function to progress a story, as indicated by the name of

this category, and are thus a staple in many adventure games.

Adventure games have many sub-genres, including text adventures, point and click

adventures and escape the room games. Not all of the puzzles in this broad range

belong in the narrative puzzle category; adventure games could choose to include any

of the puzzle types mentioned in this taxonomy. Good escape the room games tend to

incorporate a variety of puzzle types into a common theme. However, in many adven-

ture games, the player advances by solving puzzles set within a narrative.

25

The Puzzle-Dice system was developed by MIT media lab Singapore for the pur-

pose of generating narrative puzzles [2]. Their motivation was to add re-playability

to adventure games, which frequently only have one linear path, as well as develop

puzzle generation tools that would be accessible to designers. To this end, the system

focuses on the design problems associated with procedural generation. The use and

development of the Puzzle-Dice system is demonstrated through two proof-of-concept

games: Symon and Stranded in Singapore.

Some examples of narrative puzzle patterns, as outlined in [2], are:

• Figuring out which item a character desires, usually leading to a reward in ex-

change.

• Logically combining two objects to change their properties, or to create a new

object.

• Disassembling an object into useful components.

• Saying the right thing to convince a character to provide aid.

• Acquiring a key to open a new area.

Logical associations are a common thread through these puzzles, and is also a cog-

nitive skill in the closely related analogy and odd one out puzzle categories. The use

of the label “narrative puzzle” could be debated because it is possible to switch out

the specific puzzles without affecting the overall narrative - the focus of the research

in [18]. However, the label has been used in past research and it fits when viewing

story progression as centered on player action. A different take on a narrative puzzle

is Framed, a puzzle game set up like a noir comic in which the player must rearrange

the order of events to prevent the protagonist from getting caught or shot by the police.

Symon was an early prototype with a dream-like setting that allowed for fantasti-

cal logic, i.e. using something cold to change an object’s color to blue. It was small

in scope but succeeded at demonstrating the generation of a short, re-playable game.

The initial system for Symon used a puzzle map that concatenates narrative puzzle

patterns, into the structure of a game. Both this map and the possible puzzle patterns

26

Figure 2.12: A screenshot from Stranded in Singapore [2]

need to be specified by a designer; the generation process then inserts characters and

objects into patterns, and patterns into the map, using a brute force approach. This

grammar-based method of generation ensures that all puzzles will be solvable - the

generation is constructive.

The full Puzzle-Dice system is more flexible than the initial one built for Symon

and gives designers more control. It is based on puzzle building blocks that can be

customized by designers; a modular approach that aims to allow for expansions. The

puzzle map in this version is a map structure resulting from the combination of build-

ing blocks and defines the chronology of actions the players must undertake, in terms

of dependencies. Building blocks can be either puzzles, which represent a single set of

actions with input and output, or areas, the physical rooms in the game world.

Puzzle maps are paired with a database of designer-defined game items that have

attributes and relationships to other items. The relationships are used to determine

which items can fit into certain puzzle building blocks. For example, each item has a

madeby property that links it to two other items in the database that must be combined

27

to create that item. Building blocks perform generation of narrative puzzles indepen-

dently; given a desired output. The generation process is composed of three steps:

generating the output item with the desired properties, generating inputs, themselves

building blocks, and finally creating a relationship between the input and outputs -

relevant to the type of building block. The possible relationships include: combine,

property change, insertion, request and area connection.

The goal behind the research in [2] is threefold; they wanted to create a tool that

guarantees solvability in its output, is accessible to designers, and is general enough to

allow for a range of narrative-type puzzles. The tool is more like a framework than an

out of the box puzzle generator as both the item database and puzzle map must be

constructed by the designer.

Dart and Nelson worked on adventure-game puzzle generation using smart terrain

causality chains [18]. They focused on creating a drop-in solution for the issue of re-

playability: generating variations on puzzles that fit in the same place in an existing

story line. In other words, this technique introduces re-playability without high-level

narrative variation, and stands in contrast to the common branching story lines ap-

proach. The puzzles do change the low-level narrative significantly, and thus fit this

category of the taxonomy.

The puzzle generation relies on a database of smart terrains items to create causal-

ity chains that form puzzle solutions. Smart terrain items, introduced by Will Wright,

developed of The Sims (2000), have a set of associated actions and properties that

determine how they behave, and how the environment can affect them. In contrast

to the Puzzle-Dice system, items are not aware of their specific relationships to other

items. This also implies items have no single, specific rule, but can be used flexibly.

Items actions can be either active actions or passive actions. The first occurs as the

result of player input, i.e. picking an action from an action menu. The second occurs

without input, e.g. heat causing nearby objects to increase their temperature.

Interactions between objects, that are not aware of each other, are executed through

use of a physics simulation. Dart and Nelson used the Unity physics engine for this.

28

Objects can be modified through transitions, e.g. phase transitions such as melting or

freezing, and can affect each other through direct collision or indirect energy, which is

modeled in different forms [18].

A smart terrain causality chain (STCC) is a directed graph that defines dependen-

cies between all the objects in the scene, and the objective of the puzzle [18]. The

sequence of items represented by the STCC corresponds to the sequences of actions

that the players must take to solve a puzzle. A list of possible actions for an item,

along with the causes and effects, allows creating an STCC using a backwards chaining

algorithm. The generation starts from a set of scene objectives and runs till it reaches

primitive smart-terrain objects, which are then placed in the scene. This is a construc-

tive process that guarantees at least one solution, and that each item in the scene is

relevant for at least one solution.

Dart and Nelson tested their generation method in the adventure game Space Dust.

Players have to replay this game several times to acquire all the information needed

to win, and on each playthrough, had to solve different puzzles to progress. They

discovered that 70 percent of players found the puzzle scenarios easier when there were

more possible, parallel solutions, and most players said that longer causality chains

corresponded to more difficult puzzles [18]. Their experiments also showed that play-

ers found the game engaging, despite the repetition in overall story.

Object placement in the physical game world is currently not automated, but could

be added in by also storing semantic information about the environment. Another

area of future work is actions/effects inference; similar to in the Puzzle-Dice system,

all cause and effect information has to be manually specified by a designer, but it would

be desirable to automate this process. Finally, the scope of procedural generation could

be expanded to generate more than just the puzzles - for example, the environments,

stories or items.

29

2.2.8 Search Puzzles

Search puzzles compose a common and easily-defined category. The solutions of these

puzzles require the solver to search a physical space for a number of items. The most

basic form of this kind of puzzle is a 2D or 3D area in which a number of objects have

been discretely placed. In order to solve such a puzzle, the player just has to do what

is referred to as “pixel hunting”. It can be debated whether such a puzzle should even

be classified as a puzzle, but they are included here due to their prevalence in games,

especially adventure games. Search puzzles are one of the easiest ways in which to

add basic interactions to narrative-driven games, e.g. in Life is Strange (2015). Some

search puzzles, such as those in The Room game series, and other games about escaping

a room, require the player make logical connections about where to look for certain

items.

2.2.9 Physics Puzzles

Players need to use games’ physics to complete the puzzles belonging to this category.

Physics in games is (most often) modeled after real-life physics, and so finding a solu-

tion requires players predict the physical outcomes of possible actions. These puzzles

only exist in a video game format. Physics puzzles have an element of unpredictability

as the game environment changes in real-time according to the laws of physics. No

precise rules are programmed for the effects of player actions, making this a challeng-

ing puzzle type to generate in terms of solvability.

In contrast to many other puzzle types, the solutions to these puzzles may require

precise timing and/or execution of actions on the player’s part. In some cases this

means the player has only a limited time window before an outcome becomes un-

achievable; for example, shooting a new portal while falling in a Portal puzzle room.

This speaks to the executing of a puzzle solution; the solution itself can generally be

described by a precise sequence of actions.

Shaker et al. focused on the generation of levels for physics-based puzzle games,

using a clone of the mobile game Cut The Rope as a test ground [3]. The goal of this

game is to make the candy drop in such a way that it reaches a frog monster placed

30

Figure 2.13: A screenshot from Cut The Rope [3]

at a fixed position. There are different game object that can be used to help change

the movement direction of the candy, including: ropes, air cushions, bubbles, bumpers,

and rockets. All these objects obey the laws of Newtonian physics, implemented in the

CRUST 2D physics engine using XNA.

The game generator described in [3] evolves levels based on a context-free gram-

mar, which is a set of recursive rewriting rules. Design grammars offer a concise way of

describing a huge variety of possible level structures. Grammatical Evolution (GE) is a

technique that combines an evolutionary algorithm with a grammatical representation.

Shaker et al. started by analyzing the original levels for distance patterns of design -

which can be represented in design grammars.

Levels, which are the phenotypes, are represented by lists of objects that can be

placed anywhere in the map and may have some properties. As mentioned, the struc-

ture of a level is described by a design grammar, which is what is used to evolve levels.

The GE process includes a genotype-to-phenotype mapping using production rules

from the design grammar. This results in phenotypic programs that are syntactically

correct - these programs are then evaluated for fitness.

31

A fitness function based on heuristic measures (based on prior knowledge about the

game) is used to rate and consequently evolve levels. However, a heuristic alone is not

sufficient to guarantee the playability of a level, so simulation-based playability test is

done using an autonomous agent that acts randomly. The level is tested 10 times with

random players to reach the final fitness score.

In later research, Shaker et al. replaced the agent with a more intelligent one in

an effort to improve the quality of the generated levels [19]. They used two different

rule sets for the agents; the first focused on the all game objects’ properties and their

placement in the level while the second contains only objects the candy can reach while

in a given position, direction and velocity.

2.2.10 Time Manipulation

Time manipulation, or temporal puzzles, require the solver to use time as a puzzle

solving mechanic (as mentioned in the introduction of this chapter). This could in-

volve using a recording or rewinding mechanic to alter the linear time line. One of the

puzzle solving tools provided in The Talos Principle (2014) is a recorder with which

you can record some actions that can then be played back. This created a clone of the

player as well as items the player moves during the recording.

Braid (2008) is perhaps the most well-known game to use time manipulation as a

core mechanic. The puzzles in Braid are physical; the player takes on the role of a

character navigating a platformer-style environment. Different worlds (sections) of the

game have different time-based game mechanics including moving time forwards and

backwards and at different speeds.

Procedural generation for a time manipulation puzzle would be challenging due

to the need to define structures for parallel timelines and the non-linear causality

relationships between events.

32

2.2.11 Logic Puzzles

Logic puzzles are solved through deductive reasoning; the player arrives at a solution

through a series of deductions made from some given premises. The first logic puzzles

appeared in Lewis Carroll’s book The Game Of Logic [20] and were akin to syllogisms.

Popular puzzles in this category are Sudoku, in which the player makes deductions

about placements of numbers, and logic grid puzzles. The latter is so named because

the solver is provided with a grid on which to fill in information obtained from clues.

Shinro is a Japanese logic puzzle in an 8x8 grid similar to Sudoku. To solve it,

players must determine the locations of 12 stones using two types of clues; the number

of stones located in each row and column, and arrows placed in the grid that point to

at least one stone. As for other logic puzzles, the player uses elimination to reach one of

two conclusions; a square must contain a stone, or it absolutely cannot contain a stone.

Figure 2.14: An example Shinro puzzle.

Oranchak used a genetic algorithm to automatically generate Shinro puzzles with

desired qualities [21]. A genetic algorithm was also used by Mantere and Koljonen to

generate Sudoku puzzles [22], which have a similarly large search space. Genetic algo-

rithms fall into the generate and test category, where the fitness function represents the

test. As such, the basis of the evolutionary algorithm is an automated solver that uses

a list of deduction types to solve Shinro puzzles. Among others, deductions are made

33

based on the following observations: row or column count is satisfied, arrow points to

only one free square, one stone remains to be placed and there is a horizontal or vertical

arrow, and locations that can be excluded based on the pigeonhole principle. Some

deductions are easier to make than others so it is reasonable to say that the difficulty

of a Shinro puzzle, and a Sudoku puzzle, can be measured by the number of difficulty

deductions (also referred to as moves).

The automated solver tries to solve the generated puzzles using a greedy search - it

looks for easy moves first. During the search, the number of times each type of move

is executed is tracked, and these numbers are then used to compute fitness, according

to a variety of fitness functions.

The evolutionary algorithm is initialized with a small population of genomes be-

cause the fitness evaluation has a long run-time [21]. Genomes are matrices of integer

values representing different grid square types. It is also possible to specify a target

pattern which will restrict the possible values for some grid squares; a way for designers

to influence the output of the generator. Tournament selection is applied to create a

new population for each generation, but crossover was not implemented. The design-

ers assumed it would have destructive effects on required Shinro characteristics, e.g.

ensuring exactly 12 stones. Evolution occurs through mutation which probabilistically

changes the values of randomly selected squares, and randomly decides whether to em-

ploy symmetry. When the algorithm stops, due to no more improvements in fitness, a

brute force search is used to make sure the resulting puzzle only has one unique solution.

Oranchak found that optimizing puzzles according to the number of moves required

to solve it did not necessarily lead to difficult puzzles. As mentioned, the important fac-

tor is more how challenging the moves themselves are, so concentrating on maximizing

specific types of moves made more sense. However this is challenging due to the nature

of the greedy search. Aesthetics such as symmetry can make a puzzle more appealing

to a player - introducing the symmetry mutator greatly contributed to generating puz-

zle with symmetry in the stone and arrows positions. Overall, the genetic algorithm

managed to effectively generate a variety of interesting and challenging puzzles.

34

2.2.12 Word Puzzles

This is a broad category that incorporates any puzzle that is built using words. Some

puzzles only exist as word-based puzzles, e.g. riddles, crossword puzzles and anagrams,

but many well-known word puzzle formats also have numerical or symbolic equivalents,

e.g. analogies. Different sub-categories of word puzzles that are based on the semantic

similarities, or dissimilarities, of words pairs have a lot in common. For example, odd

one out and next in sequence word puzzles both require the player to discover the most

plausible concept that relates a set of words [23].

Word puzzles have a long history on paper, but digital adaptations and novel types of

these puzzles are now a popular category of mobile games. Procedural generation is

useful for word puzzles due to specific word-related issues: new words get created, old

words go out of common use, and existing words get new meaning [23].

Pinter et al. developed an automated world puzzle generator using: a corpus, an

unstructured and un-annotated document collection; a topic model, which creates a

topic dictionary from the input corpus; and a semantic similarity measure of word pairs

[23]. This method would allow for domain specific puzzles, e.g. to fit into a narrative,

by using a relevant corpus. Puzzles are produced by generating consistent sets of words

and combining them with a weakly related, or unrelated, word.

Colton investigated three types of word puzzles: odd one out, analogy and next

in sequence, also referred to as complete the sequence in this taxonomy [24]. These

puzzles have a common characterization: each puzzles consists of a question, a set of

choices including the answer, and an explanation. Like for riddles, the explanation

refers to the single plausible solution. Finding a solution is generally based on player’s

previous knowledge about the characteristics of the objects, but obtained by system-

atically exploring the solution space.

Colton proposes that the difficulty of these puzzles can be influenced by the number

of choices, the complexity of the solution concept, and the number of disguising con-

cept - concepts that may look like a possible solution at first glance. He extended the

HR theory formation system to generate puzzles [24]. A set of objects of interests with

35

characteristics were given as input, and production rules are used to generate a (solu-

tion) concept. The motivation behind using HR for puzzles generation is the ability of

HR to form a new theory about a set of given objects. The negation and disjunction

production rules were not used because they lead to concepts that are rarely found as

a solution to puzzles.

The generating process is largely similar for the three different kinds of puzzles and

while generally constructive, and check is required after generating each puzzle to en-

sure that the solution is the simplest one that exists. Colton’s approach relies on highly

structured data sets - which requires a lot of human annotation effort in comparison

to the system in [23].

While the described generation methods output word puzzles, the words could be

replaced by objects to place the puzzle in a 3D environment. This would only impose

restrictions on the types of words that can be used as the choices.

2.2.13 Riddles

Riddles are puzzles that are solved by finding a plausible explanation for an unusual

description, and require the solver to use lateral thinking. The solution is rarely imme-

diately obvious, but should make sense to the solver upon its discovery. It is uncommon

to see riddles in video games because parsing a natural language explanation is difficult

for a computer. Exceptions are cases in which the answer to a riddle does not need

to be stated but rather it gives players a hint as to an object they need or a direction

they should travel in.

Riddles are difficult to generate because they often rely on a play of words - a

difficult concept for computers. The authors of [25] generated riddles of the format

“What is as hot as soup?”, stringing several such comparisons together to make the

riddle solvable. Only one comparison leads to too many possible answers, and would

be impossible to solve without turning into a lengthy guessing game. The most well-

designed riddles are based on nuanced meanings of words, and the generator in [25]

does not possess that level of semantic power.

36

Galvan et al. used the Thesaurus Rex, a database of word associations which as-

signs words categories and attributes, according to their use in everyday language. Each

category and attribute has an associated weight for each concept (word). The riddle

generation process involves finding links between the target concept and other concepts

using the categories and attributes. Difficulty of the riddles can be adjusted by chang-

ing the threshold of how similar concepts must be to be used as one of the comparisons.

The randomly generated riddles sometimes suffered from comparisons that did not

add new information, and new comparisons that were contradictory to old comparisons

due to the polysemy of some concepts. These issues feed into the problem of ambiguity

and having one best plausible solution (a satisfying answer), a challenge that also exists

for other categories of word puzzles.

Guerrero et al. developed a Twitter bot that generates riddles about celebrities

and well-known characters by extracting information from sources such as Wikipedia

zciteguerrero2015r. The riddles are composed of vague descriptions of the attributes

of the person or character in question. Sometimes the riddles do include non-literal

meanings of words.

2.2.14 Odd One Out

Puzzle characteristics: a question, a set of choices (including the answer), and an

explanation which consists of a single, positively stated concept. Several papers look

at these puzzles as word puzzles, but they also exist as symbolic or numeric puzzles.

2.2.15 Complete the Pattern

Patterns can be visual, maths or letter-based and are taught to the player by means of

examples. In some cases this means that the player must comprehend an underlying

system before having the knowledge to fill in a blank spot. This category has been

discussed as a word puzzle, but as a visual puzzle it could easily lend itself to a 3D

representation.

37

2.2.16 Analogies

Analogies can fall under the word puzzle category, but like the odd one out puzzles,

analogies can also be symbol or number based. Some adventure game puzzles use an

analogy structure for deduction type logical puzzles. Generation of this type of puzzle

differs depending on the concepts being compared.

2.3 Summary

There is a trade off between generality of the solution and the amount of input required;

more general solutions will mean that more work will be required by the designer when

using the generation tool. However, most generators are based on the principle that the

initial high cost for designers, i.e. defining the rules and inputs of a generator, are out-

weighed by the benefits of then being able to quickly generate a large variety of puzzles.

The most important challenge in puzzle generation is: every generated puzzle must

be solvable. However, guaranteeing at least one solution is not synonymous to a good

quality puzzle. Generally puzzles should not have too many or undesired solutions, nor

should they be littered with pointless items and/or information. The issues that exist

for puzzle generation are directly linked to the characteristics of good puzzle design,

and thus vary for each puzzle type.

Controlling difficulty is a major topic in puzzle generation that comes up in much

of the past research. A comprehensive generation tool should be able to return puzzles

of varying levels of difficulty. The main challenge associated with this is often in

the development of a good evaluation metric; for many puzzle types it is difficult to

concisely define the factors of difficulty.

38

Chapter 3

Design

This chapter details the design of a system for procedurally generating narrative puz-

zles. As outlined in Chapter 1, the specific goals for this system are: the creation

of solvable puzzles, expressive power, dynamic difficulty, the ability to integrate with

existing games, and usability. After a brief overview of the core concepts of the system,

the inputs to the generator are described in detail. Following that, the algorithm for

puzzle generation is presented. Finally, the in-game presentation and solving of the

created puzzles is discussed.

3.1 Core Concepts

The developed system for generating narrative puzzles is based on a context-free type

grammar that defines possible behaviors of game items. The puzzle generator inte-

grates with a game world to create puzzles on the fly based on the current state of the

world.

There are three components that feed into the generator: a database of all items

that can be used in puzzles, a collection of grammar rules that describe the space of

all possible puzzles, and a comprehensive list of the game areas. Several core concepts

form the basis of these component; they are briefly define in the list below:

• Items: Correspond to game objects and are defined by their types and an optional

set of properties.

39

• Properties: Have a name, which identifies them, a value type, and a value.

• Rules: Composed of an output term, a set of by-product terms, an action and a

set of input terms.

• Terms: The main units out of which rules are composed, each is defined by a

single type and an optional list of properties.

• Action: Describes the player’s action in carrying out a rule.

• Area: A single connected space that forms part of the game world; used to

compartmentalize the puzzle generation.

The structure of these components is flexible in terms of the designer-defined con-

tent it can support, allowing the generator to be applied to a range of game types.

This chapter will refer to a potential user of this system as the game designer.

Figure 3.1: Abstract representation of the general structure of a rule.

The generator uses the set of production rules that constitute the grammar in a

left to right direction to generate a puzzle backwards from an end goal, a process that

ensures the puzzle is solvable. In a game that incorporates the generated puzzles, the

same rules, but used in the right to left direction, function as game logic.

The inspiration for this puzzle generator came from the Puzzle-Dice system, which

was described in Chapter 2. The design of this generation system attempts to im-

prove upon the Puzzle-Dice system, specifically in terms of expressivity, usability and

scalability, while maintaining the guarantee of solvability.

40

3.2 The Puzzle Items

A puzzle item is a conceptual representation of a tangible object that can be used

as part of a puzzle generated by the puzzle generator. Each puzzle item has a unique

name, which is also referred to as the item’s specific type, an optional list of properties,

a description to show in-game, and an associated prefab. There may be more than one

puzzle item for an object that is conceptually the same but has multiple states; for

example a tree in summer and that same tree in autumn. However, these specificities

in item definitions are left open to the game designer.

Item properties are defined by their name and type; the type determines the legal

values for the property. There are three types: string properties, boolean properties

and integer properties. Properties are freely defined by the game designer, and as such

they can be tailored to the needs of the puzzle genre. There are no required properties;

if a property is not defined for an item, the generator assumes it does not have this

property. In the case of a boolean, this is equivalent to assigning the value false for a

property, e.g. not specifying the carryable property as equivalent to marking an item

as “not carryable”. Properties are compared based on equality between their names

and values.

There are however several special properties which have explicit logic attached to

them. One of these is the aforementioned carryable property; an item is queried in-

game for this specific property to determine whether it can be added to a player’s

inventory.

Another special property is the isa property, which can be used to define all the

categories a certain item belongs to; for example, a PineTree might have the isa prop-

erties Tree and Plant. Generally the property values correspond to the super-classes

or types associated with an item. The name of an item is also considered to be an isa

property of that item, as it defines what an item is. In other words, an item’s name

defines the most specific category it belongs to.

The value associated with an isa property may or may not be the name of another

41

item in the puzzle items database. Often they are not because the defined items rep-

resent distinct instances of objects, whereas the isa properties are likely to be generic

types, e.g. Tree. Every puzzle item is automatically considered to be a sub-type of

the type Item (so this does not need to be explicitly define). Notably the isa property

allows for the creation of hierarchies among puzzle items. As will be seen in the next

section, this hierarchy is central to the functioning of the grammar rules.

The contains property is technically a string property but logically it refers to an

item that is contained inside the item for which it is defined. This property is not

frequently used for puzzle items because most containers can exist independently in

the game world and may contain many different types of items. For example, a trea-

sure chest should not be defined as containing gold, because it could also contain other

items, or none at all. As will discussed in the next section, the contains property is

more important for the rules, which can refer to transient item states.

There are two special properties that can be used to restrict the possible locations

of puzzle items. The notSpawnable property, which is defined in the negative so it can

be left out by default, indicates that a puzzle item can only be used if it is already

part of the game world, or if it is inside another item. The area property can be

used to specify the legal areas for spawning and/or using an item, allowing the game

designer to control which items may be included as part of a puzzle on a per area

basis. For example, a lake should probably not be considered as a possible puzzle item

when generating a puzzle for an indoor area. Multiple area property entries result in

multiple legal locations.

3.3 The Grammar

The grammar, which comprises of a set of production rules, describes the space of all

possible puzzles. Each rule describes a relationship between a set of inputs and a set

of outputs. The format of the rules is loosely based on the format of rules that make

up a context-free grammar. The grammar rules serve a dual purpose; they are used

by the generator to create puzzles, and they are executed in-game as a result of player

actions. The second purpose is a mirror of the first as it pertains to the player using

42

the rules in the opposite direction (as during generation) to solve the created puzzle.

The general format of a rule is as follows:

itemType[properties0...n]1...n ::= action itemType[properties0...n]1...n (3.1)

In a context-free grammar all the productions are one-to-one, one-to-many or one-

to-none, and for the purposes of generation, this holds true for the puzzle grammar.

Production rules are read from left to right, and can be seen as describing breaking

down an output into its input(s). A puzzle is created by iteratively decomposing out-

puts, starting from an end goal, as described in the Puzzle Generation section further

on in this chapter.

In practice, for this application, the rules can, and often do, have multiple outputs

because the right and left hand sides of the rule describes which items exist, and in

what state, before and after the rule is applied, respectively. For generating a puzzle,

in the form of a tree structure, only the first output is important, the others are

considered to be by-products. The by-products are items that were not destroyed by

the application of the rule, but which are also not the main outcome. For example,

in rule 3.2, that expresses chopping down a tree, the axe is not an outcome, but it is

important to account for the fact that it was not consumed as part of the execution

of the rule. Overall, each input, or right-hand side, term is considered to be destroyed

if it does not appear as an output, or left-hand side, term. The exception to this is

container behavior; inputs that appear as the value of the contains property for an

output are additionally not considered destroyed; rule 3.3 shows an example of this

type of behavior.

TreeStump Axe ::= ChopDown Tree Axe (3.2)

Container[contains : Eggs] ::= Gather Eggs Container (3.3)

43

The output of the each rule is a list of terms, while the input is composed of an ac-

tion and at least one term, as shown in Figure 3.1. Terms represent the non-terminals

of the grammar while an action is a terminal that refers to what the player does to

execute the rule. The left hand side of a production rule is always a non-terminal in

a context-free grammar, which holds true for these rules. While the terms represent

the non-terminals of the grammar, the puzzle items, described in the previous section,

represent the terminals. In this way, terms can be seen as boxes with descriptions of

what kind of puzzle item could be placed inside.

There is theoretically no limit on the number of inputs, not including the action, of

which there is always only one, and outputs, those that are by-products. However, typ-

ically the number of inputs would be one or two. The rules should always have at least

one output (the main output) and one input. Normally a context-free grammar rule

can be one-to-none, as stated, but that is not applicable here as it would be equivalent

to an item created out of nothing. Rules need some form of input state to check; if that

state is blank it will always be satisfied and thus a rule would keep executing indefi-

nitely. Rule execution is discussed in depth in the Puzzle Solving section of this chapter.

The terminals (puzzle items) are not directly used in the authoring of the grammar

rules; a designer only looks at linking terms (non-terminals) to other terms. Internally,

the puzzle generation system contains logic for which non-terminals may be replaced

by terminals from the database. Some of the terms can be matched directly to puzzle

items while others must first be broken down to other terms according to the produc-

tion rules. While a designer only makes use of non-terminals in writing the rules, they

should be aware of the need to include non-terminals that can be matched to terminals.

The grammar is only valid if each input term can be matched to at least one output

term in a different rule, or at least one puzzle item.

Terms are composed of an item type and an optional list of properties; this makes

up a description of possible puzzle items that could be matched to it. The term’s item

type corresponds to the previously described isa property, which includes item names.

The type can be specific, such as PineTree or general, like Plant. The more general the

type, the more puzzle items have the potential to be matched to a term, and the more

44

different puzzles may be generated using that rule. Since any puzzle item is a sub-type

of the special type Item, that type could be used for terms that could be filled in by

any item.

The properties associated with a term are fundamentally the same as those for a

puzzle items. For an item to match a term it must be of the same type or a sub-type

as the term’s type, and it must include all properties of the term. A puzzle item can

of course have many more properties than those required by the term.

Terms cannot have isa properties because they are defined by a single type. They

also would not have area properties because area considerations are not taken into

account by the rules; the rules run at a lower level in the generator than the per area

progression. Generally, it can be said that the properties associated with a term are

those that are mutable, e.g. temperature is mutable while the fact that a pine tree is a

tree is not. However some generally immutable properties, such as carryable may also

be used to specify a term that can match any carryable item.

As discussed previously, the contains property is needed to represent scenarios in

which items can be inserted into containers, and later removed again. Container inser-

tion is important for making items that are not carryable, e.g. water, carryable. This

property is also the only way to merge two items temporarily; this is important in-

game where two inputs leading to one output would otherwise destroy one of the inputs.

Besides inputs and outputs each rule must also have an action, which can be con-

sidered a terminal. This action is only used as part of the second purpose of the rules,

as game logic; it has no bearing on the puzzle generation. Mainly the action is a

designer-targeted feature; it allows designers to specify a specific player action that

must be performed to execute a rule. The actions that are available for an item can be

displayed in-game as an action menu, but this is not the only possibility. For example,

a designer could also use the action field to trigger a certain animation.

The action appears as the first symbol on the right hand side. It is associated

with the first input non-terminal, and thus only with the item that is matched to that

45

non-terminal in the generation process. As such, it is important to consider the order

of the inputs; for example in rule 3.2, the action ChopDown should appear attached to

the Tree term, rather than the Axe term.

3.4 The Puzzle Areas

Each puzzle area corresponds to a connected area in the game world and must have an

associated goal. The goal is used by the generator as the starting point for generating

a puzzle for that area.

A designer can associate multiple possible goals with each area in order to increase

the possibility space of puzzles that can be generated for that area. In the current

design, only one goal is chosen, and thus one puzzle is generated per area. In this

context, puzzle refers to all of the actions a player must execute to reach the area goal;

a single puzzle has no prescribed size or difficulty.

The format of an area goal is the same as that of a single term in a rule of the

grammar. Each goal specifies a type of item that must be obtained, and an optional

list of properties that must be fulfilled for that item. The generator checks that the

goal cannot be satisfied by any intermediate items that are chosen as part of the puzzle,

as this would practically result in a player pre-maturely completing a puzzle.

Besides a goal, a puzzle area has a unique name, a list of connected areas, and

maximum puzzle depth. The maximum depth refers to the depth of the tree structure

representation of the puzzle that is created by the generator; discussed in the next

section.

Puzzle areas can be predefined, or in the case of a procedurally generated game,

they could also be automatically defined at run-time based on environmental attributes.

The player’s current in-game area is tracked by the generator and a puzzle solving

manager that tracks the player’s solving process. The generator needs this information

to spawn puzzle items, while the puzzle manager makes area appropriate rules available

and checks whether the goal for an area has been completed.

46

3.5 Puzzle Generation

The puzzle generator works by recursively generating inputs for outputs using the set

of rules that make up the puzzle grammar. The rules are used in the left to right direc-

tion, as production rules, and do not take into account the by-product terms. Puzzle

generation is done live, that is, while the game is being played, on the basis of cur-

rently accessible areas. This means that at a high level generation is running forwards

throughout the game, but at a lower level, i.e. per area, generation runs backwards.

This forward-backwards combination ensures solvability and quality, through lack or

repetition, for the generation puzzles.

At the start of the game, a puzzle is generated for the area that has been designated

as the start area. Finishing a puzzle for one area, i.e. achieving the area’s goal, causes

all its connected areas to become unlocked, and triggers the generation of puzzles for

those newly available areas. The forwards part of the algorithm can branch off into

different tracks depending on the specified connections between areas. The system

maintains each of the available areas, along with their puzzles, so multiple puzzles, can

be in progress at the same time.

The general forward direction of generation for the areas is important because it

prevents unsolvable puzzles resulting from inaccessibility to needed items. Specifically,

the scenario in which an item that is needed to solve a puzzle for one area is locked

off in a next area, that cannot be opened until the puzzle in the current area is complete.

Per puzzle, the algorithm starts by finding a rule with a left hand side term that

matches the current area’s goal; the area goal is analogous to the grammar’s start sym-

bol. From that starting rule, it continues trying to substitute right hand side terms

for other terms until no suitable rule can be found to perform such a substitution, or

the area’s depth limit is reached. At that point, the generator adds the puzzle item

(terminal) that matches the last term to the game world, if it is not there already.

The rules used for the substitutions are recursively chained together into a tree

structure that defines the entirety of the created puzzles.The items spawned in the

47

world correspond to the inputs for the rules that make up the leaves of that tree. One

tree is created per area and is used to track a player’s progress in solving the puzzle

represented by the tree.

An example of a generated puzzle is given in figure 3.2, followed by the rules that

would be chained together to create that puzzle. Practically it is the rules that make

up each node of the tree, rather than the terms, but the terms make for a clearer

representation of the structure. The narrative of this example is as follows: first the

player must assemble a disguise out of glasses and a fake moustache and set of a car

alarm to distract the security guard; these events can happen in either order. Then the

player can steal the distracted security’s badge, and proceed to unlock the safe with

it. Finally, once the safe is unlocked, the player can open it and access the desired gold.

Figure 3.2: An example puzzle tree.

Gold Safe ::= Open Safe[locked : False] (3.4)

Safe[locked : False] Badge ::= Unlock Safe[locked : True] Badge (3.5)

Badge Security ::= Steal Security[distracted : True] Disguise (3.6)

Security[distracted : True] ::= Trigger CarAlarm Security[distracted : False]

(3.7)

Disguise ::= CreateDisguise Glasses FakeMoustache (3.8)

48

3.5.1 Matching Terms

Terms can be matched to other terms according to their types and properties. The

properties must be an exact match, neither term can have properties not present for

the other. While finding an appropriate output term for an input term, the type of the

output term must be the same or more general than the type of the input term. For

example, an input term of type Tree could be replaced by a rule with an output term

of type Tree or Plant but not by one with an output term of type PineTree.

An important to note design choice is that the generation algorithm does not wait

until it reaches a terminal to pick a matching puzzle items for a term. In fact, it at-

tempts to find a matching item to assign to a term as early as possible. The reason for

this is that it allows for the use of more specific rules, widening the scope of possible

puzzles. Puzzle items are more specific than terms by definition, so once a term be-

comes more specific as a result of an attached item, it can be matched to more output

terms in other rules. If a term has an assigned item, that item’s type will override the

term’s type. For example, a rule with an input term with type Tree, as in the previous

example, might pick a PineTree item as the matching puzzle item and change its type

accordingly.

Of course terms cannot always be matched right away, due to no puzzle items hav-

ing the properties of the term. However, the type of a term should always correspond

to a type that exists for puzzle items in the database; otherwise a match will never be

possible. This type check is performed for every term in the used rules; if it fails, that

means the grammar is invalid.

When an item match is found for a term, that item is passed up the tree to pre-

viously visited rules, and attached to corresponding terms. In this way, each term in

each rule that makes up the puzzle tree structure will have an associated puzzle item

when generation completes. These puzzle item references can be used during puzzle

solving to know which new items to spawn as the result of the execution of a rule.

49

3.5.2 Generation per Game Area

The game areas are modular but conscious of their context. New puzzles are created on

a per area basis, with the generation algorithm being aware of all currently accessible

areas, all items currently in the world, and all items in the player’s inventory. Anytime

an item is chosen for a term, the generator ensures that the chosen item is accessible.

This check makes use of the items’ aforementioned area and notSpawnable properties.

If a terminal item already exists in the world it is not added to the world again, unless

multiple copies of one item are required by the leaf rules.

Additionally, the generation algorithm will terminate upon reaching an intermedi-

ate puzzle item that already exists in the world as the result of a puzzle generated for

a previously traversed area. This early termination prevents recreating a puzzle that

the player has already solved, or creating a futile puzzle because the player already has

the item he/she would be trying to make.

Figure 3.3: A layout of how puzzles in different game areas can be interconnected.

Figure 3.3 shows how puzzles in each area can re-use items from previously visited

areas. For example, the goal for area 1 is re-used as one of the input items needed to

acquire the goal for area 2, and one of the items from area 2, which is assumed to not

be destroyed in this example, can be re-used as an input to a puzzle in area 3. Puzzles

are generated per area in a linear order for this example, with the puzzles for area 2

being created after the goal for area 1 has been achieved. Within each area generation

50

runs backwards from its respective goal, but takes into account the items in the areas

before it.

Unlike the Puzzle-Dice system, which also terminates generation with a list of items

to be spawned, this system does not make the assumption that the world is empty at

the start. It is possible for existing objects in the scene to be included in the puzzles,

if they have components that identify them as puzzle items.

This is an important design choice for integrating puzzles into an environment.

Puzzle items could correspond to environmental phenomenon, such as a lake, or large

static structures, which are more logically placed in the game world as part of scene

design. Allowing for the use of pre-existing objects as puzzle items gives the designer

freedom in the construction of the game world.

One reason for this choice came from considering the application of this puzzle gen-

erator in a game with a procedurally generated environment, such as Minecraft (2011)

or No Man’s Sky (2016). In such a game, the puzzle generator could run as a sepa-

rate layer on top of the existing generator if the puzzles are constructed partially from

already spawned items such as environmental phenomena and NPCs. Typically these

types of items would correspond to those found at the leaves of the puzzle structure;

it is rare that a lake or an NPC could be broken down into elementary parts.

The puzzle generator also tracks the depth of the tree that represents the current

puzzle; this prevents a possible infinite loops scenario, and allows for designer influence

on the length of the sequence of actions needed to solve a puzzle in a given area. As

stated in the previous section, the designer can specify the max depth on an area by

area basis. The number of actions needed to solve a puzzle is also determined by the

breadth of the tree but due to a low average branching factor (most rules will have one

or two inputs), depth influences the length of the solution sequence more than breadth.

51

3.6 Puzzle Solving

Next to puzzle generation, the grammar rules also provide the in-game logic that al-

lows a player to solve a generated puzzle. For this purpose the rules are used from

right to left; the inputs on the right hand side must be satisfied in order to produce

the output(s) on the left hand side. Inputs are satisfied when they are co-located and

have all of the appropriate properties. Co-location can be achieved through use of an

inventory system, for NPCs it is automatically achieved when they are in the same

game area.

When the inputs for a rule are satisfied, the action to execute that rule is provided

to the player. Only when the player chooses that action is the rule actually executed,

i.e. are its inputs replaced by its outputs. While the generator only really looked at

the first output, each output is equally important in-game because they indicate which

items should be created and/or destroyed.

Two basic rules are added by default for puzzle solving; the “pick up” and “put

down” rules. These, self-explanatory, rules allow a player to pick up, and put down,

any item that has a carryable property set to true. These rules are not needed during

generation because the use of accessible areas and containers ensures that it will be

possible to co-locate items in-game.

Primarily, the grammar is used to define logic that can be combined to form a

narrative puzzle. However, additional rules can be defined to express possible fail

states, i.e. scenarios in which the player fails to solve the puzzle and must start over

(either with the same puzzle or a newly generated one). The outputs of these rules

would correspond to game over scenarios. For example, the player may pick the action

Eat on a mushroom that is poisonous, and die as a result. These rules would not be

used for puzzle generation, as their outputs would, by definition, represent incorrect

solutions.

52

Chapter 4

Implementation

The described system was implemented for the Unity game engine, and can be used

in-engine as a tool to add generated narrative puzzles to a wide variety of games.

Puzzle items, grammar rules and game areas are all implemented as different Unity

assets, through defining them as Scriptable Objects, which can be created and edited

using custom Unity editor windows. Assets can also be edited using the built-in Unity

inspector, but these are tedious to use, so the custom editors were created with the

aim of making the puzzle generation system user-friendly. Implementing these to be

assets means that they can be easily reused between different projects.

The collections of the three asset types are managed by a database class that pro-

vides functions to operate on the entire collection. The database class is generic, with

a specialized version that provides some specific functionality used for each asset type.

The provided functions are all static so no instance of the database object has to be

created, and the assets can be accessed anywhere in the program.

A small demo game was built as a proof of concept for the puzzle generation sys-

tem. The code for the puzzle generation part of the game is mostly self-contained, but

does need to interface with the player character. The system was integrated with small

pre-designed game world.

This chapter describes the implementation of the three components that feed into

53

the generator, before delving into the generator class itself. Overall, the puzzle gener-

ation for a game is managed by the puzzle manager, whose functionality is explained

in the last section of this chapter.

4.1 The Puzzle Items

Puzzle item assets are implemented using the PuzzleItem class which have fields for

the item’s name, prefab, user-friendly description and list of properties. The Property

class is used to define properties across all of the different assets, i.e. for the puzzle

items but also for the terms of the grammar rules and the goals of the puzzle areas.

Property matches are endeavored between each of those at different stages in the puzzle

generation and solving processes.

Figure 4.1: The custom editor used for creating and editing puzzle items.

The logical representation of a puzzle item is separate from its game object rep-

resentation. The properties of a puzzle item do not change unless the asset is edited

directly; that is, they cannot be changed in-game as a result of puzzle solving. Instead,

a copy of the puzzle item, referred to as a game item, is used for this purpose. Specif-

ically, the game item creates a copy of all of the properties of the puzzle item; these

will be its properties when it is spawned in the world, but those properties could be

54

altered as the result of player actions.

The game item stores a reference to the puzzle item it is derived from, this is par-

ticularly important when checking if a copy of a certain puzzle item already exists in

a given scene. For example, the generator may determine that one of the terminals

is a tree item, but if the accessible areas already contain at least one tree, it is not

necessary to spawn another one. The generator determines which items already exist

by searching the accessible areas for game objects with the GameItem component, and

checking which puzzle item is referenced by that component.

Each property name is identified by a string; the designer must enter in two identi-

cal strings if he/she wishes to refer to the same property for two different puzzle items,

or terms. While this leaves room to some human error, it does allow for a quick work

flow when defining a broad range of properties. Depending on the game being created,

properties may or may not be frequently re-used between items. All property types

are saved as strings for the purposes of serialization, but they are converted back and

forth for the editor interface, so this is not noticeable from a user point of view.

As mentioned when discussing the design of the grammar, the action of a rule per-

tains to the first input term. Each game item queries the puzzle manager for currently

available rules in which it appears as the first output. As such, the game item knows

which actions could be performed on it. The criteria used by the puzzle manager for

matching a game item (or puzzle item) to a rule input is item type; properties are only

checked by the game item itself, as it contains the logic for determining whether the

inputs for a rule have been fulfilled.

When a player hovers over an item, the item’s description is displayed. Upon click-

ing on the item, an action menu pops up with all available actions for that item. An

action is made available when the input criteria for a rule have been satisfied. This

means that the game item must have all the properties (if any) required by the input

term it matches, and any other input items must also be fulfilled, as well as be co-

located, i.e. in the player’s inventory, or in the same area in the case of NPCs. Game

items also carry out the execution of a rule, but that will be described in the Puzzle

55

Solving section.

In order to implement the contains property for an item, the GameItem class has

a field in which it can stored a reference to a contained game item. This field is used

to keep track of a game object while it is inside a container, so that it can later be

removed again.

4.2 The Grammar

The grammar rules are implemented in an object-oriented fashion; each rule and term

corresponds to a C# class. A rule object contains a list of output terms and a list of

input terms, as well as fields for referencing parent and children rules, which are used

during puzzle generation.

The screenshot below shows how a rule can be created using the custom rule asset

editor. At the top, a string representation of the rule is displayed to the designer as a

quick overview. Each rule in the list can be expanded, as the one in the screenshot,

in order for it to be edited. Outputs and inputs terms, and their associated proper-

ties can be added and deleted using the appropriate buttons. The action should be

written in plain English as it is what gets displayed to the user. The rule in the exam-

ple describes obtaining water for a water source, which could be a well, lake, etc. by

using a container. The output is that container filled with water, as well as the wa-

ter source as a by product because it would not be destroyed as the result of this action.

For this action to appear as a possibility to the player, when clicking on the water

source, the player would need to have an item of the type Container in their inventory.

After executing this action, the container inventory item will update to indicate that

it now contains water.

During generation only the first output term, i.e. the Container term, would be

considered. The rule could be used to break down any rule that had an input term of

the same format as that Container term.

56

Figure 4.2: The custom editor used for creating and editing rules.

The main output of a rule should be different than either of the inputs, either by

type or by property. If any of the inputs matched the output exactly, the rule could

be infinitely chained together (practically this would be prevented by the depth limit),

which is probably not a desired behavior. Each rule should affect the state of the

game world in some way, and progress the player’s journey. If the rule’s main output

matched one of its inputs, this essential component of narrative puzzles, for which the

grammar is designed, would not be satisfied.

While the structure of a rule is strictly defined in terms of a main output, output

by-products, and inputs, the terms can be flexibly defined. The open-endedness of

term type and property definitions means that the rules can express a wide variety of

behaviors. While the term type of the main output and the inputs must match what

can be found in the database, as discussed in the design, the by-products can be used

for any type of side effect. The values of the terms of a rule can be queried in game

at the time of rule execution, so the game designer could extend the behavior of the

rules to trigger other events. For example, one of the by-products might be a timed

explosion, or a phrase uttered by one of the game’s NPCs.

57

4.3 The Areas

The game areas are unique assets like the puzzle items and the grammar rules and

can be similarly defined using a custom editor, of which a screenshot is shown below.

Puzzle areas use the Term object to define their goal(s). As a result, area goals can be

easily passed into the generator as the starting term for which to generate inputs.

For the example area shown in the screenshot, a puzzle will be generated that leads

to a tree stump, meaning that the player will have to chop down a tree. The designer

could choose to explicitly tell the player this goal, or provide a hint to steer in the

player in the general direction of the puzzle solution.

Figure 4.3: The custom editor used for creating and editing puzzle areas.

Similarly to the way in which puzzle items correspond to game item components, the

puzzle areas correspond to game area components that can be attached to transforms

in the scene. The game area script is mainly used by the generator to find appropriate

spawn points for the terminal puzzle items. All items in the world that are, or could

be, part of a puzzle for a given area should be children of the game object that has a

game area component linking to that area. In this way, each game item knows what

area it belongs to, and can pass that information back to the puzzle manager when

asking it for rules.

58

4.4 Puzzle Generation

The puzzle generation algorithm is mainly comprised of a recursive method called

GenerateInputs() that takes in a term and tries to find a rule to produce inputs for

that term. In addition to a term, this method also takes in a parent rule, i.e. the pro-

duction rule used to obtain the term, the current depth and area, all other accessible

areas, and all (accessible) items that currently exist in the world. The first time this

method is called for a certain area, it is prefaced by a search for all game items in the

scene. The first term that is passed in, analogous to a start state of the grammar is

the area goal, and the first rule is a blank rule that is the root of the tree structure.

When trying to generate inputs for a term, the first step is a search in the item

database for all puzzle items that match the term. As mentioned in the Design chapter,

an attempt is made to find a puzzle item match for a term as early as possible. For a

puzzle item to match a term it must have the same type or a sub-type; this check is

implemented by looking at the isa properties for each item and determining whether

the value of one of those properties is that same as the term type. If this check suc-

ceeds, each term property, if there are any, must be found as a property for that puzzle

item. Additionally, the system must determine whether the possible match is actually

accessible; for that to be the case the item must either be spawnable and legal for the

current area, based on the area property, or it must already exist in the scene. If no

area property is found for an item, the system assumes that it can be legally placed

anywhere.

If multiple matching items are found, one is chosen at random and assigned to the

puzzle item field in the term object. If the chosen item is already found in the same, the

GenerateInputs() method returns early. If no matches are found, an additional check

is executed to ensure that the type of the term can be found for at least one accessible

item in the database. If this is not the case, the generator returns an invalid gram-

mar error because it means there is a non-terminal that could never reached a terminal.

The next step in generating inputs is finding all the rules that have an output term

that matches the term passed into the method; if a puzzle item was chosen for the

59

term, that term now has a type that is as specific as that puzzle item’s type. For a

term to match the (main) output of a rule, it must be of the same type as or a sub-type

of the output. Additionally, the lists of properties for each term must match exactly.

If multiple possible rules are found that match these conditions, and the area search

depth limit has not been reached, one will be chosen at random. Again, type checks

are performed; if the start term is more specific than the output term in the chosen

rule, and the output term corresponds to any input terms in the rule, those input

terms are update to be more specific. Each of the input terms of the chosen rule

are then considered outputs, for which new inputs must be generated by calling the

GenerateInputs() method for them. When the recursive call to the method returns,

it passes puzzles item matches for terms back up the tree.

The final possible step of the GenerateInputs() method occurs when no rule match

was found for the start term. In this case the puzzle item attached to the start term

will be spawned in the current area, if it is not yet found in that area. If no puzzle item

has been attached to the term by this stage, the generator returns an invalid grammar

error as well, since it means there is a term that cannot be matched by either a different

non-terminal or a terminal symbol of the grammar.

4.5 Puzzle Solving

Puzzle solving involves the sequential execution of rules that are part of the puzzle tree

created by the generator. A player must explore the game world and consider which

actions may lead to the fulfillment of the area goal, which can be displayed as a hint

when the player enters a new area.

Game items communicate with the puzzle manager to learn which rules pertain to

them at different points during the game. As mentioned, it is the game items them-

selves that contain the logic for deeming a rule executable. Besides checking the rules

obtained from the puzzle manager, there are two other possible actions. The first is the

PickUp action, which gets displayed for any item, regardless of its inclusion in a puzzle,

60

if it has the carryable property with the value set to true. Allowing interactions with

game items in this way introduces some red herrings into the puzzle, i.e. the player

may think he/she will have a use for an item when that item is not actually part of

the puzzle solution in any way.

The converse action, PutDown can be executed for any game item that is currently

marked is being contained in the player’s inventory. In the demo game, items appear

by their description in a small menu whose display can be toggled. Items are removed

from the inventory by clicking on their name in this list. Practically, this causes them

to be placed in front of the player. In the demo game, actions can only appear for items

in the world, not while they are in the player’s inventory, but this is an implementation

detail that can be chosen by the game designer.

For the normal rules, the execution of a rule is composed of three steps that cor-

respond to: item creation, item destruction and item property changes. First, items

that appear as an input but not as an output are marked for destruction, with the

exception of items whose type appears as the value of the contains property of another

output item. The comparison between input and output items is done on the basis

of exact matches between types. Note that the inputs and outputs of a rule here are

discussed as items instead of terms; at the point of rule execution, all terms will have

corresponding items assigned.

Items that appear both on the left and the right may have an associated property

change; this change is applied to the game item’s properties, as opposed to the puzzle

item’s properties. Finally, items that appear only on the left must be spawned in the

world. If there are item in the to be deleted list, the locations of those items are used as

the locations for spawning new items. The last step is the actual destruction of game

items; this is not done till the end as it may involve destroying the game object that

is leading the execution of the rule.

61

4.6 The Puzzle Manager

The puzzle manager is the point of entry for the puzzle generation system and man-

ages a lot of the behavior described previously in this chapter. It tracks the areas

that currently have puzzles in progress, and regulates the execution of rules, in the

right-to-left direction, in conjunction with the puzzle item objects. As part of this, the

puzzle manager monitors whether the goal for an area has been achieved; if it has, it

makes a call to the generator to create a new puzzle for each area connected to the

area that was just completed.

When the generator finishes running, the puzzle manager iterates through the rule

tree in order to find out which rules are the current leaves of that tree. At any point

in time, the leaves of the tree represent the rules that must be used (by the player)

to move towards the puzzle solution. When a rule is executed, the puzzle manager

removes it from the list of leaves, while adding its parent rule to that list.

The system presents two options for which grammar rules can be used during game

play; allowing all the rules to be used, or only those that are specifically present in the

puzzle tree. The puzzle manager sends rules to the game items depending on which

option has been checked. For the first option, the puzzle manager also finds matching

puzzle items for the rules’ terms. Only rules that are part of the puzzle tree output

by the generator will have terms tagged with puzzle items. In fact these rule assets

are instantiated so that the rules can be amended to reflect that information without

updating the assets themselves.

Allowing all rules to be part of the game logic, including those that are not part of

the solution sequence, may lead to the game reaching an unsolvable state. However,

using all the rules, regardless of the created puzzles, can lead to a more consistent game

world, and to greater challenge in figuring out the puzzle solutions.

62

Chapter 5

Evaluation

The design and implementation of the system for procedural puzzle generation focused

on achieving the objectives outlined in Chapter 1; creating an expressive, user-friendly

system for the creation of solvable puzzles that can be integrated into a game. The

system was not strongly concerned about computational efficiency, but, for the small

demo game, the puzzles were easily generated on the fly as new areas became unlocked.

The evaluation made in this chapter is qualitative; it focuses on describing the proof

of concept game, and making comparisons with the Puzzle-Dice system, especially

in terms of the objectives, which is the current state of the art for narrative puzzle

generation.

5.1 Proof of Concept Game

A small proof of concept game was developed in Unity using the implementation of the

narrative puzzle generation tool described in this dissertation. The game was made

with free 3D assets and set in an environment with two areas; a grass field, and a river

bank. These areas were designed by hand (as opposed to procedurally generated) and

contained some game objects with GameItem components, such as some trees, corn

stalks and a well. On a given playthrough, each of these may or may not be used,

depending on the puzzle that’s created. However, it is always possible to interact with

the items; the corn can be added to the player’s inventory regardless of whether it’s

part of the puzzle. This adds consistency to the world, and can throw the player off in

63

Figure 5.1: Opening the action menu on a tree, when there is an axe in the player’s
inventory.

terms of what items he/she needs to complete the puzzles for an area.

Figures 5.1 and 5.2 show screenshots from the game; the player clicks on a tree and

it presented with the “Chop Down” action because he/she has in axe in their inventory.

The inventory can be displayed, as a list of items, using the tab key. Executing the

rule tied to the “Chop Down” action causes the tree to be replaced by a tree stump,

as according to rule 3.2.

For this game, 25 rules and 38 puzzle items were created. The goal of the first area is

to chop down a tree, which means that the player will have to acquire an axe. The rules

can lead to several unique puzzle trees for obtaining this axe; besides unique puzzle

trees, a single puzzle tree may also result in a slightly different playthrough when some

different items have been picked for the same terms in the rules. The puzzle generation

is integrated into this game by tagging some of the items in the world as game items,

including the trees. As a result, trees never need to be spawned, when one is needed

as an input to a puzzle, the player can use one of the ones that is already in the world.

64

Figure 5.2: After having executed the rule attached to the “Chop Down” action.

5.2 Comparison with the Puzzle-Dice System

This system uses a similar but simplified item database as the Puzzle-Dice system.

The simplification partially results from moving away from the single database table

design that dictates that all existing item properties have to be defined for all items.

In the new system, properties only have to be defined where relative, greatly reducing

unnecessary work on the part of the game designer. Another factor in simplification

is that some properties from the Puzzle-Dice system, such as the madeby property,

are no longer needed because such a relationship between items is expressed by the

grammar rules. Overall, this system places more emphasis on defining relationships

between types of items, as opposed to defining the items as isolated components.

The system described in this dissertation integrates the designer-targeted editors

into Unity, whereas they were previously stand alone. This makes the system more

user-friendly as they puzzle generation components can be edited alongside the other

game components.

65

The grammar replaces Puzzle-Dice’s puzzle map, and a large number of puzzle item

properties, and is the focus of designer-input. The format of the components of a rule

is general enough to allow for a greater variety in puzzles than can be expressed by the

Puzzle-Dice system’s puzzle building blocks. These building blocks, which make up

designer defined puzzle maps, are tied to specific patterns, such as combination or in-

sertion, while each rule can describe the function of any such building block, and more.

Additionally, rules allow for the inclusion of item properties in their specification, e.g.

a rule can require that the iron combined with a hammer to produce a blade must be

hot. The building blocks could place no such restrictions on the properties of its inputs.

The generator uses the grammar rules to create a puzzle as a tree structure of rules,

which is similar to the structure of the puzzle maps in the Puzzle-Dice system. The

creation of a puzzle map and the subsequent process of fitting items into that map is

merged in the new puzzle generation algorithm.

The puzzle tree is created automatically at runtime, and is thus different each time.

Items are filled into this structure while it is being generated, which also alleviates the

algorithmic difficulty of creating a puzzle for a given puzzle map; this was cited as a

limitation of the Puzzle-Dice system. In theory, this new design can create a wider

variety of puzzles with less algorithmic difficulty and a comparable amount of designer

input. Puzzle maps are implicitly defined by the generator instead of having to be

explicitly designed, which speaks to stated future work for the Puzzle-Dice system.

Unlike the Puzzle-Dice system, which also terminates generation with a list of items

to be spawned in the world, this system does not make the assumption that the world is

empty at the start. Any game object in the world can be given a game item component

that links it to one of the puzzle items in the asset database. This allows puzzles to be

integrated into an existing world; for example, an appropriately tagged lake, even one

that is part of a procedurally generated environment, could be used as a water source

in a puzzle that required one.

66

5.3 Solvability

The first main objective for the puzzle generation system, i.e. creating puzzles that

are guaranteed to be solvable, is satisfied through the use of the forwards-backwards

generation combination. Moving forwards through the areas ensures locked door type

puzzles will be solvable, while going backwards guarantees that the puzzle goal can be

reached from the starting items.

The one requirement for the creation of solvable puzzles is that the grammar must

be valid; this means all its non-terminal must match either other non-terminals or

terminals (the puzzle items). The game designer is responsible for creating a valid

grammar; the flexibility in the rule definitions means a lot can be expressed, but also

leaves room for error. This issue is discussed further in a the next section.

5.4 Dynamic Difficulty

The difficulty of a puzzle can be influenced by multiple factors including the length of

the solution sequence, i.e. the number of rules that need to be executed to achieve a

goal, or the complexity of the logic written into the rules by the game designer. As

mentioned in the Design Chapter, the game designer can specify the maximum depth

of a puzzle tree on a per area basis. Of course, in order to use this depth, there have

to be enough rules to chain together a puzzle of that length. This can be referred to as

adding a lot of depth to the rules. The converse is adding breath to the rules, which

is synonymous to high branching, or creating many rules with the same output term.

Having breadth in the rules will lead to more variety in the generated puzzles on each

playthrough of the game.

Additionally, high branching can lead to there being many start items in the world;

which could also be artificially created through just placing a lot of game item tagged

objects into the world. This tends to make a puzzle more challenging as well because

it gives the player more options from which to figure out what needs to be done.

67

5.5 Expressivity vs. Usability

As is the case for many puzzle generation techniques, there is a direct trade off between

the expressivity and the usability of the system. The more general, and expressive, a

system is, the more work is required on the part of the designer. The system described

in this dissertation defines appropriate structures, but those depend on the creativity

of the designer to be filled in in such a way that they will lead to interesting puzzles.

Part of the task of creating emergent behavior in the world falls on the shoulders of

the designer in this way; the generator is limited by the breadth and depth of the

designer-defined rules.

Generally, grammar breadth will lead to more puzzle variety, while depth will lead

to higher per puzzle complexity in terms of the number of steps required for reaching

a goal.

The flexibility of the term and puzzle item definitions means that the system could

be used for a variety of narrative puzzle types. For example, the grammar could be

used to define dialog trees as part of a puzzle that requires saying the right thing to an

NPC. However, the drawback is that the designer needs to be careful about matching

the spelling of equivalent properties and types, and the general grammar validity.

68

Chapter 6

Conclusion

This chapter concludes the dissertation by summarizing the contributions made by

the proposed system for procedural generation of narrative puzzles, and discussing its

limitations as well as possible future improvements.

6.1 Main Contributions

This dissertation presents a novel way of procedurally generating narrative puzzles,

that builds onto what was achieved with the Puzzle-Dice system. This new approach

is based on an extended type of context free grammar that provides expressive power,

to a greater extent than the Puzzle-Dice system, as well as guaranteed puzzle solv-

ability. The developed system for generating narrative puzzles can be integrated into

existing games, given that the game designer defines puzzle items, rules and game ar-

eas as they pertain to his/her game. The difficulty of the puzzles is determined by the

designer.

An implementation of the system was developed for Unity, and used to create

a small proof-of-concept game that presents the player with different puzzles during

different playthroughs. The system is mainly composed three custom editors that can

be used to create all of the inputs required by the puzzle generator.

69

6.2 Limitations & Future Work

Game designers have to ensure that the grammar they create is valid; this poses a limi-

tation, especially when the grammar contains many rules. Future work could include a

grammar validator that would run through all the created rules and notify the designer

of any issues with any of the terms. Generally, as the number of rules scales up, a bet-

ter grammar management tool would be needed in order to facilitate designer work flow.

Another limitation that has been touched upon is the issue of entering into an un-

solvable state when solving a puzzle in a game that has allowed all of the rules to be

used (as opposed to just those that are part of the puzzle tree). This issue of reaching

an unsolvable state is separate from that of generating solvable puzzles. It will always

be possible to solve a puzzle, but an incorrect sequence of actions may lead to a failure

on the player’s part to do so. Using all of the rules thus makes the puzzle very chal-

lenging, because the player would need to determine themselves whether or not they

have gotten themselves into an unsolvable state.

Future work could include checking for the occurrence of such a state, but this may

be an expensive check. Even if the current state of the game world cannot directly lead

to a solution, it may still be possible to reach such a state again. Determining that

possibility would be nearly equivalent to running the puzzle generator again.

6.3 Final Thoughts

The increasing prominence of procedurally generated worlds in video games has brought

up the question of how to make those worlds intriguing. Some of the recent commen-

tary on No Man’s Sky has indicated that players are not always satisfied with pure

exploration, which is the hallmark of PCG worlds. Minecraft ’s unique selling point

is in it’s endless, crafting-fueled sanbox, but even in that world, there may be room

for more content variety. Developing systems for procedurally adding interesting con-

tent and story to procedurally generated worlds could be a promising avenue for game

designer to explore. This dissertation proposes just one idea for such a system.

70

Bibliography

[1] D. Ashlock, “Automatic generation of game elements via evolution,” in Proceedings

of the 2010 IEEE Conference on Computational Intelligence and Games, pp. 289–

296, IEEE, 2010.

[2] C. Fernández-Vara and A. Thomson, “Procedural generation of narrative puzzles

in adventure games: The puzzle-dice system,” in Proceedings of the The third

workshop on Procedural Content Generation in Games, p. 12, ACM, 2012.

[3] M. Shaker, M. H. Sarhan, O. Al Naameh, N. Shaker, and J. Togelius, “Auto-

matic generation and analysis of physics-based puzzle games,” in Computational

Intelligence in Games (CIG), 2013 IEEE Conference on, pp. 1–8, IEEE, 2013.

[4] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based

procedural content generation: A taxonomy and survey,” IEEE Transactions on

Computational Intelligence and AI in Games, vol. 3, no. 3, pp. 172–186, 2011.

[5] A. M. Smith, E. Andersen, M. Mateas, and Z. Popović, “A case study of ex-

pressively constrainable level design automation tools for a puzzle game,” in Pro-

ceedings of the International Conference on the Foundations of Digital Games,

pp. 156–163, ACM, 2012.

[6] “increpare/puzzlescript: Open source html5 puzzle game engine.” https://

github.com/increpare/PuzzleScript. (Accessed on 08/29/2016).

[7] J. Taylor and I. Parberry, “Procedural generation of sokoban levels,” in Proceed-

ings of the International North American Conference on Intelligent Games and

Simulation, pp. 5–12, 2011.

71

https://github.com/increpare/PuzzleScript
https://github.com/increpare/PuzzleScript

[8] B. Kartal, N. Sohre, and S. Guy, “Generating sokoban puzzle game levels with

monte carlo tree search,” 2016.

[9] Y. Murase, H. Matsubara, and Y. Hiraga, “Automatic making of sokoban prob-

lems,” in Pacific Rim International Conference on Artificial Intelligence, pp. 592–

600, Springer, 1996.

[10] J. Taylor, T. D. Parsons, and I. Parberry, “Comparing player attention on proce-

durally generated vs. hand crafted sokoban levels with an auditory stroop test,”

in Proceedings of the 2015 Conference on the Foundations of Digital Games, 2015.

[11] N. Sturtevant, “An argument for large-scale breadthfirst search for game design

and content generation via a case study of fling,” in AI in the Game Design Process

(AIIDE workshop), Citeseer, 2013.

[12] G. W. Flake and E. B. Baum, “Rush hour is pspace-complete, or why you should

generously tip parking lot attendants,” Theoretical Computer Science, vol. 270,

no. 1, pp. 895–911, 2002.

[13] F. Servais, Finding hard initial configurations of Rush Hour with binary decision

diagrams. PhD thesis, M. Sc. thesis, Université libre de Bruxelles, Faculté des

sciences, 2005.

[14] J. Juul, “Swap adjacent gems to make sets of three: A history of matching tile

games,” Artifact, vol. 1, no. 4, pp. 205–216, 2007.

[15] “Article: Procedural generation of puzzle game levels -

gamedev.net - your game development resource.” http://www.

gamedev.net/page/resources/_/technical/game-programming/

procedural-generation-of-puzzle-game-levels-r3862. (Accessed on

08/30/2016).

[16] J. Dormans, “Adventures in level design: generating missions and spaces for ac-

tion adventure games,” in Proceedings of the 2010 workshop on procedural content

generation in games, p. 1, ACM, 2010.

[17] A. M. Smith, E. Butler, and Z. Popovic, “Quantifying over play: Constraining

undesirable solutions in puzzle design.,” in FDG, pp. 221–228, 2013.

72

http://www.gamedev.net/page/resources/_/technical/game-programming/procedural-generation-of-puzzle-game-levels-r3862
http://www.gamedev.net/page/resources/_/technical/game-programming/procedural-generation-of-puzzle-game-levels-r3862
http://www.gamedev.net/page/resources/_/technical/game-programming/procedural-generation-of-puzzle-game-levels-r3862

[18] I. Dart and M. J. Nelson, “Smart terrain causality chains for adventure-game

puzzle generation,” in 2012 IEEE Conference on Computational Intelligence and

Games (CIG), pp. 328–334, IEEE, 2012.

[19] N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content for cut the rope

through a simulation-based approach.,” in AIIDE, 2013.

[20] S. LOGIC, “The game of logic, lewis carroll,” Two delightful puzzle books by.

[21] D. Oranchak, “Evolutionary algorithm for generation of entertaining shinro logic

puzzles,” in European Conference on the Applications of Evolutionary Computa-

tion, pp. 181–190, Springer, 2010.

[22] T. Mantere and J. Koljonen, “Solving, rating and generating sudoku puzzles with

ga,” in 2007 IEEE Congress on Evolutionary Computation, pp. 1382–1389, IEEE,

2007.

[23] B. Pintér, G. Voros, Z. Szabó, and A. Lorincz, “Automated word puzzle generation

via topic dictionaries,” arXiv preprint arXiv:1206.0377, 2012.

[24] S. Colton, “Automated puzzle generation,” in Proceedings of the AISB02 Sympo-

sium on AI and Creativity in the Arts and Science, 2002.

[25] P. Galván, V. Francisco, R. Hervás, and G. Méndez, “Riddle generation using

word associations,”

73

	Acknowledgments
	Abstract
	List of Figures
	Chapter Introduction
	Motivation
	Narrative Puzzles
	Objectives
	Roadmap

	Chapter Puzzles and Their Procedural Generation
	Traditional vs. Digital Puzzles
	Puzzle Taxonomy
	Sokoban-Type Puzzles
	Sliding Puzzles
	Tile-Matching Puzzles
	Mazes
	Path-Building Puzzles
	Packing Puzzles
	Narrative Puzzles
	Search Puzzles
	Physics Puzzles
	Time Manipulation
	Logic Puzzles
	Word Puzzles
	Riddles
	Odd One Out
	Complete the Pattern
	Analogies

	Summary

	Chapter Design
	Core Concepts
	The Puzzle Items
	The Grammar
	The Puzzle Areas
	Puzzle Generation
	Matching Terms
	Generation per Game Area

	Puzzle Solving

	Chapter Implementation
	The Puzzle Items
	The Grammar
	The Areas
	Puzzle Generation
	Puzzle Solving
	The Puzzle Manager

	Chapter Evaluation
	Proof of Concept Game
	Comparison with the Puzzle-Dice System
	Solvability
	Dynamic Difficulty
	Expressivity vs. Usability

	Chapter Conclusion
	Main Contributions
	Limitations & Future Work
	Final Thoughts

	Bibliography

