
1

TOWARDS AUTONOMIC UPLIFT OF
INFORMATION

Anuj Singh

A Dissertation submitted to the University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Master of Science in Computer Science

(Mobile and Ubiquitous Computing)

2015

2

Declaration

I, the undersigned, declare that the work described in this dissertation is,

except where otherwise stated, entirely my own work and has not been submitted

as an exercise for a degree at this or any other university.

Anuj Singh

Dated: August 31, 2016

3

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Anuj Singh

Dated: August 31, 2016

4

Acknowledgement

I would first like to thank my supervisor, Prof. Declan O’Sullivan for proposing this
topic. Prof Declan O’Sullivan provided me all the required support and guidance
throughout duration of the project. I would like to thank Dr. Christophe Debruyne, a
research fellow from the knowledge and data engineering group for suggesting the
improvements in the design. I also would like to thank my family and friends for
their love and support during this year. Finally I would like to thank Mobile and
ubiquitous computing class for making this a memorable year.

Anuj Singh

University of Dublin, Trinty College

August 2016

5

TOWARDS AUTONOMIC UPLIFT OF
INFORMATION

Anuj Singh

Supervisor: Declan O’Sullivan

In this project we propose an approach to transform the XML data into RDF using XQuery.

The mappings from XML to RDF are encoded in XQuery. We are also transforming the

XQuery to RDF, allowing us to analyze, manipulate and recompose mappings

automatically. The project is motivated as a way to provide a robust mechanism to

support the maintenance of the mappings automatically, particularly to cope up with

frequent change in data schema or ontology.

The developed prototype for this research is based on the MarkLogic Server. The

prototype uses an XQuery parser [33] for parsing the XQuery. It provides two ways to

analyze and manipulate the mappings 1) GUI- where the user manually updates the

mappings 2) SPARQL- triples of XQuery can be automatically updated using SPARQL

queries. We evaluated the system for both functionality and usability. We applied the

developed solution to the industry problem of transforming the metadata to RDF. We

transformed the Trinity digital collections resource metadata from FileMaker to MODS

RDF. For evaluating the system, we changed the mappings (FileMaker to MODS RDF)

automatically as well as manually to see the changes in the final output. We evaluated

the usability with the help of multiple users, who updated and analyzed the mappings

using the prototype. Users rated the prototype based on their experience of operating it.

Overall, we found that our prototype successfully uplifted both the XML and XQuery.

Based on the evaluation it can be said that the prototype was successful in analyzing,

manipulating and recomposing the mappings automatically.

6

Table of Contents
List of Tables ... 9

List of Figures..10

Chapter 1 ..11

Introduction..11

1.1 Motivation ..11

1.2 Dissertation goal...13

1.2.1 Research question ...13

1.2.2 Research objective...13

1.3 Research methodology...14

1.4 Dissertation outline ..15

Chapter 2 ..17

Background...17

2.1 Introduction..17

2.2 Semantic Web and its growth ..17

2.3 Building blocks of Semantic Web ...18

2.4 RDF Serialization formats ...20

2.4.1 RDF/ XML ...20

2.4.2 Turtle ...21

2.5 SPARQL ...21

2.6 Lifting and Lowering of Information...22

2.7 Summary...22

Chapter 3 ..23

State of the art..23

3.1 Introduction..23

3.2 Mapping formats ..23

3.2.1 RML..24

3.2.2 EDOAL ..26

3.2.3 D2R Map ..28

3.3 Query based approach ...29

3.3.1 XSPARQL ..30

7

3.3.2 XQueryX ...32

3.4 Summary...33

Chapter 4 ..36

Design ...36

4.1 Introduction..36

4.2 Requirements ...36

4.2.1 Functional requirements ...36

4.2.2 Non-Functional requirements ...38

4.3 Technical architecture ..38

4.3.1 Component description...39

4.3.2 Flow of operations...41

4.4 Design Challenges and Resolutions ..42

4.4.1 How to transform XQuery in an RDF data model automatically?42

4.4.2 How to transform “tree structure of XQuery” to XML? ..43

4.4.3 XML should be uplifted to which RDF serialization format? ...44

4.4.4 How to treat blank nodes in the uplifted XML? ..45

4.5 Summary...45

Chapter 5 ..46

Implementation..46

5.1 Tools and Technologies ..46

5.2 Conventions for implementation ...47

5.3 Use cases implementation description ..49

5.3.1 Use case 1: XQuery to RDF ..49

5.3.2 Use case 2: Input XML to RDF..53

5.3.3 Use case 3: Rendering mappings in GUI ..53

5.3.4 Use case 4: Analysis and manipulation of triples ..56

5.3.5 Use case 5: Switching to new dataset ...58

5.4 Summary...59

Chapter 6 ..61

Evaluation ...61

6.1 Evaluation: Test cases...61

6.1.1 Test case 1: Uplifting input XML to RDF ..62

8

6.1.2 Test case 2: Update mapping through user GUI-I ...63

6.1.3 Test case 3: Update mapping through user GUI-II ..64

6.1.4 Test case 4: Update mapping through user GUI-III ...65

6.1.5 Test case 5: Update mapping through user GUI-IV ...66

6.1.6 Test case 6: Changing mapping by updating triples-I..68

6.1.7 Test case 7: Changing mapping by updating triples-II...69

6.1.8 Test case 8: Preserve blank node ..70

6.1.9 Test case 9: Analyze the transformed RDF triples-I...71

6.1.10 Test case 10: Analyze the transformed RDF triples-II..72

6.1.11 Test case 11: Changing mapping by updating triples-III..73

6.1.12 Test case 12: Changing mapping by updating triples-IV..74

6.2 Evaluation: User perspective..75

6.3 Summary...78

Chapter 7 ..79

Case Studies..79

7.1 Introduction..79

7.2 Trinity library digital collection metadata ..79

7.3 Employee dataset ...82

Chapter 8 ..84

Conclusion ..84

8.1 Project overview...84

8.2 Contribution ...86

8.3 Future work ..86

8.4 Final remark..87

References ..88

Appendix A ...95

Appendix B..99

9

List of Tables

Table 1: Mapping approaches ...35

10

List of Figures

Figure 1: Web Layer Cake ...18
Figure 2: Triple instance ...19
Figure 3: RDF/XML instance..21
Figure 4: Turtle instance ...21
Figure 5: SPARQL Query instance ...21
Figure 6: Lifting and lowering of data..22
Figure 7: Mapping process with and without RML..25
Figure 8: Alignment instance[25] ...27
Figure 9: D2R mapping process[10]..29
Figure 10: Schematic view of XSPARQL[29]...31
Figure 11: XSPARQL implementation architecture[29] ..31
Figure 12: Technical architecture of proposed system ..39
Figure 13: Selection of “Title” and “AttributedArtist” from the input XML for mapping48
Figure 14: Corresponding RDF structure for “Title” element of input XML49
Figure 15: A sample XQuery for instance ..50
Figure 16: Tree structure of sample XQuery ...50
Figure 17: Intermediate XML structure of sample XQuery ..51
Figure 18: RDF structure of sample XQuery ...52
Figure 19: Execution of transformation of input XML to RDF ...53
Figure 20: Interface to view/ update mappings manually ..54
Figure 21: Input element “last_name” that has to be mapped ..55
Figure 22: mapping rule (RDF structure) for Input element “last_name”56
Figure 23: Interface to execute SPARQL queries ..57
Figure 24: Execution of SPARQL queries..57
Figure 25: code snippet to update "XQuery RDF" based on triple's changes......................58
Figure 26: Interface to upload updated XQuery..58
Figure 27: code to replace the existing XQuery with updated one ..59
Figure 28: Ease of completing the task ..76
Figure 29: Time taken to complete the task ..77
Figure 30: Support information ..77
Figure 31: Title information of a resource in FileMaker XML ..81
Figure 32: Title information of a resource in MODS RDF..81
Figure 33: mapping of city in triple maps ...83
Figure 34: Mapping of city in XQuery ...83

11

Chapter 1

Introduction

1.1 Motivation

Over the last decade the information available on the Web has become more complex [3].

Organisations, institutes and enterprises (from hospitals to entertainment) often model

their data independently and hence data integration and translation have become a

major problem for organizations which are interested in utilizing the data on Web [34].

Linked data is a way to integrate data of various domains by using ontologies, Uniform

Resource Identifiers (URIs) and Resource Description Framework (RDF) [35]. To remove the

restriction posed by the different data models, organisations have started lifting their

data to RDF, which has not only given them the standard data model, but also allowed

them to publish their data in the linked data fashion such that it can be integrated easily
[36].

With the adoption of Semantic Web and linked data, a challenge for extraction of data

from various data sources remains as the data on the Web is of different quality and

format which makes it difficult to consolidate [37]. There are solutions available which

perform the mapping of one format to another to perform the extraction and

transformation. However, in case any of the formats gets changed, then these mappings

need to be established again and further the transformation engine has to be adjusted

accordingly [38].

Digital repositories are something in today’s world which are accessed by almost

everyone. These contain resources from a wide domain (journals, books, software and

other resources) but these repositories have the lack of structured and robust ways to

interoperate between related resources across various domains [39]. A wide domain of

resources add more complexity in the process of extraction and transformation of data,

12

thus it requires a robust way by which the mappings and transformation engine can be

maintained automatically.

Another use which motivates this research is the concern of digital libraries about

handling the heterogeneous metadata. Furthermore, the library community has been

searching for a solution of archiving and version control, due to the difference in the

format of the metadata of the resources [49]. As metadata is an important part of any

application, it is imperative to keep it in best representation. This gives rise to a need of

an approach by which metadata can not only be transformed easily, but also the mapping

should be easily maintainable to cope up with further changes.

So far researchers have only considered areas like generic solutions for mapping which

can be used to express or define mappings from heterogeneous data sources to RDF. [10],
[20] and [28] are the most recent advancement in the field of mapping which suggests

various approaches and the mapping languages for carrying out the transformation of

data to RDF. However, in the current state of the art, negligible attention has been given

to the representation and structure of the mapping. This offers us an area to research

where we can determine the representation of the mapping such that this representation

can be used for ongoing analysis and re-composition of mappings automatically.

The crux of this research is to represent mappings in the RDF format. Going forward the

maintenance of the mappings could be very challenging and cumbersome task, especially

when the format of any end data source tends to change very often. RDF is a machine

understandable language [40] and by representing the mappings in RDF one can analyze

and manipulate them automatically and thus make the maintenance of these mappings

less challenging.

13

1.2 Dissertation goal

1.2.1 Research question

The research question addressed in this thesis is:

“To what extent the mappings encoded in XQuery can be represented using Resource

Description Framework (RDF) such that it allows performing ongoing analysis and re-

composition of mappings automatically?”

1.2.2 Research objective

We propose a solution for the representation of the mappings encoded in XQuery using

RDF so that it can be analyzed, manipulated and recomposed automatically. In particular,

we intend to:

 Understand the current state of the art for mapping of data and their integration,

it will take into account the whole maintenance life cycle of the mapping.

 Understand the challenges faced by the digital libraries in order to handle the

metadata present in a variety of formats.

 Develop a prototype which will transform XQuery to RDF document.

 Estimate the precision and recall of the transformation of XQuery to RDF

automatically.

 Develop an interface which will allow the user to update the mappings stored as

XQuery RDF.

14

 Transform the XML (format 1) to RDF (format 2) document based on the mapping

(established in XQuery based RDF).

 Estimate the precision and recall of the transformation of XML to RDF using the

mapping (established in XQuery based RDF).

 Analyze the output from the transformation of XQuery to RDF using SPARQL.

 Analyze the output from the transformation of XML to RDF based on the mapping

(established in XQuery based RDF) using SPARQL

 Develop the library use case as a means to evaluate the prototype of the approach

developed.

1.3 Research methodology

Our proposed approach introduces four additional components in the conventional

processes [15] and [29] of transforming the data to RDF using predefined set of mappings.

 Mapping container: An XQuery to establish the base mappings.

 XQuery Parser: It acts as a transformer for converting the XQuery expression to

the XML based tree structure.

 RDF generator: It converts the XML based tree structure to RDF.

 RoundTrip Engine: It generates the XQuery expression from the RDF.

We propose an approach to represent the XQuery encoded mappings in RDF such that it

can be recomposed and analyzed automatically. We also present a prototype for the

15

proposed approach using the MarkLogic content server [41]. We then evaluate the

prototype of the approach using following two dataset to be uplifted.

 The FileMaker data for expressing the metadata of library resources. We have

gathered this data from the TCD library digital collection. The TCD library

suggested that FileMaker XML needs to be uplifted into MODS RDF. We have also

gathered all the necessary mapping information from the TCD library end. The

sample FileMaker dataset can found in the attached CD

(\lifting\assets\Filemaker\DRIS-SAMPLE-Filemaker.xml)

 The Employee dataset for expressing the details about the employees. We have

gathered this data from “Northwind database”. This data needs to be uplifted into

FOAF. The mapping information of employee dataset to FOAF has been provided

by Dr. Christophe Debruyne. The sample employee dataset can found in the

attached CD (\lifting\assets\Filemaker\employees.xml)

1.4 Dissertation outline

Chapter 2: This chapter provides an insight to the information which is required to

understand the background of the semantic and linked data. It highlights the growth of

the Semantic Web and what are the building blocks of Semantic Web. It also focuses on

the concept of uplift of data.

Chapter 3: This chapter outlines the current state of the art approaches in the area of

semantic mapping. Section 3.2 describes the various mapping formats which are used in

the mapping of RDB, XML and ontologies. In later sections the focus is on the query based

approaches which are XSPARQL and XQueryX.

Chapter 4: This chapter describes the design of the project. It captures the requirements

of the project, which are functional and nonfunctional. In the later section it presents the

16

technical architecture, the challenges faced during the designing process and what are

the countermeasures we took to overcome those challenges.

Chapter 5: This chapter illustrates the details about the implementation of the project.

The implementation is based on the technical architecture specified in the section 4.3.

This chapter also captures the details about the tools and technologies used in this

implementation.

Chapter 6: This chapter describes the evaluation of the developed prototype. It covers

the evaluation of the system in two areas: 1) Functionality of the system and 2) System

usability evaluation.

Chapter 7: In this chapter, we explore the application of the developed prototype on

some industrial problems. We discuss the uplift of “Trinity library digital collection

metadata” and “Employee dataset”.

Chapter 8: This chapter describes the summary of the research and our findings. It also

captures the detail about the future work to be employed in this research.

17

Chapter 2

Background

2.1 Introduction

This chapter outlines the background of the Semantic Web and linked data. The Semantic

Web and its growth have been described in the next part of this chapter. Third part of this

chapter describes the building blocks of the Semantic Web; it also specifies the various

serialization formats of RDF. This chapter ends with the introduction of lifting and

lowering of information in the world of Semantic Web.

2.2 Semantic Web and its growth

[1]The conventional way to publish data on the Web is through CSV, or XML or in HTML

tables. This Web is called as a conventional hypertext Web. In conventional hypertext

Web the relationship between the two documents is not explicit, this is basically due to

the data format which is HTML and it suffers from the limited vocabulary which cannot

state link between entities in different documents. But in recent years the Web has

evolved as a global information space where both the documents and data can be linked.

This evolution was the practice of appropriate rules to publish data which in result

produce the effect of Linked data. Practicing these principles of Linked data has led to the

extension of Web to global information space which connects the different domain of the

industries such as humans, infrastructure, biological data, chemical data, geographic data,

community’s data and scientific data. With the help of linked data user can actually

traverse into different domain when it starts from browsing some specific domain.

[2]The origin of the Web was considered as an information store where the information

can be used for human-human communication as well as the machines can also play a

vital role to make this communication more efficient. One of the major challenges to this

18

is that information on the Web is not properly structured for machine browsing. [2] It also

provides an idea about the basic assertion model. The idea behind this model is to have a

generic data structure so that any prospective application can communicate to that

structure. [2] It specifies that the generic data model which can serve this purpose is

Resource description framework.

Figure 1: Web Layer Cakeshows the architecture of the Semantic Web. This

architecture is also called the Semantic Web Stack or Semantic Web Cake or Semantic

Web Layer Cake. This structure also asserts that the Semantic Web is an extension of the

classical Hypertext Web and not a replacement.

Figure 1: Web Layer Cake

2.3 Building blocks of Semantic Web

The communication between machines is completely based on the data, for every

request and response the machines exchange the data. It suggests that in order to get the

19

interoperability over the data the software and hardware should be able to access and

interpret the data [3]. Resource Description Framework (RDF) is the data model which can

be used as a generic data structure for the communication between various applications

or programs [2].

W3C specifies that RDF is the standard data structure for exchange of information over

the Web [4]. RDF does not replace the linking structure of existing Web but it extends it by

using the URIs. In place of the names of relationships between the resources, it also uses

the URIs for the resources.

RDF describes a resource with the help of statements; these statements are in the form of

Subject-Predicate-Object expression. These expressions are known as triples. In the

triples subject is the resource about which the triple is describing, predicate defines the

property of the resource, and object is the value of the property which could be a literal

value or it can redirect to the subject of another resource [5].

Figure 2 depicts the role of subject, predicate and object in the triple by providing a

simple example of the industry based triple, where T-shirt is the resource, color is the

property of the T-shirt and white is the value of the property of the T-shirt.

Figure 2: Triple instance

19

interoperability over the data the software and hardware should be able to access and

interpret the data [3]. Resource Description Framework (RDF) is the data model which can

be used as a generic data structure for the communication between various applications

or programs [2].

W3C specifies that RDF is the standard data structure for exchange of information over

the Web [4]. RDF does not replace the linking structure of existing Web but it extends it by

using the URIs. In place of the names of relationships between the resources, it also uses

the URIs for the resources.

RDF describes a resource with the help of statements; these statements are in the form of

Subject-Predicate-Object expression. These expressions are known as triples. In the

triples subject is the resource about which the triple is describing, predicate defines the

property of the resource, and object is the value of the property which could be a literal

value or it can redirect to the subject of another resource [5].

Figure 2 depicts the role of subject, predicate and object in the triple by providing a

simple example of the industry based triple, where T-shirt is the resource, color is the

property of the T-shirt and white is the value of the property of the T-shirt.

Figure 2: Triple instance

19

interoperability over the data the software and hardware should be able to access and

interpret the data [3]. Resource Description Framework (RDF) is the data model which can

be used as a generic data structure for the communication between various applications

or programs [2].

W3C specifies that RDF is the standard data structure for exchange of information over

the Web [4]. RDF does not replace the linking structure of existing Web but it extends it by

using the URIs. In place of the names of relationships between the resources, it also uses

the URIs for the resources.

RDF describes a resource with the help of statements; these statements are in the form of

Subject-Predicate-Object expression. These expressions are known as triples. In the

triples subject is the resource about which the triple is describing, predicate defines the

property of the resource, and object is the value of the property which could be a literal

value or it can redirect to the subject of another resource [5].

Figure 2 depicts the role of subject, predicate and object in the triple by providing a

simple example of the industry based triple, where T-shirt is the resource, color is the

property of the T-shirt and white is the value of the property of the T-shirt.

Figure 2: Triple instance

20

2.4 RDF Serialization formats

There are multiple serialization formats which can be used for the description of the

resource, currently below are the serialization format which are used in the industry:

 RDF/ XML

 Turtle

 N-Triples

 JSON-LD

 N-Quads

Among these RDF/ XML and Turtle are the most popular and widely used serialization

formats.

2.4.1 RDF/ XML

XML syntax representation for RDF is known as RDF/ XML. In order to represent the RDF

in XML the subject, predicate and object of the triples need to be represented using the

XML term [6]. Nodes are in RDF/ XML are basically the URI references or the literals, in the

case of blank node, it needs to have an identifier. This identifier is local to the document

and it should be a non-RDF URI references.

21

Figure 3: RDF/XML instance

2.4.2 Turtle

This representation of RDF is very compact and human readable as this is represented by

the natural text form. Triple in this can be expressed very easily as it is just a sequence of

subject, predicate and object separated by whitespace and terminated by the full stop [7].

Figure 4: Turtle instance

2.5 SPARQL

SPARQL is the query language for the RDF graphs, SPARQL query needs a triple pattern

which is known as basic graph pattern [8]. SPARQL query contains two parts, first is

“SELECT” clause which is used to construct the result, second part is “WHERE” clause used

the triple pattern provided to match against the RDF provided.

Figure 5: SPARQL Query instance

22

2.6 Lifting and Lowering of Information

The process in which the native representation of the data has been transformed into its

semantic representation is called as uplift of data [9]. For an instance XML is the native

representation and its semantic representation is the RDF and OWL. The reverse process

which bringing the data back into its native state is called as the lowering of data.

Figure 6: Lifting and lowering of data

2.7 Summary

This chapter contains the details about the background of the Semantic Web and linked

data along with the information of its building block. It also has the information about the

different formats of RDF. It also describes the concept of lifting and lowering in Semantic

Web which is used in this research extensively. Hence this can be served as an

introduction to the state of the art.

23

Chapter 3

State of the art

3.1 Introduction

The goal of the Semantic Web is to provide the meaning to the data which is available on

the Web. The process of transforming the data from its native representation to its

semantic representation is known as lifting of information [10]. The Semantic Web is not

the replacement of, but the extension of the existing Web. In Semantic Web the

information available on the Web can be shared among the machines and people [11]. The

Semantic Web allows the programs, devices and even household appliances to produce

and use the data on the Web [11]. This research requires having an understanding of the

current and previous researches which have been done in the area of mapping and lifting

of information. [10], [12], [13], [14], [15], [17] and [18] proposed the generic solutions for lifting

the data but a very little attention has been given to the representation of the mapping.

The idea behind this research is to represent XQuery encoded mappings in RDF. As RDF is

the semantic representation of the data, these mappings can be analyzed, manipulated

and even recomposed automatically.

This chapter will outline the current researches in the area of semantic mapping. It also

presents the query based approach for mapping as this research is based on the query

based approach.

3.2 Mapping formats

In today’s world machine needs to exchange data from various sources. To understand

the exchanged data semantic mapping needs to be done among the different data

formats. One of the conventional and well known schemes for sharing and storing the

24

data is XML. XML is ubiquitously used by the database developers and programmer for

representing information, the advantage for using the XML is that it provides the

additional flexibility when someone tries to structure the information in XML [26].

Another popular format to store the data is relational database [10]. According to [27]

mapping between RDB and RDF can be represented in XSLT as XPaths. The actual

implementation of the mapping can be either extract, Transform and Load (ETL) or a

query-driven implementation. Queries used for mapping process could be either

SPARQL or it can be translated to equivalent SQL queries. SPARQL queries can be

executed on the RDF structure and SQL queries can be executed on the relational data

model.

Many proofs of concepts have been created for the generic solution for expressing

mappings. Some of the solutions involved relational database schema and ontologies

to form mapping while some used “table to class” and “column to predicate” approach

to generate mappings. As survey suggests that there is no standard way of mappings

between RDB to RDF. FOL, XPath expressions, and tool‐specific languages can be used

for representation of mapping [27].

In this research an XQuery based approach will be used to encode the mapping. The

objective is to determine the representation of the mappings such that these can be

analyzed, manipulated and recomposed automatically.

3.2.1 RML

RDF mapping language is a generic structure which can be scaled according to the need.

RML is basically used to lift the data in various formats to the RDF [19]. RML is the superset

of the W3C standard R2RML which uses the features of the R2RML and also have some

additional functionality.

25

R2RML is specific in defining the mapping for the relation database to RDF data structure
[16]. The mapping is based on the triple maps which specify how the triples will going to be

generated [16], [19]. Triple maps are responsible for defining the rules for zero or more RDF

triples, it contains three major components which are 1) Logical table 2) Subject map and

3) Predicate-Object maps [19]. Subject map is used to define the rule which generates the

URIs for the resource and these URIs are used as the subject of all the RDF triples.

Predicate-Object map is responsible for defining the rule which creates the predicate for

all RDF triple and object map is responsible for creating the mapping for the object of all

RDF triples. Logical table is used to store all the mappings [16].

RML retains the R2RML’s definition of mapping while it removes the database

specifications. The biggest difference between the RML and R2RML is that the input

source in R2RML is limited to only one database while in RML the input source could be

one or more relational databases [16].

Figure 7: Mapping process with and without RML

RML does not have its unique syntaxes it uses the syntax of R2RML. RML requires the

valid input data source and the mapping definitions to be mapped to RDF. As RML is

dealing with multiple formats, some details need to be specified before executing the

mappings which are logical source, reference formulation, iterator, logical reference,

referencing object map. Logical source is the extension of R2RML logical table and is used

to identify the source of input data, reference formulation is used to deal with the

25

R2RML is specific in defining the mapping for the relation database to RDF data structure
[16]. The mapping is based on the triple maps which specify how the triples will going to be

generated [16], [19]. Triple maps are responsible for defining the rules for zero or more RDF

triples, it contains three major components which are 1) Logical table 2) Subject map and

3) Predicate-Object maps [19]. Subject map is used to define the rule which generates the

URIs for the resource and these URIs are used as the subject of all the RDF triples.

Predicate-Object map is responsible for defining the rule which creates the predicate for

all RDF triple and object map is responsible for creating the mapping for the object of all

RDF triples. Logical table is used to store all the mappings [16].

RML retains the R2RML’s definition of mapping while it removes the database

specifications. The biggest difference between the RML and R2RML is that the input

source in R2RML is limited to only one database while in RML the input source could be

one or more relational databases [16].

Figure 7: Mapping process with and without RML

RML does not have its unique syntaxes it uses the syntax of R2RML. RML requires the

valid input data source and the mapping definitions to be mapped to RDF. As RML is

dealing with multiple formats, some details need to be specified before executing the

mappings which are logical source, reference formulation, iterator, logical reference,

referencing object map. Logical source is the extension of R2RML logical table and is used

to identify the source of input data, reference formulation is used to deal with the

25

R2RML is specific in defining the mapping for the relation database to RDF data structure
[16]. The mapping is based on the triple maps which specify how the triples will going to be

generated [16], [19]. Triple maps are responsible for defining the rules for zero or more RDF

triples, it contains three major components which are 1) Logical table 2) Subject map and

3) Predicate-Object maps [19]. Subject map is used to define the rule which generates the

URIs for the resource and these URIs are used as the subject of all the RDF triples.

Predicate-Object map is responsible for defining the rule which creates the predicate for

all RDF triple and object map is responsible for creating the mapping for the object of all

RDF triples. Logical table is used to store all the mappings [16].

RML retains the R2RML’s definition of mapping while it removes the database

specifications. The biggest difference between the RML and R2RML is that the input

source in R2RML is limited to only one database while in RML the input source could be

one or more relational databases [16].

Figure 7: Mapping process with and without RML

RML does not have its unique syntaxes it uses the syntax of R2RML. RML requires the

valid input data source and the mapping definitions to be mapped to RDF. As RML is

dealing with multiple formats, some details need to be specified before executing the

mappings which are logical source, reference formulation, iterator, logical reference,

referencing object map. Logical source is the extension of R2RML logical table and is used

to identify the source of input data, reference formulation is used to deal with the

26

different serialization of data, iterator is used to specify pattern based on which the input

data needs to be extracted, logical reference is a property for the reference and its value

must be valid and needs to be present in the input source, referencing object map is the

“join condition child reference” which refers to the parent of the data extracted [16].

RML model can be implemented using two approaches which are "mapping driven",

"data driven". In mapping driven the processor executes triple maps consecutively. In a

data driven model the process drives by the extractor module, the processor extracts the

triple maps based on the patterns specified for iteration [16].

[20] Evaluated the RML mapping against the Datalift tool [21]. The Authors used the same

RML mapping for ten input files which is completely opposite than the Datalift where the

mapping needs to be redefined for all ten files. The authors suggested that the solution

using the RML was optimal because of the semantic richness and better interlinking of the

output.

RML is able to combine the triple maps from heterogeneous data sources to generate the

triples. The maintenance of the mapping is a semi-automatic process and the user should

have an understanding of the languages like XML, JSON and XPATH. In my opinion RML is

not suitable for handling complex mappings which involve complex XPATH conditions. It

would be really clumsy to depict the XPATH condition which involves the use of axes/

predicate with RML relationship's features. Our research is not based on RML because of

its semi-automatic nature and it is difficult to handle the complex mappings in RML.

3.2.2 EDOAL

Ontology is one of the most efficient ways to achieve collaboration among the systems,

which are using data in various formats. Sometimes ontologies are not compatible with

each other. In order to make them compatible with each other it requires some re-

engineering of these ontologies. Re-engineering is completely based on identifying the

27

correspondence between the two ontologies [22]. Process of Identifying the

correspondence between the entities of two ontologies is called as “ontology alignment”
[23].

The Expressive and Declarative Ontology Alignment Language (EDOAL Language) extends

the alignment format in order to get more precision in the correspondence of entities of

two ontologies. This can be achieved by expressing the entities in the alignment format

with the help of certain constructor and operator [22]. EDOAL is majorly based on the OWL

which is why it uses many features of OWL, but EDOAL is not completely dependent on

the OWL and the reason for not adopting OWL completely is to not restrict EDOAL to a

particular language [22]. EDOAL uses the constraints provided by description logic or OWL,

it also allows the basic named entities to be grouped with the help of Boolean operators.

EDOAL is not restricted to the specific entity names it also have a pattern language which

allow to express patterns for the entities which can be abstract [24].

In my opinion, the major drawback of the EDOAL is the user involvement.

Correspondence made at design end needs to be finalized by the human. In application

environment, users are generally not ontology specialist. Inspection of the

correspondence needs the user to be the domain expert. Generally the task related to

alignments is easy for humans, but it is fairly complex if we involve machines in place of

humans. As it involves human involvement at a very high scale, we prefer to select an

alternative approach for this research.

Figure 8: Alignment instance[25]

27

correspondence between the two ontologies [22]. Process of Identifying the

correspondence between the entities of two ontologies is called as “ontology alignment”
[23].

The Expressive and Declarative Ontology Alignment Language (EDOAL Language) extends

the alignment format in order to get more precision in the correspondence of entities of

two ontologies. This can be achieved by expressing the entities in the alignment format

with the help of certain constructor and operator [22]. EDOAL is majorly based on the OWL

which is why it uses many features of OWL, but EDOAL is not completely dependent on

the OWL and the reason for not adopting OWL completely is to not restrict EDOAL to a

particular language [22]. EDOAL uses the constraints provided by description logic or OWL,

it also allows the basic named entities to be grouped with the help of Boolean operators.

EDOAL is not restricted to the specific entity names it also have a pattern language which

allow to express patterns for the entities which can be abstract [24].

In my opinion, the major drawback of the EDOAL is the user involvement.

Correspondence made at design end needs to be finalized by the human. In application

environment, users are generally not ontology specialist. Inspection of the

correspondence needs the user to be the domain expert. Generally the task related to

alignments is easy for humans, but it is fairly complex if we involve machines in place of

humans. As it involves human involvement at a very high scale, we prefer to select an

alternative approach for this research.

Figure 8: Alignment instance[25]

27

correspondence between the two ontologies [22]. Process of Identifying the

correspondence between the entities of two ontologies is called as “ontology alignment”
[23].

The Expressive and Declarative Ontology Alignment Language (EDOAL Language) extends

the alignment format in order to get more precision in the correspondence of entities of

two ontologies. This can be achieved by expressing the entities in the alignment format

with the help of certain constructor and operator [22]. EDOAL is majorly based on the OWL

which is why it uses many features of OWL, but EDOAL is not completely dependent on

the OWL and the reason for not adopting OWL completely is to not restrict EDOAL to a

particular language [22]. EDOAL uses the constraints provided by description logic or OWL,

it also allows the basic named entities to be grouped with the help of Boolean operators.

EDOAL is not restricted to the specific entity names it also have a pattern language which

allow to express patterns for the entities which can be abstract [24].

In my opinion, the major drawback of the EDOAL is the user involvement.

Correspondence made at design end needs to be finalized by the human. In application

environment, users are generally not ontology specialist. Inspection of the

correspondence needs the user to be the domain expert. Generally the task related to

alignments is easy for humans, but it is fairly complex if we involve machines in place of

humans. As it involves human involvement at a very high scale, we prefer to select an

alternative approach for this research.

Figure 8: Alignment instance[25]

28

3.2.3 D2R Map

One of the ways to express the mapping between relational databases and RDF is through

D2R map, it is an XML based language [10]. As XML allow flexibility in structuring the

information so to take this advantage this language has been designed. The reason why it

needs to be flexible is that it needs to handle complex relational structure without

changing the schema [10]. The SQL statements are directly used in the mapping rules and

the result set will be later combined and mapped to create the instances.

The D2R map process has following four steps [10]:

 Records set needs to be selected from the input source.

 Record set needs to be grouped by the columns of the specific class map.

 The URI needs to be assigned after creating the class instance, if it’s a blank node,

then blank node identifier needs to be assigned.

 Properties for instances need to be created according to the data type and object

property bridge.

In my opinion D2R map is the suitable way to handle complex mapping of relational

database to RDF. Its XML mapping format grants the structural flexibility while the

provision to include SQL statements directly in the mapping allows establishing complex

mappings. Another positive side of D2R map is that it does not involve user interference

in that way it is less prone to error. But our research is not inspired by this approach as

the selected format of the input data is XML for lifting.

29

Figure 9: D2R mapping process [10]

3.3 Query based approach

Data integration is a problem which almost every information system is dealing with [32].

The process which is responsible for maintaining the information system is ETL (Extract

Transform Load). The data integration problem becomes more complicated when the

data present in the different sources adheres to the different formats. To deal with these

type of situation an extended ETL process is required which transform every format to a

single format while extraction [32].

[30] Suggested the query based mapping approaches which are XSPARQL as it is the

combination of XQuery and SPARQL, the motive behind using XSPARQL is that it can

query XML as well as RDF in the same framework. Details about the XSPARQL have been

provided in section 3.3.1.

Another query based mapping approach is XQueryX, the biggest part of this research is

influenced by XQueryX but we are not using XQueryX format completely. The XQueryX is

the XML representation of XQuery, and it is machine understandable which can be useful

30

in an environment where the program needs to query the code for analysis or other

purposes [32]. Details about the XQueryX have been provided in section 3.3.2.

3.3.1 XSPARQL

Existing ways of transformation of documents solely rely on XSLT. [30] suggests some

ways to overcome the errors which can be caused solely by relying on the XSLT for

transformation, it proposes a technique which is based on XQuery and SPARQL for

such transformation, these transformations can be performed by merging XQuery and

SPARQL into a new language XSPARQL. XSPARQL provides a way of mapping between

XML and RDF in both directions. In Web of data service community applications needs

to communicate with XML and RDF data model thus it needs a transformation

mechanism [30].

XSPARQL allows you to query Extensible Markup Language (XML) data structure and

Resource description framework (RDF) structure in the same framework [29]. The

benefit of the combination of two languages is that by the feature of SPARQL, we can

access RDF and use Turtle to construct RDF graphs while having the feature of XQuery

will allow us to access and manipulate the XML data structure [29]. In the body XSPARQL

uses the SPARQL F’DWM block instead of XQuery FLOW block. The new F’ (for) clause

allow us to have multiple variables separated through whitespace. In the result

construction step it allows us to directly create the RDF graph by using C (construct)

clause instead of XQuery return clause. DWM clauses are responsible for organising

the result such as putting a constraint thought a pattern and sorting the result through

various parameters [29].

31

Figure 10: Schematic view of XSPARQL [29]

The most updated version of XSPARQL is XSPARQL 1.1, it has all the features of SPARQL

1.1 and it is also compatible with JSON documents [28]. [28] Suggests that the XSPARQL is

capable enough to handle the production system as it is currently being used extracting

the social data from social media such as Facebook, LinkedIn, Google+ etc.

In my opinion the XSPARQL is a very powerful language if we have the information

present in XML as well as RDF format. Its unique nature of executing the XQuery code as

well as the SPARQL code allows the user to meet its requirement in the same framework.

The concept of XSPARQL inspired this research to replace the sole use of XSLT for the

purpose of lifting information. This research is using the XQuery for the lifting purpose.

XSPARQL is not employed in this research because we are lifting the information in RDF/

XML format from XML. XSPARQL will be extremely useful where the information is being

uplifted in turtle format from XML.

Figure 11: XSPARQL implementation architecture [29]

31

Figure 10: Schematic view of XSPARQL [29]

The most updated version of XSPARQL is XSPARQL 1.1, it has all the features of SPARQL

1.1 and it is also compatible with JSON documents [28]. [28] Suggests that the XSPARQL is

capable enough to handle the production system as it is currently being used extracting

the social data from social media such as Facebook, LinkedIn, Google+ etc.

In my opinion the XSPARQL is a very powerful language if we have the information

present in XML as well as RDF format. Its unique nature of executing the XQuery code as

well as the SPARQL code allows the user to meet its requirement in the same framework.

The concept of XSPARQL inspired this research to replace the sole use of XSLT for the

purpose of lifting information. This research is using the XQuery for the lifting purpose.

XSPARQL is not employed in this research because we are lifting the information in RDF/

XML format from XML. XSPARQL will be extremely useful where the information is being

uplifted in turtle format from XML.

Figure 11: XSPARQL implementation architecture [29]

31

Figure 10: Schematic view of XSPARQL [29]

The most updated version of XSPARQL is XSPARQL 1.1, it has all the features of SPARQL

1.1 and it is also compatible with JSON documents [28]. [28] Suggests that the XSPARQL is

capable enough to handle the production system as it is currently being used extracting

the social data from social media such as Facebook, LinkedIn, Google+ etc.

In my opinion the XSPARQL is a very powerful language if we have the information

present in XML as well as RDF format. Its unique nature of executing the XQuery code as

well as the SPARQL code allows the user to meet its requirement in the same framework.

The concept of XSPARQL inspired this research to replace the sole use of XSLT for the

purpose of lifting information. This research is using the XQuery for the lifting purpose.

XSPARQL is not employed in this research because we are lifting the information in RDF/

XML format from XML. XSPARQL will be extremely useful where the information is being

uplifted in turtle format from XML.

Figure 11: XSPARQL implementation architecture [29]

32

3.3.2 XQueryX

The XQueryX is the XML representation of XQuery, but it’s not pretty well known. The

XQuery statements will get parsed according to the W3C standards. It allows you to

create an XML data structure of the XQuery. Later this XML structure will be

transformed with the help of XSLT 2.0 [31] to get the final XQueryX format. xq2xml is the

first application which provides us the mechanism to transform XQuery to XQueryX [31].

These syntaxes have been designed especially for the machines such that the they can

interact with the XQuery and manipulate it, XQueryX is machine oriented, that is why it

is not suitable for humans that is humans cannot conveniently read and write it [32].

[32] Indicated following environment where XQueryX could be useful.

 Parser reuse: In multiple systems if an XQuery needs to be executed, then a

parser can create the XQueryX of the XQuery and then that XQueryX can be

used by every system.

 Queries on Queries: As XQueryX is an XML representation of XQuery, so with

the help of this XML structure we can query the XQuery such that if we want to

query which ‘for’ clause is responsible for extracting the result from the specific

XML, we can easily do these kind of reasoning over XQueryX.

 Generating Queries: In some XML environments it is more convenient to handle

XQueryX format instead of the XQuery expression because the XQueryX can be

handled by using the normal XML tool.

 Embedding XQuery into XML: If there is any need to import XQuery into XML, it

is always good to import it in XML structure otherwise we cannot reason/ query

over the XQuery portion.

33

[31] suggest that to perform another transformation over the XML representation of

XQuery, the input one should choose is XML generated by the XQuery parser not the

final XML generated by xq2xml tool. The output generated by the xq2xml tool is more

complex and might be losing some information which could be useful to the creator of

XQuery. According to [31] if an XQuery is transformed to XQueryX and when this

XQueryX transformed back to XQuery it might add additional information to the XPath

which might not be useful.

The latest version of the XQueryX schema and the XSLT (which is used to transform

XQuery to XQueryX) is available at http://www.w3.org/2005/XQueryX/xqueryx.xsd and

http://www.w3.org/2005/XQueryX/xqueryx.xsl respectively.

This research is heavily inspired by the XML representation of the XQuery. This XML

can be later uplifted to RDF. As RDF is the machine understandable format, it can be

used for analyzing, manipulation of XQuery automatically. In this study, we are using

“XQuery parser” instead of “xq2xml”, one can download the xgrammar.zip from the

https://www.w3.org/2005/qt-applets/xqueryApplet.html.

3.4 Summary

This state of the art outlined the various approaches which are currently in the practice

for the mapping of native structure of data to its semantic structure. It has been compiled

that very limited attention has been given to the structure of the mapping, the focus of

the approaches is more towards the creation of generic language for the transformation.

This chapter described the various mapping approaches which can be used for the

transformation of data to the RDF. Following are the descriptions all the approaches:

34

 RDF Mapping Language (RML): It is a generic mapping language which is used to

define mapping rules from various data format to RDF.

 Expressive and Declarative Ontology Alignment Language (EDOAL): It is a language

which is used to represent the correspondence between the entities of different

ontologies.

 D2R map: It is an XML based mapping language. The SQL statements are directly

used in the mapping rules and the result set will be later combined and mapped to

create the instances.

 XSPARQL: It is another way of defining the mapping between XML and RDF, It is

able to query XML and RDF both in the same framework as XSPARQL is the

combination of XQuery and SPARQL.

 XQueryX: XQueryX is the XML representation of XQuery. XQueryX syntaxes have

been designed especially for the interoperability of machines such that the

machine can interact with the XQuery and manipulate it.

35

Approach Input
Sources

Mapping
Format

Features Maintenance Comments

RML Relational
database,
CSV, TSV,
XML and
JSON

Triple
maps in
triple
format.

Triple maps from the
heterogeneous input
sources can be combined
to generate the output
triples.

Semi-
automatic

RML generates default
mappings but a
customization is needed
from the mapping author.
[53] It suggests a semi-
automatic approach to
quickly generate the RML
mappings using an
extension built for Karma.

EDOAL Ontologies OWL Identifying
correspondence related
tasks are comparatively
easy for humans and
there are several visually
supported alignment
tools.

Semi-
automatic

Domain experts participate
to improve the quality of
the mappings, identified
during the design.

D2R Relational
databases

XML It allows flexibility by
using XML based
mappings and employing
the SQL statements
directly into the mapping
such that complex
relational structures can
be mapped easily.

Automatic Changes in the mapping
can be detected
automatically with the help
of its
d2r:autoReloadMappingFe
ature.

XSPARQL RDF, XML XSPARQL Its unique nature of
executing the XQuery
code as well as the
SPARQL code allows the
user to meet its
requirement in the same
framework.

Automatic For web service
communication with RDF-
client, it can perform lifting
and lowering of data
automatically.

xq2xml XQuery Vocabular
y
specificati
ons

“xq2xml” is the first
application which
provides us the
mechanism to transform
XQuery to its XML
representation.

Automatic It takes valid XQuery as
input so it does not require
any changes as it works on
the already specified
vocabulary specifications.

Table 1: Mapping approaches

36

Chapter 4

Design

4.1 Introduction

This chapter describes the design of the project. This chapter covers the functional and

nonfunctional requirements of the system. Later sections of this chapter describe the

technical architecture of the proposed system. It also presents the details about the

challenges faced during the design phase of the project, and then states the measures to

overcome those challenges.

4.2 Requirements

This section elaborates the functional and nonfunctional requirements of the system. The

main objective of this system is to uplift the XML data and represent the mappings in RDF.

As RDF is machine understandable format, the mappings can be analyzed, manipulated

and recomposed automatically. XQuery is used in this system for the purpose of

transformation of XML to RDF. XML data from the following two different domains has

been selected to uplift.

 The FileMaker dataset for expressing the metadata of library resources.

 The Employee dataset for expressing the details about the employees.

4.2.1 Functional requirements

This section describes the requirements implemented in the proposed system. The

proposed system covers the following functionality:

 Security: User should be able to log in the system only with the valid credentials.

37

 Input data: System is compatible with the XML structure data, so the input should

always be in XML format.

 Transformer: A base XQuery needs to be in place which contains the mapping of

the input XML to RDF.

 Uplift input XML: Use the base XQuery to transform the input XML to RDF

automatically.

 XQuery parser: The base XQuery, which contains the mapping to RDF needs to be

transformed into RDF automatically.

 Round-trip engine: The RDF structure of the XQuery needs to be converted back

into XQuery expressions.

 GUI to view mappings: Render the mappings on html page from the RDF structure

of base XQuery.

 Update mappings: Rendered mappings should be able get updated and the

changes should be reflected in the RDF structure of base XQuery.

 Create triples from XQuery: Store triples in the MarkLogic triple store from the

RDF structure of base XQuery. Triples of “XQuery RDF” need to be stored in the

graph whose base URI is “http://xquery/XQrdf”.

 Create triples from uplifted data: Store triples in the MarkLogic triple store from

the RDF structure of input XML. Triples of “RDF of input XML” need to be stored in

the graph whose base URI is “http://data.test.tcd.ie/resource”.

38

 Access triples: User should be able to read and update triples in the MarkLogic

triple store through SPARQL query. Changes done by the SPARQL update query

should be reflected in the RDF structure of base XQuery.

4.2.2 Non-Functional requirements

 The user should have an experience of XML and XQuery in order to update the

mapping from GUI.

 The user should have an experience of SPARQL and triples in order to update the

mapping through SPARQL query.

 The user manual should be in place such that users can update mappings and

uplift the XML to RDF without any hitch.

 The system should not do anything with data except what is specified in the

mapping.

 Uplifted RDF produced by the system should be a valid one.

 The response time of the system should be minimized.

4.3 Technical architecture

In order to attain the objective of this research a multi phase process has been adopted.

39

Figure 12: Technical architecture of proposed system

4.3.1 Component description

This section presents the details about the each technical component specified in Figure

12.

 XQuery: It is used to transform the XML to RDF. It contains all the mappings, the

declaration of the mappings needs to be done in a specific format such that the

mappings can be recognized in the “RDF structure of XQuery”. Details about the

format are described in the implementation chapter.

 XQuery Parser: In this routine, the base XQuery will be parsed through the

“XQuery parser” [33] which leads to the generation of XML tree structure (it is not

39

Figure 12: Technical architecture of proposed system

4.3.1 Component description

This section presents the details about the each technical component specified in Figure

12.

 XQuery: It is used to transform the XML to RDF. It contains all the mappings, the

declaration of the mappings needs to be done in a specific format such that the

mappings can be recognized in the “RDF structure of XQuery”. Details about the

format are described in the implementation chapter.

 XQuery Parser: In this routine, the base XQuery will be parsed through the

“XQuery parser” [33] which leads to the generation of XML tree structure (it is not

39

Figure 12: Technical architecture of proposed system

4.3.1 Component description

This section presents the details about the each technical component specified in Figure

12.

 XQuery: It is used to transform the XML to RDF. It contains all the mappings, the

declaration of the mappings needs to be done in a specific format such that the

mappings can be recognized in the “RDF structure of XQuery”. Details about the

format are described in the implementation chapter.

 XQuery Parser: In this routine, the base XQuery will be parsed through the

“XQuery parser” [33] which leads to the generation of XML tree structure (it is not

40

an XML structure but the tree structure which has successive branching or

subdivisions). This parser is created using the “XML representation of grammar”
[50].

 Perl Engine: This engine performs PERL operations accompanied with XSLT

operations. The tree structure of the XQuery generated by the “XQuery parser”

gets transformed into an intermediate XML with the help of this engine. In this

routine the PERL code is marking (not creating) the nesting for converting the tree

to a well formed XML by reading the “tabs” and “enters” in the tree structure.

Once the marking has been done by the PERL routine, the XSLT creates a well

formed XML. The XSLT works on the basis of hierarchy levels marked by PERL, it is

iterating over each element and checking its hierarchy value, if the hierarchical

value of the current element is less than the previous element, the XSLT will make

the current element, the child of the previous element.

 XSLT engine: This engine performs only the XSLT transformation. In this routine,

the intermediate XML generated by the PERL engine get transformed into the

desired RDF structure of the XQuery. The transformation between intermediate

XML and “XQuery RDF” takes place based on the rules specified in the appendix A.

This RDF is having the patterns through which the mappings (based on which

XQuery is transforming the one format to another) can be identified and extracted

for analysis and manipulation.

 Round Trip Engine: This engine performs XSLT operations on the “RDF structure of

XQuery” to transform it back into the “XQuery expressions”. Whenever the “RDF

structure of XQuery” gets manipulated by the user, this engine is responsible for

reflecting those changes in the “XQuery expression” such that the data can be

uplifted according to the changes. The transformation of “XQuery RDF” to

“XQuery statements” takes place with the help of rules specified in appendix B.

41

 SPARQL engine: It takes the SPARQL query as an input from the user and executes

it on the triple store. A provision has been provided in the interface through which

user can query the triples. The execution of the SPARQL queries has been done

with the help of the MarkLogic semantic library. Two modes of queries can be

triggered 1) Read mode: user will not be able to update anything in the triple

store. 2) Update mode: user cannot read anything if it is triggering the query in

update mode, it is for updating the triples. Base URI:

http://data.test.tcd.ie/resource of the graph should be used in order to analyze

the triple of uplifted input. Base URI: http://xquery/XQrdf of the graph should be

used in order to analyze or manipulate the triple of uplifted input.

4.3.2 Flow of operations

 Step 1: An input XML data set is required which needs to be transformed to RDF.

 Step 2: Establish the initial mappings of XML to RDF in the XQuery, which will be

responsible for the transformation purpose.

 Step 2.1: This step will be carried out in parallel to step 2 as this involves following

operations on XQuery to transform it RDF:

o Operation 1: This involves parsing of the XQuery with the XQuery parser to

transform it to tree structure.

o Operation 2: This involves the transformation of tree structure to

intermediate XML using PERL and XSLT.

o Operation 3: This involves the transformation of intermediate XML to RDF

using XSLT.

42

 Step 3: Transformation can be carried out based on the initially established

mappings.

 Step 4: If any changes are made to the “XQuery RDF” either with the GUI or with

the help of SPARQL, then the updated “XQuery RDF” needs to be transformed to

the “XQuery expression” with the help of a round-trip engine.

4.4 Design Challenges and Resolutions

There are several challenges faced to achieve the research objectives. These challenges

are discussed in this section. This section also describes the measures we took in order to

overcome those challenges.

4.4.1 How to transform XQuery in an RDF data model automatically?

Challenge:

This is the primary challenge faced during the design. State of the art does not suggest

any specific solution for transforming the XQuery to RDF. As a result, the combination of

different technologies and tools has been used to achieve the research objectives.

Resolution:

No specific solution has been suggested in the State of art to transform XQuery to RDF. A

combination of tools and techniques has been used in order to overcome this challenge.

This is a crucial scenario in this approach as it is the main motivation behind the

automatic solution for the re-composition and analysis of mappings. The transformation

has been carried out with the help of following steps:

 Step 1: This involves parsing of the XQuery with the XQuery parser to transform it

to tree structure. We are using the “XQuery parser” [33] for parsing the XQuery

instead of “xq2xml tool”. As [31] suggests that the output of xq2xml tool is not

43

appropriate, if we need to transform it to another format. It has been noted that

xq2xml tools removes some information of XQuery from the final output, which

could be useful to the creator of XQuery.

 Step 2: This involves the transformation of tree structure to intermediate XML

using PERL and XSLT. The detail of this is presented in the section 4.4.2.

 Step 3: Intermediate XML contains the elements and attributes based on the W3C

recommended vocabulary specifications [50]. In order to transform this XML to

RDF, the mappings need to be established. This mapping has been created in the

development phase of the system and does not need any changes unless the bug

is found. An XSLT has been used to for carrying out the transformation of

intermediate XML to RDF, based on the rules specified in appendix A.

4.4.2 How to transform “tree structure of XQuery” to XML?

Challenge:

The Tree is the hierarchical structure, which has successive sub-division. This challenge is

basically the part of the above challenge, but it is important to outline this as a different

challenge as the solution to this challenge will be helpful in picking up the correct

technology for a task of particular domains.

Resolution:

The output of the “XQuery parser” is the XML tree structure. In other words, it is a text

file, but contains the hierarchy with the help of ‘tabs’ and ‘enters’. PERL has been used in

this system in order to convert the tree structure to intermediate XML. In this routine the

PERL code is marking (not creating) the nesting for converting the tree to a well formed

XML by reading the “tabs” and “enters” in the tree structure. Treating it with PERL’s

regular expressions has the following benefits:

44

 Complex regular expression can be easily handled with the help of PERL.

 Execution of regular expressions does not need any “tree structure of XML” to be

parsed by an XML parser. As a result of which the huge amount of data can be

easily processed.

 XML output can be easily delivered with the help of PERL.

4.4.3 XML should be uplifted to which RDF serialization format?

Challenge:

Chapter 2 describes the various serialization format of RDF. Most widely used formats of

RDF are XML and Turtle. This research involves two types of data which need to be

transformed to the RDF, 1) XQuery and 2) XML. So a serialization format needs to be

decided such that mappings/ XQuery can be analyzed, manipulated and recomposed

automatically.

Resolution:

In this research two types of data need to be transformed to RDF, 1) Input XML to RDF

and 2) XQuery to RDF.

The mappings of Input XML to RDF are embedded into the XQuery. One of the objectives

of this research is to analyze, manipulate and recompose the mappings. By transforming

the XQuery to Turtle format will allow us to analyze and manipulate the mappings, but

after manipulation it will not be convenient to recompose mappings/ XQuery from Turtle

format automatically. So due to the re-composition issue, it has been decided to

transform the XQuery to RDF/ XML format. As one of the biggest advantages of the XML

is the flexibility it provides for structuring the information. Keeping the XQuery in RDF /

XML not only helped in easy re-composition of XQuery, but also we managed to extract

mapping information out of it for rendering purpose.

45

As we are using the XQuery for the transformation purpose, it has been decided to

transform the Input XML to RDF/ XML format. From the design perspective, it is also a

good practice to keep the consistency within the system.

4.4.4 How to treat blank nodes in the uplifted XML?

Challenge:

A blank node in RDF is a node which does not contain any data. It is important to handle

the blank nodes in RDF. It is harder to manipulate RDF containing a blank node. As a

result, consuming the RDF containing a blank node can create problems for the data

consumers.

Resolution:

Handling of blank node can be complicated while consuming RDF data. It is also not

possible for us to decide which blank node needs to be in RDF or not. It’s the owner of the

data which provides this information. So for handling this challenge we have provided a

mechanism in the system to handle the blank node. The owner of data or user of the

system can add the node name in the configuration whose blank node needs to be

preserved. By default the system is configured to delete all the blank nodes. The

configuration file can be found in the attached CD (\lifting\assets\code\Blanknodes.xml).

4.5 Summary

This chapter discussed the requirements for the proposed system. Technical architecture

has also been discussed in this chapter for the better understanding of each and every

technical component of the system. The major challenges faced during the design phase

and the measures to overcome those challenges have also been listed in this chapter.

46

Chapter 5

Implementation

In this chapter, we describe the implementation of the design of the proposed system.

This implementation is completely based on the technical architecture specified in section

4.3. This chapter begins with the introduction of the tools and technologies used in the

implementation phase.

5.1 Tools and Technologies

We are using various tools and technologies in order to achieve all the objectives of this

study. These technologies comprise of XML technologies, semantic technologies and

Query languages. In particular, the following are the tools/ technologies used in this

implementation.

 XML: It is a text format derived from the SGML. The purpose of XML is to store

and transport the data [42]. XML provides the flexibility to structure the

information effectively. XML is being used in this implementation extensively. The

proposed system is compatible with the input XML dataset. The final output will

be in XML serialization format of RDF.

 RDF: It is the main building block of the Semantic Web. It describes the resources

with the help of statements, these statements are in the form of Subject-

Predicate-Object expression. These expressions are known as triples. In the triples

subject is the resource about which the triple is describing, predicate defines the

property of the resource, and object is the value of the property which could be a

literal value or it can redirect to the subject of another resource [5]. In this study

the input XML dataset and XQuery code are uplifted to RDF.

47

 XQuery: It is a language which is derived from an XML query language called Quilt.

It inherits the features of various languages such as XPATH [45], XQL [44], SQL [46]

and ODMG [47] [43].

 MarkLogic: It is a suite of database, Web server and search engine. It has the

capability to store and manages the documents like XML, JSON and Semantic data

(RDF triples). In this implementation, we are using MarkLogic to deploy the

application, storing the triples and managing the RDF/ XML documents [41].

 XSLT: It is a transformation language which is used to transform one XML format

to another [48]. In this study XSLT is being used in several intermediate

transformation scenarios. One of the major uses of XSLT in this implementation is

to transform the “RDF structure of XQuery” back into the “XQuery expressions”.

 PERL: It is a programming language especially designed for text processing. In this

implementation, we are using PERL for transforming the “tree structure of

XQuery” to an XML structure.

 SPARQL: It is a query language for the RDF graphs, SPARQL query needs a triple

pattern which is known as basic graph pattern [8]. SPARQL query contains two

parts, first is “SELECT” clause which is used to construct the result, second part is

“WHERE” clause used the triple pattern provided to match against the RDF

provided. In this implementation, we are providing a mechanism for the user to

analyze and manipulate the triples of transformed RDF.

5.2 Conventions for implementation

The proposed system has been implemented using MarkLogic [41]. MarkLogic is a NoSQL

database and the language which is used to query it, is XQuery. This implementation is

based on the technical architecture specified in section 4.3.

48

This implementation relies on the following conventions:

 Input: it should always be in the XML format. Lifting of any other input format has

not been accommodated in this implementation.

 XQuery: The XQuery used for transforming the input XML to RDF should follow

the below conventions in order to define mappings. This is important as defining

mappings according to these conventions will help in extracting the mapping

information from the “RDF structure of XQuery”.

o The variable name should be “$eachROW”, which contains the XML

structure of the resource, employee, citation, etc. depends on the input

dataset which is in use.

o For selecting an element from input XML for mapping, the use of

“$eachROW” variable in XPath is mandatory. Please refer the Figure 13 for

instances. This is recommended because in “RDF of XQuery” it can be

identified, what all input XML elements have been mapped.

Figure 13: Selection of “Title” and “AttributedArtist” from the input XML for mapping

o For defining the corresponding RDF for the selected input XML elements,

the use of the variable name which contains “rdf” is mandatory. Please

refer the Figure 14 for instances. This is recommended because in “RDF of

XQuery” it can be identified, what is the corresponding RDF structure of all

input XML elements.

49

Figure 14: Corresponding RDF structure for “Title” element of input XML

o The complete XQuery which transform the FileMaker XML to MODS

RDF can be found in the attached CD

(\lifting\assets\code\fileMakerToModsRDF.xquery).

5.3 Use cases implementation description

The major parts in this implementation are 1) Transformation of XQuery to RDF 2)

Transformation of Input XML to RDF 3) Rendering mappings in GUI 4) Analysis and

manipulation of triples 5) if we need to uplift a new dataset to RDF. A mechanism to

switch dataset has been provided in this system. This section discusses the

implementation of these processes in details.

5.3.1 Use case 1: XQuery to RDF

This is the most crucial part of this implementation, as the most important objective of

this research is to represent the mappings in RDF structure. Representing the mappings in

RDF enables the user to analyze and manipulate them automatically through SPARQL

queries. The transformation of XQuery to RDF has been carried out in following steps

50

 Step 1: After finalizing the mappings, the base XQuery needs to be established.

Once it is in place, it will be parsed through the “XQuery parser” [33] which leads to

the generation of XML tree structure (it is not an XML structure but the tree

structure which has successive branching or subdivisions). The generated tree is

based on the vocabulary specification [50] recommended by W3C. The parser can

be run with the help of following commands in the terminal.

o < java -jar xquery.jar > it will prompt for an expression.

o < java -jar xquery.jar -file [filename]> it will parse an XQuery file and tree

will be generated on the terminal itself.

o Figure 15 and Figure 16, shows the transformation of sample XQuery to its

tree structure.

Figure 15: A sample XQuery for instance

Figure 16: Tree structure of sample XQuery

50

 Step 1: After finalizing the mappings, the base XQuery needs to be established.

Once it is in place, it will be parsed through the “XQuery parser” [33] which leads to

the generation of XML tree structure (it is not an XML structure but the tree

structure which has successive branching or subdivisions). The generated tree is

based on the vocabulary specification [50] recommended by W3C. The parser can

be run with the help of following commands in the terminal.

o < java -jar xquery.jar > it will prompt for an expression.

o < java -jar xquery.jar -file [filename]> it will parse an XQuery file and tree

will be generated on the terminal itself.

o Figure 15 and Figure 16, shows the transformation of sample XQuery to its

tree structure.

Figure 15: A sample XQuery for instance

Figure 16: Tree structure of sample XQuery

50

 Step 1: After finalizing the mappings, the base XQuery needs to be established.

Once it is in place, it will be parsed through the “XQuery parser” [33] which leads to

the generation of XML tree structure (it is not an XML structure but the tree

structure which has successive branching or subdivisions). The generated tree is

based on the vocabulary specification [50] recommended by W3C. The parser can

be run with the help of following commands in the terminal.

o < java -jar xquery.jar > it will prompt for an expression.

o < java -jar xquery.jar -file [filename]> it will parse an XQuery file and tree

will be generated on the terminal itself.

o Figure 15 and Figure 16, shows the transformation of sample XQuery to its

tree structure.

Figure 15: A sample XQuery for instance

Figure 16: Tree structure of sample XQuery

51

 Step 2: In this step, the PERL operations accompanied with XSLT operations has

been applied to the tree structure generated in the previous step. With every line

break a new element starts in the generated tree. The PERL routine in this engine

is iterating over each line break and marking the hierarchy of the element by

counting the number of “tabs” before its name. The complete PERL code can be

found in the attached CD (\lifting\assets\code\XqueryToXML.pl). Once the

marking of hierarchy for each element has been done, an XSLT is executed, which

transform the output generated by the PERL routine. The XSLT is creating the

nested XML structure based on the hierarchy level marked by the PERL routine.

The complete XSLT code can be found in the attached CD

(\lifting\assets\code\treetoxml.xsl). Figure 17 shows the output generated by the

XSLT transformation.

Figure 17: Intermediate XML structure of sample XQuery

51

 Step 2: In this step, the PERL operations accompanied with XSLT operations has

been applied to the tree structure generated in the previous step. With every line

break a new element starts in the generated tree. The PERL routine in this engine

is iterating over each line break and marking the hierarchy of the element by

counting the number of “tabs” before its name. The complete PERL code can be

found in the attached CD (\lifting\assets\code\XqueryToXML.pl). Once the

marking of hierarchy for each element has been done, an XSLT is executed, which

transform the output generated by the PERL routine. The XSLT is creating the

nested XML structure based on the hierarchy level marked by the PERL routine.

The complete XSLT code can be found in the attached CD

(\lifting\assets\code\treetoxml.xsl). Figure 17 shows the output generated by the

XSLT transformation.

Figure 17: Intermediate XML structure of sample XQuery

51

 Step 2: In this step, the PERL operations accompanied with XSLT operations has

been applied to the tree structure generated in the previous step. With every line

break a new element starts in the generated tree. The PERL routine in this engine

is iterating over each line break and marking the hierarchy of the element by

counting the number of “tabs” before its name. The complete PERL code can be

found in the attached CD (\lifting\assets\code\XqueryToXML.pl). Once the

marking of hierarchy for each element has been done, an XSLT is executed, which

transform the output generated by the PERL routine. The XSLT is creating the

nested XML structure based on the hierarchy level marked by the PERL routine.

The complete XSLT code can be found in the attached CD

(\lifting\assets\code\treetoxml.xsl). Figure 17 shows the output generated by the

XSLT transformation.

Figure 17: Intermediate XML structure of sample XQuery

52

 Step 3: In this step, the intermediate XML generated in the previous step get

transformed into the desired RDF structure of the XQuery. This transformation is

carried out with the help of XSLT, based on the rules specified in appendix A. The

complete XSLT code used for this transformation can be found in the attached CD

(\lifting\assets\code\XQueryXMLToRDFNew.xsl). We are using SAXON 9 for this

transformation; it can be invoked with the help of following terminal command.

o < java -jar jar/saxon9pe.jar {input XML path} {XSLT path } {output RDF

path}>

Figure 18 shows the RDF generated after this step.

Figure 18: RDF structure of sample XQuery

As we are creating it in a completely automated way, the commands to execute all the

above steps have been stated in a shell script. To perform the transformation of XQuery

52

 Step 3: In this step, the intermediate XML generated in the previous step get

transformed into the desired RDF structure of the XQuery. This transformation is

carried out with the help of XSLT, based on the rules specified in appendix A. The

complete XSLT code used for this transformation can be found in the attached CD

(\lifting\assets\code\XQueryXMLToRDFNew.xsl). We are using SAXON 9 for this

transformation; it can be invoked with the help of following terminal command.

o < java -jar jar/saxon9pe.jar {input XML path} {XSLT path } {output RDF

path}>

Figure 18 shows the RDF generated after this step.

Figure 18: RDF structure of sample XQuery

As we are creating it in a completely automated way, the commands to execute all the

above steps have been stated in a shell script. To perform the transformation of XQuery

52

 Step 3: In this step, the intermediate XML generated in the previous step get

transformed into the desired RDF structure of the XQuery. This transformation is

carried out with the help of XSLT, based on the rules specified in appendix A. The

complete XSLT code used for this transformation can be found in the attached CD

(\lifting\assets\code\XQueryXMLToRDFNew.xsl). We are using SAXON 9 for this

transformation; it can be invoked with the help of following terminal command.

o < java -jar jar/saxon9pe.jar {input XML path} {XSLT path } {output RDF

path}>

Figure 18 shows the RDF generated after this step.

Figure 18: RDF structure of sample XQuery

As we are creating it in a completely automated way, the commands to execute all the

above steps have been stated in a shell script. To perform the transformation of XQuery

53

to RDF, the shell script needs to be executed. The script can be found in the attached CD

(\lifting\assets\Processing.bat)

5.3.2 Use case 2: Input XML to RDF

To uplift the information automatically, is the main objective of this research. We are

using the XQuery in this implementation to uplift the data into RDF. To transform the

input XML to RDF, a base XQuery needs to be in place. This XQuery contains the mappings

of input XML to RDF. Mapping rules have to be finalized before establishing the base

XQuery. In this implementation, we are using “SAXON 9” in order to transform XML to

RDF using XQuery. The XQuery used for the transformation of FileMaker to MODS RDF

can be found in the CD (\lifting\assets\code\fileMakerToModsRDF.xquery). To invoke the

transformation, the command to execute XQuery has been stated in the shell script. The

execution of this shell script has been bound to a button in the MarkLogic based

application. The MarkLogic code can be referred on the

“\lifting\assets\HttpServer\code\transformation.xqy” in the attached CD.

Figure 19: Execution of transformation of input XML to RDF

5.3.3 Use case 3: Rendering mappings in GUI

One of the objectives of this research is to manipulate the mappings. In this project we

provide three ways to manipulate the mappings 1) GUI whose implementation is

described in this section, 2) By updating the triples of “XQuery RDF” using SPARQL

54

queries, implementation of this is described in the section 5.3.4, 3) By making changes in

the base XQuery. Implementation of how to switch or update the XQuery has been

discussed in the section 5.3.5.

We have provided an interface where users can view and update mappings manually. This

interface is designed in HTML which the help of MarkLogic code. The interface contains a

table in which the first column is “No.” which contains the count of mapping, second

column is “Input Dataset” which contains the XPATH of input element which needs to be

mapped and the third column is “Output RDF” which contains the output RDF structure

for the corresponding input element. Please refer Figure 20.

Figure 20: Interface to view/ update mappings manually

The mapping information is extracted from the “XQuery RDF”. As the base XQuery needs

to be established based on the conventions specified in the section 5.2. These

conventions enable the code to identify the corresponding input elements and output

RDF structure. The MarkLogic code identifies the mappings and transforms these into the

readable format while rendering it to HTML as shown in Figure 20. The complete code for

this use case can be found in the attached CD

(\lifting\assets\HttpServer\code\viewmappings.xqy)

55

Attribute {XQrdf:value="eachROW"} enables the code to understand that an input

element has been specified here for mapping. Complete details about the input element

can be extracted from the other child elements of <XQrdf:expression>. Please refer Figure

21 for the complete “RDF structure of input element <Last_name>”.

The corresponding “RDF structure of the output” of input element can be identified by

the variable whose name contains “rdf” (instance: XQrdf:value="rdflast_name"). Another

join to this condition is that the input element has to be called in the <expression>

element of “RDF structure of output” (instance: <XQrdf:varname XQrdf:ID=""

rdf:about="" XQrdf:value="lastname"/>). Please refer Figure 22 for the complete “RDF

structure of the output” of <Last_name>.

Figure 21: Input element “last_name” that has to be mapped

56

Figure 22: mapping rule (RDF structure) for Input element “last_name”

As soon as the user submits the changes in mappings, the updated mappings will be sent

to MarkLogic through form. Then MarkLogic will make changes in the existing “XQuery

RDF” according to the updated mapping information.

5.3.4 Use case 4: Analysis and manipulation of triples

The above use cases is for the uplifting of “XML and XQuery” to RDF. In this use case

triples of the uplifted XML will be stored in the MarkLogic triple store. A provision for the

user has been provided to query these triples through SPARQL. To query the graph

57

related to “RDF of XQuery”, URI: <http://xquery/XQrdf> is to be used. To query the graph

related to uplifted XML, URI: <http://data.test.tcd.ie/resource> is to be used.

An interface has been provided to the user through which user can write and invoke the

SPARQL query, please refer Figure 23.

Figure 23: Interface to execute SPARQL queries

Semantic library of MarkLogic has been used in order to implement this functionality. It

allows both read and update type of SPARQL queries to be executed. The SPARQL query

written by the user goes to the MarkLogic end with the help of forms. MarkLogic retrieves

the query and sends the request to execute query using its semantic library. Once the

query has been processed, the response to the query will be sent back to render on the

interface. Please refer Figure 24 to understand the execution of a SPARQL query.

Figure 24: Execution of SPARQL queries

58

SPARQL read query can be used to analyze the XQuery or the uplifted XML. A lot of useful

information about the transformation code can be extracted by analyzing these triples. In

order to manipulate these triple one has to invoke the SPARQL update query. The

changes made in the “XQuery triples” will be reflected in the “XQuery RDF” with the help

of code mentioned in the Figure 25. Once the “XQuery RDF” is updated with the changes

done in triples, the XQuery will be recomposed using the round trip engine to uplift the

data according to the updated mapping rules. The complete code of the round trip engine

can be found in attached CD (\lifting\assets\code\RDFTToXQueryNew.xsl)

Figure 25: code snippet to update "XQuery RDF" based on triple's changes

5.3.5 Use case 5: Switching to new dataset

This is another way of updating mapping. By this way the system can be configured to

uplift a different dataset as well. For updating the mapping in XQuery, the changes in the

XQuery have to be made according to the conventions specified in section 5.2. Once the

changes are done, this XQuery needs to replace the existing base XQuery in the system.

For this update we have provided a mechanism in the system through which user can

upload the updated XQuery or completely different XQuery. Please refer the Figure 26.

Figure 26: Interface to upload updated XQuery

59

The implementation of this upload is done through “input type file” element of HTML.

The updated XQuery will be sent to MarkLogic using forms. MarkLogic retrieves the

updated XQuery and replace the existing XQuery in the system with the updated one.

Please refer the code in the Figure 27.

Figure 27: code to replace the existing XQuery with updated one

5.4 Summary

In this chapter, the details about the tools and technologies used in this implementation

have been captured. It also specified the conventions used to create the base XQuery at

the time of finalizing the mappings. This chapter describes the implementation of the

technical architecture presented in the section 4.3. The implementation of the following

use cases has been discussed in this chapter:

 XQuery to RDF: It is multiphase process, in the first phase, the XQuery gets parsed

by the XQuery parser. Few transformation operations have been applied to the

output of the XQuery parser to convert it to RDF.

 Input XML to RDF: The implementation of this has been carried out with the help

of base XQuery created at the time of finalizing the mappings.

60

 Rendering mapping in GUI: The implementation of this involves the extraction of

mapping information from the “XQuery RDF” and rendering it on HTML. It also

allows the user to manipulate this information.

 Analysis and manipulation of triples: The implementation of this use case

involves, querying the triple store based on the user defined queries. The

execution of the SPARQL queries takes place with the help of semantic library of

the MarkLogic. The implementation takes care of both read and update SPARQL

queries.

 Switching to new dataset: In this implementation, the updated base XQuery or

new base XQuery is able to replace the existing base XQuery in the system. It

provides a mechanism to upload the different XQuery in the system and able to

see the changes in the mappings through the GUI.

61

Chapter 6

Evaluation

This chapter describes the evaluation of the developed prototype of the proposed

system. The first section of this chapter describes the various test cases we have run on

this system in order to check if the system meets the key requirements or not. The

second section of this chapter evaluates the system from the user’s perspective. It

involves evaluation of the system based on the 1) Ease of task completion, 2) Time to

complete the task, and 3) Support information provided to carry out the task.

The tests described in this section were executed on a Lenovo system which has the

following configuration:

 Processor: Intel i3, 1.80 GHz

 RAM: 4.00 GB

 System type: Windows 10, 64-bit

The developed prototype has been deployed on the MarkLogic Server 8.0-5.2. The

intermediate transformations in the system have been carried out with the help of

Strawberry PERL (v5.24.0) and XSLT 2.0 (SAXON 9).

6.1 Evaluation: Test cases

For executing these test cases, the Filemaker XML has been selected as an input dataset.

We have run all the test cases described in the subsections to check the system is capable

enough to achieve all the objectives mentioned in the section 1.2. For carrying out these

test cases following condition needs to be satisfied:

62

 FileMaker XML should be present in the directory "../Filemaker".

 Base XQuery should be present in the directory "../code" in order to perform the

transformation.

 Saxon 9 jar should be present in the directory "../jar".

 The XQuery parser should be present in the parent directory of the application

root directory.

 Supporting XSLTs/ PERL code should be present in the directory "../code", which

are used in the intermediate transformation.

 Tomcat apache needs to be running with the process executor code (WAR

responsible for invoking the shell script.)

Note: All paths used in this section are relative to the application root directory.

6.1.1 Test case 1: Uplifting input XML to RDF

Purpose: The purpose of this is to test the capability of the system to support the user in

uplifting the data (XML) to the RDF (RDF/ XML) automatically based on the specified

mappings in base XQuery.

Execution: The transformation should be executed after clicking the only transformation

icon present on the “Transformation” page of the application.

Expected outcome: We expected that the System should be able to uplift the XML to RDF

based on the mappings (in the case of FileMaker dataset: FileMaker to MODS RDF)

specified in the base XQuery. The uplift process should be completed without throwing

63

any exception. The user should be able to locate the transformed RDF in the directory

“../modsRDF”.

Actual outcome: The uplift process of XML has been completed successfully. The user

was able to locate the uplifted XML in “../modsRDF”.

6.1.2 Test case 2: Update mapping through user GUI-I

Purpose: The purpose of this is to test the capability of the system to support the user in

changing the mapping rules. The user is changing the mapping rules through GUI and

performing the transformation based on the updated mappings. In this particular test

case the user is changing the element name in the mapping rule.

Execution: The user performed this test by changing the mapping rule specified for

<Title> element. The changes performed are as follows:

Intia rule:

<principaltitle>

<Title>...</Title>

</principaltitle>

Updated rule:

<principaltitle>

<TitleUpdated>...</TitleUpdated>

</principaltitle>

Expected outcome: We expected that the system should be successful in updating the

mapping and uplift the XML according to the updated mapping rule. The user should be

able to locate the changes in the transformed RDF. In this particular test case the user

should be able to locate <TitleUpdated>...</TitleUpdated>.

64

Actual outcome: User was able to update the mapping successfully. The transformation

performed after updating the mapping was completed without any

exception. <TitleUpdated>...</TitleUpdated> has been located by the user in the

transformed output.

6.1.3 Test case 3: Update mapping through user GUI-II

Purpose: The purpose of this is to test the capability of the system to support the user in

changing the mapping rules. The user is changing the mapping rules through GUI and

performing the transformation based on the updated mappings. In this particular test

case the user is adding an attribute in the element of the mapping rule.

Execution: The user performed this test by changing the mapping rule specified for

<Title> element. The changes performed are as follows:

Intia rule:

<principaltitle>

<TitleUpdated>… </TitleUpdated>

</principaltitle>

Updated rule:

<principaltitle>

<TitleUpdated update="twice">...</TitleUpdated>

</principaltitle>

Expected outcome: We expected that the system should be successful in updating the

mapping and uplift the XML according to the updated mapping rule. The user should be

able to locate the changes in the transformed RDF. In this particular test case the user

should be able to locate <TitleUpdated update="twice">...</TitleUpdated>.

65

Actual outcome: User was able to add the attribute in the mapping rule successfully. The

transformation performed after updating the mapping was completed without any

exception. <TitleUpdated update="twice">...</TitleUpdated> has been located by the

user in the transformed output.

6.1.4 Test case 4: Update mapping through user GUI-III

Purpose: The purpose of this is to test the capability of the system to support the user in

changing the mapping rules. The user is changing the mapping rules through GUI and

performing the transformation based on the updated mappings. In this particular test

case the user is manipulating the value of an element in the mapping rule.

Execution: The user performed this test by changing the mapping rule specified for

<Title> element. The changes performed are as follows:

Intia rule:

<principaltitle>

<TitleUpdated update="twice">

<label>{$title/data()}</label>

<elementList parseType="Collection">

<mainTitleElement>

<elementValue>{$title/data()}</elementValue>

</mainTitleElement>

</elementList>

</TitleUpdated>

</principaltitle>

Updated rule:

66

<principaltitle>

<TitleUpdated update="twice">

<label>{$title/data()}</label>

<elementList parseType="Collection">

<mainTitleElement>

<elementValue>{upper-case($title/data())}</elementValue>

</mainTitleElement>

</elementList>

</TitleUpdated>

</principaltitle>

Expected outcome: We expected that the system should be successful in updating the

mapping and uplift the XML according to the updated mapping rule. The user should be

able to locate the changes in the transformed RDF. In this particular test case the user

should be able to locate the value of <elementValue>...</elementValue> element in

upper case.

Actual outcome: User was able to update the mapping rule successfully. The

transformation performed after updating the mapping was completed without any

exception. The value of <elementValue>...</elementValue> element has been located in

upper case by the user in the transformed output.

6.1.5 Test case 5: Update mapping through user GUI-IV

Purpose: The purpose of this is to test the capability of the system to support the user in

changing the mapping rules. The user is changing the mapping rules through GUI and

performing the transformation based on the updated mappings. In this particular test

case the user is adding a new element in already defined mapping rule.

67

Execution: The user performed this test by changing the mapping rule specified for

<Title> element. The changes performed are as follows:

Intia rule:

<principaltitle>

<TitleUpdated update="twice">

<label>{$title/data()}</label>

<elementList parseType="Collection">

<mainTitleElement>

<elementValue>{upper-case($title/data())}</elementValue>

</mainTitleElement>

</elementList>

</TitleUpdated>

</principaltitle>

Updated rule:

<principaltitle>

<TitleUpdated update="twice">

<label>{$title/data()}</label>

<elementList parseType="Collection">

<mainTitleElement>

<elementValue>{upper-case($title/data())}</elementValue>

<smallCaseElementValue>{lower-case($title/data())}</smallCaseElementValue>

</mainTitleElement>

</elementList>

</TitleUpdated>

</principaltitle>

68

Expected outcome: We expected that the system should be successful in updating the

mapping and uplift the XML according to the updated mapping rule. The user should be

able to locate the changes in the transformed RDF. In this particular test case the user

should be able to locate the <smallCaseElementValue>...</smallCaseElementValue>

element.

Actual outcome: User was able to update the mapping rule successfully. The

transformation performed after updating the mapping was completed without any

exception. The <smallCaseElementValue>...</smallCaseElementValue> element has been

located by the user in the transformed output.

6.1.6 Test case 6: Changing mapping by updating triples-I

Purpose: The purpose of this is to test the capability of the system to support the user in

changing the mapping rules. The user is changing the mapping rules by updating triples of

“XQuery RDF” (base URI: http://xquery/XQrdf) using SPARQL update queries. The user is

then performing the transformation based on the updated mappings. In this particular

test case the user is changing an element name in already defined mapping rule.

Execution: The user performed this test by changing the mapping rule specified for

<Title> element. The changes performed are as follows:

SPARQL update query:

DELETE {

GRAPH <http://xquery/XQrdf>

{ $s $p $o }

}

INSERT {

GRAPH <http://xquery/XQrdf>

{$s $p 'principaltitleUpdate'}

69

}

WHERE { $s $p $o

FILTER regex ($o, 'principaltitle','i')

}

Expected outcome: We expected that the system should be successful in updating the

triples through SPARQL and uplift the XML according to the updated mapping rule. The

user should be able to locate the changes in the transformed RDF. In this particular test

case the user should be able to locate the <principaltitleUpdate>...</principaltitleUpdate>

element.

Actual outcome: User was able to successfully update the triples through SPARQL query.

The transformation performed after updating the mapping was completed without any

exception. The <principaltitleUpdate>...</principaltitleUpdate> element has been

located by the user in the transformed output.

6.1.7 Test case 7: Changing mapping by updating triples-II

Purpose: The purpose of this is to test the capability of the system to support the user in

changing the mapping rules. The user is changing the mapping rules by updating triples of

“XQuery RDF” (base URI: http://xquery/XQrdf) using SPARQL update queries. The user is

then performing the transformation based on the updated mappings. In this particular

test case the user is changing an attribute value in already defined mapping rule.

Execution: The user performed this test by changing the mapping rule specified for the

<Title> element. The changes performed are as follows:

SPARQL update query:

70

DELETE {

GRAPH <http://xquery/XQrdf>

{ $s $p $o }

}

INSERT {

GRAPH <http://xquery/XQrdf>

{$s $p 'twice'}

}

WHERE { $s $p $o

FILTER regex ($s, 'attribute','i')

FILTER regex ($o, 'yes','i')

}

Expected outcome: We expected that the system should be successful in updating the

triples through SPARQL and uplift the XML according to the updated mapping rule. The

user should be able to locate the changes in the transformed RDF. In this particular test

case the user should be able to locate the attribute {update="twice"}.

Actual outcome: User was able to successfully update the triples through SPARQL query.

The transformation performed after updating the mapping was completed without any

exception. The attribute {update="twice"} has been located by the user in the

transformed output.

6.1.8 Test case 8: Preserve blank node

Purpose: The application is by default configured to remove all the blank nodes from the

transformed RDF. The purpose of this is to test the capability of the system to support the

user in changing the configuration for preserving the blank node in transformed RDF. The

user is changing the configuration and then performing the transformation based on the

71

updated configurations. In this particular test case the user is preserving the blank node

of <note/> element.

Execution: The user performed this test by changing the XML based configuration file.

The changes performed are as follows:

Default configuration:

<root>

</root>

Updated configuration:

<root>

<nodename>note</nodename>

</root>

Expected outcome: We expected that the system should be successful in handling the

updated configurations and uplift the XML according to that. The user should be able to

locate the changes in the transformed RDF. In this particular test case the user should be

able to locate the blank node of <note> element.

Actual outcome: User was able to successfully update the configurations. The

transformation performed after updating the configurations was completed without any

exception. The blank node of <note> element has been located by the user in the

transformed output.

6.1.9 Test case 9: Analyze the transformed RDF triples-I

Purpose: The purpose of this is to test the capability of the system to support the user in

analyzing the transformed RDF triples. The user is executing SPARQL read queries in order

to extract information out of the triples. In this particular test case the user is extracting

72

the count of the resources created between the date "18000101" and "19000101"

including these dates.

Execution: The user performed this test by executing the SPARQL read query over the

RDF triples (Base URI: http://data.test.tcd.ie/resource). The query is as follows:

SPARQL update query:

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT $s (COUNT(?s) AS ?count)

FROM <http://data.test.tcd.ie/resource>

WHERE { $s $p $o

FILTER regex ($p, 'resourceDateIssuedStart','i')

FILTER (xsd:integer($o) > 18000101)

FILTER (xsd:integer($o) < 19000101)

}

Expected outcome: We expected that the system should be successful in executing the

SPARQL read query over the RDF triples. The user should be able to extract the

information out of it. In this particular case the expected result is “8”.

Actual outcome: The SPARQL query has been successfully executed over the RDF triples.

The extracted count is “8”.

6.1.10 Test case 10: Analyze the transformed RDF triples-II

Purpose: The purpose of this is to test the capability of the system to support the user in

analyzing the transformed RDF triples. The user is executing SPARQL read queries in order

to extract information out of the triples. In this particular test case the user is extracting

the count of resources in which the Geographic location is "Rome"

73

Execution: The user performed this test by executing the SPARQL read query over the

RDF triples (Base URI: http://data.test.tcd.ie/resource). The query is as follows:

SPARQL update query:

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT $s (COUNT(?s) AS ?count)

FROM <http://data.library.tcd.ie/resource>

WHERE { $s $p $o

FILTER regex ($p, 'label','i')

FILTER regex ($o, 'Rome', 'i')

}

Expected outcome: We expected that the system should be successful in executing the

SPARQL read query over the RDF triples. The user should be able to extract the

information out of it. In this particular case the expected result is “1”.

Actual outcome: The SPARQL query has been successfully executed over the RDF triples.

The extracted count is “1”.

6.1.11 Test case 11: Changing mapping by updating triples-III

Purpose: The purpose of this is to test the capability of the system to support the user in

changing the mapping rules. The user is changing the mapping rules by updating triples of

“XQuery RDF” (base URI: http://xquery/XQrdf) using SPARQL update queries. The user is

then performing the transformation based on the updated mappings. In this particular

test case the user is adding a new element in already defined mapping rule.

Execution: The user performed this test by executing the SPARQL update query. The

query is as follows:

74

SPARQL update query:

INSERT DATA {

GRAPH <http://xquery/XQrdf>

{

<http://xquery/DirElemConstructor810> <http://XQrdfname> "newElement"

}

}

Expected outcome: We expected that the system should be successful in updating the

triples through SPARQL. The user then executes the transformation. Transformed RDF

should not accommodate the changes made by the specified SPARQL query.

Actual outcome: User was able to successfully update the triples through SPARQL query.

The transformation performed after updating the mapping was completed without any

exception. The user did not locate any changes in the transformed RDF.

6.1.12 Test case 12: Changing mapping by updating triples-IV

Purpose: The purpose of this is to test the capability of the system to support the user in

changing the mapping rules. The user is changing the mapping rules by updating triples of

“XQuery RDF” (base URI: http://xquery/XQrdf) using SPARQL update queries. The user is

then performing the transformation based on the updated mappings. In this particular

test case the user is adding a new attribute in already defined mapping rule.

Execution: The user performed this test by executing the SPARQL update query. The

query is as follows:

SPARQL update query:

INSERT DATA

75

{

GRAPH <http://xquery/XQrdf>

{

<http://xquery/attribute412> <http://XQrdfnewattribute> "dummy"

}

}

Expected outcome: We expected that the system should be successful in updating the

triples through SPARQL. The user then executes the transformation. Transformed RDF

should not accommodate the changes made by the specified SPARQL query.

Actual outcome: User was able to successfully update the triples through SPARQL query.

The transformation performed after updating the mapping was completed without any

exception. The user did not locate any changes in the transformed RDF.

6.2 Evaluation: User perspective

We conducted an experiment with multiple participants. The participants have been

recruited through email/ social networks. We only recruited the participants who have

the following characteristics:

 Older than 18 years.

 Student in the department of School of Computer Science and Statistics only.

 Have the experience of XML or RDF or triples or SPARQL.

The experiment is divided into two parts 1) Task and 2) Questionnaire. Both parts have

been conducted on the same computer provided by the researcher.

Part 1: User has been asked to perform the tasks related to the change of mappings,

which involved performing some operations (necessary instruction will be provided in

76

order to carry out the operation) on the prototype application created for uplifting the

data. Please refer the task set in the attached CD (\lifting\tasks\Taskset.docx).

Part 2: After completing with part 1, users have been asked to evaluate the prototype

application by providing answers to questions which are based on the ease of using the

application, time taken for completing the task and information provided for executing

the task. Please refer the questionnaire in the attached CD

(\lifting\questionnaire\Questionnaire.docx).

Figure 28 shows rating provided by the user in evaluating the system based on the ease

of using the application.

Figure 29 shows rating provided by the user in evaluating the system based on the time

taken for completing the task.

Figure 30 shows rating provided by the user in evaluating the system based on the

information provided for executing the task.

Figure 28: Ease of completing the task

77

Figure 29: Time taken to complete the task

Figure 30: Support information

The information on the above graphs shows that, six users participated in the experiment.

Participants 1, 2, 4, 5 and 6 are overall satisfied with the use of the application. According

to participant 1 the guidelines provided for the execution of tasks were helpful in

completing the task and it suggested that frequent use of the system will make the task

easier to complete. Participant 1 also suggested that the error given by the system was

78

very low level and hard to understand. Participant 1 found that the automated aspects of

the system worked very well and made editing and managing the mappings very efficient.

According to the ratings, Participant 2 looks very satisfied with the use of the application.

The evaluation by participant 3 suggests that a more user friendly design is needed in

place. It also suggests that participant 3 never encountered any error. Participant 4

indicates that it was unable to complete its task effectively, but it is satisfied with the

error messages generated by the system. While the evaluation of participant 5 is

completely opposite of participant 4, it indicates that it was able to complete its task very

effectively. The tasks performed by the participant 4 and 5 were same; it suggests that

the design of the system and information provided for executing the task were not

compatible with every user. Participant 6 commented that the tasks were executed

quickly and it can be quicker once the user become acquainted by the system. It

commented that the error information generated by the system was not easily

understandable by the user. Participant 6 also advised for putting more information on

the interface such that the user can easily navigate through the application.

Based on the evaluation done by the user, it can be assimilated that a more user friendly

design needs to be in place, and also the current prototype is unable to generate user

understandable error messages.

6.3 Summary

In this chapter we have evaluated the developed prototype for uplifting the XML data.

We have evaluated the prototype in following two areas:

Functionality of the prototype: We tested the functionality of the system with the help of

unit test. We found that the test results are as expected.

Usability of the system: We evaluated the usability of the system by conducting the

experiment to operate the prototype with multiple users. The operation involves tasks

related to the change in already defined mapping.

79

Chapter 7

Case Studies

7.1 Introduction

In this chapter, we explore the application of the developed prototype on some industrial

problems. We discuss the uplift of “Trinity library digital collection metadata” and

“Employee dataset”. To test if the prototype is applicable in dealing with the real world

problems of maintaining mappings, we also make changes in the mapping to see its

effect.

7.2 Trinity library digital collection metadata

Over the past few years the library team has worked very hard in creating a digital

collection of resources. In the process of digitizing the content, the team has to deal with

the various format of metadata as different resources have different format of metadata.

To make the digital collection more usable for the users, there should be interoperability

between the related resources. This interoperability can be achieved effectively if we

transform the metadata from multiple formats to a single format. The digital collection

can be utilized at its best if uplift the metadata of resources into RDF. In this way we can

ensure inter digital collection linking.

In this case study, we are uplifting the “Trinity library digital collection metadata” by the

using the developed prototype. The uplift process has been carried out as follows:

 The process starts with the gathering of data. The Trinity library team provided us

the data in FileMaker formatted XML. This XML contains the metadata of “583”

80

records. Provided XML is very rich in terms of data, that is, it contains the

information of every element used in representing the metadata information.

 The Trinity library team suggested that in their current workflow, the FileMaker

data is transforming into the MODS format.

 The team wants the FileMaker data to be uplifted in the MODS RDF format in their

new workflow. The team provided us the mapping information of FileMaker to

MODS. The mapping information can be found in the attached CD

(\lifting\assets\mappings\DRIS-preliminary-metadata-crosswalk.xlsx).

 We established the mapping of FileMaker to MODS XML to MODS RDF using the

MODS XML to RDF conversion instructions [52]. The complete information about

the mappings can be found in the attached CD

(\lifting\assets\mappings\MappingInstructions.docx) as well.

 We created an XQuery based on the mappings of MODS XML to RDF; this XQuery

has been created using the conventions specified in section 5.2. The complete

XQuery can be found in the attached CD

(\lifting\assets\code\fileMakerToModsRDF.xquery).

 Once the XQuery has been created, the process of transformation can be initiated.

The transformed MODS RDF can be found in the attached CD

(\lifting\assets\modsRDF\modsRDF.rdf). Figure 31 shows the title information of a

resource in FileMaker format. After the transformation the FileMaker information

has been converted to MODS RDF, Figure 32 shows the title information in MODS

RDF.

81

Figure 31: Title information of a resource in FileMaker XML

Figure 32: Title information of a resource in MODS RDF

 To test the prototype against the real world mapping challenges, we executed the

tests mentioned in section 6.1. We found that the prototype was able to

successfully manipulate the mappings through GUI as well as through SPARQL

queries, details mentioned in section 6.1; however in the following to scenarios

system was not able to update the mappings through SPARQL queries.

o Adding a new element in already defined mapping rule.

o Adding a new attribute in already defined mapping rule.

82

7.3 Employee dataset

The second case study is based on the data which is more understandable to the

audience who does not have understanding of publishing format. The purpose of this

case study is to test the capability of the system to support various input XML formats to

be uplifted. The process of its uplift has been carried out as follows.

 The process starts with the gathering of data. We have gathered this data from

“Northwind database” in the XML format. The sample employee dataset can be

found in the attached CD (\lifting\assets\Filemaker\employees.xml).

 The employee dataset needs to be uplifted into FOAF. FOAF is an ontology which

is used in describing people, their activities, and their relation to other people.

 The mapping information of the employee dataset to FOAF has been provided by

Dr. Christophe Debruyne. The provided mappings were in triple maps. We also

received the desired outcome of the transformation for the validation of RDF

generated by the prototype.

 We converted the “triple mappings” in XQuery. Most of the mappings were

straight forward except mapping of the city (employee dataset) to

foaf:Spatial_Thing (FOAF). The mapping in the triple map is indicating to cater only

distinct city information. The complete mapping can be found in the attached CD

(\lifting\assets\mappings\e-mapping.ttl). We managed to convert the distinct

condition with the help of XPATH axes in which we checked if the city has already

occurred then there is no need for its conversion again. Figure 33 and Figure 34

show mapping information in triple map and XQuery respectively.

83

Figure 33: mapping of city in triple maps

Figure 34: Mapping of city in XQuery

 We converted all the mappings in XQuery. The complete XQuery can be found in

the attached CD (\lifting\assets\code\Foaf.xqy).

 Once the XQuery has been created, the process of transformation can be initiated.

We compared the RDF generated by the prototype with turtle received as the

expected outcome. We found that both of the outputs are equivalent. Both of the

outputs can be found in the attached CD (\lifting\assets\modsRDF\e-output.ttl)

and (\lifting\assets\modsRDF\FOAF.rdf).

 This case study suggests that the developed prototype is compatible with different

datasets to be uplifted.

84

Chapter 8

Conclusion

This chapter describes the summary of the research and our findings. In the later section

the future work has also been discussed.

8.1 Project overview

Data is nowadays embedded in our day to day activities and different domains, such as

hospitals, entertainment, schools and so on, use different formats for the data. With the

growth of the Semantic Web and linked data initiatives the challenge of extracting

information from different domains and transforming the data to a standard format (RDF)

exists.

There are solutions available in the current state of the art, which performs the mapping

of one format to another to perform the extraction and transformation. However, in case

any of the format gets changed, then these mapping needs to be established again and

further the transformation logic has to be adjusted accordingly [38].

The most recent developments in the field of mapping are [10], [20] and [28]. These solutions

perform the mapping of various format (relational databases, XML, CSV, etc.) to RDF. But

these approaches only focused on the generic solution for the transformation of one

format to RDF. None of the solution has targeted the representation of the mappings.

This has provided us an area where we can discuss the representation of mappings in

order to analyze, manipulate and recompose them automatically.

For this project, our aim is to represent the mappings (embedded in XQuery) into the RDF

structure. As RDF is the machine understandable language, it can be analyzed,

manipulated and recomposed automatically. This approach will be beneficial in the

85

domain where the changes in the mappings are frequent. These changes lead the

maintenance of the mapping a very challenging task.

We propose a prototype which is implemented using MarkLogic [41]. This prototype

transforms the input XML to RDF using mappings embedded in XQuery. We are also

converting the XQuery to RDF such that it can be analyzed and manipulated

automatically. The advantages of keeping the mappings/ XQuery in RDF are as follows:

 With the help of a transformation, it allows us to render the mappings in user

readable format. The user can then edit the mappings manually.

 It allows us to store the triples in the triple store. One can automatically analyze

the mappings or transformation code using the SPARQL queries. In this case

mappings can be changed automatically by updating the triples using the SPARQL

update queries.

We are recomposing XQuery after the update in mappings using the round-trip engine.

This engine is transforming “XQuery RDF” back to “XQuery expressions“.

Finally, we have evaluated the developed prototype by running the test cases of the

following functionality:

 Manually update the already defined mappings using GUI.

 Automatically update the already defined mappings using SPARQL update queries.

 Analyze the mapping/ transformation code using SPARQL read queries.

 Analyze the transformed RDF of input XML for extracting useful information.

86

 By default the application is configured to remove all the blank nodes, we tested

for preserving the blank node by changing the configuration of the application.

For testing the above cases we have used the Filemaker dataset, which needs to be

uplifted to modsRDF.

8.2 Contribution

In summary, our prototype validates the approach of uplifting the data using the XQuery.

It also validates that the mappings can be represented in a format such that it can be

automatically analyzed, manipulated and recomposed. Or evaluation result illustrates

that such an approach can be used to uplift the data. It also proved that by representing

the mappings in the RDF one can easily cope up with the maintenance of the mappings.

Furthermore, our prototype demonstrates the approach to transforming the XQuery to

RDF in a way that it can be recomposed back to the XQuery. To conclude, this research

has successfully defined an approach by which mappings can be represented using a

query based language such that it can be analyzed, manipulated and recomposed

automatically.

8.3 Future work

While our prototype has represented the mappings in RDF structure and allows the user

to update the already defined mapping, the future extension to the system might be the

functionality by which user can add the mappings of the new elements.

Another possible extension to the system would be to render the mappings in a more

user friendly way. In the current rendering scheme the user should have an exposure of

XML and XQuery in order to update the mappings. As XQuery is not a common language

87

at application operator level, the XQuery snippets in the rendered mapping should be

replaced with something closer to the users.

Finally, as in this, research we have created the prototype and tested this with two

different input dataset, the future work may be done to employ this prototype with more

input dataset. This would help to validate the approach taken in this research, by using it

to represent the more complex mappings.

8.4 Final remark

People are moving more towards the Semantic Web. As a result, they are uplifting their

data in RDF. However the schemas or ontologies of the data tend to change frequently,

the need for an approach has arisen by which mappings can be automatically analyzed

and manipulated. This research has successfully defined an approach by which the

mapping can be represented in the RDF format, which can be automatically analyzed,

manipulated and recomposed. The overall inspiration for this study is the representation

of XQuery in the RDF format which allows the further reasoning over the XQuery itself.

88

References

[1] Bizer, Christian and Heath, Tom and Berners-Lee, Tim. "Linked data-the story so far".

W3C, 5(3):205-227, 2009

[2] "Semantic web road map." [Online]. Available:

https://www.w3.org/DesignIssues/Semantic.html. [Modified: 14 Oct 1998]. [Accessed: 11

Mar 2016].

[3] Neuhold, Erich and Kiesling, Elmar. "Interoperability and Semantics: A Never-Ending

Story". Information Sciences and Systems 2015, Springer, 19-31, 2016

[4] "RDF - Semantic Web Standards" [Online]. Available: http://www.w3.org/RDF/.

[Modified: 17 Feb 2016]. [Accessed: 14 Jul 2016].

[5] Miller, Eric. "An introduction to the resource description framework". Bulletin of the

American Society for Information Science and Technology, 25(1):15-19, 1998

[6] "RDF/XML syntax specification (revised)" [Online]. Available:

http://badjoke.demic.eu/papers/liris.cnrs.fr/alain.mille/enseignements/Ecole_Centrale/p

rojets_2004/RDF.pdf. [Modified: 10 Oct 2003]. [Accessed: 14 Jul 2016].

[7] "Turtle - Terse RDF Triple Language" [Online]. Available:

https://www.w3.org/TeamSubmission/turtle/. [Modified: 28 March 2011]. [Accessed: 14

Jul 2016].

[8] "SPARQL Query Language for RDF" [Online]. Available: https://www.w3.org/TR/rdf-

sparql-query/. [Modified: 15 Jan 2008]. [Accessed: 14 Jul 2016].

89

[9] Marinchev, Ivo. "Lifting and lowering the data from digital library Virtual Encyclopedia

of Bulgarian Iconography". Proceedings of the 12th International Conference on

Computer Systems and Technologies, pages 179-184, Jun, 2011

[10] Bizer, Christian. "D2r map-a database to rdf mapping language". 2003

[11] Hendler, James and Brners-Lee, T and Miller, Eric. "Integrating applications on the

semantic web". Journal of the Institute of Electrical Engineers of Japan, 122(10):676-680,

2002

[12] Dimou, Anastasia and Vander Sande, Miel and Colpaert, Pieter and Verborgh, Ruben

and Mannens, Erik and Van de Walle, Rik. "RML: A Generic Language for Integrated RDF

Mappings of Heterogeneous Data". LDOW, Apr 2014.

[13] Lopes, Nuno and Polleres, Axel and Passant, Alexandre and Decker, Stefan and

Bischof, Stefan and Berrueta, Diego and Campos, Antonio and Corlosquet, Stephane and

Euzenat, Jerome and Erling, Orri. "RDF and XML: Towards a unified query layer".

Proceedings of the W3C Workshop on RDF Next Steps, Jun 2010.

[14] Bizer, Christian and Seaborne, Andy. "D2RQ-treating non-RDF databases as virtual

RDF graphs". Proceedings of the 3rd international semantic web conference (ISWC2004),

Nov 2004, Springer.

[15] Van Deursen, Davy and Poppe, Chris and Martens, Gaetan and Mannens, Erik and

Van de Walle, Rik. "XML to RDF conversion: a generic approach". Automated solutions for

Cross Media Content and Multi-channel Distribution, 2008. AXMEDIS'08. International

Conference on, pages 138-144, Nov 2008, IEEE.

90

[16] Dimou, Anastasia and Sande, Miel Vander and Colpaert, Pieter and Mannens, Erik

and Van de Walle, Rik. "Extending R2RML to a source-independent mapping language for

RDF". Proceedings of the 2013th International Conference on Posters \ Demonstrations

Track-Volume 1035, pages 237-240, Oct 2013, CEUR-WS. org.

[17] Ferdinand, Matthias and Zirpins, Christian and Trastour, David. "Lifting XML schema

to OWL". International Conference on Web Engineering, pages 354-358, Jul 2004,

Springer.

[18] Ehrig, Marc and Sure, York. "Ontology mapping--an integrated approach". European

Semantic Web Symposium, pages 76-91, May 2004, Springer.

[19] "RDF Mapping Language (RML)" [Online]. Available:

http://semweb.datasciencelab.be/rml/RMLmappingLanguage.html. [Accessed: July 22

2016].

[20] Dimou, Anastasia and Vander Sande, Miel and Slepicka, Jason and Szekely, Pedro and

Mannens, Erik and Knoblock, Craig and Van de Walle, Rik. "Mapping hierarchical sources

into RDF using the RML mapping language". Semantic Computing (ICSC), 2014 IEEE

International Conference on, pages 151-158, Jun 2014, IEEE.

[21] Scharffe, Francois and Atemezing, Ghislain and Troncy, Raphael and Gandon, Fabien

and Villata, Serena and Bucher, Benedicte and Hamdi, Faycal and Bihanic, Laurent and

Kepeklian, Gabriel and Cotton, Franck. "Enabling linked-data publication with the datalift

platform". Proc. AAAI workshop on semantic cities, Jul 2012, AAAI.

[22] David, J and Euzenat, J and Scharffe, F and dos Santos, C Trojahn. "The Alignment API

4.0". Semantic Web-Interoperability, Usability, Applicability, 2(1):3-10, 2011.

91

[23] Euzenat, Jerome. "An API for ontology alignment". International Semantic Web

Conference, pages 698-712, Nov 2004, Springer.

[24] "EDOAL: Expressive and Declarative Ontology Alignment Language" [Online].

Available: http://alignapi.gforge.inria.fr/edoal.html. [Accessed: 22 July 2016].

[25] "Alignments for data interlinking: a proposal for matching/linking cooperation"

[Online]. Available: http://melinda.inrialpes.fr/proposal.html. [Accessed: 22 July 2016].

[26] Kurgan, Lukasz A and Swiercz, Waldemar and Cios, Krzysztof J. "Semantic Mapping of

XML Tags Using Inductive Machine Learning". ICMLA, pages 99-109, Jun 2002, CSREA.

[27] Sahoo, Satya S and Halb, Wolfgang and Hellmann, Sebastian and Idehen, Kingsley and

Thibodeau Jr, Ted and Auer, Soren and Sequeda, Juan and Ezzat, Ahmed. "A survey of

current approaches for mapping of relational databases to RDF". W3C RDB2RDF Incubator

Group Report, 2009.

[28] Dell'Aglio, Daniele and Polleres, Axel and Lopes, Nuno and Bischof, Stefan. "Querying

the web of data with XSPARQL 1.1". Proceedings of the 2014 International Conference on

Developers-Volume 1268, pages 113-118, Oct 2014, CEUR-WS. org.

[29] Bischof, Stefan and Decker, Stefan and Krennwallner, Thomas and Lopes, Nuno and

Polleres, Axel. "Mapping between RDF and XML with XSPARQL". Journal on Data

Semantics, 1(3):147-185, 2012.

[30] Akhtar, Waseem and Kopecky, Jacek and Krennwallner, Thomas and Polleres, Axel.

"XSPARQL: Traveling between the XML and RDF worlds--and avoiding the XSLT

pilgrimage". European Semantic Web Conference, pages 432-447, Jun 2008, Springer.

92

[31] Carlisle, David. "xq2xml: Transformations on XQueries". a conference on XML, pages

63, Jun 2006.

[32] Lopes, Nuno and Bischof, Stefan and Decker, Stefan and Polleres, Axel. "On the

semantics of heterogeneous querying of relational, XML and RDF data with XSPARQL".

Proceedings of the 15th Portuguese Conference on Artificial Intelligence, Oct 2011, EPIA.

[33] "XQuery 1.0 and XPath 2.0 Grammar Test Pages Overview" [Online]. Available:

https://www.w3.org/2007/01/applets/xgrammar.zip. [Accessed: July 22 2016].

[34] Milo, Tova and Zohar, Sagit. "Using schema matching to simplify heterogeneous data

translation". VLDB, pages 24-27, Aug 1998, Citeseer.

[35] Marshall, M Scott and Boyce, Richard and Deus, Helena F and Zhao, Jun and

Willighagen, Egon L and Samwald, Matthias and Pichler, Elgar and Hajagos, Janos and

Prud’hommeaux, Eric and Stephens, Susie. "Emerging practices for mapping and linking

life sciences data using RDF—A case series". Web Semantics: Science, Services and Agents

on the World Wide Web, 14, 2-13, 2012.

[36] Battle, Steve. "Round-tripping between XML and RDF". International Semantic Web

Conference (ISWC), Nov 2004, Citeseer.

[37] Harth, Andreas and Hogan, Aidan and Umbrich, Jurgen and Decker, Stefan. "Building

a semantic web search engine: challenges and solutions". Proc. of XTech 2008:“The Web

on the Move, 2008.

[38] Nagarajan, Meenakshi and Verma, Kunal and Sheth, Amit P and Miller, John and

Lathem, Jon. "Semantic interoperability of web services-challenges and experiences".

93

2006 IEEE International Conference on Web Services (ICWS'06), pages 373-382, Sep 2006,

IEEE.

[39] Rimkus, Kyle and Padilla, Thomas and Popp, Tracy and Martin, Greer. "Digital

preservation file format policies of ARL member libraries: an analysis". D-Lib Magazine,

20(3):2, 2014.

[40] Baker, Thomas and Dekkers, Makx and Heery, Rachel and Patel, Manjula and

Salokhe, Gauri. "What terms does your metadata use? Application profiles as machine-

understandable narratives". Journal of Digital information, 2(2):2001.

[41] "Inside MarkLogic Server" [Online]. Available:

http://www.marklogic.com/resources/inside-marklogic-server/. [Accessed: Aug 10 2016].

[42] "Extensible Markup Language (XML)" [Online]. Available: http://www.w3.org/XML/.

[Accessed: Aug 10 2016].

[43] Chamberlin, Don. "XQuery: An XML query language". IBM systems journal, 41(4):597-

615, 2002.

[44] Derksen, Eduard and Fankhauser, Peter and Howland, Ed and Huck, Gerald and

Macherius, Ingo and Murata, Makoto and Resnick, Michael and Schoning, Harald. "XQL

(XML Query Language)". Submission to the World Wide Web Consortium, 1999.

[45] Clark, James and DeRose, Steve. "XML path language (XPath) version 1.0". 184-186,

1999.

94

[46] Krishnamurthy, Rajasekar and Kaushik, Raghav and Naughton, Jeffrey F. "XML-to-SQL

query translation literature: The state of the art and open problems". International XML

Database Symposium, pages 1-18, Sep 2003, Springer.

[47] Cattell, Roderic Geoffrey Galton and Barry, Douglas K and Bartels, Dirk and Berler,

Mark and Eastman, Jeff and Gamerman, Sophie and Jordan, David and Springer, Adam

and Strickland, Henry and Wade, Drew. "The object database standard". ODMG 2.0,

Morgan Kaufmann Publishers San Mateo, 1997.

[48] "XSL Transformations (XSLT) Version 2.0" [Online]. Available:

http://www.w3.org/TR/xslt20. [Accessed: 14 Jul 2016].

[49] Westbrooks, Elaine L. "Distributing and synchronizing heterogeneous metadata in

geospatial information repositories for access". 2004.

[50] "XML document" [Online]. Available: https://www.w3.org/2007/01/applets/xpath-

grammar.xml. [Accessed: 14 Jul 2016].

[51] "Northwind database" [Online]. Available: https://github.com/dalers/mywind.

[Accessed: 10 Aug 2016].

[52] "MODS XML to RDF Conversion" [Online]. Available:

https://www.loc.gov/standards/mods/modsrdf/primer-2.html. [Accessed: 10 Aug 2016].

[53] Dimou, Anastasia and Vander Sande, Miel and Slepicka, Jason and Szekely, Pedro and

Mannens, Erik and Knoblock, Craig and Van de Walle, Rik. "Mapping hierarchical sources

into RDF using the RML mapping language". Semantic Computing (ICSC), 2014 IEEE

International Conference on, pages 151-158, Jun 2014, IEEE.

95

Appendix A

Intermediate XML Elements XSLT rules to generated “XQuery RDF”
CompElemConstructor <xsl:element name="XQrdf:compelement">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
local-name())"/>

<xsl:apply-templates/>
</xsl:element>

ComparisonExpr <xsl:element name="XQrdf:compare">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

'compare')"/>
<xsl:attribute name="XQrdf:value" select="normalize-space(text())"/>
<xsl:apply-templates/>

</xsl:element>
DirAttributeList <xsl:apply-templates select="TagQName"/>
DirElemConstructor <xsl:element name="XQrdf:element">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
local-name())"/>

<xsl:attribute name="XQrdf:name" select="normalize-
space(TagQName)"/>

<xsl:apply-templates/>
</xsl:element>

FLWORExpr <xsl:element name="XQrdf:FLWORExpr">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

local-name())"/>
<xsl:apply-templates/>

</xsl:element>
ForClause <xsl:element name="XQrdf:for">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
local-name())"/>

<xsl:apply-templates/>
</xsl:element>

FunctionCall <xsl:element name="XQrdf:function">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

local-name())"/>
<xsl:attribute name="XQrdf:name">

<xsl:variable name="val" select="normalize-
space(FunctionQName)"/>

<xsl:value-of select="$val"/>
</xsl:attribute>
<xsl:apply-templates/>

</xsl:element>
IfExpr <xsl:element name="XQrdf:if">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
local-name())"/>

<xsl:apply-templates/>
</xsl:element>

96

IntegerLiteral <xsl:element name="XQrdf:integer">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

local-name())"/>
<xsl:attribute name="XQrdf:value" select="normalize-space(.)"/>

</xsl:element>
LetClause <xsl:element name="XQrdf:let">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
local-name())"/>

<xsl:message select="VarName"/>
<xsl:apply-templates/>

</xsl:element>
NamespaceDecl <xsl:element name="XQrdf:namespace">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
'namespace')"/>

<xsl:attribute name="XQrdf:name" select="normalize-
space(NCName)"/>

<xsl:attribute name="XQrdf:value" select="normalize-
space(URILiteral/StringLiteral)"/>

</xsl:element>
PathExpr <xsl:choose>

<xsl:when test="parent::*:FLWORExpr">
<xsl:element name="XQrdf:return">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
'Constructor')"/>

<xsl:apply-templates/>
</xsl:element>

</xsl:when>
<xsl:otherwise>

<xsl:element name="XQrdf:expression">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

local-name())"/>
<xsl:apply-templates/>

</xsl:element>
</xsl:otherwise>

</xsl:choose>
PositionalVar <xsl:element name="XQrdf:position">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
local-name())"/>

<xsl:apply-templates/>
</xsl:element>

Predicate <xsl:element name="XQrdf:predicate">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

local-name())"/>
<xsl:apply-templates/>

</xsl:element>
PredicateList <xsl:element name="XQrdf:predicatelist">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
local-name())"/>

<xsl:apply-templates/>
</xsl:element>

97

QName[parent::NameTest
and
not(ancestor::AbbrevForwar
dStep[1]/text() = '@')]

<xsl:element name="XQrdf:node">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

'StarColonNCName')"/>
<xsl:attribute name="XQrdf:value" select="normalize-space(.)"/>

</xsl:element>
QName[parent::NameTest/
ancestor::AbbrevForwardSt
ep[1]/text() = '@']

<xsl:element name="XQrdf:node">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

'StarColonNCName')"/>
<xsl:attribute name="XQrdf:value" select="concat('@', normalize-

space(.))"/>
</xsl:element>

QueryList <xsl:apply-templates/>
ReverseAxis <xsl:element name="XQrdf:axis">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
'axis')"/>

<xsl:attribute name="XQrdf:value" select="normalize-
space(concat(text(), '::'))"/>

<xsl:apply-templates/>
</xsl:element>

SlashSlash <xsl:element name="XQrdf:doubleslash">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

local-name())"/>
<xsl:apply-templates/>

</xsl:element>
StarColonNCName <xsl:element name="XQrdf:node">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
local-name())"/>

<xsl:attribute name="XQrdf:value">
<xsl:variable name="val" select="normalize-space(.)"/>
<xsl:value-of select="$val"/>

</xsl:attribute>
<xsl:apply-templates/>

</xsl:element>
StepExpr <xsl:element name="XQrdf:step">

<xsl:attribute name="rdf:about" select="concat($namespace_string,
local-name())"/>

<xsl:apply-templates/>
</xsl:element>

StringLiteral[normalize-
space(.) != '']

<xsl:element name="XQrdf:string">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

local-name())"/>
<xsl:attribute name="XQrdf:value">

<xsl:variable name="val" select="normalize-space(.)"/>
<xsl:value-of select="$val"/>

</xsl:attribute>
<xsl:apply-templates/>

</xsl:element>

98

TagQName <xsl:choose>
<xsl:when test="parent::DirAttributeList">

<xsl:element name="XQrdf:attribute">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

'attribute')"/>
<xsl:attribute name="XQrdf:name" select="normalize-space(.)"/>
<xsl:choose>
<xsl:when test="following-

sibling::DirAttributeValue[1]/descendant::Lbrace">
<xsl:apply-templates select="following-

sibling::DirAttributeValue[1]/*"/>
</xsl:when>
<xsl:otherwise>

<xsl:attribute name="XQrdf:value">
<xsl:variable name="val">
<xsl:for-each select="following-sibling::DirAttributeValue[1]/*">

<xsl:value-of select="normalize-space(.)"/>
</xsl:for-each>

</xsl:variable>
<xsl:value-of select="normalize-space($val)"/>

</xsl:attribute>
</xsl:otherwise>

</xsl:choose>
</xsl:element>

</xsl:when>
</xsl:choose>

VarName <xsl:element name="XQrdf:varname">
<xsl:attribute name="rdf:about" select="concat($namespace_string,

local-name())"/>
<xsl:attribute name="XQrdf:value">

<xsl:variable name="val" select="normalize-space(QName)"/>
<xsl:value-of select="$val"/>

</xsl:attribute>
<xsl:apply-templates/>

</xsl:element>

99

Appendix B

"XQuery RDf" Elements XSLT rules to generate "Xquery statements"
Axis <xsl:value-of select="@XQrdf:value"/>
compelement <xsl:text> element {</xsl:text>

<xsl:apply-templates select="*:expression[1]"/>
<xsl:text>} {</xsl:text>
<xsl:apply-templates select="*:expression[2]"/>
<xsl:text>}</xsl:text>

doubleslash <xsl:choose>
<xsl:when test="preceding-sibling::*[1][local-name() = 'varname'] and

following-sibling::*[1][local-name() = 'function']"/>
<xsl:otherwise>

<xsl:text>//</xsl:text>
</xsl:otherwise>

</xsl:choose>

100

element <xsl:when test="child::*:element">
<xsl:element name="{@XQrdf:name}">

<xsl:for-each select="*:attribute[not(starts-with(@*:name,
'xmlns'))]">

<xsl:attribute name="{@XQrdf:name}">
<xsl:variable name="val">

<xsl:choose>
<xsl:when test="child::*">

<xsl:text>{</xsl:text>
<xsl:apply-templates mode="attributeval"/>
<xsl:text>}</xsl:text>

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="@*:value"/>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<xsl:value-of select="$val"/>

</xsl:attribute>
</xsl:for-each>
<xsl:apply-templates/>

</xsl:element>
</xsl:when>
<xsl:otherwise>

<xsl:element name="{@*:name}">
<xsl:for-each select="*:attribute[not(starts-with(@*:name,

'xmlns'))]">
<xsl:attribute name="{@*:name}">

<xsl:variable name="val">
<xsl:choose>
<xsl:when test="child::*">

<xsl:text>{</xsl:text>
<xsl:apply-templates mode="attributeval"/>
<xsl:text>}</xsl:text>

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="@*:value"/>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<xsl:value-of select="$val"/>

</xsl:attribute>
</xsl:for-each>
<xsl:variable name="check">
<xsl:apply-templates/>

</xsl:variable>
<xsl:choose>
<xsl:when test="normalize-space($check) != ''">

<xsl:text>{</xsl:text>
<xsl:copy-of select="$check"/>
<xsl:text>}</xsl:text>

</xsl:when>
<xsl:otherwise>

101

<xsl:copy-of select="$check"/>
</xsl:otherwise>

</xsl:choose>
</xsl:element>

</xsl:otherwise>
</xsl:choose>

102

expression <xsl:choose>
<xsl:when test="parent::*:attribute"/>
<xsl:when test="parent::*:compare and preceding-

sibling::*[1][self::*:expression]">
<xsl:value-of select="concat(' ', parent::*:compare/@*:value, ' ')"/>
<xsl:apply-templates/>

</xsl:when>
<xsl:otherwise>

<xsl:if test="preceding-sibling::*[1][self::*:expression] and
not(parent::*:if) and not(parent::*:compelement)">

<xsl:choose>
<xsl:when test="parent::XQrdf:compare">

<xsl:value-of select="parent::XQrdf:compare/@XQrdf:value"/>
</xsl:when>
<xsl:otherwise>

<xsl:text>, </xsl:text>
</xsl:otherwise>

</xsl:choose>
</xsl:if>
<xsl:apply-templates/>

</xsl:otherwise>
</xsl:choose>

for <xsl:choose>
<xsl:when test="child::*:position">

<xsl:value-of select="concat('for $', *:varname/@*:value)"/>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="concat('for $', *:varname/@*:value, ' in ')"/>
</xsl:otherwise>

</xsl:choose>
<xsl:apply-templates/>

function <xsl:if test="preceding-sibling::*:varname">
<xsl:text>/</xsl:text>

</xsl:if>
<xsl:value-of select="concat(@*:name, '(')"/>
<xsl:apply-templates/>
<xsl:text>)</xsl:text>

103

if <xsl:if test="preceding-sibling::*[1][self::*:let]">
<xsl:text>

return
</xsl:text>

</xsl:if>
<xsl:text>

if(</xsl:text>
<xsl:apply-templates select="*:expression[1]"/>
<xsl:text>)

then</xsl:text>
<xsl:apply-templates select="*:expression[2]"/>
<xsl:text>

else
</xsl:text>

<xsl:apply-templates select="*[3]"/>

integer <xsl:value-of select="normalize-space(@*:value)"/>
let <xsl:value-of select="concat('let $', *:varname/@*:value, ' := ')"/>

<xsl:apply-templates/>

node <xsl:if test="matches(normalize-space(@*:value), '[a-zA-Z]')">
<xsl:value-of select="normalize-space(@*:value)"/>

</xsl:if>

position <xsl:value-of select="concat(' at $', *:varname/@*:value, ' in ')"/>

predicate <xsl:text>[</xsl:text>
<xsl:apply-templates/>
<xsl:text>]</xsl:text>

return <xsl:text>
return</xsl:text>(

<xsl:apply-templates/>)
step <xsl:choose>

<xsl:when test="preceding-sibling::*[1][self::*:doubleslash]"/>
<xsl:when test="normalize-space(*:node/@*:value) = ''"/>
<xsl:when test="not(parent::*:expression/preceding-sibling::*) and

parent::*:expression/*:compare"/>
<xsl:otherwise>

<xsl:text>/</xsl:text>
</xsl:otherwise>

</xsl:choose>
<xsl:apply-templates/>

string <xsl:value-of select="normalize-space(@*:value)"/>

104

varname <xsl:choose>
<xsl:when test="parent::*:expression">

<xsl:value-of select="concat('$', @*:value)"/>
</xsl:when>
<xsl:when test="parent::*:return">

<xsl:text>
</xsl:text>

<xsl:value-of select="concat('$', @*:value)"/>
<xsl:text>

</xsl:text>
</xsl:when>

</xsl:choose>
<xsl:if test="preceding-sibling::*[1][ends-

with(self::*:step/*:node/@*:value, '[')]">
<xsl:text>]</xsl:text>

</xsl:if>

expressionattributeval <xsl:if test="preceding-sibling::*[1][self::*:expression]">
<xsl:text>, </xsl:text>

</xsl:if>
<xsl:apply-templates/>

namespace <xsl:namespace name="{@*:name}" select="@*:value"/>

