
Internet Voting Using Zcash

by

Pavel Tarasov, BA (Mod) Computer Science

Supervisor: Hitesh Tewari

Thesis

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Computer Science

University of Dublin, Trinity College

May 2017



Declaration

I, the undersigned, declare that the following dissertation, except where otherwise

stated, is entirely my own work; that it has not previously been submitted as an exer-

cise for a degree, either in Trinity College Dublin, or in any other University; and that

the library may lend or copy it or any part thereof on request.

Pavel Tarasov

May 11, 2017



Summary

The work describes a theoretical approach to an internet voting protocol with the

use of blockchain technology. The blockchain technology which has been used as the

bases for implementing the voting protocol is called ZCash, and is a new, decentralised,

anonymous payment scheme. The voting protocol does not change any aspect of the

ZCash platform, thus the system transactions are proven by the proofs of Zcash trans-

actions. The work describes the operations and transactions of ZCash and outlines the

complex mechanisms behind their work. The work also describes the steps taken in the

voting system to hold an election and means for verifying the results of said election,

the security considerations of the voting scheme and possible future directions the work

can take. This paper also outlines extensive research done in the domain of existing

electronic voting schemes and blockchain technology, while describing security vulnera-

bilities of both domains. The main focus of the work is to establish a theoretical system

where election can be done with low likelihood of success from coercers, while assuming

the presence of some features of a secure online system, such as authentication of the

users.

The primary methods of investigation involved research and study of the existing

voting schemes for voting protocols and blockchain specifications as well as interactions



with the developers of various blockchain platforms. The investigation done into the

existing blockchain voting protocols currently implemented, yielded very few results

and fewer publications, leading us to believe that this work is among the first works

covering this topic. The main conclusion that can be drawn from this work is that it

is possible to run construct a voting system using a blockchain payment scheme which

will provide reasonable election integrity and verifications as discussed by the work.
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Voting systems have been around for hundreds of years and despite different views on

their integrity, have always been deemed secure systems with some fundamental secu-

rity and anonymity principles. Numerous electronic systems have been proposed and

implemented, however many of these systems have been rejected, while creating further

suspicion about the integrity of elections due to detected security vulnerabilities within

these systems. Electronic voting, to be successful, requires a more transparent and se-

cure approach, than the approach that is offered by current electronic voting protocols.

The approach presented in this paper involves a protocol developed on blockchain tech-

nology. The particular technology that is used as basis for the voting system is a new

electronic currency protocol and offers a factor of anonymity in transactions, which

has not been observed in blockchain technologies to date. The proposed voting proto-

col offers anonymity of voter transactions, while keeping the transactions private and

the election transparent and secure. The underlying blockchain protocol has not been

modified in any way, the voting scheme proposed merely offers and alternative use case
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of the protocol at hand, which could be presented as the basis for voting systems on

blockchains with further development of underlying blockchain protocols.

viii



Contents

Acknowledgments vi

Abstract vii

List of Figures xi

Chapter 1 Introduction 1

1.1 High Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 State of the Art 5

2.1 Influential Electronic Voting Protocols . . . . . . . . . . . . . . . . . . 5

2.2 Blockchain For Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3 ZCash - Decentralized Anonymous Payment Scheme 17

3.1 High-Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Protocol Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Transaction Types . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Payment Addresses . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Zerocoin (ZEC) Structure . . . . . . . . . . . . . . . . . . . . . 24

3.2.4 Note Plaintext Encryption . . . . . . . . . . . . . . . . . . . . . 26

3.2.5 Note Ciphertext Decryption . . . . . . . . . . . . . . . . . . . . 26

3.2.6 JoinSplit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.7 Dummy ZECs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.8 Linkability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.9 Zero-Knowledge Proving System . . . . . . . . . . . . . . . . . . 32

ix



Chapter 4 Zero-Knowledge Proving System 35

4.1 Application Domain For zk-SNARKs . . . . . . . . . . . . . . . . . . . 35

4.2 Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Elliptic Curve Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 The Structure Of zk-SNARK . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 5 ZCash Based EVoting Protocol 50

5.1 Protocol assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 High-Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Vote Transfer Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6.1 Transparent Candidate Transaction Variant . . . . . . . . . . . 57

5.6.2 Private Candidate Transaction Variant . . . . . . . . . . . . . . 58

5.7 Vote Count/Audit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 6 Security Considerations 63

Chapter 7 Future Work 67

Chapter 8 Conclusion 70

Appendices 72

Bibliography 72

x



List of Figures

3.1 The four types of transactions possible in ZCash [43] . . . . . . . . . . 20

3.2 The keys generated as part of ZCash address generation routine . . . . 22

3.3 Values used to generate spending key [3] . . . . . . . . . . . . . . . . . 22

3.4 Bit structure of t-address in ZCash [3] . . . . . . . . . . . . . . . . . . 23

3.5 Bit structure of z-address in ZCash [3] . . . . . . . . . . . . . . . . . . 23

3.6 Simplified Merkle tree example [29] . . . . . . . . . . . . . . . . . . . . 25

3.7 Simplified example of a JoinSplit Transfer in ZCash [3] . . . . . . . . . 28

3.8 Detailed view of JoinSplit Transfer . . . . . . . . . . . . . . . . . . . . 29

3.9 Breaking the linkability between t-addresses with z-addresses [42] . . . 31

3.10 Potential for compromised linkability between two transactions [42] . . 32

4.1 Elliptic curve represented with whole number points [62] . . . . . . . . 39

4.2 High-level overview of zk-SNARK [58] . . . . . . . . . . . . . . . . . . 40

5.1 High level overview of the voting protocol . . . . . . . . . . . . . . . . 53

5.2 Registration step of the voting protocol . . . . . . . . . . . . . . . . . . 54

5.3 Steps taken prior to invitation of the voter to the ballot . . . . . . . . . 55

5.4 Overview of the voting step . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Steps taken for issuing the vote in transparent candidate transaction . 59

5.6 Steps taken for issuing the vote in private candidate transaction . . . 60

5.7 Counting of the votes and audit rules for the voting protocol . . . . . . 61

xi



Chapter 1

Introduction

With blockchain steadily striving towards becoming the new system for decentralized

payment schemes, amongst a wide array of other implementations, it is easy to imagine

why this technology can be considered an ethical liberator in some senses. Blockchain,

although a relatively new concept, has already managed to gain enough popularity for

applications to emerge such as simplified methods for identification and authentication,

the widely known decentralized payment scheme, Bitcoin, and domain systems which

reside outside the control of the govenrment or non-govenmental organisations (NGOs).

The number of emerging and existing systems that migrate to blockchain is steadily

increasing, however a largely researched topic of electronic voting has still not been

influenced properly by the blockchain domain [1].

Electronic voting has been a topic of large debate, with significant number of people

believing that electronic voting cannot be trusted enough to be used for significant

elections, which in turn gave rise to the debates about the authenticity and integrity of

the machines and the votes that have been cast using them. On the other hand, people

acknowledge that paper solutions are significantly outdated and can be subject to more

serious manipulation from a coercer if the need arose. The appearance of blockchains

has introduced a new way to construct secure systems which have less inherent security

issues present. It is a belief that a successful voting system can be implemented using

blockchains, or with a blockchain being one of the main elements present in a hybrid

electornic voting scheme [2].

Many electronic voting protocols, such as [11], could be suitable candidates for
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major elections, but some of these protocols have had security issues rendering them

unfit for such purposes or security vulnerabilities which could be exploited to coerce

an election [12]. Efforts in this domain continuously present protocols, based on the

concepts of the founding electronic voting systems, and therefore do not make strong

advances in the topic of research. Research into the blockchain voting systems has seen

little progress with a very small number of blockchain-based voting systems available

as prototypes. The documentation about these systems is much more scarce, making

it difficult push the idea of blockchain voting past it’s initial stages.

The motivation for this research is to find the ultimate solution for electronic voting

which will pose the smallest security risk and provide basis for a system which can be

used for any election or electronic voting more frequently with less costs involved.

This work presents a conceptual protocol for a transparent, private and anonymous

electronic voting scheme on the blockchain technology. The proposed system utilises

a recent development in cryptographic currency on blockchain, namely ZCash [3], as

the basis for voting system. The voting system does not make any changes to the

original ZCash specification and allows for anonymization of the identities of the users

who participate in an election. The scope of this work assumes that the identity of

a potential voter can be verified. The underlying ZCash protocol inherently ensures

that every vote is valid and no same vote can be cast twice. The rest of the paper is

organised in the following way: we start by providing a high level overview of the pro-

tocol, then Section 2 reviews the existing electronic voting protocols and the mechanics

that are common amongst these systems, as well as a look at some of the blockchain

voting systems that exist today. Section 3 will discuss ZCash, an anonymous, decen-

tralised, cryptographic currency, which is the basis for the voting protocol. Section

4 will provide in-depth view of zero-knowledge Succinct Non-Interactive Arguments of

Knowledge (zk-SNARK ) and some cryptographic primitives that play a significant role

in the ZCash protocol and future blockchain systems. The subsequent section will out-

line the proposed voting protocol on the ZCash platform and it’s variations. In section

6, some security considerations will be outlined for the use of the proposed system.

Finally, section 7 will discuss the future work that is being done on the blockchain

technology and how it can influence the proposed voting protocol and other voting

protocols on the blockchain.
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1.1 High Level Overview

The protocol uses ZCash [3] as it’s foundation. ZCash supports two distinct types of

transactions, transparent and private transactions. Transparent transactions resemble

that of Bitcoin [28] and even use the same types of addresses as generated by Bitcoin.

The private transactions are focus of ZCash. These are more complicated than the

transparent transactions and require additional setup and values. The transaction in

ZCash supports both private and transparent value passing. One other difference is

that ZCash possesses two distinct types of addresses in order to allow the different

transactions to take place. Once again, the transparent addresses (t-addresses) have

the same structure as in Bitcoin, and the private addresses (z-addresses) are longer

and more complex as to offer the privacy of the transactions and anonymity for the

sender and receiver.

Zero-knowledge proving system is an important part of ZCash as private transac-

tions must not disclose the secret values used to generate the zero coins or (ZECs)

but a proof must be supplied for each transaction of their validity and of the sender’s

holding of the required values to generate these coins. The zero-knowledge proof op-

erates on the premises of proving a value to another party without disclosing the said

value, and the construct which is used for this problem is a zero-knowledge Succinct

Non-interactive Argument of Knowledge or zk-SNARK. This construct allows for gen-

eration of a proof given a program. The program in this case can be the verification

of a sender having the generation values for a ZEC that they own.

To summarize ZCash, a user has the ability to send transactions both privately and

transparently, while having two distinct addresses, where each transaction requires

a zero-knowledge proof as input to the transaction to verify it’s integrity and the

correctness of the supplied values within the transaction.

The voting protocol does not make any changes to the underlying ZCash protocol

and implements the transactions provided by ZCash as means of passing votes between

the voters and the candidates. A potential voter registers for a poll or an election of

their choice via the provided registration page, which authorizes the voter and ensures

the said voter is who they claim to be. The aim of the registration step is to obtain an

email address of the voter, where an invitation to the participate in an election will be

sent to. Once a poll is created by the administration of the system, the emails stored
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by the system are used for invitation forwarding, where each voter receives a unique

invitation to participate in the chosen poll. The link brings the voter to a unique ballot

for a particular election.

The voter has to provide a receiving address of their ZCash wallet in order to receive

a ZEC vote token from the system. The voter, then, picks a candidate of their choice

and proceeds through an agreement, holding them legally liable for the transaction.

The transaction cannot be reverted at any point after the voter has accepted the terms

and conditions of the vote transaction. The system continues by incrementing the

system counters which represent the total number of voters, amongst others, and sends

a ZEC which serves the purpose of a vote token to the provided address by the voter.

As soon as the transaction is approved and arrives at the candidate wallet, a new

transaction sends the received token to the candidate of voter’s choice. A confirmation

can be optionally configured to notify the voter of the transaction.

Upon the termination of the election timer, set initially by the administrators of

the election or a poll, the candidate wallets forward their ZEC vote tokens to a system

wallet which tracks the number of tokens it had before the transaction and after in

order to calculate the total number of votes received by the candidates. These numbers

are important and are required to balance in order to verify the integrity of an election.

There needs to be exactly equal amount of tokens granted to the voters as voters who

have cast a vote and the total number of candidate votes must be less than or equal

to the above mentioned values. The security considerations section will outline the

reasons for the last equality.

The nature of ZCash transactions allows the voters to track view their votes on the

blockchain. A system, similar to Bitcoin’s [36], which allows the viewing of the blocks

of transactions, can be used for the public members to view the available transaction

details for an election.

This has provided a very general overview of important steps of the protocol and

will be explained further by the following chapters. Prior to deeper investigation of

both ZCash and the voting protocol, it is important to review the state of the art in

the electronic voting domain, which will be covered by the next section.
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Chapter 2

State of the Art

Electronic voting is a topic of much research and a number of viable schemes have

been created in order to attempt and solve the problem. Here, we present some influ-

ential voting protocols and other viable voting schemes as well as the techniques they

implement at the core of vote processing, their security issues and analysis that have

been done on some of the protocols in this domain. Blockchain voting technologies

that have emerged recently are also discussed, with particular attention to a protocol

called Ethereum [34], can be used as basis for the future work.

2.1 Influential Electronic Voting Protocols

Electronic voting protocols have been around and implemented in different elections,

ranging from university to government based elections. Many viable protocols have

been created since Chaum [4] first proposed Votegrity, which is one of the first end-

to-end (E2E) verifiable voting solutions. End-to-end verifiability means that the voter

is able to verify that their own vote has been cast as intended based on the receipt

provided by the electronic voting booth, and by verifying that their vote has propagated

to the public web bulletin board correctly. The second part of the E2E verifiability

would be the assurance that the voter’s vote has been counted correctly and included

in the final tally. The final aspect of E2E is the ability of the election to be verified

by all public members, who may not be involved in the election or voting, in order

to ensure that no coercion took place and that the votes have not been compromised.

5



These voting protocols, also provide a way to audit the voter’s votes and the ballots

prior to picking the candidate and casting the ballot.

Some of the most prominent examples that have stemmed from Chaums Votegrity,

which also provide E2E verifiability, are Neffs Markpledge [5], Prêt à Voter [5], Helios

[7], Scantegrity [8] and STAR-Vote [9]. Markpledge was one of the first E2E voting

protocols which has been proposed alongside Votegrity, influencing the development of

the other schemes mentioned above and more. Prêt à Voter is a modified version of

the vVote protocol [10], and was used in the Australian state elections. Despite Helios

iterations, the protocol is solely internet based and has been used in internal university

elections. Helios has undergone security analysis, which uncovered security vulnerabili-

ties with a potential to affect the outcome of the elections. This led to the development

of Helios 2.0 [11] and Helios 3.0 versions, attempting to fix the vulnerabilities posted

by Estehghari and Desmedt [12], and will be discussed further in this section. Other

protocols, have used Helios as a base for developing their own implementation of online

voting, which aim to solve Helios vulnerabilities in a different way. Examples of these

protocols include Apollo [13] and Zeus [14], and their handling of Helios vulnerabilities

will be discussed further in this section. Finally, Scantegrity and STAR-Vote have both

been proposed for elections in the USA [15].

Upon closer examination of these protocols and others such as [16] proposed by

Heather in an STV modification of the Prêt à Voter protocol, vVote and the proposed

improvement for the currently implemented Estonian voting protocol presented by

Parsovs in [17], indicate that these protocols use public web bulletin board (WBB) for

posing all of the cast ballots for the public to see. vVote implements an additional,

private WBB in order to validate ballots and provide an indisputable signature of

validity of the ballot.

Web bulletin boards in these protocols are used as an authenticated public broad-

cast channel which, as mentioned above, displays the cast ballots to the public in an

encrypted form, and serve as an important stage for any E2E protocol. Typically, after

the voter has cast their vote and received a receipt encrypting their choice in a way

that is dependent of what voting protocol used, the encrypted vote is propagated to

the WBB.

The receipt is an important part of the voting protocol, as it allows the user to

prove their vote to an authority in case the voter wishes to dispute their vote or
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prove that they have voted contrary to what the system has recorded. The receipt

also allows the user to find their vote and view how the system recorded their vote.

These receipts vary from system to system and so does the way the voter verifies these

receipts, but typically these receipts are the summary of how the voter voted, which

can be presented to the voter in an encrypted or obfuscated manner. As an example,

Votegrity summarises the vote in a print out which prompts the voter to pick the top

or the bottom layer of the receipt. The receipt is a laminated piece of paper, which is

separated into two layers, which are only readable when these layers are combined and

never on their own. The mutual relationship of the pixels on the translucent layers

is how the vote becomes readable. When the layers are overlaid, the pixels which are

different form an opaque result which is unreadable, whereas the pixels that are the

same, form the letters and the summary of the vote of the voter. Furthermore, these

protocols preserve an electronic copy of the vote, and Votegrity is no different. The

electronic version of the receipt can be compared to a Russian doll. A trustee can be

merely compared to opening the outer layer of the Russian doll with their secret key

and passing the next doll to the next trustee, until the vote is completely readable.

To be more specific, the trustees who decrypt the ballot have a key for each stage of

the decryption as well as a coded sheet. Once decrypted, the trustees sheet is applied

to the next stage of the decryption of the ballot thus decrypting the ballot at each

stage until the ballot is in a readable form. The readable ballots can then be served

as input into a script which reads their content and tabulates the votes. This process

of decryption of the ballots uses a technique called mixing [4]. This technique will be

outlined further in this section.

Another approach to handing receipts to the voters, while providing a backup of

electronic votes in a physical form, is done by STAR-Vote. STAR-Vote prints two

distinct receipts, one in human readable form with a unique serial number and a voters

personal receipt which they can take home, which includes the terminal used, the time

of the vote as well as the hash of the vote commitment. These two pieces are printed

for the voter to take, while the electronic version of the vote is sent from the voting

booth to database. What is interesting is the fact that, the voter must scan the serial

number on the ballot (presented as a one-dimensional bar code) and then cast this

receipt into the ballot box. The rule that STAR-Vote imposes is that the electronic

vote must be supplied by the physical copy in the ballot box in order for the vote to
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be included in the tally [9].

STAR-Vote is also an example of a protocol where the voter can challenge the

system. This is a common feature amongst protocols and a similar example is present

in vVote [10] where the voter can verify the correctness of the ballot form prior to the

casting the final vote to ensure that the system is not compromised. This involves the

voter bringing back the ballot to the printer and getting the printer to produce the

proof of correct ballot formation along with the signature from WBB, where the WBB

must invalidate that vote as it must not be allowed to be counted in the tally process.

The voter also can decrypt the vote to confirm that the ballot was formed correctly.

The voter also has the ability and is encouraged to verify that the ballot possesses a

valid WBB signature which includes the ballots serial number and the district where

the vote was cast. This is one of the measures to help prevent a possible coercion

of the votes. There is a surprisingly low number of ballots that are subject to voter

verification. It was found by [8] that in the 2009 elections of the City of Takoma Park,

MD, less than 4% of the ballots cast have been verified by the voters themselves after

they cast their vote. While this is not a large number, this would be sufficient to detect

any coercion significant enough to alter the course of the election.

STAR-Votes challenge of the system involves the ability of the voter to spoil the

ballot that they have cast. A voter may spoil the ballot erroneously or on purpose, thus

challenging the system. The spoiled ballot is returned to the poll worker who marks

the ballot serial number, for the system to record and publish spoiled ballots at the end

of election. ”The original printed paper ballot thus corresponds to a commitment by

the voting machine, before it ever knew it might be challenged”. If the voting machine

cannot produce a suitable proof that the ballot encryption matches the plaintext, then

it has been caught cheating” [9].

The final example of such challenge, referred to as Benaloh challenge by several

protocols including the Apollo [13]. In Apollo, this is done in the form of audit and

resembles the verification steps taken by vVote. Apollo is an extension of the Helios

protocol, however, it avoids some security issues that are inherent in Helios by having

voter assistants to verify, lock and audit the vote. Without these assistants, the Apollo

protocol is identical to Helios. The assistants are external to the voting protocol devices

that can interact with the election, by verifying that the vote has been cast properly.

These assistants can be laptops, tablets, or any other external devices. The protocol
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has the notion of a voting session which is created by the voter as soon as the voting

starts, but is customised with a personal string which is appended to the session ID

to form a session key. This allows the voter to find and continue their voting session

simply by entering their personal. Human readable string to fetch the session. The

voter that wishes to audit their vote sends the audit code through the voting booth,

which in turn opens the encryption of the ballot by posting the randomness encrypted

with the session key. Each voting assistant checks the bulletin board and displays the

plaintext value of the vote. This procedure may be repeated as many times as the

voter wants [13].

As mentioned above, mixing is one of the two predominant techniques that are

used in electronic voting protocols. Mixing utilizes mix networks, which is a protocol

that takes in multiple input messages from the users and shuffles these messages in

random order before passing them to the next destination which can be another mix

network, or mixnet, or the destination node. Mixnets, in the context of voting and

other applications such as the onion routing, are used to provide a degree of anonymity

to the user by obfuscating where the message came from. This concept was first derived

by David Chaum in [18] and is used in some voting protocols such as Votegrity, Helios

1.0 and Markpledge to name but a few.

In the case of Votegrity the collection of electronic ballots is assembled together

to be decrypted and converted into the form where the ballots can be tallied. As

mentioned above, mixing is a technique used for anonymization of votes, which can be

observed from the Zeus protocol [14]. Zeus implements mixing after the election has

been closed to break the linkability between the encrypted ballots and the voters who

cast them. This is a multi-round procedure which depends solely on the number of

mixing proxies available to the system. Each stage of the mixing provides a proof of

correct mixing, which can be used to verify that the mixing server is not corrupt.

In the case of vVote, similar shuffle occurs to break the linkability between the voter

and the vote. This is accompanied by a noninteractive, universally verifiable proof of a

shuffle and decryption (of encrypted votes) and posts it to the Public WBB. [10]. This

proof can be verified by any member of the public while guaranteeing that the source

of votes is valid and that the vote has not been modified which adds to the aspect

of end-to-end verifiability. As mentioned by [6], mixnets can be combined to perform

encryption and decryption or, decryption and tallying but all of the steps in the E2E
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protocols have to be supplied with proof of correct tally or decryption and any other

extra steps taken during the protocol.

Despite the different voting mechanism of [16], mixes still serve the same purpose

as in the other protocols, i.e. anonymizing the votes. A concept of re-encryption

mixes [19] is applied here, as well as in the number of other protocols, in order to

accommodate the STV voting that is described within [16]. The particular details of

the protocol can be found within [16], however the concept of re-encryption is given

by an ElGamal encryption < m, z >PK , it is possible to change this value of z even

without knowing m or z. Thus, given just the ciphertext and the public key, one

can produce a ciphertext that looks different to anyone not having the corresponding

secret key, but decrypts to the same value. Interestingly, this is used within the mixes

to encrypt each entry of the vote as the ballot does not comprise of a single vote, as is

the nature of First-Pass-The-Post system. During the tally, at each stage of the voting,

if a candidate becomes eliminated, the votes go to the subsequent candidate which is

found on the voters ballot. However, each subsequent candidate on the ballot is only

decrypted when the first candidate is removed from the race. This occurs due to the

nature of the encryption that occurs in [16].

The second widely used technique is homomorphic tally. Cohen and Fischer [20]

describe how this can be applied to a voting protocol in one of the first papers which had

applied this technique. Homomorphic tally involves modifications, usually additions

and multiplications, to the ciphertext which are preserved upon decryption to reveal

the operations that have been done on the ciphertext while recovering the modified

decrypted value. Protocols such as the proposal from Parsovs [17] to replace the current

Estonian voting system, Helios 2.0 [11], STAR-Vote [9] and several others implement

this technique for tallying the votes due to its simplicity both in application and for

verification by the public, though the efficiency of these protocols over mixnets have

been different through the papers where these methods are used.

Parsovs in [17] proposes to reform the currently implemented scheme to use homo-

morphic encryption. His example of the application can be used as the perfect example

of how this technique can be applied to voting. It is worth noting that a lot of these

implementations utilise the common exponential version of ElGamal encryption [21]

for encryption of the vote. In [17], the voter casts their votes by producing a num-

ber of ElGamal ciphertext corresponding to the number of candidates running in the
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election. The candidate that gets the voter’s vote is encrypted as the ciphertext of a

digit 1, while the other candidates are represented by the encrypted version of 0. In

this scheme the voter is only allowed one vote for a particular candidate, therefore all

the other candidates have to be represented by the value 0. Prior to proceeding with

counting of the vote, like other stages, a proof of the vote must be derived, proving that

the sum of the plaintext values within the vote is indeed 1. Parsovs, in his protocol,

attempts to leave as much of the existing system infrastructure of the Estonian voting

system [22] as possible. The protocol offers several stages that the vote must pass prior

to being tallied. These stages store the votes and remove the digital signature from

these votes in order to anonymize each of the votes. The final stage multiplies the

aggregated ciphertexts to obtain one single ciphertext of the number of votes that a

candidate has received. The removable media is brought to a hardware security module

(HSM) for decryption of these ciphertexts.

Helios 2.0 has a similar starting approach to encryption of the chosen candidate.

This is supported by the presence of a zero-knowledge proof for proving that each of

the ciphertexts includes an encrypted value of a 1 or a 0 and a proof of fact that the

homomorphic sum of the voter’s votes equates to the total of 1. These proofs are

verified upon tally to ensure the votes are well formed.

All the schemes mentioned above have proofs at each step of the protocol and

the encryption of the votes seemingly provides the security and integrity of the votes.

However, many schemes have been compromised which amplifies the mistrust of the

population in the electronic voting. EVoting protocols such as Helios 1.0 and Helios

2.0 have both been proven to contain vulnerabilities. Currently implemented Estonian

eVoting protocol is yet another example of a compromised voting system. These are

examples of just some of the systems that have been used in elections with Estonian

protocol continuously gaining voters throughout the years [35]. Some vulnerabilities,

as reported by Estehghari and Desmedt in [12] for Helios 2.0, Parsovs note on the issues

of Estonian eVote and the work done by Springall et al. [23] on the same protocol, are

just some of the security issues that appear in these protocols.

As mentioned earlier, protocols such as Zeus [14] and Apollo [13] use the basis of

Helios to build their own voting protocol on, while attempting to tackle some of the

security issues that are inherent to Helios. For instance, Apollo tackles the issues of

cross-site scripting (XSS), cross-site forgery, clickjacking and clash attacks with the
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help of the voting assistants as stated earlier. XSS was possible due to the unchecked

URL parameters that meant to obtain the election URL, but if compromised could have

pointed to a proxy with malicious script forced to execute on the target machine by

the attacker. Ultimately, the attacker could encrypt each choice of the voter correctly,

but submit their own ballot instead of the voters when the voter continued to submit

their vote. This attack is impossible to detect server-side, but can be detected by the

voter if the voter has 1) remembers the tracking number of the ballot and 2) checks

the WBB later to find their vote. This is in the third place of the top vulnerabilities of

web applications as found by OWASP in 2013 [24], which means that this is still one

of the top threats to security of web applications. OWASP’s new ”Top 10 Application

Security Risks” draft of 2017 outlines that XSS remains in the third position as a top

application risk, as well as cross-site forgery which remains in the eighth position on

the list [25]. These issues have been reported to Helios development team and have

been patched with the release of the following versions of Helios.

Apollo developers were not the only ones to discover the attacks mentioned above,

Estehghari and Desmedt have supported their claims about XSS vulnerability possible

on the Helios 2.0 protocol. They have chosen to utilize browser rootkits as an attack

vector on Helios system. A browser rootkit is simply an extension to a browser with

modified, by attacker, script to monitor browser activity, obtain passwords and gain

access to the DOM tree of the web page. This extension can be activated upon visiting

a specific web page, like the web page of a bank to capture user information. Helios

utilizes candidate statements in PDF format, and this is exactly the attack vector

that Estehghari and Desmedt use. They exploit the vulnerability in Adobe Reader in

order to inject malicious JavaScript which activates upon the user opening the PDF

file. The malicious payload is installed and the browser restarts with the activated

payload, which grants control of the client-side voting application for the attacker. As

mentioned before, the script only activates when the voter visits the voting page, which

then changes the information of the ballot that is supplied by the voter to the system.

The aim of [12] was to demonstrate the issues of other web-based voting protocols, and

not merely exploit Helios, however they have shown very well the issues that need to

be considered by the designers of voting protocols.

To stress the importance of security in electronic voting, NIST [26] has published

a set of guidelines and considerations that need to be included into the design and de-
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velopment of voting systems. This involves a variety of seemingly basic considerations

such as: confidentiality of the voter, integrity of the vote and data and identifica-

tion/authentication to name but a few, while also covering the potential threats and

other issues that may arise because of safeguard that are applied to deal with the

above-mentioned issues.

The Estonian voting system’s structure is different from most the protocols men-

tioned above. One particular instance, outlined by Parsovs [17] is an invalid vote that

has been detected during one of the elections. This was not deemed as an attack by

many, who though that this invalid vote was a result of a bug occurring in the code.

Others saw it as a potential attack on the system. The vote involved invalid plaintext

and therefore could not be counted as a vote. This was the only suspicious instance

in the election that year, however it raised some suspicion on the security of votes

in the protocol. Research published by [23], mentions variety of issues of the protocol

from insufficient transparency to vulnerabilities found in the code, which certainly puts

these protocols in question since a lot of trust is required in the system if the protocol

is not transparent.

However, it is worth noting that no system is ever 100% secure. These attacks are

plentiful and occur in many voting protocols, this is merely an example of the how

these protocols can be compromised. Final example describes many attacks on the

Welsh iVote system, written by Halderman and Teague in [27]. Their findings include

poor server handling, in terms of TLS vulnerabilities which was determined merely two

weeks prior to the start of the elections. This vulnerability allowed a man-in-the-middle

attack to be performed for long enough to attack an ”unlimited number of voter’s TLS

connections” [27]. The attack involved downgrading the connection by making the

server user the export-grade RSA instead of requesting the normal RSA to be used.

But the main point is that zero-days, attacks on the system which have not been seen

before, are always possible and [27] describes exactly the case with the Welsh iVote

protocol. This relates back to the export-grade RSA, where if the server supported

this export-grade Diffie-Hellman (DH), the attacker could set up a man-in-the-middle

attack while forcing the browsers to use it, where the attacker could obtain session keys

and change the contents or intercept the connection as they pleased.
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2.2 Blockchain For Voting

From this investigation into the protocols, the conclusion can be made that an electronic

voting system must be secure, while allowing for as much transparency as possible to

be a working E2E verifiable. Blockchain’s [28] help to achieve this level of security and

transparency, while maintaining privacy and non-malleability of the transactions, which

may indeed be the future of eVoting protocols. The benefits of using blockchain is in it’s

decentralised nature, relatively low cost of transactions and tamper-proof properties,

which play an important role if a voting system was based on this technology [32] [33].

Although different, some elements from above mentioned protocols may apply to

the concept of blockchain voting. The notion of WBB, where the encrypted votes can

be seen by the public members, can persist in blockchain in the form similar to [36].

Here the blocks of transactions can be observed as well as the height of the blockchain

with any other relevant information. Although blockchain is a promising technology,

we have not found any relevant papers to date that present a protocol for online voting

with blockchains. Examples such as Follow My Vote [37] present a seemingly sound

voting protocol, however without any in-depth specification to verify the security of

the protocol, there is only the website information to go by. The code is also open-

sourced, which if compared to the notion of public cryptographic protocols over the

history of private ones, indicates that it may be a secure, however, without official

specification publication, or any other documentation, it is difficult to verify these

claims. One other noteworthy blockchain technology that could revolutionise electronic

voting, as well as give birth to many other forms of electronic protocols is Ethereum

[34]. Ethereum differs from Bitcoin [28] as it serves as a generic platform for creation

of custom functionality in the form of contracts, while also having a slightly complex

structure of transactions. The currency used by Ethereum is ether and gas, which

will be discussed in more detail later in this section. However, the main difference is

the fact that the contracts allow for different functionality using the Ethereum Virtual

Machine (EVM), while being enforced by the peer-to-peer, decentralized way, inherent

to the core structure of blockchain. Ethereum possesses two types of accounts, which

is another way of specifying types of users. Accounts are used by human entities,

and potentially by other smart entities, whereas contracts are also accounts, however

they are operated by code on the EVM. Contracts are the agents that bring about
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the generic functionality of Ethereum mentioned above. Contacts allow one to create

custom behaviour for one’s blockchain application. These applications include, and are

not limited to, automatic payments or creation of custom currency, which is worthless

outside of the context of the contract application. Ethereum operates on the context of

states and state transitions which are brought about by the transactions. The contracts,

on the other hand, have a failsafe feature which addresses the Turing Halting problem,

in other words, to prevent contract code from infinite function execution, Ethereum

introduces the concept of gas. Gas is consumed for each consumed resource of the

contract computation. This can be each stage of contract execution or the memory

used by the contract. Gas costs are dictated by the gas limit in the contract and

the gas costs are deducted from the user account, who wishes to send transactions

to a particular contact. This feature means that upon exceeding the gas limit for a

transaction, the transaction can revert to last state and refund the user account in case

of an unexpected gas limit overflow. The contracts themselves can be used to send ether

between other contracts, or to other accounts. The transaction between user accounts

is simply moving ether around, which resembles the functionality of Bitcoin [34] [38]

[39].

The transactions issue receipts back to the user accounts which include informa-

tion like post-transaction state, the cumulative gas used in the block containing the

transaction receipt as of immediately after the transaction has happened and others.

Entities such as the receipts and the world state, are stored in Merkle Patricia Trees

or tries. Merkle tress are used in Bitcoin transactions and serve as a way of storing

all transactions inside one hash, which can be traversed to find a particular transac-

tion. The Merkle tree contains hashes of hashes of transactions until the root hash is

obtained. In Ethereum, these tries are used as databases which stores the mappings

between bytearrays of account information [34] [38] [39].

One may wonder about the differences between Bitcoin and Ethereum, and the

common question of which one is a better platform arises very often. In reality, there is

no better platform out of the two, it is simply the matter of preference and functionality.

Ethereum offers a set of features that differs from that of Bitcoin. This gives a brief

overview of the Ethereum protocol, and its main difference to Bitcoin. Ethereum allows

the creation of powerful sub-systems, driven by custom currency and functionality

with the immutable support of blockchain. This makes is a very good candidate for
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different protocols, including a voting protocol. The protocol proposed here does not

use Ethereum, however with the announced Metropolis upgrade [70] to the Ethereum

platform, which will be discussed in the future work section, the proposed scheme will

likely cause the shift to Ethereum contract, which will remove and simplify some of

the architectural designs of the current system.

Having discussed some of the available voting protocols and security issues which

are faced by a number of these protocols, it is clear that an alternative solution is

required to bring a new outlook on domain of electronic voting systems. Blockchains

present themselves as suitable candidates due to their inherent security features. This

investigation into the domain of electronic voting mechanisms clearly identifies a gap,

which could be filled with a blockchain voting technology. One application which allows

creation of anonymous voting protocols is ZCash, which is further outlined in the next

chapter.
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Chapter 3

ZCash - Decentralized Anonymous

Payment Scheme

The concept of ZCash has been around for since 2014 in the form of Zerocash [40].

ZCash aims to provide anonymity of transactions, something Bitcoin does not have,

since the concept is based around public verifiability. The ZCash systems, which differs

from the Zerocash specification, conceptually offer an anonymous version of Bitcoin,

since it allows for both public and private transactions. One of the biggest differences

between ZCash and Bitcoin is the proof-of-work system, where ZCash relies on zero-

knowledge proofs [3]. This section will outline core ZCash features which will be used

as part of the eVoting protocol for this paper.

3.1 High-Level Overview

One of the biggest differences that is noticed when looking at ZCash is that it has

two types of addresses. These addresses is what allows the users to make transactions

anonymously or publicly. ZCash, therefore, has two types of values, namely shielded

and transparent, that come to pass from the existence of these address types. Shielded

value means that the details of the value cannot be observed by the public, but is

available only to the sender or recipient. Transparent values can be influenced by the

shielding or de-shielding transaction types, making transparent values shielded, which

are two of the four possible types of transactions that can take place in ZCash. The
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other, public values, do not hide their details or values and the public transactions are

viewable by anyone. This type of transaction is the exact transaction that is present in

Bitcoin. Therefore, the ZCash transaction, simultaneously supports both transaction

types [3].

ZCash currency is called zero coins or ZECs, however the shielded values are named

notes. Shielded values require more complex setup and have a commitment and a

nullifier associated with them cryptographically. These values are derived from the

holder’s knowledge of a spending key, which will be explained further in this section.

To give a brief idea of the nullifier, it is a unique value that is revealed once the note has

been spent in a transaction, which is a mechanism for prevention of double-spending

of any note. Double-spending simply means that no one note or ZEC is spent twice. A

commitment is a function that allows the sender to commit to the input value that they

are sending in the transaction. These values are part of the proof that is generated in

order to prove that the note is legitimate and has not yet been spent. The transparent

inputs are less complicated as there is not the same level of set up and information

required about the transparent inputs [3].

The commitment and the nullifier are included into the data that is included in each

of the transactions. There are different names attributed to these transactions, but in

general they are called JoinSplit transfers or JoinSplit transactions. The JoinSplit

transfers include data, such as the commitments for the input notes, the nullifiers for

the input notes, the notes themselves and some more data which will be covered in

later sections. This data is called JoinSplit description, and describes the data that is

inside JoinSplit transfer.

One of the most important parts of ZCash transactions, is the proof behind the

owner’s notes. In other words, since no knowledge about the notes can be observed by

anyone else on the blockchain except the sender and the receiver, the proof-of-work,

still must be completed on each of the transactions on the system. Proof-of-work is

a concept introduced by Bitcoin, where independent entities, or miners verify that

each transaction is legitimate prior to adding it to a block on the blockchain. This

is the central security mechanism behind Bitcoin, which ensures all the transactions

are legitimate and well formed. In return, the first miner to be find the solution to

a proof of work problem, will be rewarded with x amount of Bitcoins, which depends

on the state and height of the blockchain at the given instant [28]. Since the values
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in ZCash could potentially be shielded, the proof-of-work concept revolves around

zero-knowledge proofs. For this zero-knowledge Succinct Non-interactive Arguments

of Knowledge or zk-SNARKs are used. Zk-SNARKs are highly complicated and will

have an entire section dedicated to them. For now, it is important to understand that

the zk-SNARKs are used to prove certain facts about the transactions in order for the

miners to be able to verify the correctness of each of the transactions. Some of the

facts that are proven include:

• The total value of input notes is equal to the total value of the output notes.

• Each note has an associated commitment and a nullifier.

• The nullifiers and commitments have been generated correctly.

Of course, there are more parts to the proof in order to prove the validity of the

transaction. The zk-SNARKs also create a proof that the nullifiers have not been

revealed for the note aside from proving the sender’s knowledge of values associated

with a note.

3.2 Protocol Details

With the general idea of some of the ZCash principles and how ZCash operates, it is

possible to go more in-depth into some of the important concepts of the protocol which

will give more appreciation to the voting protocol built on top of ZCash. The complete

specification for ZCash is available from Hopwood et al. at [3].

3.2.1 Transaction Types

As mentioned above, ZCash has two types of addresses incorporated in it’s protocol.

The addresses are namely z-address and t-address. The purpose of these addresses is

to differentiate between the transaction types. As mentioned before, there are four

types of transaction that can take place which are outlined in Figure 3.1. Transparent

values are represented as coins and the shielded values are represented as shields. The

public transactions are the transactions that are native to Bitcoin, where the values of

the transactions are visible. Similar to Bitcoin, the coins are traceable to wallets that

19



hold them. This is called pseudonymity as the identity is not truly anonymous and can

be revealed with enough effort [41]. When a transaction is made from a t-address to

a z-address the transaction shields the transparent value which becomes a note. The

linkability of the ZEC is broken at this point as z-addresses are considered anonymous.

The value of the note cannot be seen. The conversion of the transparent value to a

shielded note is done within the transaction and will be explain in future sections.

De-shielding transactions act opposite to the shielding transactions, which essentially

convert a shielded note into a transparent ZEC. This occurs if the transaction is made

from a sender’s z-address to the receiver’s t-address. The most interesting type of

transaction is the private transaction. This transaction type occurs when both the

sender and the receiver use z-addresses. This details of this transaction can only be

observed by the sender and the receiver and by no-one else on the blockchain. This

is due to the fact that the sender and receiver, both agree on a secret key to use to

view the details of the transaction. The details of the transactions will be discussed in

further sections.

Figure 3.1: The four types of transactions possible in ZCash [43]
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3.2.2 Payment Addresses

As established above, there are two types of addresses. The addresses are a combination

of keys that, when combined, make up the payment address. These keys are what allow

the users of ZCash to spend their ZECs, view private transactions and send ZECs to

other addresses. There are four types of keys that are used in ZCash:

• Paying key (apk): Used as part of the key to generate payment address and

commitment for a ZEC.

• Transmission key (pkenc): Used to encrypt and decrypt random values to generate

ZEC, or ZEC plaintexts

• Spending key (ask): Allows spending ZEC while revealing the nullifier for the

ZEC spent.

• Viewing key (skenc): Established key for viewing the private transaction for the

sender and the receiver.

The keys,however, are used to perform more complex functions. The combination

of paying key (apk) and transmission key (pkenc) is what makes up the payment address.

In order to participate in the scheme, the user generates a key tuple (ask, skenc, addrpk)

where addrpk is the combination (apk, pkenc). The spending key (ask) is used to derive

other keys, and therefore is kept secret at all times. Figure 3.2 shows the key derivation

that takes place to generate the payment address and the other associated keys. The

functions used to derive the keys are outlined by Hopwood et al. in [3]. The spending

key (ask) is a sequence of 252-bits joined with two sets of 8-bit versions of raw encoding

of ZCash version. The part represented by [0] in Figure 3.2 is 4 zero bit padding. The

key breakdown can be observed in Figure 3.3. Having this key, the pseudo-random

function is used to derive the paying key (apk), which is 256-bit in length. The other

two keys use the key agreement function in order to be derived.

The key agreement function is a protocol where two parties agree on a shared

secret which involves their private and the second party’s public key. In essence, the

key agreement function creates public and private keys, as well as a shared key which

can be used to derive further keys for encryption of a secret. The private key derives a

public key, which when multiplied, derives a shared key for the key agreement scheme.
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The derivation function, which will be used multiple times in this protocol, used to

establish a key for encryption of a secret value to be passed between the sender and the

receiver. On a high level, a private key esk is derived from the agreed private key from

the key agreement scheme. The public key epk is derived from esk. The derivation

function returns the public key epk and a set of agreed keys for encryption of random

values used to generate ZEC.

The viewing key (skenc) is derived using the pseudo-random function and the trans-

mission key (ask) is derived from the viewing key (skenc) with the key derivation func-

tion. This may be complicated by the main idea to obtain from this is that ZCash

implements several pseudo-random functions and a single key derivation function to

generate and obtain keys to encrypt secret values for ZECs and pass these on in a

transaction. The details of the transaction will be explained in further sections.

Figure 3.2: The keys generated as part of ZCash address generation routine

Figure 3.3: Values used to generate spending key [3]

As already mentioned, the t-address is exactly the same as the Bitcoin address and

it’s structure is exactly the same. Z-addresses on the other hand are much larger due

to more complexity involved in the operations involving them. For comparison sake,

the t-address may look something like [44]:

t14oHp2v54vfmdgQ3v3SNuQga8JKHTNi2a1
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On the other hand, a z-address would be much longer and would look like:

zcBqWB8VDjVER7uLKb4oHp2v54v2a1jKd9o4FY7mdgQ3gDfG8MiZLvdQga8JK3t58y

jXGjQHzMzkGUxSguSs6ZzqpgTNiZG

Going back to the t-address, there are two ways of obtaining the address. These are

pay to script hash (P2SH) or pay to public key hash (P2PKH). There is no difference

in terms of the size as both of these schemes use 160-bit addresses. For P2SH, a

script is hashed using the SHA256 message digest scheme. The script that is included

in the hash outlines the conditions to be fulfilled for the Bitcoins to be spent. In

other words the script specifies how the person receiving the Bitcoins can spend them

[46]. The other type of address is the P2PKH. This is a public key hash obtained

from a derived public key from the private key of the potential recipient. This, too

uses SHA256 message digest. The key pair itself is generated Elliptic Curve Digital

Signature Algorithm (ECDSA) to generate the private keys. Figure 3.4 shows the

structure of a typical t-address in P2PKH form. The P2SH address would have exactly

the same structure in terms of size. The first two sets of 8-bits as per the spending

key, indicate the version of the raw encoding of P2SH address. This gives a high level

overview of the t-addresses and how they are generated. In essence this is a much

simpler address than the z-address. More details on the ECDSA and the mechanisms

involved in creation of the t-addresses can be found in [45] [3].

Figure 3.4: Bit structure of t-address in ZCash [3]

The z-address consists the paying key (apk) and the transmission key (pkenc) coupled

together and compressed with SHA256 message digest. From the earlier outline of the

keys, the transmission key is the public key from the key agreement function. The

address includes two 8-bit version raw encodings of ZCash payment address. Figure

3.5 shows the structure of z-address for comparison purposes [3].

Figure 3.5: Bit structure of z-address in ZCash [3]
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3.2.3 Zerocoin (ZEC) Structure

So far a lot of detail has been given describing an entity that is being sent over the

network, namely ZECs or notes. There has been a mention of the keys used to transfer

these but no mention of what these entities really are. On a high level, these ZECs are

simply values that are passed from sender to a receiver. Due to the natural complexity

of the protocol, the ZEC has a slightly complex structure. Tromer in [49] outlines the

makings of a Zerocoin’s coin, and the structure has largely persisted over in ZCash. A

ZEC is of the form: (apk, vρ, r), where apk is the paying key which has been described

above, v is the value of the ZEC which the sender wishes to send to the receiver,

this value is described in zatoshis. The value ρ is used as part of a pseudo random

function in order to generate the nullifier for the ZEC and r is used as the commitment

trapdoor for the commitment function. It is important to clarify the commitments and

nullifiers for each shielded ZEC or a note prior to proceeding to talk about the transfer

mechanics of ZCash.

A commitment is the result of a commitment function that commits an input to

the transfer. This is the value that is generated for each new generated ZEC. The

structure of a commitment is (apk, vρ). The nullifier is a generated value that acts as

a serial number for each ZEC. This value must be unique and is stored in nullifier set,

which is a set which keeps track of all the spent ZECs. A spent ZEC is the one for

which the nullifier has been revealed, therefore for any unspent note, a nullifier has not

been seen by any entity.

The note commitments are stored in a data structure called a Merkle tree [28] which

is a binary tree that simplifies the process of finding a particular item. The Merkle

tree is a data structure which takes two hashes of a transaction and combines them

into a new hash. This operation is done for all of the transactions in a particular

block until only one hash remains, which summarizes the block and can be used to

find any transaction inside the Merkle tree in a few number of look-ups from the root

hash which is the single hash remaining after all transactions have beene hashed into

the Merkle Tree [31] [28]. Figure 3.6 shows a basic example of the Merkle tree. The

Merkle tree is used to store note commitments in ZCash which keeps track of each

state of the transaction. The nullifier set is merely a set which keeps track of each

revealed nullifier for each of the notes to ensure that no note can be spent twice. Each
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computer, or a node, which keeps the full record of the transactions from the beginning

to the latest transaction is called a full node. A note commitment tree is a Merkle

tree where the JoinSplit transfers append the generated note commitments within the

transfer. The concept of spending a particular ZEC is to generate a zero-knowledge

proof, which proves that the spender knows the existence of a note commitment in the

note commitment tree, and thus capable of spending the ZEC. The note commitment

tree and the nullifier set are part of a treestate for each transaction. The treestates are

connected to each other, where the output treestate for each transaction is the input

treestate for the current transaction [3].

Figure 3.6: Simplified Merkle tree example [29]

One of the last pieces of very important information is the data that was used to

generate each shielded ZEC or a note. This information is required to be passed on to

the receiver upon transaction. This is highly important because, the receiver will not

be able to spend the newly acquired ZECs unless they possess the randomness values ρ

and r which have been used for note generation, as they are required to be supplied for

the zero-knowledge proof that is passed into the transaction. This information is called

note plaintext and the note ciphertext is the encrypted note plaintext which is passed

into a transaction. The plaintext has the form (v, ρ, r,memo). The newly mentioned

variable memo represents a variable whose meaning is specific to the context between a
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sender and a receiver. More exactly, ”the usage of memo field is by agreement between

the sender and recipient of the note” [3]. The note ciphertexts are part of the JoinSplit

description which will be discussed in the next section.

Naturally, the note plaintexts cannot simply be included into a transaction as there

is a high possibility the ZECs would be stolen. The transmission key (pkenc) play an

important role when encrypting the note plaintexts. There are two operations, before

the transaction the note plaintexts have to be encrypted by the sender, and then upon

receiving the note by the receiver, the ciphertexts will have to be decrypted. The

next two sections will give a high level overveiw of these steps. For a more in-depth

description of the steps, one can investigate the ZCash specification [3].

3.2.4 Note Plaintext Encryption

The general procedure to encrypting the note plaintexts starts with generating a new

key agreement key pair epk and esk. These are called the ephemeral keys. Each of the

plaintexts then follows the next procedure:

• Obtain raw encoding of each of the note plaintexts.

• Establish the shared secret key via the key agreement function using the ephemeral

secret key esk and the transmission key pkenc.

• Derive a new key for symmetric encryption of the raw encoding of a note plaintext

The note plaintext, then become note ciphertexts and are added to the JoinSplit de-

scription with the ephemeral public key. The importance of the ephemeral keys will be

stated in the next section.

3.2.5 Note Ciphertext Decryption

When the recipient receives the ZEC, they need to decrypt the note ciphertexts in order

to be able to spend it later. Since the ZEC has been sent to the recipient’s address the

address is made up of two keys, the paying key apk and the transmission key pkend. The

recipient is also in possession of the viewing key skenc in order to be able to view the

transaction. The procedure for decrypting the ciphertexts involves similar procedure

to the encryption. The first step is for the recipient to agree on a key pair of their
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viewing key skenc and the ephemeral public key epk. The key derivation function allows

the generation of the same key used by the sender to encrypt the note plaintexts. The

procedure is then to go through each of the note ciphertexts and do the opposite of the

sender’s operation. With correct key, the recipient is able to extract the raw encoding

for the note plaintext. If the decryption operation results in the raw encoding being ⊥
or false, the decryption has not been done successfully. Otherwise, the note plaintext

can be obtained from the raw encoding. The note commitment plays an important role

in this verification. The recipient generates a commitment based on the information

that has just been received and compares it to the commitment for the note in the

JoinSplit Transfer, which has been generated as a result of the transaction between

the sender and the receiver. If the note commitments do not match, once again the

information supplied, or the key that was used to decrypt the note ciphertexts has not

been the correect key, otherwise the correct note plaintexts are returned as to verify

the commitment comparison.

3.2.6 JoinSplit Transfer

The JoinSplit Transfer is the mechanism that allows sending ZECs from one wallet to

another. A lot of important details have been outlined so far which is done as part of

the set up on, both, the sender’s and the receiver’s sides, however JoinSplit Transfer is

what brigs the protocol to life. As described before, transfer differentiates between the

types of values that are passed to the transaction. So far it has been established that

shielded ZECs require zero-knowledge proofs, input and output ZECs to be processed

by the transaction. One extra detail about the transparent value pool, which is held

within the JoinSplit transfer, is that the transparent pool contains some zatoshis, a

minor denomination of ZECs, to be paid to the miner for processing the transaction.

This mechanism is present in Bitcoin and in Ethereum alike, where some percentage of

the transaction is payed to the miner who processes it, which gives the miner a choice

which transactions to process. This is the case at hand with Ethereum. Aside from

holding miner’s fee, the transparent value pool also withholds the transparent ZECs

that are sent publicly or as part of de-shielding operation. Figure 3.7 shows a simplistic

diagram for a JoinSplit transfer in ZCash.

Essentially, the JoinSplit transfer spends the shielded input ZECs and generates
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Figure 3.7: Simplified example of a JoinSplit Transfer in ZCash [3]

new output shielded ZECs. JoinSplit Descriptions have been described as the inner

part of a JoinSplit Transfer, which holds the data which is to be passed as part of

the transaction. JoinSplit descriptions include all of the above mentioned information,

namely:

• Values of the input ZECs vold.

• Values of the output ZECs vnew.

• Nullifiers for the input ZECs.

• Commitments cm for each of the newly generated ZECS.

• Ephemeral key epk which is the key agreement public key derived for encryption

of transmitted note ciphertexts.

• Sequence of note ciphertexts.

• Zero-knowledge proof of the JoinSplit transfer statement.
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• Sequence of hash signatures h which bind the input ZECs to the spending key of

the sender.

• Random seed value, that is attached to the JoinSplit description.

Majority of the above mentioned items, and their importance, has already been dis-

cussed. The JoinSplit transfer can be observed in more detail in Figure 3.8.

One piece of information which is important with regard to the private transactions

is how the transaction is exclusive to the sender and the recipient. This feature is not

present in dealing with transparent values due to the fact that transparent values do

not have secret values like ρ and r as part of their creation. The ephemeral keys that

are established for the transmission of the secret values in private transactions ensure

that only the sender and the recipient can view the transaction. The possession of

the private ephemeral key esk and the recipient’s address is what allows the sender to

view the transaction. At the same time, the receiver uses their viewing key skenc and

the ephemeral public key epk to view the transaction from their end. The ephemeral

public key is sent with the transaction, which is the way that the receiver obtains it.

Even if a third party obtained this key, they do not have the other keys to view the

transaction of derive a key for note ciphertext decryption.

Figure 3.8: Detailed view of JoinSplit Transfer
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3.2.7 Dummy ZECs

Having discussed the structure of the ZECs and the JoinSplit transfers a trivial, yet

important point needs some attention. This is the concept for a dummy ZEC, or a

ZEC which has no value, is important in ZCash. The reason for having such values

is that the JoinSplit transfers take two ZECs as input and output. The high level

reason is that this is done as means for splitting ZECs into denominations when people

require a different ZEC amounting to the values that are not input values. This requires

splitting the ZECs which follows the same principle as the split transaction in Bitcoin

[30]. The idea here is to not split the coin in manipulate the inputs and outputs in

order to transfer exact amount which is required to be sent to the recipient without

unnecessary splitting on coins. Therefore, ZCash transactions require to have two

inputs and outputs.

However, sometimes the transactions may have fewer than two inputs or outputs.

This is the exact situation where the dummy ZECs are used. This feature of ZCash

is also exploited for the voting protocol created on ZCash basis. The idea is to create

a fake ZEC that will act as an input but will not be directed to any recipient as the

destination address is randomly generated. There are two types of dummy coins: the

input and the output dummy ZECs. The input ZECs requires the generation of a

random spending key ask with the corresponding derived payment key apk. The value

v is set to 0 and the generation values for the ZEC, ρ and r are picked at random. The

dummy path is specified, which is where the note will be destined to go. This path is

not checked and therefore the zero-knowledge proof around this note is more lenient

as the ZEC is simply a place holder.

In the case of the output ZEC, things are much more simple. The dummy output

ZEC is similarly constructed with a v value of 0 and is sent to a random payment

address. These mechanisms are invaluable to the functionality of the voting protocol,

which will be specified in detail in future sections.

3.2.8 Linkability

Linkability has been mentioned previously, however it plays an important role in privacy

of the transactions. Linkability means that if one party, Alice, has sent a a number of

ZECs to Bob, who wishes to send it to Carol, if they all used the t-addresses, you can
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link the transaction from Alice to Carol as the inputs and outputs of the transaction

are publicly visible. The use of z-address by Bob, will break the linkability of the

ZECs used in the transaction, thus making the transaction more private. This can be

observed in Figure 3.9 [42].

Figure 3.9: Breaking the linkability between t-addresses with z-addresses [42]

Linkability, however may not be as reliable in certain situations. For instance, if

Alice sends x ZEC to Bob, Bob will receive x−fee ZEC where the fee is the transaction

fee granted to the miners for processing the transaction. Bob, subsequently sends the

received x− fee ZEC to Carol, where once again a fee is applied to the transaction. A

public party may notice the link between these transactions because the transactions

closely resemble each other in value. This is true, assuming Alice and Carol both use

t-addresses for their transactions and Bob uses z-address. The transaction linkability

may be compromised because the amount does not change between the transactions

from Alice to Bob and from Bob to Carol, and the transactions may have happened in

short succession from one another. In addition, Alice’s input x ZEC for the shielding

transaction and Carol’s x − 2(fee) ZEC output in de-shielding transaction are both

transparent values and are publicly visible. For example, the likelihood of linkability

compromised between the same value transactions between blocks 109233 and 109237

is more likely than if the transactions occurred in blocks 109233 and 145032. Figure

3.10 illustrates this example with assumption that the transactions happened in closee

succession. [42].
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Figure 3.10: Potential for compromised linkability between two transactions [42]

3.2.9 Zero-Knowledge Proving System

Zero-knowledge proof has been has been mentioned several times already and it is of

utmost importance to the ZCash protocol. Section 4 is dedicated entirely to explaining

zk-SNARKs and how they are constructed for a particular problem. This section

provides a look at the bigger picture by explaining the purpose of zero-knowledge

proofs in ZCash and the things that it uses zk-SNARKs to prove.

For a zero-knowledge proof to be used effectively, three things must be satisfied,

the proof must be:

• Sound : The prover can only convince the verifier if they are telling the truth

• Complete: If the prover is telling the truth, the verifier will be convinced even-

tually.

• Zero-knowledge: No information is leaked by the prover when trying to prove

some arbitrary piece of information.

These are the three rules all zero-knowledge proofs must satisfy. One can find an

example of zero-knowledge proving system from Green in [57] and [58]. The application

of zero-knowledge proof in zk-SNARKs is outlined in section 4, however the main idea

of the proof is that, when the sender transfers a particular ZEC to the receiver, the

sender provides a proof that they know the secret values ρ and r that make up a

legitimate ZEC. This is a required proof before the sender can spend the ZEC and

since spending a ZEC is part of the transaction, the proofs are required for all ZCash

transactions.
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Since zero-knowledge proofs can be used to prove a particular argument of knowl-

edge to the verifier, as stated above, it can be used to prove that the sender knows a

value ρ that was part of generation function for the ZEC that the sender holds. The

real question is how do these proofs apply to the concept of a ZCash program. This

question is answered by zk-SNARK construct. An implementation of zk-SNARK called

libsnark [50] allows the conversion of programs into proofs of knowledge. On a high

level, the program utilizes the GCC compiler for C family programs to create a Boolean

circuit, which is a mathematical model for logical circuits, from a piece of code which

proves the knowledge of a value, such as ρ. The boolean circuit has a certain solution

which will satisfy the circuit, or return true value for it’s inputs. Any other value of ρ

which is passed down to satisfy the proof will not satisfy the circuit and the prover will

fail to provide a sound proof of knowledge to the verifier. The proofs at this stage of

the process are simply mathematical equations which the prover knows the solutions

to.

The zero-knowledge proof for the transactions can be explained treating the zk-

SNARKs as a black box. The transaction proves that the sender knows some value in

order to be able to spend the coin, thus giving the coin to the receiver. If one party

is trying to prove to another that they know of some value, in typical protocol, the

verifying party would request the secret value to obtain the hash, if dealing with hashes,

to ensure that the hashed values match. In Zero-knowledge protocols, the purpose is

to keep the secret value or witness undiscovered. If one wishes to do that, they would

need zk-SNARKs and this is exactly what Zcash implements in its proofs.

On a high-level, explained by Lundkvist in [48] some universal program circuit is

used as input to a generator function, with some secret values in order to generate a

pair of public keys, which can be distributed to both the proving and the verifying

parties. The program circuit is a Boolean circuit, which has been described above.

The idea is for the prover to use the proving key, public value and a witness as input

to a function which generates a proof from the above information. The verifier obtains

the verifier key as well as the proof and using a verification function, whose inputs are

verification key, the same public value and the proof itself to verify the proof. The proof

verification function is a simple function which returns either true or false depending

on the whether the proof has been successfully proven.

The generator function is part of a setup procedure and uses highly secret values as
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part of the setup stage. These secret values are called toxic waste and must be deleted

as soon as the setup phase has been completed. The setup phase for ZCash is done

once to establish the proving and verification keys. If the toxic waste is not deleted and

a party was able to obtain these keys, then the said party would be able to generate

fake proofs.

The JoinSplit transfer also provides some proofs as part of the transfer is to generate

new ZECs. Some of the things that the proof is used to prove are:

• The total values of input ZECs and output ZECs matches.

• The commitments cm exist and are valid for the input ZECs.

• The nullifier and the commitment have been calculated correctly.

The proofs are not limited to these three items mentioned above. The resulting proof

that is supplied for the transaction is 296-bytes long [3]. Libsnark is able to generate

proofs that are relatively small in size.

This provides a relatively high level overview of the ZCash and its core features

that will be used in the voting protocol. None of the outlined features have been

changed in any way in order to facilitate the voting protocol. More detail on the ZCash

protocol can be found in [3]. With understanding of ZCash protocol, it may become

clear, that it possesses the required features for a successful voting mechanism. Before

this mechanism is described in detail, a deeper knowledge of zk-SNARK construct is

required to better appreciate the technology behind the voting protocol.
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Chapter 4

Zero-Knowledge Proving System

As mentioned before, a fundamental part of ZCash protocol is the zero-knowledge

proving system. This is done with the help of zk-SNARKs, which will be explained

in-depth in this section. Zk-SNARKs are not only fundamental to ZCash, but also to

the future releases of Ethereum. Zk-SNARKs are a very complex topic, but the general

steps and procedures will be outlined in this section. To understand zk-SNARKs better,

there is a need to understand the components that make it up. Before proceeding to

explain the complex inner workings of zk-SNARKs, some a-priori knowledge of some

of the cryptography is required. Other information gives a brief introduction into what

type of problems zk-SNARKs are applicable to and the definition of zero-knowledge.

4.1 Application Domain For zk-SNARKs

Prior to discussing zero-knowledge, and indeed the SNARKs, themselves it is worth

mentioning that zero-knowledge attempts to implement proofs for the NP-complete

class problems, for which it is infeasible to derive solutions to a problem using brute

force, however having the correct inputs, will assure the proof is satisfied. The NP-

complete set of problems is a subset of a larger set of problems labelled NP problems.

NP and NP-complete problems share the fact that there currently exists algorithm

that can solve them in polynomial time. To more specific, the NP complexity class,

represents a set of decision problems where the instances of proofs which are satisfied

by the true answer, can be verified in polynomial time. The NP-Complete, or NPC,
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complexity class is interesting as there is an ability to reduce any NPC problem into

an instance of another problem, which when solved will allow for the solution of the

original problem. Therefore, all NPC problems can be reduced to a generic NPC

problem. For the sake of completeness, the P complexity class problems can be solved

in polynomial time, where given an instance of a problem, the answer true or false to

a proof can derived in polynomial time [51] [52] [57] [58].

4.2 Zero-Knowledge Proofs

By definition, a zero-knowledge proof is a proof that convey no additional knowledge

other than the correctness of the proposition in question [53]. This was derived by

Goldwasser et al. [53] in the paper proposing interactive proof systems, where the

”prover” could convince the ”verifier” of the correctness of a statement. The question

that has been raised by Goldwasser et al. is what would happen in the instance where

the verifier could not be trusted the same way as the prover. Zero-knowledge proofs

must satisfy three important properties, namely completeness, soundness and zero-

knowledge. Completeness suggests that the prover will eventually convince an honest

verifier, provided the prover is honest themselves and is telling the truth. Soundness

indicates that the prover can only convince the verifier if the statement is true. Finally,

the zero-knowledge, intuitively, indicates that the verifier does not learn any useful data

by means of zero-knowledge proof, therefore the proof does not leak any data to the

verifier. Mathew Green in [57] provides an easy to follow example of the zero-knowledge

proof at work and the important properties at work. In short, [57] demonstrates a 3-

colorable graph and the attempts of the prover to fool the verifier by unconventional

means, such as the time machine, to violate the soundness and completeness property.

For instance, to prove soundness, Green in [58] describes the presence of a knowledge

extractor, which resembles the verifier and whose job is to extract the original secret

from the prover. The soundness, and indeed the zero-knowledge, is proven by contra-

diction where it should not be possible to extract the secret value from the prover,

however it is shown that such an agent exists if liberties were taken and provers secret

was to be disclosed. The same approach is taken for zero-knowledge with an agent

called the simulator, which serves the purpose of proving, by contradiction, that zero-

knowledge holds in these types of proof. There is a small distinction to be made that
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separates the proofs from the proofs of knowledge. Proofs are simply statements about

particular facts, a graph has a three colouring as mentioned by Green in [58]. Proofs of

knowledge are proofs that involve an entitys statement of personal knowledge of some

piece of data.

So far, the types of proofs that have been discussed are interactive proofs. These

proofs require the verifier to be active and present to be able to challenge the prover.

There exists a second type of proofs called the non-interactive zero-knowledge proofs

(NIZK). The essential difference here is that instead of the verifier being present, the

prover sends all relevant data for the verifier to be able to prove that the proof is sound

and complete. This is achieved by the prover, who computes the challenge, which is sent

to the verifier and includes a hash of a provers message as well as an arbitrary message

string. This information should provide basic understanding of zero-knowledge, prior

to going in-depth into SNARKs.

4.3 Elliptic Curve Cryptography

This is the final part of the pre-requisite knowledge before proceeding to zk-SNARKs.

The verification and the operations that the prover requires to do, revolve around

elliptic curve cryptography (ECC). ECC offers a better trap-door function than, for

example RSA, while also providing much shorter keys than that of RSA. The difference

between key sizes can be observed in [62], where a 228-bit ECC key is compared to the

RSA 2380-bit key in terms of the effort which is required to break the key of equivalent

strength. In general, ECC operates on curve functions, some of which have been picked

as they serve a better purpose for ECC cryptography than others, and thus have been

standardised. The curves are horizontally symmetric and any line can cut the curve in

at most three points. The idea behind ECC is that having two points on the curve can

yield the third point on the curve, which can then be used to find subsequent points

traversing the graph as many times as required. The system has some interesting

properties, there exists a point G which is considered a ”generation point” which is

standardised known value for ECC encryption. Another such interesting point is the

”point of infinity” O, which is an equivalent of zero in point arithmetic. This means

that a point P + O = P , for any point P . Most importantly, given a point P and

a point Q it is possible to find a point R such that P + Q = R, this operation is
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known as dot product. Finally, the curve also has order which is a number n that

when multiplied by P results in the point of infinity. An interesting point is that, the

curve is not represented as the set of real numbers, primarily because the use of real

numbers in cryptography would result in the ability to reverse logarithms and break

the entire concept, as well as the fact that the amount of memory required to store the

and represent numbers would increase by a significant amount. The curve is instead

represented with whole numbers, and it is still possible to find a point with the same

logic as above. The example curve can be seen in Figure 4.1. Using this technique,

it is possible to take messages and represent them as points on the curve, although

it is more complex in reality. The whole idea of ECC is that given a public starting

point, and using the dot product operation a prime number of times on a known

curve function. The prime number that was used for the dot product is the private

key, and it is infeasible to compute the private key from the public key, or attempt

to break the encryption via brute-force by guessing the number of times the starting

point, has been used in the dot product function. This is what is called the elliptic

curve discrete logarithm and creates a much better trapdoor function that RSAs prime

number factorisation [60] [62].

Some of the keys like the transaction key (pkenc) and the key agreement function

keys, along with some other not mentioned keys, utilise ECC for key generation and

agreement. In particular Curve25519 is used for such purposes. Without going into too

much detail Curve25519 is the state of the art curve for elliptic curve Diffie-Hellman

(ECDH) for key agreement. Bernstein in [47] outlines the new speed record set by

using this curve for high-security Diffie-Hellman computations.

4.4 The Structure Of zk-SNARK

The computation of any SNARK starts with a C program. Since ZCash is the main

platform, that serves the basis of the electronic voting system, I will discuss zk-SNARKs

with relation to ZCash values and what ZCash attempts to prove by use of the SNARK.

ZCash makes use of a library called libsnark, which essentially helps to build SNARKs

from any C program provided to it. A good high-level overview of the steps involved

in the design of the zk-SNARKs is shown in Figure 4.2. Majority of the section will be

based on the Ben-Sasson et al. work [54] where libsnark library and the derivation of
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Figure 4.1: Elliptic curve represented with whole number points [62]

SNARKs is explained in great detail. In essence, libsnark as described by Ben-Sasson

et al. [54] and by Madars Virza in [56] has three main parts, namely the compiler, the

circuit generator and the generation of SNARK for CircuitSAT, or circuit satisfiability

problem. The conversion of a C program, which in this case can be a part of the

proof where the prover attempts to convince the verifier that they possess a value

s such that the random value s has been used in the generation of their ZEC. This

conversion is done with a compiler into a version of a TinyRAM program. TinyRAM, by

definition, is a ”minimalistic RISC random-access machine with Harvard architecture

and non-deterministic random-access memorytailored for efficient computation of non-

deterministic computations”. To put more simply, TinyRAM is a port for the GCC

compiler which allows efficient compilation of programs while having reasonably simple

instructions to design Boolean circuits for verifying correctness of proofs. Although the

code size overhead is up to four times bigger than a complex CISC architecture of x86,

and the execution time is slower than the same x86 architecture by a factor of 2-6, the

compiler compensates for these overheads by the fact that TinyRAM has a compact

circuit for correctness verification [54][56].
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Figure 4.2: High-level overview of zk-SNARK [58]

Following from the compilation of the C program to verify the knowledge of s value

for a ZEC, the TinyRAM program must be reduced to a Boolean circuit to be used

for the circuit satisfiability problem, CircuitSAT. A Boolean circuit is simply a math-

ematical representation of digital logic gates for a problem. The Circuit satisfiability

problem is merely a decision problem, where an assignment of inputs that returns true

value, must be determined for a given Boolean circuit. In other words, if one could

assign truth values to a mathematical formula such that the formula evaluates to truth,

the formula is satisfied. With a basic example from Reitwiener in [52]: ((x1∧x2)∧¬x2)
is a Boolean formula which is not satisfiable and therefore does not lie in the set of

problems considered to be satisfiable or simply SAT.

Now it is clear exactly what the circuit generator part of libsnark is attempting

to create. On a high level, an execution trace of a TinyRAM program is obtained,

where the execution trace is simply a time-sorted list of CPU states. In other words,

each different state of the compiled TinyRAM program. The goal is to design a circuit

such that the circuit at the end is valid in terms of code consistency and memory

consistency. The creation of the output circuit revolves around the creation of three

sub-circuits. Code consistency aspect of circuit generation is involved with the use of a

transition function which is applied to each 2 consecutive states in order to determine

whether the states can logically follow one another, which also ties in with memory

consistency. This also is the most complex sub-circuit as it is largely dominated by the
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size inner sub-circuits for multiplexing bit strings and arithmetic logic unit (ALU). The

consistency is ensured by applying the transition function to each of the states. The

states at hand are simply the registers and the program counter values for each stage

of the program execution. The transition function acts like any other CPU, which uses

things like register-file multiplexing or ALU, amongst others. The code consistency

step provides us with a sub-circuit to add to the main circuit function described later

in this section. The reduction optimizations for this step lie in efficient implementation

of ALU functions. For example, bitwise operations such as AND, OR and others, are

computed with binary representations, where addition, subtraction and multiplication

is implemented in integer representation [54] [56].

Memory consistency is a more difficult step. In order to verify the transition func-

tion’s validity, memory consistency is important. Memory consistency is namely the

verification ”that every load operation from any address in memory retrieves the value

of the last store to that address”. On a high level, difficulty arises in storing mem-

ory correctly, as memory is external to the CPU, and the entries that are written to

memory at any point in time, may prove to be totally unpredictable a time later. One

potential solution would be to append a memory snapshot for every state in the trace,

however this is not efficient and would result in a quadratic worst case execution time

for the generated circuits, or O(T 2). The more efficient solution is to create another

sub-circuit as input to the circuit function. This memory consistent sub-circuit is the

same execution trace sorted in terms of accessed memory addresses. The memory con-

sistency circuits are like transition functions between the states, only here these circuits

verify that:

• The items stored in a memory address are the items that are returned upon the

load function

• The items stored in memory addresses are not altered upon loading of these

values form memory

• Loaded values match after consecutive loads from the same memory address

• If an item is stored in memory after a load and a store operation, the memory

circuit does not perform any verification [54] [56].
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The reduction optimization that has been implemented here is the fact that by

completing the transition function for code consistency on opposing end of the routing

network, which is discussed below, the memory addresses being accessed by the op-

erations and values stored within for a particular state, have already been computed.

As described by [54], by making modifications to the routing network, the function of

memory circuit, for memory consistency, is to merely check the ordering of these value

and address pairs.

In order to check if the memory trace is correctly sorted, the routing network is

used. Libsnark uses Benes routing network which has O(logT ) layers of T nodes, where

each node in a layer is connected to other two nodes in the next layer. A T -packet

routing network is a directed graph of T sources and T sinks with switches where

T packets travel to T sinks according to a particular permutation without using any

particular switch twice. As a bonus, this adds more non-determinism to the circuit

generation algorithm. Constraints implemented into the protocol, can help ensure that

a permutation has been implement some permutation to the inputs and outputs for

the graph. Once again, the graph colouring problem can be observed here in a slightly

different context. The check of the routing constraints is the most expensive sub-circuit

out of the three because, as described in [54], there are Θ(T logT ) total nodes in the

routing network, which are compared to the T copies from the first two sub-circuits

each. On a high level, the optimization achieved here is the ability to package the

value/address pair from memory consistency sub-circuit into small packets, which are

then easy to transmit and compute the routing constraints [54].

Overall, the circuit generation step, designs a circuit of size T such that T ·(|CTF |+
|CMC |+O((logT )2)), where CTF is the trace state transition functions, CMC is the mem-

ory circuit for memory consistency step and O((logT )2) is the Benes routing network.

In summary, the TinyRAM assembly code is reduced to satisfiability of a constraint-

satisfaction problem on a routing network, where an arithmetic circuit verifies all the

constraints of the problem given a correct assignment as input [54].

The above aspects describe the soundness as most of the discussion has been about

the verification of the validity of execution trace of the given TinyRAM program. The

completeness is achieved by an entity called a witness map. This is something that is

run by the prover when the proof is generated. This consists of two main steps. The first

step is taking the inputs for a TinyRAM program and outputting an execution trace
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for P , which has been described above. The second step takes in the execution trace

as input and outputs a satisfying assignment for the generated circuit. The satisfying

assignment is the input to the circuit which returns the value true for the particular

circuit. This is done by finding the satisfying assignment for each transition function

CTF of the circuit, finding the satisfying assignment for each CMC of the same circuit

and, finally, finding the satisfying assignment for the routing network sub-circuit, which

verifies that the sorting of transition functions is correct. Having completed the above

steps, the witness map is derived [54].

So far, the process of deriving the circuit has been described in terms of the func-

tions of the libsnark. An alternative step is to convert the assembly code into rank-1

constraint system (R1CS), which has similar concept to the circuit derivation from

libsnark. Essentially, R1CS deals with the simplified operations of the complex code

instructions to be able to convert them to groups of three vectors to define the con-

straints on the system. R1SC, as described in [59], is a sequence of groups of three

vectors, a, b and c, and the solution vector s, where s must satisfy the equation:

s · a× s · b− s · c = 0, where · is the dot product of the two vectors. In other words, by

multiplying the values in same positions in s and a vectors, and adding these products,

and doing the same for the b and s vectors, the third result, namely s and c vector, will

be the product of the other two results. There may exists more than one constraint per

system, and the number of variables in each vector depends on the number of variables

in the whole system. To give a simple example, in a code sequence that evaluates x3,

the simplified operations would result in:

i = x× x
result = i× x

The variables that would be present in the s vector would be: one, x, result, i. The

number one is simply a dummy variable representing the number one in case values in

operations cannot be represented in terms of numbers stored in the vectors. Each of the

gates is now summarised as the variables in the vectors, following the equation outlined

above. To be more specific, the first and second vector for the first gate, in the equation

presented above would look like: [0, 1, 0, 0] and the third vector would be [0, 0, 0, 1] as

the variable i is stored in the last place in the vector. This step would be done for each
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of the logical operations of the compiled code. A much more comprehensive example

can be found in Buterins article [59].

R1CS is then converted into quadratic arithmetic program (QAP), which is also cre-

ated as part of libsnark for derivation of linear probabilistically-checkable proof (PCP),

which will be discussed further in this section. Alternative approach is to use the

quadratic-span programs (QSP). Libsnark builds on the QAP approach, even though

both implementations are equally efficient. As described by Ben-Sasson et al. in [54],

one of the reasons that QAPs are used over QSPs, is that the QAPs are significantly

simpler to construct, which is crucial for practical applications. It also provides smaller

reductions for arithmetic circuits. On a high level, the objective is to convert the vec-

tor group from the R1CS from into a QAP form, where the constraints are derived by

evaluating polynomials at x coordinates. This is done using Lagrange interpolation as

mentioned by Buterin in his article [59] with an example following the R1CS example.

This helps to derive a group of coefficients, which when evaluated at x coordinates of

the derived polynomials, will produce the constraints outlined by R1CS step produced

in the above step. One of the advantages of this step is that the R1CS constraints do

not have to checked individually. Instead, all constraints can be checked at the same

time by doing dot product operation on the polynomials. The verification process of

these polynomials involves doing additions and multiplications of polynomials, which

will result in a polynomial, which result must be zero in order for the check to pass.

Similarly, if the polynomial does not return a zero result, then one of the input values

must be inconsistent and the check is not passed. The polynomial is not evaluated to

find the non-zero result, instead the polynomial is divided by another polynomial, and

if the division is done without remainder, the check is considered to be passed [54] [59].

Final part of computation before zk-SNARK derived, is the linear PCP. A PCP

is a proof that is checkable by an algorithm which implements a degree of bounded

randomness. Ben-Sasson et al. in [54] state that their linear PCP consists of 5 queries

of 2 field elements each, where each of the queries is generated in linear time. With the

help of PCP, it is possible to accept or reject proofs which do not pass this stage, with

particularly high probability. The process of deriving a SNARK involves compilation of

linear PCP into a 2-message linear interactive proof (IP). Here the purpose is that the

verifier is only able to apply linear functions to the message. The high-level approach

is to add consistency-check query, which is a random linear combination of linear PCP
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queries. The linear IP is compiled into the SNARK, by forcing a polynomial-size mali-

cious prover to act if it were a linear function, given a cryptographic encoding function.

The interaction between the prover and the verifier to verify the proof is as follows.

Given an encoding function, the SNARK generator samples the verifier message for the

linear IP and outputs an encoding of the messages. Based on the encrypted messages

and linear PCP proof, the prover is able to homomorphically evaluate the inner prod-

ucts of the messages and return, as a proof, the encoded answers. The verifier checks

the proof by running the linear IP decision on the encoded answers. It is also worth

noting that if the linear PCP is honest-verifier zero-knowledge, meaning that the veri-

fier is acting according to the protocol, then the SNARK also becomes zero-knowledge

[54].

Ben-Sasson et al. have since made modifications to their TinyRAM architecture

which is described in [55]. The main goal of the modifications was to improve security

and efficiency of their architecture. Though a lot of the work has been based on [54], the

updated version of TinyRAM improves the architecture by introducing the universal

circuit generator, unlike the previous version which improves on the inefficiencies for

things like prover and verifier key generation and does not hardcode a copy of the

program into the circuit. The new circuit generator is universal and does not depend

on the program, but merely on the program size. Universal circuits, when combined

with CircuitSAT problems, such as zk-SNAKRS, allow for the universal parameters

for the proof. It begins to follow the von Neumann paradigm, and supports the von

Neumann RISC architecture with its modification called ”vnTinyRAM”. The main

contribution is the upgraded efficiency of the circuit generator and the zk-SNARK

for the circuits, which meant creating tailor made implementations of cryptographic

libraries instead of using the off-the-shelf resources.

With the mention of the above techniques to obtain the SNARK some things may

still be misunderstood. Here is some more clarification on the actions that take place

from the QAP to the zk-SNARKs with the use of ECC. Elliptic curve pairings take the

concept of elliptic curve cryptography one complex step further. The best way to think

about pairings is to view individual curve points as one-way encrypted numbers. This

means that instead of viewing the traditional elliptic curve math as one that lets one

check linear constraints on the numbers, pairing lets one check quadratic constraints.

For example, if P = G × p, Q = G × q and R = G × r, the pairing approach allows
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you to check e(P,Q) for some point arithmetic. The operator e(P,Q) represents the

pairing operation as per [60]. This pairing can also be called ”bilinear mapping”, as it

satisfies the following constraints:

e(P,Q+R) = e(P,Q)× e(P,R)

e(P + S,Q) = e(P,Q)× e(S,Q)

These pairings are later used in the proof of solution for a QAP by the prover to

the verifier and essentially, allow for the zero-knowledge aspect of SNARK, which will

be discussed later in this section. As already mentioned, the purpose of pairing is to

combine two elliptic curves in such a way that they satisfy bilinear constraints and to

obtain the output in the form of an element F 12
p . An entity called the divisor, which

is an alternative method of representing functions on elliptic curve points, is required

for pairing. The divisors job is to count zeros and infinity values of the function on

the curve points. The points P , Q, R and any other point can then be represented

as [P ], [Q], [R] as a standard notation for divisors, which includes the point P , Q

and R along with the zeros and infinities as mentioned above. A basic example from

[60] can be seen in the next example. Suppose that we have a point P such that,

P (Px, Py), let the function be f(x, y) = x−Px. The divisor for the following function

is the [P ] + [−P ] − 2 × [O]. Buterin in [60] outlines that since the function goes

towards infinity, it equals to infinity at the point of infinity. The equation of the curve

for pairing, as per example is x3 = y2 + b. The reason that the point of infinity is

multiplied by negative 2 is that infinity is represented as negative entity, and because

of the equation of the curve, y reaches infinity 1.5 times faster than x, in order for y2 to

keep up with x3 [60]. Therefore, if a linear function includes x only, the point of infinity

is multiplied by 2, otherwise if y is present, then it is multiplied by 3. The idea is that

having functions defined via their divisors for point P and point Q, including the order

for of the curve, it is possible to derive one divisor from the product of the above-

mentioned divisors in order to combine them. This is important because separately,

the divisors, [P ] + [Q] are not the same as [P + Q]. The final step is to exponentiate

the resulting equation to a power of the multiplicative order in the output F 12
p . The

result is a product of functions raised to a power, which is a limited form of one-way

homomorphic encryption. This allows to perform equality checking in the last stages

of the proof [60] [61].
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The possibility of such pairings also means that the types of elliptic curves must be

considered, otherwise security issues may arise. Pairing on some curves is not possible

due to the fact that if a value, called embedding degree is large enough, the computation

of the pairing is not feasible. On the other hand, if the embedding factor is too small,

the discrete logarithm problem for elliptic curves can be reduced and the private key

can be obtained by an attacker, which is shown by the MOV attack [60] [63].

The final part of the zk-SNARK is possible due to the knowledge-of-exponent

touched on by Buterin in [61]. This means that given two points P and Q, where

P × k = Q, it is not possible to come up with an alternative value C × k as the expo-

nent is not known. This extends to the fact that given a pair (P,Q), a pair (R, S) can

only be derived by multiplying both P and Q to give R and S points, which are multi-

plied by a factor that a prover knows. This roughly defines the knowledge-of-exponent

(KoE). This goes back to the point made above, that it is not required to know the

value k, merely the pairing between e(R,Q) = e(P, S) can be checked to determine

whether it holds. This similarly can be applied to a set of points (P,Q) but instead of

the prover knows the coefficient to multiply each of the elements of the set by to reach

the points (R, S). An important point, stressed by [52] and [61] is that the value k

must be deleted after the setup step has been performed. This is called the toxic waste

and includes five values including k, which if left alone, could mean that anyone could

generate fake proofs [61].

The QAP, as mentioned above, is a set of polynomials which follow the constraint

A(x)×B(x)−C(x) = H(x)×Z(x), where A, B and C are linear combinations of sets

of polynomials. Entities A, B, C and Z are part of the problem statement and it is

not feasible to deal with large polynomials. Instead, a part of the trusted setup step

is the evaluation of these polynomials at a secret value, which is also a part of toxic

waste. The prover must not know these secret values, but must instead be able to

compute the above from the set of points provided to them during the trusted setup.

The sets of polynomials are all raised to the same coefficient in order to be able to

prove that A × B − C = H × Z. A value used to bring the linear combinations to

the same coefficient is part of the toxic waste of the trusted setup also. A pairing

check can then be done between the pairings of each of the linear combinations at a

secret point t. So far, the part H of the equation has not been mentioned. H is also

a polynomial, and the task is to predict the coefficients for H for every QAP solution.
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This is done using the generation point G, mentioned in the ECC section and obtaining

a product of G with t at different exponent of t. Since ZCash is a primary protocol,

the sequence goes up to around 2 million powers of t. This is to ensure that H at

a value t can always be computed. The purpose of the proof is not to prove that a

solution exists for a problem, but it is preferred that the prover proves the correctness

of a solution or to a problem exists when some of the parameters are limited. The

libsnark as described by Ben-Sasson in [55], outlines the procedure for verification of

these proofs of knowledge of QAP solution. These roughly outline the checks required

to verify the steps mentioned above, for example, the linear combination check for A, B

and C and the fact that linear combinations have the same coefficients. As mentioned

by Buterin in [61], the difficulty in making the proofs from simply instructions is that,

from the single gate in a circuit, the operation must be processed through the elliptic

curve operation and produce a zero-knowledge proof of it after. This alone adds an

overhead of 20-40 seconds to every ZCash transaction.

To refer back to the high level description of the zero-knowledge proving scheme

from Section 3, given a program circuit as input for the generator function, the linear

combinations of sets of polynomials A, B, and C, are evaluated about a random point

t, which is considered toxic waste. In the interaction between the verifier and the

prover, the verifier sends the prover a set of linear PCP and consistency-check query to

be sampled by the generator function to output the parameters for prover and verifier

keys pk and vk.

The prover utilizes the proving key pk in order to compute the coefficients for the

polynomial H, and use these coefficients, the secret witness and the prover key to

generate the proof for the verifier. The verifier computes a ”custom verification key

which is specific to the instance” [61], and computes pairings to perform checks, such

as the coefficient and division and others, outlined above [55].

One final aspect of zk-SNARKs is the compactness of the proof. According to

[54], the proof length is merely 2576 bits, which can be fitted into any TCP packet

size. With regards to ZCash, the proof of having the random generation value s as

well as knowledge of entities such as the nullifier for the ZEC, amongst other proofs

is incorporated into the zk-SNARK. The proofs are joined to make a total 296-bytes

complete proof of knowledge for a particular ZEC as per [3].

It is, perhaps, clear that this zk-SNARK’s inner workings are quite complex, but
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despite the initial proof generation, they are very efficient in terms of size and verifi-

cation speeds. This chapter concludes the journey into the specification of ZCash and

it’s inner mechanisms. Having acquired some of the required knowledge, it is possible

to proceed to the description of the voting protocol in greater detail.
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Chapter 5

ZCash Based EVoting Protocol

Prior to describing the voting protocol, it is worth mentioning that the underlying

ZCash protocol [3] has not been changed in any way. The protocol utilizes basic

functions offered by ZCash and creates a platform with the ability to cast votes.

5.1 Protocol assumptions

Before proceeding to explain the protocol, the assumptions of the work must be stated.

These include the assumption of a confirmed identity, meaning that the protocol as-

sumes that the identity of a potential voter can be verified by the dealing with the

X.509 certificates [65] and a Certificate Authority (CA) to verify those identities. Any

other verification mechanism can be in place to facilitate the verification function. This

step is required in order to ensure that the person attempting to register for voting, is

the person they claim to be. This does not, however, guarantee the protection against

Sybil attack [64], which is one of the serious issues in digital identity domain. Sybil

attack revolves around a person having several identities and using these to gain access

to the system from multiple personalities.

Second assumption is that the system is built on top of ZCash platform, or that there

is a script running on top of ZCash platform which allows for the legal authorisation of

a vote transaction on behalf of the voter. As the voter does not get to handle the ZEC,

or the vote token, the assumption of a script capable of transferring the transaction

with the consent of the voter is in place.
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One of the final assumptions of the work is that the first block in the blockchain

for a particular election is known, so as to be able to do audit verifications later. This

can be the genesis block on a new blockchain or a recorded block to be considered as

a starting point of the election on the blockchain.

5.2 High-Level Overview

The voting protocol can be separated into four distinct steps: registration, notification,

voting, count/audit. Voters register to participate in an election or poll of interest

by visiting a registration page where their details are recorded and stored for audit

purposes. As per verification assumption, the X.509 certificate is assumed to have

their active email address stored as part of the certificate [65]. The certificate is saved

by the voting system and upon commencement of the election a one-time unique link

to a unique ballot is sent to the registered voter’s email address. Despite ZCash being

decentralised, one central authority exists to issue the details of the election and specify

the wallets for each of the candidates. During the registration step, the user is queries

whether they possess a ZCash wallet, as it is necessary to posses a ZCash wallet in

order to proceed with voting. If the user does not have a ZCash wallet, then upon

finishing registration, the user is redirected to a website which allows the creation of

such a wallet.

Upon visiting the vote, the voter is able to pick which candidate receives their vote.

Only one vote is allowed per person and the system allows the person to re-vote. The

voter is also only able to cast a single vote for one candidate, resembling the First-

Pass-The-Post (FPTP) voting scheme. The voter provides the details of their ZCash

wallet, to which they will receive a vote token. Upon completing the ballot, the voter

authorises the voting transaction for the system. The system records that the voter

has voted, updates the database with the wallet details and the vote status as well

as issuing exactly one ZEC as a vote token, representing the one vote from the voter

for a particular candidate. The token first arrives in the candidate wallet and with

the presence of the second assumption of possessing a redirection script, the token

immediately gets packaged into a further transaction to be forwarded to the candidate

specified by the voter on the ballot.

The voting procedure is repeated for each of the voters. There are two variants of
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the system which allows for improved linkability at the cost of privacy of the vote or

vice versa. The two variants discussed in this section describe this trade-off. Regardless

of the variant used, the rest of the protocol remains the unchanged. Upon conclusion

of the election, the candidate wallets send all of the acquired vote tokens to a common

pool, which allows the verification of the entire election. The candidate with most vote

tokens wins the election and the audit procedure that follows the election validates it.

The audit procedure helps to ensure that the election has been ran properly without

the system suffering from throw-in votes by coercers. The system ensures that the

following equality holds:

x∑
n=1

Tv =
x∑

n=1

V t =
x∑

n=1

Tx

2
−

x∑
n=1

Tc

Where Tv is the total number of votes authorised by the voters, V t is the total number

of vote tokens issued, Tx is the total number of transactions on the blockchain and Tc

is the total number of candidates. In the above equations these values are a constant

of 1 .

In other words, the total number of authorised votes must be equal to the total

number of vote tokens issued which must be equal to the quotient of total number of

transactions divided by 2, less the number of candidates present in the election. The

division by 2 of the total number of transactions is to account for the fact that it takes

2 transactions for the voter to obtain their vote and then to issue it to a particular

candidate. If this equation does not hold the election is considered forfeit and may

require to start again.

Finally, the voter is able to view the their votes as these are the transaction on

the blockchain that follow the same rule as transactions in ZCash. In case the voter

voted incorrectly, they are able to re-vote, and the final equation has to be balanced

accordingly as the the quotient of transactions will not equate the total number of the

vote tokens issued and the number of total votes. In the case that this happens, the

candidate wallet with the incorrect vote issues the token back to the voter, once the

voter has authorised the re-vote. The high level overview of the voting system can be

observed in Figure 5.1.
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Figure 5.1: High level overview of the voting protocol

5.3 Registration

Registration is the first step of the protocol and is required as part of the identity

verification step and for audit purposes, to keep track of which voter has voted, and is

a control mechanism to disallow unregistered people to participate in the vote. Similar

to Zeus voting protocol [14], the system at hand follows the same principle with a bit

more leniency. Only the registered voter is able to vote, however, once the election

has started, any registered voter after the commencement of election is still entitled

to a vote. In theory, it is possible to enforce a similar scheme as in Zeus, where only

registered voters prior to the election commencement time are able to issue a vote, and

the latecomers are not able to vote despite attempting to register.

Registration can be viewed in Figure 5.2. A potential voter who wishes to proceed

with to the registration page, transparently, communicates with the server which sends

the voter a challenge signed with the server’s private key. The potential voter is then

required to solve the challenge and issue a response comprising of the solved challenge

and a time stamp, signed with the voter’s private key. A well known protocol called

Challange-Handshake Authentication Protocol (CHAP) [66] describes this exact pro-

cedure. This step is required in order for the client to authenticate themselves to the

server and while also providing periodic validation of said remote client.

Part of identity verification is dealing with the first assumption established earlier.

The X.509 certificate is verified with CA’s public key to ensure the issued certificate has

not been tampered with. Once the voter is verified, authenticated and has proceeded

with registration, the server stores a copy of X.509 certificate for the voter as part of

53



proof of registration as well as further fields of information which will be filled in at

later stages of the protocol, such as the receiving wallet address and the voting status.

The active email address is confirmed with the voter during registration and in order

for the voter to be able to proceed with the voting procedure.

As mentioned above, if the voter does not have access to a ZCash wallet, they would

need to create one in order to participate in the election. Figure 5.2 outlines the steps

taken for a voter to register for the election and the data that is processed in this step.

Figure 5.2: Registration step of the voting protocol

5.4 Invitation

Invitation step is a small step which sends a one-time unique link to the voter’s email

to redirect the voter to a unique ballot assigned to them. The registration details are

assumed to be checked the same way they were checked during the registration step,

using the CHAP protocol. The voting server issues the the invitations only when the

administrator of the election issues the details for the election. This is similar to the

Zeus protocol [14] where the administrator too, inputs the details of the poll as well as

the list of the registered users.
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The system server obtains the details from the copies of X.509 certificates stored in

the server’s database and issues the vote links to all of the registered bodies. Depending

on the setup, if the voters are allowed to register and participate during the vote, the

server periodically checks for new added voters and issues the links to the emails

specified within the certificate. The links are active for as long as the election and

expire as soon as the election timer has expired. Figure 5.3 outlines the invitation step

for the voting protocol.

Figure 5.3: Steps taken prior to invitation of the voter to the ballot

5.5 Voting

Once the voter has followed the ballot link, they are redirected to the ballot page. The

ballot is a simple interface which contains candidates names and a checkbox next to

the names. The top of the ballot contains a field which requires the voter to input their

receiving t address. These addresses are generated by the voter in order to send and

receive the payments. In order to maintain anonymity, but at the same time adhere to

the transparency of the vote, the voter is required to provide a receiving t address and

is required to send the vote with a z address.
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The receiving t address is provided by the voter on the top of the ballot and can be

changed as many times as required by the voter. This is the address which will ensure

that the voter receives the vote token which is redirected to the candidate wallet. The

z address is used by the voter to ensure that their vote is anonymous. The voter can

use t address, but the anonymity of the vote is not guaranteed.

Once the voter has provided receiving address on the ballot and picked the candidate

of their choice, the voter is able to proceed with passing of the vote. Prior to proceeding

with the vote, the voter is presented with authorisation notification, which states the

legal binding this voting system and that the voter authorises the transaction that will

take place by the system on their behalf directing the transaction to the candidate of

their choice. This functionality is possible with the assumption of the script which will

execute these timed transactions.

This system is in place as there is no limit to how many ZECs can be sent in one

transaction. The wallet of the voter may also not have any ZECs. Of course a script,

could simply ensure that a transaction of no more than one ZEC is sent at any given

time, but a voter who just created a wallet may not have any ZECs. The denomination

of the ZECs can be from 1 ZEC to 1 Zatoshi, the smallest denomination of ZEC, in

case a dishonest voter found a way to hijack the ZEC that arrived at his wallet. This is

one of the risks of this system which will be discussed more in the next section. Some

mitigations for this risk include, as mentioned above, the use of smaller denomination

of the ZEC, or reducing the amount of confirmations prior to verifying a transaction,

to speed up the transition between the system and the voter to grant the voter less

time to hijack the ZEC.

Once the authorisation takes place, the vote tokens can be generated by the system

faucet to send to a ZEC pool, or if there are enough ZECs available, issue them straight

from the ZEC pool. The ZEC pool is a system wallet which issues ZECs to the voters

once the voter has authorised the vote. At this point, the system tracks the number

of voter who have authorised the vote, and the amount of ZECs that have been issued

by the ZEC pool. Going back to above equation, these numbers have to balance.

Finally, once the voter has authorised the vote, the system changes the voter’s

status in the database. Figure 5.4 summarises the voting procedure from the point of

view of the voter. The systems actions denoted with blue arrows happen transparently

within the system.
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Figure 5.4: Overview of the voting step

5.6 Vote Transfer Variations

As mentioned previously, the system may have two variations and the trade-offs be-

tween them. The first variation comes as part of the candidate using a receiving t

address. This means that the voter sends a vote token from their z address into the

candidate’s t address, resulting in a de-shielding transaction. This keeps the linkability

of the vote token, meaning, when the candidate empties their wallet, the voter would

be able to link the coin all the way to the final ZEC pool, which is used as part of the

audit mechanism.

The second variant allows the candidate wallet to use a receiving z address. This

makes the vote transaction completely private at the cost of linkability of the vote

token. Regardless of the variation of the system, the ZEC pool issues a ZEC vote

token to the candidate’s wallet on the address that was specified on the ballot form.

This token is then forwarded to the candidate’s address as a blockchain transaction.

More in-depth explanation of these variations is explained in the next sections.

5.6.1 Transparent Candidate Transaction Variant

As outlined above, the use of receiving t address by the candidate makes the candidate

transparent. This means that at all times, the total number of votes that the candidate

has received is visible by the public, resembling the Bitcoin [28] transactions. This
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happens as part of a de-shielding transaction, where the anonymous ZEC value is

converted into the transparent ZEC value observable by all.

This may cause legal issues in some countries. The vote is transferred from the ZEC

pool to the voter’s wallet. The purpose of this transparent transaction is for public

verifiability that, indeed, one ZEC vote token has been issued by the pool to the voter,

verifying that the voter has not received a forbidden number of vote tokens from the

start. The number of confirmations can be set to 0, as mentioned above, in order to

not verify the transaction from the ZEC pool, as it is considered a trusted source. On

the other hand, it is possible to leave the confirmations to guarantee the integrity of

the protocol, though it would take longer to deliver the ZEC vote token to the voter.

This results in a less complicated setup, still guaranteeing the anonymity of the

voter and further traceability of the election. This also means that everyone would be

able to view the details of the transaction. Figure 5.5 demonstrates the general steps

taken for the transparent candidate vote passing.

5.6.2 Private Candidate Transaction Variant

The transaction between the candidate and the voter becomes private if the candidate

uses z address. Inherent to the ZCash protocol, z addresses break the linkability

between the ZECs and previous transaction. This means that when the candidate

empties their wallet into the ZEC pool, the voter may no longer trace their vote to the

ZEC pool. This scheme requires more trust in the system, however it guarantees the

privacy of the system i.e. no one can see the details and amounts of the transaction

sent to the candidate.

Since private transactions require more complicated setup, there are more internal

steps involved in making these transactions. One of the most important pieces of

information, which has been outline in section 3, is the establishment and sharing

of ephemeral keys. These keys allow the voter and the candidate both to view the

transaction, which is exclusive to the two parties. These keys are established as per

key agreement function of ZCash. Internally, the transaction remains the same. Figure

5.6 shows a detailed diagram of the steps taken to create the transactions. As stated

above, the first transaction can vary in the number of confirmations required before

the transactions are accepted. Similarly, the first transaction is the same for both
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Figure 5.5: Steps taken for issuing the vote in transparent candidate transaction

diagrams.

5.7 Vote Count/Audit

The final stage of the voting protocol is the vote count and the audit which takes place

after the count in order to review the election process and ensure that the integrity of

the election has not been compromised. The candidate wallets send all of the ZEC vote

tokens to the ZEC pool which has ZEC balance of 0 ZEC vote tokens. This requires

some trust in the system, however the assumption is that the candidate wallets and a

ZEC pool have 0 ZEC vote tokens in the beginning and that candidate wallets send
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Figure 5.6: Steps taken for issuing the vote in private candidate transaction

all of the collected ZEC vote tokens into the coin pool. If the system is using the

transparent candidate transaction variant, then the balance of the candidate would be

open to the public at all times. This fact means that if one of the wallets is dishonest,

the public members would identify a corrupt candidate. The same logic applies to

the transactions under the same variant. It would be easy to identify if a system was

compromised if one of the transactions has sent more or less than exactly 1 ZEC vote

token. This becomes more difficult in the private candidate transaction variant, where

more trust is required in the system and it is up to the voter to verify their transaction

as they are the only person who may view the transaction aside from the candidate.

Regardless of the variant, the candidate wallets send all of their acquired ZEC vote

tokens to the ZEC pool using sending t address on the candidate’s side and a receiving

t address on the side of the ZEC pool. Figure 5.7 demonstrates an example with 100
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vote tokens enforcing the equation specified earlier. The system declares the end of

the election or a poll as soon as the expiry time has been met. After that, no votes

are accepted into the count and the system, the unique vote links expire and the ballot

forms do not allow to proceed with the submission of the votes.

At this point the number of total votes cast becomes public as well as the number

of tokens issued for the voters. The total number of transactions may also be displayed

with the total number of voters who participated in the election. It is not in the interest

of the candidates to not empty their wallets upon conclusion of the election, or to send

an incorrect number of ZEC vote tokens as the system equations will not balance and

the election will be considered forfeit.

Figure 5.7: Counting of the votes and audit rules for the voting protocol

The administrators of the elections decide on the necessary action, if the vote

numbers have not balanced. The election may re-run on another date, with the entire

process running from the registration step, to audit.

The protocol described by the paper builds on the premises of ZCash, and since

the original protocol has not been manipulated in any way, it can be said that the

proof of functionality of the voting scheme’s transactions can be proven by the ZCash

functionality. The protocol relies on some assumptions, and the security considerations
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of these assumptions and other aspects of the protocol will be reviewed in the next

chapter in more detail.
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Chapter 6

Security Considerations

Security of the voting protocols is a widely discussed topic. As mentioned previously,

many protocols have emerged and found to contain security issues which would break

the protocol. In some cases, these issues happened during the election, which means

the protocol was compromised during a live election. There are issues that present a

significant threat to all voting systems, regardless of the paper or electronic form. This

issue is an external influence on the voter outside of the election. No voting system is

capable of dealing with a voter who has been influenced by an outside coercer to vote

in a particular way. For this reason this issue is out of scope of the current work.

A much more real issue is a compromised voting machine. Since the target platform

of the protocol would be user’s end devices, such as computers and mobile devices, it

is possible for a coercer to influence the outcome of the vote by compromising the

voter’s device as it would be much easier to achieve than compromising the entire

electronic voting scheme. The coercer would be able to infect the voter’s machine and

influence the voting software installed. The voting software will then be influenced by

the coercer’s candidate choice. One of the possible ways that a concerned voter can

defend against such an attack is to obtain a checksum of the voting application [67]. A

checksum can simply be a hashing of the voting software of a specific version which the

voter has installed on their device. If the voter’s device is compromised then the hash

versions will not be the same and the voter can obtain a new copy of the software.

Issues regarding double-voting i.e. using the same granted vote token to vote for

multiple candidates is eliminated inherently due to the adaptation of the ZCash plat-
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form as basis for the voting protocol. However, since the unique vote link is sent to

thee voter’s email address, the issue of compromised machine can persist once again.

A potential coercer could get access to the voter’s email first and attempt to cast a

vote on their behalf. Notification systems can be in place to send email confirmation

when a vote has been issued by the voter and visually notify the voter of the number

of times they have attempted to vote so far.

A major consideration in dealing with ZCash and the automated script assumption

is that all the operations deal with ZECs, which have a non-negligible value on the

market [69]. This gives an incentive for corrupt voters to attempt to hijack the coin

upon brief arrival to their wallet. The assumption is that the script is capable of de-

tecting the specific transaction arriving into the wallet and redirecting it to a candidate

immediately. There are several mitigations to avoid ZEC hijacking. First is to deal

with the smallest denominations of ZEC (1 zatoshi) to reduce the incentive to steal

a whole ZEC as 1 ZEC is 108 zatoshis [3]. Another mitigation is to create a specific

wallet capable of only working with vote tokens, specifically for election and nothing

else. Though the audit calculations for the end of the election may not fail, a rogue

transaction to a wallet, not belonging to a candidate may be noticed by the public.

Specialized wallets, may be the solution for this problem.

An undetected coercer would be able to successfully manipulate votes without a

notification system in place as even if the voter was able to vote after the vote manip-

ulation, a significantly low number of voters verify their vote as found by [8].

Having mentioned the required balance of values at the end of an election in order

to verify it’s integrity, a possible attack could be carried out on the system, where

a losing candidate does not submit all of the received votes. This would cause the

election to be forfeit as the total number of ZEC vote tokens does not balance with

the total number of votes and ZEC vote tokens issued. This attack could be detected

if the candidates were using t-addresses as all of the receiving transactions would be

visible, however it would pose a problem if the candidate used z-address as no public

party, except the administrators of the voting system would know if a candidate is

misbehaving. A possible mitigation for this attack can disregard the total number of

ZEC vote tokens returned back to the counting pool, only if the this number is less

than or exactly equal to the number of total votes. In case of this occurrence, the

voters and the administrators can be notified by the system that the votes returned
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did not match the total number of votes issued.

An alternative solution can implement internal system trackers, which count the

number of votes cast for each candidate, and serve the purpose of controlling the

amount of ZEC vote tokens returned by the candidates. A tracker for each candidate

increments each time a vote has been cast for a candidate and the system expects to

withdraw this amount of ZEC vote tokens from the candidate wallet, which would not

let a malicious candidate trick the system. These trackers would function even if the

candidates used z-addresses. It is also possible to make this tracker public, during the

tally period, to notify the public what the expected vote count is.

A question may arise, of what would happen if the system counters have been

modified by an attacker. According to the rules of the system, the integrity of the

election will be considered compromised and the result will be forfeit. The reality of

a decentralised system is that there may be more than one instance of the tracker

initialised at a given time, and it may be required that they all need to agree at the

end of an election. The forfeit election can be investigated, while displaying the results

to authorised people to determine the root cause of the issue. It could be possible

that after an investigation, the tracker has been found to be malfunctioning, in which

case the system could implement a recounting feature with involvement of authorised

human parties. This could potentially be a self-healing mechanism which starts to re-

count all the entities involved in an election. For example, if the total number of voters

has been altered, the self-repair mechanism could traverse the database to fetch the

recorded number of people who have voted successfully, in order to restore the tracker.

Alternatively, the election could be rescheduled, which introduces extra cost.

One significant attack on the entire blockchain is called 51% attack [68]. This is

considered to be one of the biggest flaws in blockchain technology. This attack allows an

entity with the biggest contribution to block mining to be able to change the contents

of the past blocks on the blockchain due to the sheer computer power available to the

entity. Other activities would include prevention of some transactions from obtaining a

required number of confirmations and preventing people form sending ZEC vote tokens

to the candidate addresses. This attack would be difficult to prevent. On one hand it

is possible to pick out a number of trusted verifiers out of the public volunteers and

allow them to confirm the transactions to be included in the blocks. On the other

hand there may be trust issues raised by the participating voters. One other option is
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to allow any willing public member to participate in a verification pool. This would

mean that the voter adds their computing power to the pool of other voter’s machines

in order to verify the transactions, however this pool would need to be organised by a

trusted party whose actions can be verified in case the party is considered rogue.

One of the final considerations would be the above mentioned Sybil attack. Since

the assumption of the verified identity has been established, the Sybil attack still poses

a problem. A user who wishes create multiple valid identities for voting could do so

if they wished. Technically, it would not be considered as a violation of the voting

protocol and the transactions would go through to the candidate wallets. Moreover,

nobody will be able to distinguish these transactions from valid transactions. A pos-

sible mitigation for this attack is to request additional personal information during

registration. Information such as PPSN could be requested as this information is is-

sued by the government and additional internal checks of the PPSN can be done prior

to registering a user.

Some assumptions of the work give rise to security questions and considerations

which have been discussed above. The system’s focus is on transparent voting, with

a great degree of security to disallow as many coercion attempts as possible, which

has been outlined by some of the design decisions of the protocol. The direction of

some of the blockchain protocols, such as Ethereum, promote bright future for this

protocol’s improvements. The next chapter will outline the attempts of blockchain

applications, such as Ethereum, to step in the direction, which allows implementation

of zk-SNARKs, bringing blockchain voting protocols one step closer to establishing a

strong foothold.
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Chapter 7

Future Work

Having outlined the voting protocol and the basis for it’s operations, it is important

to outline the direction this protocol can take. The Ethereum protocol [34], has been

established early on in the work as a potential candidate to become the platform for

the voting protocol. One of the reasons for this is that Ethereum supports creation of

contracts, which are accounts which are operated by the EVM. These accounts execute

specific code which performs a certain function, for example a monthly rent payment

to a particular address in Ether. These contracts can be used to implement a voting

scheme. The benefits of this would cover some of the security considerations outlined

in the previous sections with regards to the major concern for the above protocol and

would make render some of the assumptions obsolete. The particular benefit is the

creation of custom currency, which may not have any value outside the context of the

contract within which it has been created. This means that even if a corrupt voter

decided to steal a vote token made in Ethereum, they would not be able to use it

anywhere else except of the voting contract context.

Since blockchain is decentralized, there is more incentive to make the voting protocol

more decentralized as well, while not making a particular government a trusted central

party issuing and monitoring the vote tokens and the votes. Complete decentraliza-

tion of the protocol would be the desired outcome, however the lack of anonymity of

Ethereum platform currently poses as an issue to the fundamental concepts of voting.

Steady advancements in development of Ethereum platform bring the creation of this

protocol closer. Buterin, the co-founder of Ethereum, has given some updates on the
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direction of the Ethereum and its pending upgrade named ”Metropolis” [70]. Metropo-

lis is an update which aims to improve Ethereum, and although thee exact details of

the update are unconfirmed, the future Ethereum aims to make use of zk-SNARKs, the

same technology as used in ZCash. Zk-SNARKs are complex to implement efficiently

due to the time taken to generate proofs, which is one of the issues in implementing

these today. However, steps towards adoption of zk-SNARKs have already been taken

by Ethereum [71].

These steps have been done in the form of small projects like ZCash over Ethereum

or ”ZoE” [73] which has been an extension of ”baby ZoE” [72]. Baby ZoE was the

first attempt to merge the zk-SNARKs with Ethereum, through pre-compiled con-

tracts, which can be seen as experimental contracts not added to the EVM. Baby ZoE

attempted to add elliptic curve pairing operations to the pre-compiled contract in or-

der to prove that a sender knows a commitment on a Merkle tree of the Ethereum

contract with some authentication in order for other users not to withdraw from the

contract spending the original receiver’s deposit. The current issue with zk-SNARKs

in Ethereum is that there the SNARKs take a long time to generate. The difference

between baby ZoE and the updated ZoE is the fact that baby ZoE attempted to im-

plement the older, simpler version of ZCash, Zerocoin [40], which has been outlined

previously. The updated ZoE protocol, used the setup phase from ZCash on a pre-

compiled contract in order to create shielded custom tokens, which can be used in

voting, and have the same properties as shielded ZCash transactions [73].

The other potential for improvement of the proposed protocol is for the registration

side. In accordance to the security considerations mentioned above, it is possible to

request more private information during the registration stage, or create two-factor

authentication process with user’s mobile device of choice. However, with the Ethereum

protocol, perhaps, this centralized aspect of the protocol can be removed completely

by implementation of a contract. If a government body was to issue a voting contract

with the candidates defined within, any person who wishes to vote would be able to

vote, and the rules of the election will be enforced by how the contract is created.

Having outlined the developments which are being made on these protocols, indi-

cates a good possibility that blockchain voting system will become the system which

would fill the identified gap in the electronic voting domain. The voting protocol and

ZCash payment technology have both been described in great detail and it is now
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possible to conclude the work.
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Chapter 8

Conclusion

A standardised electronic voting solution which would be widely adopted has not yet

emerged, and although there are some good candidates, there are inherent security

issues which make these protocols unsuitable for elections. The literature identifies

a distinct gap in the domain which could be filled by a protocol, using a different

technology then the previous protocols. Blockchain offers an inherently more secure

platform, and with development of the recent anonymous transaction scheme, namely

ZCash, it is finally possible to tackle the anonymity issues of blockchain transactions,

which would open a possibility for blockchain voting. Ethereum has offered the smart

contract functionality since it first came to pass, however the much needed anonymity

factor has not been present in the protocol so far. The rapid growth of the Ethereum

protocol, and it’s integration with ZCash will most likely come up with the protocol,

suitable for wide-spread, cheap voting system. As indicated by the future work on

these protocols, voting on blockchain has received the much needed push in the right

direction.

The applications for the proposed protocol are not limited to government elections

only. These can be stretched to opinion polls or corporate elections providing a unified

platform for voting regardless of the cost or circumstance. The drive behind a cheaper,

unified, electronic voting system was the basis for the above protocol, which has po-

tential to grow into a real wide-spread implementation, dealing with assumptions and

concerns which limit the current system.

The standardisation or adoption of such protocol would be a step towards public

70



approval of electronic voting schemes, provided that the said protocol is secure and has

been tested and tried. The release of new protocols, with security issues does not take

steps to progress in public approval and, ultimately, replacement of the paper elections.

A major effort has gone into development of a sound voting system and with the

rapid developments of blockchain technology and it’s implementations in various fields,

one final push is required to bring a sound electronic solution to one of the humanities

basic rights - to vote.
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