
Compiling for Reduced Register Pressure

Jarrod Richardson
M.A.I

Supervisor: Prof. David Gregg
2017

One of the best-known compiler optimizations is instruction scheduling,
which re-orders instructions to better exploit pipelining and instruction-level
parallelism. When the compiler re-orders instructions in this way, the result is
often an increase in the number of local variables and values that are simul-
taneously live. This also causes the number of live local values to exceed the
number of available registers and the result of this is that some live values have
to be spilled to memory.

Despite all the existing compiler work on instruction scheduling, it is not
clear that it is actually solving the right problem for popular out-of-order pro-
cessors that have few architected registers and do instruction scheduling in
hardware. Instead, there may be benefits in the compiler trying to re-order
instructions to reduce the number of simultaneously live values. This is other-
wise known as reducing the register pressure.

For this project, an additional compiler optimization pass was developed to
reduce register pressure for a basic block of code. The pass was written for
LLVM, a compiler framework library, to test and determine whether reducing
register pressure is a viable solution for processors with few architected registers.
The paper explores a number of examples that have reduced register pressure
solutions and tries to discern where reducing register pressure can improve the
overall optimization and efficiency.

In addition to this, the use of randomly generated data dependency graphs
were used to comprehensively test the instruction scheduler designed for the
optimization pass. These were tested thousands of times to find the average
reduced register pressure gained when using the instruction scheduler. It also
highlights a number of variables that have an effect on these figures, and how
well randomly generated data dependency graphs reflect the real world.

1


