
Compiling for Reduced Register Pressure
by Jarrod Richardson

Supervisor: Prof. David Gregg
School of Computer Science and Statistics

Department of Electronic and Electrical Engineering

M.A.I in Electronic & Computer Engineering

Trinity College Dublin

Declaration

I, Jarrod Richardson, declare that the following dissertation, except where
otherwise stated, is entirely my own work; that it has not previously been
submitted as an exercise for a degree, either in Trinity College Dublin, or in
any other University; and that the library may lend or copy it or any part
thereof on request.

Signature:

Dated:

1

Summary

One of the best-known compiler optimizations is instruction scheduling, which
re-orders instructions to better exploit pipelining and instruction-level par-
allelism. When the compiler re-orders instructions in this way, the result is
often an increase in the number of local variables and values that are simul-
taneously live. This also causes the number of live local values to exceed the
number of available registers and the result of this is that some live values
have to be spilled to memory.

Despite all the existing compiler work on instruction scheduling, it is not
clear that it is actually solving the right problem for popular out-of-order
processors that have few architected registers and do instruction scheduling
in hardware. Instead, there may be benefits in the compiler trying to re-
order instructions to reduce the number of simultaneously live values. This
is otherwise known as reducing the register pressure.

For this project, an additional compiler optimization pass was developed
to reduce register pressure for a basic block of code. The pass was written for
LLVM, a compiler framework library, to test and determine whether reduc-
ing register pressure is a viable solution for processors with few architected
registers. The paper explores a number of examples that have reduced reg-
ister pressure solutions and tries to discern where reducing register pressure
can improve the overall optimization and efficiency.

In addition to this, the use of randomly generated data dependency graphs
were used to comprehensively test the instruction scheduler designed for the
optimization pass. These were tested thousands of times to find the average
reduced register pressure gained when using the instruction scheduler. It also
highlights a number of variables that have an effect on these figures, and how

2

well randomly generated data dependency graphs reflect the real world.

3

Acknowledgements

I am using this opportunity to express my gratitude to everyone who sup-
ported me throughout the course of this MAI project. I am thankful for
their aspiring guidance, invaluably constructive criticism and friendly advice
during the project work. I am sincerely grateful to them for sharing their
truthful and illuminating views on a number of issues related to the project.

I express my thanks to Prof. David Gregg and my progenitors, Mark and
Carol, for their support and guidance.

4

Contents

1 Introduction 12

2 Literature Review 13
2.1 Central Processing Units . 13
2.2 Inside the Central Processing Unit 14

2.2.1 The Registers . 14
2.2.2 The Register File . 14
2.2.3 The Arithmetic Logic Unit 15

2.3 The Operation of the Central Processing Unit 16
2.3.1 Processor Instructions 17
2.3.2 Instruction cycle pipelines 18

2.4 Primary and Auxiliary Memory 19
2.5 Instruction Scheduling . 20

2.5.1 Register Spilling . 20
2.6 Graph Theory . 21

2.6.1 Graph Colouring . 21

3 Methodology 23
3.1 Instruction Schedule . 23
3.2 Data Dependence . 24
3.3 Data Dependence Graph . 25
3.4 Chains . 26

3.4.1 Minimum Chain Algorithm 26
3.4.2 Picking Chains . 27

3.5 Chain Overlap . 27
3.5.1 Minimum Colours . 29

3.6 Scheduling for Reduced Register Pressure 30
3.6.1 The Scheduler . 30

5

3.6.2 Deadlock . 32
3.6.3 Avoiding Deadlock . 32

3.7 Randomly Generated Data Dependence Graph 33

4 Examples for Reducing Register Pressure of Data Depen-
dence Graphs 35
4.1 Worked Examples . 35
4.2 Mirror Formation . 36

4.2.1 Instruction Schedule 36
4.2.2 Data Dependence Graph 37
4.2.3 Chains . 38
4.2.4 Chain Overlap . 39
4.2.5 Start and Release Vertices 40
4.2.6 Scheduling . 40

4.3 Diamond Formation . 43
4.3.1 Data Dependency Graph 43
4.3.2 Chain Overlap, Start and Release Vertices 44
4.3.3 Scheduling . 45

4.4 Rhombus Formation . 47

5 Research Findings 48
5.1 Random Data Dependence Graph 48
5.2 The Effect of Increasing the Number of Vertices 49
5.3 The Effect of Increasing the Number of Trials 49
5.4 The Effect of Changing the Maximum Dependencies 50

6 Discussion of Results 51
6.1 Reduced Pressure and the Number of Vertices 51
6.2 The Number of Trials within the Experiments 52
6.3 Reduced Pressure and the Maximum Dependencies 53
6.4 Register Spills . 54

7 Conclusion 55
7.1 Final Comments . 55
7.2 Future Work . 55

A Appendices 59

6

List of Figures

2.1 An N Bit Register . 14
2.2 Arithmetic Logic Unit . 15
2.3 An Example of the division of bits in an Instruction 17
2.4 ARM Assembly Addition Instruction 18
2.5 A Graph . 21
2.6 A Coloured Graph . 22

3.1 An Instruction Schedule in LLVM IR and ARM Assembly . . 23
3.2 An Instruction Schedule Name and Dependence Representation 24
3.3 A Data Dependence Graph . 25
3.4 A Set of Chains . 27
3.5 A Dependency Graph with Overlapping Chains 28
3.6 A Dependency Graph with Non-Overlapping Chains 29

4.1 Register Colours for Worked Examples 35
4.2 Mirror Formation: Instruction Schedule 36
4.3 Mirror Formation: Data Dependence Graph 38
4.4 Mirror Formation: Data Dependence Graph Highlighted . . . 38
4.5 Mirror Formation: Chains for Data Dependence Graph 39
4.6 Mirror Formation: Overlap of Chains 39
4.7 Mirror Formation: Non-Overlap of Chains 40
4.8 Mirror Formation: Start Vertices of Chains 40
4.9 Mirror Formation: Release Vertices of Chains 40
4.10 Mirror Formation: A Comparison of the Input versus Output . 42
4.11 Diamond Formation: Data Dependence Graph Highlighted

with Chain Indexes . 43
4.12 Diamond Formation: Overlap of Chains 44
4.13 Diamond Formation: Start Vertices of Chains 44
4.14 Diamond Formation: Release Vertices of Chains 44

7

4.15 Diamond Formation: A Comparison of the Input versus Output 46
4.16 Rhombus Formation: A Comparison of the Input versus Output 47

8

List of Tables

1 A List of Terms of Reference I 10
2 A List of Terms of Reference II 11

2.1 Other Central Processing Unit Components 14
2.2 The Inputs to the Arithmetic Logic Unit 15
2.3 The Outputs of the Arithmetic Logic Unit 16

5.1 The Variables used in generating the results 48
5.2 The Effect of Varying VMax, N = 1000, EMax = 3 49
5.3 The Effect of Varying N for a given VMax, EMax = 3 49
5.4 The Effect of Varying EMax, VMax = 30, N = 10000 50

9

Terms of Reference

Term Acronym Description

Central Processing Unit CPU The electronic circuitry within a computer
Vertex/Vertices V A point where two or more curves, lines,

or edges meet.
Edges E A particular type of line segment joining

two vertices.
Low level Virtual Machine LLVM A collection of modular and reusable

compiler and tool-chain technologies
used to develop compiler front ends
and back ends

Data Dependence DD A situation in which an instruction is
dependent on a result from a sequentially
previous instruction before it can complete
its execution.

Data dependency graph DDG A graph representing data dependence.
Chain C A sequence of adjacent edges.
Chain colouring Assigning a register to a chain
Assembly Low level programming language .
Operation code Opcode The portion of a machine language

instruction that specifies the operation to
be performed

Depth-first search An algorithm for traversing or searching tree
or graph data structures

Immediate representation IR The data structure or code used internally
by a compiler or virtual machine to represent
source code.

Table 1: A List of Terms of Reference I

10

Term Acronym Description

Advanced RISC machine ARM A processor architecture based on a 32-bit
reduced instruction set (RISC) computer.

Arithmetic Logical Unit ALU A unit in a computer which carries out
arithmetic and logical operations

Throughput The number of instructions that can be
executed in a unit of time

Jumps Machine level branch instructions.
Random Access Memory RAM A form of computer data storage which

stores frequently used program instructions.
Read Only Memory ROM A form of computer data storage used to

store the start-up instructions for a
computer.

Table 2: A List of Terms of Reference II

11

Chapter 1

Introduction

The objective of this paper is to discuss how the design and implementation
of a compiler optimizer attempts to reduce register pressure. This is achieved
by re-ordering and re-naming instructions within an instruction schedule or
a basic block of instructions. This is done to account for the available reg-
isters to try and prevent memory spills, as memory spills inhibit the overall
performance or throughput in terms of execution time for a basic block of
instructions. The incentive for reducing register pressure, is to determine if
there is a benefit in the compiler re-ordering the instruction schedule, as it is
specifically useful for processors that have few registers and will benefit the
most from reducing the register pressure.

12

Chapter 2

Literature Review

2.1 Central Processing Units

The Central Processing Units (CPUs) within computers are the central elec-
tronic circuitry that carry out instructions from a computer program that
performs things like basic arithmetic, logical, control and input/output op-
erations specified by these instructions [5].

Computer architecture has advanced significantly since the early designs
in the 1950s [11]. Back then, each computer design was unique as there were
no general purpose computers. These computer designs were often designed
to handle a specific problem and would share no or few similarities between
other computer designs. As a result of this the software built for each of
these computers was different and could not be shared between other com-
puter types. Today, general purpose computers number in the billions and
they are capable of executing an array of useful and widely applicable in-
structions that can handle a multitude of different computer programs that
solve any number of problems.

The Central Processing Unit does not operate in solitude within the com-
puter. There are a number of other components that a CPU can communicate
with. These components help make up the rest of the computer in addition
to the CPU and some of these can be seen in Table 2.1.

13

Component Description
Primary Memory Responsible for storing CPU program instructions

and any data actively operated on by the computer.
Auxiliary Memory Responsible for keeping any data when the computer

is powered down and also miscellaneous data
transferred from Primary.

Input/Output Interfaces Responsible for connecting and communicating the
computer to the outside world, where various
data can be sent/received.

Table 2.1: Other Central Processing Unit Components

2.2 Inside the Central Processing Unit

2.2.1 The Registers

Processor registers are memory locations available to a computer’s central
processing unit. These are usually small and fast storage devices that are
contained within the CPU [5]. Some but not all registers can have specific
hardware functions and may be read-only or write-only. Registers are of a set
size of N Bits, which depend on the computer’s architecture or the specific
operation of the register. In a CPU the number of registers is finite and data
that does not fit within the finite amount of registers needs to be stored in
some other storage location such as primary memory.

Figure 2.1: An N Bit Register

2.2.2 The Register File

The register file is an array of processor registers within the central processing
unit [5]. These registers are available to the programmer and are used to
stage data between memory and the functional units on the CPU. In more
complicated CPUs, a technique called register renaming is used to eliminate

14

false data dependencies that arise from the reuse of processor registers by
successive instructions that don’t have any real data dependence between
them [10].

2.2.3 The Arithmetic Logic Unit

The arithmetic logic unit (ALU) is a type of functional unit that resides
within the processor. It is a digital circuit that performs mathematic arith-
metic and bitwise logic operations for a given set of inputs [5]. These inputs
to the arithmetic logic unit are seen in Table 2.2, where a brief description
of each is given. A visual representation of the arithmetic logic unit is shown
in Figure 2.2. The central processing unit sends off all operations associated
with the arithmetic logic unit to the ALU unit. The other CPU operations
are not handled by the arithmetic logic unit. The ALU often has a set of
internal registers that the operands and results are stored in while the ALU
performs its operations.

Inputs Description
Operands A number of operands supplied by the register file.
Opcode A code which indicates which operations the ALU is to complete.
Status Information from the previous operations of the ALU.

Table 2.2: The Inputs to the Arithmetic Logic Unit

Figure 2.2: Arithmetic Logic Unit

15

The outputs from the arithmetic logic unit are seen in Table 2.3 where
a brief description is also given for each one of them. The result of an
operation performed by the ALU is deterministic in nature as there is no
randomness involved with the output for a given set of inputs. A system
that is deterministic will always produce the same result for the same set of
inputs. The result and the status information are both deterministic. The
outputs of the ALU are visible to the programmer via the register file. The
result can be either transferred to any of the operands for the next operation
of the ALU or back into the register file to be saved in a register. The status
information is also transferred back into the ALU for the next operation.

Outputs Description
Result The output that results from the combination of inputs.
Status Information of the current operation of the ALU.

Table 2.3: The Outputs of the Arithmetic Logic Unit

2.3 The Operation of the Central Processing

Unit

The fundamental operation of the CPU is to execute a sequence of stored
instructions that is commonly referred to as a program. The instructions to
be executed are kept in computer memory which are then transferred to the
central processing unit for execution. There is common architecture in most
CPUs that follow a set of steps that break up executing a single instruc-
tion into multiple steps, each handled by a different part of the CPU. These
steps include: fetching the next instruction; decoding the instruction; and
executing the instruction. This type of architecture is collectively known as
an instruction cycle pipeline [5]. Pipelining instructions implement a form of
parallelism that is said to speed up the execution of a single processor.

After the execution of an instruction, the entire process is repeated using
the next instruction cycle, normally fetching the next-in-sequence instruc-
tion because of the incremented value in the program counter. If a jump
instruction was executed, the program counter will be modified to contain
the address of the instruction that had been jumped to and the program
execution will continue as normal.

16

Some instructions manipulate the program counter rather than produc-
ing result data directly. These instructions are referred to as “jumps” and
facilitate program behaviour like loops and conditional program execution
and calling out to a function via a conditional jump.

2.3.1 Processor Instructions

An instruction is a single operation of a processor defined by the processor
instruction set [8]. This set of instructions is dependent on the computer
architecture itself. There is often a common set of instructions implemented
by almost every central processing unit. Some common instructions are those
that involve the arithmetic logic unit or sending data to and from the mem-
ory units connected to the CPU. On traditional architectures, an instruction
is a sequence of bits (often referred to as machine code) that includes an
opcode, along with any operands that the opcode requires to execute. The
instruction bits are usually divided into a set number of bits for each com-
ponent of the instruction, for example see Figure 2.3 where the opcode on
this particular system is the first 6 bits, with the total number of bits for the
entire instruction at 33 bits. The remaining bits are divided into sections
that would be specific to a particular opcode, in this case the ”Destination”
is 10 bits, the ”OperandA” is 9 bits and the ”OperandB” is 8 bits.

Figure 2.3: An Example of the division of bits in an Instruction

The binary bits used in instructions are for the most part only used
and seen by the central processing unit. Programmers instead use human
readable code that a they can quickly read and use to program the central
processing unit. An example of human readable code is the ARM assembly
language [1]. Shown in Figure 2.4 is a simple addition instruction that takes
two operands and stores the result in a register located in the register file.

17

Figure 2.4: ARM Assembly Addition Instruction

An English translation of this instruction is as follows: ”Add two to the
contents of register zero and store the result in register one”. To read this in-
struction, start first with prefixed word ”add”, this correspond to the opcode
that adds two numbers together. The next word is ”r1”, this corresponds
to register one within the register file. The location of this register in the
instruction indicates that it is the destination register of this operation. This
means that the result will be stored in register one. Commas are used to
break up the operands of an instruction. The following two operands are
”r0” and ”2”, which are register zero and constant two respectively. One
could also represent the instruction mathematically as

r1 = r0 + 2

Human readable code is converted into machine code with the use of a
assembler/compiler program. Often the Human readable code is simplified
such that is it easier to manage/program and large tedious tasks are short-
ened, this requires the assembler/compiler program to convert and expand
the code into all of the required machine code.

2.3.2 Instruction cycle pipelines

Instruction pipelining is a technique that implements a form of parallelism
called instruction-level parallelism within a single processor [5]. It therefore
allows faster CPU throughput (i.e. the number of instructions that can be
executed in a unit of time) than would otherwise be possible at a given clock
rate.

The instruction cycle is split into a series called a pipeline. Rather than
processing each instruction sequentially, each instruction is split up into a
sequence of dependent steps so different steps can be executed in parallel
and instructions can be processed concurrently.

The first step is always to fetch the instruction from memory; the final
step is usually writing the results of the instruction to the processor registers

18

or to memory. Pipelining seeks to let the processor work on as many in-
structions as there are dependent steps, just as an assembly line builds many
vehicles at once, rather than waiting until one vehicle has passed through the
line before admitting the next one. Just as the goal of the assembly line is to
keep each assembler productive at all times, pipelining seeks to keep every
portion of the processor busy processing an instruction. Pipelining lets the
computer’s cycle time be the time of the slowest step, and ideally lets one
instruction complete in every cycle.

2.4 Primary and Auxiliary Memory

Primary memory is often referred to as main memory. Main memory is the
only memory directly accessible to the CPU. The CPU continuously reads
instructions stored there and executes them as required. Any data actively
operated on is also stored there in a uniform manner [13].

Main memory is directly or indirectly connected to the central processing
unit via a memory bus. It consists of two separate buses namely an address
bus and a data bus. The CPU firstly sends a number through an address
bus that indicates the desired location of the data. It then reads or writes
the data in the memory cells using the data bus.

Other memory is auxiliary memory which is used to store large amounts
of data that is not frequently used by the CPU. It is also used for saving data
when the computer powers down as main memory is not preserved without
power [13].

The access speed of primary and auxiliary memory is much slower than
that of memory that sits directly within the central processing unit. Primary
memory access is faster than auxiliary memory. This difference in speed
between CPU and other 2 memory types is relevant, because the CPU has to
enter a wait state after requesting data from either one of these two memory
types. The CPU has to wait several cycles before it can continue executing
instructions if the last instruction was to fetch data from memory.

19

2.5 Instruction Scheduling

Instruction scheduling is a compiler optimization used to improve instruction-
level parallelism, which improves performance on machines with instruction
pipelines. Without changing the meaning of the code, it tries to avoid pipeline
stalls by rearranging the order of instructions and avoid illegal or semanti-
cally ambiguous operations.

The problem facing an instruction scheduler is to reorder machine-code
instructions to minimize the total number of cycles required to execute a par-
ticular instruction sequence. Unfortunately, sequential code executing on a
pipelined processor inherently contains dependencies between some instruc-
tions. Any transformations performed during instruction scheduling must
preserve these dependencies in order to maintain the logic of the code being
scheduled.

As well as this, instruction schedulers often have a secondary goal of
minimizing register lifetimes or at least not extending them unnecessarily if
they are not in use. This is usually a conflicting objective in practice, because
limiting the number of live registers introduces false dependencies [5].

2.5.1 Register Spilling

A major effect of pipelining is to change the relative timing of instructions by
overlapping their execution. This introduces data and control hazards. Data
hazards occur when the pipeline changes the order of read/write accesses to
operands so that the order differs from the order seen by sequentially exe-
cuting instructions on non-pipelined machines [6].

The operation of moving a variable from a register to memory is called
spilling, while the reverse operation of moving a variable from memory to a
register is called filling. A variable has a much slower processing speed when
spilled to memory compared to a variable in a register [14].

Register pressure measures the availability of free registers at each point
during the program execution. When a large number of the available registers
are in use the register pressure is said to be high. One way to reduced the
register pressure is to increase the number of registers in an architecture,

20

however, this increases the cost [12].

2.6 Graph Theory

Graph theory is the study of graphs [15], which are structures of mathemat-
ical models that have certain relations between various objects. A graph is
made up of a set of vertices or objects, these vertices are connected to each
other by edges. These edges represent the relationships between these ver-
tices. A vertex (singular) or vertices (plural) is the term used to describe an
object. An edge is the term used to describe the relationship between two ob-
jects. From this point onwards all objects will be referred to as vertices and
all object relationships will be referred to as edges. An example of a graph is
shown in Figure 2.5. In this particular graph there is three vertices (Object
1, Object 2, Object 3) and three edges. This graph can be mathematically
expressed as

G = (V,E)

where G is the graph, V is the set of vertices and E is the set of edges. For
this example, V = {v1, v2, v3} and E = {(v1, v2), (v1, v3), (v2, v3)}.

Figure 2.5: A Graph

In this paper, the graphs that are mentioned are all directed graphs.
A directed graph is a graph in which the edges have some orientation or
direction associated with them.

2.6.1 Graph Colouring

In graph theory, graph colouring is a type of labeling in which vertices of a
graph are subject to certain a constraint which dictate their ”colour” [15].
The constraint is that the vertices are coloured such that no two adjacent
vertices share the same colour. An example of this is shown in Figure 2.6, it

21

can be seen that no two vertices share the same colour and are adjacent to
one another, while there are two vertices that are coloured blue they are not
adjacent so they can be coloured the same.

Figure 2.6: A Coloured Graph

22

Chapter 3

Methodology

3.1 Instruction Schedule

An Instruction Schedule is a sequence of instructions that perform some
operation on a central processing unit. The sequence is executed by the pro-
cessor sequentially in the order that it is given the instructions. An example
of a simple instruction schedule in LLVM Intermediate Representation (IR)
and ARM Assembly is shown in Figure 3.1. See [1, 9] for details about the
language references for both these representations.

Figure 3.1: An Instruction Schedule in LLVM IR and ARM Assembly

23

The example in Figure 3.1 shows the same logical set of instructions im-
plemented similarly in the two different human readable representation, first
in LLVM IR and then in ARM Assembly. These representations can be read
by a compiler and turned into machine code that the processor can under-
stand in order to execute them.

3.2 Data Dependence

Data Dependence, with regards to an instruction schedule, is a situation in
which an instruction refers to the data of a preceding instruction. This means
that an instruction with a data dependence cannot be executed before the
one or more instructions that it depends upon. Some of the instructions listed
in Figure 3.1 have a data dependence on other instructions. It can be seen
that each instruction (except the first, and in each representation) depends
on the previous instruction. The opcode and syntax is of little importance
when looking at the data dependence. A simple graph can be created using
the representation in Figure 3.1, where only the name and data dependence
is preserved. This can be seen in Figure 3.2.

Figure 3.2: An Instruction Schedule Name and Dependence Representation

The coloured circular bubbles on the left, represent the destination of each
operation from the instruction schedule. Each row of bubbles corresponds to
an instruction, with the arrow indicating the dependence of the left bubble
on the right bubbles. The uncoloured circular bubbles on the right of the
arrow, represent the operands of the instruction. Throughout this paper

24

these name and data dependence representations will be used instead of an
instruction schedule.

3.3 Data Dependence Graph

A data dependence graph (DDG) is a directed graph

G = (V,E)

where V is the set of vertices that represent the data and E is the set of edges
that represent true data dependence between these vertices. A vertex can
be connected with multiple incoming edges, meaning the vertex has multiple
dependencies on other vertices. A vertex can also be connected with multiple
outgoing edges, this means the vertex is depended upon by multiple other
vertices.

An example of a data dependence graph is shown in Figure 3.3. This is
the data dependence graph of the previous representation in Figure 3.2. In
this example, the vertices, V, are represented by the circular bubbles with
the vertex index number inside, while the edges, E, are represented by the
arrows between the bubbles indicating an edge between the two vertices.
V is enumerated as follows

V = (V0, V1, V2, V3)

E is enumerated as follows

E = (V0, V1), (V0, V2),

(V1, V2), (V1, V3), (V2, V3)

Figure 3.3: A Data Dependence Graph

25

The importance of making use of a data dependence graph, with regards
to reducing the register pressure, is instructions often have data dependence
between other registers. The data dependence therefore can be represented in
a data dependence graph where the true data dependence is mapped onto the
graph. Since re-ordering the instructions doesn’t change the data dependence
graph, as re-ordering doesn’t change any data dependence, this is a useful
tool to help model a solution to reduce register pressure.

3.4 Chains

A chain is a sequence of adjacent edges

C = (v1, v2), (v2, v3), . . . , (vk−2, vk−1), (vk−1, vk)

in a data dependence graph. Chains are formed such that every edge in the
data dependence graph is contained within exactly one chain.

An algorithm is needed to traverse a data dependence graph and associate
each edge with exactly one chain. The aim is to create the least amount of
chains necessary to fully traverse the data dependence graph i.e. the mini-
mum amount.

3.4.1 Minimum Chain Algorithm

In order to attain the minimum number of chains the process requires, a
simple depth-first search algorithm can be used. An edge is marked when it
is assigned to a chain. A vertex with no outgoing edges or with all of it’s
outgoing edges marked, is considered the end of a chain. A vertex with no
incoming edges or with all of it’s incoming edges marked, is considered to be
the start of a chain.
The algorithm starts by picking a vertex that is legible to be the start of a
chain. It then proceeds to travel the data dependence graph by following one
of the outgoing edges, marking the edges as it propagates, until it reaches a
vertex that is considered the end of a chain. This process is repeated until
every edge is marked and is within exactly one chain.

26

Figure 3.4: A Set of Chains

The chains generated for the data dependency graph in Figure 3.3 are
shown in Figure 3.4. There are three chains produced by the minimum
chain algorithm, each chain is coloured with a different colour to differentiate
between them. The dependency of the chains flows from left to right in the
figure. The chains can be formally written as

C = [(V0, V1), (V1, V3)], [(V0, V2), (V2, V3)], [(V1, V2)]

3.4.2 Picking Chains

It is important to note that choosing which vertex to start on and choosing
which outgoing edge to follow, when a vertex has multiple outgoing edges,
will impact the chains that are created. A set of rules needs to be created such
that when the algorithm is run for a particular data dependence graph, it
either generates the same set of chains every time, or a different set of chains
every time. The two simple rules to follow that guarantees the creation of
the same set of chains for a given data dependence graph is:

1. Pick the first scheduled vertex that is legible to be the start of a chain
every time a chain is created.

2. Pick the longest outgoing edge when there are multiple outgoing edges,
where the longest is defined as the longest number of vertices between
the two vertices in the schedule.

3.5 Chain Overlap

After identifying the chains of a data dependence graph, the next step is to
verify if there is an overlap between these chains and where the overlaps oc-

27

cur. This is an important metric when trying to reduce the register pressure
of a sequence of instructions, as some of the chains can share a register if
they definitely do not overlap with one another. A scheduler can use this
information to decide on how many registers a given data dependence graph
needs to fully schedule the sequence of instructions and which chain can be
assigned to which register.

Overlapping is defined as when two chains Ci and Cj have the prop-
erty that no matter how the operations/vertices in the dependency graph
are scheduled, the dependences in the graph always overlap. This can be
summarized as the two chains Ci and Cj share at least one vertex with one
another and that they also can be linked with one edge between any one
vertex in Ci and any one vertex in Cj. An example of overlapping can be
seen in Figure 3.5, where the dependency graph’s vertices can be assigned to
two chains, which are:

C = (V1, V2, V3), (V1, V3)

Figure 3.5: A Dependency Graph with Overlapping Chains

C1 and C2 definitely overlap with each other.

Non-Overlapping is defined as when two chains Ci and Cj have the prop-
erty that no matter how the operations/vertices in the dependency graph are
scheduled, the dependences in the graph never overlap. This is the opposite
of overlapping as the two chains Ci and Cj must share no vertices with one
another and that they also cannot be linked with one edge between any one
vertex in Ci and any other vertex in Cj. An example of non-overlapping can
be seen in Figure 3.6, where the dependency graph’s non-overlapping chains
are:

C = (V1, V3, V5), (V2, V4, V6)

28

Figure 3.6: A Dependency Graph with Non-Overlapping Chains

These are the only two chains within the dependency graph that defi-
nitely do not overlap, these chains must be generated using the minimum
chain algorithm. Note; using different rules when picking the chains in the
minimum chain algorithm could result in different chains and therefore dif-
ferent overlapping/non-overlapping between these chains.

An algorithm is needed to calculate the overlap/non-overlap between each
of the chains Ci and Cj, where j > i. The algorithm must compare each edge
of a chain and check whether or not that edge’s vertices exist in any other
chain and whether there is a single edge that connects this vertex to a vertex
within the other chain. If this condition holds true, the current chain and
that chain are said to be definitely overlapping. Otherwise, both chains are
said to be definitely non-overlapping.

The chain overlap graph is now coloured such that no two adjacent ver-
tices share the same colour. The act of assigning a register to a chain can
also be called colouring a chain.

3.5.1 Minimum Colours

If two chains are definitely non-overlapping they can share a colour, this
is useful when considering the minimum number of colours a given data
dependence graph requires. Since, not all chains can be scheduled, as their
first vertices might have a dependence on another chain, it is non-trivial to
calculate the minimum colours of a dependency graph before the scheduler
has begun scheduling. However, the maximum number of colours needed is
equal to the number of chains. An optimal solution will use the least possible
number of colours. The scheduler knows that once it reaches the maximum

29

number of colours, there is nothing for it to do as the schedule cannot be
made more efficient. An estimate of the minimum colours in a non-trivial
chain overlap graph can be initialized with min = 3 if there is no obvious
solution.

The scheduler will need to start scheduling using the minimum colours.
If it is impossible to create a valid schedule with the minimum colours, then
the scheduler will need to try again with the minimum colours incremented.
The scheduler will need to repeat this process until it either arrives at a valid
schedule or it reaches the maximum number of colours. At this point the re-
ordering of the original schedule is no longer necessary, as the original already
has it’s register pressure at the lowest that the data dependence allows.

3.6 Scheduling for Reduced Register Pressure

Perhaps the most important part of the entire process, scheduling for reduced
register pressure, is also the biggest and most complicated step involved in
the reducing register pressure process. To reduce the register pressure of a
given set of instructions, a scheduler must be designed such that it re-orders
the set of instructions to use as few registers as possible. When a processor
needs more registers than it has access to, it causes a number of registers
to spill. Reducing the register pressure improves the performance of the
execution of this set of instructions, thereby reducing the number of registers
spilled. Register spills cause a decrease in performance for a processor. These
register spills are sometimes avoidable by the re-ordering and re-naming of
registers in a set of instructions. This re-ordering preserves the functional
output of a set of instructions such that the data dependences are adhered
to and the overall flow of the instructions remains unchanged.

3.6.1 The Scheduler

The scheduler is a non-trivial heuristic solution. In this paper the following is
a proposed solution that tries to efficiently schedule an instruction schedule
aiming to reduce the register pressure.

The scheduler requires a target colour count to be set. This is the target
number of registers that the scheduler will try to devise a solution around.
It is possible that a solution for the target amount is not possible. The

30

scheduler will then do it’s best and preserve the original schedule as much
as possible. The process can be re-run using a higher target number if desired.

The first thing the scheduler does is it finds all start vertices and picks the
first scheduled one. A start vertex is a vertex that has no incoming edges.
This vertex is allocated to the first available register. The scheduler then
enters an iterative process that performs the following steps:

It finds the next suitable release vertex. A release vertex is a vertex
that is at the end of one of the chains created for the dependency graph. A
suitable release vertex has a complex definition but can be summarized by
the following:

• The incoming vertices are able to be scheduled.

• The incoming vertices are able to be overwritten[*] by scheduling the
release vertex.

• That at least one of the incoming vertices’s outgoing vertices is released
upon scheduling the release vertex.

[*]Overwritten in this context indicates that a vertex/register is no longer
live i.e. it no longer has any vertices that haven’t been scheduled that still
depend on this vertex/register. This register can now be re-used by a new
vertex.

Once the scheduler has picked a release vertex it begins the process of
trying to traverse the data dependence graph using the chains to reach the
release vertex. This is again an iterative process where at each iteration a
new vertex is scheduled. The process can be summarized as follows:

1. The best chain must be found for the given release vertex.

2. The latest unscheduled vertex of the chain is fetched.

3. The scheduler either schedules the vertex in a register that can be
overwritten upon scheduling the vertex, or in a new register if there
are still available colours that fall within the target colour count.

31

The best chain is defined as the chain that contains the release vertex or is
the chain currently required to traverse the dependency graph and advanced
the scheduler by one iteration. This means the best chain for a given release
vertex might change between other chains in an effort to reach the release
vertex. An incoming vertex of one of the elements of the chain might not
be scheduled and therefore the best chain is the chain that schedules that
incoming vertex before continuing down the chain that contains the release
vertex.

Once the scheduler has arrived at the release vertex, a new suitable release
vertex must be chosen and the iterative process is continued until all the
vertices have been scheduled. At which point the scheduler has completed
it’s task.

3.6.2 Deadlock

A deadlock is a situation in which the scheduler enters a state from which it
can no longer make any progress towards completing the schedule with the
allocated amount of registers. There are two types of deadlock: avoidable
deadlock and unavoidable deadlock. A deadlock is an avoidable deadlock if
the occurrence of deadlock depends on the order in which the operations are
scheduled by the scheduler; otherwise the deadlock is unavoidable.

3.6.3 Avoiding Deadlock

To circumvent an avoidable deadlock, the scheduler needs to pick a suitable
release vertex as described above. From all the possible release vertices there
needs to be a guarantee of the release of register resources that happens such
that deadlock does not occur. If by scheduling a release vertex that doesn’t
free at least one register or uses no more than the current register count,
then that release vertex is not a suitable release vertex and another must
be chosen. If no such release vertex exists then there is no way to avoid
deadlock. The scheduler must try again with an increased target colour
count. This process can be repeated until the scheduler manages to produce
a schedule without deadlock. The expectation is that the new schedule uses
less registers than original schedule.

32

3.7 Randomly Generated Data Dependence

Graph

A randomly generated data dependence graph is a directed graph

G = (V,E)

V ⊆ V ∗ where V* is a set of randomly generated vertices. The number of
elements in the set V* follow a discrete uniform distribution between natural
numbers VMin and VMax and is given by

V ∗
n ∼ U [VMin, VMax], VMax > VMin

E is a set of edges that randomly connects vertices from the set V* to
one another. The process of randomly connecting these vertices is described
in the following. Begin with Vertex Vi with i = 1, the second element of the
V* set. The number of trials follows a discrete uniform distribution between
0 and EMax and is defined as

En ∼ U [0, EMax], i > 0

EMax is the maximum allowed connections for all of the vertices and unless
otherwise specified, is a constant natural number. Now randomly connect Vi

to a random preceding vertex Vj, where j < i, repeat this En times. If En = 0
then no connection is made. The probability of connecting any Vj to Vi is
given by

P (Eij) =
1

i
, i > 0

This means Vi has an equal probability of connecting to any one of the
previous vertices.

After En connections are made for Vi, proceed to the next vertex Vi+1

and repeat this process until i = VMax−VMin. Once this process is complete
and all the edges are connected, any vertices with at least one connection
are added to the set V as these vertices have some dependence, where as the
set V ∗ \ V contains all the vertices that do not have any dependence on any
other vertex from the set V*.

33

This kind of randomly generated graph is similar to the Erdős–Rényi
random graph model in graph theory [2]. Where some of the differences
include having a limit EMax on the number of connections between vertices
and removing non-connected vertices from the graph.

34

Chapter 4

Examples for Reducing
Register Pressure of Data
Dependence Graphs

4.1 Worked Examples

In this chapter, a number of different data dependence graphs will be looked
at, each with their own interesting properties that a comprehensive scheduler
needs to take in account, when scheduling to reduce register pressure.

Figure 4.1: Register Colours for Worked Examples

The registers will follow a convention of being assigning a different colour
for each required register. This can be seen in Figure 4.1. ”Green” is assigned
to ”r0”, ”Blue” is assigned to ”r1”, etc... The important thing to note is that
the use of different colours is to distinguish registers from one another, it is
not necessary to remember which colours are associated to which register.

35

4.2 Mirror Formation

In this example, called ”Mirror Formation”, the current scheduling order re-
quires four registers to schedule all instructions. However, if the scheduler
rearranges some of the instructions, it can in fact be scheduled using only
three registers. This presents a basic case for which the process of reducing
register pressure can be simply shown and outlined. Using these worked ex-
amples as a guideline, the key decisions made while scheduling are discussed
while the overall process remains simplified.

4.2.1 Instruction Schedule

Figure 4.2: Mirror Formation: Instruction Schedule

The instruction schedule is shown in Figure 4.2. As previously mentioned,
these vertex bubbles represent a sequence of assembly commands/instructions.
The coloured vertex bubbles correspond to an allocated destination register.

36

Using the colour convention of registers seen in Figure 4.1, each particular
instruction is coloured to show the original assigned register, before any re-
scheduling has occurred. In Figure 4.2 the 1st vertex (V1) is coloured green
and therefore scheduled initially with register r0. White or uncoloured ver-
tex bubbles on the right are the operands of the instruction, and as such
this means they are the dependencies of the vertices on the left. A coloured
vertex bubble without any outward arrows, such as V1, has no dependence
on any other vertex. Coloured vertex bubbles with an outward arrow are the
opposite and have a dependence on one or more other vertices. This is true
for this example for every instruction except the first, where for example V2

has one dependency and the V6 has two dependencies.

In this example, it can be seen that with this current ordering of instruc-
tions, four registers are needed to schedule all instructions. It is worth re-
membering that a vertex cannot be scheduled before its dependencies. Once
a vertex has been scheduled and no future vertices depend on this vertex,
the register can be freed and used by another vertex. An example of this is
V3. The register V3 uses the same as V1, because no other vertex has any
dependence on V1, once V3 is scheduled.

4.2.2 Data Dependence Graph

The dependence of the instruction schedule can be represented in a data
dependence graph as in Figure 4.3. The graph is represented as

G = (V,E)

V is the set of vertices representing each instructions from the instruction
schedule and E is the set of edges, representing the data dependence between
the instructions. Each vertex is represented as a bubble with its scheduled
number or vertex index inside. This number corresponds to the original
sequencing order of the vertices. The edges are one directional arrows that
represent a dependence between the vertices. Looking at V1, it can be seen
that V2 and V3 depend on V1. Conversely, looking at V8, it can be seen that
it has a dependence on V6 and V7.

37

Figure 4.3: Mirror Formation: Data Dependence Graph

4.2.3 Chains

A chain is a sequence of adjacent edges that are extracted from the depen-
dency graph. They can be represented as

C = (v1, v2), (v2, v3), . . . , (vk−2, vk−1), (vk−1, vk)

Chains are formed such a way that every edge in the dependency graph
is contained within exactly one chain. Using the minimum chain algorithm,
chains are formed and highlighted within the dependency graph, this can
be seen in Figure 4.4. Each highlighted colour is different in such a way
that every chain has a different colour. These colours are not related to the
register colours in Figure 4.1. From this diagram, it can be seen that the
minimum amount of chains needed is four. The chains are separated out in
a graphical form in Figure 4.5.

Figure 4.4: Mirror Formation: Data Dependence Graph Highlighted

38

Figure 4.5: Mirror Formation: Chains for Data Dependence Graph

4.2.4 Chain Overlap

The overlap graph, shown in Figure 4.6, is calculated from Figure 4.5, where
there is an overlap of two chains, there is an arrow connecting the two chains.
It can be seen in this example that chain C1 and C2 overlap with each other.

Figure 4.6: Mirror Formation: Overlap of Chains

Chains C3 and C4 are the only pair of chains that do not overlap with
each other, see Figure 4.7. Each chain by itself would require a single register.
Since this example contains four chains, it would normally indicate that in
order to schedule all of the chains, the scheduler would require four registers.
However, as there are chains that do not overlap, they can share a register
between themselves. They can also be ordered in such a way that one of the
chains can be scheduled to execute before the other one executes.

39

Figure 4.7: Mirror Formation: Non-Overlap of Chains

4.2.5 Start and Release Vertices

A start vertex is a vertex that starts at position 0 in a chain i.e. the first
vertex in a chain. This is useful to note because a start vertex indicates
that a register resource must be allocated and retained once the start vertex
is scheduled, and remain so until all the vertices in a chain have been fully
released. A release vertex is the last vertex in a chain i.e. the vertex at which
the chain is fully released and all registers allocated to it can be freed, as long
as they do not have any other vertices depending on them. The start vertices
can be seen in Figure 4.8 and the release vertices can be seen in Figure 4.9.

Figure 4.8: Mirror Formation: Start Vertices of Chains

Figure 4.9: Mirror Formation: Release Vertices of Chains

4.2.6 Scheduling

After collecting all the previous information from the instruction schedule,
the scheduler can begin scheduling a suitable solution to the problem. It may
be the case that the scheduler cannot arrive at a solution that reduces the
register pressure, but in this example, this is not the case.
In order to arrive at a suitable solution, the scheduler is required to make a

40

number of important decisions.

The scheduler is first required to prioritize one of the release vertices.
This assists in determining which chain and vertex to pick for each sched-
ule slot as there are numerous criterion that need to be considered when
scheduling a given instruction. There are three choices to start with as seen
in Figure 4.9. Choosing either V6 or V7 does not matter in this example as
the dependency graph is symmetrical and scheduling either to the left or to
the right produces a mirrored result of the other. This means between the
two choices, the scheduler will often pick the one that was originally first
scheduled, which in this case, is V6. The other option is for the scheduler
to prioritize is V8. This isn’t a viable option even though two of the four
chains have a release vertex at V8, as both release vertices V6 and V7 need
to be scheduled before V8. This means V8 cannot be selected as the priority
release vertex for this step. V6 is therefore selected as the priority release
vertex target.

Once a priority release vertex is identified, the scheduler must create the
best course to navigate the dependency graph to the release vertex target.
It therefore picks a chain that follows the logic: a chain that contains the
release V6 in it and where that chain is immediately able to be scheduled.
This means C1 is chosen and V1 is scheduled as it is the first vertex in the
chain (1 register used). V2 can next be scheduled as it is the next vertex in
C1 (2 registers used). The next vertex that the scheduler wants to schedule
is V6, however, V6 cannot be immediately scheduled as it is missing one of its
required vertices V4. The scheduler then schedules V4 (3 registers used). V6

can now be scheduled. This releases a register that was used by C3, reducing
the number of registers in use (2 Registers Used). Now that the scheduler is
at the priority release vertex target, a new one is required to be selected.

V7 is selected as the priority release vertex target because it is the only
remaining one that can be selected. V8 still cannot be selected for the same
reasons as previous stated. There are two live registers currently operative,
which hold V1 and V6. Following the procedure for scheduling V2 and beyond,
the process is identical because of the symmetry of the dependency graph.
This means V3 is Scheduled (2 Registers Used), V5 is scheduled (3 Registers
Used) and V7 is scheduled (2 Registers Used). The new priority release ver-
tex target is now V8 as there are no other options. Both of it’s dependencies

41

have been scheduled, therefore V8 is scheduled (1 Register Used). All of the
vertices have now been scheduled and the scheduler has completed it’s task.
The final output/reduced register pressure solution can be seen as in Figure
4.10.

Figure 4.10: Mirror Formation: A Comparison of the Input versus Output

In Figure 4.10 it can be clearly seen that the scheduler has managed to
re-order and re-colour the instruction schedule in such a way that it only uses
three registers, instead of the original four registers. V4 and V6 have moved
before V3 and while both keep the colour they were originally assigned: V3, V5

and V7 now use different colours. This example shows that it is possible to re-
order and re-colour an instruction schedule to reduced the register pressure.

42

4.3 Diamond Formation

In this example, called ”Diamond Formation”, the instruction schedule is
omitted from having its own section, as all the information it presents is now
present in the data dependence graph, however, the schedule is present in the
final schedule output in Figure 4.15. The unaltered instruction schedule re-
quires four registers, but if the scheduler rearranges some of the instructions
this can be reduced to only three registers. This example is more interesting
than the previous ”Mirror Formation”, as some interesting decisions arise
when scheduling, the dependency graph contains more vertices and edges,
and picking a priority release vertex is not as trivial as in the ”Mirror For-
mation”.

4.3.1 Data Dependency Graph

The data dependency graph is constructed in Figure 4.11. In addition the
dependency graph’s edges are highlighted to represent the chains constructed
and there are seven different chains (each coloured). There is a small bubble
located at the start of each of the chains in the top left side of the vertex
bubbles. The content is in the form Ci where i is the chain index.

Figure 4.11: Diamond Formation: Data Dependence Graph Highlighted with
Chain Indexes

43

4.3.2 Chain Overlap, Start and Release Vertices

The overlap is calculated and shown in Figure 4.12. While trying to colour
the chains, the number of colours used will be calculated as four. This is
not true however. It can be seen in this example that no chain except C1

overlaps with C5. However in this example, the scheduler can share registers
between C1 and C5 as C1 must be scheduled before C5 can be scheduled and
since C5 concludes before C1, the registers used by C5 remain live, but once
C2 has been partially scheduled, there is only one live register used by both
chains C1 and C5. Since C5 does not overlap with any other chain, the freed
register used by completing the dependence on V1 can be shared with any of
the other chains. Now that C5 has been scheduled, the remaining vertices
can be scheduled in any legal order, as they all overlap and there is no more
register pressure reduction that can take place. A total of three registers is
needed to finish traversing the dependency graph and chains. The start and
release vertices are shown in Figure 4.13 and Figure 4.14 respectively.

Figure 4.12: Diamond Formation: Overlap of Chains

Figure 4.13: Diamond Formation: Start Vertices of Chains

Figure 4.14: Diamond Formation: Release Vertices of Chains

44

4.3.3 Scheduling

As with the previous example, a priority release vertex is needed to be se-
lected from the available release vertices. In this example, it is really impor-
tant for the first release vertex to be selected in the correct order as there
is only one vertex that yields a correct solution for using three registers to
complete. This is release V10. The other two release vertices that may be
considered by the scheduler would be V4 and V8 as they appear first sequen-
tially in the release vertex list. Selecting V4 is incorrect, so whilst it may
appear correct while scheduling the first few following vertices, it will en-
counter problems when it has to schedule past scheduling V4. The reason
as to why it cannot be chosen as the priority release vertex is that both V1

and V2 are required for scheduling V4, but neither can release their register
and cannot be freed as C1 and C3 still require them to be live. Selecting V8

follows the same logic as it would require V4 to be scheduled.

The scheduler selects V10 as it’s first priority release vertex. It then pro-
ceeds to schedule the vertices: V1 (1 register used), V3 (2 registers used),
V7 (3 registers used), V6 (3 registers used) and then V10 (2 registers used).
The next priority release vertex is V4. Since, scheduling V4 now releases the
register that V1 had been using up until this point.

The scheduler selects V4 as it’s second priority release vertex. It then
proceeds to schedule the vertices: V2 (3 registers used) and V4 (3 registers
used). The scheduler then selects V8 as it’s third priority release vertex and
proceeds to schedule the vertices: V5 (3 registers used) and V8 (3 registers
used).

The three live values currently are: V10, V8 and V5. The scheduler selects
V12 as it’s fourth priority release vertex. It then proceeds to schedule the ver-
tices: V11 (3 registers used) and V12 (3 registers used). The three live values
currently are: V12, V11 and V5. The scheduler selects V13 as it’s fifth priority
release vertex. It then proceeds to schedule the vertices: V9 (3 registers used)
and V13 (2 registers used).

Lastly, the scheduler picks and schedules V14 as it’s sixth priority release
vertex (1 register used). All of the vertices are now scheduled. The final
schedule can be see as in Figure 4.15.

45

Figure 4.15: Diamond Formation: A Comparison of the Input versus Output

46

4.4 Rhombus Formation

In this example called ”Rhombus Formation”, only the comparison of the
instruction schedule and the re-ordered schedule is shown as it is quite often
the case that after scheduling, the scheduler doesn’t manage to reduce the
register pressure but the output will have most likely been altered. As the
scheduler will often travel down large chains, groups of dependences within
the center of the chains will likely be nearer to one another.
In this case some decision needs to be made about whether to keep the new
schedule or the old one, as they both have the same register pressure.

Figure 4.16: Rhombus Formation: A Comparison of the Input versus Output

47

Chapter 5

Research Findings

5.1 Random Data Dependence Graph

Random data dependence graphs were generated and run through the sched-
uler thousands of times to find the average reduced register pressure gained
by using the scheduler. There are a number of variables used that have an
effect on the reduced register pressure gained, some of these variables are
able to be controlled and are listed in Table 5.1.

Term Description
V* The set of randomly generated vertices
VMax The maximum allowed number of vertices in the set V*
EMax The maximum allowed connections between vertices of the set V*
N The number of trials used in calculating the averages
VMin = 5 The minimum allowed number of vertices in the set V*
Initial The initial amount of registers used, before the scheduler
Final The final amount of registers used, after the scheduler
Gain The gain from using the scheduler, Gain = Initial - Final

Table 5.1: The Variables used in generating the results

48

5.2 The Effect of Increasing the Number of

Vertices

VMax Vertices Edges Chains Final Initial Gain
30 15.964 17.128 11.14 8.374 8.837 0.463
60 27.805 31.178 19.497 14.9 15.191 0.291
120 53.089 61.426 37.287 28.527 28.685 0.158
180 79.777 93.413 55.943 42.843 42.928 0.085
270 113.191 133.929 79.575 60.587 60.671 0.084
360 151.049 178.924 105.743 80.787 80.822 0.035
720 306.036 365.033 214.772 163.627 163.663 0.036
1440 599.469 716.953 420.117 320.38 320.399 0.019

Table 5.2: The Effect of Varying VMax, N = 1000, EMax = 3

5.3 The Effect of Increasing the Number of

Trials

N VMax Vertices Edges Chains Final Initial Gain
1000 30 15.964 17.128 11.14 8.374 8.837 0.463
10000 30 15.7912 16.7992 11.0391 8.3043 8.7935 0.4892
1000 60 27.805 31.178 19.497 14.9 15.191 0.291
10000 60 28.4313 31.8391 19.8873 15.2803 15.5323 0.252
1000 120 53.089 61.426 37.287 28.527 28.685 0.158
10000 120 53.8229 62.2409 37.7395 28.947 29.078 0.131
1000 180 79.777 93.413 55.943 42.843 42.928 0.085
10000 180 78.8753 92.3023 55.3206 42.383 42.3711 0.0839

Table 5.3: The Effect of Varying N for a given VMax, EMax = 3

49

5.4 The Effect of Changing the Maximum De-

pendencies

EMax Vertices Edges Chains Final Initial Gain
2 12.9731 9.306 6.4697 3.3086 6.4697 3.1611
3 15.7912 16.7992 11.0391 8.3043 8.7935 0.4892
4 17.2916 24.7255 15.5018 9.9835 10.1332 0.1497

Table 5.4: The Effect of Varying EMax, VMax = 30, N = 10000

50

Chapter 6

Discussion of Results

It is clear from the results that running the scheduler for randomly gener-
ated data dependency graphs will, on average, net a gain of reduced register
pressure of some amount. This means that there is never a case where the
scheduler performs worse in regard to reducing the register pressure on an
instruction schedule, as it can only have the same register pressure or im-
prove the result. This means that scheduling for reduced register pressure is
always beneficial.

It is also possible that the data dependency graphs that are randomly gen-
erated do not accurately or entirely represent ”real world” data dependency
graphs and as a result of this there may be further increases or decreases in
the gain of reduced register pressure by scheduling. In addition to this, there
may be several improvements to the design of register pressure reduction
schedulers that are not fully explored in this paper.

6.1 Reduced Pressure and the Number of Ver-

tices

The results seen in Table 5.2 show the effect that increasing the number of
vertices has on the reduced register pressure gained by running the scheduler.
The number of trials is set to 1000 throughout each of the scheduling runs,
whilst the maximum number of allowed connections between vertices is set
to 3.

51

The effect of increasing the number of vertices in the randomly generated
graphs has an overall decrease in the gain of reduced register pressure. This
is somewhat intuitive, as with the increase of the number of vertices, there
is also an increase in the number of edges between the other vertices. This
in turn increases the number of chains required to fully traverse each edge
within the data dependency graph. As the number of chains increases on
average, so does the number of registers needed. This means as the data
dependency graph becomes more complex with the increase in vertices. The
scheduler also has a more difficult time reducing the register pressure as the
vertices later in the instruction schedule still very much depend on vertices
earlier on in the schedule.

While the effect of running the scheduler on the data dependency graphs
has diminishing returns on graphs with a large amount of vertices, there is
always some gain to running the scheduler as it does on average produce a
net gain of reduced register pressure. One could argue that for large graphs,
the scheduling process could be skipped as the gain yields are so low or
negligable.

6.2 The Number of Trials within the Exper-

iments

The results seen in Table 5.3 show the effect that the number of trials have on
the averages collected during the experiment. The number of trials is varied
between 1000 and 10000 throughout each of the scheduling runs. The maxi-
mum number of allowed connections between vertices is set to 3 throughout.
The maximum number of vertices generated is also varied for a given number
of trials.

The effect that the number of trials which have exceeded 1000 is small, as
the difference between the Initial and the Final is only a few decimal points.
This is useful because the time taken to simulate a large amount of trials
drastically increase as the number of trials increases. As the difference is
small between two sets of results for each number of trials, we can assume
that for the number of trials set to 1000 is a decent reference point for the
generated averages that have been achieved.

52

6.3 Reduced Pressure and the Maximum De-

pendencies

The results seen in Table 5.4 show the effect that increasing the maximum
allowed connections or dependencies between vertices has on the reduced reg-
ister pressure gained by running the scheduler. The number of trials is set to
10000 in this case. The maximum number of vertices is set to 30 throughout.

It can seen that the effect of increasing the number of allowed connections
has a similar decrease in the gain of reduced register pressure, as with the
number of vertices. With a larger amount of connections, there will be a
larger amount of edges in the data dependence graph. This in turn increases
the number of chains and therefore the number of needed registers. While on
small graphs, there is always cause for scheduling for reduced register pres-
sure, a case can be made that it is always worthwhile, no matter the limit
on the maximum number of connections, as realistically this number is small.

A vertex in the context of an instruction has a limited amount of data
dependence. This is why there is a need to put a limit on the maximum
number of dependencies or vertex connections. Typical instructions vary in
the number of dependencies from 0-2. It is worth noting that instructions
in an instruction set do not appear with the same frequency as one another,
as instructions like ”MOV” are among the most frequently used instructions
and it only requires one data dependency. This could influence future random
data dependency graphs that are tested with the scheduler. See [7] for some
statistics on some of the most frequent types on instructions used, that should
commonly appear in data dependency graphs. In this experiment the number
of connections a vertex has is uniformly distributed and this may not reflect
”real world” data dependency graphs.

53

6.4 Register Spills

Register spills in the context of these results shows some opportunity for
improvement. As there may not be always be a net gain upwards of one
register, there will definitely be cases in which reducing the register pressure
will have a positive effect on reducing the register spills. Shown in Table
5.4, the connections between vertices have the largest impact on the register
gain going from EMax = 2 to EMax = 3. As previously mentioned, the
random data dependency graphs may lack some ”real world” qualities but it
is likely that a ”real world” dependency graph will lie somewhere in between
EMax = 2 and EMax = 3. As the more commonly used instruction [7]
have fewer dependencies than the less frequently used instructions. This
would impact the average number of connections a randomly vertex would
need to follow in generating a more ”real world” randomly generated data
dependency graph.

54

Chapter 7

Conclusion

7.1 Final Comments

This paper has shown that there is benefit in the compiler trying to re-order
instructions to reduce the number of simultaneously live values, otherwise
known as reducing the register pressure. As a block of instructions or instruc-
tion schedule have the maximum register pressure to begin with, re-ordering
the instruction with the aim of reducing the register pressure will either show
no improvement in the final result (in which case there is no harm having
validated this) or some improvement with the register pressure. This means
that the number of simultaneously live values has decreased and as such there
will be performance improvements if the reduction in the simultaneously live
values is enough to overcome register spillage. Other work done on reducing
register pressure can be seen [3, 4].

7.2 Future Work

Future work could entail a lot more investigation on the randomly generated
data dependency graphs, as there is still a lot that could be argued over their
”real world” nature. For example, taking the distribution of the frequency
of instructions used [7], could model the probability of connecting vertices
when generating the dependency graphs. Otherwise, other models could be
used, such as, vertices tend to be connected to other vertices closer in the
schedule than those further away (and vice versa) and such the probability
of connecting a vertex to one that is far away should be different to a vertex

55

that is closer in the schedule.

More complex instruction schedulers could also be designed to handle
more specific cases, where instead of abstracting away from the actual in-
struction into the instruction name and data dependencies, their opcodes
could be taken into account as they may be various delays for each opcode
(as memory accessing instructions are slower than regular arithmetic instruc-
tions for example) or situations where specific instructions must be handled
in specific ways as to optimize a schedule.

56

Bibliography

[1] ARM. ARM Compiler toolchain Assembler Reference. url: http://
infocenter.arm.com/help/topic/com.arm.doc.dui0489f/DUI0489F_

arm_assembler_reference.pdf.

[2] P Erdos and A Renyi. “On random graphs I.” In: Publ. Math. Debrecen
6 (1959), pp. 290–297.

[3] R. Govindarajan, Chihong Zhang, and Guang R. Gao. “Minimum Reg-
ister Instruction Scheduling: A New Approach for Dynamic Instruction
Issue Processors”. In: Languages and Compilers for Parallel Comput-
ing: 12th International Workshop, LCPC’99 La Jolla, CA, USA, Au-
gust 4–6, 1999 Proceedings. Ed. by Larry Carter and Jeanne Ferrante.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 70–84. isbn:
978-3-540-44905-8. doi: 10.1007/3- 540- 44905- 1_5. url: http:

//dx.doi.org/10.1007/3-540-44905-1_5.

[4] R. Govindarajan et al. “Minimum register instruction sequencing to
reduce register spills in out-of-order issue superscalar architectures”.
In: IEEE Transactions on Computers 52.1 (Jan. 2003), pp. 4–20. issn:
0018-9340. doi: 10.1109/TC.2003.1159750.

[5] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quan-
titative Approach. The Morgan Kaufmann Series in Computer Archi-
tecture and Design. Elsevier Science, 2011. isbn: 9780123838735. url:
https://books.google.ie/books?id=gQ-fSqbLfFoC.

[6] Iowa-State-University. Data Hazards. url: https://web.cs.iastate.
edu/%7B~%7Dprabhu/Tutorial/PIPELINE/dataHaz.html.

[7] Peter Kankowski. Which instructions and addressing modes are used
most often. url: https://www.strchr.com/x86_machine_code_
statistics.

57

[8] Charles Kozierok. Processor Instructions. 2001. url: http://www.

pcguide.com/ref/cpu/arch/int/inst-c.html.

[9] LLVM. LLVM Language Reference Manual. url: http://llvm.org/
docs/LangRef.html.

[10] Sparsh Mittal. “A survey of techniques for designing and managing
CPU register file”. In: Concurrency and Computation: Practice and
Experience (2016).

[11] G. O’Regan. A Brief History of Computing. SpringerLink : Bücher.
Springer London, 2012. isbn: 9781447123590. url: https://books.
google.ie/books?id=QqrItgm351EC.

[12] D. Page. A Practical Introduction to Computer Architecture. Texts in
Computer Science. Springer London, 2009. isbn: 9781848822566. url:
https://books.google.ie/books?id=XH4sIpY1D70C.

[13] D.A. Patterson and J.L. Hennessy. Computer Organization and De-
sign: The Hardware/Software Interface. The Morgan Kaufmann Series
in Computer Architecture and Design. Elsevier Science, 2004. isbn:
9780080502571. url: https://books.google.ie/books?id=1lD9LZRcIZ8C.

[14] Webster Dictionary. Register Spilling. url: http://www.webster-

dictionary.org/definition/register%20spilling.

[15] R.J. Wilson. Introduction to Graph Theory. Longman Scientific & tech-
nical. Longman, 1985. url: https://books.google.ie/books?id=1-
nuAAAAMAAJ.

58

Appendix A

Appendices

Developed with Visual Studio 2015 in Visual C++.
Code used can be found at:
https://github.com/Coggroach/RegisterPressure
LLVM binary and source files are not included.
LLVM code can be found at:
http://releases.llvm.org/

59

