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Non-player characters in games and simulations often rely on scripted behaviour or sim-

plified decision-making architectures. This can result in behaviour that is not coherent

or believable for the player. Similarly the scope of large open-world games with many

non-player characters (NPCs) denies designers the ability to extensively hand-craft dif-

ferences in behaviour in order to convey agent personality.

This project presents a model for NPC behaviour where actions are chosen in a hier-

archical manner through the evaluation of functions that map the agent’s current state

to utility values. Each action is chosen on the basis of specific parameters representing

the state of the agent or the environment, and performing actions has an effect on the

agent’s state. Agent personalities are specified on the basis of the five-factor model, and

through procedural generation have unique and intuitive effects on how agents weigh

decisions and are effected by actions and events.

The implementation showcases a model that allows for easy specification of game charac-

ters that efficiently display unique behavioural preferences. Agents can be easily stored

in a compressed state to be generated in real-time and simulated at full-detail, offering

potential for use in the next generation of procedurally generated worlds.
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Chapter 1

Introduction

This dissertation aims to explore a novel method for the creation of background charac-

ters for interactive environments such as digital games. The research focuses on back-

ground non-player characters (NPCs) that are inessential to core gameplay or story, but

add detail to the backdrop of populated areas. The model developed during the project

employs a hierarchical model for behaviour selection, where actions are evaluated and

chosen on the basis of calculated utility. The primary hypothesis of the project was that

a generalised model for personality could be used to procedurally generate believable

manifestations of personality through differences in NPC behaviour. A demonstrative

environment was developed to examine the model, and an exploration of its benefits and

drawbacks is discussed. A primary intention was that this general model could be used

to improve existing approaches to modelling background NPC behaviour and provide a

tool for the easy generation of large numbers of NPCs with interesting and believable

individuality.

1.1 Open Worlds and Procedural Content Generation

Whether attempting to capture real-world phenomena or to provide novel experiences,

games are increasingly equipped with the tools to expand the space of possibilities. One

of the avenues of games that has proved to be increasingly popular has been the theme

of ’Open-World’ game design. Games that fall under this category are characterised

by offering player freedom in navigating a large virtual world, commonly with a focus

1



2

on nonlinear gameplay where there are multiple ways for players to achieve objectives.

Popular open-world games include Skyrim [8], with its large medieval fantasy world

populated with small towns and explorable dungeons, and Assassin’s Creed Unity [9]

where the vast city of revolution-era Paris was simulated in detail.

Manual content creation has been presented with scalability challenges as open-world

games offer increasingly large, complex environments for players to explore. Procedural

Content Generation for Games (PCG-G), the automated production of game content by

computers, has gained the interest of many in the game industry as a tool to address these

challenges. PCG-G techniques commonly focus on the application of algorithms that

operate on a few parameters and a pseudorandom process to programmatically generate

an unpredictable range of game content [10]. Techniques of PCG-G have been used

at least since the popular space trading game Elite (1984) used pseudorandom number

generation to create eight explorable galaxies, each with 256 explorable planets. More

recently, the action-adventure game No Man’s Sky used PCG-G techniques to generate a

universe of 18 quintillion planets, each claiming unique content [11]. Informative surveys

of PCG-G can be found in [12] and [13].

1.2 Motivation

This project aims to tackle one of the core issues for these large environments: how can

these worlds become populated with interesting and believable NPCs? Various tech-

niques are used to generate responsive or intelligent behaviours in game characters; tra-

ditionally borrowing from approaches within the field of artificial intelligence (AI) to

form the subfield of ‘Game AI’.

There exists confusion over the role of AI in games, to the point where many developers

feel the need to underline their position. As Kevin Dill puts it: "Game AI should be

about one thing and one thing only: enabling the developers to create a compelling ex-

perience for the player" [14], an attitude shared among many industry professionals and

researchers alike [15]. Artificial intelligence as applied to video games has traditionally

been placed in the ’narrow’ AI bin [16]. An irony perhaps is that most AI agents in

games are trying to emulate human ability, an exceedingly complex phenomena. To take

a common example, a stealth based video game opponent effectively needs to perform
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the tasks that present the greatest challenge to areas of academic AI. These include

interpretation of subtle sensory stimuli and bodily control within a complex spatial en-

vironment. For a non-combat character in a role-playing game you might expect the

agent to hold a human conversation. Clearly the hard limit for realism is to recreate the

human intelligence in such agents, no mean feat for the small percentage of the CPU

budget normally allocated to AI in games; typically between 5 and 50% [17].

The focus of this work is to specifically address the perceived lack of good approaches

to generate background NPCs that are believable [18]. Background game agents can

be thought of as analogous to extras in film; they give the semblance of a dynamic,

character-driven environment, but the details of their behaviour are not designed to

be essential to the narrative nor to the immediate gameplay. Importantly in real-time

interactive applications such as games where hardware resources are limited, their AI

must be computationally inexpensive.

For the discussion that follows the termss ‘game AI’ and ‘game agent’ to describe an

agent that manifests as a character in the game. Broad descriptions of what we mean

by AI often vary along two main scales: a concern with thought-processes and reasoning

versus behaviour, and a measure of success in comparison to human performance versus

a comparison to ideal performance. This ideal concept of intelligence is referred to as

rationality; a rational agent is defined according to Russell and Norvig as a system that

"does the ‘right thing’, given what it knows". According to the views of Kevin Dill,

AI characters for games are most usefully placed somewhere in the bottom left of this

scale. Indeed behaviour of the agent is the primary way of conveying information about

the agent to the player. All aspects of behaviour are considered to have the primary

motive of creating an experience to the player, and often the most effective methods of

conveying intelligence are in fact the least nuanced. This is perhaps most striking in the

use of short spoken lines by game agents (known as ‘barks’) to clue the player into what

is occurring within the agent’s internal world; several commentators have noted how this

is often more effective than necessarily making the AI better [14], [19].

Particular focus is placed on background NPCs that display believable behaviour, how-

ever the study of believability in this context is not yet well-defined. In most game

experiences players do not want agents that will behave perfectly; it would be trivial for

instance to program opponents in a first-person shooter game that would consistently
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score a perfect head shot against the player. Therefore for games we rarely want perfectly

rational agents, but rather agents that display degrees of rationality. Humans are beset

by myriad cognitive biases, and after 50+ years of scientific work into decision-making

we now know that human choices are rarely as rational as we may expect [20]. Should

we therefore be most receptive to agents that are irrational? Perhaps not. The game

journalist Mark Brown outlines the opinion that good game agents should be predictable

[19]. Chris Butcher, engineering lead for the AI in Halo 1 and 2, elaborates on this: "We

don’t do things by random chance very much. The goal is not to create something that

is unpredictable. What you want is an artificial intelligence that is consistent so that the

player... can do things and expect the AI will react in a certain way" [21]. He envisages

the fun and re-playability of the player’s experience as relying on "predictable actions

but unpredictable consequences", stating that ideally "the grunt will always run away,

but you don’t necessarily know where he’ll run away to". This opinion is contested, and

others state that there is a strong need to focus on non-determinism in virtual character

actions [22], [23]. A useful model for making rational decisions is to make decisions on

the basis of perceived ‘utility’, or usefulness to the agent. Degrees of irrationality can

be introduced simply by specifying how certain agents weigh up the considerations for a

decision over others.

When attempting to specify the qualities of believable characters, a ubiquitous request

is that the agents display personality [23], [24]. Whilst it is possible to hand-author

character quirks within a game AI framework, doing so for the massive crowds in games

such as Assassin’s Creed Unity or the myriad alien-populated planets of No Man’s Sky

suggests a need for methods that allow the automatic generation of characters. Such

methods would need to be general, fast and modular if they are to be applicable to the

many needs of modern interactive environments.

1.3 Objectives

The challenges for good quality and believable game agent behaviour are unique, any

model must balance several constraints:

• Realism: how well it results in realistic agent behaviour, however that is defined

within the game
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• Performance: how efficiently it can run in real-time (usually secondary to other

aspects of a game such as rendering)

• Complexity: how easy it is to adjust

• Ease of use: how intuitive it is for non-technical designers to work with

With these in mind, the dissertation attempts to address these constraints for the devel-

opment of a system for generating agents that can express personal behavioural differ-

ences through easy specification of the agent’s personality.

1. Offer a general purpose utility-based decision-making architecture that is easy to

adjust and add to.

2. Implement the procedural generation of factors that influence agent decision-making

from a compact and intuitive representation of the agent’s personality.

3. Focus on an efficient implementation that offers a good standard of CPU and

memory use.

1.4 Roadmap

The dissertation begins in earnest with a review of relevant literature in Chapter 2.

Particular focus is placed on exploring the meaning and study of believable behaviour, the

state of the art for NPC behaviour models in the industry and approaches to procedural

content generation in the context of agent behaviour. Chapter 3 presents a proposed

model for a general PCG approach to NPC behaviour, influenced by the work covered

during research. Chapter 4 presents the prototype of the model, with a focus on how

the model design was implemented. This is followed by an evaluation in Chapter 5 of

the implementation with regards to the criteria outlined in Section 1.3, with a discussion

of the benefits and drawbacks of the model. Chapter 6 concludes the project with a

summary of the work done and contributions made, in addition to suggestions for future

work on the model.



Chapter 2

State of the Art

The purpose of this chapter is to cover the relevant literature on areas pertaining to the

creation of a model that addresses the focus of the project outlined in Section 1.3. First,

a discussion of ‘believable behaviour’ and the approaches made by various disciplines

to define and measure it. Following this is a discussion of popular architectures used

for the development of game agents, with a particular focus on those offering dynamic

and fuzzy decision making. Lastly there is a look at procedural content generation, with

emphasis on the possibility of generation of individual differences in game agents through

personality modelling.

2.1 Believable Behaviour

If an imperative of game agents is that they must behave in a believable manner, we

must consider what ’believable behaviour’ could mean. Breaking this down into useful

lines of approach, there are two immediate facets to consider. The contents of behaviour

and the details of behaviour that we as observers are predisposed to finding believable.

Study into these elements of behaviour span disparate academic fields, from psychology

to computer science to insights from storytelling media. This section is intended to trace

work on this area so that a useful appreciation of believable behaviour can be used in

the development of believable agents.

What can be considered believable in a game agent depends greatly on how we would

expect the agent to behave. The challenge is multifaceted in cases where the agent is

6



7

supposed to play as an equal to the human, such as an opponent in a first person shooter

or real-time strategy game. Do we want the agent to play similarly to a human or to

role play within the game world? The believability of AI for non-player roles operates

under different constraints. In these cases, the agent must instead act like an intelligent

character or creature within the game world. Grading believability in this case depends

greatly on what kind of being the agent is simulating. Game characters can vary from

human villagers [8] to super-intelligent computers [25] to bivalves or bacteria [26].

2.1.1 Approaches from Computer Science

In his 1950 paper ‘Computing Machinery and Intelligence’, Alan Turing laid out the

concept for what would become known as the now famous ‘Turing Test’ [27]. In this

he begins with the question of whether machines can think. Seeking to avoid the issues

inherent with defining the words ‘machine’ and ‘think’, he instead replaced the problem

with a thought experiment, proposing that we should instead ask if the machine can

win an imitation game. Suppose a man A and a woman B are in communication with a

person C. C does not know the identity of A or B (we can imagine them as being located

in separate rooms) but can only communicate with them through written notes. Through

asking questions to A and B, and without any other hints C is asked to determine which

of the two is the man and which is the woman. Both A and B have the aim of convincing

C that they are the woman. Understandably one can imagine the difficulty of C’s task;

what would constitute sufficient evidence on which a decision could be made?

Turing follows this illustration by asking "What will happen when a machine takes the

part of A in this game?". This question poses a key challenge to the idea of machine

intelligence, however for many AI researchers the constraints are unsatisfactory; their

goal is to understand intelligent behaviour rather than merely provide a façade. For

applications in video games however, the façade is exactly what the developers want.

Just as there is little appetite for unbeatable AI in games, providing believable behaviour

in game agents is generally sufficient for entertainment and story-telling purposes.
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2.1.2 Perception of Believability

Before we determine the attributes of behaviour that we can describe as believable, it

is worth considering exactly how it is that we are in a position to do so. To address

this we must consider the human mind, a 1300-1400g, 20 Watt organ that is capable

of transforming sparse sensory information into complex cognitive representations. As a

product of natural selection it is highly adapted for this purpose, and it has specialized

structures for tasks of varying complexity related to processing our evolutionary envi-

ronment, ranging from interpretation of the visual information [28] to encoding spatial

relations in memory [29]. Understanding and interpreting the movements and actions of

others is uniquely important for tasks related to survival, such as pursuing prey, avoiding

predation and dealing with other individuals [30].

Modern perspectives on the evolution of the human brain suggest that much of its unique

and extraordinary complexity reflect adaptation to the immense cognitive demands of

living in social groups and interpreting behaviour [29]. A unique consequence of this may

be the propensity to anthropomorphize; to ascribe human attributes (such as agency or

social meaning) to non-human objects [31]. This tendency was first demonstrated in

1944; in a classic study it was shown that there is a tendency for virtually all people

to make up a social plot on being shown hand-drawn animated scenes with interacting

geometric shapes, and that this is proportional to specific cues such as the speed and

movement of the ’agents’ [32]. There is evidence that the propensity is discriminative

across several dimensions; for instance the presence and arrangement of facial features

heavily influence the perception of humanness in robot heads [33], and that newborns

display a unique, unlearned preference for human faces [34].

Clearly the design of believable game agents will be based heavily on the details of our

perception. The relationship between mimicking human features and achieving success

in convincing observers may be not be linearly proportional. Trying to make artificial

agents look as human as possible, peoples disposition towards the agent can become in-

creasingly positive. Further increasing the human-likeness of agents can soon lead to the

well-documented phenomenon of the ‘uncanny valley’, where people suddenly experience

a feeling of eeriness and disconcert. The perceptual reasons behind the phenomena are

not immediately clear, but have been hypothesized to be caused by a violation of the
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brain’s predictions where detailed human-like behaviour (such as movement kinemat-

ics) is expected alongside human-like appearance (a structurally identical limb or hand)

[30]. Studies have been undertaken to determine the physiological underpinnings of the

uncanny valley, Saygin et al performed neuroimaging of the human action perception

system (constituting the lateral temporal cortex, inferior frontal/ventral premotor cor-

tex and anterior intraparietal cortex). They found greater responsiveness for human and

non-human robot movement, but less responsiveness for android (human-like movement),

suggesting the possibility that overcoming the uncanny valley could be achieved through

neurophysiological experiment [30].

Figure 2.1: The Uncanny Valley as detailed by Masahiro Mori, adapted from [1]

The process of designing believable agents may not be successfully applied to all members

of society. Although it has been shown that most are quick to attribute human-like

mental states to arbitrary objects given the right cues, some of us may be particularly

unable to qualify believability. For example, ‘theory of mind’: the ability to infer the

mental states of others is considered to be a cornerstone of human adaptation to complex

social situations. Components necessary for theory of mind (such as the attribution of

belief and internal mental states on others) has been demonstrated to be impaired in
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individuals with autism spectrum disorder (ASD), affecting a substantial portion ( 1%)

of the human population [35].

2.1.3 Believability for Game Agents

How could believability in game agents be measured? As with the Turing test, past

approaches to quantifying this have relied on the opinion of a human judge. To this

effect research into measuring perceived believability in game agents is largely restricted

to the use of questionnaires [36]. However perceived believability has been seen as having

a highly subjective component [37]. Alternatives that measure physiological attributes as

highlighted above can involve much costly research equipment and support, and may be

impractical for those reasons. Togelius et al note that participatory observation (where

the player judging the believability is playing the game) is prone to distortion effects,

and that the best approaches involve an external observer [18]. This has been observed

by industry professionals, such as Chris Butcher and Jaime Griesemer of Bungie [38].

When play-testing levels of Halo, they gave players a standard level populated by enemies

with different hit-points and attack damage. They observed that players considered the

tougher enemies more intelligent, even though the internal agent AI was identical.

Alternative approaches to user-feedback questionnaires have explored automated be-

haviour analysis, by storing past actions made by an agent in a suitable data structure

and analysing them for ‘believability attributes’, possibly through comparison to the ac-

tion data generated from real human players [39]. These have for the most part been

applied to create or evaluate AI-controlled players. Kemmerling et al. developed a ‘be-

lievability calculator’ from user surveys and incorporated this into an AI player for the

table-top strategy game Diplomacy [40]. Automated testing for believability attributes

was employed by Pao et al. [41], where an algorithm comparing the trajectories of AI-

controlled Quake 2 players to pre-recorded human and AI player data with the goal of

classification.

Several attempts have been made to define believability in the context of virtual agents.

These approaches can be traced back to the idea of a ‘believable character’ in the arts,

and have been defined as agents that provide ‘the illusion of life, and thus permits the

audience’s suspension of disbelief’. This principle has been underscored for the creation

of believable characters in the arts, quoting the words of pioneering Disney animators
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Frank Thomas and Olie Johnston in their book ‘The Illusion of Life’ [24]. They highlight

the particular importance of characters that convey personality, emotional reactions and

social relationships.

Principles for building believable agents in games have been proposed. Some are particu-

larly broad, such as the list quoted by Umarov: (a) the agent should have the same basic

data processing structure as human players; (b) it should have the same basic sensory

and motor systems as human players; (c) it should have the same knowledge as humans

players [39]. As mentioned, Togelius notes that any model for optimizing believability

should not be from designers a priori assumptions on believable cognition, but data-

driven. He notes that supervised learning techniques offer promise in creating a model

from game agent configuration to believability [18].

It is also conceivable that the best approach for game agents is in optimizing the environ-

ment, Togelius and colleagues quote Hebert Simon’s book The Sciences of the Artificial,

where Simon considers the path of an ant on the beach. Although the ant’s control

system is exceedingly simple, the path it takes is complex. This is potentially as much a

product of the environment as the ant, and therefore perhaps the most interesting agent

will derive most of its uniqueness from its interactions with an environment. This tech-

nique has been employed in commercial games, notably with the ‘smart object’ system

in the Sims series, where the agent derives animations and behaviours from components

stored in objects instead of the agent [6].

The recent book ‘Metrics for Character Believability in Interactive Narrative’ sought to

provide a succinct list of objective aspects to agent believability [23]. These are:

• Behaviour Coherence: audiences will judge behaviour as they cannot usually

observe agent state

• Change with Experience: agents should show that they change with story events

• Awareness: agents should show that they perceive the environment around them

• Behaviour Understandability: audience should be able to create a model of

the agent’s behaviour motivations

• Personality: audience should be able to identify the aspects of an agents be-

haviour that define it as an individual
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• Emotional Expressiveness: extent to which an agent expresses its emotions

• Social: relationships between agents should be identifiable

• Visual Impact: amount by which an agent draws our attention

• Predictability: both extreme predictability and extreme unpredictability harm

believability

2.2 Architectures for Agents in Games

It is through behaviour that game agents are noticed by a player, though where does

behaviour come from? For this one needs an agent architecture; something that can

receive input from the environment, output behaviour through actuators and has some

program that can map from the former to the latter. This Sense-Think-Act cycle is

inspired by academic AI research, and several decision-making architectures have seen

use in the design of game agents. Decision making architectures for game agents have

often been impacted from fields of research such as psychology or economics. Each of

these may be appropriate for different uses; there is no universal standard of the perfect

game agent architecture.

If agents are to behave realistically, we must expect them to choose how to behave

according to some internal logic. The study of the reasoning underlying an agent’s choices

is a field known as decision theory. Decision theory offers a game-theoretic approach

to formulating a decision making system. In decision theory, the normative approach

is concerned with finding the best decision to make, assuming a rational agent deriving

choices from an accurate description of the game environment. The descriptive or positive

approach attempts merely to describe what decisions are made in what circumstance,

that is agents respond passively to input. This is in some ways akin to the behaviourist

approach taken by many psychologists in the 20th century, where behaviours are thought

of as learned reflexes to stimuli. This is in contrast to the cognitive approach, placing

greater importance on mental processes [42]. As we will see, some of the approaches

to game agent decision making focus merely on designing a static descriptive model of

behaviour in response to stimuli or conditions. Others attempt to model mental processes

in cognitive terms to dictate agent behaviour. Others still combine these approaches to
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provide decision making that takes agent history and personality into account to provide

some interesting level of irrationality.

Several forms of logic are used for decision making models. These include boolean logic,

a method of reasoning with logical expressions describing membership of sets, the only

caveat being that each logical expression evaluates to a true or false value. An example

of this would be an agent that chooses to attack an enemy IF the enemy is within a

threshold radius. Here the action ’Attack Enemy’ is dependant on the condition ’Distance

To Enemy < Tolerance Threshold Distance’. Boolean decisions can be made arbitrarily

specific by depending on any number of conditions.

A notable issue with boolean conditions is that membership of some sets is not clearly

binary. When considering what constitutes a ’pile of sand’, most would agree that a single

grain could not be considered a pile; 10,000 grains on the other hand could. For these

cases, where uncertainty or vagueness apply, it may be beneficial to use a many-valued

logic such as fuzzy logic. In fuzzy logic, reasoning leads to descriptions of memberships

in fuzzy sets. This allows for degrees of truth; the collection of sand grains being denoted

a pile/not a pile can now be described with a continuous function. Fuzzy control has

been implemented in control systems such as automatic transmissions and electric razors,

the key being to provide a ‘concise and intuitive way to specify a smoothly interpolated,

real-valued function’ [43]. Fuzzy logic has been posited as offering a closer representation

of human reasoning [44], where probabilistic and incomplete information (such as the

outcome of an action) must be used as the basis of a decision. For the creation of game

agents, both forms of logic have been employed. The following section is intended to

provide an overview of the most popular architectures for decision-making game agents,

with some commentary on the advantages/disadvantages of each framework.

In many cases the actions it can perform will only have a probability of achieving a

desired goal. In the case that the agent resides in a non-deterministic environment it

must have preferences between the expected outcomes of an action, where some actions

are determined to be more preferable than others for a given environment. These obser-

vations on game environments have led to further architectures that make predictions

on the outcome of certain actions. These include models where actions are chosen based

on the merits of their perceived outcome; these include agents where plans are made to
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accomplish desired goals given certain conditions and systems where state-action pairs

are estimated by the agent or learnt through training.

2.2.1 Note on Background NPC Architectures

Background NPCs are most commonly used to provide detail to lived-in environments

such as towns and cities, but are generally not the focus of gameplay. As a result, the

architectures used to manage their behaviour are rarely afforded much focus or CPU

time [45].

When giving background NPCs the illusion of life, the approach commonly employed is to

use ’looping idles’: a repeated animation such as a blacksmith hitting an anvil repeatedly.

This is commonly paired with other NPCs running random walk cycles where they walk

to-and-fro randomly. Both of these approaches offer minor background detail, but do

not stand up to any scrutiny; the NPCs will repeat the behaviour ad nauseam. They

do however have the benefit of being cheap to run, and some have decried the use of

complex (and computationally expensive) AI for managing background agents [45].

2.2.2 Scripting and Scheduling

The simplest architecture possible is perhaps scripting, where the exact timing and se-

quence of behaviours is precisely defined by the designer. This may include simple sensory

input, such as situations that trigger execution. In the case of characters that populate

an environment, this leads naturally to the concept of scheduling as a computationally

cheap method of driving the behaviours needed. NPC schedules are treated as a black

box, with current time as an input and an action as output. The actions can usually

be summarized as ‘go here and run this animation’, once the action has ended the NPC

will be given another action by the schedule. In order to avoid peak times where all

agents finish working at 6pm, often the scheduler will randomize the schedule update

time with a Gaussian distribution as a means to stagger agents swapping behaviours

[45]. Unfortunately the simple solutions offered by scripting and scheduling mean that

agents are highly nonreactive to external events, if there is to be any dynamic behaviour

(through player-interaction for example) a more sophisticated system is required.
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2.2.3 Finite State Machines

A step-up in complexity from the scripting approach is the finite-state machine (FSM),

one of the earliest and most widely adopted behaviour modelling approaches. In the

FSM model an agent is broken down into a number of discrete states, each representing

a specific behaviour or internal configuration, with only one state active at a time. States

connect to other states through transitions, usually predicated by some conditions. This

approach is simple, easy to implement and effective for simple agents. The primary issue

with FSMs is scalability, this become most apparent in complex agents with more than

10 or 20 states. Each new state added needs to fit within the conditional framework,

within all relevant transitions, and as a result can be fragile to extension. Similarly its

structure does not handle situational behaviour reuse, where we may desire actions to

be performed in the context of other actions.

An approach to fitting sub-behaviours into the FSM structure in a global state that is

executed concurrently with active states, or with state blips that can be executed at

any time but will always return the agent to its prior state [46]. An extension of this

idea is to have multiple FSMs working in parallel, in a Hierarchical finite-state machine

HFSM. As an example consider a game agent with the states Explore, Combat and

Patrol. The Combat state could in turn manage a state machine that manages the states

ReloadWeapon, ShootAtEnemy and FindCover. Once out of the Combat state the agent

could return to the most recent active state of the original state machine. This approach

similarly addresses the issue of duplicating states for different contexts, and provides

much more structural control over the arrangement of states. The approach however

does not ultimately solve the issue of overloaded state transitions, and therefore might

not meet design criteria for many game agents [47].

2.2.4 Behaviour Trees

The idea of organising behaviour into hierarchical structures led to the implementation

of tree-like structures for the efficient navigation between tasks. An example of this is

the use of behaviour trees (BTs), used famously for the enemy agents in the first-person

shooter game Halo 2 [21]. Starting from a root node behaviours are perused in a hierarchi-

cal manner, with each behaviour potentially specifying any number of child behaviours.
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Each behaviour defines precondition(s) necessary for the execution of the behaviour, and

an action that specifies what the agent should do as part of that behaviour. The algo-

rithm navigates down the tree, only executing one behaviour at each level of the tree

if its preconditions are met. This provides an architecture that is simple to implement,

highly predictable and extensible. Unlike FSMs however, BTs must potentially evaluate

many nodes of the tree in one decision-making cycle and has a resultant computational

cost [48].

2.2.5 Planning Architectures

Some more advanced architectures include the use of AI planning architectures, allowing

agents to increase their autonomy and flexibility through the construction of action

sequences to achieve their goals. Notable applications of planners in games include Goal-

Oriented Action Planning (GOAP) and Hierarchical Task Networks (HTNs). GOAP is

derived from the older Stanford Research Institute Problem Solver (STRIPS) planner,

and was pioneered by Jeff Orkin who implemented it for the game F.E.A.R [49]. GOAP

performs ’backward chaining search’; starting with a desired goal the agent can determine

a particular sequence of actions that will accomplish it. The sequence of actions chosen

will depend not only on the goal but also on the current state of the world and the

agent [50]. There may be multiple action sequences that will satisfy the goal, allowing

for dynamic behaviour in different contexts. Whereas FSMs and BTs are reasonably

deterministic in their decision making, the agent-driven approach of GOAP allows for

’thinking’ agents, the resultant emergence of behaviour can be a desirable feature.

GOAP is an example of a backward planner. A forward planner that has seen use in

games such as Transformers: Fall of Cybertron [51] is Hierarchical Task Network (HTN)

approach. Starting from the current world state, HTN works towards a plan of tasks

that will provide a solution to problems. The provided set of tasks for planning solutions

take the form of: primitive tasks (an action) and compound tasks (a sequence of simpler

tasks). Depending on different world states, tasks will decompose into tasks that required

that condition. By searching through available tasks and applying their effects to the

world state the agent can build a valid plan. As with the other hierarchical architectures

we have seen, the search times of HTN will be proportional to the size of the graph.



17

2.2.6 Machine Learning as Applied to Agent Behaviour Architectures

Several machine learning approaches have been used in the development of AI for games,

including the use of neural networks, evolutionary computation and reinforcement learn-

ing [17]. Broadly speaking, machine learning algorithms perform some classification or

decision based on received input data. Depending on some metric of their success they

adjust their decision process accordingly; as a result they often require training on a large

amount of data before they perform well on some meaningful measure. Use in games

has been primarily confined to offline learning during game development or between pe-

riods of gameplay, usually for parameter tuning. Online (or in-game) learning has been

deployed in a small amount of commercial games such as Black and White [52], where

player teaching of a game agent was a major gameplay component. One of the major

game industry concerns with machine learning approaches is the unpredictable nature of

learning, sometimes denying authorial control over evolved agent behaviours. Similarly

although agents trained with machine learning methods can become extremely effective

game players or converge to single optimum; this is often not conducive to the human

player-oriented focus of commercial games [53]. Recent interest in learning applications

offer promise for the future of game agent research, for example recent research into

locomotion behaviours in 3D environments allowed the emergence of fine-tuned actions

such as jumping and running through reinforcement learning [22]. Integrating learning

in an effective manner for commercial game agents remains a promising field.

Several noteworthy attempts have been made to improve realism in agent behaviour

through machine learning methodologies based on human data; broadly known as Learn-

ing from Demonstration. This approach has been widely employed in the field of robotics,

where the aim is to develop agent policies from example state-to-action mappings [54].

This has been applied in various efforts to create organic virtual agents in games though

there remain issues in encoding contextual information, on which social interactions are

highly dependant [55]. Jeff Orkin’s ‘The Restaurant Game’ sought to achieve conver-

sational virtual agents through use of a minimal investment multiplayer onine (MIMO)

role-playing game. In this game, players are placed in a small but highly interactive

restaurant environment, assigned the role of a waitress or customer and given objectives

such as earning money or having dinner. Through an unsupervised learning methodology



18

based on data from over 5,000 gameplay sessions, a Plan Network was learned, a sta-

tistical model that encodes context-sensitive expected patterns of behaviour. Although

players would sometimes exhibit aberrant behaviour, this would ‘wash away’ statistically

given the large data set of interactions. When agents generated with this model were

demonstrated to human testers there was strong agreement on the realism of the agent’s

behaviour, noting their responsiveness to a wide variety of interactions. The experiment

was concluded after six months, and demonstrated the potential for using games to teach

AI, in this case about human behaviour [56].

2.2.7 Utility Systems

Utility-based decisions, based in economic theories of human behaviour, have been used

in popular multi-agent based games such as the Sims series [6] and have been highlighted

as an effective and reliable methodology by game agent industry consultants [57]. The

concept of utility can be described as follows: the usefulness of a given action chosen

by a decision making agent can be described with a single, uniform value known as its

utility ; the quality of being useful.

The concept of utility has been used extensively in fields such as game theory or eco-

nomics where it is used to characterise the idea of a rational individual : an agent that

always chooses the option that gives the greatest utility. Such a delineation is rarely

straightforward however; most decisions are multidimensional in their considerations.

For example, should an agent buy an ice cream from a nearby corner shop or from the

supermarket a short walk away? The corner shop is local, personal but expensive. The

supermarket however will have a greater selection and cheaper ice creams, yet perhaps

the agent is concerned that the impersonal experience will feel alienating. To make this

decision, utility theory would have the agent weigh up these considerations to give a total

preference, known as the expected utility for either option. The most common technique

to acquire the expected utility is to multiply the probability of each outcome by the

utility score and sum these weighted scores.

Uexp =
n∑

i=1

DiPi (2.1)
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Where D is the desire for the outcome (utility) and P is the probability that the outcome

will occur. These expected utility scores must be consistent and on the same scale

for comparison to make a final decision, so commonly scores are normalised. By the

principle of maximum expected utility, this is applied to every possible option and an

action is chosen that confers the greatest expected utility [43], [58]. As highlighted

before, calculating the utility of a given action will generally depend on several pieces

of data. Calculating the utility for a decision factor necessitates a function that will

map from states to a utility value. The core of using utility theory for decision making

is in understanding the relationship between the input and output, and being able to

define the function that describes their relationship. Assuming the data is relevant to

the decision, an arbitrary number of factors can be considered. A dragon might decide to

attack and eat a nearby dwarf, but the utility of this action could depend on the dragon’s

hunger, the distance to the dwarf and the dwarf’s perceived combat strength. A value

for each of these components factor into the action’s consideration, for that reason they

are referred to as decision factors or consideration axes.

2.3 Utility Theory for Believable Behaviour

Utility systems offer the benefit of making fuzzy decisions, where actions aren’t based

on conditions so much as scores. As we have seen this offers a more accurate model of

human decision making. As will be discussed in this section, utility functions can be

tweaked to achieve the different decision making processes made different agents. This

accommodates the ability to specify the values and personality of agents, simply by

adding some variability to utility functions and scoring. Several methods have been used

to develop utility-based decisions in game agents, this section will offer an introduction

to the most popular.

2.3.1 Infinite Axis Utility System

In the Infinite Axis Utility System, developed by Dave Mark [57], the game agent has

a number of atomic actions. These represent the agents behaviour, and once chosen

the agent will do whatever the action consists of. Each action has a number of ‘axes’

(considerations) that are used to weight the utility of the action, and are given an input
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and a number of parameters to work with. Treating each consideration as an element of

a dynamic data-structure such as a list, axes can be added or removed. For example, the

action "Use Health Kit" could consider the agent’s health. The action "Move to Cover"

could consider current threat level of the agent, its health, amount of ammunition and

distance to cover. Actions could be evaluated on a per-target basis, e.g. there could

be multiple sites where the agent could take cover. Each of the axes would consider

the inputs and evaluate them on a response curve. Noticing that response curves often

took the form of four functions (Linear, Quadratic, Logistic and Logit), Mark saw that

these could be tweaked to designer specification by providing four parameters: m, k, b,

c. Linear/quadratic curves could be specified with the equation:

y = m(x− c)k + b

Where m specifies the slope of the line, k is the exponent, b and c specify the y-intercept

and the x-intercept respectively. Logistic/Logit functions are specified with:

y = m(x− c)k + b

Where m specifies the slope of the line at the inflection point, k is the vertical size of

the curve, b provides the y-intercept and c the x-intercept at the inflection point. With

this system, designers could create a fine-tuned curve by specifying only six variables,

the input parameter x, the curve type and m, k, b, c. When the agent is deciding on an

action, the agent will look at all the actions, evaluate their utility by multiplying each

action’s axes to create an action score. These could be then chosen based on the highest

scoring action or by random selection of options that have been multiplied by a weight.

In order to achieve prioritization tiers of important actions (e.g. if the agent must dodge

a grenade) by providing a weight coefficient for each action. These could be multiplied

by the action to denote increase or decrease its score as a reflection of its priority. This

system, Mark argues offers a useful architecture for game agents as it is easily extensible,

fast to process and the consideration axes system offers fine-level control [57].
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2.3.2 Dual-Utility Reasoning

The strength of combining utility-based reasoning with probabilistic decision making

led to the development of dual-utility reasoning, notably by Kevin Dill of the Lockheed

Martin Advanced Simulation Center [22], [59]. Dill noted that there are two common

approaches to utility-based game agent AI. The first, based on absolute utility evaluates

each option and chooses the one with the highest score. The second, relative utility or

weight-based random utility, chooses actions at random but uses the score of each action

to influence the probability that action will be chosen. In the latter the probability of

an option being selected Po is determined by dividing the utility of that option Uo by

the utility of all other options:

Po =
Uo
n∑

i=1
Ui

Dill observed that both approaches have unique disadvantages. The absolute approach

can result in deterministic behaviour whereas the weight-based approach can result in

extremely low-utility actions being chosen, resulting in choices that might be perceived

as stupid or non sequitur. Dual-utility reasoning was designed to combine both to avoid

either scenario. Actions are assigned two utility values, a rank and a weight. Rank

divides actions up into categories via an absolute utility approach so that only actions

of the top rank will be selected. Weight is then used to provide weight-based random

choosing from high-ranked actions.

2.3.3 Hierarchical Utility Reasoning

Utility-based reasoning offers rational decision making in gray-area situations as a form

of fuzzy logic, offering greater nuance than many other popular AI architectures based

on boolean logic decision making. When supplemented with weighting or probabilistic

selection deterministic decision-making can be avoided. Utility-based architectures, such

as the Infinite Axis System also offers flexibility as modular actions can be slotted into an

agent’s behavioural repertoire. The dual-utility based reasoning similarly offers perfor-

mance boosts (only high rank actions will be considered at any time) but also a reduction

in nonsensical action-selection (such as an agent choosing to reload their weapon when
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its magazine is at capacity). With this in mind, a useful extension to utility-based de-

cision making architectures can be through the implementation of a hierarchical action

structure, such as a behaviour tree [7].

This approach was used by Dill not only in a commercial game [60] but also for the

creation of the "Angry Grandmother" as part of an immersive training environment

demonstration [22]. This was a mixed-reality character portraying the elderly grandpar-

ent of an insurgent as part of a training simulation for trainees. The trainees would be

tasked with searching the house of an insurgent’s grandmother for contraband and be

faced with the belligerent but non-threatening grandmother character that would react

to the search of her house. Highlighting the importance that the character had to be "be-

lievable, culturally authentic, nondeterminisitic and reactive within the limited scope of

the scenario", Dill built an AI that combined behaviour trees with utility-based reason-

ing. Within the architecture, the ’component reasoner’ used the hierarchical structure of

a behaviour tree with dual-utility for the decision making at each level of the tree. The

character had five behavioural states: Stand and Listen, Rant, Inconsolable, Surrender

and Dead. Each of these, along with their substates, would be chosen on the basis of

the behaviour of the trainees engaging with the simulation. For example, the Rant state

had the three substates, denoting her emotional response to how close the trainees were

to finding the contraband: Cold, Warm and Hot. The behaviours were limited to the

selection of character animation and spoken utterances, with importance placed on the

character responding to the search without repetition or determinism. The system was

successful in its realism, with one squad leader quoted as saying "the angry grandmother

acted exactly like women I experienced in the country", however Dill notes that the

bottleneck on the system was the development of the large number of animations to

maintain the suspension of disbelief [22].

2.4 Procedural Content Generation

PCG offers much to the game industry, perhaps most notably in alleviating the pressures

on content creators (game artists, designers etc). However content created through PCG

often results in some limitations on the ability of game developers to maintain a high

level of creative control. Proponents of PCG often make the argument that the benefits
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of outsourcing much of the creative work to automation will benefit lower budget projects

and inspire human content creators through unexpected creations [12].

There have been several technical approaches employed in PCG algorithms, generally by

creating expansive content from a much more compact representation such as a seed or

multidimensional vector. PCG can be offline, where the content is generated and tailored

by human designers before shipping, alternatively is can be online, where the content

is generated during runtime. The latter can be employed as a form of compression (No

Man’s Sky shipped on the Steam store as a 2GB download, 1.5GB of which was audio

[11]). Similarly content can be generated through a stochastic process or a deterministic

one where the algorithms produce identical content for a given input. Approaches for

PCG can be simulation based, such as in Dwarf Fortress where an initial world is given

detail (specified with operators) through the simulation of natural forces such as erosion

[13]. Constructionist methods piece together pre-made building blocks according to a

specified algorithm, such as in design of a building where the contents of rooms are

explicitly laid out by designers but the layout of the rooms changes from iteration to

iteration. Generate-and-test algorithms incorporate the generation of content but then

tests it according to some criteria, if it fails the test the content can be recreated in part

or in its entirety.

Search-Based PCG (described by Julien Togelius in [12]) is a special case of the generate-

and-test approach, characterised by a defined grading (ie beyond a simple pass/fail) of

the candidate content through a ‘fitness function’. High-fitness instances are used in the

generation of future content, often with some form of evolutionary algorithm providing

small random changes or recombining highly fit copies to successive generations. Togelius

revives the useful comparison to genetics, where the ‘genotype’ data-structure (that

encodes the content) is mapped to a ‘phenotype’ that is graded by the fitness function.

2.4.1 Procedural Content Generation for Game Agents

Procedural generation of content related to game characters has been employed to mixed

success. Ambitious attempts by the industry have included ‘Spore’ [61], where fantasy

animals could be generated from a small amount of data. This resulted in a large possibil-

ity space of creature morphology, complete with unique, generated animations reflecting



24

their anatomy. Other approaches have included generation of 3D humanoid mesh models

through principal components analysis, reference fitting and genetic algorithms [62].

Although ‘game content’ is commonly defined to the exclusion of NPC behaviour and

artificial intelligence [12], [63], the use PCG in this direction has been attempted. These

attempts are usually in the form of introducing variability in behaviour without excessive

hand-authoring of each individual agent. Christopher Dragert and colleagues developed

a high-level Statechart-based system for modelling behaviour on background NPCs with

the same core set of actions. This system allowed them to apply automatic or manual

variation on behaviour parameters or statechart structure to create individual AIs with

discernible behavioural differences [64].

Szita et al. describe a system for automatic macro generation, where a macro is a

sequence of actions that are handled as a single unit [53]. Using a cross-entropy method (a

general algorithm for combinatorial optimization tasks) to learn macro actions as defined

in a rule base along with a fitness function to update the probability of a macro sequence

being selected, they create a model that chooses macros based on macro diversity. They

achieve this by evaluating fitness based on the macro’s strength (effectiveness in the

game) in addition to prioritizing macros that are significantly different to previously

learned macros. By combining this with dynamic scripting, a reinforcement learning

technique where the macros could be chosen based on effectiveness, they create a system

that they claim this maximizes effective yet interesting adaptive behaviour.

2.4.2 Randomness Techniques for Game Agents

One mainstay of game programming is utilization of randomness. Randomness is em-

ployed in games for areas that benefit from not being too predictable, such as large

generated environments or when non-repetitive behaviour is required for game agents.

Randomness is notoriously difficult to define. However the mathematician’s definition is

in many ways the easiest: randomness is where a real number within the unit interval

[0,1] has some probability p [65]. This is an example of uniform randomness, but many

variables require a slightly more complex probability distribution. Randomness simply

selects a value according to the distribution. Humans are famously poor at generating

randomness, moreso at recognising it, claiming that randomness ‘does not look random’
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[66]. As will be discussed, this has significant ramifications for the use of randomness in

games.

2.4.3 Generating Randomness

Whereas we are poor at generating randomness, it can be argued that computers are

equally disadvantaged. Computers after all operate according to deterministic processes.

For this reason, algorithms to generate sequences of ‘random-looking’ numbers are re-

ferred to ‘pseudorandom number generators’ (PRNGs). These are completely determined

by an initial ‘seed’ value fed as an initial state, and operate iteratively. One of the earliest

algorithms was the middle-square method suggested by John von Neumann, and operates

as so: take any number, square it, remove the middle digits as the ’random number’ and

use this ‘random’ number as the seed for another iteration. If repeated ad infinitum, this

and any PRNG will eventually repeat itself with some periodicity. Indeed if a PRNGs

initial state contains n bits, its period can be no longer than 2n. All procedural content

generators that rely on PRNGs are underpinned by this limit. Many embrace the rela-

tionship between consecutive numbers in a pseudo-random sequence, allowing numbers

to ‘wander’ in a smooth manner. A common example is Perlin Noise, used extensively

in computer graphics to generate ‘coherent’ randomness. By combining random number

generation with smooth functions at several scales, smooth yet grainy sequences of num-

bers can be generated. Perlin noise has been used to specify nuanced agent behaviour

such as movement (steering, speed, acceleration), attention (responsiveness) and play

style (offensiveness, defensiveness) [66].

2.4.3.1 Filtered Randomness

When people think of randomness they expect randomly selected variables to be quite

evenly distributed, such as the following binary string:

101011001010101001001101
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What many don’t realise is that true randomness can be expected to contain ‘runs’ of

identical (or close) values, as can be seen in the sequence generated below (generated

through RANDOM.org [67]):

111000001110110110001011

This is of particular importance in games, which are centered around player experience.

Therefore for randomness in games it can be useful to adapt approaches with human

psychology in mind. To address this, a common technique in games is to use filtered

randomness. Filtered randomness generally takes an authored approach to identify and

rectify anomalies that will stand out to the player. Often these will involve filtering

randomly generated variables for repeating sequences (such as ‘34446’ or sequences where

the numbers are close together, as in ‘344741’), sequences where numbers descend or

ascend (such as ‘2345’) or too many values at the top or bottom of a distribution range.

2.4.4 Generating from a Gaussian Distribution

Commonly, when seeking to emulate nature realistically it can be beneficial to utilize

the Gaussian (or normal) distribution. In Gaussian distributions, variables are centred

around some mean value µ, with some standard deviation σ (such that 68% of the values

within the distribution fall within one standard deviation of the mean, 95% fall within

two standard deviations), according to the equation:

f(x) =
1√
2πσ2

e
− (x−µ)2

(2σ)2

Normal distributions are used ubiquitously in the natural and social sciences to represent

variables whose distributions are not yet known. When many contributing factors lead to

the generation of phenomena (such as a myriad of genetic and environmental influences

on human height), the result will often be normally distributed. This is a result of the

Central Limit Theorem, which establishes that when independent random variables (such

as the height of a large sample of individual people) are added, their normalised sum

tends towards a normal distribution [66].



27

When generating random Gaussian numbers, the Central Limit Theorem states that

the addition of uniform random numbers in the range [-1,1] will approach a normal

distribution with a mean of zero and a standard deviation of
√

K
3 , where K is the total

number of input uniforms [66]. Study into algorithms for Gaussian PRNGs is extensive,

and there exist variations for the needs of almost any simulation environment [68].

2.4.5 Level-Of-Detail Systems for Game Agents

Where there are large environments with many agents, it can be preferable to persis-

tently simulate agents even when not being directly observed. To address this, Level

of Detail (LOD) simulation is sometimes implemented to reduce unnecessary high detail

computation. These allow lower fidelity simulations to run in the background, sometimes

trained with a model for predicting the outcomes of game events [69].

Level of detail systems for game AI have implications for the use of randomness in agent

behaviour. For instance it has been suggested that deviations in game agent behaviour

as a result of Perlin noise may have an obvious lack of rationale, in which case it may be

better to switch to a more logic-driven framework when a game agent is being directly

observed by the player [66].

LOD systems for game agents similarly offer a form of compression, analogous to PCG.

For either it can be beneficial to determine the minimum amount of information to

specify, store and create content. For game agents, it would be useful to develop a method

for specifying agents with unique personal behaviour in a small amount of information.

For this we must consider ways of describing personality.

2.4.6 Personality Modelling

For background NPCs, it has been highlighted that its important to provide the illusion

that they have their own personalities [45]. For this it can be useful to have means to

describe and quantify the important details of personality, if it is to have any perceptible

influence on behaviour. Should it be possible to describe a personality in as few variables

as possible, it would enable the mass creation of characters.
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For human personalities, several attempts have been made to develop a comprehensive

taxonomy of human personality traits. One of the most successful attempts has resulted

in the Five-Factor Model (FFM), so much so that has become the dominant approach

for representing human traits today in psychological research [3]. The FFM was devel-

oped based on the association of words commonly used to describe the same person, an

effect observable through factor analysis on personality survey data [2]. The FFM is a

hierarchical organisation of personality traits based on five dimensions: Openness to Ex-

perience, Conscientiousness, Extroversion, Agreeableness and Neuroticism (conveniently

abbreviated as ‘OCEAN’. For this reason the traits are commonly referred to as the ‘Big

Five’. The FFM structure can be demonstrated across cultures and groups. The five

factors are described the the figure below.

Figure 2.2: Descriptions of the FFM, adapted from [2]

Importantly the FFM is based on a posteriori descriptions of personality traits, not on

predictions made through neuroscientific experiment or theory. Therefore although it
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offers an intuitive way to describe a personality in a small number of variables, it can be

difficult to interpret the meaning of the Big Five, or to make predictions of their influ-

ence on behaviour. Nevertheless researchers have used the model to predict individual

differences in a variety of settings. Particular focus has been on the relationship and

influence of these personality traits on feelings, behaviour and patterns of thought [3],

[4].

Borghans and colleagues paid particular attention to the effect that personality traits

have on behaviour, in particular through their influence on economic and social out-

comes. They cover this in a review of relevant psychological research into personality

and its effect on behaviour [3], [4]. They document how FFM personality traits have been

demonstrated to have significant influence on traditional preference parameters in eco-

nomics: time preference, risk aversion and preference for leisure. It is also demonstrated

that there is evidence personality traits offer equal or greater power than cognitive traits

for schooling, occupation (including job performance), wages, health behaviours and

crime. The correlations between FFM traits and socioeconomic outcome documented in

[3], [4] are highlighted in the Figure below, notably the intelligence quotient (IQ) measure

is the best predictor across most of these outcomes.

Integrating these findings into behaviour models remains challenging. As mentioned,

economists often model individual preferences through utility functions, where individ-

uals evaluate options according to the perceived value that each option would bring.

Borghans et al note the difficulty of deriving a direct map from personality onto pref-

erence values that would effect utility calculation. For example, it has been suggested

that the factors influencing time preference utility may be most usefully thought of as

tri-dimensional: underpinned by impulsivity (tendency to act with spontaneity), com-

pulsivity (tendency to stick with plans) and inhibition. The prospect of providing useful

functions relating FFM traits and behaviour is still underway, though it is highly likely

that any model for predicting behaviour based on personality descriptions will involve

the FFM.
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Figure 2.3: Correlations between traits and socioeconomic outcome, adapted from
[3], [4]



Chapter 3

Design

3.1 Previous Work

The primary inspiration for this model comes from work by Fallon [70], and continued by

Mullally [5]. Their model sought to achieve agent individuality through action selection

based on agent state, though use of a non-hierarchical manner meant that complexity of

decision making was proportional to the number of actions, and procedural generation

of agents was highlighted by both as an avenue of future direction. This model seeks to

address both of these aspects as a continuation of their their work.

3.2 Model Definition

Decisions are commonly made on the basis of both internal state (e.g. emotional or

physiological state) and external state of the environment (e.g. temporal, meteorological

or societal state). It is plausible therefore that individuals display unique preferences and

display irrational behaviour on the basis of some meaningful difference in their internal

cognitive state. These differences manifest in how individuals identify or choose between

alternatives due to differences in values and preferences.

We have seen that for background characters to be believable, a common criteria is for

them to display personality. This is effectively done by standard tools of the trade in

interactive media; for the expression of a grumpy dwarf one might need gruff utterances

(voice acting) and a shuffling gait (animation). In addition to these it is important that

31
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personality shines through in behavioural preferences; if we followed the aforementioned

dwarf around for a day we might see them eating greedily, working hard in the mines

followed by an evening of drinking bitterly in the corner of a dark tavern.

For background agents it would be useful to have a model that allows for the creation of

such characters, allowing easy specification of their personality. Similarly, a robust sys-

tem that could populate a city with different characters without necessitating extensive

hand-authoring would be ideal for the next generation of interactive worlds.A model for

decision-making agents, whose goal is to allow for the creation of agents with different

personalities would therefore need some representation of an agent’s preferences. For

simplicity it would be ideal if preferences could be specified for discrete aspects of an

agent’s state (e.g. treating hunger and energy as separate ’State Parameter’ values). We

have seen that the concept of simple utility functions is a robust way to treat the relative

importance or urgency of certain state values. This allows for the direct mapping of

individual aspects of agent/environment state to a utility score that can be used to form

the basis of decision making.

This provides a convenient way to specify preferences, certain agents could value or

discount the relative importance of state parameters according to some function that

maps their personality to their values.

3.2.1 Agent and Environmental State

If decisions are made on the basis of the internal/environmental state, there must be use-

ful representations of this data that can be accessed by the decision-making architecture.

Internal agent state can be stored by the agent itself, as individual State Parameters.

These can be stored as a numerical value (such as a floating point number) as a flexible

representation of physiological and emotional state. Similarly they can be used for stor-

ing material state (such as the personal wealth of the agent), or for opinions (such as a

simple relationship ranging from ’highly favourable’ to ’highly unfavourable’). A finite

number of these could be specified according to the needs of the character representation,

but could follow common parameters used in academia (see Figure 3.1) or industry (see

Figure 3.2)
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Figure 3.1: Agent Emotional Representation as specified by Mullally, adapted from
[5]

Figure 3.2: Agent ‘Needs’ Representation as depicted in the Sims [6]

In addition to agent-specific parameters it could be useful to represent global parameters

such as temporal factors (time of day, day of the week), atmospheric (temperature,

weather) or even global social factors (community morale) with a similar data structure.

These factors could be set globally and referred to by the agent. This would allow for

offset or bias in how agents treat these universal factors, such as agents that either

discount the time of day as important, or those who simply live on a different schedule.

3.2.2 The Action Hierarchy

For fine-detailed behaviour it become necessary to specify a wide variety of possible

actions. For instance, we might want to have multiple ways a farmer character can go

about their work. Possible farmer behaviours could involve tending the crops, feeding

the livestock, bringing goods to the market or sleeping under a tree. These actions would

differ to those the character would conduct during a social occasion, or when eating at

a restaurant.

As we has been noted, a defining characteristic for believability is that behaviours are

coherent; any system that regularly allowed agents to jump from one behaviour to another
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totally unrelated one could appear incongruous. For this a wide-variety of actions is best

stored and accessed in a hierarchy. This avoids the cost of evaluating all actions and

performing direct comparisons by storing actions in a hierarchical tree structure. This

is analogous to the structure we have seen in previous action-selection models such as

behaviour trees (see Figure 3.3) . At each level of the tree, utility-based evaluation of

each node could be used to choose a path down the tree. This reduces the need to

perform utility calculations; if a character has already evaluated its hunger and decided

that ’Have a Snack’ is a suitable action, it wouldn’t need to check its hunger levels again

when choosing between two possible sandwiches.

Figure 3.3: An example tree structure for action selection, Adapted from [7]

This would similarly allow for easy addition of new actions; designers could simply add

an action (with or without subactions) to any level of the tree. The modular nature of the

approach similarly offers the ability to ’teach’ agents new behaviours, where agents could

switch professions and acquire a whole sub-tree of associated actions. The system would

also permit introduction of a ’Smart Object’-style architecture [6], agents could be given

area-specific actions. This would allow an agent to walk into a tavern and temporarily

acquire actions for a tavern-context such as ‘Start a Brawl’ or ‘Sing Boorishly’, only to

have them removed from the hierarchy after they leave the location.

3.2.3 Utility-Based Action Selection

At each level of the hierarchy, nodes select from their child actions on the basis of each

actions utility. Selecting actions could be carried out via picking the top scoring action,

or by sorting the actions and picking through some semi-random heuristic. Assuming
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useful functions mapping state to the utility of an action (and its effect on that state), this

could offer an accurate means to model probabilistic decision-making. These functions

would calculate the utility with respect to one state parameter only, so that each utility

calculation could be easily specified with a simple univariate function. These functions

would necessarily be action specific. For example, consider the two possible actions

’Sleep’ and ’Work Hard’. Both might consider the state parameter ’Energy’ as a relevant

variable for the decision. Clearly the mapping from ’Energy’ to the utility of choosing

to ’Sleep’ would differ from the mapping to the utility of ’Work Hard’, indeed it would

be more realistic to each function to have an opposite-sign slope (see Figure 3.4).

Figure 3.4: Action-specific Utility Functions for agent ‘Energy’

Specifying utility functions as univariate permits a flexible system for utility calculation;

however many decision might rely on several different parameters to consider. For ex-

ample, an agent deciding whether to perform the action ’Go To Work’ might want to

consider its bank account, its energy and the day of the week (perhaps the agent lives in

a world with weekends). Specifying multi-dimensional utility functions that map several

parameters to a single utility value could be unwieldy to design and result in unintended

maxima and minima in the utility space. Treating each relevant state parameter as a

separate action Consideration as outlined in the Infinite-Axis Utility model [57], would

allow for easy specification and visualization of expected utility for given agent states.

An action could have an arbitrary selection of considerations for every action, overall

utility scores for an action could be calculated as the mean of all utility functions or

some combination thereof.
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Figure 3.5: Action hierarchy, each action with its own considerations

In addition to offering a system for believable decision-making, this approach offers useful

ways to model variation in agent preferences. This is one of ways in which personality

can be applied in a meaningful way to decision-making, as different personal values can

lead to unique behavioural details (one of the key metrics for believable characters [23]).

This could be achieved with different weights being applied to different state parameters.

For instance, a particularly miserly individual could value his personal wealth as a more

important consideration than his hunger, leading him to go hungry rather than spend a

penny. In order to represent these preferences there would necessarily be some function

that creates specific weights for each consideration on the basis of an agent’s personality.

Through weights it would be possible to model meaningful variation in how agent’s value

certain considerations over others. With this system the procedure for evaluating and

selecting child actions could be as outlined in the pseudocode below.
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void EvaluateChildActions()

{

Action topAction;

topUtilityScore = 0;

foreach (Action in ChildActions)

{

ActionUtility = 0;

foreach (Consideration in Action.Considerations)

{

considerationUtility = Consideration.CalculateUtility();

considerationUtility *= Consideration.Weight;

ActionUtility += considerationUtility;

}

ActionUtility /= NumberOfConsiderations;

if (ActionUtility > topUtilityScore)

topAction = Action;

}

}

3.2.4 Performing Actions

Once an action has been chosen there needs to be related behaviour, along with a defined

effect on the state of the agent/environment. To imagine this we can consider a ’Clean

Window’ action; to convey this realistically the agent must display related behaviour

(through text or animations), and signify that an aspect of the environment has changed

(perhaps the window is now cleaner than it was before). If decisions are made on the basis

of the agent’s state, we might observe the agent repeating this behaviour indefinitely.
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It is therefore useful to model the effect of particular behaviours on the agent; perhaps

the agent becomes tired and hungry after a period of window washing. To address

this the concept of a State Modification Vector was used in the previous models by

Fallon [70], Mullally [5] and Noonan [71]. This is analogous to the agent’s State Vector,

representing a transformation on the agent’s state as a result of performing an action.

Each action would have a separate State Modification Vector representing the effect of

the action; not all actions would effect all states, sleeping for instance would have no

effect on an agent’s wealth. Likewise, a State Modification Vector would have no effect

on global state, such as the weather or time of day. Two example state modification

vectors are shown below for two possible actions ’Work Hard’ and ’Sleep’ (Figure 3.6).

Both vectors operate on the energy, hunger and wealth state parameters with different

effects. Working hard causes a loss of energy but a gain in hunger; sleeping causes energy

to be replenished but still causes hunger, less so however than when the agent is hard at

work. Working could cause a rise in personal wealth, whereas sleeping has no effect.

Figure 3.6: Example State Modification Vectors for actions ‘Work Hard’ and ‘Sleep’

Through the effects of actions chosen by agents mediated by state modification, behaviour

coherence can be achieved. An agent that works hard all day will naturally choose to

sleep, given the appropriate utility modelling. This also presents a system for the effects

of the environment on an agent, if it were to catch a cold, a state modification vector

could apply a transformation on the agents state, affecting its future behaviour.

This model presents an additional opportunity to implement personality modelling. In

this approach we consider how agents with different personalities might react to different

experiences. For example, individuals that are described as highly extroverted (the ’Ex-

troversion’ trait in the Five-Factor Model) are usually described as deriving energy from

stimulation, such as social activity. Introverts on the other hand are usually understood

as deriving energy from low-stimulation environments, and might be more readily ex-

hausted from social activity. This could readily be captured with the state modification
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vector, for an agent with high extroversion, a ’Socialise’ action could have a modification

vector with the ’Energy’ index scaled up. This agent would become less tired from social

activity. For an introverted agent the ’Socialise’ modification vector’s ’Energy’ index

could be scaled down, modelling a more exhausting effect.

3.2.5 Personality Modelling

Given that any personality model would have multiple parameters, it may be that dif-

ferent aspects of personality affect/value the same agent state parameters. For instance,

the effect actions have on an agent’s mood might be a product of the agent’s neuroticism

and their conscientiousness. In order to represent the contributions each personality

dimension has on the valuing/modifying of each state parameter, the relationships could

be contained in a simple 2-dimensional array.

For the calculation of parameter weights (how much an agent cares about hunger/wealth/weather

etc) this array would be n by l +m, where n is the number of personality dimensions,

l is the number of possible external state parameters (such as the time or weather) and

m is the number of internal state parameters (hunger, energy etc). For the generation

of personality contributions to state modifiers (e.g. by what amount socializing detracts

from an agent’s energy), an array of size m by n is required as it would only pertain to

internal (and therefore modifiable) values.

In order to keep the size of the modifier and weight generation tables to a reasonable

minimum, there must be some representation of personality that employs the smallest

number of variables. A well established model for personality factors is the Five-Factor

model, based on recurrent factors from analyses of personality rating studies [2]. These

are considered to be candidates for the basic dimensions of personality; the "most im-

portant ways in which individuals differ in their enduring emotional, interpersonal ,

experiential, attitudinal, and motivational styles" [2]. The five factors are Openness to

Experience, Conscientiousness, Extroversion, Agreeableness and Neuroticism.

Importantly these factors are an a posterioiri model for personality, rather than being

derived from some understanding of the underlying causes (such as individual differences

in environment, genetics or neurobiology). Although some effort has been made to

assess the predicative power of FFM personality traits with regards to behaviour and
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socioeconomic outcome [4], there is no rigorous model for how these factors influence

basic behaviour. Nonetheless, using these parameters and storing the influence they

have on parameter weights and state parameter modifiers results in relatively compact

tables (5 by l +m and 5 by m respectively). Individual influences could be applied and

tested as needed.

3.2.6 Procedurally Generated Agents

A key motivation for this project is to develop a model for the procedural generation of

background NPCs. Understandably one of the main bottlenecks for any system where

game agents are procedurally generated would be the generation of large assets (charac-

ter art, such as 3D rigged meshes with associated animations), an issue that has been

addressed by several industry projects [61] [11]. This model is focused on behaviour selec-

tion as the means to convey believable behaviour, as such emphasis will be on generating

meaningful variation in agent behaviour.

As detailed above, the model thus far generates variation in agent behaviour through the

influence of a personality model on how states are weighed in importance and how the

agent is affected by performing actions. Modelling personality parameters as floating-

point numbers within the interval [−1.0,+1.0], there could be h by 5 different agent

configurations (where h is the amount of unique numbers you can represent as a floating

point number within that range). To avoid minuscule differences, personality variables

could be limited to 4 decimal places, giving h = 2× (104+1) = 20002 (+1 for the upper

and lower bounds, i.e. the values +1.0 and -1.0). This would result in the total number

of unique personalities being limited to 5 × 20002 = 100010. Although this number is

large, it pales in comparison to the 1.8×1019 unique planets of No Man’s Sky. In addition

many of these agents would have little difference in personality unless they were at the

extremes (i.e. +1.0 on the neuroticism scale).

To achieve a greater number of agent configurations in addition to some unpredictability

in their behaviour, it becomes favourable to supplement character generation with pseu-

dorandom variability. With a suitable PRNG supplementing the effect of personality

on agent weights and action modifiers, agents could have some interesting variation in

individual preferences. In the natural world, when measuring single phenomena over a

large sample size, the measurements often approximate the normal distribution. This is
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by the Central Limit Theorem, which states that the arithmetic mean of a large number

of iterates of independent, random variables will approach the normal (Gaussian) distri-

bution. For example, phenomena such as the height of individuals in a population will

be normally distributed. This is due to the large assortment of factors that contribute to

an individuals height (genes, developmental environment), each of which are randomly

distributed in the population. Therefore for this model, modelling phenomena within

the population (such as individual values and responses) as normal distributed offers a

realistic and intuitive system for interesting unpredictability.

By supplementing their weights/modifiers with pseudorandom numbers drawn from a

Gaussian distribution, two agents with almost identical personalities could display unique

quirks, such as one that particularly values money, or another that is particularly ex-

hausted by socialising. This would vastly increase the number of unique agents that

could be generated with the personality-based model thus far discussed.

3.2.6.1 Level of Detail Systems

It would be useful to implement a level of detail system for storing/updating agent state

when they are not in the vicinity of the player. This would increase believability as

the agents could ’change with experience’ [23], but would reduce the computational re-

sources associated with simulating them at high fidelity. In addition it would be useful

if the generation of agents from a low-detail state to high-detail was not an overly ex-

pensive procedure. This presents a challenge, as vast numbers of agents might need to

be expanded should the player enter a city from a less populated area.

3.2.7 Agent-Environment Interaction

One of the important metrics for believable agents is ‘awareness’: "agents should show

they perceive the world around them" [23]. For agents in games, this is most often

through sensing and can be utilized for object-interaction, player awareness and social-

ising with other NPCs. Representing these actions with utility-based decision making in

the action hierarchy, it would be necessary to either store them in a deactivated state

so they can only be accessed in the right environmental context. For example, should

a character walk into the vicinity of another character, they could both activate their
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‘Social’ actions and evaluate them, in the same way one might decide whether to stop

and talk to an acquaintance on the street. Similarly, a possible solution for spontaneous

object interaction could be to store actions in objects, these could be added/removed

to agents depending on their proximity. This would also allow agents to acquire new

actions, such as an agent that changes occupation and acquires new associated actions.

3.3 Illustrating the Model

As highlighted by Fallon [70] and McNulty [72], open world-style games such as Skyrim

focus on character classes in order to represent different background characters. These

often result in different appearance (be it a grizzled leather-clad hunter or a finely dressed

courtier) and behaviours (a thief that goes pickpocketing at night or a soldier that stands

guard on a watchtower). Characters within a class rarely display much individuality, a

blacksmith in one town will behave much the same as the blacksmith in another.

The reasons for this are understandable, each new class requires associated art assets

(voice acting, animations) and repeating archetypes saves on development costs while

still resembling the specialisation of labour that one might expect from varied characters.

This model is intended to offer a system whereby characters with similar backgrounds,

environment and profession could still show meaningful differences in behaviour through

personality modelling and procedural generation.

This section is intended to demonstrate the intended model through considering potential

characters it could generate. Two characters for a Skyrim-like village are developed, each

with a profession and associated actions. Through their personality and experience, they

display varied behaviour through the preferential selection of some actions over others.

It is through differing behaviour patterns that we can imagine an internal world driving

them.

3.3.1 The Neurotic Blacksmith

Consider a blacksmith in a small village, he might have a home and a workplace where

he performs his trade. Some of his behaviour is universally human: he eats, sleeps and
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perhaps does something to relax in his spare time. He works as a blacksmith in order to

provide for himself.

Now imagine that this blacksmith is particularly neurotic. After he gets up in the

morning he evaluates his options; work, eat, sleep, recreate. He is hungry, this is a

consideration for the action ’eat’, therefore when he evaluates that option its calculated

utility is high. The eat action has two options; the child actions eat at home and eat

food at the market. Eating at the market will entail some social activity, he weights

this quite low; he would really rather not have to talk to anyone he doesn’t have to.

After eating a particularly unsatisfying meal, he evaluates his options again; go back to

bed, eat again, recreate or go to work. When considering going to work, he considers

the time. Its standard working hours. He rates this highly and immediately proceeds to

work.

On the way to work he bumps into a neighbor, although the neighbor stops and seems

to want a conversation, the blacksmith chooses to ignore her. The blacksmith is quite

introverted in addition to being neurotic, this leads to a discount in the weighed impor-

tance of choosing to socialise. The blacksmith reaches work and thinks about how to

proceed with the days work; whether to forge new tools, sell wares at the market

or sleep in the corner. He’s feeling tired but chooses to forge new tools for a few

hours, he has plenty of tools already but wants to avoid the social activity of making

sales at the market. In the process of doing so he adds to the growing pile of tools on his

workbench. He then chooses to sleep in the corner of his workshop, barely able to keep

his eyes open. A stranger (perhaps the player) approaches his workshop; the blacksmith

wakes and tells him to go away, despite the fact that the smith has many goods to sell.

The player persists and the smith reluctantly sells the stranger a hammer. After the days

work he trundles off to the tavern, drinking quietly in the corner, hoping that no one

spots him and tries to start a conversation. He checks the time, still feeling exhausted

and hungry, he trundles off to his bed at home.

From the perspective of an observer, the blacksmiths schedule over the day is as follows:

• Wake up

(Sleep At Home action ends)
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• Eats at home

(Eat →eat at home)

• Does not stop to socialise with neighbor

(Rejected action: Socialise)

• Goes to work and forges tools

(Work →forge new tools)

• Sleeps in the corner of his workshop

(Work →forge new tools)

• Player approaches and is told to go away

(Rejected action: Socialise with player)

• Player persists and smith sells him a hammer

(Socialise with player →trade with player)

• Goes to tavern and drinks alone

(Recreate →drink at tavern →drink alone)

• Goes home to sleep

(Sleep →sleep at home)

Over time, the blacksmiths money would run out and they would have to go to market

to sell wares periodically, lest they begin stealing food (high hunger and low money).

With another blacksmith that is extroverted we might see a different day’s activity. Even

with the same small set of actions we can consider how noticeable behavioral preferences

could manifest themselves. An imagined day could be as follows:

• Wake up

(Sleep At Home action ends)

• Eats at the market

(Eat →buy food at market)

• Stops to talk to neighbor

(Socialise)
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• Comes across another acquaintance

(Socialise)

• Goes to work, brings wares to the market

(Work →sell wares at market)

• Player approaches and is greeted, smith sells him a hammer

(Socialise with player →trade with player)

• Goes to tavern and drinks loudly with friends

(Recreate →drink at tavern →drink loudly with other patrons)

• Goes home to sleep

(Sleep →sleep at home)

• Is interrupted en route, stops to talk to friend

(Socialise)

• Goes home to sleep (late)

(Sleep →sleep at home)

This blacksmith could over time prioritise the manufacture of new tools, having sold

all wares at the market. This character might be wealthier and therefore spend money

frivolously. With higher fidelity actions this could be extended, for example with addi-

tional player-interaction related actions this agent may be more receptive to gossiping

activity with the player, or assigning them quests (for a discussion of procedurally gen-

erated quests see work by Noonan [71]).

3.3.2 The Conscientious Woodcutter

Another archetype, the woodcutter, would have broadly similar options. They too would

have a home and options for recreation. Perhaps woodcutting is less lucrative and there-

fore the woodcutter has a more modest home, and frequents a more run-down tavern

than the blacksmith. Through the woodcutters behaviour over a single day, we can

imagine the influences of their personality. Take a particularly conscientious woodcutter

for example, one that values tradition and hard work:
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• Wake up (early)

(sleep at home action ends)

• Eats at home

(Eat →eat at home)

• Stops to socialise with neighbor

(Socialise)

• Does not stop to socialise with stranger

(Rejected action: Socialise)

• Goes to work, chopping wood

(Work →chop wood)

• Brings wood to market

(Work →sell wood at market)

• Go to church

(Recreate →go to church)

• Goes home to sleep

(Sleep →sleep at home)

3.4 Model Architecture

A high-level diagram decribing the model’s architecture is presented in Figure 3.7. The

agent is generated through personality modelling with pseudorandom number generation

to create weights and modifiers. The agent evaluates its action hierarchy, supplied with

actions from the environment or designer’s specification. These are evaluated on the

basis of consideration utility multiplied by consideration weights. When an action is

selected, it exerts an effect on the agent’s state with an action-specific state modification

vector that has been amended with personality specific state modifiers.
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Figure 3.7: High Level Representation of the Proposed Model

3.5 Manual Creation of Actions

A system for designing actions would prioritize ease of use by designers. Actions could

be specified with a location, associated animations and a duration. The location for

actions could be supplied by the designer or possibly assigned randomly from a pool of

similar locations generated for a town, such as an array of house locations. Duration

of the action could be generated with a pseudorandom process, such as picking from a

distribution centered around a mean action duration (for instance a sleeping time of 8 ± 2

hours). Generation of the state modification vector would be manually set and attached

to the action for which personality-based variation would be generated and added.

3.6 Automatic Addition of Actions

This could be naturally extended into the idea of in-game addition of actions to agents.

For this, template actions would need to get access to the receiving agent’s information

(such as their home or work locations). The action would need to specify its new position

in the agent’s action hierarchy, for instance a new occupation would need to be inserted

as a child of the ‘Work’ action. Personality-based procedural modification on the state

modification vector would need to be performed in-game, hence the PCG component

would need to be able to run quickly in real time.
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3.7 Conclusion

This chapter presented the details of the high level design for a background NPC model.

With a combination of utility-based decision making and the personality-driven proce-

dural generation of decision weights and state updates, the model was developed with

the requirements of believable interactive agents in mind, along with the general require-

ments for game agents in open-world games. The concept of utility-based action selection

was extended for typical behaviour of background NPCs and the method by which es-

tablished personality dimensions could be turned into a framework for agent generation.

Examples of generated characters that the model could accommodate were discussed,

and the high level architecture of the model was outlined as a general implementation

strategy.



Chapter 4

Implementation

This chapter presents the implementation of the proposed model design. It is intended

to be an in-depth discussion of the design choices for the project, including choice of

platform and technical considerations made.

4.1 Platform Review

For the implementation of the model a suitable development platform had to be chosen.

From the conception of the project it was determined that the use of a game engine-

style development platform would be prudent in order to focus on the implementation of

background NPC artificial intelligence. Previous research by John Fallon [70] originally

used the Skyrim Creation Kit a set of tools for custom content creation within the

Skyrim game. Due to technical difficulties however, subsequent work on similar NPC

models chose to focus on the Unity3D game engine [73] due to its good documentation

and quick set-up [72],[5], [71].

For this reason it was decided early on that Unity would offer a suitable platform for

implementing the model within an open-world game style environment. Unity primar-

ily operates within an editor with drag-and-drop functionality, with the behaviour of

components specified through scripting in the C# programming language. It similarly

offers a significant amount of creative and technical control, with the ability to code at

a low-level when needed.

49
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4.1.1 Demo Environment

For the implementation of the model a 3D demonstration environment was created. For

this a number of free art assets were obtained from the Unity asset store, the complete

list of which are available in Appendix D.2. Environment terrain was built in the editor

and 3D models for a village were positioned.

Figure 4.1: The Implemented Demo Environment

4.1.2 Agent Representation

Unity stores every object as a GameObject, from lights and 3D models to cameras

and special effects. They represent empty base objects, and through the addition of

components they can be controlled and interacted with via code. This lends unity to

hierarchical organisation within the editor, the components necessary for each agent are

no different. Each agent is represented with the following important objects/components:

• Body: A 3D rigged model with animations, a ‘Speech Bubble’ for identification

• Camera: Set behind and above the agent, for observation
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• Personality: A class that stores the personality vector and performs procedural

generation

• Agent: A class that updates the agent’s action hierarchy and decision-making

• Character: A class that holds the agent’s information and manages all compo-

nents and behaviour

Agent state is represented with a selection of State Parameters, GameObjects containing

a floating-point number representation of each state variable, bounded within the interval

[0.0, 100.0]. The following state parameters are used to represent agent internal state,

inspired by the models implemented by Fallon and Mullally: Hunger, Energy,Wealth,

Resources, Mood, Temper, Sociability and Soberness.

Agent personality is specified with floating-point number representations of the Five-

Factor Model dimensions (Openness, Conscientiousness, Extroversion, Agree-

ableness, Neuroticism), bounded within the interval (−1.0, 1.0), with the requirement

that each dimension is specified to three decimal places (the reasoning for this choice

will be discussed in Section 4.4).

4.1.3 Agent Movement

For agent movement in the environment, unity’s NavMesh was utilised. This is a single-

ton class that operates on a navigation mesh as baked automatically from level geometry.

The NavMesh can be used to perform spatial queries such as pathfinding and walkability

test, the setting of pathfinding costs and obstacle avoidance. In the demo the terrain

was used as the basis of the navigation mesh, with sections of the grid located on roads

set to a lower pathfinding cost to encourage smooth navigation.
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Figure 4.2: NavMesh (blue) Visualisation within the Demo Environment

Through the addition of the NavMeshAgent component to the agent, it is accessed by the

Character component when an action has been selected. Every action has an associated

location and once the action is selected the NavMeshAgent is told to navigate there while

playing the ’Walk’ animation. Once the agent reaches the destination the animation is

turned off.

4.2 Utility-Based Decision Hierarchy

When an agent is activated, the Update() function of the Character component is run

every frame, this sets the Agent component to update the action hierarchy. As mentioned,

the Agent component is responsible for operating the decision-making of the agent. The

component has access to the root node of the action hierarchy: the ‘Exist’ action. The
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Exist action is the core of every agent’s decision-making, it is always updating. Exist,

and all other actions are examples of the ActionBehaviour class. ActionBehaviours

are either the root action (i.e. the ‘Exist’ action), a Leaf action (an ActionBehaviour at

the bottom of the hierarchy) or neither.

During a traversal down the hierarchy (i.e. Exist →Sleep →SleepAtHome), all actions

are running. All actions have a duration, and this is used by the action’s parent to set

its own timer. Once a child action’s duration has ended, the parent must pick another

child action until its own parent stops updating it. So if the ‘SleepAtHome’ action

ends, but the timer for the ‘Sleep’ action is still running in the ‘Exist’ action, ‘Sleep’

must evaluate, choose and run one of its child actions. All ActionBehaviours have an

UpdateAction() function, this evaluates and picks from its linked child ActionBehaviours

if none is currently running. Timers for currently running child actions are only activated

once the agent is at that action’s location (see Section 4.3).

As detailed, every action (unless it is a Leaf action) has a list of possible child ActionBe-

haviours to choose from. These are evaluated according to the algorithm sketched out in

Section 3.2.3; namely by obtaining a utility score for each of them and picking the top

action. The utility score for each child action is calculated by obtaining the mean of all

ActionConsiderations; essentially prespecified utility functions that convert a single

State Parameter into a normalised Utility Score.

ActionConsiderations have a single State Parameter, a utility function and a weight. The

utility function is specified as a Unity Animation Curve, a component usually used for

storing animation keyframes that can be evaluated as a function of time. By evaluating

the Animation Curve with the normalised State Parameter, the utility at that point on

the curve will be output. This allows for hand-crafting of specialized utility functions by

tuning the curve as needed.
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Figure 4.3: The AnimationCurve component in Unity

Actions have have an arbitrary number of child ActionBehaviours and ActionConsidera-

tions and so a C List data structure is used to contain them, Lists having the ability to add

elements during runtime. As many actions and considerations are supplied to every agent,

a system was implemented for the automatic setting of an action’s owner by traversing

up the hierarchy until reaching the character GameObject (tagged as "Agent"). This is

used to acquire agent-specific action locations such as the agent’s home location. This

system extends to set the owner for every consideration, allowing each consideration to

set the relevant, agent-specific state parameter and the relevant consideration weight.

This is implemented by using a hard-coded string representation of the consideration

parameter (such as ‘Hunger’), and accessing a hashtable (C# Dictionary) within the

agent to access the agent’s ‘Hunger’ parameter, and relevant weight.

This implementation allows for a drag-and-drop interface where generic actions can be

added into an agent’s action hierarchy, including during runtime, with automatic inte-

gration within the agent. This system is used during the procedural generation of agents,

where actions are added according to agent details (Section 4.4). It could also be used

for the addition of actions through the proposed SmartObject-inspired feature, such as

an agent acquiring a hammer object along with associated actions (Section 3.2.7).
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4.2.1 Interruption System

Whereas the addition of actions into the hierarchy allows for dynamic agent-environment

interaction, a system for spontaneous actions is required for many scenarios. This is

implemented through the Interrupt system. If an agent comes into contact with an

object or individual containing an Interrupt, an interruption is flagged. This is achieved

through an intersection check between bounding spheres associated with the Interrupt

component. Interrupts are flagged and the agent pauses from their current action and

evaluates the Interrupt. This could handle many possible interruptions (combat, assisting

another agent) but to showcase the system a ‘Socialise’ interrupt action is implemented.

The Socialise action is a micro-hierarchy that exists outside the agent’s normal action

hierarchy, and is evaluated on the basis of two considerations: the agent’s Sociability state

parameter and the agent’s Relationship with the recipient. Relationships are stored as

State Parameters; if two agents haven’t met, each will create a new Relationship tagged to

the other agent. Currently relationships are represented by a single state parameter, but

could easily be represented by several dimensions (i.e. Love or Respect) Relationships

are non-mutual, that is agent stores a separate parameter. This allows for scenarios

where agents may have vastly different opinions of each other.

When an agent Bob comes into contact with agent Alice, they both flag an Interrupt

and evaluate the utility of the Socialise action (with the appropriate relationship as a

consideration). If Bob determines that the utility of socialising is greater than the current

chosen action utility, he will signal this to Alice. If she also accepts then they both set

their current action to ‘Socialise’ and treat it as a normal action. They can each then

choose between two child actions: ‘Socialise Nice’ and ‘Socialise Mean’. If Bob chooses

the ’Mean’ option, this will be signalled to Alice which will deteriorate their opinion

(i.e. the Relationship) of Bob. Although this is a one-dimensional view of relationships,

it presents a system where social dynamics can arise over the course of a simulation.

Similarly, the system whereby agents can manipulate the state of another agent presents

several interesting possibilities, whereby agents could help/hinder each other. These are

left as possible extensions of the model (further discussed in Section 6.2).
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4.2.2 Implemented Actions & Hierarchy

A diagram of the implemented action hierarchy is shown below in Figure 4.4. Some

actions are generic; the ‘Work’ action sub-hierarchy for instance can be set to a number

of professions. A table of the considerations for each action is presented below in Table

4.1

Figure 4.4: The Implemented Action Hierarchy
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Table 4.1: Actions with Considerations & Locations

Action Considerations Location

Eat Hunger Self

EatAtHome Wealth Self.Home

EatAtMarket Wealth MarketLocation

StealFood Wealth MarketStealLocation

Sleep
Energy

TimeOfDay
Self

SleepAtHome Energy Self.Home

SleepOnTheSpot
Energy

Soberness
Self

Work
Wealth

Energy
Self.WorkLocation

WorkDiligently Energy Self.WorkLocation

SellWares
Sociability

Resources
Self.WorkMarketLocation

SleepOnTheJob
Energy

Mood
Self.WorkLocation

Recreate

Energy

Wealth

TimeOfDay

Self

DrinkAtTavern Sociability TavernLocation

DrinkAmicably Temper TavernLocation

DrinkBelligerently Temper TavernLocation

PrayAtChurch Sociability ChurchLocation

GoFishing Resources FishingLocation

Socialise
Relationship

Sociability
Self

SocialiseNice Mood Self

SocialiseMean Mood Self
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4.3 Performing Actions

As has been mentioned, one component of performing an action consists of navigating

to the action’s location. Sometimes this destination is wherever the agent is currently

standing (i.e. for the ‘Sleep on the Spot’ action), but agent much reach the location

before the timer for the child action is started. For example the ’Sleep’ action can be

picked anywhere and ’Exist’ will only run it for its duration, at which point the agent

will decide on ‘SleepAtHome’ and navigate to its home.

An additional component to performing an action is the modelling of state changes with

State Modification Vectors. When a leaf action is being executed (i.e. the agent is

at the action’s location), the action-specific State Modification Vector is added to the

agent’s state vector on a per-frame basis. The State Modification Vector can be scaled

according to a specified frame rate. The execution of state modification is achieved

using C# delegates; when an action is executed the delegate state modification function

is run. Although originally it was envisaged that each action would have an associated

animation, due to time limitations actions are limited to a location and state modification

vector only.

State Modification Vectors used for the action in the demo environment are listed in

Appendix A.1.

4.4 Procedural Generation

As outlined in the project design, procedural generation was to be used in order to in-

crease individual agent detail. This was implemented primarily with behavioural detail

in mind, through the generation of individual consideration weights and state modifica-

tion vectors. For this, a combination of personality-based influences and pseudorandom

Gaussian number generation was implemented.

4.4.1 Gaussian Pseudorandom Number Generation

The pseudorandom number generator used was adapted into C# from an implementation

in the C language by Bourke [74]. The Gaussian PRNG operates via a ratio of uniforms
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method by A.J. Kinderman augmented by J.F. Monahan with quadratic bounding curves

[75]. This requires a uniform random number generator to supply random numbers

within the interval [0, 1], the algorithm for which originally appeared in work by George

Marsaglia and Arif Zaman [76] and was later modifed by F. James [77]. The uniform

PRNG is a combination of a Fibonacci sequence and an arithmetic sequence, has a period

of 2144 and gives bit identical results on all computers with at least 24-bit mantissas in

the representation of floating point numbers.

The generator needs to be initialised with two seeds, from which pseudorandom numbers

can be generated in a deterministic fashion. The first seed must be an integer in the

interval [0, 31328] and the second must be an integer in the range [0, 30081]. These seeds

are supplied from the agent’s personality representation. Each personality value (based

on the FFM) is represented as a decimal number between −1.0 and +1.0 with at least

three significant digits after the decimal point, through string operations the first and

second digits after the decimal point are concatenated to provide the seeds. If either

seed is above 30,000, division operations bring it below that threshold. For an example

of this process, please see Table 4.2.

Table 4.2: Seeds Generated for Different Personality Vectors

Open. Cons. Extro. Agree. Neuro. Seed 1 Seed 2

0.345 0.8546 -0.535 0.3911 -0.999 17315 18097

-0.432 -0.991 0.999 0.001 0.349 20956 20226

-0.111 0.221 -0.001 -0.988 0.032 23202 20950

Once these seeds have been set for an agent and the PRNG initialisation function has

been run, the PRNG can be used to generate numbers drawn from a Gaussian distri-

bution with a requested mean and standard deviation. This can be used to generate

pseudorandom numbers to supplement generated weights and action modifiers. As the

process is deterministic given the same set of seeds, the PRNG function can be repeated

to generate the identical arrays of weights and modifiers for agents with identical per-

sonality vectors. This allows for agent individuality to get collapsed/rebuilt as needed

for simulation purposes.
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4.4.2 Decision Weight Generation

The utility score of each action is calculated from the utility curve of each action consider-

ation. To represent agent preferences these scores are multiplied by weights, procedurally

generated from agent personality. The process by which these are generated is relatively

straightforward; for a given State Parameter, the contribution of each personality dimen-

sion to its weighting is stored in a Weight Influences Table. Each personality dimension

contribution is multiplied by the agent’s value for that dimension. For example if the

state parameter is ‘Wealth’ and the personality dimension is ‘Conscientiousness’, the in-

fluence value of conscientiousness (+3) is multiplied by the agent’s conscientiousness (say

0.345) to give 1.035. Likewise, if the agent has a negative value for a given personality

dimension that will result in a negative weight. The contributions of each personality

dimension are then summed and added to a pseudorandom Gaussian number with a

mean of 1.0 and a standard deviation of 0.3 to give the final weight.

Due to the lack of a rigorous model for mapping personality to preferences, in the current

implementation the influences of personality are treated as independently influencing two

specific state parameters. These are loosely inspired by the suggestions in [4], but could

be reset as required by changing the values in the weight influence table (Table 4.3).

This system allows for agents that are highly conscientious to weigh ‘Wealth’ as a highly

significant consideration, whereas a highly non-conscientious agent would discount the

importance of wealth in its decision-making.

Table 4.3: Personality Weight Influences

Personality Dimension +3.0 +3.0

Openness TimeOfDay Relationship

Conscientiousness Wealth Resources

Extroversion Energy Sociability

Agreeableness Temper Soberness

Neuroticism Hunger Mood
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4.4.3 State Modification Vector Generation

This system is extended to determine procedurally generated agent responses through

the addition of individual variation from the standard State Modification Vectors shown

in Appendix A.1. Due to personality contributions each agent will have unique responses

to performing certain actions through the addition of State Parameter Modifiers. For

example, an agent that is highly Neurotic will generally be less energised by sleep (an

activity that normally increases energy) and more exhausted by working diligently (an

activity that decrease energy).

These modifiers are generated through the Modifier Influence table (Table 4.4), supple-

mented with pseudorandom Gaussian numbers (mean of 0.0 and standard deviation of

0.5) and added to an agent’s State Modification Vectors. Note that this table is similar

to Table 4.3, however there are two important differences. Agreeableness has no influence

on the State Parameter ‘TimeOfDay’ as this is external to the agent, and Neuroticism

has a negative influence on Mood. Therefore we can expect that a highly neurotic agent

will improve its mood slower than usual and worsen its mood faster than usual.

Table 4.4: Personality Modifier Influences

Personality Dimension +3.0 +3.0

Openness N/A Relationship

Conscientiousness Wealth Resources

Extroversion Energy Sociability

Agreeableness Temper Soberness

Neuroticism Hunger Mood (-3.0)

Both Table 4.3 and Table 4.4 are implemented as 2D arrays, these are mostly empty

(personality dimensions have no influence on state parameters other than the two spec-

ified) but can easily be altered with new values to achieve any particular personality

influence desired.
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4.4.4 Level of Detail System

In order to provide support for agent creation/generation during runtime, a preliminary

level of detail system was implemented. This allows for the storage of agents in a com-

pressed form; once the player enters a specific area (the borders of a settlement, for

instance) the agents can be generated and simulated at full detail.

Within this system, agents are represented as AgentKernels. An AgentKernel repre-

sents the core of the agent. Namely:

• Name: the agent’s name as a string

• Home Location: a vector representing the location of the agent’s house

• Occupation: an enumerated type representing occupation

• Personality Vector: a specific float value for each of the 5 personality dimensions

In this implementation, the occupations are Blacksmithing, Farming, Woodcutting,

Guard Duty and Hunting. Due to time constraints the main difference between these

is location; individual animations could not be implemented.

AgentKernels can be specified through the graphical interface of the editor, and an arbi-

trary number of them can be supplied to the Town manager class. This has an associated

radius, once the player object enters this radius and triggers a Sphere Collision, the agents

are ‘unzipped’. For each AgentKernel, the town instantiates an agent GameObject (con-

sisting essentially a generic version of the agent representation listed in Section 4.1.2) but

without any actions. Town sets the agent variables (name, personality) and attaches a

generic version of the action hierarchy, subsequently activated to become specific to the

agent. The relevant occupation action is set and the procedural generation of weights

and modifiers is commenced. Finally, the Character component is activated and the

agents action selection is initiated.

The entire process of agent generation/activation can be repeated as needed during a

simulation, with identical weights/modifiers thanks to the PRNG. In the current AgentK-

ernel representation of agents, agent state (including relationships) are not stored, neither

are the agents updated in lower fidelity. These features could be added as needed, but
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would necessarily require the AgentKernel to hold more information in addition for a

model for low-fidelity state update.

4.5 User Interface & Debugging Tools

In order to assess the model implementation and provide visualisation of agent decision

making, User Interface (UI) and debugging tools were developed. Initially this was

through the addition of the public boolean variable isDebugging. This could be activated

on a component-specific level and could be used to print out relevant details to the

console. This system was supplemented with the development of a UI that allowed for a

detailed glimpse at the internal world of each agent. To aid the UI, every time the agent

choses an action the action is stored in an AgentLog, a list of chosen actions alongside

relevant details: action start time, end time, utility score.

The UI consists of two main panels overlaying the viewport: an AgentSelection panel

and an AgentInfo panel. The primary camera is attached to a first person controller,

and has an associated button in the AgentSelection panel. Once an agent is unzipped

and generated by the Town script, a button is added to the AgentSelection panel and is

automatically linked to the agent. When this button is clicked, the main camera switches

to the camera above and behind that agent. Three buttons in the AgentInfo panel then

allow for visualisation of the agents decision making. These three buttons are:

• Agent History: a list representing the AgentLog: previously chosen leaf actions

• Agent Action: the current chosen leaf action shown through its position in the

hierarchy

• Agent State: The current values for each of the agent’s state parameters (shown

alongside the generated weights), the agent’s personality vector and the agent’s

current relationship values

With automatic addition of an agent button for every instantiated AgentKernel, it is

possible to track the state and behaviour of any currently active agent.
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Figure 4.5: The Implemented User-Interface for Assessing Agent State. For every
agent running there is a button automatically created in the left hand panel. The right
hand panel can be used for toggling between the selected agent’s history, current state

or current action



Chapter 5

Evaluation

This chapter aims to present an evaluation of the project. First the efficacy of the

agent procedural generation is assessed by considering the results of the pseudorandom

number generation and the resultant schedules of different personalities, this is followed

by a discussion of the model with regards to the project aims. Lastly there is a brief

summary of the issues encountered during development.

5.1 Generation of Believable Agents

One of the primary goals of this project was to implement a system for the generation

of agents that display believable behaviour. This implementation decided to focus on

personality, and whether procedural generation of agent parameters from a personality

seed could manifest in noticeably different characters. In addition, this model sought for

agents with similar but not identical personalities to display differences in their behaviour

through the introduction of pseudorandom number generation. This section will explore

both of these aspects with respect to the goals of the model.

5.1.1 Comparison of Similar Personalities

The two agents Fido and Mello have broadly similar personalities. Both are fairly open

to experience, mildly conscientious, slightly introverted, quite disagreeable and mildly
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neurotic. Bingo on the other hand has a thoroughly balanced personality, he sits some-

where near the center on each personality dimension. The personality vectors for all

three agents are shown in Figure 5.1.

Table 5.1: Personality Vectors for Agents Fido, Mello and Bingo.

Agent Openness Conscientious Extrovert Agreeable Neurotic

Fido 0.4567 0.3001 -0.1119 -0.6681 0.2654

Mello 0.4578 0.2981 -0.1121 -0.6701 0.2701

Bingo 0.0001 0.0001 0.0001 0.0001 0.0001

Note that although similar in specified personality, Fido and Mello do not have identical

state modifiers (Table 5.2) nor consideration weights (Table 5.3). They are however on

similar extremes when compared to Bingo, whose modifiers are closer to 0 (drawn from

a Gaussian distribution with a mean of 0 and a standard deviation of 0.5) and weights

are closer to 1.0 (Gaussian distribution with mean: 1.0, standard deviation 0.3). The

differences are a result primarily of the influence of personality vector, however even

slightly different personalities will lead to different seeds. These manifest as different

weights and modifiers due to the pseudorandom number generation. A complete list of

the influences of extreme personalities on weight and modifier generation are given in

Appendix B.1.

Table 5.2: Generated State Modifiers

State Par. Fido Mello Bingo

timeofday N/A N/A N/A

relationship 1.836 1.194 0.184

wealth 0.880 1.267 -0.304

hunger 0.069 0.634 0.420

energy 0.943 -0.071 0.756

mood -0.510 -0.859 -0.632

temper -2.677 -1.937 -0.439

sociability 0.012 0.377 0.1742

soberness -2.407 -1.235 0.226

resources 0.821 1.576 -0.018
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Table 5.3: Generated Consideration Weights

State Par. Fido Mello Bingo

timeofday 2.476 2.004 1.058

relationship 1.955 2.192 1.116

wealth 1.413 1.709 0.902

hunger 1.600 1.582 1.049

energy 0.701 1.130 1.205

mood 1.717 1.646 0.753

temper -0.920 -1.012 1.607

sociability 0.369 1.532 1.378

soberness -1.141 -1.384 0.791

resources 1.373 1.784 0.764

These differences manifest in their behaviour. Presented in Table 5.4 are the top actions

over two simulated days with the percentage of time spent performing them. As can be

seen the behaviours of Fido and Mello diverge from each other significantly. Top actions

chosen by other agents with extreme personalities are available in Appendix C.1.

Although differences between Fido and Mello are stark, the system can be used to

heighten or lessen the effect. A primary way to lessen differences would be to adjust the

Gaussian number generation to have a smaller standard deviation, resulting in greater

convergence of their behaviour. The second way would be to adjust the personality in-

fluences in Tables 4.4 and 4.3. For instance, the influences could be kept discrete (that

each, with each dimension affecting only two state parameters) but simply scaled down.

Either of these approaches would facilitate straightforward adjustment of differences in

behaviour.
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Table 5.4: Top Actions for Fido, Mello and Bingo over 2 in-game days

Action Fido Mello Bingo

buy food at market ∼5.56% ∼1.49% ∼11.11%

eat food at home

steal food

sleep at home ∼11.11%

sleep on the spot

drink amicably

drink belligerently

pray at church ∼5.97% ∼22.22%

go fishing ∼22.22%

sleep on the job ∼38.89% ∼8.96% ∼22.22%

work diligently ∼35.82% ∼22.22%

sell wares ∼25.37% ∼11.11%

socialise nice ∼27.78% ∼7.46% ∼11.11%

socialise mean

This system also supports flexibility for agent specification. Should designers of particular

agents want the personality vector to have a more deterministic effect on behaviour, they

could merely adjust the standard deviation of the pseudorandom number generator.

This could be adjusted globally or on a per-agent basis. For large worlds populated

by hundreds of agents to be expanded and simulated on the basis of player proximity

it may be preferable to allow for variation so that unique characters can be created

automatically.

5.1.2 Believable Behaviour

The implemented framework presents a generic way to implement background agent

decision making. Though there are few quantitative models for believability we can still

make a comparison to some common metrics (such as those outlined in Section 2.1.3) and

to approaches to non-player character AI made by the industry. First we can examine

the actions chosen by one of the archetypes imagined in Section 3.3.2: the conscientious

woodcutter. To test this an AgentKernel is specified as follows:
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Table 5.5: Mundo, a conscientious woodcutter

Name Mundo

Occupation Woodcutting

Home Location House2

Openness 0.0005

Conscientiousness 0.6542

Extroversion 0.1121

Agreeableness -0.0031

Neuroticism 0.0027

Mundo’s personality is specified as very conscientious, mildly extroverted and otherwise

quite balanced. If we follow him for a day we can observe him performing the following

actions:

Table 5.6: Mundo’s Day

Eat →BuyFoodAtMarket

Work →SellWares

Socialise →SocialiseNice

Work →SellWares

SocialiseNice

Work →SellWares

Socialise →SocialiseNice

Work →SellWares

Recreate →GoFishing

Recreate →PrayAtChurch

Socialise →SocialiseNice

We see that his first action is to find something to eat. As his extroversion lends an extra

weight to social actions, he chooses to buy food at the market. He then goes to work,

choosing to sell his wares. Work has a wealth consideration which he weighs highly,

and selling wares has sociability as a consideration. He then proceeds with a highly

social working day getting periodically interrupted from his work to chat to passers

by. In the evening he goes fishing, this action is recreational but is a means to acquire
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resources (positive resource modifier on the state modification vector) and hence has

resources (strongly weighted due to his conscientious nature) as a consideration. He

then proceeds to go to church, where he is interrupted from his praying by socialising

with an acquaintance.

Whereas there is no immediate way to assess whether this leads to believable behaviour

as a manifestation of his personality as specified, it could be argued that his behaviour is

roughly what might be expected of a hard-working but sociable woodcutter. He displays

several of the metrics outlined in Section 2.1.3, awareness and social relationships (by

socialising with passers by), change with experience (his hunger is reduced by eating in

the morning, for instance) and personality (he consistently socialises nicely with other

characters). He shows a unique schedule when compared to other agents such as Fido,

Mello and Bingo (see Section 5.1.1) or the top actions of extreme personalities (see

Appendix C.1).

This can be compared to approaches used in other open-world style games populated with

background NPCs. In Skyrim, non-player characters are driven by predefined scripting

for their daily activities in addition to the Radiant A.I. system that handles interaction

with the player and other NPCs [72]. Whereas the scripting approach offers stability, it

would be hard for the character to change with experience. If the player suddenly stole

all the money from the NPC, the daily behaviour of the agent wouldn’t be affected. The

model presented in this thesis however could allow for this. The player could have ample

opportunity to affect the agent by creating some temporary or permanent effect on the

agent’s state representation; should the player cast a laziness spell on the NPC, we would

see the agent choosing actions where low energy led to high utility, such as sleeping. If

the player stole from the agent, we may see the agent working hard to compensate for

their loss or desperately stealing from the market to feed themselves.

In order to allow for large numbers of NPCs (up to 30,000 on-screen) the developers of

Assassin’s Creed Unity chose a slightly different approach to that in Skyrim [9]. They

chose to implement a level-of-detail system that simulates agents at a distance with lower

quality animation and meshes; agents within 12 meters of the player were relatively

high fidelity and would react to the players actions, those between 12 and 40 meters

away were less complex and those more than 40 meters away were animated in low

resolution with only simple navigation behaviours. This approach reduced the cost of
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agent AI, but believability was left as a responsibility of their animation content rather

than particularly complex decision making, which mostly relied on bulk states to define

the behaviour of large groups. Arguably this approach suits different needs; the Assassin’s

Creed NPC system sought to render large crowds with little need for the expression of

individuality as presented in this model. That said, the developers approach to expressing

NPCs through animation and LOD simulation offers much that could be explored as an

extension to this utility-based approach which presently is limited to action selection.

5.2 Efficiency of Implementation

One of the key model aims was to achieve an efficient way to procedurally generate and

simulate background NPCs. Both of these aspects, agent generation and simulation,

are required to have low memory and processing requirements. This section aims to

evaluate the performance with regards to these metrics. First the procedural generation

of agents from their compressed form will be assessed, followed by the memory and

CPU requirements for simulating them in full detail. Tests were conducted using Unity’s

built-in profiler for the analysis of CPU and memory performance.

5.2.1 Procedural Content Generation

The first component to be assessed is the performance of the agent procedural generation.

As mentioned in Section 4.4, once the player enters the radius of the town the agents

are generated from their compressed AgentKernel representation. The initial approach

was to expand all agents in a single function call. Due to the number of operations

required for the generation of a single agent (instantiation and linking of agent and

action hierarchy objects, pseudorandom number generation), this led to heavy usage of

the CPU. The results of agent generation through this approach are presented in Table

5.7. At 32 agents, generation is executed over two frames in succession.
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Table 5.7: Average CPU Usage of Generating Agents
*Average value over two frames of execution

No. of Agents Time Percentage of CPU

1 12.3 ms 68.40%

2 15.3 ms 79.90%

4 18.3 ms 79.30%

8 24.5 ms 88.50%

16 86.1 ms 98%

32∗ 428.13 ms 88.35%

Due to the heavy CPU usage, such an approach would necessitate a pause in rendering

in order to avoid the dropping of frames. This could be implemented through the use

of a pre-baked loading screen or animation during agent generation, however a different

approach was implemented through the use of coroutines in Unity. Coroutines effectively

operate as a background thread, allowing user-defined conditions for a function to con-

tinue execution. This is most easily applied in the execution of a loop, where the function

can be paused for a frame at the end of every iteration. This quick optimisation allows

for every AgentKernel in the town to be generated one at a time on a per-frame basis.

The results of this approach are presented in Table 5.8.

Table 5.8: Average CPU Usage of Generating Agent, Using Per Frame Coroutine

No. of Agents Time Percentage of CPU

1 0.1 ms 1.1%

2 5.36 ms 31.55%

4 8.37 ms 43.07%

8 10.69 ms 51.03%

16 10. 19 ms 52%

32 11.14 ms 48.85%

This approach offers a benefit in that it is capable of generating large numbers of agents

with less performance costs than the former method. As can be seen in Table 5.7,
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generation of 16+ agents requires more than 100% of the CPU capacity and results in

drops in frame rate.

The per-frame approach could still be optimized via several methods. Several subfunc-

tions called during agent generation require expensive operations, including the instan-

tiation of objects and string concatenation for seed generation. Therefore it is highly

possible that replacing these methods with a more efficient implementation could reduce

CPU consumption. Additionally the current implementation generates a single agent

per frame out of the entire town population as specified by the number of AgentKernels

upon a flagged intersection test with the player. Whereas for smaller towns this does

not present any issue, for a larger city of characters this would result in agent generation

taking upwards of n frames to complete (where n is the number of agent kernels). In

order to avoid this it could be preferable to contain large populated areas in a bounding

volume hierarchy so that area populations could be generated on demand.

5.2.2 Memory Requirements

Unity’s memory profiler allows for the analysis of the memory allocated from a managed

heap to the contents of the game scene, including scripts being run. It does not offer a

breakdown of the memory allocation, nonetheless by comparing the total system memory

usage of the environment with agents running to that with no agents the cost of running

individual agents can be ascertained. To test the memory cost of agent simulation, the

average memory cost of the first 15 frames after agent creation were measured. The

results are presented in Table 5.9 and plotted in Figure 5.9. The tests were performed

on a compiled build of the project in order to gain the most accurate evaluation.

The memory cost is per-agent and therefore includes information pertaining to all asso-

ciated objects including the action hierarchy, animated mesh model and UI overhead. As

can be seen, the memory demand is approximately linearly proportional to the number of

agents. Although there is little information on current memory budgets for game agents,

McNulty extrapolates from older estimates and states that today’s budget could be close

to 128MB of memory, though games that focus on character AI such as Skyrim may be

even higher [72]. Assuming a hard limit of 128MB, this model could therefore be used

to simulate up to 198 agents at full detail. In addition, this budget could be increased

via the removal of non-essential debugging tools such as the agent behaviour log and UI.
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Table 5.9: System Memory Usage Per Agent

No. of Agents System Memory Usage

1 3.06 MB

2 4.5 MB

4 5.69 MB

8 7.25 MB

16 13.13 MB

Figure 5.1: Memory Requirements Per Agent

5.2.3 CPU Requirements

Unity’s profiler offers greater analysis opportunity for CPU performance by displaying

the time and percentage consumed by every function call in the game scene. Though

generating an agent requires several function calls, the majority of agent simulation is

spent updating the decision process. By analysing the computational demands of this

function the general performance of simulating agents can be assessed. The average CPU

use over 15 frames after agent creation was measured for a number of different agents

and the results are displayed in Table 5.10 and plotted in Figure 5.2. It is important

to note that the bulk of CPU usage is taken up through navigation through pathfinding

by the NavMeshAgent and controlling animation. The decision update itself is a small

component of the values presented, though other aspects to agent simulation such as

interruption processing are not contained in the decision process and therefore are not

included as part of the estimate. Similarly, on occasions where all agents have to choose
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a new action there can be spikes in computational load. In reality, due to the spacing

out of actions it is highly rare to observe significant spikes above 10% of the mean values

presented.

Table 5.10: Average CPU Usage of Agent Update

No. of Agents Time Percentage of CPU

1 0.054 ms 0.51%

2 0.073 ms 0.88%

4 0.126 ms 1.28%

8 0.236 ms 2.35%

16 0.409 ms 3.27%

32 0.788 ms 5.64%

Figure 5.2: CPU Requirements Per Agent

A common estimate of CPU allowance for game agents is between 5 and 50% [17].

By this account the model could be comfortably used to simulate up to 32 agents at

a cost of 6%. This could be extended to the larger budget associated with open-

world role-playing games where additional agents could be run at the same time. This

could be supplemented with level-of-detail approaches to agent simulations, where agents

in nearby vicinity could be simulated in full detail and a model could be developed

to simulate further agents with less behavioural fidelity. An alternative approach to

reducing the cost of each update would be to implement a coroutine system (as in Section

5.2.1) to allow for action selection to be executed over several frames.
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5.3 Impediments

The following presents a brief summary of the more significant issues encountered during

development. Many of these stemmed from issues related to tuning and parameter

selection of numerical values that could still be optimised:

• Action Modification Vectors: these contain a set of hardcoded representing the

average effect (i.e. pre-personality based procedural content generation) performing

particular actions has on the agents. These required some debugging initially to

avoid overly strong effects on agent state.

• Action Modifier Generation: representing the effect that personality has on

action modification vectors. Agents were most balanced when these effects were

low and resulted in extreme behaviours when they were high.

• Weight Generation: Similarly, the effect that personality has on consideration

weights resulted in behaviour that was either indistinguishable at low values or

overly dramatic and repetitive at high values.

• Pseudorandom Gaussian Number Generation: These represented a level of

non-determinism for agent personalities. The standard deviation of the pseudo-

random number distribution had strong effects on this non-determinism, where at

high values the personality effect was insignificant in comparison to the pseudoran-

domness.

These all presented challenges in the form of tuning the parameters to achieve desirable

results, however further work on this would be required to improve the model.

An additional issue presented itself when attempting to model personalities using the

Five-Factor Model. As few models exist for mapping these personality types to every-

day behavioural preferences as required for background NPCs, it was not possible to

rigorously examine the model for accuracy. Specifically, it is highly unlikely that each

personality dimension would have an isolated effect on individual preferences and val-

ues. These are likely to contribute to behaviour in a synergistic manner, though initial

attempts to model this resulted in a model that was too hard to achieve predictable
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results with. A far more accurate model would indeed represent the effect of each per-

sonality value (openness, conscientiousness etc) on values (state parameter weights) and

responses (modification vectors).



Chapter 6

Conclusion

This chapter provides a summary of the contributions made by this project, examines

possibilities for future work that could improve or extend the model followed by some

final remarks in the context of a wider perspective.

6.1 Main Contributions

Although the current model implemented offers several avenues for further improvement,

it is possible to consider its main contributions. The project model as implemented of-

fers a system for the background NPC behaviour that addresses common criteria for

believability. The model was specifically designed with the criteria presented in Section

2.1.3, specifically those metrics proposed by Gomes [23]. These include agents changing

with experience as they make new relationships, awareness (including social awareness)

as they react to passers-by using the interruption system. Agent behaviour is relatively

understandable; they get tired after a days work for instance. Through the utility-based

action selection they display some degree of predictability as they choose actions to ad-

dress their current state. The opportunity to express emotional state is available thanks

to the action hierarchy; they can choose between drinking in a friendly or aggressive

manner or between socialising in a nice or unpleasant way.

Similarly they display personality through their behaviour. Through the procedural

generation of consideration weights and state modifiers, agents show specific preferences

automatically from a broadly universal set of actions. These are largely predictable from
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the agent personality specification, and the level of predictability can be adjusted through

pseudorandom number generation that adds noise to achieve unique personalities, as

presented in Section 5.1.1.

The model was intended to be as general as possible, with model components (actions,

considerations and state parameters) following a generic structure that can be easily

added or removed to suit requirements of any game agent implementation. Parameters

for generated values such as the influence tables (Tables 4.3 and 4.4), state modification

vectors (Section A.1) and pseudorandom number generation mean and standard devi-

ation (Section 4.4.1), can be adjusted as needs be. Personality specification results in

readily generated agent parameters according to a deterministic process; allowing agents

to be collapsed and re-generated with no loss of personal behaviour quirks.

An additional focus was to achieve an efficient implementation. As discussed in Section

5.2.1, the procedural generation of agents can be run in real-time, albeit at an increased

performance cost above the current CPU budget for AI in industry games. Effort was

made to reduce the cost of this process, and several directions for further optimisation

were discussed. In Sections 5.2.2 and 5.2.3 the memory and CPU requirements for

running the agents were found to be acceptable by industry standards, though additional

work could offer improvements.

6.2 Future Work

Upon consideration of the project as a whole, there are several directions for improve-

ments of existing features or for further extensions. These include specific adjustments

to suit different applications and general extensions to the model, including possible

optimizations in the current code base.

6.2.1 Agent Specification

It would be possible to replace or extend the FFM personality specification to achieve

more specific results. Although the FFM was developed as a result of the most commonly

used personality descriptors, some designers may find it unintuitive to work with. The

Big Five descriptors were originally chosen as a compact representation of personality,
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for a given implementation it may be desirable to provide more specific descriptors. One

of these could be the alignment system used for specifying characters in the role-playing

tabletop game Dungeons and Dragons [78], where personalities are specified on a moral

axis (good-neutral-evil) and an ethical axis (lawful-neutral-chaotic). The model could

be extended to include these additional features to suit the needs of a given application.

Similarly, the current implementation requires designers to hand-specify agent personal-

ities. Whilst this may save on extensive hand-authoring, it might become desirable for

a more automated system. This could involve random specification of personality vari-

ables, possibly based on a model for their distributions within a population. With such

a system it could be possible to specify that a town should have a population of 100 with

a large number of conscientious characters, with automatic generation of personalities.

6.2.2 Animations and Speech

Currently performing an action entails going to a location and activating a state mod-

ification vector. Whilst the agent is animated while walking, the agent mesh does not

perform additional action-dependant animations. Due to time constraints this could not

be addressed, however a suggested approach would be the implementation of either an

animation hash table structure, where actions have an associated key that runs an ani-

mation. Alternatively animations could be stored in a generic manner within actions, so

that if a new action is added during run-time the agent could run novel animations when

performing that action. Both of these approaches could be improved with the addition

of a speech component (either by running sound bytes or loading text into the speech

bubble) as a means to convey the agent’s internal state.

6.2.3 Probabilistic Action Selection and Interruptions

Agents always choose the highest scoring action, this means that given a specific state

vector the agents behaviour will be fully deterministic. There are tow immediate ways

to address this: one would be to implement a probabilistic model for picking actions,

another would be to extend the interruption system. The former could implement dual-

utility reasoning as presented by Kevin Dill [59]. In his scheme the probability of actions

being selected are proportional to the score of the action, with higher scoring actions
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gaining a higher likelihood of being picked. This would add some additional cost to

action selection but would allow for less deterministic behaviour. The latter approach

could extend the interruption system to allow for smart objects/agents to interrupt the

agent. Currently if an agent is on their way to perform an action, they can get interrupted

if they choose to socialise with another agent. By extending this to allow for interactable

objects such as tools or pets more spontaneous behaviour could be achieved.

6.2.4 Goal-Oriented Actions

Although this model concentrated on believable action selection, how the actions are

performed is relatively simple. An interesting extension would be to integrate with a

goal-oriented action selection system such as that implemented by Tiarnan McNulty in

his memory-driven model [72], where scheduled actions had to be solved by an agent

accessing a memory graph and choosing appropriate actions. This system could allow

for utility-based action selection to achieve goals, where agents solved goals according to

their personality. For example, a particularly introverted agent could choose to steal a

hammer instead of having to ask other agents.

6.3 Perspective

As open world games become larger and employ more automation in their design, it is

imperative that they maintain the quality of hand-authored content. This opinion is

repeated by Warren Spector, creator of the popular immersive simulation game series

Deus Ex, as he stated that he’d "rather do something that’s an inch wide and a mile

deep than something that’s a mile wide and an inch deep" [79]. Arguably out of all

the directions for interactive entertainment, the development of interesting game agents

is an area with the greatest potential. The presented model is intended to add to the

discussion, offering promise to the possibility of procedurally generated worlds.



Appendix A

A.1 State Modification Vectors

82



83

T
a
bl

e
A

.1
:
St
at
e
M
od

ifi
ca
ti
on

V
ec
to
rs

fo
r
le
af

ac
ti
on

s
in

th
e
de
m
o
en
vi
ro
nm

en
t

S
ta
te

P
ar
am

et
er

→
H
un

ge
r

E
ne

rg
y

W
ea
lt
h

M
oo

d
T
em

pe
r

So
ci
ab

ili
ty

So
be

rn
es
s

R
es
ou

rc
es

A
ge
nt

A
ct
io
n
↓

bu
y
fo
od

at
m
ar
ke
t

-4
-1

-3
0

1
-1

0
0

ea
t
fo
od

at
ho

m
e

-4
-1

-2
0

1
3

0
-2

st
ea
lf
oo

d
-2

-2
0

-1
-1

0
0

1

sl
ee
p
at

ho
m
e

1
3

0
1

3
2

4
0

sl
ee
p
on

th
e
sp
ot

1
1

0
-1

1
0

4
0

dr
in
k
am

ic
ab

ly
2

-2
-2

1
0

-2
-4

0

dr
in
k
be

lli
ge
re
nt
ly

2
-2

-2
-1

2
-2

-4
0

pr
ay

at
ch
ur
ch

2
-1

0
1

3
-1

0
0

go
fis
hi
ng

2
-1

0
1

2
1

0
3

sl
ee
p
on

th
e
jo
b

1
2

0
1

1
0

2
0

w
or
k
di
lig

en
tl
y

3
-3

0
-1

0
2

0
4

se
ll
w
ar
es

3
-3

4
0

0
-2

0
-3

so
ci
al
is
e
ni
ce

2
-1

0
-1

0
-2

0
0



Appendix B

B.1 Generated Weights and Action Modification Vectors
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Appendix C

C.1 Top Actions for Extreme Personalities

The top actions chosen by agents with personality extremes over 2 in-game days are

shown below in table C.1. These extreme personalities are signified by an extreme value

(i.e. +0.999 for High, −0.999 for Low) on a single personality dimension (openness,

conscientiousness etc). For each extreme personality only a single dimension was made

extreme, all others were balanced at a neutral value (0.0001).
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Table C.1: Actions Performed by Agents with Personality Extremes, Over 2 In-Game
Days. Personalities with extreme values on a single parameter: +0.999 for High, −0.999

for Low, 0.0001 for all other personality parameters

Personality Actions Percentage

High Openness

Buy Food At Market
Sleep At Home
Pray At Church
Work Diligently
Socialise Nice

9.09%
20%
45.45%
9.09%
18.18%

Low Openness

Buy Food At Market
Pray At Church
Sleep On The Job
Sell Wares

25%
25%
25%
25%

High Conscientious

Pray At Church
Go Fishing
Work Diligently
Sell Wares
Socialise Nice

6.25%
12.5%
31.25%
43.75%
6.25%

Low Conscientious

Buy Food At Market
Eat Food At Home
Sleep At Home
Sleep On The Spot
Socialise Nice

25%
5%
25%
25%
20%

High Extroversion

Buy Food At Market
Pray At Church
Work Diligently
Socialise Nice

7.14%
21.43%
57.14%
14.29%

Low Extroversion Buy Food At Market
Steal Food

50%
50%

High Agreeableness

Buy Food At Market
Pray At Church
Work Diligently
Sell Wares
Socialise Nice

6.67%
26.67%
33.33%
13.33%
20%

Low Agreeableness

Pray At Church
Sleep On The Job
Work Diligently
Socialise Nice

22.73%
31.82%
36.36%
9.09%

High Neuroticism
Buy Food At Market
Steal Food
Socialise Nice

47.62%
47.62%
4.76%

Low Neuroticism

Sleep At Home
Pray At Church
Work Diligently
Sell Wares
Socialise Nice

12.5%
43.75%
25%
6.25%
12.5%



Appendix D

D.1 Reference Materials

A disc with all of the files used or developed for the project are attached to the back of

the dissertation.

D.2 External Assets & Plug-ins

• Relaxed Man Character, available at https://www.assetstore.unity3d.com/en/

#!/content/32665

• Concrete Blocks (Pack), available at https://www.assetstore.unity3d.com/en/

#!/content/25961

• Old Soviet Shop, available at https://www.assetstore.unity3d.com/en/#!/content/

54767

• The Wasteland LITE, available at https://www.assetstore.unity3d.com/en/#!

/content/73054

• Dumpster, available at https://www.assetstore.unity3d.com/en/#!/content/

655

• Modular Road Block, available at https://www.assetstore.unity3d.com/en/#!

/content/87597

• Fridge Old and New, available at https://www.assetstore.unity3d.com/en/#!

/content/24196
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• Crate and Barrels, available at https://www.assetstore.unity3d.com/en/#!/content/

73101

• Stylized Vegetation , available at https://www.assetstore.unity3d.com/en/#!

content/59916

• Survival Starter Kit. , available at https://www.assetstore.unity3d.com/en/

#!/content/17899

• Medical Box, available at https://www.assetstore.unity3d.com/en/#!/content/

26967

• Container, available at https://www.assetstore.unity3d.com/en/#!/content/

658

• Tower The Last, available at https://www.assetstore.unity3d.com/en/#!/content/

70663

• Lighting Generator, available at https://www.assetstore.unity3d.com/en/#!

/content/28173

• Barrels, available at https://www.assetstore.unity3d.com/en/#!/content/63623

• Mega Fantasy Props Pack, available at https://www.assetstore.unity3d.com/

en/#!/content/87811

• Tools and Logs, available at https://www.assetstore.unity3d.com/en/#!/content/

43971
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