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Abstract
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Optimization to Deferred Shading Pipeline

by Samir KUMAR

Rendering pipelines in the field of graphics are continuously evolved. De-
ferred rendering pipeline is a step forward from most Common pipeline
Forward rendering pipeline. Deferred rendering pipeline has its disadvan-
tages such as its does not support blending. The aim of this project is to
optimize the deferred rendering pipeline to increase its usability for a large
variety of project. One of the objectives of the project is to solve the problem
of blending by integrating forward pass as the third pass into the deferred
pipeline to render blending. Next, comes the Light volumes calculations to
calculate lighting and increase computational efficiency. After couple experi-
ments and dealing with results of these experiments, blending is successfully
integrated. It works efficiently and justifies deferred characteristics of render-
ing a large number of objects and lights. The results produced by blending
implementation are realistic and efficient. Lights rendered to perform blend-
ing uses the distinctive shader. Light volume calculation approach is also
successfully implemented. However rendering performance improves but
it does not hit the expected mark. The reason behind these results is due
to GLSL and GPU characteristics. However, this can also be solved by the
approach suggested in future work. This optimization of the deferred pipeline
can be utilized to render a large number of objects and light while allowing
the use of blending and special shader, which is something not possible in
generic deferred shading. This approach also supports customizations and
scalability depending on requirements of the project.
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Chapter 1

Introduction

Over the last numerous decades, the significant need for 3d graphics has been
noticed. Due to raising requirements, there have been vast improvements in
rendering of graphics and graphic pipelines. Graphics rendering is moving
towards realism and getting faster. From very basic imagery to high-end
graphics, lighting is the most crucial factor. There are many different ways
to render lighting in the world of 3D graphics. One of the standard and
straightforward approach is forward rendering. Forward rendering let down
when the number of lights is significant. For a large number of lights, the
more efficient technique used is deferred rendering. Not only it allows to
process a large number of lights but also lifts the scene up towards realism.

Deferred rendering used to render the lighting where forward rendering
would break. Deferred rendering has its own limitations. A common flaw is
that it does not handle transparency or blending. All the values of g-buffer are
from single fragments where as to render blending combination of multiple
fragments is required. This aspect has been the matter of research for long,
but there is still no ideal method. It is debatable that methods available in
industry to alleviate this limitation are worth the project or not considering
the efforts they require in implementation.

Some of the techniques that handle the limitation of blending include alpha
blending by (Magnerfelt 2012a), Clustered Shading (Olsson, Billeter, and
Assarsson 2012a) and more. More detail on these methods is mentioned in
the background research section. The industries have been working on the
solutions for this limitation such as Climax (Hargreaves 2010), Science Direct
using deferred blending (Zhang and Pajarola 2007). Famous game developers
have been researching techniques such as Antialiasing by Nvidia. (Chajdas,
McGuire, and Luebke 2011). Having all these approaches with their issues and
limitation makes them suitable for one and unsuitable for another scenario.
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There is still vast room for the simplistic and optimized approach that can
handle a large variety of scenes.

1.1 Motivation

Improvements and advancement in the graphic processor units with time
made the drawbacks of forward rendering technique easily noticeable. As
afore mentioned deferred rendering techniques is utilized to overcome these
disadvantage in modern day rendering techniques. This method drastically
changes the way we render the scene and the object in it with respect to
lighting. (Thaler and Wien 2010) Deferred rendering is based on the core idea
of postponing the most expensive parts of rendering such as lighting to the
later stage of the rendering pipeline. Resulting in a separation of rendering
pipeline into two main part Geometry stage and lighting stage.

(Policarpo, Fonseca, and Games 2005) one of the main disadvantage of this
technique, this project is trying to alleviate is that it does not support rendering
of lesser opaque objects. So blending or transparency has been a major issue
of deferred shading in the graphics industry. The approaches present in
the field of graphics industry to overcome this problem are, such as using
alpha blending by (Magnerfelt 2012a) and tile shading (Olsson and Assarsson
2011b). Clustered Shading (Olsson, Billeter, and Assarsson 2012a) is another
extensive approach. These techniques as also mentioned before do solve
the problem of blending but they have their compromises. These trade-offs
are detailed in the background research section of the report. Looking into
these approaches, one thing that collectively comes out is that they have their
specific fields of application and they are hard to adapt to different scenarios.
The reasons behind less feasibility for adaptation are their development time
input and particular limitations. Mostly they will not be feasible for small
scale projects. This collective limitation brings us to the room for a first go
to approach. An approach that can solve the limitation of blending from
deferred shading, an approach that can be extended and scaled according to
the needs of development. These factors become a motivation to develop a
suitable approach in this project that will fulfill these requirements.
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1.2 Objective

The approach implemented in this project is to deal with this limitation of
blending in deferred shading. This project is based on optimizing deferred
pipeline to render blending and a large number of lights efficiently. To make
blending work with deferred shading forward rendering is brought back. It is
utilized as an internal part of deferred rendering pipeline after the shading
pass. This integration is done in such a way that the forward rendering
only handles the blending part of the scene while being part of the deferred
rendering pipeline. This way pipeline will provide the advantages of deferred
shading such as rendering high number lights without getting slow as well as
allow the use of special shaders and perform blending which is not allowed
in the generic deferred rendering pipeline.

This project also consists of work to optimize the pipeline to render a large
number of lights using light volume calculations as the generic pipeline will
not do it on its own. Using light volumes increases efficiency and speed of
the rendering as only the effective area of each light will be calculated for
lighting in the scene instead of globally calculating the whole scene for each
light source.

As per road map of the project, first deferred rendering pipeline will be
implemented. This will be the generic deferred rendering pipeline but custom
built to get the full functionality for any future tweaks or addition that are
going to be made. Reporting the limitation and disadvantages of this pipeline,
a principal aim of the approach is providing the solution to them. Simple
forward rendered light sources emitting color will not be sufficient to perform
blending. The objective is to get the best realistic results. Then the Forward
rendering pass will be integrated into to the existing deferred pipeline such
that they exchange the depth values of the objects.

Deferred rendering is praised for its capability to rendered large number of
lights. Next part of the project is focused on this element as generic deferred
rendering does not do this on its own. To make this possible light volume or
radius calculations will be used. These volumes will define the area where
light can reach. Finding out this area of each light is the vital part of the
solution. In the end, a light will only calculate lighting for the area that resides
in its volume.
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Chapter 2

Background

Until a couple of years ago, forwards rendering has been the streamlined
approach for rendering real time engines. In this method, geometry is sent
through the vertex shader. The pixels that are produced are then shaded in
the different pass also called fragment or shader pass. Most scenes have the
list of object to be shaded with special effects and lighting. (Thaler and Wien
2010) Most expensive part of shading is lighting. It can usually be done in
two different ways. First one is single pass and second is multiple pass. There
are many drawbacks of this approach which can easily be noticed such as
complexity in calculating and rendering light and each material in the scene
need personalized, specific shader for every light type.

To address these drawback and performance issues deferred rendering tech-
niques is utilized. Although this technique is not new, it was dated back in
1988, but it was not called deferred rendering. It was introduced by (Deering
et al. 1988). In detail information on the implementation of deferred shading
can be found on in the publication by (Policarpo, Fonseca, and Games 2005).

This technique is well known and used by many gaming industries and
developers. Where it helps a lot with the efficient rendering of a vast number
of lights, its disadvantage of not supporting blending or transparency is a
major setback. As aforementioned, this is the problem that this project is
aiming to solve. There are other techniques present in the industry to address
this issue. Following is research on these techniques and how they affect the
rendering.
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2.1 Research Question

To solve the obstacle of blending it is necessary to discuss the fundamental
reason of why this problem originates. It has been debated several times in
the past. So here is the brief explanation of what is happening when deferred
shading is put into implementation. The following research will help to
recognize better what leads to the inability of transparency and blending. As
afore mentioned deferred shading is based on the key intent of decoupling of
geometry calculations and lighting calculations.

First pass also known as geometry pass is responsible for rendering a screen
space representation of the scene that is going to be displayed. This pass is
later accumulated in different buffers. Having all the information stored in
these buffers, they are utilized in the calculation of lighting pass. Geometry
stage renders the attributes of geometry and its materials. There are at least
four main attributes that are commonly present in all the deferred pipeline
for geometry pass. These four attributes are Normals, Diffuse Color, Specular
Color and Shininess, and Depth. G-buffer is split into multiple attributes
as it is not possible to store everything in one buffer. To develop geometry
pass this way, Deferred Rendering uses MRTs. Deferred rendering requires
simultaneous rendering of 4 back buffers which is allowed by MRT. MRT has
a serious restriction. It only allows these four buffers if they have equal depth.
It uses 32-bit depth. There are several ways to reduce the number of channels
needed.

The second stage is Lighting stage. Geometry pass gives the access to four
textures. These four textures store above mentioned four attributes. These
four textures are used by the lighting pass to calculate lighting for the scene.
All the lights those affects the objects in the scene are emphasized, and lighting
equation is applied on to these additively. Lighting equation is based on the
attributes of geometry pass.

Further, lies the implementation of light volumes to make the light calculations
more efficient. There is a various number of light volume calculation models
that can be used in the implementation. The implementation depends on
these light volume calculations to increase efficiency. Both pixel and vertex
shader is active at this stage. Pixel shader does not produce the same output
as it does in forward rendering. Pixel shader differs as the pipeline is deferred
rendering pipeline.
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Geometry and lighting stages are two most crucial stages of deferred shading.
Following these two steps, implementation proceeds to the post processing
stage. This stage produces effects like Bloom, HDR, Motion Blur, and so forth.
It uses the output from lighting pass, and it also requires information from
geometry stage to produce these effects. The final stage is displaying these
results on the screen. It is done by utilizing the quad polygons and texturing
them. Quad polygons have the size of screen resolution.

A visibility test is used in the first pass of the approach, to expedite and
prevent the rendering of obstructed geometry. This test underwrites that
only lighting calculations those are important for the final image are inserted.
The problem that occurs here is that only pixel worth information is stored
at the time of visibility test due to the limitations of the graphics hardware.
This information is not sufficient to perform blending. In deferred shading,
all the G-buffer Values (first pass) are also stored in the single fragment. To
perform blending in the scene it requires multiple fragments. These issues
also lead to the challenge of rendering the transparent objects or blending in
the scene rendered by deferred shading. To directly render transparency into
the deferred pipeline is not possible because one first hit with the surface of
the object is recorded. Multi layer frame buffer does not exist as proposed by
(McGuire and Bavoil 2013).

Generic deferred shading pipeline also does not help in rendering a lot of
light numbers without heavy cost of performance. The general form deferred
pipeline has to calculate the lighting of each fragment for every light source
present in the scene. In other words, there is a heavy amount of calculations
for the lights that need to be done. These calculations are most of the time not
even necessary for e.g. a light lamp in the bed room. This lamp does not light
up the whole room. However, to create a light lamp in the bed room scene,
one has to calculate the entire room for that light source. These calculation
include the fragments where light does not reach. So for two light lamps,
the calculations get multiplied and so on for three and more lights. Having
a large number of lights will then put an enormous amount of load on the
performance most of which is the waste of lighting computations. So this is
another problem of deferred shading that will be dealt with in this project’s
implementation using light volumes.
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2.2 State of the Art

2.2.1 Tile Shading

State of the art solutions provided by different researchers and industries are
introduced in the previous sections of the report. Tile shading is one of the
well-known technique used to enhance the deferred rendering pipeline. It has
been discussed multiple times (Balestra and Engstad 2008; Andersson 2009;
Swoboda 2009; Lauritzen 2010). It focuses on transparency and blending that
we are trying to solve in this project by implementing rendering differently.
It was developed to advance both deferred and forward rendering (Olsson
and Assarsson 2011b). It is very similar to Tiled rendering (Fuchs et al. 1989).
The way they made it work was by bucketing up the lights into the screen
space tiles such that each tile consists of some potential light sources. In
this technique, the geometry with transparent properties is rendered into the
g-buffer. The frame buffer is then incorporated by constructing the screen
space grid. This grid has fixed tile sizes such that f = (x, y) where f = 32 x
32 pixels. Next screen space is calculated for each light up to the extent of its
light volume. Resulted grid cells were appended with light ID that needs to
be applied. Each fragment that is in the frame buffer with location f = (x, y),
g-buffer is sampled at f. Contribution of light from all light sources is collected
in the tile at f/t. Finally, all the light output is forwarded to frame buffer at f .

To evaluate the performance results of this technique PC with Intel quad core
two at 2.5 GHz was used. The graphic cards used to measure the results
were either NVIDIA GTX 280 or GTX 480 GPU. Rendering was done at full
HD 1920x1080p. Among all test scenarios, there was General deferred shading,
Deferred Stencil with stencil optimization and Tile Deferred using CUDA to
build grid and also depth range and lighting computations. Performance
graph is next shown with all the variable techniques in testing.
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FIGURE 2.1: Performance results of Tile Deferred Shading with
general deferred shading and other algorithms (Olsson and

Assarsson 2011a)

Tile shading performance can be examined from the graph in figure 2.1.(Ols-
son, Billeter, and Assarsson 2012b). It states that performance of tile shading
does not vary much at best case or worst case scenarios. Other experiments on
this approach suggest that frame time does linearly increase with the increase
in G-buffer size. The hardware used for the performance test is with high
specifications. To get best results from this approach hardware cost is likely to
be high.

The weaknesses of generally deferred shading are also shared by the tiles
shading method. The main issue from this techniques is the requirement of
the frame rate when used with FSAA. Using general 1080p with 16 times
MSAA and a 32-bit color needs 256Mb to handle the storage of depth and
color samples. It is impossible for most of the current hardware in the industry
as there will be several G-buffers added on top of that. This addition on the
top will increase the memory requirement immediately. Transparency is only
done by approximation (Kircher and Lawrance 2009) as it does not have a full
solution in tiled rendering technique.

2.2.2 Alpha Blending

Another approach is of alpha blending (Magnerfelt 2012a). Developers of this
method used the alpha blending as post pass using the front rendering. They
consider it to be straight forwards to implement into the deferred rendering.
However, one has to possess the knowledge of flaws of alpha blending. The
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algorithm in this approach is based on using an alpha channel to store trans-
parency. Opacity data is stored in this channel. Opacity levels are from 0.0
to 1.0 which decides how transparent the object is going to be. RGBA is used
to represent the alpha value. Here A determines the final color of the object.
After calculating this value, it is then stored into the frame buffer. Alpha value
A is multiplied to rest of the RGB. Previous rendered fragments color is then
also multiplied with 1 alpha of currently rendered fragment. So, if the current
fragment is made of 0.75 alpha value, then the previous will only be visible
0.25. The above blending method is accessed by the OpenGL functions.

Implementation of this technique lies in 5 steps. Firstly rendering all the
non-transparent objects to the G-buffer and then binding the G-buffer as one
texture. A rectangle is drawn on the screen for each light. Data stored in
G-buffer is used to do the lighting calculation for each pixel. The result is
then stored in P-buffer. Sorting as mentioned earlier from back to front order
for all transparent objects. Front renderer then renders all the transparent
objects. If any object is fully transparent, it is filtered out by P-buffer using
depth values(Magnerfelt 2012a). So, the pipeline can ignore the calculations
for the fully transparent object.

All the performance tests are done on Intel Core i7-2600 3.40 GHz CPU. GPU
used is Radeon HD 6570 with the operating system of windows 7 64bit.
1280x800 and 800x600 are the two resolutions tested considering modern
applications. This approach successfully allows the blending and transparency
to a certain extent. Below figure 2.2 shows the performance results of the
techniques with Frames per sec in regards to the number of lights.

FIGURE 2.2: Graph with performance results of Alpha Blending
with deferred shading (Magnerfelt 2012b)



2.2. State of the Art 11

Notice that in the comparison between transparent and opaque objects, trans-
parent objects have a much lower frame rate. Only going up to ten lights has
a major effect on the performance for rendering transparency or blending.
When the number of lights grows to 50 and 100, the frame rate of render-
ing is negligible. These test results prove that this technique is inefficient of
rendering a large number of lights.

After the experiments, results of this approach shows that with multiple lights,
object order affects the scene in a negative manner. (ibid.). Sorting order of
objects leads to the poor frame rate. Researcher claims that rendering of each
light for all object causes the problem. To avoid this issue, rendering all lights
for each object is necessary. It is also essential sort all the polygons in order.
This approach would not be feasible with a large number of lights as each
light have to rendered for every single object and then blended individually. It
results in high computational cost, and its effect can be seen in the test results.
Hardware cost would be high to acquire the best results. Performance testing
uses even higher specs hardware than Tile Shading and still the results are not
exceptional. So graphic hardware cost can not be ignored.

2.2.3 Clustered Deferred Shading

Clustered Deferred Shading (Olsson, Billeter, and Assarsson 2012a) is another
critical approach to solve the problem of transparency or blending. It is a step
forward from tile shading. Higher dimensional tiles which in a collection are
called clusters. For each cluster, there is no degenerated case in regards to the
view as each cluster is organized with the 3d extent of fixed maximum limit.
The main focus is on the approach of clustered deferred shading algorithm
as it is more relevant to the topic of research. It is formed of basic five steps.
In brief, first one is to render the scene into g-buffers. The second phase is
assigning the clusters to the view samples. Integer key is computed to the
given view samples in the G-Buffers. Positions and/or normals are used
to do this computation. Thirds step is finding the unique clusters. To find
the unique clusters approach uses two options, one is sorting, and another
one is page tables. Cluster keys are simply sorted, and compaction is per-
formed on it which removes the same neighbors. These methods of sorting
and compaction are efficient and are easily available (Billeter, Olsson, and
Assarsson 2009; Hoberock J 2010). The fourth step is assigning the light to
the clusters. This stage calculates all the light that is influencing each cluster.
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This approach introduces the fully favored support for a large number of
lights, unlike the tiled shading. This hierarchal approach constructs BVH for
each frame by sorting lights in regards to Z order. The last step is shading
the samples. Unlike tile shading where simple 2D look up is sufficient this
approach differ significantly. Index for each pixel is stored explicitly using the
sorting approach.

Performance testing mostly uses NVIDIA GTX 480 GPU as graphic hardware.
This method shows how the implementation of clustered shading can be
efficient in both deferred and forward rendering. To test out the approach they
used various scenes including Necropolis and famous Sponza model. Necropolis
(Unreal 2011) scene for unreal development kit consists 654 lights all with
bounded range. All lights in the scene are built as point lights. There are 2M
triangles, and all of them are normal mapped.Sponza Model by Crytek (Crytek
2010) which made the scene more complex and increased discontinuities to
better test the performance. There were 10 thousand random lights in the
scene.

One of the main advantage of Clustered shading in comparison to tiled shad-
ing is lesser view dependency. Still having clustering and light assignment,
it causes overhead. So in the case of having a lower light number or lesser
discontinuity, tile shading will perform better than clustered shading tech-
nique. An amount of efforts put to implement clustered shading approach is
considerably high. So developers need to consider the effort in comparison to
the resulting outcome of this technique.

2.2.4 Light Volumes

Moving on the light volumes, this is the final proposed optimization to the
pipeline after blending. The aim is to reduce the computations for lighting
calculations only up to where light travels and matter. Light traveling from
the point and slightly reduces as it gets farther from the light source is called
attenuation (Markager and Vincent 2000). One way of doing it is using the
linear equation. A Linear equation can make the light amount decrease with
the increasing distance. Results of using linear equation can be unrealistic.
The reason behind having unrealistic results is that in real life the light tends
to heavy closer to the light source and then it suddenly falls after a small
distance and after that light amount decreases slowly unlike linear equation
where the drop in light amount is constant (Cohen 1971). To solve this, the
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equation used for light attenuation is

Flight =
1

Kc +Kl ∗ d+Kq ∗ d2

Here d represents distance from the origin of the light source. For the calcu-
lation of light attenuation, three values are defined. These three are, first a
constant term Kc, second is a linear term Kl, and the last one is a quadratic
term Kq. Constant 1 on the right side of the equation is so that the value of
denominator does not get lower than 1. When the liner term gets multiplied
by the distance, it linearly reduces the intensity of light. The quadratic de-
crease of the intensity of the light source is done by the quadratic term in the
equation. It is multiple with the quadrant of the distance. (Jaud, Anne-Caocile
Dragon, et al. 2012) Then it decreases suddenly over a certain distance and
after that the drop in the brightness in at plodding pace. Below is the graph
2.3 showing the results of attenuation equation.

FIGURE 2.3: Graph showing results of Attenuation equation
inspired from (Jaud, Anne-CÃ c©cile Dragon, et al. 2012)

2.2.5 Bling Phong Lighting

Bling Phong (Blinn 1998) is a step from the Phong Lighting model. Phong
(Phong 1975) is very efficient and moderately realistic lighting model among
all basic lighting models. Phong lighting has some disadvantages such as
specular reflections breakdown especially in areas of low shininess. These
areas have the rougher specular breakdown. Specular area cut off the edges of
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Phong lighting can be easily seen in the scenarios where reflection and view
vector have angle more than 90

(Blinn 1977) introduced Blinn- Phong shading model in 1977. It was intro-
duced as an extension to the basic lighting model Phong. This model had
a different approach to specular lighting which eliminated the drawback of
light break down on the edges. This model uses a vector called halfway vector.
This vector replaces the reflection vector used in basic Phong Lighting model.
Halfway vector is exactly in the middle of view and light direction. So the
specular beneficence increase as the halfway vector comes close to the normal
vector. Figure 2.4 shows how the angles exist of the surface.

FIGURE 2.4: Angles demonstration of Blinn Phong Lighting
Model

Now it is clear that the angle between normal and specular vector will never
increase 90 degrees, no matter from where the viewer looks at it. This change
outputs more realistic and visually appealing results than Phong Lighting
model. Figure 2.5 displays the difference between Phong and Blinn Lighting
Model.
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FIGURE 2.5: This is the figure shows the difference between
Phong and Blinn Phong Lighting Model

Bling Phong Lighting is the lighting model the approach this project is going
to use in the implementation. Blinn Phong Lighting model is the advanced
lighting model and produces realistic results with more efficiency.

2.3 Reflection

Previously mentioned state of the art consists a couple of solutions for the
problem this project is aiming to solve. Methods referred to in state of the art
have their advantages and limitations. Such as Tile Shading share many com-
mon drawbacks of deferred shading. The main problem with this approach
is that requires very high frame rate when used with FSAA. FSAA is the
what makes blending and transparency possible in this technique. Even when
used with MSAA, having 1080p requires a very high amount of memory to
store the depth and color samples. This requirement is nearly impossible for
the modern graphics hardware which makes it less useful for generic or low
budget applications. Where as a technique aimed to develop in this project
will be far more generic and can be implemented on various hard wares.

Alpha Blending undoubtedly makes blending and transparency possible but
at a very high cost of computation. This technique has an issue with the order
of object concerning light. After the implementation of this technique, the
results found were not accurate (Magnerfelt 2012a). This technique requires
rendering of each light or each object along with sorting of all the polygons. It
requires very heavy computations, and it is opposite to the aim of the project.
Project’s approach is to optimize deferred shading to get faster results while
supporting transparency and blending. The project aim is at more generic the
approach to be used on all various scales. Alpha blending will not be feasible
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for a large number of lights, the number of computations is multiplied with
an increase in the number of lights. Our optimization technique focuses on
reducing the wastage of unnecessary computations by using Light volumes.

Cluster shading is a next step up from tile shading. It is beneficial for both
forward and deferred shading. The key element of this approach such as
clustering and light assignment cause overhead. In comparison to tile shading
having a low light scenario, tile shading performs better than cluster shading.
This procedure deals with problems residing in the tile shading. Still, after
the huge amount of development put into this technique it is outperformed
by tile shading when having lesser number of lights. This technique is highly
efficient to render a large number of lights. It is also advantageous in many
more scenarios. Implementation of this technique requires a lot of efforts and
time into the development, and one has to decide if it is worth implementing
for their project or not.

Not only this approach but all the other techniques are also needed to be
thought of in regards to development time and efforts that go into them. The
amount of time and effort should be worth the outcome. It also depends
on the requirements of the project. On the other hand, our approach is far
more feasible with the lower number of lights. It is aimed towards a reducing
development time while getting good results and higher quality rendering. It
will support blending, and our approach can be amended according to the
needs of development
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Chapter 3

Implementation

After background research of the deferred rendering pipeline, its limitations,
and state of the art to deal with those constraints, the objective of the project
is evident. As afore mentioned, the aim is to optimize the deferred rendering
pipeline by solving the problem of blending and using light volumes to
increase the computational efficiency. This section of the report will shed
light on the process of implementation of an optimized pipeline. It consists
of experiments performed to build an approach successful and their results.
Experiments are conducted to fulfill individual objectives. Results of these
experiments are then observed. If there is any problem as an outcome of these
experiments, then these problems are dealt until it reaches the proposed aim.
This section starts with the requirements of the experiments and then leads to
implementation.

3.1 Experiment

A forward pass is required to perform blending/transparency in the deferred
rendering pipeline. Forward rendering pass has to be integrated into the
deferred pipeline. There are some steps involved to make this work. Simple
additions of forward rendering in the deferred rendering pipeline will not
suffice. Certain basic implementations need to be implemented before getting
to the addition of forward rendering pass. Forward rendering pass is likely
to cause problems of getting depth information; frame buffer read and write.
After the implementation of generic deferred rendering pipeline and adding
forward pass, the interaction between deferred renderer and forward pass
needs to have experimented. If any problem outcomes that should be solved
to get successful results.
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3.2 Requirement

Exercises that are going to be carried out to make this approach successful
require some prerequisite steps. After that comes the experiments those
will help in solving the problem and lay a systematic implementation of
the pipeline. These requirements are listed below with compulsory exper-
iments. Following the list of requirements is the actual implementation details.

• Geometry Pass - Implementation of geometry pass which renders the
scene once and then retrieves all the necessary geometry information
which is further stored in G-Buffer.

• G-buffer- G- buffer is the major part of geometry pass. It stores the
geometry information as textures which is later used by postponed
lighting pass.

• The Deferred Lighting Pass - G-buffer provides the significant amount
of data fragments to use for lighting calculations. Lighting calculations
are done in this pass by iterating the final lighting over every pixel in
the geometry scene. All the data provided by G-buffer is then used as
input to the lighting algorithms.

• Combining forward rendering Deferred Rendering - Simple way of
implementing this is just rendering blending light sources over the
scene, but it is not expected to work because forward renderer will not
be able to communicate with objects on deferred renderer.

• Communication between deferred renderer and forward pass - Now
deferred rendered needs to provide information of all the objects to
forward renderer. This step is crucial as all the data can not be passed
on to forward renderer.

• Transferring what forward renderer needs - There is a need for the
method that will enable the transfer of accurate information only from
deferred renderer to forward pass. This experiment is expected to get
the proposed outcomes.

• Blending - Test whether the blending works as expected in the formation
of approach.

• Light Volumes - Implementation of light volumes instead of general
lighting to increase the speed and lessen the lighting computations.
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3.2.1 Framework

OpenGL 3.3 is the framework used in this project to implement deferred
shading. It was introduced in 1992 (Segal and Akeley 2016). It is considered
as an API that allows us to create and manipulate graphics and images (Zhao
2006). It provides with a large set of functions. OpenGL specification exactly
specifies what the result of each function would be. It provides freedom to
the developer to come with a solution using the specifications of OpenGL.

Most of the previous work on deferred rendering has been done using OpenGL.
It has also become the most used gaming interface in the industry for 3D and
2D graphics (ibid.). It seemed the best option for this particular project also
because of it allows agility which is required to change shader processing
files (Segal and Akeley 2016). The approach in this project requires complete
manipulation of basic pipeline including the extension files such as shader.
Another main function used in deferred shading is MRT capability of OpenGL.
MRTs are used in deferred shading to separate the attributes into textures
and write them all collective at once. It is essential for the efficient G buffer
construction. There are no limitations to what we can store in the texture in
OpenGL.

3.3 Custom Deferred Implementation

3.3.1 Geometry Pass

Now the experiments and requirements of implementations are clear. The
OpenGL framework is set up with all the essential libraries such as GL, GLFW,
GLM, and ASSIMP. The initial step of implementation would be setting up
the geometry pass. Geometry pass has to extract all the information from the
objects in the scene and submit that in the g-buffer. This information will be
stored in G-Buffer as textures. The four texture used in this project are color
vectors, position vectors, normals and specular. These textures can be seen
any time in the scene for debugging purposes by changing the mode of the
view. As shown in the figure 3.1 below is from one frame.
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FIGURE 3.1: Visual of textures stored in the G-buffer (Oosten
2015)

As briefly mentioned before, later on, in the pipeline, the screen-filled quad
is rendered, and the lighting of the scene is calculated using the G-Buffer
data and these textures. Where as in forward rendering we usually take all
the objects entire way from vertex to fragment shader. In deferred shading,
we separate the expensive fragments to be processed in the later stage. The
lighting in lighting stage is similar to forward rendering technique, but instead
of taking input from vertex shader we use data from g-buffer. It drastically
changes the computations and also the improvement on visuals of rendering
can be noticed.

This technique gets rid of most of the unnecessary computations and un-used
rendering calls. Depth test is performed at this stage which ensures that the
fragments that are stored in the G-Buffer and are the ones to reach the screen
as screen pixels. Depth test appoints this fragment’s information to the top
most fragment. This lead to the main advantage for deferred shading that it
allows rendering a large number of lights and objects, which is something not
possible in forward rendering.

However, there are certain disadvantages of G-Buffer such as it consumes
relatively large memory as it needs to store huge amount of scene information
in the color buffers. As mentioned earlier the position vectors are part of G-
Buffer. The reason position vectors require more memory be that they have to
be high precision. When it comes to the main disadvantage of not supporting
blending, the technical reason behind not supporting blending is explained
previous sections. So regardless of the fact forward rendering does not allow
a large number of lights and objects, but it is useful to perform blending. So,
this is the reason we bring back the forward rendering for blending.
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3.3.2 G-Buffer

G-buffer development has to be custom as approach aims to integrate forward
pass later on. All the textures information collectively are called G-buffer. The
list is required of what will be the input in G-buffer, keeping in mind that aim
is to render blending with the forward pass. List of data required for lighting
calculations for each fragment is as follow

• Position Vector: lightDir and viewDir functions require 3D position vector
to calculate the position variable of a fragment.

• Albedo: An RGB diffused color vector is also required for the fragment.

• Normals: To figure the descent of fragments surface in the scene it
requires 3D normals.

• Specular: Float for the specular intensity of the fragment.

• Position for all the light sources and color vectors.

• Position vector for the camera.

Considering this list, availability of these variables make the Blinn-Phong
lighting feasible. Blinn-Phong Lighting is the lighting model used in the
project. It is more efficient and realistic than Phong lighting. From above list
of variables, it can be stated that Position of light sources and color vectors
including the position vector for the camera or the viewer can be calculated
using uniform variables. Rest of the variables will depend on individual
fragments as the different type of fragments will have different intensity and
variables. Now the aim is to pass all these or similar to the deferred renderer’s
lighting pass. One thing to keep in the notice is that deferred renderer is
rendering fragments of the 2D quad.

Knowing that OpenGL allows storing as many as textures required, all per
fragment data will be retained in these screen filled textures. As proposed,
these textures (G-buffer) will store all the variables needed to render blending
lights with the forward renderer. This will be the same size as the 2D quad
of lighting pass. So pipeline gets the same data as forward renderer but in
lighting pass instead of vertex shader to the forward shader process. Deferred
rendering has one on one mapping. Below is the entire algorithm in the form
of pseudo code for the Geometry pass and lighting pass.
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3.3.3 Initial Algorithm

Data: Algorithm
Result: Geometry and Lighting Pass
initialization;
while do

//1. geometry pass: render all geometric/color data to g-buffer ;
//join the given frame buffer object to given frame buffer target;
/celar the color buffer and the depth buffer;
//use the g shaderbuffer;
for Object objec : Objects do

Configure Shader Transforms And Uniforms();
objec.Draw();

end
// 2. lighting pass: use g-buffer to calculate the scene’s lighting ;
join the given frame buffer object to given frame buffer target;
clear the color buffer();
apply the use of lighting shader();
bind all the textures together();
set uniform lighting();
Render the light quads();

end
Algorithm 1: Algorithm of implementation of general deferred rendering

Position, specular, color and normal vector values for each fragment is needed
to store in the G-Buffer. All the objects need to be rendered in the Geometry
pass and store the values in G-Buffer. The scene is rendered once in the
geometry pass. MTRs can be used again to render multiple color buffers in
the single pass. G-Buffer is initialized in the geometry pass as frame object.
Multiple color buffer and a single depth rendering instance are attached to this
frame object. High precision textures are by choice better to calculate position
and color textures using 16 or 32-bit float per component. 8-Bit default texture
precision per component would be suitable for albedo and specular textures.

In the implementation, first, initiate the G-Buffer then do the mapping calcu-
lations for all the four color buffers. Tell OpenGL which color attachment is
required for rendering. Then render buffer object as depth buffer is also added
and check for completeness. Multiple render targets need to tell OpenGL
specific color buffer that is needed to be rendered with glDrawBuffers. The
pipeline optimization in this projects has an objective of making the pipeline
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highly tolerable to future changes if required. Leading towards this aim, RGB
texture store the position and normal data because there are two components
each but a single RGBA texture is used to store the specular and color intensity
data. This approach saves implementing another color buffer texture. More
complex the pipeline gets there is need to combine information in the fewer
number of textures to organize the increasing amount of data. Code listing is
mentioned in the Appendix A.

Next, there is need to use and render something like fragment shader into the
G-Buffer. Again due to the use of MRT, OpenGL is informed about specific
color buffer of currently active framebuffer being rendered by the layout
specifier. The single float value is stored in the Alpha component of one of
the color buffer textures other than specular texture. Specular intensity is
not stored in the single color buffer texture. All the coordinates variables
are stored in the world space because it is vital to keep them in the same
coordinate space for the lighting calculations.

Once the G-buffer frame buffer content is ready, one can visually test the
textures according to the origin and RGB color values. To be sure that the
calculations are working as expected, the red color should appear more for
the normals pointing towards the Red color. It is also same for the position
vectors from the origin in the right direction. More details of this test are
in Section 4.1.1. Next step after visually testing the rendering of geometry
is lighting pass. As it can be seen from the figure 3.2 that G-buffer looks as
expected.
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FIGURE 3.2: Result of implementation of textures stored in the
G-buffer.

3.3.4 Lighting Pass

Now all the data from G-Buffer is available to be used in the lighting pass.
It can be easily used to calculate the final lighting colors of the geometry
in the scene. It is done by going over each texture in the G-Buffer pixel by
pixel. The data obtained from these textures can be finally used efficiently in
the proposed lighting algorithm. As afore mentioned that what ever pixel is
employed in G-buffer ends up on the screen, so all the final transformation
data of objects in the scene is already available. As known that lighting is the
most expensive computation, now its only has to be performed once per pixel.
This method also explains how deferred shading becomes more efficient when
the scene gets more complex with a large number of object and lights. Such
as in forwarding rendering, renderer calls the expensive fragment shaders
multiple times which makes the performance less efficient in regards to speed.

The 2D screen filled quad is rendered to execute the lighting pass. On each
pixel an extensive just like the post processing effect. Before the rendering,
the scene, light relevant uniform variables are sent to the shader. All textures
present in the G-Buffer also needs to bound before rendering. Below is the
short code listing 3.1 of how it is done.

Implementation of fragment shader can be seen in Appendix B. The fragment



3.3. Custom Deferred Implementation 25

LISTING 3.1: Binding textures and applying fragment shader to
Each Pixel

1 gl_Clear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
2 //activate first texture0
3 gl_BindTexture(GL TEXTURE 2D, gPosition_);
4 //activate second texture1
5 gl_BindTexture(GL TEXTURE 2D, gNormal_);
6 //activate third texture2
7 gl_BindTexture(GL TEXTURE 2D, gAlbedoSpec_);
8 // also send light relevant uniforms
9 shaderLightingPass.use();

10 \\send all the lighting uniforms(shaderLightingPass);
11 shader Lighting Pass.set_Vec3("view_Pos", camera.Position);
12 \\RENDER THE LIGHT QUADS();

shader formations in Appendix B is very similar to the one in state of the art
forward rendering but instead of using vertex shader, data from G-Buffer in
directly sampled as an input to the fragment shader.

Three uniforms textures are accepted by shader of lighting pass. This represen-
tation of G-Buffer tenures all the data of Geometry Pass. Having lighting pass
shader and geometry pass fragment shader, the coordinates of both should
match exactly when sampled together. These will output the same coordinate
values similar to what they will produce if they were rendered directly. Re-
ferring again to the fragment shader variables relevant to lighting pass are
extracted from the shader. This extraction is done by using simple texture
lookup. Albedo and specular intensity are extracted from a single texture. It
is named gAlbedoSpec texture in the implementation.

Implementation so far has necessary per fragment variables and also have
relevant uniform variables. These variables are enough to calculate Bling-
Phong Lighting. So the implementation code will be very similar to a general
Bling-Phong lighting implementation. Deferred rendering does differ in the
way of receiving input variables for illumination. The image below in figure
3.3 is the resulting outcome of deferred shading implementation so far.
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FIGURE 3.3: Result of implementation deferred rendering so far
without blending

3.3.5 Limitation of this implementation

Now it comes to the main objective of this project. Limitations of this ap-
proach so far are same as a generic deferred pipeline. Deferred shading so
far will not allow blending. All the elements in G-Buffer are from a single
fragment. To render blending it requires multiple fragments. As explained
in detail previously in the research question section 2.1 is the reason behind
this limitation. As a solution, we will bring forward rendering back due to its
capability of rendering blending as proposed.

3.4 Forward Pass integration into Deferred Pipeline

The original algorithm will be amended to eradicate the problem of blending.
Rendering pipeline has to integrate forward rendering pass. This forward
rendering pass will specifically render the blending or any other special
shader that is not supported by deferred rendering. This method will take
the deferred rendering technique a step up. The forward pass will include
a number small light sources. These light sources will emit color on to the
objects in the scene. These light sources require special shader which is not
supported by deferred shading. So they will be rendered used forward pass.
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3.4.1 Algorithm Improvisation 1

Below is the brief detail of algorithm. This algorithm is derived from previous
algorithm 1 in section 3.3.3. It is altered and improved to solve the problem
of blending by adding forward pass in the pipeline to render colored light
sources. Notice that some of the steps are minimized. Refer to algorithm 2 for
these steps.

Data: 1st Improvisation in Algorithm
Result: Geometry, Lighting and Forwards Pass
initialization;
while do

//1. geometry pass: render all geometric/color data to g-buffer
..
more steps here
..
for Object obj : Objects do

ConfigureShaderTransformsAndUniforms();
obj.Draw();

end

// 2. lighting pass: use g-buffer to calculate the scene’s lighting
..
more steps here
..
RenderQuad();

// 3. Forward Pass: To render colored light sources with special shaders
shader LightBox.use()
shader LightBox.setMat4("projection", projection)
shader LightBox.setMat4("view", view)
for unsigned int i = 0; i < lightPosition.andsize(); i++ do

//All the Modeling data; shader LightBox. setMat4("model", model)
shader LightBox. setVec3("light Color", light Colors[i])
render the light cubes();

end

end
Algorithm 2: Improvised Algorithm with addition of Forward Pass

Rendering the colored cubes as colored light sources emitting the light on
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to the deferred rendered objects is the next step. Simple implementation
such as above algorithm is the first experiment. Rest of the implementation
depends on the outcome of this experiment. So lets render these colored cubes
over the 2D quad of deferred renderer. This will be implemented after the
lighting pass in the main rendering loop as stated in the improvised algorithm.
The positions of these cubes are calculated and number of lights (cubes) are
extracted from the fragment input. It is equal to the number of lights rendered.
After running this experiment and rendering the scene with these colored
light cubes provides the results as shown in figure 3.4 below.

FIGURE 3.4: First experiment to integrate forward pass to de-
ferred pipeline

From the visual look at the results, it is easily noticeable that there is no
blending happening in the scene. Even though the colored light cubes are
rendered on top of the geometry, the colored light effect is not present. The
reason behind that is missing Depth information. Forward pass does not have
any information about the depth data of the geometry in the deferred renderer.
There is a lack of interaction between deferred passes and the forward pass.
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3.4.2 Interaction between existing Deferred Renderer and For-

ward pass

The second experiment is to have a default frame buffer for both of the
renderer in common is the. Depth information needs to be transferred from
buffer in geometry pass to depth buffer of default frame buffer. Colored
light sources can then be rendered again. If only depth data of geometry
is transferred then the colored light will only affect the geometry already
rendered.

After implementing this experiment, the results move step forward but is still
not what is expected according to the proposed outcome. All the depth data
is transferred to default frame buffer expecting better results by rendering
light cubes again. Now the whole scene appears to be rendered with the
forward rendering including the geometry already rendered with the deferred
renderer. This outcome was not expected from the technical approach. It
certainly needs a fix otherwise implementation looses its essential positive
characteristics of deferred rendering. Deferred rendering will not be serving
its purpose of rendering a large number of objects and lights.

The function that comes in use at this point is glBlitFramebuffer. This function
allows copying the data from one frame buffer to another frame buffer. It is
also used to resolve multi-sampled frame buffers. Copying the specific user
defined regions of the frame buffer to the specific area of another frame buffer
becomes possible with glBlitFramebuffer function.

All the depth data values of geometry are stored in deferred renderer’s shad-
ing pass G-Buffer. Use of the function glBlitFramebuffer requires specifying
one frame buffer as read and another frame buffer as write frame buffer to
avoid the negative outcome of the second experiment. Following this method,
entire read frame buffer’s depth buffer is copied to default frame buffer’s
depth frame buffer. The Same approach can be used to copy the data from
color and stencil buffers using glBlitFramebuffer function.

3.4.3 Algorithm Improvisation 2

Now algorithm changes slightly due to the outcomes of experiments con-
ducted. To implement forward pass the difference or changes from the last
algorithm are shown below in algorithm, and other steps are minimized. For
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minimized step refer to algorithm 2 in section 3.4.1. Next is algorithm 3 with
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specific read and write frame buffers.

Data: Algorithm Improvisation 2
Result: Specific Read and write Frame Buffers
;
while do

//1. geometry pass: render all geometric/color data to g-buffer
..
more steps here
..
for Object obj : Objects do

ConfigureShaderTransformsAndUniforms();
obj.Draw();

end

// 2. lighting pass: use g-buffer to calculate the scene’s lighting
..
more steps here
..
RenderQuad();

//3. Copying depth data from read frame buffer to default frame buffer
bind the framebuffer()(GL READ FRAMEBUFFER, gBuffer);
gbind the framebuffer()(GL DRAW FRAMEBUFFER, 0) // write to default
framebuffer ;

use gl blit function here(0, 0, SCREEN WIDTH, SCREEN HEIGHT, 0, 0,
SCREEN WIDTH, SCREEN HEIGHT, GL DEPTH BUFFER BIT, GL
NEAREST);

glBindFramebuffer(GL FRAMEBUFFER, 0);

// 4. Forward Pass: To render colored light sources with special shaders
shaderLightBox.use()
for unsigned int i = 0; i < lightPositions.size(); i++ do

// now render light cubes as before
..
more steps here
..
RenderCube();

end

end
Algorithm 3: Algorithm Improvisation 2 showing read and write frame buffer
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Rendering this implementation produces more realistic results. Blending
works and outputs desired results. The drawback of the last experiment
where all the geometry looked like rendered with the forward renderer has
been eliminated. At this point, it outputs the proposed result. The outcome
from the demo scene can be seen in the figure 3.5.

FIGURE 3.5: Deferred rendering and blending with right depths.

Till here this technique has integrated forward pass into the deferred rendering
pipeline. It takes out the limitation of blending and rendering objects with
special shaders.

3.5 Light Volumes

Furthermore is the implementation of light volumes. To conclude the ap-
proach with full efficiency, light volume calculation is crucial. Light volume
makes the deferred pipeline more efficient in rendering a large number of
lights by reducing the area for the fragment calculations. This implementation
will allow rendering huge number of light without putting any burden on the
performance. If this is left out from the pipeline then still each fragment of
light will have to be calculated for each object in the scene including the object
not even affected by that particular light. As explained in the background
research, there is a need to get rid of unnecessary computation. These unnec-
essary computations for the lighting calculation are the calculation performed
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for the fragments in the scene till where the light does not even reach. So, light-
ing calculations should have a certain distance for every light up to the point
that light matters. The objective here is to find out this distance which in the
case of lights will be radius or volume of any light source. Some attenuation
is used by most of the lights in the rendering process. This attenuation can be
used to know the maximum distance or the radius that particular light reaches.
By knowing this limit, computation performed by lighting calculation can
also be limited. Then only the fragments those come under one or more of
this radius of light volumes will be calculated.

The key is the calculation of the radius of spread light of any light source. As
afore mentioned attenuation equation needs to be solved for this case. The
level of brightness is from 0.0 to 1.0 where 0 being the darkest and 1 being
the brightest value. O is the lowest value, but something like 0.3 will also be
pretty bleak. The appropriate function of attenuation will be used to calculate
this. The equation for this function is as mentioned in section 2.2.4 is

Flight =
1

Kc +Kl ∗ d+Kq ∗ d2

Therefore, the value of Flight needs to be calculated for the darkness. The
lowest value for brightness would usually be zero, but in this equation, Flight

it can not be zero. If it is tried to be solved for Flight = 0.0 then there will be
no solution. Any value closer to 0.0 that is still precipitable as dark enough
can be used to solve the equation. A default frame buffer of 8 bit can display
256 number of entities per each component. So the number adequate for this
project is 5/256.

Note that this number can be changed according to the requirements of the
project. So this is feasible for the customization for other implementations.
Attenuation function value will take off the sudden loss of light at the edges
of the light volume. The value is essentially dark in its visible field. For this
particular demo, if the value of darkness is calculated for an even darker area
it will become less efficient as the light volumes will get bigger. So depending
on the scene and its visual implementation this number will vary and so will
the performance. However, the main aim is to make the lights more realistic
and get the perfect blend going from high-density end to low density of light
source.
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Deriving from previous attenuation equation

Flight =
1

Kc +Kl ∗ d+Kq ∗ d2

Therefore, after the input of Flight value to 5
256

, equation becomes,

5

256
=

Imax

Attenuation

Usage of light source’s brightest component value outputs more realistic and
ideal results for the light volume calculation. That is why the Imax is used. Imax

is the variable for the lights highest brightness component value. Following
this is the rest of the derivation of this equation.

5

256
∗ Attenuation = Imax

5 ∗ Attenuation = Imax ∗ 256

Attenuation = Imax ∗
256

5

Kc +Kl ∗ d+Kq ∗ d2 = Imax ∗
256

5

Kq ∗ d2 +Kl ∗ d+Kc − Imax ∗
256

5
= 0

Now the form of this equation is equals to ax2 + bx+ c = 0. To further explain
x = d so, ax2 = Kq ∗ d2, bx = Kl ∗ d, c = Kc − Imax ∗ 256

5
. Hence, for this type

of equation the solution is using quadratic equation. The solutions turn out to
be the following equations for the value of x.

x =
−Kl +

√
K2

l − 4 ∗Kq ∗ (Kc − Imax ∗ 256
5
)

2 ∗Kq

Therefore from this outcome, calculation of x can be done. x is the radius
of the light source’s volume. This radius requires a liner, quadratic and a
constant parameter to solve the equation. Input for these variables is used
as such floatconstant = 1.0, floatlinear = 0.7, floatquadratic = 1.8. This
general equation then put into code will look something like this

LISTING 3.2: Light volume calculation code Listing

1

2 float maximumlight = std::fmaxf(std::fmaxf(lightingColor.r, lightingColor.g), lightingColor.b);
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3 float radius =
4 (−linear + std:: sqrtf (linearterm ∗ linearterm − 4 ∗ quadraticterm ∗ (constantterm − (256.0 / 5.0) ∗ maximumlight)))
5 / (2 ∗ quadraticterm);

According to this, the output value of radius somewhere is between 1.0 to
5.0. This result is established depending on maximum light intensity. Now
having the light volumes calculated, light pass fragment shader needs to be
updated. The radius of each light source present in the scene is computed.
It is used in doing the lighting calculations for each fragment of objects that
come under these light volumes. The update light pass fragment shader is
placed in appendix C.

Next in figure 3.6 is the outcome of rendering using the light volumes. It will
visually look same but the number of computations is lessened. It does have
some limitations that need work around. More detail about these confine-
ments is mentioned in coming sections of this report.

FIGURE 3.6: Deferred rendering and blending using Light Vol-
umes.
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Chapter 4

Evaluation and Results

It has been proved through experiments and implementation that the pro-
posed approach produces the desired results. The technique allows the de-
ferred rendering pipeline to perform blending. Implementation had some
constructive changes in the algorithm to reach the stage where blending is
possible. The decisions were made on the results of experiments and the
reason behind the results. Following Blending implementation is a very smart
optimization of Light Volumes to the pipeline. All these aspects are imple-
mented and demonstrated working but how efficiently they work is still needs
to be evaluated. The decision made to optimize the pipeline and changes need
to be reviewed. This section will focus on the evaluation of these decisions in
implementation and record the results. For testing the approach, hardware
being used is Intel(R) Core(TM) i5-3210M CPU @2.50GHz and usable 5.86GB
RAM. The operating system is 64-Bit Windows 10 with the x64-based proces-
sor. The specification of hardware is a mediocre level. The hardware choice is
made to cover the vast spectrum of users as per the aim of the approach.

4.1 Evaluation

4.1.1 Geometry Pass textures

The first most of implementing the deferred pipeline is geometry pass. G-
buffer frame buffer should be working properly to proceed to the next step. If
it’s not right, the results won’t be appreciable. The result of geometry pass
can be tested visually by comparing it with CIE RGB color space diagram in 2D
and 3D in figure 4.1. (Wright 1929) and (Guild 1932) conducted experiments
independently on human sight. These experiments are the principle of the
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specification of CIE XYZ Color Space. This color space links to the psychological
color vision on human perception.

FIGURE 4.1: CIE RGB color space diagram in 2D and 3D (Frich
2017)

FIGURE 4.2: G-Buffer frame buffer textures colors and normal.

G-buffer frame buffer’s texture of position and normals texture data should
follow the directions of colors in the color space. Figure 4.1 and figure 4.2 can
be visually compared. Having origin in the center x+ should have pink in its
direction, and x− should have blue in its direction. Similarly, following the
pattern in all directions, it should be green in the left back end and orange on
the right side. Looking at figure 4.1 and figure 4.2, one can easily state that
texture has been rendered correctly. Implementation can proceed to the next
step.
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4.1.2 Performance Analysis

Implementation output the proposed features as seen in previous sections.
Data collected from performance analysis is discussed in forthcoming parts
of this section. Test on this implementation was performed to check how
efficiently the approach handles the increase in the number of objects and
number of lights in the scene. Data is recorded in table 4.1. A total of four
different scenarios were tested to measure the performance fluctuations.

File size for each of these variations was approximately 20.65MB after the
compression with the ratio of 2.69:1. Draw calls for each of the variation
changes accordingly. There are 11 different textures present in each of the
rendering variation. These textures comprise to 25.02MB. Avg. texture dimen-
sion comes out to be 896 x 802. There are 29 Buffers each test which in total
are 3.69MB. All together additively, the grand total of GPU buffer plus texture
load it becomes 48.92471MB of data rendered. File size: 20.65MB (55.52MB
uncompressed, compression ratio 2.69:1) Persistent Data (approx): 0.05MB,
Frame-initial data (approx): 35.60MB

Performance Analysis
ID No. Of

Objects
No. Of
Lights

Min Frame
Time (ms)

Max
Frame
Time (ms)

Avg.
Frame
Rate

Draw
Calls

1 2 4 06.25 10.73 106 Fps 15
2 9 32 17.95 23.51 50 Fps 78
3 18 64 20.52 27.08 45 Fps 155
4 36 128 23.95 29.51 40 Fps 309

TABLE 4.1: Performance Analysis table for different scale of
objects and lights.

Leading towards the results collected after the rendering test. There are four
different scenarios listed in table 4.1. From ID 2 to 4, the number of lights
and objects were almost doubled every time. ID 1 and 2 have a big difference
between them in comparison to other increments. The first case is with 2
objects and 4 colored lights that perform blending. Minimum and maximum
frame time in ms are 06.25 and 10.73 respectively which is very reasonable
and efficient. Similarly, the frame rate, in this case, is an average of 106 Fps,
which again is high and suitable for rendering. The draw calls are only 15 in
this case.

Secondly, next variation is a slightly a big jump from the 1st case. Now the
number of objects is 9 and lights are 32. This rendering utilizes 78 draw calls
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to render this scene. Now the number of minimum and maximum frame time
is 17.95ms and 23.52ms respectively. This hike in frame time is quite huge
from the 1st case. It output 50 frames per sec which are approximately half in
comparison to the 1st case. Still, it can not be considered bad because 50fps
still provides satisfactory performance.

In third variation lights and objects are scaled to double of the second case.
Now there are 18 objects and 64 number of lights. This predictively uses 155
draw calls twice of the last variation. Frame time in this scenario increases
slightly by approximately 3ms. This result is not bad considering the hike
in the number of objects and lights. 5 frames per sec is the drop recorded in
frames per sec. Again not a big drop in comparison to the scaling of objects
and lights.

Fourth and last test case had 36 objects and 128 lights. These numbers are
high to check the change in performance. In hand to hand with the rise in
objects and lights, draw calls are again approximately doubled to 309. Frame
time gained even lesser this time by only 2ms. Frames per sec dropped by
average five frames.

Overview of these performance test analysis provides insight on how ef-
ficiency changes in this particular optimization to the deferred rendering
pipeline. Performance degrades massively when the number of objects and
lights are increased from little number to an average number. But as the
number of objects keeps getting higher the performance drop gradually de-
creases. This resulting fact means the objective of rendering a large number of
objects and lights begin to justify it self with the increase in these figures. So if
there are a large number of objects and lights, this approach will still provide
satisfactory performance.

GPU and CPU utilization variation test

Next test performed was to measure the CPU and GPU utilization by the
rendering application. This test was only observed in the two extreme cases
with case ID 1 and 4. As afore mentioned the first instance is with 2 objects
and 4 lights. The second case consists of 36 objects and 128 lights. Data for
this test is stored in the table 4.2. This test is performed illustrates that the
change in CPU and GPU utilization percentage when the number increases
from tiny scale to large scale.
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The first extreme is the smaller number of 2 objects and 4 lights where CPU
utilization is 3 percent from the available 100 percent. GPU usage for this
rendering applications is 98.3 percent. When the number of objects increases
to a very high number as in case ID 4 with 36 objects and 128 lights, the
result of utilization does not change much. The percentage of CPU increased
to 8 percent, and GPU is increased to 99 percent. This difference is almost
negligible considering the difference between the number of lights and objects.
This state that computation behind the scene rendering does not change much
with these variations.

CPU and GPU Utilization
ID No. Of Objects No. Of Lights CPU

(%)
GPU
(%)

1 2 4 3 98.3

4 36 128 8 99

TABLE 4.2: Table of CPU and GPU Utilization For Variation of
Object and Light Number

4.1.3 Light Volumes Vs No Light Volumes

Light Volume calculations justify themselves. The Visual result after imple-
menting light volumes is exactly same as before. To review the results of Light
Volume implementation it needs to be evaluated using some form of metric.
There needs to be a comparison between rendering performance without
Light Volumes and after the implementation of Light Volume.

For this evaluation, by comparison, two stages of implementation were ren-
dered independently with the same number of objects and lights. The variable
used to compare the performance are CPU Utilization for the application,
Frames per second, Frame Time and memory usage. The CPU usage time
line graph that compares the total activity of the rendered console application
is to total available CPU capacity percentage. CPU utilization is calculated
using all the processors available. Frame per sec is how many frames does
the renderer can output in a sec. After running each rendering several time
for approximately 1 minute, the average frame per sec calculated is used in
the evaluation. Frames per sec are calculated by rendering nearly over 8,000
frames for each application. Then is the memory usage by the process in
percentage. Faster rendering will output more frames. The frame time is
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inversely proportional to the speed of rendering. Frame time needs to be a
lower number for faster rendering.

Without Light Volumes

Application rendered without Light Volume calculation is fully working. It
did not out put slow results. It visually has the same look as rendering with
Light Volumes. As shown in Table 4.3, tested using FPS and FT as a metric
gives out minimum frame time to be 23.52ms and maximum frame time is
27.08ms. This calculation of frame time is done over approx. 8,000 frames.
The average frame rate depicted by the application is 40 frame per sec. Again
this number is calculated by running the application for several numbers of
times.

Adding further on to performance analysis for implementation before Light
volumes calculation is the data from GPU and CPU utilization. The GPU usage
percentage is staying mostly consistent through out the application’s running
period. GPU utilization once the application is loaded and running stays at
average 98.5 percent. CPU usage keeps fluctuating. When the application is
being loaded goes up to approx. 25 percent. Once the console is running the
utilization stays at an average of 5 percent. As it can be seen from the graph
in Figure 4.3.

FIGURE 4.3: Graph of GPU and CPU utilization without Light
Volumes.

With Light Volumes

Light Volume Implementation aimed at reducing computational cost by lim-
iting the calculations for each light to the volume that matters for that light.
After implementing the light volumes, the performance analysis is recorded
as shown in Table 4.3. The minimum frame time is in milliseconds is 17.95,
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and the maximum is 20.51ms over approximately 8,000 frames. The average
frame rate of the application is recorded to 53 frames per sec.

Light volume implementation rendered with the same number of objects
and lights utilizes GPU and CPU as shown in Figure 4.4. The graph on
the top shows GPU utilization to be consistent thought out just like before.
The average percentage is 98.3 percent. The graph below shows the CPU
utilization percentage. While loading the console and start rendering, CPU
usage goes up to 25 percent. While rendering the application with the light
volume calculation, CPU utilization is at an average of 4 percent.

FIGURE 4.4: Graph of GPU and CPU utilization after Light
Volumes.

Performance Comparison With and Without Light Volumes
Rendering Ap-
plication

Min Frame Time
(ms)

Max Frame
Time (ms)

Avg. Frame
Rate

Without Light
Volumes

23.52 27.08 40 Fps

With Light Vol-
umes

17.95 20.51 53 Fps

TABLE 4.3: Table of performance comparison between With and
Without Light Volumes

Following results are from comparing the data from these two implementa-
tions. The difference can be stated quickly in case of Frame per sec and Frame
time analysis. Frame time reduces approximately 7ms from both minimum
and maximum values. Average frames per sec improve by 13Fps. So it can be
concluded that performance does improve from generic deferred shading by
using light volumes, but there is no big difference.

Along with that, performance profiling of CPU and GPU utilization does not
show much difference. Approximately both scenarios are close to each other.
Variation in GPU utilization is only 0.5 percent. Similarly, CPU usage is only 1
percent less in Light volumes implementation than before.
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4.2 Limitations

This section shred light on few limitation of this approach and what is the
reason behind it. Most of the results of this approach and implementation are
satisfactory, but still, there are some thing that can be improved. Performance
analysis results are justifying the objective of the proposition, but they are still
affected by light volumes and depend on it. The results of the light volume
are not up to the expectations. The theory and implementation support the
argument and lead to the high level of optimization it can. The problem
behind this is that GPU and GLSL are not efficient enough at optimizing
loops and branches in the commands. Shader execution of graphic hardware
is notably parallel. To have the same shader code to be effective, most of
the architectures require a huge set of thread to run this shader code. This
way it mostly ends up with shader running all branches of a if statement. It
does so to make sure that shader runs are identical. This limitation makes
our implementation of light volumes very much inefficient regardless of
having the right approach and calculations. There is a way around this that
can beneficial to over come this limitation. The solution to this problem is
suggested in future work section 5.2.
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Chapter 5

Conclusion

5.1 Conclusion

In the nut shell, this approach aimed at optimizing deferred rendering pipeline
so that new version can get rid of limitation of generic pipeline and make it
faster. Firstly implementing the customized form of generic deferred render-
ing pipeline is successful done. The most common limitation of the deferred
rendering is blending. To deal with blending this approach integrates the
forward pass in the deferred rendering pipeline successfully after a couple of
experiments and changes. Getting that done solves the problem of blending
or transparency. Further more to complete the optimization and make a fully
working technique, Light volumes concept is used to change the way the light
calculation is done for objects in the scene.

However, the light volume calculation does not work as expected due to the
external reason of compatibility as mentioned in limitations section. Light
volume does not put any heavy load on the processing of the application, it,
in fact, is always faster than the generic deferred pipeline. It can be worked
around using the methodology stated in the future work section coming next
in the report.

Overall, this approach fulfills its proposed aims and objective and successfully
implemented them. This method can be used on the vast scale and variations
of projects. It can be a start off point for any project which intends to use
the deferred rendering pipeline as its core for rendering. This approach will
support customization at best. It can be altered and scaled according to the
requirements of the graphics and speed. For example, if the user wants more
efficient light volume calculations then the methodology mention in future
work can be implemented with enabled Face culling. It will be highly robust
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and faster that way. Similarly, the developer can extend this approach or use
it as it is, depending on the type of project. In the end, with all the evidence
from the evaluation and testing, this project can be concluded as success with
an opportunity to make it more advance in the future.

5.2 Future Work

Further more in the future, light volume implementation can be optimized to
be fully effective. After the implementation of the radius and light attenuation,
it is supposed to give out the better result with significant changes. After
the performance analysis and testing of this approach, the reason behind
not getting these expected results was found out. Incompetency of GPU
architecture and GLSL at optimizing loop and branches is the reason.

The more befitting technique to implement light volumes would be slightly
different. The actual sphere should be rendered with the light source at the
center of this sphere, using the same calculation of attenuation. It should
be scaled equally to the light volume radius such as way that it encloses the
entire volume of light. Familiarizing, we can use the same shader of deferred
fragment shader and render these spheres with it.

Having the spheres calling the same deferred fragment shader will match
the pieces that are affected by the light source. Hence, what ever pixel comes
in this sphere should be rendered ignoring all other pixels. If this is imple-
mented for all the number of lights, it will reduce the computations drastically.
Instead of doing numberofobject ∗ numberoflight the calculations will be-
come numberofobjects+ numberoflights. This improvisation will make the
optimization complete for deferred rendering pipeline making it adequately
efficient.
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Appendix A

Code Listing for Rendering all
colorbuffers in to G-Buffer

1

2 layout_ (location0) out vec3 gPosition;
3 layout_ (location1) out vec3 gNormal;
4 layout_ (location2) out vec4 gAlbedoSpec;
5

6 in vec2 Tex_Coords;
7 in vec3 Frag_Pos;
8 in vec3 Normal;
9

10 uniform sampler2D texture diffuse_1;
11 uniform sampler2D texture specular_1;
12

13 void main()
14 {
15 // fragment position vector in the first gbuffer texture
16 gPosition = FragPos;
17 // the per−fragment normals into the gbuffer
18 gNormal = normalize(Normal);
19 // diffuse per−fragment color
20 gAlbedoSpec.rgb = texture(texture_diffuse1, TexCoords).rgb;
21 // specular intensity in gAlbedoSpec’s alpha component
22 gAlbedoSpec.a = texture(texture_specular1, TexCoords).r;
23 }
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Appendix B

Code Listing Of Frame Buffer
directly sampled from G-Buffer

1 #version 330 core
2 out vec_4 Frag_Color;
3

4 in vec_2 Tex_Coords;
5

6 uniform sampler2D g_Position;
7 uniform sampler2D g_Normal;
8 uniform sampler2D g_AlbedoSpec;
9

10 struct Light_ {
11 vec3 Position_;
12 vec3 Color_;
13 };
14 const int NR_LIGHTS = 800;
15 uniform Light lights[NR_LIGHTS];
16 uniform vec3 viewPos;
17

18 void main()
19 {
20 // retrieve data from G−buffer
21 vec3 FragPos_ = texture(g_Position, Tex_Coords).rgb;
22 vec3 Normal_ = texture(g_Normal, Tex_Coords).rgb;
23 vec3 Albedo_ = texture(g_AlbedoSpec, Tex_Coords).rgb;
24 float Specular_ = texture(g_AlbedoSpec, Tex_Coords).a;
25

26 // then calculate lighting as usual
27 vec_3 lighting_ = Albedo_ ∗ 0.1; // hard−coded ambient component
28 vec_3 view_Dir = normalize(view_Pos − Frag_Pos);
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29 for(int i = 0; i < NR_LIGHTS; ++i)
30 {
31 // diffuse
32 vec3 light_Dir = normalize_(lights_[i].Position_ − Frag_Pos);
33 vec3 diffuse = max(dot(Normal_, light_Dir), 0.0) ∗ Albedo_ ∗ lights_ [i].Color_;
34 lighting_ += diffuse_;
35 }
36

37 Frag_Color = vec4(lighting_, 1.0);
38 }
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Appendix C

Code Listing Updated Lighting
pass fragment shader

1 struct Light {
2 [...] //more steps here
3 float Radius;
4 };
5

6 void main()
7 {
8 [...] more steps here
9 for(int i = 0; i < Number_of_LIGHTS; ++i)

10 {
11 // calculate the distance between light source and fragment that is affected by that light
12 float distance_ = length(lights[i].Position_ − Frag_Pos);
13 if(distance_ < lights[i].Radius_)
14 {
15 // do the expensive lighting
16 [...] more steps here
17 }
18 }
19 }
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Appendix D

Code and Document Link

Following is the web address for entire projects code files and documents.
http://gitlab.scss.tcd.ie/sakumar/dissertation.git
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