
Thresholding Closed Structure Capacity to

Facilitate Efficient Evacuation using Crowd

Simulation

by

Saurabh Pathak, B.Tech

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2017

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Saurabh Pathak

August 30, 2017

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Saurabh Pathak

August 30, 2017

Acknowledgments

The author would like to thank his family members for their constant support and love

during implementation and writing of this thesis. The author would also like to thank Dr.

Carol O’Sullivan for her support and guidance during the project. Without these people,

this thesis would not have been possible.

Saurabh Pathak

University of Dublin, Trinity College

September 2017

iv

Thresholding Closed Structure Capacity to

Facilitate Efficient Evacuation using Crowd

Simulation

Saurabh Pathak, M.Sc.

University of Dublin, Trinity College, 2017

Supervisor: Carol O’Sullivan

The paper here discusses methods to improve the interactions between the agents and

environment to facilitate them reach their target with minimum effort. This will help

design a closed system that responds to emergencies by helping agents evacuate the space

as early as possible. The end result for this thesis will be a framework which will help

us find the maximum capacity of people that may be accommodated in a structure to

facilitate fastest evacuations. Path-finding will be implemented for helping an agent to

reach its goal by following the shortest path and avoiding all the collisions that come its

way. This paper will likewise talk about the crossing point of AI and VE. It considers

the utilization of AI as a part of a VE and Intelligent Virtual Agents as a noteworthy

application region, covering movement, sensing, behavior, and control architectures. A

smart environment which the agent needs to interact or respond to like walls (which can’t

be passed), another agent (avoid collision with them), etc.

v

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Why Crowd Simulation . 1

1.2 Motivation . 2

1.3 This Dissertation . 3

1.4 Road-map . 4

Chapter 2 State of the art 5

2.1 Approaches to Crowd Simulation . 5

2.2 Crowd Dynamics . 5

2.2.1 Flow-based Approach . 5

2.2.2 Entity-based Approach . 6

2.2.3 Agent-based Approach . 6

2.3 Particle Systems . 6

2.4 Individual behavior modelling . 7

2.4.1 Personality-based models . 7

vi

2.4.2 Stress-based model . 8

2.5 Background Study . 8

2.6 Analysis . 11

Chapter 3 Design 12

3.1 Plan . 12

3.2 Requirements . 13

3.3 Methodology . 15

3.4 Goals . 16

Chapter 4 Implementation 17

4.1 Approach - Overview . 17

4.2 Why Unity . 18

4.3 Framework - Crowd Simulation . 18

4.4 World . 20

4.5 Deciding on a Path Finding Library . 21

4.6 NavMesh . 23

4.6.1 Building a NavMesh . 25

4.6.2 NavMesh - Working . 28

4.7 Finding Paths . 29

4.7.1 Path Following . 30

4.7.2 Obstacle Avoidance . 31

4.7.3 Moving An Agent . 31

4.7.4 Global vs Local Navigation . 32

4.7.5 Obstacle Scenarios . 32

4.8 Destinations . 34

4.9 NavMesh Agent . 34

4.10 Theory Underlying the Implementation . 36

4.10.1 Behavior Modelling . 36

vii

4.10.2 Situation Awareness . 36

4.10.3 Agent Attributes . 37

4.11 Programming the Agent . 38

4.11.1 Making an Agent Move . 38

4.11.2 Updating the Destination . 38

4.11.3 Populating Exits . 39

4.11.4 On Evacuation scenario getting the nearest Exit 39

4.12 Evacuation . 40

4.12.1 Creating an Event Manager . 41

4.12.2 Creating an Event Trigger . 42

Chapter 5 Simulations 44

5.1 The Simulation System . 44

5.2 Scenes . 45

5.3 Appendix - Simulation Images . 46

Chapter 6 Results 53

6.1 Breakdown of Performance . 53

6.2 Framework . 56

6.3 Validity of Simulation . 58

Chapter 7 Conclusions and Future Work 60

7.1 Conclusion . 60

7.2 Future Work . 61

7.2.1 Behavior . 61

7.2.2 Create and Destroy Agents using FSM 61

7.2.3 Adding more floors to the Structure 61

7.2.4 Implement IVRS to facilitate faster Evacuation 62

viii

7.2.5 Put in more Agents with slower speed to consider for Handicapped

People . 62

Appendix A Abbreviations 64

ix

List of Tables

6.1 Results obtained from Scene 1 . 54

6.2 Results obtained from Scene 2 . 55

6.3 Results obtained from Scene 3 . 56

x

List of Figures

1.1 Past data where accidents occurred due to bad structural architecture.

Retrieved from http://www.gkstill.com/Support/WhyModel/index.html . . 2

4.1 State Diagram for an Agent Lifecycle . 19

4.2 Navigation Static Property.

Retrieved from https://docs.unity3d.com/Manual/StaticObjects.html . . . 25

4.3 Building NavMesh - Steps 1 & 2.

Retrieved from https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html 26

4.4 Building NavMesh - Steps 3 & 4.

Retrieved from https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html 27

4.5 Final baked NavMesh.

Retrieved from https://docs.unity3d.com/Manual/nav-NavigationSystem.html 27

4.6 Walkable Areas.

Retrieved from https://docs.unity3d.com/Manual/nav-InnerWorkings.html 28

4.7 Finding Paths.

Retrieved from https://docs.unity3d.com/Manual/nav-InnerWorkings.html 30

4.8 Following Path provided by NavMesh.

Retreived from https://docs.unity3d.com/Manual/nav-InnerWorkings.html 30

4.9 Navigation Loop.

Retrieved from https://docs.unity3d.com/Manual/nav-InnerWorkings.html 32

xi

4.10 Two cases of Obstacles.

Retrieved from https://docs.unity3d.com/Manual/nav-InnerWorkings.html 33

4.11 Destinations represented by red cubes in the simulation 34

4.12 NavMesh Agent Setup.

Retrieved from https://docs.unity3d.com/Manual/nav-CreateNavMeshAgent.html 35

4.13 Script added to provide additional functionality to the Agent 35

4.14 Scene 3: Evacuation in Process . 43

5.1 Scene 1: Top View of the Structure . 46

5.2 Scene 3: Top View of the Structure . 47

5.3 Display 1: Scene 2 . 47

5.4 Display 2: Scene 2 . 48

5.5 Display 3: Scene 2 . 48

5.6 Display 4: Scene 2 . 48

5.7 Display 5: Scene 2 . 49

5.8 Display 6: Scene 2 . 49

5.9 Display 7: Scene 2 . 49

5.10 Display 8: Scene 2 . 50

5.11 Scene 1: From Near the Stairs . 50

5.12 Scene 1: Front of the Ramp . 50

5.13 Scene 3: Front view of the Ramp . 51

5.14 Scene 3: Stairs View of the Scene . 51

5.15 Scene 2: Evacuation in Process . 51

5.16 Scene 1: Evacuation Complete . 52

6.1 Evaluation for Simulation 1 . 57

6.2 Evaluation for Simulation 2 . 58

6.3 Evaluation for Simulation 3 . 58

xii

Chapter 1

Introduction

1.1 Why Crowd Simulation

Crowd Simulation is the way toward reenacting the development (or flow) of a substantial

number of elements or characters. It is regularly used to make virtual scenes for visual

media like movies and computer games, and is likewise utilised as a part of emergency

preparing, engineering and urban arranging, and departure reproduction.

Group reenactment may concentrate on angles that objective distinctive applications. For

reasonable and quick rendering of a group for visual media or virtual cinematography,

lessening of the intricacy of the 3D scene and picture based rendering are utilised, while

varieties in appearance help exhibit a practical populace.

In diversions and applications expected to recreate genuine human group develop-

ment, as in departure reenactments, mimicked specialists may need to explore towards

an objective, stay away from crashes, and show other human-like conduct. Many group

guiding calculations have been created to lead reenacted group to their objectives rea-

sonably. Some more broad frameworks are inquired about, that can bolster various types

of agents(like autos and people on foot), diverse levels of abstraction(like individual and

continuum), specialists interfacing with shrewd articles, and more mind boggling physical

and social elements.

1

1.2 Motivation

Figure 1.1: Past data where accidents occurred due to bad structural architecture.
Retrieved from http://www.gkstill.com/Support/WhyModel/index.html

The image has some highlighted figures which represent fiascos that have a plan issue

(appeared as red below) as the central (or distal) causality. In particular, the outline

(space) was not adequately vigorous for the expected group. Neglecting to comprehend

the outline limit and throughput, and additionally neglecting to foresee the group numbers

is a formula for fiasco, and a central component of group hazard examination. This

highlights instructing the standards and utilizations of how to investigate swarm stream

rates, fill times and limit would have had a huge changes to swarm well-being and spared

lives.

Computer Simulation is an intense instrument for investigating unpredictable and

dynamic situations. It gives an engaging way to deal with, think about and dissect cir-

cumstances which would be exceedingly costly to actualize in this present reality. This

2

capable strategy helps the basic leadership handle. Agent based crowd simulation has

risen as a productive device to research prevention of above fiascos due to architectural

shortcomings of a building. The advancement of viable person on foot recreation frame-

works is critical in understanding danger and swarm security in spots of open get together.

We manufacture models to comprehend a specific wonders or normal for a framework.

We manufacture models to comprehend the connection amongst circumstances and end

results. We manufacture models to enhance our comprehension of an unpredictable do-

main. We do as such in light of the fact that, amid the way toward building a model,

we experience the procedure of revelation, with disclosure comes understanding and with

understanding comes control. A mind boggling issue can be examined and unraveled by

a procedure of displaying.

1.3 This Dissertation

This paper talks about implementing the agent-based model for crowd simulation. The

root of the issue here is the manner by which the basic decision making may be modeled for

every individual in the group. There are numerous decision-making frameworks that are

accessible like Bayesian systems, fuzzy logic, neural networks, BDI, and decision networks.

Every one of these techniques has been broadly utilized as a part of different applications

for decision making.

However, these techniques are more disposed on the mathematical and calculative

structure as opposed to reproducing human’s decision-making process. So in this paper,

the attempt is to expect a human behavior impersonation framework that shows how

people process while settling on choices in various situations. This is known fact that

the external stimulus has an equal impact on a human’s physical condition, feeling, and

social dealing. These impacts, in turn, have effects on a human’s decision-making process.

Accordingly, this system goes for handling the two phases of the insightful strategy asso-

ciated with decision making - knowledge of a person of the circumstance and the changes

3

it causes on their internal characteristics. This system makes a suitable designation of

individual efforts involving connection amongst agents and obstruction engine which plays

a critical part in the genuine reproduction of gigantic crowds in complex situations.

1.4 Road-map

The design of this thesis is as per the following: Chapter 2 surveys the present cutting

edge research going on inside this field, including clarifying the various types of activity

reenactment frameworks depicted as agent based, flow based, and so on. Chapter 3 plots

the first outline and plan for building up the Crowd Simulation framework. The execution

is explained point by point in Chapter 4. Chapter 5 basically investigates the usage and

talks about system advantages and downsides of the framework and the outcomes it offers.

Chapter 6 exhibits the conclusions and highlights conceivable future work important to

the venture.

4

Chapter 2

State of the art

2.1 Approaches to Crowd Simulation

One of the real objectives in Crowd Simulation is to control swarms practically and

reproduce human dynamic practices.

There exists a few larger ways to deal with swarm reenactment and AI, every one

giving preferences and burdens in light of group size and time scale. Time scale alludes

to how the goal of the recreation likewise influences the length of the reproduction. For

instance, looking into social inquiries, for example, how philosophies are spread among

a populace will bring about an any longer running recreation since such an occasion can

traverse up to months or years. Utilising those two qualities, specialists have endeavoured

to apply arrangements to better assess and compose existing group test systems.

2.2 Crowd Dynamics

2.2.1 Flow-based Approach

Flow based crowd simulations centre in light of the group overall as opposed to its seg-

ments[22]. All things considered people don’t have any unmistakable practices that hap-

pen because of contribution from their environment and behavioural components are to

a great extent lessened [12]. This model is for the most part used to assess the stream of

5

development of an extensive and dense crowd in a given situation. Best utilised as a part

of concentrate vast group, brief time destinations. [18] [6]

2.2.2 Entity-based Approach

Models that actualise an arrangement of physical, predefined, and worldwide laws in-

tended to mimic social/mental elements that happen in people that are a part of a group

fall under this classification [21]. Entities for this situation don’t have the ability to, it

might be said, have an independent perspective. All developments are controlled by the

worldwide laws being enforced on them[14]. Simulations that utilise this model frequently,

do as such, to look into swarm dynamics, for example, jamming and flocking. Little to

medium-sized group with short term goals fit this approach best.[25] [2]

2.2.3 Agent-based Approach

Described via independent, associating people. Every agent of a crowd in this approach,

is given a level of insight; they can respond to every circumstance all alone, in light of an

arrangement of choice principles[17]. Data used to choose an activity is gotten locally from

the agent’s’ environment[23]. Frequently, this approach is utilised for reproducing sensible

group conduct as the researcher is given full opportunity to actualise any practices. [8]

[15]

2.3 Particle Systems

One approach to mimic virtual crowds is to utilize a particle system. A particle system

is a gathering of various individual components or particles. Every particle can act self-

rulingly and is relegated an arrangement of physical characteristics, (for example, color,

size and speed).

A particle system is dynamic, in that the developments of the particles change after

some time. A particle system’s development is the thing that makes it so attractive and

6

simple to actualize. Ascertaining the developments of these particles takes next to no

time. It just includes material science: the whole of the considerable number of strengths

following up on a particle decides its movement. Forces, for example, gravity, friction and

force from an impact, and social forces like the alluring force of an objective. [3]

Normally every particle has a speed vector and a position vector, containing data

about the particle’s present speed and position separately. The particles next position

is ascertained by adding its speed vector to its position vector. An exceptionally basic

operation (again why particle systems are so alluring). Its speed vector changes after

some time, in light of the powers following up on the particle. For instance, a crash with

another particle will make it alter course. [1]

Particles systems have been generally utilized as part of movies for impacts, for ex-

ample, blasts, for water effect. [10]

2.4 Individual behavior modelling

One arrangement of procedures for AI-based group simulation is to show crowd conduct

by cutting edge reproduction of individual specialist inspirations and decision making. For

the most part, this implies every operator is allotted some arrangement of factors that

measure different attributes or statuses, for example, stress, identity, or diverse objectives.

This outcomes in more practical group conduct however might be more computationally

escalated than more straightforward systems. [11] [16]

2.4.1 Personality-based models

One strategy for making individualistic conduct for crowd agents is using identity at-

tributes. Every agent may have certain parts of their identity tuned in view of an equa-

tion that partners viewpoints, for example, forcefulness or lack of caution with factors

that oversee the operators’ conduct. One way this affiliation can be found is through a

subjective report in which specialists are randomly allocated values for these factors and

7

members are made a request to portray every operator regarding these identity quali-

ties. A regression may then be done to decide a connection between these qualities and

the agent personality traits. The identity qualities would then be able to be tuned and

appropriately affect agent conduct. [4] [5]

2.4.2 Stress-based model

The conduct of crowds in high-push circumstances can be displayed utilising General

Adjustment Disorder theory. Agent conduct is influenced by different stressors from their

condition sorted into four models: time weight, range weight, positional stressors, and

relational stressors, each with related numerical models. [20] [19]

Time weight alludes to stressors identified with a period constrain in achieving a

specific objective. A case would be a road crossing with a timed walk signal or boarding a

train before the entryways are shut. This model is displayed by the accompanying recipe:

It = max(te − ta, 0) (2.1)

where It is the intensity of the time pressure as a function of the estimated time to reach

the goal te and a time constraint ta.

2.5 Background Study

Apart from talking about state of the art, here are some of the papers that inspired this

thesis. Majority of these have incorporated agent based model to achieve their goals in

crowd simulation. So these helped build a strong base for the current theses. Also, these

papers were very helpful throughout the implementation of the current thesis as they

have done a very thorough research on agent based simulations and they know how to

tackle challenges. So this made the implementation very smooth and that’s why these are

included as a part of the current state of the art.

8

1. A Synthetic-Vision Based Steering Approach for Crowd Simulation

[13]

This paper presents a very innovative way of avoiding collisions between agents

using computer vision as a primary tool. The agents are assumed to have the

feature of interacting with each other and the virtual system. The agents detect

future accidents and their severity from visual stimuli similar to any human. The

response for such scenarios is layered. Firstly the agent tries to avoid a collision if

possible. If not they try to reduce their speed to reduce the impact of the collision.

The paper also presents some insights about why so much research is being done

around crowd simulation. The field of interactive entertainment is different from

security and architecture. So it desires frameworks or systems which may include

complex behaviors of crowds and pictorially represent the communication between

them. That is the reason for devoting computer animation resources for this field.

Collision avoidance

Discussing further, the paper gives some insights about collision avoidance using

agent based methods based on geometrical prototypes. The way this is achieved is

by calculating acceptable velocities and assigning them to agents so they may dodge

imminent collisions. The next step would be to route the agents over probable paths

along with having acceptable velocities.

The two main approaches to achieve this are Rule-based technique and Particle

systems and the inference drawn is that the former fails to simulate the beginning

walkers while the latter may fail to achieve workable motion, for example, feasible

accelerations and velocities.

2. Controlling Individual Agents in High-Density Crowd Simulation

[15]

This paper also tries to study the behavior of individual agents in a high-density

crowd. To solve the problem of cogently simulating the behavior of individual

9

agents, the combination of psychological and physiological rules together with phys-

ical forces may be used. If the same attributes are assigned to all the agents it may

lead to identical behaviors. Hence all the agents should be provided with different

psychological and physical properties that may generate unique behaviors within

the agents. Apart from these attributes, sensing is also a viable option that is be-

ing used in the current paper to consider the cases of the agent’s reaction to other

moving and stable objects.

3. Agent-based human behavior modeling for crowd simulation

[9]

The is paper was the best inspiration to proceed with the agent based model for

crowd simulation. It’s trying to simulate crowds using a layered architecture to

show the human like decision-making process. This means considering the human

reaction to various external situations and changes in internal attributes of the

agent. The social psychology of an agent is what drives the activities done in a

crowd or social gathering. Further, these attributes when provided to the agent

they behave uniquely when presented with different scenarios by making very real

life like decisions.

The study on crowd simulation may be divided into two categories. The first one is

where the crowd is considered a collection of agents which respond to any external

changes governed by simple rules. Some of the standard methods for doing this are

cellular automata model and particle system model. But these methods are not

considered as adequate to study complex crowd behaviors.

The second approach this paper refers to is the one where a crowd is treated as a set

of individual agents who have attributes for making solid individual decisions. This

is the approach that has been implemented in the current thesis. Here each agent

is capable of making distinct and individual decisions when putting in a crowd.

10

2.6 Analysis

Going through all this research it was very clear that the agent based approach will be

the best and an easy way to simulate crowds in a closed structure and study further about

evacuation times in emergencies. The agent based method is very simple and streamlined.

The only target here is to provide each agent with all the attributes required to make

decisions and interact with various other objects in the system. Then these attributes

may be provided to N number of agents and they all will behave individually provided

they are programmed with unique values for these attributes. This will accomplish the

first part of crowd simulation[7].

The next part is to introduce the environment with some emergency and notify the

agents about that. Although there is not much material available online still there is

an understanding that if the agents are provided with some extra features like a panic

speed and sensing they may respond to these emergencies taking good decisions. So this

is the current base on which the framework in development proceeds. [24]

11

Chapter 3

Design
By modelling correctly the attributes of humans in a closed structure with obstructions,

when an explosion is introduced, a number of interesting evacuation observations will

emerge will all collectively put together will provide the maximum capacity for an efficient

evacuation.

3.1 Plan

The original plan for this system was to get the threshold capacity for a closed structure

which may facilitate efficient evacuation in case of any emergency. To get this capacity it

was needed to simulate the exact scenario using some game engine.

Start with getting a simple agent up and moving over a ground which may be simulated

by a plane. An agent should mock the behaviour of humans in physical and sensing

perspectives. So initially the agent should try and avoid other agents.

Next step would be to introduce some obstructions like a wall or blocked areas where

agents cannot walk. These areas should be provided with some flag and never be con-

sidered in our navigation areas. While the agents should not pass through them we also

don’t want them to jump over this.

Extending agent behaviour, it also needs to have some feature to jump so that it may

walk over stairs. Another attribute would be define a threshold inclined plains which the

agents may use for navigating to areas which are at some height.

12

After these features have been assigned to agents, it is also required to put in a set

of destinations which our agents need to reach in order to keep moving in the structure.

Always we find in a mall or a museum people keep moving from one place to other, so as

soon as the agents reaches a particular target the framework should update the goal of

the agent with another destination so that the agent doesn’t stop at one destination. To

simulate a real-time scenario it is a must that agents keep moving to different targets.

Apart from destination it is also required to put in exits in the structure. In case of

any emergency the agents should stop moving to their destinations and should find the

nearest exit and should start moving towards it.

Finally since the evaluation of evacuation capacity requires an evacuation event, it is

also required to simulate some kind of an explosion or an emergency which may cause the

agents to evacuate the structure. This event should be sensed by our agents and should

trigger a panic state in them to make them move faster to the nearest exits.

3.2 Requirements

The principal necessity of this framework is make a structure in which the entire framework

could be examined.

The prerequisites for the system were that it should -

• Agent should not pass through each other

When an agent is moving and it encounters another agent it shouldn’t pass through

it. Instead the agent should look for a new path to its destination. This function-

ality also helps in considering the fact that during emergencies people step over

each other. So each agent should behave like an obstruction such that there is a

consideration that people who fall are being picked up and not walked over.

• Agents should not pass through obstructions

One of the very basic requirements that this framework needs is avoiding obstruc-

13

tions and excluding their position when calculating paths to a particular destination.

In real world, humans come across a lot of obstructions while commuting from one

place to another. They avoid these obstructions either by looking for a new path

to their destinations, jumping over the obstruction, etc. In this simulation also we

want our agents to have similar properties like find paths across the obstructions

and jumping over some of them. These attributes are mandatory for our framework

as only then will we be able to evaluate the evacuation properly.

• Agents should not jump over each other

We are providing physical attributes to our agents to jump over some obstructions

but we do not want to be jumping over each other. If we consider any real world

scenario, we will come to a conclusion that there are very slim chances that we will

have to jump over other person when moving from one place to another. So we need

to keep a threshold height for our agents that keeps in check that our agents only

walk through a stair height or wall with same height.

• Agents should find the shortest path to their destination

A very valid attribute would be to find shortest path to the destination. Humans use

their senses and calculations to find quickest paths to their destinations. Nowadays

Google maps generally solves that problem but humans don’t use that when they are

in a museum or a mall. Similarly for the agents to reach their destination we can’t

use maps API, instead we need to provide them this feature so that they reach

their destinations using the shortest path. Also, apart from mocking a human’s

behaviour we also want to avoid the case that our agents keep moving across the

exit or boundaries and in case of evacuation they simply run to the next exit. This

never happens. Agents should be moving inside the closed structure where they

have their destinations.

• Agents should react quickly to an emergency event

Agents should also have some kind of events to which they may react to and perform

14

some actions. Just like when humans see some danger they try to run away run it.

Similarly agents should also get notified about some kind of emergency happening

in the closed structure they are in. Also we are simulating evacuation so it makes

sense to provide an attribute to our agents to react quickly to events.

3.3 Methodology

The methodology would include:

• Use of a robust game engine where simulating 3D environment and agents would be

seamless and won’t be an overhead to the memory of the computer.

– Unity 3D

• Use of a path-finding library which may handle all the fuss of where agents may

walk and finding shortest path to their destinations.

– Unity’s inbuilt Navmesh Library

• Using an IDE for development of code to achieve the desired functionality

– Microsoft Visual Studio 2015

• SVN repository for Version control, backup, system roll-back and seamless transfer

to multiple computers

– Github

– Sourcetree

A logic utilized in the outline and execution was to use an iterative way to deal with

smooth advancement by learning and refining the steps from past strides.

The framework was implemented in C#. The primary reason this was done was that

C# is a robust object oriented programming language that is quick, mature and all around

15

bolstered. It would encourage future mix with a tremendous measure of work being done

in the interactive entertainment industry.

3.4 Goals

• To develop agents with capabilities of moving to an assigned destination using short-

est path

• Provide the environment with smart obstructions which the agent may avoid and

complicated paths like a ramp or a stair which the agent may use to reach their

destination in real-time.

• To have ability to adapting and reacting to the movement of other agents.

• To respond to an emergency and evacuation the structure.

16

Chapter 4

Implementation
This Chapter sets out points of interest of the implementation of the project, the issues

that emerged, the way to deal with settling them and a portrayal of their answers. Issues

for which worthy arrangements were not accomplished or finished are likewise featured.

These issues were not coordinated into the last framework. The whole source code in

addition to an assembled rendition of the program is available on GitHub.

4.1 Approach - Overview

This is a known fact that all individuals behave differently when they are present in a

crowd as compared to when they are alone. So this current implementation focuses on

exploring physical and social group attributes which directly affect an agent’s decision-

making process when they are present in a crowd during normal or emergency situations.

The framework further tries to integrate social and crowd related assumptions and con-

clusions from the field of social psychology to mock actual social interactions that happen

in real life. The framework that is being developed will be capable of generating efficient

and vivid behaviors required for large scale crowd simulations. By vivid, it doesn’t mean

that in current simulation this framework will produce life like behaviors but instead, its

decision making capability will be like a human brain. This means that emphasis will be

on design and procedural accuracy.

17

4.2 Why Unity

Unity is a game engine which is used to develop games for mobiles, desktops and consoles.

The reason for choosing Unity over other Game Engines was that it’s really simple to

use. The UI provided for building game environment is pretty straight forward. It has

a huge developer community that provides support. So there is always a solution to any

problem that arises. Apart from these, it uses JavaScript or C# as the core languages.

Both of them are pretty easy to learn. It also comes with an IDE Mono-Develop, so that

takes another overhead away of installing an IDE for programming purpose. Another

feature that makes it stand apart is creating 3D simulations. The engine handles creating

3D objects and structures with a lot of ease. The API for unity is also very rich. It

comes with a build in Navigation framework - NavMesh which is being used as a core

dependency in the current simulation. One of the most unique features that it provides

is exposing public variables on the inspector to assign them values there itself either it’s

a primitive type or a GameObject, refer Figure 4.13. Last and the most important of all

is that unity comes for free. So it may be used to build any of the projects, simulations.

etc without worrying about the wallet.

4.3 Framework - Crowd Simulation

A framework was a necessary requirement as there needed to be separation between

different components in the system as not all of them would be fully developed. Each

section should be ‘plug and playable’ and switchable at a later stage if a better solution

came along. There were four main design issues that needed to be resolved;

• The world in which the humans operate

• The path-finding for humanoid agents

• The rules by which the agents operated and interacted, and

18

• The agent evacuation trigger

Figure 4.1: State Diagram for an Agent Lifecycle

19

4.4 World

There were two issues that should have been considered when choosing how to represent

the world. The first was what should have been represented, and the second was the way

that data will be utilized by the agent to explore the world over. After a considerable

measure of understanding, I found that larger part of the papers out there speak to the

world in networks and keep the coordinates of these networks in memory. So when the

agent needs to move to a point, they apply some path-finding algorithm utilizing grid co-

ordinates and continue refreshing the position of the agent until the point that it achieves

the goal coordinates. So this was the first approach to consider while implementing the

world for Crowd Simulation.

But there was a lot of scope for research in this field. There were some papers which

considered sensing as one of the approaches to make agents reach their targets. So to begin

with making agents move, they were provided with sensing attribute. The world was not

divided into any grid, it was simply making agents move towards the target and avoiding

obstructions using sensing. But this didn’t work. Agents moved in a very weird way using

sensing. While moving towards their target the started moving exactly in direction of the

destination and when they encountered any wall or obstruction they moved away from it.

This didn’t make any sense while simulating. Humans never move like that. They find

feasible paths to their destinations and move through them. So because of this reason

this approach was dropped (discussed in detail in later sections).

The next thing was the obvious choice of representing the world in some form of

grid and applying path-finding to make agents reach their targets. Since the simulation

was done on unity there were a lot of frameworks provided by the engine to facilitate

path-finding. So some research was done to choose the best fit for simulating crowds.

20

4.5 Deciding on a Path Finding Library

A couple of words about my encounters with a portion of the path finding libraries out

there.

• Aron Granberg’s A* Project

The first library that I tried was Aron Granberg’s A* Project. While I was looking

for a good library to use for pathfinding this was a very straightforward choice for

many game developers. I went through the features of this library it felt that it

had pretty much everything but it was for a price of $99. A free version was also

available but it didn’t have any local avoidance, so it was no good. I found it pretty

good while going through it.

So I integrated it into the projects and it worked fine but it had some essential

problems.

– Scene Loading

The library creates a huge overhead on the CPU performance plus the scene

loads a lot slower. With this library, the scene loading time went to 5-10

seconds. Just out of curiosity removed this library from the project and the

loading time dropped to 1-2 seconds. Since this was a pretty dramatic differ-

ence, the simulation was better off with this library.

– RVO Local Avoidance

Throughout reading about the library it was highlighted everywhere that this

is the library’s strong point. For instance, agents were getting stuck at random

places where they should have gone through. Also around the corners, they

were not able to go through. I assumed that there was some setting buried but

I couldn’t get it right. However, the important thing to notice about avoidance

in this library is that it uses RVO algorithm and the performance of the agents

in a huge crowd was impeccable. the agents never went through each other

21

or intersect, but when walls and corners were introduced the performance got

worse.

– Licensing issues

It’s not available for free. UNC (University of North Carolina), owns the

copyright for the RVO algorithm. So it was asked to remove RVO from the

library or pay the licensing fees.

• UnitySteer

Unitysteer was free and an open source, but I was not able to implement it properly.

On reading about it it sounded really good, even on the demos and videos, but I

couldn’t get it to work. I assume it’s for more advanced users and I chose not to

proceed with this.

• Unity’s built in NavMesh Navigation

Since a lot of time was spent on exploring third party libraries. I decided to try

Unity’s built in Navigation System. It used to be a part of Unity Pro only but

sometime around 2013 Unity added it to their free version. So this was also a reliable

choice and it worked really well. The current simulation uses Unity’s Navmesh.

There are some good and bad sides of this library.

– The Good

It’s quick. Initial response when running it for the first time was that it was

too fast. The simulation was easily able to support 4-5 times more agents than

I anticipated without any lags in pathfinding. The paths were getting updated

really quick. Also, there was no issue with FPS as well. The simulation was

done starting with 200 agents and went as high as 1200, still, the simulation

was running smoothly.

Easy to setup. Getting Unity’s NavMesh to run was really easy. What effec-

22

tively did require was a single line of code.

agent.destination = target.position; (4.1)

The best thing about Unity’s NavMesh was it may be easily utilized by anyone

with little or no experience with game development. All that was required for

generating a NavMesh was importing the component to the scene, providing

it with walkable and un-walkable areas and finally setting the properties of all

agents to navigation static and providing with whether they are walkable or

not.

Good pathfinding quality. By good quality what I mean is that agents were

navigating throughout the world without getting stuck at places and didn’t

have any problems moving through tight spaces as well like they did for Aron’s

A* library. The library worked as the simulation needed, plus it the agents

moved really swiftly without any extra work for smoothing the paths.

– The Bad

Well, not exactly a bad side of the library but there is something that needs

to be taken care of when using this library. The local avoidance for the library

is not that great. In case of a large number of agents, they start intersecting

and jiggling around each other. Fortunately, the library is very easy to extend

and I found a fix for these problems, so it wasn’t that bad.

This sums up pretty much everything encountered during the search for a pathfinding

library. It’s better to stick with Unity’s NavMesh (inbuilt navigation library) as it works

really well with an RPG or RTS games, it’s easy to use and it’s free.

4.6 NavMesh

The Unity Navmesh framework depends on the following characteristic features:

23

• NavMesh

It is a representation of the walkable surfaces present in the game world using which

the agent may commute from place to other. The mesh is created after we specify

which areas are walkable and which are not. The framework then creates a mesh

over the surface from the level geometry. This is referred to as Baking.

• NavMesh Agent

It is another component that the framework provides us for implementing movable

objects in the game. They use the information provided by the NavMesh to navigate

in the game world from one location to other. Apart from finding paths using

NavMesh, they are also capable of evading each other (other agents) and dodging

any moving obstacles which are defined before baking the Navmesh.

• Off-Mesh Link

This component helps define routes to reach a destination which can’t be reached

using paths provided by the NavMesh. These are the cases when it’s needed to

implement a hole or a fence and the agent should have the ability to jump of these

structures. This can be achieved using Off-work links.

• NavMesh Obstacle

These are again a very important component of the framework. For any simulation,

it is required to implement some obstacles so the agent navigates around it to reach

the destination. These components need to be dodged or avoided by the agent while

moving around the game world. In case of the moving obstacles, the agent tries to

dodge it as much as possible. But for the case of stationary obstacles, the baking

process creates holes in place of stationary objects so that those regions are not

considered while finding paths to a destination as those areas can’t be navigated.

24

4.6.1 Building a NavMesh

Before explaining how a Navmesh is created its required to understand what navigation

static objects mean and how they are helpful. In Unity, while building any game or

simulating any use case, the engine needs to know which objects are movable and which

are static to facilitate optimizations. This information can often be pre determined to the

game engine such that it won’t be invalidated by changes in the game object’s position.

Considering a simple example, rendering may be a lot optimized if we make a single object

by cumulating various static objects in a single one which is known as a batch.

Figure 4.2: Navigation Static Property.
Retrieved from https://docs.unity3d.com/Manual/StaticObjects.html

Making a game object Navigation Static is very simple. The inspector toolbar in Unity

has a static check box on the extreme top-right which holds a boolean that represents

navigation static property of objects. It informs all the corresponding systems whether

an object will move or not.

Creating a Navmesh from the base level corresponding to its geometry is called

NavMesh Baking. The process starts with collecting the Render Meshes and Terrains

for all the Game Objects which are Navigation Static. Then the next step is to process

these Navigation Static objects and create a navigation mesh which provides unity with

25

all the walkable spaces over the surface.

To generate a NavMesh, select navigation option under Window menu option. Then

set the bake properties required as per the agent that is being deployed. Following are

the details of properties that are available to set.

• Agent Radius - Threshold distance from agent’s center to any other game object.

• Agent Height - Used to determine how lower the structure can be for the agent to

enter it.

• Max Slope - Determines the max inclination for a ramp to be walkable for the agent.

• Step Height - Determines the height for obstructions which may be walkable by the

agent.

Following are the images representing steps to build a Navmesh in Unity.

Figure 4.3: Building NavMesh - Steps 1 & 2.
Retrieved from https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html

26

Figure 4.4: Building NavMesh - Steps 3 & 4.
Retrieved from https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html

Figure 4.5: Final baked NavMesh.
Retrieved from https://docs.unity3d.com/Manual/nav-NavigationSystem.html

After Baking is complete, Unity represents the mesh as a blue surface over the base

where we want our agents to walk. This is only shown when the navigation window is

27

opened.

4.6.2 NavMesh - Working

When you need to wisely move characters in your game (or agents as they are called in

AI circles), you need to take care of two issues: how to reason about the level to discover

the goal, then how to move there. These two issues are firmly coupled, yet very unique

in nature. The issue of thinking about the level is more worldwide and static, in that it

considers the entire scene. Moving to the goal is more local and dynamic, it just considers

the direction to move and how to forestall impacts with other moving agents.

Figure 4.6: Walkable Areas.
Retrieved from https://docs.unity3d.com/Manual/nav-InnerWorkings.html

The navigation system needs its own data to speak to the walkable territories in a

game scene. The walkable zones characterize the spots in the scene where the agent can

stand and move. In Unity, the operators are depicted as cylinders. The walkable range is

constructed consequently from the geometry in the scene by testing the areas where the

agent can stand. At that point, the areas are associated with a surface laying over the

28

scene geometry. This surface is known as the navigation mesh (NavMesh for short).

The NavMesh stores this surface as convex polygons. Convex polygons are a valuable

portrayal since we realize that there are no obstructions between any two points inside

a polygon. In addition to the polygon limits, we store data about which polygons are

neighbors to each other. This enables to reason about the entire walkable range.

Also, it is noticeable that the walkable are represented by the mesh is a little shrunk.

This is because of the fact that the mesh only shows those areas where the agent’s center

may be placed. So even if you place a cube, cylinder or a sphere they are all treated same

by the mesh. This point depiction of the NavMesh also provides better runtime efficiency

as the data stored is small.

4.7 Finding Paths

To discover a path between two areas in the scene, we initially need to delineate the start

and destination areas to their closest polygons. At that point we begin looking from the

start location, going to every one of the neighbors until the point when we achieve the

destination polygon. Following the visited polygons enables us to discover the succession

of polygons which will lead from the start to the destination. A typical calculation to

discover the path is A* (articulated ”A star”), which is the thing that Unity employs.

29

Figure 4.7: Finding Paths.
Retrieved from https://docs.unity3d.com/Manual/nav-InnerWorkings.html

4.7.1 Path Following

The succession of polygons which portray the path from the start to the goal polygon is

known as a corridor. The agent will reach the goal by continually guiding towards the next

visible corner of the corridor. In the event that you have a straightforward game where

just a single agent moves in the scene, it is fine to discover all the sides of the corridor

in one swoop and animate the character to move along the line segments connecting the

corners.

Figure 4.8: Following Path provided by NavMesh.
Retreived from https://docs.unity3d.com/Manual/nav-InnerWorkings.html

30

When managing various agents moving at the same time, they should go amiss from

the original way while staying away from each other. Endeavoring to right such deviations

utilizing a path comprising of line segments soon turns out to be exceptionally troublesome

and error prone.

Since the agent movement in each frame is very little, we can utilize the network of

the polygons to repair the corridor on the off chance that we have to take a little detour.

At that point, we rapidly locate the next visible corner to direct towards.

4.7.2 Obstacle Avoidance

The guiding logic takes the position of the following corner and in light of that figures out

a coveted direction and speed (or velocity) expected to reach the destination. Utilizing

the coveted speed to move the agent can prompt impact with other agents.

Obstacle avoidance picks another speed which adjusts between moving the coveted

direction and averting future impacts with different agents and edges of the navigation

mesh. Unity is utilizing reciprocal velocity obstacles (RVO) to foresee and prevent crashes.

4.7.3 Moving An Agent

At long last, after steering and obstacle evasion the last speed is calculated. In Unity,

the agents are reproduced utilizing a basic dynamic model, which additionally considers

acceleration to permit more normal and smooth movement.

At this stage, it is conceivable to bolster the speed from the simulated agent to the

Mecanim animation framework to move the character or let the navigation framework

deal with that.

Once the agent has been moved utilizing either technique, the simulated agent location

is moved and compelled to NavMesh. This last little stride is essential for a robust route.

31

4.7.4 Global vs Local Navigation

One of the most important things to understand about navigation is the difference between

global and local navigation.

Global navigation is utilized to discover the corridor over the world. Finding a path

over the world is an exorbitant operation requiring a considerable amount of power and

memory.

Figure 4.9: Navigation Loop.
Retrieved from https://docs.unity3d.com/Manual/nav-InnerWorkings.html

The linear list of polygons depicting the path is an adaptable data structure for guiding,

and it can be privately balanced as the agent’s position moves. Local navigation tries to

figure out how to effectively move towards the following corner without slamming into

different agents or moving articles.

4.7.5 Obstacle Scenarios

Numerous uses of navigation require different sorts of obstructions instead of simply dif-

ferent agents. These could be the typical boxes and barrels in a shooter game or vehicles.

The obstructions can be dealt with utilizing local obstacle avoidance or global pathfinding.

At the point when an obstacle is moving, it is best dealt with utilizing local obstacle

avoidance. Thusly the operator can presciently stay away from the obstacle. At the

32

point when the obstacle ends up noticeably stationary and can be considered to obstruct

the way of all agents, the hindrances should influence the global navigation, that is, the

navigation mesh.

Figure 4.10: Two cases of Obstacles.
Retrieved from https://docs.unity3d.com/Manual/nav-InnerWorkings.html

Changing the NavMesh is called carving. The procedure recognizes which parts of the

obstacles touch the NavMesh and cuts gaps into the NavMesh. This is a computationally

costly operation, which is yet another convincing reason, why moving hindrances ought

to be taken care of utilizing collision avoidance.

Local collision avoidance can be frequently used to control around sparsely scattered

hindrances as well. Since the algorithm is local, it will just consider the following quick

impacts, and can’t direct around traps or handle situations where the obstacle hinders a

path. These cases can be tackled utilizing carving.

33

4.8 Destinations

The destinations in the current simulation are the objects where the agents need to

reach in order to accomplish their goal. These destinations are represented by the red

colored cubes which have been placed throughout the world. Once an agent reaches its

goal destination, the framework updates its destination to a new destination object by

dynamically selecting one from the list of destinations. A sample of how a destination

looks in the current scenario is shown in the figure 4.11.

Figure 4.11: Destinations represented by red cubes in the simulation

4.9 NavMesh Agent

We have our NavMesh ready to use. Now it’s time to introduce some agents to the scene

which may navigate through the world. For this simulation, a Unity 3D object Capsule

is being used as a sample agent and is being set in motion. This may be accomplished

using the NavMesh Agent component and some scripts.

34

Figure 4.12: NavMesh Agent Setup.
Retrieved from https://docs.unity3d.com/Manual/nav-CreateNavMeshAgent.html

Following are the steps I followed to create an agent.

• Create a 3D Game Object capsule.

• The default Capsule dimensions were height: 2 and radius: 0.5. I left them as they

were.

• Add the NavMesh Agent component from: Components - Navigation - NavMesh

Agent

Now the agent is ready with all the attributes required to move over Navigation mesh.

Besides this the agent needs another script which will provide the agent with destination

coordinates, event handlers and resetting destinations on reaching a destination. So a

new script is created by the name NavMeshAgentSample.

Figure 4.13: Script added to provide additional functionality to the Agent

35

4.10 Theory Underlying the Implementation

The agents are provided with all the attributes and functionalities needed to move in a

closed structure as well as the feature to get notified about any emergency happening in-

side the structure. These features are achieved programmatically. These will be discussed

a little later but before that, it is required to discuss the underlying theory behind these

features. To model the agents correctly a lot of theoretical studies were done so that the

agents mock human behavior as good as possible.

4.10.1 Behavior Modelling

The objective here is to illustrate human behavior which may be considered as outlining

human’s understanding, mental and physiological capacities in some form of a mathe-

matical matrix which can be represented computationally to a certain level of accuracy.

Diving a little deeper, this includes numerous modeling issues such as group organization,

situation information, perception, and multi-agent interaction. To achieve such real be-

haviors for crowd simulation, the framework will be developed in a procedural fashion for

mocking human like decision making. This includes making agent aware of the changes

made in the world and consequently changing goals and attributes of the agent.

4.10.2 Situation Awareness

Situation awareness means providing the agent a property about being aware of all the

external incidences being made currently and in the past in the simulation world. But, for

this simulation, the agent won’t be storing any information about the past occurrences.

The agent will be provided with the attributes like sensing by developing an event man-

agement system which notifies our agents of emergencies and obstructions. Also, there is

an attribute, walking speed, which may vary depending on the circumstances like in case

of an emergency the walking speed will increase. Precisely, in the simulation, situation

awareness is achieved by sensing and event triggers.

36

• Sensing

The agent can obtain sensory information by continuously executing triggers which

may use detection functionality and direct agents away from obstructions and dan-

gers. Such detection feature will look for all the possible events occurring in the

agents near by space including other agents, surrounding obstacles, and external

events.

• Reasoning

The agent may deduce some inferred knowledge about the current happenings of

the environment established on the basis of unambiguous sensing of the virtual

world. Hence some situational variables may be obtained subsequently. Threat level

may be one of these variables. Second may be in-danger duration. The reasoning

mechanism is provided with the navigation mesh and knows the position of static

obstacles plus it provides the feature to avoid other moving agents as well. For

instance, an agent will either get notified using sensory attributes or by the panic

state of the surrounding agents.

4.10.3 Agent Attributes

Internal parameters of an agent which has a direct influence on their decision-making

process are referred to as agent attributes. These may be of any type - static or dynamic.

Static attributes of an agent are those properties which stay constant and separate its

fundamental properties over a longer period of time. While dynamic attributes are more

of the changing attributes, like emotional and group dynamics. Dynamic attributes con-

tribute to the decision making process of an agent. Emotion attributes contribute to the

personal behavior of the agent while group dynamics determine how an agent will behave

in a crowd.

37

4.11 Programming the Agent

4.11.1 Making an Agent Move

With the NavMesh feature of Unity there is not much required programmatically to make

an agent move. The script added to the agent - ”Nav Mesh Agent Sample” is represented

by a class which has a public property of

pub l i c Transform t a r g e t ;

Initially this property is set by dragging and dropping one of our destinations to the

Target placeholder available in the script window present in figure 4.13

Then in the Update method provided by the MonoBehaviour interface, which runs

every frame, we keep setting the Target property using

agent . Se tDes t ina t i on (t a r g e t . p o s i t i o n) ;

where agent object represents the NavMesh agent component of the agent.

agent = GetComponent<NavMeshAgent>() ;

4.11.2 Updating the Destination

Following code updates the destination once the agent reaches its current destination. A

check is made for whether there is any evacuation state or not and the distance between the

agent and destination is withing touching range. If this test passes, a random destination

if captured and assigned to the target.

i f (! evacuat ionState &&

Vector3 . Distance (agent . trans form . po s i t i on ,

t a r g e t . t rans form . p o s i t i o n) < 1 . 5) {

i n t rDest = r . Next (1 , 1 1) ;

t a r g e t = GameObject . Find (” Des t inat i on ” + rDest)

. GetComponent<Transform> () ;

38

}

4.11.3 Populating Exits

The world had been provided with few exits which the agents will try to reach. These

exits are populated dynamically using the following code.

ArrayList e x i t s ;

void popu lateEx i t s (ArrayList e x i t s)

{

i n t i = 1 ;

GameObject e x i t = GameObject . Find (” Exit ” + i) ;

whi l e (e x i t != n u l l) {

e x i t s . Add (e x i t) ;

i ++;

e x i t = GameObject . Find (” Exit ” + i) ;

}

}

popu lateEx i t s (e x i t s) ;

4.11.4 On Evacuation scenario getting the nearest Exit

The discussion about the Event Manager will be done in the next section. For now, the

only thing that’s needed to be explained is that there is an event named ”evacuation”

defined in the EventManager script which gets triggered in case of any emergency. The

following code gets the nearest neighbor and sets it as the destination for the agent. hence

the agent stops moving towards the current destination and starts moving towards the

nearest exit.

Transform getNeares tEx i t ()

39

{

f l o a t minDistance = Mathf . I n f i n i t y ;

Transform neare s tEx i t = new GameObject () . t rans form ;

f o r (var i = 1 ; i <= e x i t s . Count ; i++) {

GameObject cur rEx i t = (GameObject) e x i t s [i − 1] ;

f l o a t d i s t anc e = Vector3 . Distance (agent . trans form . po s i t i on ,

cur rEx i t . t rans form . p o s i t i o n) ;

i f (d i s t anc e < minDistance) {

minDistance = d i s t anc e ;

nea r e s tEx i t = currEx i t . GetComponent<Transform> () ;

}

}

r e turn nea r e s tEx i t ;

}

i f (eventManager . getEvent (’ evacuat ion ’)) {

evacuat ionState = true ;

agent . speed = 0 ;

t a r g e t = getNeares tEx i t () ;

agent . speed = speedCache ;

}

4.12 Evacuation

The next and final part of the current implementation was programming the evacuation

module. Evacuation may be done in a number of ways. But for developing the current

framework it was necessary to use the most efficient way as it should not put a lot of

overhead on the CPU. Besides increasing the number of agents was already a heavy task

so the evacuation process needed to be light.

40

The process for implementing the whole evacuation process was divided into parts.

4.12.1 Creating an Event Manager

The system needed an interface, which when attached to any game object gave it the fea-

ture of listening to the events broadcasted in the world and triggering some functionality

based on the event triggered. If we compare this to the real world, it would be provid-

ing senses to the agents. For instance, if a person sees an explosion, eyes tell the brain

that an explosion is happening and then the brain reacts with the running away reaction.

Similarly, the event manager will behave as a sense to the agent which tells it that an

event has occurred and the Event Trigger like a brain, in turn, replies with a reaction.

For creating an Event Manager, a class will be created which will have methods for ini-

tializing the EventManager, if it’s not initialized, starting to listen to events, stop listening

to events and triggering event like evacuation so the agents know what it needs to do. The

following code snippet was originally taken from unity Event Messaging document and up-

dated as per requirement. (https://unity3d.com/learn/tutorials/topics/scripting/events-

creating-simple-messaging-system)

pub l i c c l a s s EventManager : MonoBehaviour {

p r i v a t e Dic t ionary <s t r i ng , UnityEvent> eventDic t ionary ;

p r i v a t e s t a t i c EventManager eventManager ;

pub l i c s t a t i c EventManager i n s t ance

{ get {} }

void I n i t () {}

pub l i c s t a t i c void S t a r t L i s t e n i n g (s t r i n g eventName ,

UnityAction l i s t e n e r) {}

pub l i c s t a t i c void StopL i s t en ing (s t r i n g eventName ,

UnityAction l i s t e n e r) {}

pub l i c s t a t i c void TriggerEvent (s t r i n g eventName) {}

41

}

4.12.2 Creating an Event Trigger

The EventTrigger class behaves as the central management for all the events captured.

This class listens to all the events being triggered and takes some action based on the

event. For now, the only event that the trigger is listening to is ’evacuation’. As soon as

the event gets broadcasted, the event trigger for each agent forces agent to do some tasks.

First, it makes the agent stop by setting the speed to zero as a symbol of processing the

explosion. The next thing it does is removing the current destination from the memory

and starts finding the closest exit. Upon finding the closest exit it sets that exit to the

new destination for the agent. The agent’s speed is updated to ”panic speed” variable

which is being maintained for each agent. After all this is done the agent starts moving

to the current destination, that is the exit with a higher speed which is the panic speed.

pub l i c c l a s s EventTest : MonoBehaviour {

p r i v a t e UnityAction someListener ;

void Awake ()

{

someListener = new UnityAction (SomeFunction) ;

}

void OnEnable ()

{

EventManager . S t a r t L i s t e n i n g (” t e s t ” , someListener) ;

EventManager . S t a r t L i s t e n i n g (” evacuat ion ” , evacuteAgent) ;

}

void OnDisable ()

{

EventManager . StopL i s t en ing (” t e s t ” , someListener) ;

42

EventManager . StopL i s t en ing (” evacuat ion ” , evacuteAgent) ;

}

void evacuteAgent () {}

The evacuation process for one of the scenes is shown in figure 4.14 and rest of the

evacuation scenes may be found under Appendix in Chapter 5 (Figure 5.16 and Figure

5.15)

Figure 4.14: Scene 3: Evacuation in Process

This concludes with explaining the implementation of the system. The reason behind

choosing any library or implementing any new functionality has been covered in depth.

Now let’s move ahead towards explaining the simulations that were done to complete the

study.

43

Chapter 5

Simulations
As explained in the previous chapter that a number of libraries were used to initialize the

simulation and these libraries may be configured and extended to change the simulations.

For the purpose of testing the framework 3 sets of structures were developed in unity.

These structures were different in the percept of placing obstructions, destinations and

complicated paths at different positions. The simulations were run on these structures to

analyze the long and short term performance. To get the performance of each section of

the simulation a number of tests were run which tested different features of the system.

Overall the crowd simulation worked as desired. There were no cases where agents were

stuck or were not able to find a way in a dense crowd. The cases where a lot of agents

accumulated near a single destination, tolerance was increased for threshold distance

which decides whether an agent has reached the destination. The cases where there were

emergencies, were giving the results as expected. The ability to see the results immediately

for these alterations allowed for a very quick process to determine the best capacity for a

closed structure for most efficient evacuation.

5.1 The Simulation System

Once all the libraries are set up and the simulation is started, the scene runs with all

the agents being generated randomly from the positions of one of the destinations. The

world is composed of a flat plane that represents ground, a number of red cubes that

44

represent different destinations, wider cubes combined to represent stairs, inclined plane

representing the ramp and a number of capsules representing human models (agents).

There are 8 displays (refer Figures 5.3 - 5.10) available which the user may use to view

the scene from different locations. For example, the user may view from a position close

to stairs to see if the agents are walking up the stairs properly or not as seen in Figure

5.11. The user may switch over to near the ramp to see whether the agents are walking up

or not. This is shown in Figure 5.12. There are many other views available but the most

important of all is the view from the top from where the user can see the whole structure

along with the exits so that they may study the evacuation times to know what capacity

might be the threshold for the current structure. One of the snapshots is depicted in

Figure 5.1.

5.2 Scenes

To confirm the flexible nature of the framework three different structures were developed.

The first map as seen in figure 5.1 is a structure where all the complicated walkable areas

are separated from one another. For example, the stairs, the ramp, and the maze structure

composed of walls are separated from each other. This scenario which looks simple is the

most complicated one. The reason for this is that none of them are connected to each

other or the exits. So this use needs to be studied for the cases where exits are not

navigable from each of the stores in a mall, for instance. Also, the case where the agent

has to reach down the floors to access any exit.

The second structure is illustrated in Figure 5.3. The map is now expanded to have

more stairs and walls. Now we may see that the structure has started to become more

cluttered. Again this is a scenario where the architects don’t restrict the number of small

rooms in a structure and apparently, this leads to obstructing the agents while evacuating

during an emergency. this is a very simple fact but in this simulation, it was observed

that the number of smaller structures inside a building should also be restricted as they

45

have a direct impact on the evacuation times.

The third simulation was done to see if providing connectivities to the exits from

each part of the structure helps or not. Figure 5.2 shows that the structure has a comfy

arrangement of smaller structures inside it. Apart from this, an attempt has been made

to every destination, which is farther from the exits, to be connected to the nearest exit in

any way. This scenario is being considered here to check if the evacuation times decrease

for the same number of agents or not in comparison to the previous simulations where

the structure distribution was complicated.

5.3 Appendix - Simulation Images

All the below images have been captured for different Simulations with an agent popula-

tion of 1000.

Figure 5.1: Scene 1: Top View of the Structure

46

Figure 5.2: Scene 3: Top View of the Structure

Figure 5.3: Display 1: Scene 2

47

Figure 5.4: Display 2: Scene 2

Figure 5.5: Display 3: Scene 2

Figure 5.6: Display 4: Scene 2

48

Figure 5.7: Display 5: Scene 2

Figure 5.8: Display 6: Scene 2

Figure 5.9: Display 7: Scene 2

49

Figure 5.10: Display 8: Scene 2

Figure 5.11: Scene 1: From Near the Stairs

Figure 5.12: Scene 1: Front of the Ramp

50

Figure 5.13: Scene 3: Front view of the Ramp

Figure 5.14: Scene 3: Stairs View of the Scene

Figure 5.15: Scene 2: Evacuation in Process

51

Figure 5.16: Scene 1: Evacuation Complete

52

Chapter 6

Results
This section talks about the results and outcomes from the current framework. The

simulation had 3 variants. Each variant was put to test to get the threshold capacities

using the evacuation times vs number of agents graph. We further talk in detail about

the outcomes, performance of the current system and how much the outcomes resembled

reality.

6.1 Breakdown of Performance

To determine how each section of the system was performing the evacuation times for each

of the scenes were recorded. The results are shown in table 6.1. Each of the scenes was

tested against an explosion which triggers the world to broadcast an evacuation event.

The first scenario was a simple placement of all the structures in the center and none of

them are connected to each other. Hence the performance of the system was satisfactory.

This scene represents the case where the exits are not placed as per the design of the

structure. So the performance should increase as we move to the next structures.

53

Number of Agents vs Evacuation Time
Number of Agents Evacuation Time (sec)
100 20.8
150 20.7
200 20.99
250 24.34
302 24.75
350 24.81
450 24.93
550 27.83
650 28.0
750 28.98
850 31.70
1200 43.38

Table 6.1: Results obtained from Scene 1

The second scene was a worse case scenario setup. This scene was only evaluated

to scrutiny our system, whether it’s performing as per the expectations or not. So the

expectations from this scene were that the evacuation times will be greater when compared

to the first scene. Exactly as we expected happened. The evacuation times for the same

number of agents was more for this scene as compared to the first scene. The results are

shown in table 6.2. The reason for this is pretty simple. When a structure is cluttered

with a lot of smaller structures there is no space for the movement of people. So when

the explosion happened and agents started moving towards the exits they got jammed.

hence the evacuation tie was higher as compared to scene 1.

54

Number of Agents vs Evacuation Time
Number of Agents Evacuation Time (sec)
100 22.3
150 22.56
200 23.49
250 24.67
300 25.6
350 25.92
450 26.9
550 28.45
650 31.23
750 34.34
850 37.77
1200 49.02

Table 6.2: Results obtained from Scene 2

Talking about the third scene now, this scene was the perfect example of how rooms

should be placed in a big structure to facilitate faster evacuation. In this case, we placed all

the smaller structures very cozy. Apart from their placement, all the upper floor locations

were connected to the ground floor by some kind of a ramp or stairs. So when the explosion

happened, all the agents started moving towards the exits. Since the structure had a lot

of space all the agents were able to evacuate the structure comfortably. Besides the upper

floors were connected to the ground floor with some kind of passage. hence the agents

were found using them to reach the closest exits. The results for this scenario are shown

in table 6.3.

55

Number of Agents vs Evacuation Time
Number of Agents Evacuation Time (sec)
100 20.8
150 20.82
200 21.02
250 24.85
300 24.90
350 24.93
450 25.02
550 26.72
650 27.32
750 27.81
850 29.75
1200 35.04

Table 6.3: Results obtained from Scene 3

6.2 Framework

The framework was developed from the start. This was not an extension to any of the

previous frameworks. As per now, all the components are working fine and the framework

performs efficiently for as many as 1200 agents. The pathfinding for the agents is also

working correctly. All agents reach their destinations using the shortest possible path.

The agents do not pass through each other but make their way through the crowd. Agents

have the capability of walking up an inclined plane and stairs as well. On introduction of

any emergency, for this simulation an explosion, the agents are notified using a messaging

system which seems to be working effectively. The messaging system was built in place

of an alarm system whose purpose is to notify people about any danger. the messaging

system achieves that. As soon as the agents are notified by the environment about any

danger they stop moving towards their current destinations, find the closest exit and start

moving towards it at their panic speed.

The times recorded for Evacuation versus the Number of Agents is plotted for all the

three simulations below. Looking at the plots it’s clear that as the number of agents

increases over the threshold capacity of the structure the evacuation times starts rising.

56

So we may decide using the framework what should be the capacity of a closed structure

for which it will facilitate the fastest evacuation.

Some debate may be done for the threshold capacity. The point at which the evac-

uation time starts climbing the graph may be considered as the ideal capacity. But if

the threshold capacity comes very low then there may be a fault in setting up of the

structure as well. As in the second simulation, the arrangement was faulty due to which

the evacuation time went higher. So the end result obtained from this framework will be

the best for the provided structure but not for the area on which the structure is built

as the architecture of the building is a very important factor in deciding the evacuation

strategies.

0 250 500 750 1,000 1,250 1,500
0

10

20

30

40

50

60

Number of Agents

E
va

cu
at

io
n

T
im

e
[s

ec
]

Evacuation Time Vs Number of Agents

Evacuation Time

Figure 6.1: Evaluation for Simulation 1

57

0 250 500 750 1,000 1,250 1,500
0

10

20

30

40

50

60

Number of Agents

E
va

cu
at

io
n

T
im

e
[s

ec
]

Evacuation Time Vs Number of Agents

Evacuation Time

Figure 6.2: Evaluation for Simulation 2

0 250 500 750 1,000 1,250 1,500
0

10

20

30

40

50

60

Number of Agents

E
va

cu
at

io
n

T
im

e
[s

ec
]

Evacuation Time Vs Number of Agents

Evacuation Time

Figure 6.3: Evaluation for Simulation 3

6.3 Validity of Simulation

Looking at the results from the simulation it may be considered that the framework

worked as expected. As per the understanding, if a closed structure has an enormous

number of agents and there arises a case of emergency, then it will be very difficult to

58

evacuate the structure because the exits cannot accommodate more than 2 or 3 persons

at the same time. Hence there will be a queue near the exit and the density of that queue

depends on how many people are present in the building. So it may be inferred that more

the number of people present more the time it will take for them to evacuate.

The current framework gives the same output. With increasing number of agents, the

evacuation times increase. Hence it may be concluded that the framework is performing

as expected and the results obtained from it are apt.

The accuracy of the framework is something that needs to be verified. This can only

be judged if we plug in our framework with some of the architectural software where we

may provide a structure to the framework and it gives us the output. Unfortunately, this

part couldn’t be done as these softwares are mostly paid.

59

Chapter 7

Conclusions and Future Work

7.1 Conclusion

This thesis outlines a flexible tiny crowd simulation system. The user may provide a

design of the structure to the system and it will provide the evacuation time based on

when the emergency occurs. The system has a pre located set of destinations which the

agents try to reach. The system allows dynamic generation of agents capable of navigat-

ing through the ground, stairs and the ramp. the system uses Unity’s inbuilt navigation

library to provide agents the feature of navigating to their destinations. the system also

has a feature of introducing an emergency case to the simulation. The user may intro-

duce an emergency at any point of time while the simulation is running. The structure

has the capability of detecting any case of emergencies and broadcasting events to the

agents that an evacuation should be done. On listening to this event, agents stop moving

towards their destination and start moving towards the nearest exit. Overall the system

is flexible enough to be easily plugged into any other system and be adapted to provide

the threshold capacity for it.

The system presents a viable method to study emergent crowd flow levels and see how

they would react to emergencies with a closed structure. Modifications can be made very

quickly to the structure layout again to observe how changes make an impact on the crowd

flow. The ability to place destinations is also provided to scatter crowd as desired while

60

building a model of a closed structure. This may facilitate the study of how a new desti-

nation added to the structure affects the crowd congestion areas. Overall the agent based

crowd simulation system creates an environment where emergent crowd phenomenon can

be investigated.

7.2 Future Work

7.2.1 Behavior

To improve the realistic nature of the agent’s behavior, it would be desirable to extend

upon the current behavior aspects of the agent. The goal would be to add more attributes

to the agent apart from speed and distance calculation. Then by linking the variations

together under concepts of aggression, patience, competency, and urgency and maybe

using fuzzy logic algorithms an even greater level of realism might be achieved.

7.2.2 Create and Destroy Agents using FSM

In the current implementation, the agents keep roaming inside the structure until any

emergency occurs. From the point of realism, it’s not that sensible. There should be

a functionality where the agents enter the structure, complete some goals and leave the

premises. Another functionality should be there to introduce new agents to the scene

randomly to balance out the departing agents. So there may be a Finite State Machine

representing agent states where it directs them to there next states while roaming in the

structure. This would make the agent’s goal much clear and the simulation would make

good sense.

7.2.3 Adding more floors to the Structure

Currently, the implementation only considers the structures with a ground and a 1st floor.

The core problem being addressed here is the evacuation time. For such a small structure

61

the evacuation problem won’t be that big. It’s the structures which are 15-20 stories long

which would really benefit from this framework. So the model currently being studied

can be made to include many more stories so that the study becomes more beneficial.

There may be some updates required in the framework for studying such tall structures,

but the current framework will be able to handle such inputs as well as it is made very

flexible.

7.2.4 Implement IVRS to facilitate faster Evacuation

The world (VR environment) here in the current system is intelligent or we may put it

as it has the ability to notify the agents whenever there is a case of an emergency. Apart

from this the current implementation also recognizes the obstacles where the agent cannot

walk plus some complicated walkable surfaces like a ramp or a stair. But there is still a

lot of scope for improvement in the current VR system. Currently, the VR space only

notifies the agents using some alarm to notify them to evacuate the space. To extend

this, the current VR system may also show the paths to the agents to the nearest exits.

Visual stimuli is a faster way of communicating things. So if the VR system shows the

path to the agents, they do not need to think in their panic state. As in panic, people are

bound to make mistakes. So this may take an overhead away from the agent’s memory

and they do not need to worry about finding the nearest exit. They may simply follow

the path shown to them by the IVRS.

7.2.5 Put in more Agents with slower speed to consider for

Handicapped People

The current simulation only considers two kinds of speeds - Normal and Panic. None

of them ever goes lower than 11kmps. To make the implementation more fair to handi-

capped people there should be a consideration of much lower speeds. People with walking

disabilities should be the first consideration when designing any evacuation strategy. It’s

62

normal human behavior that during panic they can’t think straight. Even though they

want to help a fellow handicapped person they can’t because of their concern for their

own lives. But the handicapped can’t help themselves. So the next extension to the

current framework may be considered very low speeds for handicapped people and then

calculating the evacuation times to get the consideration for the disabled ones.

63

Appendix A

Abbreviations
Short Term Expanded Term

IVRS Intelligent Virtual Reality Systems

VR Virtual Reality

AI Artificial Intelligence

FSM Finite State Machine

VE Virtual Environment

BDI Belief-Desire-Intention

API Application Programming Interface

NavMesh Navigation Mesh

UI User Interface

IDE Integrated Development Environment

FPS Frames Per Second

RPG Rle Playing Game

RTS Real Time Strategy

RVO Reciprocal Velocity Obstacles

CPU Central Processing Unit

64

Bibliography

[1] A. Braun et al. “Modeling individual behaviors in crowd simulation”. In: Proceedings

11th IEEE International Workshop on Program Comprehension. May 2003, pp. 143–

148. doi: 10.1109/CASA.2003.1199317.

[2] D. Chen et al. “Parallel Simulation of Complex Evacuation Scenarios with Adaptive

Agent Models”. In: IEEE Transactions on Parallel and Distributed Systems 26.3

(Mar. 2015), pp. 847–857. issn: 1045-9219. doi: 10.1109/TPDS.2014.2311805.

[3] Eyal Cohen and Laurent Najman. “From crowd simulation to airbag deployment:

particle systems, a new paradigm of simulation”. In: Journal of Electronic lmaging

6.1 (1997), pp. 94–107.

[4] G. David Garson. “Computerized Simulation in the Social Sciences”. In: Simulation

& Gaming 40.2 (2009), pp. 267–279. doi: 10.1177/1046878108322225. eprint:

http://dx.doi.org/10.1177/1046878108322225. url: http://dx.doi.org/10.

1177/1046878108322225.

[5] Stephen J. Guy et al. “Simulating Heterogeneous Crowd Behaviors Using Personal-

ity Trait Theory”. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation. SCA ’11. Vancouver, British Columbia, Canada:

ACM, 2011, pp. 43–52. isbn: 978-1-4503-0923-3. doi: 10.1145/2019406.2019413.

url: http://doi.acm.org/10.1145/2019406.2019413.

65

[6] J. C. Silveira Jacques Junior, S. R. Musse, and C. R. Jung. “Crowd Analysis Using

Computer Vision Techniques”. In: IEEE Signal Processing Magazine 27.5 (Sept.

2010), pp. 66–77. issn: 1053-5888. doi: 10.1109/MSP.2010.937394.

[7] Ioannis Karamouzas, Roland Geraerts, and Mark Overmars. “Indicative Routes for

Path Planning and Crowd Simulation”. In: Proceedings of the 4th International

Conference on Foundations of Digital Games. FDG ’09. Orlando, Florida: ACM,

2009, pp. 113–120. isbn: 978-1-60558-437-9. doi: 10.1145/1536513.1536540. url:

http://doi.acm.org/10.1145/1536513.1536540.

[8] Kang Hoon Lee et al. “Group Behavior from Video: A Data-driven Approach to

Crowd Simulation”. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation. SCA ’07. San Diego, California: Eurographics

Association, 2007, pp. 109–118. isbn: 978-1-59593-624-0. url: http://dl.acm.

org/citation.cfm?id=1272690.1272706.

[9] Linbo Luo et al. “Agent-based human behavior modeling for crowd simulation”. In:

Computer Animation and Virtual Worlds 19.3-4 (2008), pp. 271–281. issn: 1546-

427X. doi: 10.1002/cav.238. url: http://dx.doi.org/10.1002/cav.238.

[10] Bernard Moulin et al. “MAGS Project: Multi-agent GeoSimulation and Crowd Sim-

ulation”. In: Spatial Information Theory. Foundations of Geographic Information

Science: International Conference, COSIT 2003, Kartause Ittingen, Switzerland,

September 24-28, 2003. Proceedings. Ed. by Walter Kuhn, Michael F. Worboys, and

Sabine Timpf. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 151–168.

isbn: 978-3-540-39923-0. doi: 10.1007/978-3-540-39923-0_11. url: https:

//doi.org/10.1007/978-3-540-39923-0_11.

[11] S. R. Musse and D. Thalmann. “Hierarchical model for real time simulation of vir-

tual human crowds”. In: IEEE Transactions on Visualization and Computer Graph-

ics 7.2 (Apr. 2001), pp. 152–164. issn: 1077-2626. doi: 10.1109/2945.928167.

66

[12] Rahul Narain et al. “Aggregate Dynamics for Dense Crowd Simulation”. In: ACM

SIGGRAPH Asia 2009 Papers. SIGGRAPH Asia ’09. Yokohama, Japan: ACM,

2009, 122:1–122:8. isbn: 978-1-60558-858-2. doi: 10.1145/1661412.1618468. url:

http://doi.acm.org/10.1145/1661412.1618468.

[13] Jan Ondřej et al. “A Synthetic-vision Based Steering Approach for Crowd Simula-

tion”. In: ACM SIGGRAPH 2010 Papers. SIGGRAPH ’10. Los Angeles, Califor-

nia: ACM, 2010, 123:1–123:9. isbn: 978-1-4503-0210-4. doi: 10.1145/1833349.

1778860. url: http://doi.acm.org/10.1145/1833349.1778860.

[14] Sébastien Paris, Julien Pettré, and Stéphane Donikian. “Pedestrian Reactive Nav-

igation for Crowd Simulation: a Predictive Approach”. In: Computer Graphics Fo-

rum 26.3 (2007), pp. 665–674. issn: 1467-8659. doi: 10.1111/j.1467-8659.2007.

01090.x. url: http://dx.doi.org/10.1111/j.1467-8659.2007.01090.x.

[15] N. Pelechano, J. M. Allbeck, and N. I. Badler. “Controlling Individual Agents in

High-density Crowd Simulation”. In: Proceedings of the 2007 ACM SIGGRAPH/Eu-

rographics Symposium on Computer Animation. SCA ’07. San Diego, California:

Eurographics Association, 2007, pp. 99–108. isbn: 978-1-59593-624-0. url: http:

//dl.acm.org/citation.cfm?id=1272690.1272705.

[16] Nuria Pelechano et al. Crowd simulation incorporating agent psychological models,

roles and communication. Tech. rep. PENNSYLVANIA UNIV PHILADELPHIA

CENTER FOR HUMAN MODELING and SIMULATION, 2005.

[17] Ameya Shendarkar et al. “Crowd Simulation for Emergency Response Using BDI

Agent Based on Virtual Reality”. In: Proceedings of the 38th Conference on Winter

Simulation. WSC ’06. Monterey, California: Winter Simulation Conference, 2006,

pp. 545–553. isbn: 1-4244-0501-7. url: http://dl.acm.org/citation.cfm?id=

1218112.1218216.

[18] Nirajan Shiwakoti et al. “Animal dynamics based approach for modeling pedes-

trian crowd egress under panic conditions”. In: Transportation Research Part B:

67

Methodological 45.9 (2011). Select Papers from the 19th ISTTT, pp. 1433–1449.

issn: 0191-2615. doi: http://dx.doi.org/10.1016/j.trb.2011.05.016. url:

http://www.sciencedirect.com/science/article/pii/S019126151100066X.

[19] Barry G. Silverman et al. “Constructing Virtual Asymmetric Opponents from Data

and Models in the Literature: Case of Crowd Rioting”. In: 2002.

[20] Barry G. Silverman et al. “Human Behavior Models for Agents in Simulators and

Games: Part I: Enabling Science with PMFserv”. In: Presence: Teleoperators and

Virtual Environments 15.2 (2006), pp. 139–162. doi: 10.1162/pres.2006.15.

2.139. eprint: http://dx.doi.org/10.1162/pres.2006.15.2.139. url:

http://dx.doi.org/10.1162/pres.2006.15.2.139.

[21] Mankyu Sung, Michael Gleicher, and Stephen Chenney. “Scalable behaviors for

crowd simulation”. In: Computer Graphics Forum 23.3 (2004), pp. 519–528. issn:

1467-8659. doi: 10.1111/j.1467-8659.2004.00783.x. url: http://dx.doi.

org/10.1111/j.1467-8659.2004.00783.x.

[22] Branislav Ulicny and Daniel Thalmann. “Crowd simulation for interactive virtual

environments and VR training systems”. In: Computer Animation and Simulation

2001: Proceedings of the Eurographics Workshop in Manchester, UK, September 2–

3, 2001. Ed. by Nadia Magnenat-Thalmann and Daniel Thalmann. Vienna: Springer

Vienna, 2001, pp. 163–170. isbn: 978-3-7091-6240-8. doi: 10.1007/978-3-7091-

6240-8_15. url: https://doi.org/10.1007/978-3-7091-6240-8_15.

[23] Branislav Ulicny and Daniel Thalmann. “Towards Interactive Real-Time Crowd

Behavior Simulation”. In: Computer Graphics Forum 21.4 (2002), pp. 767–775. issn:

1467-8659. doi: 10.1111/1467-8659.00634. url: http://dx.doi.org/10.1111/

1467-8659.00634.

[24] Xiaoping Zheng, Tingkuan Zhong, and Mengting Liu. “Modeling crowd evacuation

of a building based on seven methodological approaches”. In: Building and Envi-

ronment 44.3 (2009), pp. 437–445. issn: 0360-1323. doi: http://dx.doi.org/

68

10.1016/j.buildenv.2008.04.002. url: http://www.sciencedirect.com/

science/article/pii/S0360132308000577.

[25] Suiping Zhou et al. “Crowd Modeling and Simulation Technologies”. In: ACM

Trans. Model. Comput. Simul. 20.4 (Nov. 2010), 20:1–20:35. issn: 1049-3301. doi:

10.1145/1842722.1842725. url: http://doi.acm.org/10.1145/1842722.

1842725.

69

