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Abstract

Domestic heating systems are major consumers of household electricity in
European countries, occupying 19% of overall use. Since a domestic heating
system takes significant time and energy to heat up, an intelligent planning
solution is essential to maximize its energy use efficiency. Therefore, home
heating automation is a solution and its goals are to maximize occupants’

comfort level and minimize energy cost.

Model Predictive Control (MPC) supports periodic recomputation of optimal
solutions to defined problems. MPC is robust to uncertainties and has been used
in several research approaches for controlling domestic heating systems. On the
other hand, heuristic approach promotes solutions sufficient enough to solve

immediate objectives in order to speed up the process of development.

This dissertation investigates and implements a heuristic baseline solution based
on thermal comfort, pricing scheme and energy consumption, and a MPC
solution for coordinating distributed domestic heating systems. The solution
balances between minimizing electricity cost and maximizing thermal comfort of
occupants. Meanwhile, the non-critical electricity consumption is shifted from
peak hours to off-peak hours to achieve demand response (DR) for distributed

use.



Through simulation, the performance of the two solutions is compared with a
default controller, which constantly maintains the temperature at 69.8°F. The
results show that the cost of a typical manual controller is around 4.20% and
25.6% more than that of the default controller under flat pricing scheme and
Time of Use (TOU) scheme respectively, while the cost of the heuristic baseline
automatic control proposed in this dissertation is around 9.38% and 10.7% less
than that of the default control under two pricing schemes respectively. MPC
can produce similar performance as baseline controller in terms of cost but it can
further reduce the thermal discomfort raised by the cost reduction. Both
solutions have better performance in Peak-to-Average ratio (PAR) such that it

is more suitable for the distributed use when comparing with the manual control.
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Chapter 1

Introduction

Smart grid technology has been gradually adopted and developed in many countries
since last decade. It allows easier electricity information transfer and the whole
community can benefit from the continuously improved electricity system. Smart
grid also promotes the concept of smart home which enables home automation for
residents. Through home automation, occupants can automatically enjoy the
benefit of maximizing the efficiency of energy use while minimizing energy

consumption and cost without sacrificing their comfort level.

This dissertation investigates and implements different solutions to maximize
occupants’ comfort level and minimize energy cost by coordinating distributed

domestic heating systems in home heating automation.

1.1 Motivation

Heating systems are extensively used in households and take up approximately one-
third of overall household electricity use [1]. The 2013 Report about Energy in the
Residential Sector provided by Sustainable Energy Authority of Ireland (SEAI) [2]

estimated that space heating in household of EU countries had occupied 19% of the



overall domestic electricity end use in 2009. Hence, it shows that controlling space
heating appropriately is hugely beneficial to control domestic electricity end use.

Since domestic heating systems are major consumers of household electricity and
take significant time and energy to heat up, an intelligent planning solution is
essential for controlling domestic heating system such that it can maximize

occupants’ comfort level and minimize energy cost.

1.2 Aims

The goal of this dissertation is to provide solutions for home heating automation

to control distributed domestic heating systems.

The aims of this dissertation are as follows:

(a)  To validate the rationale of automating domestic heating system

(b) To provide approaches for automating domestic heating system

(c) To show the advantages and disadvantages of automation approaches and
manual control in domestic heating system

(d)  To demonstrate the feasibility of automating distributed domestic heating

system with approaches suggested in (b)

1.3 Dissertation Structure

The structure of this dissertation are organized as follows:



Chapter 2 is the State of the Art which reviews important concepts of the topic
and existing approaches used in home energy management (HEM) that can be

useful to automate distributed domestic heating system.

Chapter 3 is the Design which describes the evaluation criteria to evaluate the

performance of controls and the designing of controllers based on Chapter 2.

Chapter 4 is the Implementation which describes how different controls can be
experimented through the simulation process, such as setting up the simulation

environment and creating relevant models throughout the simulation.

Chapter 5 is the Evaluation which presents and analyse the results of the in detail

with regard to the evaluation criteria discussed in Chapter 3.

Chapter 6 is the Conclusion which summarizes the dissertation and its contributions

and explore possible related work in the future.
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Chapter 2

State of the Art

This chapter reviews all important concepts such as concerns during design, and
existing approaches used in smart grid or related to this dissertation topic which

can be useful to automate distributed domestic heating system.

2.1 Categories of Improving Domestic Heating

System

In general, there are two major categories for improving the efficiency of domestic

heating system, namely technical retrofit and human retrofit [3].

Technical retrofit refers to improvements in the physical components of the house
and building [3], such as the materials and the level of insulation of walls and
windows. Thybo et al. [4] suggested that the floor heating system type and the
building type are the major elements which affect the effectiveness of the domestic
heating system control. The building type and floor heating types can be generally
classified as heavy and lightweight systems, where heavy system has larger heat
capacity than lightweight system such that it usually requires more time to heat

up and cool down and hence less dynamic.

On the other hand, human retrofit refers to the behaviours of occupants of the

house and building [3]. For instance, Roeder et al. [3] proposed a multi-objective



optimization framework which balances between energy consumption and retrofit
cost of thermal comfort and productivity of occupants, while the physical design of

the heating system is not considered.

Since many existing researches focus on technical retrofits [3], this dissertation aims
to focus on human retrofits and consider various criteria which balances between
energy consumption and satisfaction of occupants. The following sections describe

the possible concepts, approaches and algorithms which may achieve the above goal.

2.2 Concepts of Home Energy Management (HEM)
on Demand Side

2.2.1 Overview

The purpose of electric energy management is to keep demand and supply balanced
at all times [5]. Therefore, in occupants’ perspective, they can conduct home energy

management (HEM) on demand side, known as demand side management (DSM).

DSM has the advantages of promoting distributed generation and enables a more
flexible approach to influence a load instead of constructing a completely new

energy storage if any change is required [5].

Palensky et al. [5] has provided an overview and a taxonomy for DSM in terms of
timing and the impact on process quality. In general, quicker changes with less time

usually tend to have less optimized impacts. There are four major categories in



DSM, namely Energy Efficiency (EE), Time of Use (TOU), Demand Response (DR)
and Spinning Reserve (SR). For EE, its impact on process quality is the best
optimized among four categories with permanent timing as it is an ongoing process.
Energy Information System can be used to analyze hidden problems which waste
energy, but it is hard for occupants to change as the EE of all electric appliances
and systems are pre-set. SR is of the quickest timing among all and it can reduce
or increase load when the energy grid frequency drops or rises respectively. However,
this is usually used in regulating power plants and occupants are not eligible to

control.

Therefore, TOU and DR are more feasible for occupants to control energy and the

following subsections describe the concept and the use of TOU and DR in detail.

2.2.2 Time Of Use (TOU)

Electricity prices are commonly charged under flat pricing scheme, i.e. uniform
pricing regardless the time of use. However, it is notable that electricity
consumption at peak time, such as evening, is higher than off-peak time. Therefore,

time of use (TOU) is introduced to change the ordinary pricing scheme.

TOU charges peak time energy consumption for higher price and off-peak time
energy consumption for lower price such that occupants will have the motivation

to re-arrange their time of energy use in order to minimize energy cost [5].



Although flat pricing scheme are still commonly used, many countries including
Ireland, the United States, Japan and Hong Kong are implementing the use of TOU
with the use of smart meter [6] — [9]. Since the energy price at off-peak hours is
much lower than that during peak hours, occupants should consider TOU pricing

scheme when controlling domestic heating system to reduce energy cost.

2.2.3 Demand Response (DR)

Similar to TOU, demand response (DR) also promotes to reduce the non-critical
energy use at peak time [5], [10] - [13]. DR has much quicker response than TOU
that a controller is usually adopted and it uses models to make reasonable decisions
and control the action of electric appliances and systems [5]. There are four major
benefits of using DR, [10]. Firstly, participant can enjoy immediate reduction in cost
together with TOU. Secondly, the infrastructure cost can be reduced by lowering
high demand at peak hours. Thirdly, the reliability of energy supply can be
increased, and finally the market performance increases when customers have more

options to use energy.

DR has been investigated in many researches, and some possible DR actions include
reducing energy consumption through strategies, moving energy consumption to
off-peak hours and using onsite alternatively generated energy [11]. In occupants’
perspective, the most feasible approach for them is to shift energy consumption

from peak hours to off-peak hours.



To achieve the above goal, a prerequisite is that that energy consumption at peak
hours should be non-critical, i.e. the user does not require to use that electric
appliance or system immediately. For example, it is probably impossible to shift
the energy consumption to cause delay if the occupant wants to turn on the light.

Hence, the concept of DR is not suitable for all domestic energy uses.

An appropriate use of DR in domestic use is to shift the charging hours of electric
vehicle appropriately from peak to off-peak hours since users typically charge the
electric vehicle overnight after use and electricity use can be reduced during peak

hours [12], [13].

Since domestic heating systems take significant time and energy to heat up, DR is
a feasible concept for consideration to maximize occupants’ comfort level and

minimize energy cost.

2.3 Approaches of Home Energy Management (HEM)
on Demand Side

2.3.1 Overview

This section discusses the existing approaches and algorithms to control domestic
energy on demand side. These approaches and algorithms have already
demonstrated their feasibility of use in heating system or home energy management.
Thus, these approaches and algorithms are possible to be implemented for

automating distributed domestic heating systems.



2.3.2 Direct Load Control (DLC)

Direct Load Control (DLC) is one of the earliest form of energy management system
[14] - [17]. The purpose of DLC is to shape the load curve for users to control

appliances and the user can control the status of the appliances [14], [15].

This approach is straightforward as the user can freely control the load, but
meanwhile there are two major disadvantages [16], [17]. Firstly, the infrastructure
design of the load will affect the feasibility of using DLC. This means DLC can only
be used if the load has been designed for the use of DLC. Secondly, DLC has limited
ability as it only supports direct control of the load and does not fully exploit
operational flexibilities of appliances. For example, DLC is capable of turning on
and off the heating system, but it may be hard to schedule specific temperatures at

different time.

Therefore, DLC can be considered as the first step for developing more advanced
approach to control domestic heating system more flexibly and accurately, as this

is a relatively conventional smart control.

2.3.3 Dynamic Programming (DP)

Dynamic Programming (DP), also known as dynamic optimization, is one of the
most commonly used approaches to find an optimal solution [18] - [21]. The purpose
of DP is to analyse sequential decision process and reduce the complexity of a

problem by converting it into multiple simpler problems [18], [19]. Besides, the



solution often does not need to be calculated repeatedly once an optimal solution

is found.

This approach has demonstrated satisfactory performance in HEM, particularly
solving linear energy scheduling optimization [20], [21]. However, it is usually hard
for DP to further improve the solution once an optimal solution is found. Since DP
typically truncates time horizon into one-step ahead policy [22], so it is much harder

to predict when the time horizon is longer, causing the limited ability of DP.

Therefore, based on DP, Predictive Model Control (MPC) is introduced to solve

the longer time horizon problem. Details will be explained in the next subsection.

2.3.4 Model Predictive Control (MPC)

Model Predictive Control (MPC) commonly has three elements, namely prediction
model, objective functions and optimization with constraints [23]. The prediction
model should be able to capture all process dynamics to calculate for predictions.
Afterwards, objective functions are needed to address the necessary objectives and
ultimately results can be obtained after objective function optimization with regard
to constraints. The difference of MPC from DP is that the whole process of MPC
is in receding horizon such that the optimization is carried out on a time interval
of the current time plus a prediction time horizon [24]. Hence, MPC can become

more flexible and accurate than DP by freely adjusting the time horizon.

10



MPC has already been used in several research approaches for controlling domestic
heating systems [25] - [30]. For example, Kajgaard et al. [25] created an MPC for
domestic heat pump to balance the trade-off between human discomfort level and
price. They discretized a continuous house model and formulated objective
functions regarding comfort and power cost. For comfort, it is a cost function which
penalize the difference of the current temperature from the desired temperature.
For power cost, it is computed by multiplying the heat pump power consumption
by the electricity price. Together with the constraints of heat pump power limits
and comfort limits, an optimal solution can be found when there is a new iteration.
There had been a few papers using the concept of MPC on heating, ventilating and
air conditioning (HVAC) [26] — [28] before this paper has been published, but it
focuses more on experimentation and takes multiple objectives into consideration.

However, the possibility for distributed use has not been validated in this paper.

Sundstrom et al. [29] have further extended the use of MPC in general energy
management at home. The MPC controller formulates four factors which are indoor
heat transfer, water tank level, hot water consumption and state of energy of
electric vehicle. The MPC is designed to minimize the weighted cost of the energy
and maximum power so far used during that month. MPC is also discovered to be
robust to uncertainties with the use of the predictor. By lengthening the prediction
horizon of MPC, its performance can be increased such that minimal peak
consumption can be achieved since the controller can better plan and distribute the
energy consumption. It has also validated MPC can perform as well as DP. This

paper has taken more objectives into consideration but it also makes the scenario

11



more complicated as more electric appliances are involved and the performance of

MPC on heating system specifically is slightly obscure.

Van Leeuwen et al. [30] have proposed another MPC to control a group of heat
pumps which provide space heating and domestic hot water in many houses. This
paper proposes three different models. The Energy System Model describes the
configuration between different components of energy system, while Household
Space Heating Demand Model describes the use of simulation model to learn
relations between occupants’ demand data. The last model, Heat Pump Model, has
approximated heat pump performance on input and output during different
operation modes. Afterwards, creating models for three components, the optimized
control algorithm is to minimize peak electric demand by considering the electric
demand of the heat pump and control state of other heat pumps. It has been
validated that this novel approach has outperformed ordinary threshold control and
demonstrates the use of controlling multiple heat pump. However, this approach
seems to be a centralized control for a group of heat pumps and lacks of

measurements to validate the possibility of distributed use.

From the above reviews, MPC has already demonstrated its practicability in
controlling domestic heating system. Therefore, solutions for automating
distributed domestic heating system in this dissertation is also based on MPC.
However, we still need to have a general solution for using MPC and validate it for

the feasibility of distributed use.

12



2.3.5 Heuristic Algorithms

Different from DP and MPC which find an optimal solution for a problem, heuristic
algorithm is a general term to describe a solution sufficient enough to solve

immediate objectives such that the process of development can be sped up [17].

Since the execution of conventional optimization in smart grid is very time
consuming and makes it practically infeasible be implemented, but heuristic

algorithm can overcome these problems.

Rehman et al. [17] compared three heuristic algorithms on HEM with regard to
energy cost, energy consumption and Peak-to-Average Ratio (PAR). The three
heuristic algorithms are namely binary particle swarm optimization (BPSO),
genetic algorithm (GA) and wind driven optimization (WDO). BPSO aims to find
the optimal solution within search space considering locally best position and the
global position of all particles such that the global position determines the action
of electric appliances. GA aims to find the optimal solution by incorporating
mutation, crossover and selection until stop requirement is reached. WDO is a
global optimization algorithm which generates optimal solution based on random
number of solutions and meanwhile keeps updating in each iteration. These three

algorithms have demonstrated their own advantages respectively.

Golpayegani et al. [13] have proposed another algorithm, namely Collaborative
Parallel Monte Carlo Tree Search (CP-MCTS), for shifting non-critical energy use

at peak hours to off-peak hours when charging electric vehicle. MCTS is a heuristic



search method trying to find the optimal decision by forming a search tree based
on random samples of decision space with four fundamental phases, namely
Selection, Expansion, Simulation and Back-propagation. Parallel-MCTS (P-MCTS)
is a variant of MCTS which allows every agent to run independent MCTS on their
own. To avoid the bottleneck of central decision, Collaborative P-MCTS (CP-
MCTS) is introduced with the use of collaboration. After carrying out P-MCTS
and if violation occurs, collaboration stage consists of four steps where agents need
to search for the conflicted agent, create a collaboration agenda, compare each
agent current priority and carry out final decision based on the previous step. CP-
MCTS has demonstrated the ability of improving final decision using collective

knowledge obtained from other agents during the collaboration stage.

The above two reviews have shown that heuristic approaches are able to solve the
problem based on immediate objectives although the solution may not be able to
be proved to be optimal. Therefore, the heuristic concept may be useful for

automating distributed domestic heating systems.

2.4 Chapter Summary
There are two major retrofits for improving domestic heating system, namely
technical and human retrofit. This dissertation focuses on human retrofit and

investigates solutions targeting on occupants’ benefits, regarding the concepts

related to TOU and DR.

14



MPC has been validated for the feasibility of controlling domestic heating system.
Besides, heuristic approaches can be some sub-optimal solutions which are sufficient
enough to solve immediate objectives to speed up the process of development and
many algorithms have demonstrated their use in HEM. Therefore, this dissertation
will work on these two approaches and evaluate them in the domestic and

distributed use.

15



Chapter 3

Design

This chapter describes the objectives and evaluation criteria when designing the
controllers for automating distributed domestic heating system, the system
architecture of how heating system can be automated, and the controller design

with different approaches which will be implemented in Chapter 4.

3.1 Objectives and Evaluation Criteria

The following are the major objectives of the solution which automates domestic
heating system:
(a)  Minimize energy cost

(b)  Maximize thermal comfort of occupants

Apart from the major objectives which can maximize the benefits of occupants, the
following objective can allow for distributed use and help energy providers provide
more stable energy supply in the meanwhile:

(c) Shift the non-critical energy use from peak hours to off-peak hours

This following subsections describe the evaluation criteria of each objective.

3.1.1 Evaluation Criteria for Energy Cost

To calculate energy cost at time interval t, the following formula is used:

16



Cost(t) = E(t) P(t) (1)

E(t) indicates the marginal energy consumption and P(t) indicates the price under
particular pricing scheme at time interval t respectively. Therefore, to calculate the
energy cost for a period of time, the total cost will be the summation of Cost(t)

under different time intervals.

To compare the performance of different controls in terms of energy cost, the
control with the lowest value of energy cost indicates the best performance as

occupants need to pay less for the energy consumption.

3.1.2 Evaluation Criteria for Thermal Comfort

To calculate thermal comfort at time interval t, the following formula is used:

~ 2
Disomfort(t) = {(TC(t) 1o (t))o’ ?8 ; Egg @

Tc(t) indicates the current indoor temperature and Tp(t) indicates the desired
indoor temperature at time interval t respectively. Therefore, the thermal
discomfort level at time interval t is O if the current indoor temperature has already
reached the desired temperature, otherwise the discomfort level will be calculated
by the square of the difference. Adopting squared equation is to penalize
exponentially if the current temperature deviates from the desired one too far since

users will feel much more uncomfortable if there is a huge difference.

17



To compare the performance of different controls in terms of thermal comfort, the
control with the lowest value of thermal discomfort level indicates the best

performance as occupants feel less uncomfortable when the value is lower.

Apart from the above calculation, another criteria is to consider how long the
occupant needs to wait until reaching the desired indoor temperature. Detailed

explanation in implementation and result will be discussed in Section 5.2.2.

3.1.3 Evaluation Criteria for Distributed Use

For distributed use, shifting the non-critical energy use from peak hours to off-peak
hours is an important requirement. To calculate the effectiveness of shifting the
non-critical energy use from peak hours to off-peak hours, Peak-to-average Ratio
(PAR) [13] can be used to measure the distribution of energy demand over a period
of time:

— Max E(t) * N
PAR = T E® ¥

N represents the number of timeslot which takes into account for calculating PAR,
E(t) indicates the marginal energy consumption at time interval t and Max E(t)

indicates the highest value of E(t) among N timeslot.

To compare the performance of different controls in terms of demand response, the
control with the lowest value of PAR indicates the best performance as lower value
implies energy consumption demand is distributed better over the time period [13].

Therefore, lower PAR also means it is more suitable for distributed use.

18



Apart from PAR, a more direct consideration is the energy consumption during
peak hours. Therefore, if the energy consumption during peak hours can be reduced,

the control is more suitable for distributed use.

3.2 System Architecture

Figure 3.1 depicts the system architecture of the apartment design. The assumption
is that the heating control system can directly control the whole heating system in
the apartment such that the temperature can be raised or declined accurately

according to the instructions of the heating system.

heating
svstem

control

Apartment

Figure 3.1: System Architecture of the Apartment Design

The instructions of the heating system are the designed schedule which are

calculated by the designed controller explained in the next section.

3.3 Controller Design

The following sections describe the details of each controller design which composes

of the heating system control.

19



3.3.1 Default Control

By default, the heating system will constantly maintain the indoor temperature at
69.8°F [31]. Therefore, regardless of the time, the heating system will be
permanently turned on to maintain the indoor environment within the optimal

temperature range.

However, occupants may need to pay more for the unnecessary heating. Besides,
ordinary occupants probably will not turn on the heating system at all time.
Therefore, the manual control described by the following subsection models the

action of occupants better.

3.3.2 Manual Control

The Manual Control models the typical action of occupants. Its assumption is to
consider occupants will be away from home during 9 am and 6 pm for work during

weekdays, while occupants will be staying at home all day during weekends.

From the researches [31], [32], it was found that the optimal indoor temperature
for occupants is approximately 65°F during sleeping time and 69.8°F for the
remaining time. Therefore, on weekdays, we can assume that an occupant will turn
on the heating system and set it as 69.8°F from 6 pm and set it to 65°F at 12
midnight before sleeping. Afterwards, the temperature will be set to 69.8°F from 6
am to 9 am, and finally the occupant will turn off the heating system during 9 am

and 6 pm. Meanwhile, the heating system will be set as 69.8°F at all time in the

20



weekends. Table 3.1 summarizes the temperature of the apartment under manual

control.
Day Time Temperature (°F)
Weekdays 6 pm — 12 midnight 69.8
12 midnight — 6 am 65
6 am — 9 am 69.8
9 am — 6 pm Unknown as the heater is off
Weekends 24 hours 69.8

Table 3.1: Temperature of the Apartment under Manual Control

3.3.3 Heuristic Baseline Control

The heuristic baseline controller is to be designed for the general use for controlling
domestic heating system without manual control. It considers three major concerns
which are thermal comfort, pricing scheme and the relationship between the rate

of increasing temperature and energy consumption.

Similar to manual control, the desired temperature of weekdays is set to be 69.8°F

from 6 am to 9 am and from 6 pm to 12 midnight, 65°F from 12 midnight to 6 am,

and the temperature between 9 am and 6 pm does not matter.
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Apart from thermal comfort, TOU pricing scheme is also considered. The pricing
scheme of SEALI of Ireland is utilized [7] and it is understood that 5 pm to 7 pm are
the peak hours of energy use. Therefore, non-critical energy use during these hours
should be shifted to off-peak hours, particularly energy consumed by raising

temperature.

Most importantly, the relationship between the rate of increasing temperature and
energy consumption is included in the design. For instance, it is found that the
energy consumption of raising from 64°F to 66°F in 15 minutes and 30 minutes is
different. In general, energy consumption doubles if the rate of increasing
temperature doubles. Therefore, in the previous example, the energy consumption
of raising from 64°F to 66°F in 15 minutes doubles the energy consumption when
comparing with the scenario of raising same temperature in 30 minutes. Hence, this
factor is taken into account such that the increase in temperature should not be

rapid.

Although this heuristic baseline solution may not be the optimal solution, it has
considered all objectives of automating distributed domestic heating system
mentioned in Section 3.1. Therefore, this solution will be sufficient enough to solve
the problem caused by the manual control. More detailed explanation and

evaluation will be further revealed in Section 4 and 5.
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3.3.4 MPC

The functionality of MPC controller is similar to the heuristic baseline controller,
but MPC controller is based on the concept of MPC mentioned in section 2.3.4. It

also concerns the objectives of energy cost and thermal comfort.

Based on the evaluation criteria of energy cost and thermal comfort, energy cost
model and thermal comfort model are established respectively. From Equation (1)
in Section 3.1.1, the energy cost model is the summation of Cost(t) over the time

horizon with K samples and start from time k, noted as Equation (4).
Cost = YFHK-1E(t) P(1) (4)

From Equation (2) in Section 3.1.2, the thermal discomfort model is the summation
of Discomfort(t) over the time horizon with K samples and start from time k, noted

as Equation (5).

Discomfort = Y¥*K . Discomfort(t) (5)

Therefore, the control algorithm of MPC is to minimize the functions of the energy

cost model and thermal discomfort model, noted as the following:
minimize  a X FXTTE(Y) P(Y) + B Yk2X, | Discomfort(t) (6)

a and f are the scalar factors which balances the importance between cost and

discomfort level.



3.4 Chapter Summary

This chapter discusses the performance criteria of each objective, i.e. minimizing
energy cost, maximizing thermal comfort and shifting non-critical energy demand.
It also describes the assumption of the design and details of each controller design.
Based on the design and its consideration, its implementation will be discussed in

Section 4.
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Chapter 4

Implementation

This chapter describes the implementation of the design for the dissertation. This
includes the software for the simulation environment, modules utilized and models

created in the simulation environment and implementation of controller design.

4.1 Simulation Environment Setup

Since real world experiments with smart meter and heating system requires large
space and huge cost for equipment, the implementation of this dissertation is carried
out on GridLAB-D™ which is an open-source, smart grid simulator developed by

the United States Department of Energy (DOE) [33].

GridLAB-D™ is a power distribution system simulation and analysis tool which
can design and operate distribution systems [33]. Different from conventional
simulation which need to design the system dynamics and dynamic systems,
GridLAB-D™ is an agent-based simulation that agents are placed in environments
and it focuses on behaviours and relationships between entities. Since this
dissertation does not aim to reconstruct the whole heating system, agent-based
simulation is more appropriate for this dissertation as we can create the house
models with existing models and design the controllers which utilize the algorithm
design discussed in Section 3.3. Table 4.1 summarizes the strengths and weaknesses

of conventional simulation and agent-based simulation [34].
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Type

Advantages

Disadvantages

Conventional

Simulation

1. Easy to validate
analytically

2. Computationally efficient

1. Difficult to scale

2. Difficult to integrate with
other models

3. Difficult to modify once

the system is set

Agent-based

Simulation

1. Easy to Scale
2. Easy to integrate with

other models

1. Require detailed model

2. Difficult to validate

Table 4.1: Comparison between Conventional Simulation and Agent-Based

Besides, GridLAB-D™ utilizes its designed files to describe simulation, namely
GLM files, representing GridLAB-D Model [34]. The strengths of GLM file are easy

to read and edit and able to manage multiple models. However, its weakness is

Simulation

incompatible with many other software tools.

4.2 Simulation Modules and Models

This section explains the structure of GLM files, including modules utilized in the

GLM files and the models which can created from the modules.
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clock |
timezone PST+ESPLT;
starttime 'Z01€-01-01 00:00:00";
stoptime '2017-01-01 00:00:00";
}

Figure 4.1: Clock Directive of the GLM file

module climate;
ohject cav_reader |
name my_csv_reader;
filename "weather LCublin 201&.csv";
1
obhject climate |
nams Dublin climate Z01&;
tmyfile "weather Dublin Z01l&.csv"™;
reader my_csv_reader;

Figure 4.2: Climate Module and Settings in the GLM file

Firstly, the clock directive, which indicates the period of time for simulation, needs

to be included in GLM file like figure 4.1
Secondly, the climate module, which indicates the climate for implementation, is
included in GLM file like figure 4.2. In this dissertation, Dublin climate information

in 2016 is utilized for simulation [35].

Thirdly, the powerflow module, which can be used to measure energy consumption,

is included in GLM file like figure 4.3.
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module powerflow;

object triplex meter |

name house meter;
phases AS:

nominal woltages 120;

Figure 4.3: Powerflow Module and Settings in the GLM file

Parameter Value
Location Dublin, Ireland
House Type 3-bedroom apartment
Dimensions & Height Area 90 m?
Window-to-wall Ratio 15%
Building Envelope Thermal Integrity Level Medium
Window Frame Insulated
Heating System Heating Heat Pump

Auxiliary Heating Electric

Table 4.2: Parameters and Design of the Apartment

After setting up all essential modules, house models can be created. Table 4.2
describes the house model implemented in this dissertation. The house model shows
a typical Irish apartment [36] which utilizes heat pump heating system with
medium thermal integrity level and insulated frame. Noted that these variables can

be changed in the GLM file. For example, thermal integrity can be changed from
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medium to low. For simplification purpose to evaluate the controllers, uniform

house model is used.

After that, the fundamental design of the models is completed. The remaining is
the implementation of different controllers and this will be explained in the next

section.

4.3 Controller Implementation

The difference between different controllers in implementation is the scheduling of
controlling heating system. The following subsections discuss the settings among

controllers.

4.3.1 Default Control

As mentioned in section 3.3.1, default control is to constantly maintain the
apartment at the optimal temperature which is 69.8°F. Therefore, the house
model will be set to 69.8°F throughout the simulation process. It can be done by
setting parameter “heating setpoint” as 69.8 or setting a schedule to maintain

temperature as 69.8 , as shown in figure 4.x.

schedule schedulel |

J..I.J.J.J.Egla;

1

Figure 4.4: Schedule for Default Control
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4.3.2 Manual Control

As mentioned in section 3.3.2, the heating schedule will work in accordance with

Table 3.1 to model typical actions of occupants.

schedule heating scheduls manual |
¥ 1-5 * 1-6,5-1Z2 * &5;

6-8 * 1-6,58-1Z * §9.3;
9-17 * 1-6,5%-1Z 1-5 35;
9-17 * 1-¢,5%-12 0,6-8 €9.3;
13-00 * 1-6,5-12 * €9.%8;
6-8,18-00 * 7-8 * &0;

1-5,5-17 * 7-8 * ZI5;

I

}

Figure 4.5: Schedule for Manual Control

4.3.3 Heuristic Baseline Control

Day Time Temperature (°F)
Weekdays 5 pm — 12 midnight 69.8
12 midnight — 6 am 65
6 am — 9 am 69.8
9 am — 5 pm Does not care but will gradually
reach 69.8 °F before 5 pm
Weekends 24 hours 69.8

Table 4.3: Temperature of the Apartment under Heuristic Baseline Control

The main theme of the heuristic baseline control is to consider the relationship

between the rate of increasing temperature and energy consumption, meanwhile the
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objectives of thermal comfort and pricing scheme are considered. Therefore, based
on the finding mentioned in Section 3.3.3 that energy consumption doubles if the
rate of increasing temperature doubles, this approach will adopt a stepwise manner
to increase temperature. More specifically, it increases 1°F every 15 minutes and
ensures the apartment reaches 69°F before 5pm since TOU pricing scheme has been
taken into consideration. Therefore, it means the temperature will be inclined
gradually over a period of time before reaching the desired temperature at the

required time.

4.3.4 MPC

As mentioned in section 3.3.4, the control algorithm of MPC is to minimize the
functions of the energy cost model and thermal discomfort model. Therefore, in this
dissertation, the weighting a(t), where its value is between 50 and 400, was
multiplied to the energy cost model to avoid the overwhelming effect of the thermal

discomfort model, as shown in equation (7).
minimize N1 a(t) B P(O) + S5 L (Te() - Tp (6)? (")

To carry out prediction based on MPC, for P(t), reference materials [7] and [37]
are used as the flat and TOU pricing scheme respectively for calculating the energy

price at a particular time. For E(t), the estimation is based on the following figure.
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Figure 4.6: The Relationship between Unit Temperature Increase and Energy

Consumption

Current | Desired | Manipulated | Result

Temp | Temp | Variable (°F)

59 °F 69 °F | 60 400(0.41)(0.1) + (60 — 69)2 = 116.4
61 400(0.41 + 0.43)(0.1) + (61 — 69)% = 114.6
62 400(0.41 + 0.43 + 0.45)(0.1) + (62 — 69)% = 115.6
63 400(0.41 + 0.43 + 0.45 + 0.47)(0.1) + (63 — 69)? = 119.4

Table 4.4: Example Calculation of Using MPC

Figure 4.6 is obtained from the preliminary experimentation that there is a linear

relationship between unit temperature increase and energy consumption during

60°F and 66°F. Therefore, E(t) can be easily estimated from the figure in the

calculation process.
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Table 4.4 shows an example of calculation. If the current temperature is 59°F, the
desired temperature is 69°F, the pricing scheme is 0.1€ per kWh, the best move is

to set the temperature to 61°F which minimizes the equation.

In the example, the prediction horizon is 15 minutes. In this dissertation, the
prediction horizon is 2.5 hours such that MPC has sufficient time to know that the
energy price will rise in 2.5 hours and plan for the move. Figure 4.7 has summarized

the structure of the heating system and MPC.

Heating System

Change Indoor Temperature
according to heating_setpoint

i Update
Heating_setpoint
Current Indoor ’|

Temperature
Desired z
Temperature
MPC ——»|Heating_setpoint
Energy 5

Consumption

Energy Price ————»

Figure 4.7: The Structure of the Heating System and MPC



4.4 Simulation Results

After implementing above details, simulation can be run to obtain the results.
Firstly, gridlabd command is used to run the GLM file in GridLAB-D Console, as
shown in Figure 4.8. In the GLM file, recorder module has been used, as shown in
Figure 4.9. Parameters such as outdoor temperature, indoor temperature and
energy consumption can be captured every 15 minutes. Therefore, a csv file can be
output with the aforementioned parameters, as shown in Figure 4.10. Therefore,
data processing can be carried out, such as calculating the marginal energy
consumption, energy cost at each time interval, thermal comfort level and PAR
value, as shown in Figure 4.11. Finally, data and graphs are obtained for

interpretations in Chapter 5.

sion 10.0. 15063]
poration. All ghts reserved

C ¥Program Files ¥Gr idLAB-D>cd C ¥github¥gridlab—d

G ¥github¥gridlab—d>gridlabd house_heater. glm

Figure 4.8: Screenshot of GridLAB-D Console

object recorder |
parent houseld:
property air_ temperature,ocutdoor temperature, energy.reals
interval 900;
file "house3d_withManualHeater.cav™;

Figure 4.9: Recorder Module and Settings in the GLM File
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#file..... housed_withManualHeater.csy
# date...... Maon Aug 28 173527 2017

#user.... Thomson
# host..... (nully
#target. .. house 5
#trigger... (none)

#interval.. 900
#limit..... 0
#limestamp air_temperature outdoor_temperature energy.real
2016-01-01 00:00:00 PST ¥9.4088 3416 1]
2016-01-01 00:15:00 PST ¥5.0906 3416 1]
2016-01-01 00:30:00 PST F3.1746 3416 1]
2016-01-01 00:45:00 PST ¥1.3935 3416 1]
2016-01-01 01:00:00 PST 59.6947 347 1]
2016-01-01 01:15:00 PST 68.125 347 1]
2016-01-01 01:30:00 PST G6.6005 347 1]
2016-01-01 01:45:00 P3ST 65.1451 347 1]
2016-01-01 02:00:00 PST 657385 31.64 0.150604
2016-01-01 02:15:00 PST G4.1234 31.64 0.432162
2016-01-01 02:30:00 PST 65.9306 31.64 0.937964
2016-01-01 02:45:00 P3T 64,3972 31.64 1.35545
2016-01-01 032:00:00 PST 65.9916 074 1.95605
2016-01-01 03:15:00 PST G4.2453 074 234836
2016-01-01 03:30:00 PST 65.6927 074 295316
2016-01-01 02:45:00 PST G4.4693 074 341267
2016-01-01 04:00:00 PST 652865 31.46 3.95028
2016-01-01 04:15:00 PST G4.8821 31.46 445422
Figure 4.10: CSV Output from Recorder Module

#file.... house3_withMPC_TOU csv

#date . Mon Aug 28 17:35:27 2017

# user...... Thomson

#host. (null)

#target.... house 5

# trigger... (none)

#interval.. 900

#limit..... 0

# timestamp air_temperature outdoor_temperatur energy.real margin energy price_TOU  price_Flat PAR

2016-01-01 00:00:00 PST 78.6094 34.16 0 0 0 0

2016-01-01 00:15:00 PST 74.3675 34.16 0 1] 1] 0

2016-01-01 00:30:00 PST 72.4853 34.16 0 1] 1] 0

2016-01-01 00:45:00 PST 70.7357 34.16 0 0 0 0 2.145399

2016-01-01 01:00:00 PST 69.0669 34.7 0 1] 1] 0

2016-01-01 01:15:00 PST 67.5258 34.7 0 V] V] 0

2016-01-01 01:30:00 PST 66.0287 347 0 V] V] 0

2016-01-01 01:45:00 PST 64.5093 34.7 0 0 0 0

2016-01-01 02:00:00 PST 64.2181 3164 0176797 0.176797 0.0176797 0.035183

2016-01-01 02:15:00 PST 65.9419 3164 0691462 0514665 0.0514665 0.102418

2016-01-01 02:30:00 PST 64.4099 31.64 1.04432 0352858 0.0352858 0.070219

2016-01-01 02:45:00 PST 65.9042 31.64 1.63486 0.58054  0.059054 0.117517

2016-01-01 03:00:00 PST 64.5885 30.74 2.02246 0.3876 0.03876 0.077132

2016-01-01 03:15:00 PST 65.8349 30.74 2.62727 0.60481 0.060481 0.120357

2016-01-01 03:30:00 PST 64.1686 30.74 3.04591 0.41864  0.041864 0.083309

Figure 4.11: Data Processing on the CSV Output
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4.5 Chapter Summary

This chapter describes the implementation of the dissertation. GridLAB-D™ was
chosen to be the simulation environment as it provides a reliable smart grid
simulator. Houses models and controllers can be built easily and the implementation
can be repeated by varying different parameters. CSV file can be output as the

result of the simulation such that data and graphs are obtained for interpretations.
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Chapter 5

Evaluation

This chapter describes the result of the implementation on approaches which
automate distributed domestic heating systems and analyzes the results. For section
5.1 and 5.2, results are described and analyzed in terms of energy cost and thermal
comfort respectively based on the simulation of an apartment. For section 5.3,
results are described and analysed for the feasibility of distributed use based on the
simulation of 20 apartments. Based on sections 5.1 to 5.3, a further analysis is
carried out in section 5.4 to compare the use of different controls, followed by a

summary in section 5.5.

5.1 Energy Cost

This section discusses the energy cost of using different controllers on manipulating

domestic heating system.

5.1.1 Comparison between Default Control and Manual Control

Figure 5.1 and Figure 5.2 describe the energy cost of using default control which
constantly stays the indoor temperature at 69.8°F and manual control which models
the typical action of occupants under Flat Pricing Scheme and TOU Pricing Scheme

respectively.
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Cost on Heating System with Different Controls under
Flat Pricing Scheme
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Figure 5.1: Energy Cost on Heating System with Default Temperature Control
and Manual Setting Control under Flat Pricing Scheme

Cost on Heating System with Different Controls under
TOU Pricing scheme
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Figure 5.2: Energy Cost on Heating System with Default Temperature Control
and Manual Setting Control under TOU Pricing Scheme
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Blue striped lines indicate the cost and thermal cost of the default control
respectively, while the orange lines indicate the cost and thermal cost of the manual

control respectively.

For default control, the energy cost under flat pricing scheme dominantly ranges
from 200€ to 210€ between November and March, while the energy cost under
TOU pricing scheme dominantly ranges from 120€ to 140€ between November and
March. For manual control, the energy cost under flat pricing scheme dominantly
ranges from 210€ to 230€ between November and March, while the energy cost
under TOU pricing scheme dominantly ranges from 160€ to 180€ between

November and March.

Time Outdoor Indoor Energy Consumption
Temperature (°F) | Temperature (°F) (kWh)

18:15 47.3 57.3758 /

18:30 47.3 60.4234 2.2511

18:45 47.3 63.2532 2.2511

19:00 47.48 65.9522 2.2511

19:15 47.48 68.5452 2.2511

Table 5.1: Extract of the Result Using Manual Control
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Time Outdoor Indoor Energy Consumption
Temperature (°F) | Temperature (°F) (kWh)
15:00 46.04 57.489 /
15:15 46.04 59.9959 0.6408
15:30 46.04 62.9175 0.7127
15:45 46.04 64.0532 0.6377
16:00 46.58 66.1976 0.764
16:15 46.58 66.1835 0.582
16:30 46.58 67.3554 0.5788
16:45 46.58 68.1579 0.5448
17:00 47.3 68.841 0.5128

Table 5.2: Extract of the Result with Gradual Temperature Increase

Since the heating system is turned off with manual control in July and August to
save energy cost, the performance of manual control is compared with default
control between September and June for a fairer comparison. It is found that typical
manual control creates greater energy cost than that of default control. On average,
the cost of a typical manual controller is around 4.20% and 25.6% more than that

of the default controller under two pricing schemes respectively.

The major reason which contributes to the energy cost increase is that energy
consumption increases hugely when there is a sharp increase in temperature demand.
For instance, during the simulation, it takes 9 kWh energy to increase the

temperature from 57.3°F to 69.5°F in 75 minutes as shown in Table 5.1. However,
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it only takes 4.9736 kWh energy to increase the temperature from 57.4°F to 69.8°F
in 135 minutes as shown in Table 5.2, and the energy consumption only halves the
former scenario. Meanwhile, maintaining the temperature around 69.8°F only takes
around 0.51 kWh per fifteen minutes such that only 2.04 kWh energy is required
to maintain optimal temperature in 75 minutes and the energy consumption is only
one-fifth of the former case. Since energy consumption has a direct relationship
with energy cost, a sudden increase in temperature has used up more energy
consumption, leading to higher energy cost. It is also discovered that maintaining
temperature at optimal level may be even cheaper than using manual control where

occupants turn on and off the heating system according to their preference.

Besides, it is discovered that there is a more obvious difference in default control
and manual control in terms of energy cost under TOU scheme than that in flat
pricing scheme. The reason to account for that is because a typical user will
probably start heating up around 6 pm after work, and TOU pricing scheme charges
user more for the energy use during 5 pm and 7 pm as this period is peak hours.
Therefore, the factors of higher cost per energy unit and rapid temperature increase
has led to much higher energy cost under TOU pricing scheme than flat pricing

scheme.

Hence, this also validates why home heating automation is necessary as ordinary
manual control can be more costly than simply staying the domestic heating system
at constant temperature if the occupant does not have the concept of TOU pricing

scheme and controlling heating system appropriately.
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5.1.2 Comparison between Heuristic Baseline Control and

Manual Control

Figure 5.3 and Figure 5.4 describe the energy cost of using different controls under
Flat Pricing Scheme and TOU Pricing Scheme respectively. These two figures are

the extended version of Figure 5.1 and Figure 5.2 respectively.

The grey line in Figure 5.3 and Figure 5.4 indicates the energy cost of the heuristic
baseline control. For the heuristic baseline control, the energy cost under flat pricing
scheme dominantly ranges from 180€ to 190€ between November and March, while
the energy cost under TOU pricing scheme dominantly ranges from 115€ to 130€

between November and March.

Since the heating system is turned off with both manual control and heuristic
baseline control in July and August to save energy cost, the performance of heuristic
baseline control is compared with manual control between September and June
only as the control does not affect the performance on heating system during July
and August. It is found that heuristic baseline control can reduce the energy cost
when comparing with manual control. The cost of the heuristic baseline control is
around 9.38% and 10.7% less than that of the default controller under flat pricing

scheme and TOU pricing scheme on average respectively.
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Figure 5.3: Energy Cost on Heating System with Different Controls under Flat
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This is because the relationship between the rate of increasing temperature and
energy consumption has been taken into account such that an abrupt change in
temperature is avoided. For instance, the example mentioned in Section 5.1.1,
manual control uses 9 kWh energy to increase the temperature from 57.3°F to
69.5°F in 75 minute, but the energy consumption only halves to rise the same
amount of temperature in 135 minutes. Since the baseline control has increased the
temperature in a stepwise manner, there is an energy cost earning from the baseline

control.

Besides, with taking TOU pricing scheme into account, temperature is maintained
at 69°F during 5pm and 7pm to reduce energy cost due to unplanned temperature
increase. Therefore, there is a further cost reduction when using heuristic baseline

control under TOU pricing scheme.

5.1.3 Comparison between MPC and Manual Control

The yellow dotted line in Figure 5.3 and Figure 5.4 indicates the energy cost of the
MPC. For the MPC, the energy cost under flat pricing scheme dominantly ranges
from 175€ to 185€ between November and March, while the energy cost under
TOU pricing scheme dominantly ranges from 115€ to 130€ between November and

March.

Similar to the comparison of manual control and heuristic baseline control, the
heating system is turned off with both manual control and MPC in July and August

to save energy cost, the performance of MPC control is only compared with manual
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control between September and June. It is found that heuristic baseline control can
reduce the energy cost when comparing with manual control. The cost of the MPC
is around 9.86% and 13.2% less than that of the default controller under flat pricing

scheme and TOU pricing scheme on average respectively.

Through the design, thermal comfort and the energy cost such as energy cost per
energy unit and pricing scheme have been taken into account. Therefore, similar to

the heuristic baseline control, an abrupt change in temperature is avoided.

Besides, temperature is always maintained at 69.8°F after 5pm under TOU pricing
scheme as MPC comprehends that the energy unit rice will rise in the coming time
horizon. However, under flat pricing scheme, temperature will only be maintained
at 69.8°F after 6pm as the energy cost per unit is constant at all time such that
raising temperature between 5 pm and 6 pm does not incur extra cost. Therefore,
to reduce energy cost, MPC only ensures that heating system is at 69.8°F from 6

pm, i.e. the time when the occupant wants to use the heating system.

5.2 Thermal Comfort

This section discusses the thermal comfort of using different controllers on
manipulating domestic heating system based on thermal discomfort level and

investigating the time each control takes to raise the temperature to optimal level.
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5.2.1 Thermal Discomfort Level Comparison between Different

Controls

According to Table 3.1 which describes which models the typical desired
temperature of occupants, all controls (i.e. default control, manual control, heuristic
baseline control and MPC) have successfully met all requirements without thermal

discomfort according to the specific temperature during specific time.

However, when considering that the occupant may not follow typical action and
may stay at the apartment unexpectedly, here is the quantitative analysis, provided
by equation (8), which constantly states the desired temperature as 69.8°F since

69.8°F is an optimal temperature under all indoor occasions.
2kr1(Te (V) - 69.8) (8)

From Figure 5.5, heuristic baseline control and MPC have much smaller thermal
discomfort level than manual control under this requirement, particularly during
winter. On average, heuristic baseline control and MPC under TOU pricing scheme
can create 57.1% and 51.3% decrease in thermal discomfort level each month

respectively between September and June.

Meanwhile, MPC under flat pricing scheme can only create 25.6% decrease in
thermal discomfort level because MPC under TOU pricing scheme will foresee the
increasing price during peak hours and hence increase the temperature earlier.
Therefore, the period of time of the apartment under optimal temperature will be

shorter for MPC under flat pricing scheme.
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Figure 5.5: Thermal Discomfort Level on Heating System with Different Controls

5.2.2 Case Study Comparison between Different Controls

Figure 5.5 has shown the quantitative analysis based on thermal discomfort level.
However, it may not be fair to manual control because the apartment probably
does not need to maintain 69.8°F at all time. Therefore, a case study on how long
the heating system takes to raise the apartment to 69.8°F at an unexpected time is

carried out. Table 5.1 summarizes the result of the time each control takes.

Control Mode Time (hour)
Manual Control 1.75
Heuristic Baseline Control 3.25
MPC 2.25

Table 5.3: Time Taken to Raise the Temperature until 69.8°F at an Unexpected

Time with Different Controls

47



From Table 5.1, Manual Control has sacrificed energy cost in exchange for
immediate thermal comfort so that it takes the minimal time among three controls.
Heuristic Baseline Control weighs more on the energy cost and takes a stepwise
temperature increase such that the time to increase temperature up to optimal level
is the longest among all. Since MPC balances between thermal comfort and energy
cost, it outperforms the baseline control in this perspective but it still needs 30
minutes more to reach the optimal temperature when comparing with manual

control.

5.3 Feasibility of Distributed Use

This section discusses the feasibility of deploying different controllers in the
distributed use. To experiment on that, different controllers were implemented in
a small community of 20 apartments respectively. To measure their performance in
distributed use, Peak-to-Average Ratio (PAR) and energy consumption during

peak hours were measured.

5.3.1 Peak-to-Average Ratio (PAR) Comparison between

Different Controls

Section 3.1.3 has discussed about how PAR is related to DR and shifting non-
critical energy use from peak to off-peak hours can provide more stable energy

supply to end users, benefiting distributed use.
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PAR of Heating System with Different Controls
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Figure 5.6: Peak-to-Average Ratio (PAR) of Heating System with Different

Controls

Figure 5.6 depicts PAR of heating system with different controls in January.
Manual control has the highest PAR among all controls and the PAR value
fluctuates between 3 and 7. This is because manual control adopt a greedy approach
such that shifting energy consumption has not been considered and hence the

energy consumption pattern is the least distributed.

On the other hand, heuristic baseline control has the lowest PAR among all with
averaged value 1.88 and the PAR value ranges from 1.5 to 2.5. This is mainly
because stepwise temperature increase is adopted such that the occurrence of rapid
temperature increase is hugely reduced. Hence, energy consumption will be the most

distributed over the period.
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Besides, MPC has slightly higher PAR comparing with the baseline control, with
values mainly ranging from 1.5 to 3. Since MPC balances between thermal comfort
and energy cost, its response is quicker than the baseline control such that the
energy consumption may be slightly higher during some time intervals. Hence, it is

slightly less distributed as the baseline control.

Moreover, noted that MPC under flat pricing scheme has slightly higher PAR than
that in MPC under TOU pricing scheme. It is because MPC under flat pricing
scheme takes the advantage of flat pricing and inclines temperature at a later time,
while MPC under TOU pricing scheme needs to avoid the expensive pricing during
peak hours and inclines temperature at an earlier time. Hence, MPC are more

favourable for distributed use under TOU pricing scheme.

5.3.2 Energy Consumption during Peak Hours Comparison

between Different Controls

Apart from PAR, a more direct consideration is the energy consumption during
peak hours. Here denotes peak hours as 5 pm to 7pm according to the definition

provided by the TOU pricing scheme [7].

From Figure 5.7, energy consumption of heating system during peak hours with
manual control is the highest among all approaches. It is because energy usually
has been spent to raise the temperature between peak hours with manual control.

There are four troughs in the graph because temperature has been maintained at
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69.8°F constantly in the weekends such that energy are only consumed for

maintaining temperature and without the need to raise the temperature.

On the other hand, energy consumption of heating system during peak hours with
the baseline control and MPC under TOU pricing scheme are the lowest among all
approaches, and only half the energy consumption when using manual control. This
is because energy are consumed for maintaining temperature and avoid the need to

raise the temperature during this period.

Energy Consumption of Heating System during Peak
Hours with Different Controls
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Figure 5.7: Energy Consumption of Heating System of 20 Apartments during
Peak Hours with Different Controls
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For MPC under flat pricing scheme, although it has satisfactory performance in
PAR, its energy consumption is around three-fourth of that with manual control,
and is higher than the baseline control and MPC under TOU pricing scheme. It is
because there is no advantage to avoid energy consumption during peak hours
under flat price, as explained in the last part of Section 5.1.3. Therefore, with
gradually increasing the temperature, its energy consumption is comparatively
lower than manual control, but higher than the baseline control and MPC under

TOU pricing scheme.

5.4 Further Analysis

Manual Control MPC Heuristic Baseline

* :lE Control I

Energy Cost

Thermal Comfort

Figure 5.8: Analysis of Different Controls Based on Evaluation Criteria

Figure 5.8 has visualized the evaluation of different controls based on evaluation
criteria. Thermal comfort has an indirect relationship with energy cost such that a
balance always needs to be obtained in between. Manual control focuses on thermal
comfort of occupants as occupants typically control domestic heating system
according to their preference, so energy cost has been sacrificed. On the other hand,
heuristic baseline control has shown its effectiveness in reducing energy cost, it
relatively takes more time to raise the temperature to optimal level. Finally, MPC

performs the best among all, particularly under TOU pricing scheme. It can reduce
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energy cost as the baseline control, meanwhile retaining thermal comfort with
similar performance as manual control. Therefore, this also provides users for
choices to automate heating system according to their preference over thermal

comfort or energy cost.

5.5 Chapter Summary

Based on energy cost in section 5.1, thermal comfort in section 5.2 and feasibility
of distributed use in 5.3, table 5.4 summarizes each evaluation criteria and the

performance of each control in the respective criteria.

From Table 5.4, manual control has the worst performance in four areas, while its
unique advantage is minimal time to raise temperature at an unexpected time. On
the contrary, heuristic baseline control has excellent performance in most of the
area except it needs the maximal time among all controls to raise temperature at
an unexpected time. For MPC, it performs the best under TOU pricing scheme
with excellent performance in most of the areas. It also have satisfactory

performance in most areas under flat pricing scheme.

Thus, it also validates heuristic baseline control and MPC can be used for
automating their domestic heating system as they can bring out benefits where

ordinary manual control cannot achieve.



Criteria Performance
Good Normal Bad
Energy Cost HB / MC
MPC (Flat)
MPC (TOU)
Thermal Thermal Discomfort HB MPC (Flat) MC
Comfort Level MPC (TOU)
Time taken to raise to MC MPC (Flat) HB
Optimal Temperature MPC (TOU)
Feasibility PAR HB / MC
of MPC (Flat)
Distributed MPC (TOU)
Use Energy Consumption HB MPC (Flat) MC
during Peak Hours | MPC (TOU)

MC: Manual Control

HB: Heuristic Baseline Control

MPC (TOU): MPC under TOU Pricing Scheme

MPC (Flat): MPC under Flat Pricing Scheme

Table 5.4: Evaluation Criteria and Performance of Different Controls
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Chapter 6

Conclusion

This Chapter summarizes the findings of this dissertation in the Project Overview
Section, as well as addressing the contribution of this dissertation in the
Contribution Section. This dissertation ends with suggestions of possible future

work in the Future Work Section.

6.1 Project Overview

This dissertation starts with addressing the importance of controlling domestic
heating system in Chapter 1. Therefore, concerns and concepts related to control
domestic heating system and existing approaches which can be used in HEM have

been reviewed in Chapter 2.

Hence, the heuristic concept and MPC algorithm, which have been learnt in
Chapter 2, are used to design for automating distributed domestic heating system
in Chapter 3. Besides, Chapter 3 have also listed out the evaluation criteria which
consider the energy cost and the thermal comfort of occupants, and the feasibility

for distributed use.
By implementing the design in Chapter 4, Chapter 5 evaluated different controls

based on the evaluation criteria discussed in Chapter 3. It is found that both

heuristic baseline control and MPC have improvements when comparing with
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manual control. Since manual control typically put the focus on thermal comfort
and neglect the factor of energy cost, heuristic baseline control and MPC can
approximately reduce 10% of energy cost caused by manual control. In the
meanwhile, only very slight thermal comfort need to be sacrificed when using MPC.
Most importantly, heuristic baseline control and MPC are suitable to be utilized
for distributed use since they have achieved lower PAR than manual control,

validating their feasibility of automating distributed domestic heating system.

6.2 Contribution

Firstly, this dissertation has provided justification of the necessity of automating
distributed domestic heating system as manual control can cost more than

automation if the user raise the indoor temperature rapidly.

This dissertation provides two approaches for automating domestic heating system.
The approaches have balanced between energy cost and occupants’ thermal comfort.
Hence, these system do not require mandatory occupants’ preference. Therefore,

occupants can utilize these approaches for maximizing their benefits.

Moreover, both approaches have demonstrated their feasibility on the use over
distributed domestic heating system when comparing typical manual control by
experimenting in 20 apartments. Therefore, future work can be established based

on these approaches for further improvements.
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6.3 Future Work

This dissertation have demonstrated two approaches for automating distributed
domestic heating systems. Therefore, more advanced researches can continue to be
carried out in the future, such as adopting a hybrid control. In this dissertation,
the action of the controllers is based on the typical activity of occupants and no
sensor and external data except weather are involved in calculation. Therefore, if
sensor data like detecting the presence of occupant is introduced, a hybrid control
of combining heuristic baseline control and manual control may be feasible as the
manual control can override the baseline control if the occupant is present and the

baseline control is used if the occupant is absent from the apartment.

Another possible research direction is to add additional features to MPC in order
to improve it for distributed use, such as adding “collaborative, parallel” features
which have been mentioned in CP-MCTS in Section 2.3.5. In this dissertation,
“parallel” feature has been experimented as 20 apartments were running MPC at
the same time when evaluating the feasibility of distributed use. However,
“collaborative” feature may probably be added to the use of MPC. For example,
agents in each apartment can collaborate, such as giving priority to apartments

with lower thermal comfort, if there is high energy demand in each apartment.
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Appendix A

Abbreviations
BPSO Binary Particle Swarm Optimization
CP-MCTS Collaborative, Parallel Monte Carlo Tree Search
DLC Direct Load Control
DOE Department of Energy
DpP Dynamic Programming
DR Demand Response
DSM Demand Side Management
EE Energy Efficiency
EU European Union
GA Genetic Algorithm
GLM GridLAB-D Model
HB Heuristic Baseline Control
HEM Home Energy Management
HVAC Heating, Ventilating and Air Conditioning
KWh Kilowatt Hour
MC Manual Control
MCTS Monte Carlo Tree Search
MPC Model Predictive Control
MPC (Flat) MPC under Flat Pricing Scheme
MPC (TOU) MPC under TOU Pricing Scheme
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P-MCTS Parallel Monte Carlo Tree Search

PAR Peak-to-Average Ratio

SEAI Sustainable Energy Authority of Ireland
SR Spinning Reserve

TOU Time of Use

WDO Wind Driven Optimization
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