
Sociometrics in Software Engineering

Automated Social Recruiting through

GitHub

by

Sagar Sachdeva, B.E.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2017

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Sagar Sachdeva

August 27, 2017

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Sagar Sachdeva

August 27, 2017

Acknowledgments

Over the last one years, my journey as a masters student of Trinity College Dublin has

been great. Firstly, I would like to express my sincere thanks to Prof. Stephen Barrett,

who guided me in every phase of work and helped me in the successful completion of my

thesis work. Without his support, the successful completion of this dissertation would be

unmanageable.

I would particularly like to thank all the people in the software industry who responded

to the questionnaire and helped in evaluation of my thesis. Last, but not least, I am

grateful for the love and support given to me by my family all through my life to achieve

my dreams.

Sagar Sachdeva

University of Dublin, Trinity College

September 2017

iv

Sociometrics in Software Engineering

Automated Social Recruiting through

GitHub

Sagar Sachdeva, M.Sc.

University of Dublin, Trinity College, 2017

Supervisor: Stephen Barrett

In order to find potential software engineers, companies search for candidates on vari-

ous job portals and compare their competencies and experience with the job requirement.

But this is a very cumbersome process as there is no way to validate the skills on a resume.

Also, many times resume is not up to date and there is low availability of niche profiles.

There are cases of fake projects and skills in resume as well.

The aim of this dissertation is to find possibility of existence of an automated system

that provides recommendations of software engineers for a job. We have developed a

system that identifies skills of software engineers from contributions done in open source

platform, GitHub, and matches them against the skill requirements presented by a job

description. The extraction of skill from the job description is done through an information

extraction system built using natural language processing technique.

Our results indicate that existence of such an automated system is possible and is a

scalable, efficient and effective solution for the recruitment problems mentioned above.

v

We have also outlined the limitations of our system in this dissertation.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.1.1 Problems with Recruitment Process 1

1.1.2 Growing Popularity of Social Networking Platforms 2

1.2 Research Question and Scope . 3

1.3 Workflow . 4

1.4 Road-map . 5

Chapter 2 State of the Art 7

2.1 Open Source Coding Platform : GitHub 7

2.2 Finding Skills of Software Engineers . 9

2.2.1 Research on Coding Platform : Github 9

2.2.2 Conclusion from research on GitHub 13

2.3 Requirement Extraction from Job Advertisement 14

2.3.1 Natural Language Processing . 14

vii

2.3.2 Research on Text Mining and Information Extraction Systems . . . 16

2.3.3 Conclusion from research on Text Mining and Information Extrac-

tion Systems . 19

2.4 Recommending Software Engineers for Job 20

2.4.1 Recommendation Systems . 20

2.4.2 Recommendation Techniques . 22

2.4.3 Research on Recommendation Systems for a Job 24

2.4.4 Conclusion from research on Recommendation Systems for a Job . . 25

Chapter 3 Approach 26

3.1 Finding skills of software engineers . 26

3.1.1 Approach to find skills . 26

3.1.2 Approach to find proficiency of skills 28

3.2 Requirement extraction from job advertisement 30

3.2.1 Skill extraction from job description 31

3.2.2 Scoring extracted skills . 32

3.3 Recommending software engineers for job 33

3.3.1 Recommendation technique used 34

Chapter 4 Implementation 36

4.1 Developer Profile Generator . 36

4.1.1 Components Involved . 36

4.1.2 User Skill Scoring Engine . 39

4.1.3 Limitations of the approach . 42

4.2 Skill-Based Requirement Extractor . 42

4.2.1 Components Involved . 42

4.2.2 Required Skill Scoring Engine . 45

4.2.3 Limitations of the approach . 48

4.3 Recommendation System . 49

viii

4.3.1 Components Involved . 49

4.3.2 Limitations of the approach . 51

Chapter 5 Evaluation & Result 52

5.1 Evaluation of quality signals on GitHub . 52

5.2 Experimental Setup . 59

5.3 Evaluation of Output . 60

Chapter 6 Conclusion and Future Work 62

6.1 Conclusions . 62

6.2 Future Work . 64

Appendix A Abbreviations 65

Appendix B Evaluation of quality signals on GitHub 66

Appendix C User Profile 72

Bibliography 76

ix

List of Tables

5.1 Questionnaire Responses : Familiarity with GutHub workflow 53

5.2 Questionnaire Responses : Recruitment experience 53

5.3 Questionnaire Responses : ’Content of Commits’ signal 54

5.4 Questionnaire Responses : ’Frequency of Commits’ signal 54

5.5 Questionnaire Responses : ’Number of Issues raised’ signal 55

5.6 Questionnaire Responses : ’Number of Issues Fixed’ signal 55

5.7 Questionnaire Responses : ’Number of Comments made on Issues’ signal . 56

5.8 Questionnaire Responses : ’Average Length of Comments made on Issues’

signal . 56

5.9 Questionnaire Responses : ’Number of repositories starred or watched’ signal 57

5.10 Questionnaire Responses : ’Number of repositories created’ signal 58

5.11 Questionnaire Responses : ’Number of followers’ signal 58

5.12 Experimental Setup . 59

x

List of Figures

2.1 Phases of NLP . 15

2.2 Recommendation phases . 22

3.1 Euclidean Distance in 2-Dimensional space 35

4.1 Components Interaction for Developer Profile Generator 37

4.2 User Skill Scoring Engine . 39

4.3 Components Interaction for Skill-Based Requirement Extractor 43

4.4 Requirement Skill Scoring Engine . 45

4.5 Components Interaction for Recommendation System 49

5.1 Evaluation of Output . 61

5.2 Evaluation of Output : Distribution . 61

B.1 Quality signals on GitHub : Question 1 . 66

B.2 Quality signals on GitHub : Question 2 . 67

B.3 Quality signals on GitHub : Question 3 . 67

B.4 Quality signals on GitHub : Question 4 . 68

B.5 Quality signals on GitHub : Question 5 . 68

B.6 Quality signals on GitHub : Question 6 . 69

B.7 Quality signals on GitHub : Question 7 . 69

B.8 Quality signals on GitHub : Question 8 . 70

B.9 Quality signals on GitHub : Question 9 . 70

xi

B.10 Quality signals on GitHub : Question 10 71

B.11 Quality signals on GitHub : Question 11 71

C.1 User Interface : User Details . 72

C.2 User Interface : Contributions across Repositories 73

C.3 User Interface : User Skills . 73

C.4 User Interface : Lines of code changed vs Commits 74

C.5 User Interface : Comments vs IssuesClosed 75

xii

Chapter 1

Introduction

In this chapter, we give a brief overview of the entire dissertation. Section 1.1 discusses

about the motivation behind this dissertation, where we describe the problems with cur-

rent recruitment process and how social recruiting is becoming more and more popular.

Section 1.2 defines research questions and scope for this dissertation. Section 1.3 defines

the steps taken by us, as part of the workflow, in order to answer the defined research

questions. And finally, section 1.4 presents the road-map for the dissertation.

1.1 Motivation

This section will describe the factor that motivated the topic of this dissertation and some

background information.

1.1.1 Problems with Recruitment Process

Finding right candidates for a job is considered the most crucial step in a recruitment drive.

But this is often the most challenging and time consuming step. According to a survey

of talent acquisition leaders [50], 52% said that the most difficult part of recruitment was

identifying the right candidates from a large applicant pool. Talent acquisition leaders

are feeling increased pressure to find better methods of candidate sourcing, screening, and

1

2

shortlisting. Resumes have always played an integral part in shortlisting candidates in

the recruitment process. According to a recent report [33], 93% of the recruiters still rely

on resumes to find good candidates. But according to the industry stats [50], 75 to 88

percent of the resumes received for an open job requirement are unqualified or not strong

enough to move forward with the interview process. Also, in an article [35], McCuller

highlights that there is a lot of noise, in terms of inaccurate and irrelevant information, in

the resumes of the candidates. Some candidates put fake experience and fake projects in

their resumes. And validating such details from the resume as part of the initial screening

process is a difficult and time consuming.

1.1.2 Growing Popularity of Social Networking Platforms

Social Media has brought a revolution in the way people collaborate and share informa-

tion. Platforms such as Facebook, LinkedIN, Twitter etc enable millions of users across

the globe to interact with each other and share content. Due to the abundance of in-

formation present on such platforms, there has been an increased attention over the last

decade to the social aspects of software engineering, especially creating tools to improve

software engineering practices. This increased influence of social media has triggered a

new advancement in the field of candidate recruitment, called social recruitment. As per

wikipedia [30], social recruiting or social hiring is recruiting candidates by using social

platforms as talent databases. Social network platforms give a competitive edge in locat-

ing and engaging the best candidates available for an organization’s talent requirement.

According to a report [33], 92% of the recruiters are now using social media platform in

their recruitment process, indicating the growing popularity of social recruiting.

Apart from the most popular social networking platforms mentioned above, informa-

tion from social coding platforms can prove to be of great significance for the recruitment

of software engineers. Such platforms enables developers to write and share codebases in

3

a collaborative environment. There are various social coding platforms such as GitHub,

Bitbucket, CodePlex and Google Code, but GitHub [51] is claimed to be one of the largest

code hosting sites. GitHub supports more than 22 million people to learn, share and work

together to build softwares. There are more than 62 million projects hosted on the plat-

form [51]. It also exposes information about user’s activities as an API over web. This

information can be used to generate important insights, thus helping recruiters to find

the most suitable candidates from this pool of talented software engineers.

Even though GitHub exposes most of the information it has about a software engineer,

it does not provide the insight about the skills of the software engineer directly. Therefore

in this thesis, we leverage the information provided by the GitHub to find important

parameters that help in determining the skills of the software engineers and rate those

skills based on the contributions made, so as to address the shortcoming of recruitment

of software engineers.

1.2 Research Question and Scope

During our initial research, we found that GitHub, as a source coding platform, provides

traces of not only the technical capabilities of a software engineer, but also his behaviour

while working in a team. It gives information on how he perform in a collaborative

environment, giving deep insights about the character of the software engineer. These

insights are very crucial for decision making, as the candidate who gets finally selected

for the role has to perform his tasks being a team member. And such insights about the

behaviour of the candidate cannot be evaluated from his resume, but can be gathered

from his contributions across various projects in GitHub. Based on the research objective

of this thesis, we have formulated following research questions:

• RQ1 : What signals can be used from the GitHub profile of a developer to automate

the process of identification and rating of his skills?

4

• RQ2 : What technique would be suitable to automate the process of identification

of required skill from a given job description and rate those skills based on their

level of requirement?

• RQ3 : What recommendation strategy would be best suited to match skills iden-

tified from developer’s GitHub profile to the job specification presented by the re-

cruiter?

Based on the research questions presented and with the aim of overcoming the re-

cruiter’s issues highlighted above and automating the initial screening stage of the re-

cruitment process, we have restricted the scope of this dissertation to following:

• Develop an automated system to extract technical skills of a software engineer and

rating those skills based on the contributions done by him over GitHub repositories.

• Develop an automated system that takes in a job description and using Natural

Language Processing (NLP) techniques, extracts the required skills and rates those

skills as per their level of requirement.

• Develop a recommendation system that takes in the output of both the above sys-

tems as input and generates a list of best suited software engineers for a given job

description.

1.3 Workflow

Following are the steps of the workflow for our thesis:

1. Defined the research questions : based on the preliminary research we did in the

areas of social recruiting and the present shortcoming of the interview process, we

defined the research questions for the dissertation.

5

2. Further study to understand the domain : the next step was to understand the

domain by reading through the findings of researchers in the areas of social coding

platforms, natural language processing and recommendation strategies. This was

done not only to get a better knowledge about the domain but to derive useful

insights from the results of the researches already been done in these areas.

3. Implementation of the skill extracting system : designed and implemented the sys-

tem that identifies and rates skills of software engineers from GitHub and generates

profiles for the software engineers.

4. Implementation of job description parser : designed and implemented the system

that takes in job description and extracts required skills from it using natural lan-

guage processing techniques.

5. Implementation of the Match-Making system : designed and implemented a recom-

mendation system that takes in skills of software engineers and required skills for a

job, and generates a list of best suited candidates for that job.

6. Testing and generating Output : tested the entire application and generated the

output for a selected set of GitHub users and a set of job descriptions as the input.

7. Evaluation : evaluated the entire approach of the system based on the results fetched

from the previous phase .

1.4 Road-map

This dissertation is organised as follows:

• Chapter2 gives the background details about social coding platform : GitHub, exist-

ing research done on this platform. It also discusses briefly about Natural Language

Processing technique and then describes the research done on various information

6

extraction systems. Finally it gives a brief overview about the various recommen-

dation system techniques available and discusses the research done on job related

recommendation systems

• Chapter 3 describes the approach the approach taken to identify and rate user

skills based on his information available on GitHUb. It describes the information

extraction technique used to extract skills from a job description. Finally it specifies

the recommendation technique used to find software engineers which match closely

to the job description.

• Chapter 4 discusses the implementation of all the approaches discussed in Chapter

3. It also outlines the limitations of these approaches taken.

• Chapter 5 discusses the validation process to evaluate the approach taken for ac-

complishing the research goal and shares the result for the dissertation.

• Chapter 6 provides the conclusion of the dissertation along with the contributions

made and recommendations for the future work.

Chapter 2

State of the Art

In this chapter, we give an overview of existing research done around the research ques-

tions, which are defined in section 1.2. Section 2.1 gives a brief overview of the features

provided by social coding platform, GitHub. Section 2.2 describes the existing research

around the signals available on GitHub which can be used to find skills and competencies

of a software engineer and also discusses the conclusions we derived from this research.

Section 2.3 discusses briefly about Natural Language Processing technique and then de-

scribes the research done on various information extraction systems. The section also

presents some of the conclusions that were derived from the research. Section 2.4 gives

a brief overview about the recommendation system and its various available techniques.

The section also presents the research done on job related recommendation systems and

outlines the conclusions we derived from this research.

2.1 Open Source Coding Platform : GitHub

GitHub is a social network that has changed the way we work. It started as a collab-

orative platform for software engineers and now it is the largest online storage space of

collaborative work that exists in the world. GitHub provides three main features : fork,

pull request and merge.

7

8

Forking is the mostly commonly used way of collaborating on open source projects

[36]. A fork is basically a copy of a repository on which the contribution is to be made,

but with a link back to the original repository. This allows a GitHub user to freely exper-

iment with the changes on the repository without affecting the original project. One of

the most common example of forking is bug fixing which requires 3 basic steps : forking

a repository to which fix is to be made, making the fix, submitting a pull request to the

project owner of the original repository.

Pull request is another important feature on Github which helps developers collaborate

efficiently [47]. In simple terms, It is mechanism for a developer to notify the collabora-

tors of a repository, that the changes onto the repository are done. Once a pull request

is opened, the developer can discuss and review the potential changes with the collabora-

tors and follow-up comments before these changes are actually merged into the repository.

Merge is a mechanism provided to merge the changes done in the pull request to the

upstream branch [48]. Any contributors with push access to the repository can merge the

pull requests onto the repository in GitHub. If pull request has merge conflicts, the pull

request can be checked out locally and merged using command line to resolve these con-

flicts. Then changes done to resolve these conflicts can be pushed back to the repository.

There are many other features in GitHub. One of them is Issues and Issues Tracker.

Issues is a great way to keep a track of tasks, enhancements and bugs for your projects

[49]. Githubs Issue Tracker has a special focus on collaboration. It provides ways to

assign milestones, labels and assignees to issues and helps to filter out issues based on

these parameters. It provides a way to assign labels to the issues which helps to organise

different types of issues. There can be a chain of comments on an issue which aims to

solve or resolve the issue. There is a Watch feature in GitHub where a user can subscribe

9

to receive notifications on events on a repository by watching the repository. A GitHub

user can also follow another user, which will help the follower receive notifications about

person being followed regarding repositories being created or forked or starred by him

and check his public activity.

2.2 Finding Skills of Software Engineers

2.2.1 Research on Coding Platform : Github

GitHub is the most popular social coding platform, and based on the amount of data it

holds, it is a popular domain for researches. Our initial exploration was quite diverse,

mainly to understand GitHub as a platform and to know more about the previous and

current research work going on over GitHub. A research done at University of Victoria

[25] aimed at understanding the various characteristics of repositories in GitHub so that

users can take advantage of GitHubs main features such as commits, pull requests and

issues. Their research showed that majority of projects (71.6% to be precise) in GitHub

are personal and inactive and are using this platform as free storage. They also inferred

that if commits in pull-request are reworked, GitHub records only commits that are the

result of peer-review, not the original commits. There was another research done in Sin-

gapore Management University [28], which aimed at identifying influential developers and

projects on a sub-network of GitHub using PageRank. The research inferred that social

coding improves collaboration among developers. Also, recommendation system to choose

suitable developers to work together for particular projects in GitHub was identified as

an area of future work in this research.

In terms of finding skills of software engineers and rating those skills, our research

mainly aimed at finding out the key signals in a users GitHub profile which give a sense

of how good a software engineer he is. So we went through some of the researches that

10

were done on similar areas. Marlow et al. [2] did research to analyse activity traces of

GitHub users and identify signals which will aid in software developer recruitment and

hiring. They conducted interviews with both employers and job seekers that pointed to

specific cues provided on profiles that led them to make inferences about candidates tech-

nical skills, motivations and values. These cues were seen as more reliable indicators of

technical abilities than information provided on resume. The research pointed out that

in hiring domain, deception of qualification is a concern. From the interviews conducted,

it was inferred that presence of code that was developed openly and shared with oth-

ers, signalled strongly that developer valued openness, transparency and participation in

a community. Active participation in other peoples projects was found to be the most

reliable signal of commitment to the open source mindset. Publicly building on another

persons work served as an assessment signal that the candidate is truly bought into the

open source mindset. Also, they found that personal projects signalled a candidates love

for programming and suggested a willingness to learn. An accepted commit to a high

status project signalled the candidate was someone who produced quality code.

Badashian et al. [4] in their research set out to mine, analyze and correlate the mem-

bers core contributions, editorial activities and influence in the two networks: GitHub

and Stack Overflow. While studying the activities on GitHub, they defined three higher

level indicators : development indicator which was the sum of commits and pull requests

handled by the developer, management indicator which was the sum of issues reported,

issue comments, issues closed or handled and projects watched by the developer, and

lastly popularity indicator which was the number of followers for the developer. The re-

search found strong correlation between the activities done in these three indicators which

meant that active developers not only contribute to the main development activities but

also engage in other managerial activities and gain more popularity.

Another research by Marlow et al. [3] did a qualitative investigation of impression

11

formation in an online distributed software development community with social media

functionality, GitHub, in which they analyzed cues that drove users to form impression

about other users. Their research catered around three main categories of impressions

which were: general coding ability which included cues such as amount of activity, fre-

quency of commits, number of projects owned vs forked etc, project-relevant skills which

included cues like specific languages used etc, and finally personality and interaction style

which included cues like past discussion posts and threads. They found that amount of

commits done by a user had an impact on the impression formation about the coding

ability of the user but can be incorrect in judging complete newcomers. They found that

coding languages was an important factor in impression formation in terms of skills of a

user. Also, they found that communication activity visible in a persons recent activity

feed was good determinant of the personality of the user.

Vasilescu et al. [7] investigated the interplay between Stack Overflow activities and

the development process, reflected by code changes committed to the largest social coding

repository, GitHub. In their research, they observed that individuals who tend to answer

many questions tend to have a high number of commits, and individuals that have a high

number of commits tend to answer many questions. This was a very helpful observation

because it tells us that people who have high number of commits are problem solvers and

tend to help others by answering to their queries. That may be useful to through up light

on the character of such developers.

Xavier et al. [16] did research to understand which factors can influence developers

popularity and provide insights for individuals to enhance their own popularity. In their

study they found that commit activity is an important factor for high popularity. But

they also observed that some of the developers who had low activity in terms of commits,

did have high number of followers and concluded that activities outside GitHub, like on

blogs or social networks, might also be the reason for high popularity inside GitHub.

12

Tsay et al. [6] analyzed GitHub repositories to investigate what important impli-

cations do discussions have on project management in terms of new contributions and

evolution of project. They observed that a project manager might weigh the cost of fixing

a contribution against the benefit of recruiting new member to a project. So fixing issues

was found to play an important role in project evolution. They also found that engaging

in discussions and to socializing is a very important aspect of team building.

Bissyande et al. [20] investigated the issue trackers of around 100,000 repositories to

find if any correlation existed between the amount of issues generated and various charac-

teristics of a software project like age of project, size of the team, popularity of the project

leader, lines of code written etc. In the research, they had identified issue reporting as

one of the key features of collaborative environment as it helps in reporting existing bugs

as well as suggesting feature enhancements that can be done as part of the project.

Badashian et al. [1] in their research got interested in the notion of influence in

Soft- ware Social Networks and conducted an in-depth comparison of three influence met-

rics, number of followers, number of forked projects, and number of project watchers

in GitHub. They analyzed the pairwise correlation of the three measures and then did

an in-depth qualitative analysis of the similarities and differences of the top 30 influ-

ential GitHub users according to each of the three measures.The conclusion they drove

from the research was that while number of followers is sign of popularity and fame in

software engineering, number of forked projects is sign of code usability and content value.

Dabbish et al [15] in their research examined the value of transparency for large-scale

distributed collaborations and communities of practice. In their study, they found the

comments on a commit or issue as an interesting signal, where in case of an issue, it high-

lighted how significant the issue is and in case of commit, it highlighted how important a

13

commit is. They also noted that number of followers of a developer was interpreted as a

signal of status in the community. Developers with lots of followers were treated as local

celebrities.

Blincoea et al. [29] studied the motivation behind following (or not following) others

and the influence of popular users on their followers. They used a mixed method approach

including a survey of 800 GitHub users to uncover the reasons for following on GitHub

and a complementary quantitative analysis of the activity of GitHub users to examine

influence. Their quantitative analysis studied 199 popular (most followed) users and their

followers. From the research, they found that as users popularity increases, so does their

rate of influence, yet the same was not true for a popular users rate of contribution.

2.2.2 Conclusion from research on GitHub

Since past few years, GitHub has been a hot area of research and we saw, in the previous

section, the kind of research done in this field. Keeping the research question RQ1 in

mind, from our exploration we were able to reach the following conclusions :

1. There has not been much research done in the area of skill extraction or rating of

skills of a software engineer from his GitHub contributions.

2. A lot of researches show that GitHub can not only be used as a platform for technical

contributions but also as a platform for analyzing and enhancing soft-skills.

3. We did find some of the influential factors in determining the performance of the

developer on GitHub such as amount of code written, the number and frequency

of commits done, number of issues raised or solved, number of owned or watched

repositories and contributions in those.

4. We also found that developers with more number of commits and other contributions

have large number of followers and are very popular on this platform.

14

2.3 Requirement Extraction from Job Advertisement

Post our research on GitHub, the next part of our research dealt with extraction of

skills from the job description. So our initial exploration in this area was to study the

work that had been done in the field of text mining and information extraction. Since

a job advertisement is generally written in human readable language, natural language

processing was the most prominent technique that came up.

2.3.1 Natural Language Processing

As per Wikipedia [31], Natural Language Processing (NLP) is a field of computer science,

artificial intelligence and computational linguistics concerned with interactions between

computers and human (natural) languages. In particular, it is concerned with program-

ming computers to fruitfully understand large natural language corpus. There are 2

components of NLP [53]:

1. Natural Language Understanding (NLU) : this deals with mapping the given input

in natural language into useful representations and analyzing different aspects of

the language.

2. Natural Language Generation (NLG) : it is a process of producing meaningful

phrases and sentences in the form of natural language from some internal repre-

sentation.

For our research goal, we are more interested in NLU than in NLG. As per Chopra et al.

[27], 5 phases involved in NLP are:

1. Morphological and Lexical Analysis : The lexicon of a language is its vocabulary

that includes its words and expressions. Morphology depicts analyzing, identifying

and description of structure of words. Lexical analysis involves dividing a text into

paragraphs, words and the sentences.

15

Figure 2.1: Phases of NLP

16

2. Syntactic Analysis : This involves analyzing words in a sentence to depict the

grammatical structure of the sentence. The words are transformed into structure

that shows how the words are related to each other. eg. the girl the go to the school.

This would definitely be rejected by the English syntactic analyzer.

3. Semantic Analysis : This abstracts the dictionary meaning or the exact mean-

ing from context. The structures which are created by the syntactic analyzer are

assigned meaning. There is a mapping between the syntactic structures and the

objects in task domain.

4. Discourse Integration : The meaning of any single sentence depends upon the sen-

tences that precedes it and also invokes the meaning of the sentences that follow

it.

5. Pragmatic Analysis : It deals with using and understanding sentences in different

situations and how the interpretation of the sentence is affected.

2.3.2 Research on Text Mining and Information Extraction Sys-

tems

In past few years, Natural Language Processing has emerged as a hot area for researchers

in the field of text mining and information extraction. Kumbhar et al. [22] researched

that the reputation reporting system of e-commerce platform, which computes the rep-

utation score for a seller, had issues. They proposed an approach called Comm Trust

which evaluates the multidimensional trust for seller by analyzing buyers opinions on free

text feedback comments. For building this solution, they used standard library named

Stanford NLP Parser to pre-process and parse the comments, which was used to represent

a sentence as a set of dependency relations between pairs of words in the form of (head,

dependent) expressions. These grammatical relationships helped them do further analysis

on the opinions.

17

Hauff et al. [5] in their research, proposed a pipeline that automated the process of

matching job advertisement to developers. They used social coding platform, GitHub for

extracting concepts (skills) of developers, and NER based model to extract concepts from

job advertisements, weighing those concepts and then matching them. They used two

techniques from natural language processing namely, NER in combination with named

entity disambiguation (NED). Given an unstructured text, NER determined which words

or phrases in the text referred to an entity, which can be any real-world entity. NED

determined which concrete entity a particular word or phrase refers to. Also, to weigh

these concepts, they used a scheme commonly used for information retrieval, TF-IDF. TF

or Term Frequency is the frequency of a given term in a document whereas IDF or Inverse

Document Frequency is an inverse function of the number of documents in which a term

occurs. TF-IDF concept gives a low weight to concepts that appear in many documents

while at the same time benefiting concepts which occur rarely across the entire corpus

of documents. The research done and the solution developed by Hauff et al. closely

aligns with what we intend to do. But the approach they had taken may have some

drawbacks. For instance, the weighing of the concepts simply depends on the concept

of TF-IDF. So if there are two job advertisements one asking for java developers with 5

years of experience and other asking for java developers freshly passed out from college,

then their system will weigh the concept java same in both the cases. Also for extracting

skills of developers, they only used README files with same TF-IDF approach as for job

advertisements. Thus, they had not considered the contributions of the developer over

GitHub while rating ones skills, which we have found to be crucial in our study on GitHub.

Zhang et al. [21] in their research proposed a rule based NLP approach for overcoming

the existing challenges in automated information extraction from construction regulatory

documents. They stated that in comparison to general non-technical text, domain-specific

text is more suitable for automated NLP due to two main text characteristics : firstly,

18

construction text is likely to have less homonym conflicts than non-technical text and sec-

ondly, it is easier to develop an ontology (knowledge base) that captures domain knowledge

as opposed to an ontology that captures general knowledge. This is important observation

for our study as we aim at extracting domain specific information which revolves around

software engineering. They also highlighted two main types of approaches taken in NLP:

rule-based approach, and machine learning (ML)-based approach. Rule-based NLP uses

manually-coded rules for text processing. ML-based NLP uses ML algorithms for training

text processing models based on the text features of a given training text. Rule-based NLP

tends to show better text processing performance but requires more human effort. They

took rule-based approach, because of its expected higher performance. In their rule-based

approach, they captured syntactic features, such as port-of-speech (POS) tags, of the text

using various NLP techniques, including tokenization, sentence splitting, morphological

analysis, POS tagging, and phrase structure analysis. They extracted semantic features

of the text based on an ontology that represents the domain knowledge.

Kalva [26], in his report, proposes the approach taken by him in automating skill ex-

traction from the resume using NLP concepts. For achieving this he used a skill finding

algorithm which ranks the student resumes based on skills with respect to a job. He found

that most of the skills found are proper nouns (named entities) which can be identified

and extracted using the process of Named Entity Recognition (NER). For NER, he used

NER APIs provided by apache OpenNLP [34]. These APIs have pre-trained models which

can detect named entities like location, time, person, organization, money, percent, data.

But to make an NER detect a new entity like skill, a model needs to be trained and

the biggest difficulty in training a model is to create training data sufficient enough for

statistical modelling. To train the model, Kalva downloaded more than 3000 jobs and 80

resumes from an online web API.

Apart from using NLP techniques for information retrieval, there are other method-

19

ologies being studied by researchers for extracting important information from plain text.

Riloff [24] developed a system called AutoSlog that automatically built a domain-specific

dictionary of concepts by extracting information from text. For developing this tool

Riloff used a technique called selective concept extraction. Selective concept extraction is

a form of text skimming that selectively processes relevant text while effectively ignoring

surrounding text that is thought to be irrelevant to the domain. Riloff mentioned that

knowledge-based natural language processing systems have good success with tasks that

depend on a domain-specific dictionary.

2.3.3 Conclusion from research on Text Mining and Information

Extraction Systems

Even though other techniques exist, Natural Language Processing is the most common

area of research for overcome information retrieval challenges. Keeping our research ques-

tion RQ2 in mind and after going through the existing research on text mining and

information extraction systems, we reached following conclusions:

1. Automated Natural Language Processing techniques are more suited to domain-

specific texts.

2. Rule-based Natural Language Processing approach requires more manual effort than

Machine Learning base Natural Language Processing approach.

3. Rule-based Natural Language Processing approach shows better text processing

performance than Machine Learning base Natural Language Processing approach.

4. Hauff et al. [5] derived a system which does similar function as what we intend to

do in our dissertation, but their study had shortcomings which we have mentioned

above and does not consider some parameters, that we have found important in our

research.

20

2.4 Recommending Software Engineers for Job

The final part of our research dealt with providing recommendations of software engineers

for the job advertisements. This research was done in two phases. Firstly we studied about

recommendation system and various recommendation techniques available and then we

explored about the research already done for design and development of systems which

provide recommendations for a given job.

2.4.1 Recommendation Systems

According to Wikipedia [32], a recommendation system is a subclass of information filter-

ing system that seeks to predict the ”rating” or ”preference” that a user would give to an

item. According to Aggarwal [18], there are various ways in which the recommendation

problem may be formulated, two of which are as follows:

1. Prediction version of problem: The first approach is to predict the rating value for

a user-item combination. It is assumed that training data is available, indicating

user preferences for items. The missing (or unobserved) values are predicted using a

training model. This problem is also referred to as the matrix completion problem.

2. Ranking version of problem: In practice, it is not necessary to predict the ratings

of users for specific items in order to make recommendations to users. Rather, a

merchant may wish to recommend the top-k items for a particular user, or determine

the top-k users to target for a particular item. This problem is also referred to

as the top-k recommendation problem, and it is the ranking formulation of the

recommendation problem.

Aggarwal [18] also stated in her book that some of the common operational and

technical goals of recommender system are :

1. Relevance: The most obvious operational goal of a recommender system is to rec-

ommend items that are relevant to the user at hand.

21

2. Novelty: Recommender systems are truly helpful when the recommended item is

something that the user has not seen in the past.

3. Serendipity: A related notion is that of serendipity, wherein the items recommended

are somewhat unexpected, and therefore there is a modest element of lucky discov-

ery, as opposed to obvious recommendations. Serendipity is different from novelty

in that the recommendations are truly surprising to the user, rather than simply

something they did not know about before.

4. Increasing recommendation diversity: Recommender systems typically suggest a list

of top-k items. When all these recommended items are very similar, it increases the

risk that the user might not like any of these items. On the other hand, when the

recommended list contains items of different types, there is a greater chance that

the user might like at least one of these items.

Isinkaye et al. [9] explored the different characteristics and potentials of different

prediction techniques in recommendation systems in order to serve as a compass for

research and practice in the field of recommendation systems. They mentioned three key

phases of recommendation process:

1. Information collection phase : This collects relevant information of users to generate

a user profile or model for the prediction tasks including users attribute, behaviors or

content of the resources the user accesses. A recommendation agent cannot function

accurately until the user profile/model has been well constructed. The system needs

to know as much as possible from the user in order to provide reasonable recommen-

dation right from the onset. Recommender systems rely on different types of input.

Explicit feedback, which includes explicit input by users regarding their interest in

item. Implicit feedback by inferring user preferences indirectly through observing

user behavior. Hybrid feedback can also be obtained through the combination of

both explicit and implicit feedback.

22

Figure 2.2: Recommendation phases

2. Learning phase : It applies a learning algorithm to filter and exploit the users

features from the feedback gathered in information collection phase.

3. Recommendation phase : It recommends or predicts what kind of items the user

may prefer. This can be made either directly based on the dataset collected in in-

formation collection phase which could be memory based or model based or through

the systems observed activities of the user.

2.4.2 Recommendation Techniques

Recommendation Systems are categorized broadly into following three techniques:

1. Content-Based Filtering : According to the handbook [17], Content-based recom-

mendation systems try to recommend items similar to those a given user has liked

in the past. Systems implementing a content-based recommendation approach ana-

lyze a set of documents and/or descriptions of items previously rated by a user, and

build a model or profile of user interests based on the features of the objects rated

by that user.The recommendation process basically consists of matching up the at-

23

tributes of the user profile against the attributes of a content object. The result is

a relevance judgment that represents the users level of interest in that object.

2. Collaborative filtering : According to Rafsanjan et al. [12], Collaborative filter-

ing is very effective for forecasting customer precedence in choice of objects. It is

an attempt to mechanize word-of-mouth recommendation procedure, that means

the objects suggested to customer according to how customers having similar inter-

ests, categorized these objects. Collaborative filtering (CF) algorithms are usually

categorized into:

• Memory-based Collaborative Filtering : Another name of the algorithms of

Memory-based is lazy recommendation algorithms. They postpone the calcu-

lative attempts for forecasting a customers precedence for an object to the time

that customers ask for a collection of recommendations.

• Model-based Collaborative Filtering : Another name of this model is Eager

recommendation algorithms, Model-based Collaborative Filtering algorithms

do majority of work that is hard in the training stage, where these algorithms

build a forecasting model of problem in recommendations.

3. Hybrid Approach : In the research by Asanov [19], hybrid approach is defined as

combination of collaborative approaches and content- based approaches.It states

that using Hybrid approach, some limitations and problems of pure recommender

systems, like the cold-start problem, can be avoided. The combination of approaches

can proceed in different ways:

• Separate implementation of algorithms and joining the results.

• Utilize some rules of content-based filtering in collaborative approach.

• Utilize some rules of collaborative filtering in content-based approach.

• Create a unified recommender system, that brings together both approaches.

24

2.4.3 Research on Recommendation Systems for a Job

After exploring various recommendation techniques, we studied the work already done

on job recommendation systems. Lu et al. [11] presented a hybrid recommendation

system approach for job seeking and recruiting websites. Their system exploited job

and user profiles and the actions undertaken by users in order to generate personalized

recommendations of candidates and jobs. Apart from user profile available on websites,

user activities, such as visiting, liking or applying a job post, were used to find the match.

Zarandi et al. [8] proposed an ontology-based hybrid approach to effectively match

job seekers and job advertisements. They used job seeker’s skills and level of competence

in each skill, available on seeker’s online application, to find one’s suitability for the

job. While concluding, they mentioned some very interesting points. They said that

their approach relied on self declarations of competences and experiences which could

be inaccurate or insufficient.Also, they mentioned that it would be interesting to use

mechanisms to automatically discover up- to-date expertise information from secondary

sources such as codes, documents, and forums.

Otaibi et al. [10] in their research on job recommendation systems, highlight that

the traditional job recommendation systems suffer from inappropriateness because of the

Boolean search methods. Such methods use queries containing combination of keywords

that define skill requirements and use Boolean expressions (AND-OR) to find matches for

job.

There were many other researches which proposed CV based job recommendation

systems such as Malinowski et al. [13] proposed a bilateral recommendation approach

to build a CV-recommender. YU et al. [14] proposed a Reciprocal Recommendation

Algorithm for user-job match for which they used resume and online information available.

25

2.4.4 Conclusion from research on Recommendation Systems

for a Job

Job Recommendation Systems have gained a lot of popularity a the research area in past

few years. Keeping research question RQ3 in mind, following were some of the conclusions

we reached after going through existing research on recommendation systems :

1. Since we are aiming to find software developers that suit the requirements of a job

advertisement, which is analogous to suggesting an item to a user based on his

requirements or past ratings, content-based filtering would be the best fit for our

recommendation system.

2. Most of the recommendation systems available or popular in this area of research

use CV or online information declared by the user to extract user characteristics.

Implications of such approach have been mentioned in section 1.1 of this dissertation.

The same concerns have been raised by Zarandi et al. [8].

3. Most of the recommendation techniques available cannot be leveraged to design

recommendation strategy for recommending developer profile to suit recruiter’s skill

set requirements.

Chapter 3

Approach

In this chapter, we specify the approach taken by us in order to fulfill the scope of this

dissertation. Section 3.1 describes the approach taken by us to identify and rate user

skills with the aim of answering RQ1. Section 3.2 describes the information extraction

technique used to extract skills from a job description in order to answer the RQ2.

3.1 Finding skills of software engineers

In this section, we first describe the approach taken by us to determine the skills of a soft-

ware engineer using his GitHub profile. Then we describe the approach for identification

of the signals useful for determining the proficiency of software engineer in those skills.

Finally, we outline the limitations of our approach.

3.1.1 Approach to find skills

A GitHub user can publish his work over open source platform via repository. A ’repos-

itory’ or ’repo’ in GitHub is a digital directory or storage space where a user can access

project, its files, and all the versions of its files. A user can publish his work over a

repository which is created by him. He can also publish his contributions to repositories

that are created by others, by directly being one of the contributors of the repository or

26

27

by issuing a pull request to the contributors of the repository for the changes done by him.

Based on the features provided and web APIs published by GitHub, we selected fol-

lowing two ways of finding out the skills of a software engineer :

1. Repository Languages : GitHub provides a feature that highlights language

statistics on repository, which provides a way to to quickly see what languages

a repository contains. It’s a great way to get a general picture of a repository before

one dives into the code. The files and directories within a repository determine

the languages that make up the repository. GitHub uses the open source Linguist

library [37] to determine file languages for syntax highlighting and repository statis-

tics. GitHub provides the following web API [38] to list languages for the specified

repository in JSON format. The API also provides the number of bytes of code

written in that language.

GET /repos/ : owner/ : repo/languages

As per the Linguist library [37], some files are hard to identify, and sometimes

projects contain more library and vendor files than their primary code. For in-

stance, one of the GitHub repository, with majority of code in java, contains some

SQL scripts as well. But the API gives just java as the language. Also, with repos-

itories containing XML configuration file, XML is not identified as a language. So

to overcome such limitations, we found another way to identify languages for a

repository.

2. File Extensions : This is the second way to extract languages used in the repos-

itory, by parsing through the file names and extracting the file extensions. So,

repositories containing ’.sql’ or ’.xml’ files tells us that repository also contains files

with languages like XML or SQL respectively. GitHub provides following web API

28

[46] to get the contents of a file or directory in a repository.

GET /repos/ : owner/ : repo/contents/ : path

Based on the languages of the repositories, created or contributed to by the users,

a list of skills, SkillsRL, is created. Also, based on the file extensions of the contents of

the repositories created or contributed to, by the users, another list of skills, SkillsFE, is

created. The union of both these lists is the final list of skills, Skills, for the user.

Skills = SkillsRL ∪ SkillsFE

Using the above methods, skills, based on the repositories, created or contributed to

by the users, are extracted for the software engineer.

3.1.2 Approach to find proficiency of skills

Based on the existing research, following important signals were found which might have

been helpful to determine the quality of a software engineer :

1. Content of Commits : A commit to a repository records the changes to the that

repository. These changes can be adding, deleting or updating a file or its con-

tents. Each commit is assigned a unique 40 character string ’sha’. GitHub provides

following web API [45] to get the contents of a file or directory in a repository.

GET /repos/ : owner/ : repo/commits/ : sha

The API provides all the files changed in the commit with number of lines changed

in each file.

2. Frequency of Commits : Frequency of commits is the number of commits done

by the user per unit time. This unit can be a day, a week or a month. Frequency

29

of commits can be calculated from the recent commits done by the GitHub user.

3. Number of Issues raised and closed : GitHub provides following web API [40]

to fetch list of all the events performed by a user.

GET/users/ : username/events

One of these events is ’IssuesEvent’. This event has two event types : opened and

closed. Counting the number of events for the user with these event types gives us

the number of issues raised and closed by the user.

4. Number of comments made on the Issues : In the information provided by

the Github API for ’IssuesEvent’, every issue has a field called ’comment’, which is

the number of comments for that issue.

5. Average Length of Comments made on Issues : Average length of comments

made on the issues is average number of words used by a user while writing a

comment for the issues. One of the events in GitHub is ’IssueComment’. The body

field of the ’IssueComment’ event gives the content of the comment made by the

user.

6. Number of repositories created, starred or watched : GitHub provides fol-

lowing web API for getting list of repositories created, starred or watched by a

user.

CreatedRepositories : GET/users/ : username/repos

StarredRepositories : GET/users/ : username/starred

WatchedRepositories : GET/users/ : username/subscriptions

7. Number of User Followers : GitHub provides following web API for getting the

information about the user. One of the fields in information retrieved from the API

30

is ’number of followers’ which gives the count of people following the user.

GET/users/ : username

To identify the useful signals from the above mentioned signals, a questionnaire was

prepared and sent to the people working in the software industry. The details of the

questionnaire is provided in Chapter 5 - Section 5.1. From the results of the questionnaire,

3 signals were identified for rating of the skills of a software engineer :

• Content of Commits : To rate the skills of a user based on the contents of commit,

number of lines of file changed, in the commits done in every repository owned or

starred by the user, is calculated. A score is assigned to the skill based on the

number of lines changed in the file belonging to that skill.

• Number of Issues closed : To rate the skills of a user based on the issues closed,

number of issues closed by a user for every repository owned or starred by the user

is calculated. A score is assigned to the repository languages based on the number

of issues fixed in that repository.

• Number of User Followers : For every user skill identified, a score is assigned

based on the number of followers of the user.

The final list of skills contains the skills as well as scores assigned to them and this

list represents the complete skill-set of the software engineer.

3.2 Requirement extraction from job advertisement

In this section, we first describe the approach taken by us to extract skills from a job

advertisement. Then we describe the approach for for scoring of those extracted skills

based on their level of requirement.

31

3.2.1 Skill extraction from job description

Extraction of skills from a job description requires identifying skills from the given text of

requirements in human understandable language, which is a classic information extraction

problem. From the research done, Named Entity Recognition (NER), came out as one

of the ways of identifying real world entities, which in our case would be skills, from the

text given.

While exploring for best possible approach to our information extraction problem, we

use Stanford Named Entity Recognizer library, for which there is an online demo [43] also

available. We also use spaCy Named Entity Recognizer library [44] for testing purposes.

The library is tested with some of the job advertisements to see what percentage of skills

are identified. The result for the tests with these libraries are as follows:

• For Stanford NER, more than 60% of the skills are not identified at all, including

important skills like java, javascript etc.

• For spaCy NER, about 70% of the skills are identified. But some important skills

like core java, are not identified and words like ’quick’ are identified as entity, which

introduces noise into the library output.

Based on the results received from the testing of these NER libraries, we decide not

to go with NER approach for skill identification from given text. So we have built a

knowledge-based system for this task. To build the knowledge base, we start looking for

existing APIs which provide all the skills a software engineer may have. Unfortunately,

to the best of our knowledge,there is no such open-source API available. Therefore, we

create our own knowledge base for the skill extraction system. Therefore a file containing

all relevant software engineers skill is used as the knowledge base.

Parsing the job description for identifying the available skills is the next task the

engine does. This task is done in a 4 stage process :

32

• First stage is pre-processing of the text. It removes all stop words from the text. Stop

words are words like articles, conjunctions, special characters, which we consider as

noise in the text.

• Second stage is keyword based matching of the tokens with the knowledge-base of

skills.

3.2.2 Scoring extracted skills

Extracted skills from the job description are to be scored based on their level of require-

ment. More the level of requirement for a skill, the better score it will get. Before finding

the score to a skill, we process the text in following 2 steps :

• First step is stemming which is the process of reducing inflected (or sometimes

derived) words to their word stem, base or root form. Foe eg. ’cutting’ is stemmed

to base form ’cut’.

• Second step is Part-of-Speech (POS) tagging of the individual tokens present in the

text.

For scoring these required skills, following three criteria are used :

• Line-Based Score : while reviewing the requirement descriptions for many jobs,

based on human cognitive ability, we find a trend that these descriptions are almost

always presented in a set of lines with skills presented in each of these lines. Also,

the level of requirement of skill in each line is different. The skills mentioned in the

first line of the job description have higher level of requirement than skills present

in the below lines. So our first criteria for rating the skills is based on the line on

which they occur. The skills present at the top of requirement description are scored

more than skills below them.

33

• Quantifiable-Experience-Based Score : the next criteria for scoring the skills

is based on the years of experience the software engineer is required to have in those

skills. Many job descriptions specify the number of years of experience required for

the specified skill which helps us design a new scoring criteria. More the experience

specified for a set of skills, better score they will get. To identify the amount of expe-

rience from a line in requirement description, we build a pattern-matching system,

which looks for pre-defined pattern in the text to extract the years of experience

specified. The pre-defined patterns are created keeping in mind all possible forms in

which the text for years of experience can be written, even with minor grammatical

errors. More details about the implementation are provided in sub-section 4.2.2.

• Special-Keyword-Based Score : apart from giving the amount of experience

required for a skill, companies also specify the level of requirement of a skill with

some special keywords, like highly desirable, substantial knowledge or experience

etc. So our last criteria is based on identifying some special keywords present in

the requirement description. We use the same technique of creating pre-defined

patterns to identify these special keywords from the text. Along with these patterns,

corresponding scores are also defined so that the score is assigned to the skills with

which the pattern is found. More details about the implementation is provided in

sub-section 4.2.2.

The final list of skills extracted from the job description along with the scores assigned

to them represents the skill-set required for the job.

3.3 Recommending software engineers for job

In this section, we describe the approach taken by us to solve the recommendation problem

of finding the software engineers best suited for the job advertisements.

34

3.3.1 Recommendation technique used

There are many recommendation techniques available to find closest match of items to

a given data item. As discussed in subsection 2.4.4, the problem we have in hand is a

content-based filtering problem. To get recommendations, we have a list of skills with

scores for each software engineer and list of required skills with scores from the job de-

scription. To find top n closest recommendations for the job description, we use Euclidean

Distance Approach.

Euclidean Distance is the ”ordinary” straight-line distance between two points in Eu-

clidean space. In a recommendation system, using Euclidean approach, we plot all the

available data points in an n-dimensional space. These n-dimensions represents the pa-

rameters using which we represent the points. Now we plot the given test point in the

same space and find Euclidean distance of each data point with the test point. The closest

n-data points to the test point are the n closest matches to the given problem.

In our case data points are the list of scores assigned to skills for various software

engineers, test point is the list of scores assigned to required skills extracted from job

description and closest n-data points are the n-recommendations for the job. The list of

n-recommendations is then sorted based on their distance from the test point to get the

closest match at the top of the list.

Figure 3.1 represents a set of data point and a test point, in an 2-dimensional plane,

with d1 and d2 being the 2 dimensions. The points represented inside the circle are the

n-closest matching data-points to the test point.

35

Figure 3.1: Euclidean Distance in 2-Dimensional space

Chapter 4

Implementation

In this chapter, we specify the implementation details to the approach defined in Chapter

3. Section 4.1 describes the components involved and their interactions such that the

system generates developer profiles containing rated skills of the developer. Section 4.2

describes various components involved in the requirement extraction from a job descrip-

tion. Finally, section 4.3 describes the components in the recommendation system. At

the end of each section we highlight provide the limitations in the approach taken.

4.1 Developer Profile Generator

4.1.1 Components Involved

Figure 4.1 shows the various components involved in generating a user profile and the

flow of data through these components. This entire system is built using Java as the

programming language with Hibernate framework as the ’Object-Relational Mapping’

technology and MySQL as the relational database system to store the data for the users.

The system exposes a RESTful Web Service which provides the list of user profiles over

the web in JSON format.

Following are the components in detail :

36

37

Figure 4.1: Components Interaction for Developer Profile Generator

• GitHub API : This component is an external component available over web. As

discussed in section 3.1, GitHub provides a way for the developers to access the pub-

lic data for development purpose. All requests for data from GitHub API are done

through the URI ’https://api.github.com’. We use the ’Version 3’ of the GitHub

API available for developers. There are limits imposed by GitHub on the amount

of data that can be fetched over a a period of time. The data over these APIs is

available in JSON format. The output from this component if a JSON string of

data provided by GitHub.

• Data Extractor : The job of extracting the data about the user from the GitHub

API is done by the Data Extractor component. Since GitHub provides RESTful API

over HTTP to get the data, java’s ’HttpURLConnection’ object is created using a

URL, over which the data is available. After the setup of the connection, the JSON

data is read as a stream using an ’InputStreamReader’ object. The string of JSON

data is then mapped to a ’JSONObject’ available in ’json’ library which provides

useful APIs to parse a JSON string. The output from this component is an object

of type ’JSONObject’ containing data pulled form GitHub.

• Pre-Processing Filter : The JSON data pulled from GitHub contained a lot of in-

formation which is irrelevant to our problem statement like svn-url, merge or rebase

38

permissions etc for a repository or avatar-url, gists-url, html-url etc for a user. The

information we require is the general data of user like username, company, email id

and number of followers, plus the push events (which are commits), modifications

done in the commits, issues events, issue-comment events for the user and informa-

tion about repositories created or starred by the user. So, we need a component

that filters out the unnecessary information pulled from GitHub and provides only

the required information. And that is the functionality of the Pre-Processing Fil-

ter component. The output from this component is a series of java objects which

contain relevant information to the problem in hand.

• Database : Database stores all the information required about the user to identify

the skills ans well as rate those skills based on the contributions done in repositories.

As pointed out earlier, we use relational database management system, MySQL, as

the database technology. Hibernate framework is used to map the object received

from the Pre-Processing Filter to the tables present in the database.

• User Profile Builder : After having all the necessary data, the next step is

to process the data. The User Profile Builder component pulls the data from the

database and builds the profile for the users. These profiles contain basic information

about the users, plus the contributions done by the users in the open source platform.

To identify the skills possessed by a user and the proficiency in those skills, User

Profile Builder sends the user profiles to the User Skill Extractor component.

• User Skill Extractor : User Skill Extractor receives profiles for all the users from

the User Profile Builder. As discussed in sub-section 3.1.1, the skills for the users

are identified using a couple of steps : repository languages and file extensions.

Languages used in repositories created or starred by the user are used to find user

skills. But not all the languages are identified by the library used by GitHub. So

we move to the next step of identifying skills, which is based on the file extensions

of the files present in those repositories. The output from this component is all the

39

user profiles containing list of skills for each user.

• Skill Scoring Engine : To score the proficiency of every skill identified for a user

by User Skill Extractor component, Skill Scoring Engine is used. As discussed in

sub-section 3.1.2, three out of the six parameters are identified for rating the skills

of the users : content of commits done, number of issues closed by the user and

number of followers for the user. In the next section, we discuss the Skill Scoring

Engine in detail.

4.1.2 User Skill Scoring Engine

Every skill identified for a user is assigned three types of scores. Figure 4.2 shows the

three sub-components in the Skill Scoring Engine for finding out the proficiency of skills

identified for a user.

Figure 4.2: User Skill Scoring Engine

• Commit-Based Score : Commit-Based Score component scores a skill based on

the content of the commit done by the user. For scoring based on the content, we

consider the lines of code changed in each file in the commit and identify the skill

to which the file belongs. The maximum score a skill can get is 10. Let SLOC be

the score assigned to the skill based on the lines of code changed by the user in his

commits. If lines of code changed by the user for a skill is greater than average lines

of code changed for that skill, then the user’s skill is assigned more score. Following

40

is the Pseudo-code for evaluating SLOC for a skill of a user.

Algorithm 1 Pseudo-code for assigning commit-based score

ULOC ← LOC of skill changed by user
TLOC ← Total LOC of skill changed
UCount ← Total No of users

AV GLOC ← TLOC/UCount

score← (ULOC/TLOC) ∗ 10

if ULOC < AV GLOC then
SLOC ← score + 2

else {ULOC >= AV GLOC}
SLOC ← score + 5

end if

if SLOC >= 10 then
SLOC ← 10

end if

• Issue-Based Score : Issue-Based Score component scores a skill based on the

number of issues fixed by the user across the repositories in which the user has done

contributions. So, if user solves an issue in a repository, then all the skills associated

with that repository are assigned score. More the number of issues solved by the

user, greater is the score assigned. The maximum score a skills can get is 10. Let

SIC be the score assigned to the skill based on the number of issues fixed by the user

across repositories. Score, SIC, is calculated for every repository contributed to by

the user and is assigned to every skill associated with the repository. If there is a

common skill in multiple repositories, then the sum of scores for that skill across all

the repositories will be the final score assigned to the skill. If an issue closed by the

user has more number of user comments on it, the issue based score assigned would

be more. This is based on the understanding that more the number of comments

on an issue, more severe is the issue. Following is the Pseudo-code for evaluating

SIC for a skill of a user.

41

Algorithm 2 Pseudo-code for assigning issue-based score

ICount ← No of Issues Closed

for each i in ICount do
SIC ← SIC + 1
CCount ← No of comments for closed issue

if CCount > 3 then
SIC ← SIC + 1

end if
end for

if SIC >= 10 then
SIC ← 10

end if

• Popularity Score : Issue-Based Score component does not consider the contri-

butions made by the user but the popularity of the user across the social coding

platform. This score is evaluated based on the number of followers of the user and

is assigned to every skill of the user. Let SPopularity be the score assigned to the skill

based on the popularity of the user. Following is the Pseudo-code for evaluating

SPopularity for a skill of a user.

Algorithm 3 Pseudo-code for assigning popularity score

URANK ← User rank in user list sorted by No of followers
UCount ← Total No of users

SPopularity ← [URANK/UCount] ∗ 10

The Total Score assigned to a skill of the user,SSkill, is calculated as :

SSkill = [0.5 ∗ SLOC] + [0.3 ∗ SIC] + [0.2 ∗ SPopularity]

Thus, the final score of skill gets 50% of SLOC, 30% of SIC and 20% SPopularity. These

percentages are based on the results of the questionnaire to identify signals available on

42

GitHub for evaluating quality of software engineer, which we have discussed in Chapter

5 - Section 5.1.

4.1.3 Limitations of the approach

Following are some of the limitations of the approach taken for identification of user skills

and his proficiency in those skills:

• In this approach, we are just calculating the number of lines as part of content of

commit which might not be a very good parameter to measure the quality of changes

done.

• We have not considered any soft skill as part the skill-set held by a software engineer.

Skills like being a team-player, having leadership qualities might also be important

and identifiable from GitHub activities.

• Assigning the score given by the property ’number of followers’ to every skill might

have introduced discrepancies in the results achieved.

• Currently we are assigning the score based on issues closed by a user in a repository

to every language of that repository irrespective of the context of the issues that

were solved. A person might have solved all the issues which concerned Java code

but the score is assigned to every other language in the repository.

4.2 Skill-Based Requirement Extractor

4.2.1 Components Involved

Figure 4.3 shows various components involved in extracting skills from a job description

and the flow of data through these components. This entire system is built using Java as

the programming language. The system exposes a RESTful Web Service which provides

the list of skills with rating based on level of requirement over the web in JSON format.

43

Figure 4.3: Components Interaction for Skill-Based Requirement Extractor

Following are the components in detail :

• Predefined Skills Knowledge-Base : This is a separate file which contains the

knowledge base of the skills a software engineer may possess. The skills are used for

skill extraction from a job description using keyword based matching.

• Skill Loader : Before the job description is loaded and processed, pre-defined

skills from Predefined Skills Knowledge-Base file is loaded into the memory using

Skill Loader component. The output from this component is a list of pre-defined

skills.

• Job Description Loader : After loading the knowledge-base of skills, next step

is to load the job description into the memory. This function is performed by Job

Description Loader. The output from this component is a list of separate rows from

the job description.

• Stemming : The first step after loading the job description into the memory is

44

stemming each row of job description. Stemming is done to bring every keyword i the

text into its root or base form so that further processing of text becomes easier. For

stemming, we have used the Stemmer class defined by Stanford-CoreNLP Library

[42].

• Stop-Words Removal : The next step in processing of the job description is the

removal of predefined stop-words which is done by Stop-Words Removal component.

Stop-Words are considered to be noise in the input text. There is a separate file

maintained which contains list of stop words which are to be removed from the

stemmed text using simple keyword-based matching. Stop-words are removed after

stemming is done because this allows us to reduce the amount of predefined stop-

words maintained in the separate file. Foe eg. stemmed form of am, is and are is

be, so we maintain only be in the pre-defined stop-words list.

• Part-of-Speech (POS) Tagger : The next step of processing is tagging each token

in the text with part-of-speech tag. The POS Tagger Component reads the text

available in English language and assigns part-of-speech tag to each word available

in the text such as noun, verb, adjective etc. We use Stanford Log-linear Part-Of-

Speech Tagger which is a java based implementation provided for POS Tagger [41].

Following is an example showing the input given and output received to a POS

Tagger.

InputText : This is a sample text

OutputText : This/DT is/V BZ a/DT sample/NN sentence/NN

The text returned from the tagger is tagged with part of speech. NN represents

noun, VBZ represents verb, DT is determiner. POS tagging of the text is done so

that as to create patterns for scoring the identified skills.

• Skill Extractor : Skill Extractor component receives 2 forms of input. One is the

45

list of pre-defined skills from Skill Loader component, and other is the list of rows

of job description with part-of-speech tag from POS Tagger. For identification of

skills from the job description, Skill Loader does a simple keyword based search.

So if java is a skill present in job description as well as list of predefined skills, it

will be identified as a required skill. For scoring of the extracted required skills,

Skill Loader sends the part-of-speech tagged list of rows of job description to the

Required Skill Scoring Engine

• Required Skill Scoring Engine : This component assigns the score to each skill

identified by the Required Skill Scoring Engine based on 3 criteria : the line on which

the required skill is present in job description, the amount of experience specified

in the job description for the skill and presence of some special keywords in the row

in which skill is present. In the next section, we discuss the Skill Scoring Engine in

detail.

4.2.2 Required Skill Scoring Engine

Figure 4.2 shows the three sub-components in the Required Skill Scoring Engine for finding

out the level of requirement of the skills identified.

Figure 4.4: Requirement Skill Scoring Engine

• Line-Based Score : Line based score is assigned simply based on the line of job

description on which the skill is present. Skills are rated more on the line above

46

than on the line below in text. The maximum line-based score that can be assigned

to a skill is 5. Let SL be the score assigned to a skill based on the line on which it

is present in job description. Following is the pseudo-code to find SL for every skill.

Algorithm 4 Pseudo-code for assigning line-based score

Lcount ← No of lines

for each s in skills do
SLineNo ← Line Number containing Skill(s)
score← Lcount − [SLineNo − 1]
SL ← [score ∗ Lcount] ∗ 5

end for

• Quantifiable Experience-Based Score: To assign Quantifiable Experience based

score to a skill, we use Part-Of-Speech tagged list of requirements received from Skill

Extractor. We defined a list of patterns based on the expected part-of-speech tags

from the text. A pattern is defined around a keyword to get better match results.

Following is an example pattern defined around keyword ’experience’ which matches

with the different variations of the text :

Defined Pattern : /CD /NNS /IN /NN experience

Matched Text : Having/V BG 5/CD years/NNS of/IN work/NN experience/V BP

in/IN object/RB oriented/V BN technology/NN

Matched Text : 5/CD years/NNS of/IN industry/NN experience/NN

in/IN java/NN

In the above example, we can see 2 different types of matched text which have same

part-of-speech tag pattern ’/CD /NNS /IN /NN ’ around the keyword ’experience’

and match with the defined pattern. This way, all the pre-defined patterns are

looked for in the text. If match is found, then the value in the text with POS tag

CD is extracted. This value is the amount of experience required for the skills. Let

47

SQE be the score assigned to a skill based on the specified quantifiable experience.

SQE is assigned to all the skills present in the same line as the matched pattern.

Maximum value of SQE can be 5. Following is the pseudo-code to find SQE for every

skill for which predefined experience pattern has been identified.

Algorithm 5 Pseudo-code for assigning quantifiable experience-based score

QEcount ← Amount of Experience Identified

if QEcount >= 7 then
SQE ← 5

else if QEcount >= 5 then
SQE ← 4

else if QEcount >= 3 then
SQE ← 3.5

else if QEcount >= 2 then
SQE ← 2.5

else
SQE ← 1

end if

• Special Pattern-Based Score : Many times in the job description, amount of

experience is not mentioned explicitly. Instead it is defined as special terms like

substantial experience’ or ’vastly experienced’. Special Pattern-Based Score assigns

score to skills based on such special keywords. Again a predefined list of Part-Of-

Speech Tag based patterns are used to identify such special keywords in the text.

This predefined pattern list with the corresponding score is maintained as a separate

file. This score is assigned to the skills only when no quantifiable experience pattern

is found in the line. If SSK is the special keyword based score, then

SSK = 0, iff SQE 6= 0

48

Total Score assigned to a required skill, SRS, is calculated as

SRS = SL + SQE + SSK

4.2.3 Limitations of the approach

Following are some of the limitations of the approach taken for extraction of skills required

for a job and scoring them based on the level of requirement :

• For identification of skills from the job description, we prepare a pre-defined list of

skills which a software engineer might hold. This requires a lot of manual effort and

since technologies are growing rapidly, the list needs to be updated regularly.

• Also, the patterns and keywords defined for rating the skills requires a lot of human

effort and might need to be updated if new patterns are identified.

• Line-Based score, based on the trends seen, assumes that more important skills

would be mentioned at the top of job description and less important skills at the

bottom. If this assumption fails for some job description, then there would be some

error in the scores assigned to the skills. This error is the deviation of the assigned

score from the actual score a human would assign to the skill.

• The system scores the skills based on some of the identifiable features from the job

description. But there might be some invisible information which the system would

miss. For instance, the system identifies two skills S1 and S2 with same rating, but

the actual recruiter wants a person with skills S1 more than a person with skill S2.

Such cases will result in erroneous output.

49

4.3 Recommendation System

4.3.1 Components Involved

Figure 4.5 shows the various components involved in finding recommendations for soft-

ware engineers based on the user profiles and the skills extracted from job description.

This entire system is built using Java as the programming language. The system exposes

a RESTful Web Service that provides a list of recommended user profiles for a job over the

web in JSON format. As described in section 3.3, the recommendation task is performed

using Euclidean Distance Approach.

Figure 4.5: Components Interaction for Recommendation System

To provide recommendations, the Recommendation System takes as input the output

of User Profile Generator and Skill-Based Requirement Extractor. The output from the

User Profile Generator is a list of user profiles with each profile containing a list of rated

skills for the user. The output from the Skill-Based Requirement Extractor is a list of

required skills, each rated based on the level of requirement. If there are ’n’ data points,

which are lists of scores for skills possessed by n users, and there is one test point, which

is the list of rated skills for the job, we need to find the Euclidean distance between test

point and every data point.

50

But before finding this distance, the vector space representing the scores of user skills,

USV, has to be in same format as vector space for the skills extracted from the job de-

scription, JDSV. This is because the skills which user possess might be different, or in

different order, from the skills which the job requires. So we define following algorithm

to find a new vector space MSV for every user which contains the same skills of user as

the vector space containing skills of job and in the same order , JDSV.

Algorithm 6 Pseudo-code for mapping user skill vector space to job skill vector space

JDSV : List[skill, score]
USV : List[skill, score]

JDSV ← Skill V ector for Job

for each u in UserProfiles do
USV ← Skill V ector for User[u]
Create New List MSV : List[skill, score]
for each j in JDSV do
MSV .addItem(j.skill, 0)
for each k in USV do

if j.skill = k.skill then
MSV .assignScore(j.skill, k.score)
break

end if
end for

end for
MSV is the mapped Skill for User[u]

end for

After creating MSV for every user, we calculate the Euclidean Distance between ev-

ery MSV and JDSV. If m and j are two points in an k-dimensional plane and m =

(m1,m2,...,mk) and j = (j1,j2,...,jk), then Euclidean distance between m and j is defined

as :

d(m, j) =

√√√√ k∑
i=1

(mi − ji)2

51

Lastly, user profiles are sorted based on the corresponding Euclidean Distance between

MSV and MSV, and the top n user profiles are the top n recommendations for the job.

4.3.2 Limitations of the approach

• Due to the requirement of finding closest matching software engineers to the job

description, we have considered Euclidean distance approach. We have not tested

the system with other approaches like Cosine-distance or Manhattan-distance which

might give better results.

• As pointed out in the sub-section 4.2.3, The system scores the skills based on some

of the identifiable features from the job description and some invisible information is

not considered. If the invisible information is to be considered, Euclidean distance

might not be the best approach.

Chapter 5

Evaluation & Result

In this chapter we describe the procedure we followed to evaluate the approach and

present the result. Section 5.1 provides the details of the questionnaire presented to

people working in the software industry to identify the signals helpful in determining the

quality of a software engineer. The results are also provided in this section. Section 5.2

describes the experimental setup for getting the results. And finally, section 5.3 discusses

the procedure and the outcome of the evaluation of the those results.

5.1 Evaluation of quality signals on GitHub

Based on the existing research on the social coding platform, GitHub, six signals are

identified which might be helpful in determining the quality of software engineer. Now

the task in hand is to shortlist the most important signals which we can use to identify

the skills of a software engineer. So, we prepare a questionnaire asking relevant questions

regarding these signals, and send it to the people working in the software industry, to un-

derstand what signals do people working in the industry identify as important for judging

the quality of the software engineer.

Following are the questions asked and the responses received from the people. A

52

53

total of 96 people responded to the questionnaire. The distribution of responses is also

presented in Appendix B.

• Do you know the workflow of GitHub (social coding platform)? : The first

question of the questionnaire is to identify if the person answering the questionnaire

understands the workflow of GitHub. This is done because most of the questions

after this are related to working of GitHub and the intention is to remove noise

from the responses received. Out of the 96 responses received, 7 said they were not

familiar with the workflow of GitHub and 89 said that they were familiar with the

workflow of GitHub.

Question Yes No

Do you know the workflow of GitHub (social coding plat-

form)?

89 7

Table 5.1: Questionnaire Responses : Familiarity with GutHub workflow

Now for the rest of questionnaire, we consider only those 89 people who are familiar

with the workflow of GitHub.

• Have you even been a part of technical recruitment process playing the

role of recruiter? : This is asked to identify the kind of people answering the

questionnaire. More than half of the people have no experience of being a recruiter

in a recruitment process but some have the experience of being a recruiter.

Question Yes No

Have you even been a part of technical recruitment pro-

cess playing the role of recruiter?

27 62

Table 5.2: Questionnaire Responses : Recruitment experience

• How much would you rate ’content of commits’ done by a GitHub user

for determining how good a software engineer he is? : This is the first

54

question in which we ask about a signal available for a user on GitHub. The signal

is ’content of commits’. The options presented for a signal are ’highly relevant’,

’relevant’, ’not much relevant’ and ’no relevance at all’.

Question Highly

relevant

Relevant Not

much

None at

all

How much would you rate ’content of commits’ done

by a GitHub user for determining how good a software

engineer he is?

36 42 7 2

Table 5.3: Questionnaire Responses : ’Content of Commits’ signal

As can be seen from the data, almost 90% of the people think that this signal is

highly relevant or relevant for determining the quality of a software engineer. Hence,

this signal is chosen for scoring of the skills of a software engineer.

• How much would you rate ’frequency of commits’ done by a GitHub user

for determining how good a software engineer he is? : another signal iden-

tified from the research work done is how frequently does a GitHub user commits.

Following are the results of the question.

Question Highly

relevant

Relevant Not

much

None at

all

How much would you rate ’frequency of commits’ done

by a GitHub user for determining how good a software

engineer he is?

4 8 51 26

Table 5.4: Questionnaire Responses : ’Frequency of Commits’ signal

Results show that more than 80% of the people think that ’frequency of commits’

is not a good criteria to judge the work of a software engineer. Hence, we reject this

signal in our approach.

55

• How much would you rate ’Number of Issues raised’ by a GitHub user

in a repository for determining how good a software engineer he is? :

Issues raised by a GitHub user is identified as a social characteristic for the user.

Following are the results of the question.

Question Highly

relevant

Relevant Not

much

None at

all

How much would you rate ’Number of Issues raised’ by

a GitHub user in a repository for determining how good

a software engineer he is?

9 19 40 21

Table 5.5: Questionnaire Responses : ’Number of Issues raised’ signal

Results show that more than 60% of the people think that ’number of issues raised’

is not a good criteria to judge the work of a software engineer. Hence, we reject this

signal in our approach.

• How much would you rate ’Number of Issues Fixed’ by a GitHub user in

a repository for determining how good a software engineer he is? : Issues

fixed by a GitHub user is identified as a technical as well as social characteristic for

the user. Following are the results of the question.

Question Highly

relevant

Relevant Not

much

None at

all

How much would you rate ’Number of Issues Fixed’ by

a GitHub user in a repository for determining how good

a software engineer he is?

22 30 20 15

Table 5.6: Questionnaire Responses : ’Number of Issues Fixed’ signal

As can be seen from the data, almost 60% of the people think that this signal is

highly relevant or relevant for determining the quality of a software engineer. Hence,

56

this signal is chosen for scoring of the skills of a software engineer.

• How much would you rate ’Number of Comments made on Issues’ by a

GitHub user in a repository for determining how good a software engi-

neer he is? : another signal identified is the number of comments made on issues

by a GitHub user. Following are the results of the question.

Question Highly

relevant

Relevant Not

much

None at

all

How much would you rate ’Number of Comments made

on Issues’ by a GitHub user in a repository for deter-

mining how good a software engineer he is?

4 23 39 23

Table 5.7: Questionnaire Responses : ’Number of Comments made on Issues’ signal

Results show that more than 60% of the people think that ’number of comments

made on issues’ is not a good criteria to judge the work of a software engineer.

Hence, we reject this signal in our approach.

• How much would you rate ’Average Length of Comments made on Issues’

by a GitHub user in a repository for determining how good a software

engineer he is? : another signal identified is the length of comments made on

issues by a GitHub user. Following are the results of the question.

Question Highly

relevant

Relevant Not

much

None at

all

How much would you rate ’Average Length of Com-

ments made on Issues’ by a GitHub user in a repository

for determining how good a software engineer he is?

7 19 42 21

Table 5.8: Questionnaire Responses : ’Average Length of Comments made on Issues’ signal

57

Results show that more than 70% of the people think that ’length of comments

made on issues’ is not a good criteria to judge the work of a software engineer.

Hence, we reject this signal in our approach.

• How much would you rate ’Number of repositories starred or watched’

by a GitHub user for determining how good a software engineer he is?

: another signal identified was the number of repositories starred or watched by a

GitHub user. Following are the results of the question.

Question Highly

relevant

Relevant Not

much

None at

all

How much would you rate ’Number of repositories

starred or watched’ by a GitHub user for determining

how good a software engineer he is?

10 13 40 26

Table 5.9: Questionnaire Responses : ’Number of repositories starred or watched’ signal

Results show that more than 70% of the people think that ’number of repositories

starred or watched’ is not a good criteria to judge the work of a software engineer.

Hence, we reject this signal in our approach.

• How much would you rate ’Number of repositories created’ by a GitHub

user for determining how good a software engineer he is? : another signal

identified is the number of repositories created by a GitHub user. Following are the

results of the question.

58

Question Highly

relevant

Relevant Not

much

None at

all

How much would you rate ’Number of repositories cre-

ated’ by a GitHub user for determining how good a soft-

ware engineer he is?

8 18 54 9

Table 5.10: Questionnaire Responses : ’Number of repositories created’ signal

Results show that more than 70% of the people think that ’number of repositories

created’ is not a good criteria to judge the work of a software engineer. Hence, we

reject this signal in our approach.

• How much would you rate ’Number of followers’ a GitHub user has for

determining how good a software engineer he is? : In the research work

done, number of followers of a user is identified as an influential signal. Following

are the results of the question.

Question Highly

relevant

Relevant Not

much

None at

all

How much would you rate ’Number of followers’ a

GitHub user has for determining how good a software

engineer he is?

17 25 32 13

Table 5.11: Questionnaire Responses : ’Number of followers’ signal

As can be seen from the data, almost 50% of the people think that this signal is

highly relevant or relevant for determining the quality of a software engineer. Hence,

this signal is chosen for scoring of the skills of a software engineer.

Based on the results from the questionnaire, three signals were identified as helpful in

determining the quality of software engineer and were used for determining the proficiency

of skills held by the software engineer : Content of commits, Number of issues fixed by

59

user, number of followers of the user.

5.2 Experimental Setup

As part of experimental setup, we crawl the profiles of 128 GitHub users. All these users

are contributors to one of the popular repositories [39]. For these users, we collect basic

information, information about the repositories they own or star, the languages used

in these repositories, the recent commits done by these users and the content of those

commits, the recent issues raised or fixed by these users and comments made on the

issues. The amount of data collected is presented in the table below.

Information Type Count

Users 128

Repositories 19370

Commits 2588

Issues 973

Comments 2770

Table 5.12: Experimental Setup

Also, to help evaluate the resulting recommendations of software engineers for a job,

we creat a web based user interface, which takes job description as the input and generates

the list of top 10 recommendations. For each recommendation, a user profile is displayed

which contains all the information collected for the user. This information is provided to

help evaluate the results. Based on the information of user, graphs are also displayed on

his profile, showing the the commits done with the lines of code changed in those commit

and issues fixed with the number of comments on those issues. The screen shots for the

user profile can be seen in Appendix C.

60

5.3 Evaluation of Output

For evaluating the results given by the recommendation system following steps are followed

:

• 15 random job descriptions available online are used for the evaluation purpose.

• 15 recruiters, out of the 27 recruiters who were also involved in the questionnaire,

are consulted for the evaluation task.

• The recommendations generated by system are evaluated by these recruiters, with

each recruiter evaluating results of 3 different job descriptions and each job descrip-

tion being evaluated by 3 different recruiters.

• The evaluation for recommendations generated is done by viewing the user profile

over the web user interface of the software engineers and deciding if the recommen-

dations are suitable for the job or not.

• The recruiters are told to assign each job description given to them with one of the

following labels post evaluation :

– Perfectly Matched, if all 10 recommendations match the job requirements.

– Closely Matched, if 7 or more (but less that 10) recommendations match the

job requirements.

– Some Matched, if 4 or more (but less that 7) recommendations match the job

requirements.

– Less Matched, if less than 4 recommendations match the job requirements.

Following was the result of the evaluation done by the recruiters :

Out of the 45 responses received for 15 job descriptions, 9 are ’Perfectly Matched’, 19

are ’Closely Matched’, 13 are ’Some Matched’ and 4 are ’Less Matched’

61

Figure 5.1: Evaluation of Output

Figure 5.2: Evaluation of Output : Distribution

Chapter 6

Conclusion and Future Work

In this chapter, we provide the conclusions drawn from the research. then we present

some ideas for the future work in this area.

6.1 Conclusions

In the first chapter of this dissertation 1.2 we presented three research question. Now we

present the answers to those questions :

1. What signals can be used from the GitHub profile of a developer to auto-

mate the process of identification and rating of his skills? : To find out what

signals are important for determining the proficiency of the skills held by a GitHub

user, we created a list of properties a GitHub user has and did a questionnaire

with industry people to identify which of these properties give indications about the

quality of software engineer. Based on the results, we were able to identify three

properties which we used in the system we built. But there were some limitations

of our approach which we highlighted in the section 4.1.3.

2. What technique would be suitable to automate the process of identifica-

tion of required skill from a given job description and rate those skills

62

63

based on their level of requirement? : To find a suitable technique, we investi-

gated the existing research done in those areas, and identified some of the challenges

in those approaches. Then we defined a keyword based skill identification approach

from a job requirement text. To rate the identified skills based on their level of

importance, we highlighted three criteria, used by us in out approach, in the section

3.2.2. Even though we did not do an explicit evaluation of the approach for skills

extracted from the job description, the results of the evaluation of recommendation

system presented in section 5.3 show that we were able to successfully achieve the

research goal. But we did identify some limitations of the approach we had taken

and presented it in section 4.2.3

3. What recommendation strategy would be best suited to match skills iden-

tified from developer’s GitHub profile to the job specification presented

by the recruiter? : Based on our initial investigation, we identified content-based

filtering as the technique for our recommendation problem. For identifying suitable

matches of software engineers for a job, we used Euclidean Distance Approach. To

evaluate the performance of the recommendation system, we took help of 15 peo-

ple who have been involved in the recruitment process in the industry. Based on

the results of this evaluation presented in section 5.3, only in 2 out of the 15 job

description, namely job description 4 and 8, no one identified the recommendations

provided by the system as close matches (7 or more matched the job requirements).

In 8 out of 15 job description, one or more people rated the recommendations pro-

vided by the system as perfect. Only in 4 out of 15 job descriptions, someone

identified that less than 4 recommendations matched the job. Based on the results

we can say that the approach taken to solve the recommendation problem does

solve the problem to some extent. But some of the limitations identified in our

recommendation approach are presented in section 4.3.2.

64

6.2 Future Work

In this section we present the ideas for the future work. As part of finding skills of

software engineer, identification of soft skills from user profile of GitHub can be taken up

as a further research. Also, we have considered lines of code changed in commit as a signal

for rating skills of the user. Research can be done in analysis of the code committed by the

user. For instance, complexity of the code committed can be used as a significant factor

for identifying how good the developer is. In extraction of skills from a job description,

the task was to intelligently identify the critical skills required for a job. Research can

be done to check how well does ’Defeasible Reasoning’ based approach performs for such

systems. For the match-making problem in hand, further research can be done to check

how well do techniques like Cosine-Distance and Manhattan-Distance perform.

Appendix A

Abbreviations

Short Term Expanded Term

SHA Secure Hash Algorithm

NLP Natural Language Processing

NLG Natural Language Generation

TF Term Frequency

IDF Inverse Document Frequency

ML Machine Learning

NLU Natural Language Understanding

API Application Program Interface

POS Part Of Speech

JSON JavaScript Object Notation

NER Named Entity Recognition

65

Appendix B

Evaluation of quality signals on

GitHub

In this appendix we provide the screen shots related to the questionnaire used by us to

identify signals which might be helpful in determining the quality of software engineer.

Figure B.1: Quality signals on GitHub : Question 1

66

67

Figure B.2: Quality signals on GitHub : Question 2

Figure B.3: Quality signals on GitHub : Question 3

68

Figure B.4: Quality signals on GitHub : Question 4

Figure B.5: Quality signals on GitHub : Question 5

69

Figure B.6: Quality signals on GitHub : Question 6

Figure B.7: Quality signals on GitHub : Question 7

70

Figure B.8: Quality signals on GitHub : Question 8

Figure B.9: Quality signals on GitHub : Question 9

71

Figure B.10: Quality signals on GitHub : Question 10

Figure B.11: Quality signals on GitHub : Question 11

Appendix C

User Profile

In this appendix we provide the screen shots related to the user profile presented for the

evaluation of the recommendations provided by the system.

Figure C.1: User Interface : User Details

72

73

Figure C.2: User Interface : Contributions across Repositories

Figure C.3: User Interface : User Skills

74

Figure C.4: User Interface : Lines of code changed vs Commits

75

Figure C.5: User Interface : Comments vs IssuesClosed

Bibliography

[1] Ali Sajedi Badashian, Eleni Stroulia. “Measuring User Influence in Github: The

Million Follower Fallacy,” in International Conference of Software Engineering,

Austin, Texas, 2016, pp.15-21.

[2] Jennifer Marlow, Laura Dabbish. “Activity traces and signals in software de-

veloper recruitment and hiring, in Computer Supported Cooperative Work, San

Antonio, Texas, 2013, pp.145-156.

[3] Jennifer Marlow, Laura Dabbish, Jim Herbsleb. “Impression formation in online

peer production: activity traces and personal profiles in github, in Computer

Supported Cooperative Work, San Antonio, Texas, 2013, pp.117-128.

[4] Ali Sajedi Badashian, Afsaneh Esteki, Ameneh Gholipour, Abram Hindle, Eleni

Stroulia. “Involvement, Contribution and Influence in GitHub and Stack Over-

flow, in Conference of the Center for Advanced Studies on Collaborative Research,

Markham, Ontario, Canada, 2014, pp.19-33.

[5] Claudia Hauff, Georgios Gousios. “Matching GitHub developer profiles to job

advertisements, in International Conference on Software Engineering, Florence,

Italy, 2015, pp.362-366.

[6] Jason Tsay, Laura Dabbish, James Herbsleb. “Let’s talk about it: evaluating con-

tributions through discussion in GitHub, in Foundations of Software Engineering,

Hong Kong, China, 2014, pp.144-154.

76

77

[7] Bogdan Vasilescu, Vladimir Filkov, Alexander Serebrenik. “StackOverflow

and GitHub: Associations between Software Development and Crowdsourced

Knowledge, in Social Computing Conference, Alexandria, VA, USA, 2013,

doi:10.1109/SocialCom.2013.35.

[8] Maryam Fazel-Zarandi, Mark S. Fox. “Semantic Matchmaking for Job Recruit-

ment: An Ontology-Based Hybrid Approach, in International Journal of Advanced

Computer Science and Applications, 2016.

[9] F.O. Isinkaye, Y.O. Folajimi, B.A. Ojokoh. “Recommendation systems: Princi-

ples, methods and evaluation, in Egyptian Informatics Journal, 2015.

[10] Shaha T. Al-Otaibi, Mourad Ykhlef. “Job Recommendation Systems for Enhanc-

ing E-recruitment Process,” unpublished.

[11] Yao Lu, Sandy El Helou, Denis Gillet. “A Recommender System for Job Seeking

and Recruiting Website, in International World Wide Web Conference, Rio de

Janeiro, Brazil, 2013, pp.963-966

[12] Amir Hossein Nabizadeh Rafsanjani, Naomie Salim, Atae Rezaei Aghdam,

Karamollah Bagheri Fard. “Recommendation Systems: a review, in International

Journal of Computational Engineering Research, Vol 03, Issue 5, 2013.

[13] J. Malinowski, T. Keim, O. Wendt, T. Weitzel. “Matching People and Jobs: A

Bilateral Recommendation Approach, in 39th Annual Hawaii International Con-

ference, Kauia, HI, USA, 2006, doi:10.1109/HICSS.2006.266

[14] Hongtao YU, Chaoran LIU, Fuzhi ZHANG. “Reciprocal Recommendation Algo-

rithm for the Field of Recruitment, in Journal of Information & Computational

Science, 2011.

[15] Laura Dabbish, Colleen Stuart, Jason Tsay, Jim Herbsleb. “Social Coding in

GitHub: Transparency and Collaboration in an Open Software Repository, in

78

Computer Supported Cooperative Work, Seattle, Washington, USA, 2012, pp.1277-

1286

[16] Joicymara Xavier, Autran Macedo, Marcelo de Almeida Maia. “Understanding

the popularity of reporters andassignees in the Github, in International Con-

ference on Software Engineering & Knowledge Engineering, Vancouver, Canada,

2014.

[17] Francesco Ricci, Lior Rokach, Bracha Shapira, Paul B. Kantor.(2011) “Recom-

mender Systems Handbook,” Springer International Publishing

[18] Charu C. Aggarwal.(2016) “Recommender Systems: The Textbook,” Springer

International Publishing

[19] Daniar Asanov. (2015) “Algorithms and Methods in Recommender Systems”

[20] Tegawende F. BISSYANDE, David LO, Lingxiao JIANG, Laurent REVEILLERE,

Jacques KLEIN. “Got issues? Who cares about it? A large scale inves-

tigation of issue trackers from GitHub, in Software Reliability Engineering

(ISSRE), IEEE 24th International Symposium, Pasadena, CA, USA, 2013,

doi:10.1109/ISSRE.2013.6698918

[21] Jiansong Zhang, Nora M. El-Gohary. “Semantic NLP-based Information Extrac-

tion from Construction Regulatory Documents for Automated Compliance Check-

ing,”. Journal of Computing in Civil Engineering, July 2013

[22] Priyanka Kumbhar, Manjushree Mahajan. “Multi-Dimensional Trust Evaluation

from Mining of E- Commerce Feedback Comments in IJCA Proceedings on Na-

tional Conference on Advances in Computing, Communication and Networking,

2016.

[23] J.-D. Kim, T. Ohta, Y. Tateisi, J. Tsujii. “GENIA corpusa semantically annotated

corpus for bio-textmining,” Bioinformatics, Volume 19, Issue suppl 1,pp.i180i182.

79

[24] Ellen Riloff. “Automatically constructing a dictionary for information extraction

tasks, in AAAI’93 Proceedings of the eleventh national conference on Artificial

intelligence, Washington, D.C., 1993, pp.811-816

[25] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe. “The Promises and Perils of

Mining GitHub, in International Conference on Software Engineering, Hyderabad,

India, 2014, pp.92-101

[26] Thimma Reddy Kalva. “Skill Finder: Automated Job-Resume Matching System,”

Utah State University, 2013

[27] Abhimanyu Chopra, Abhinav Prashar, Chandresh Sain. “Natural Language Pro-

cessing, in International Journal of Technology Enhancements and Emerging En-

gineering Research, Vol 1, Issue 4, 2013.

[28] Ferdian Thung, Tegawend F. Bissyand, David Lo. “Network Structure of Social

Coding in GitHub, in Software Maintenance and Reengineering (CSMR), 17th

European Conference on, Genova, Italy, 2013, doi:10.1109/CSMR.2013.41.

[29] Kelly Blincoe, Jyoti Sheoran, Sean Goggins, Eva Petakovic, Daniela Damian.

“Understanding the popular users: Following, affiliation influence and leadership

on GitHub,” Information and Software Technology Journal, 2015.

[30] “Social recruiting Wikipedia. Retrieved from https://en.wikipedia.org/wiki/S-

ocial recruiting.

[31] “Natural Language Processing-Wikipedia. Retrieved from https://en.wiki-

pedia.org/wiki/Natural language processing.

[32] “Recommender System-Wikipedia”. Retrieved from https://en.wikipedia.o-

rg/wiki/Recommender system.

[33] “The Jobvite Recruiter Survey - 2015”. Retrieved from https://www.job-

vite.com/wpcontent/uploads/2015/09/jobvite recruiter nation 2015.pdf.

80

[34] “Apache OpenNLP Developer Documentation”. Retrieved from

https://opennlp.apache.org/docs/1.6.0/manual/opennlp.html

[35] Patrick McCuller. “How to Recruit and Hire great Software Engineers,” Article

in Apress.

[36] Fork A Repo - User Documentation, https://help.github.com/articles/fork-a-

repo/

[37] github/linguist: Language Savant, https://github.com/github/linguist

[38] Repositories — GitHub Developer Guide, https://developer.github.com/v3/repos

[39] ReactiveX/RxJava, https://github.com/ReactiveX/RxJava

[40] “Events — GitHub Developer Guide”. https://developer.github.com/v3/activity/events-

/#list-public-events-performed-by-a-user

[41] Stanford Log-linear Part-Of-Speech Tagger, https://nlp.stanford.edu/software-

/tagger.shtml

[42] Stanford CoreNLP - Stemmer, https://github.com/stanfordnlp/CoreNLP/blob-

/master/src/edu/stanford/nlp/process/Stemmer.java

[43] Stanford Named Entity Tagger, http://nlp.stanford.edu:8080/ner/

[44] spaCy Named Entity Tagger, http://textanalysisonline.com/spacy-named-entity-

recognition-ner.

[45] Commits — GitHub Developer Guide, https://developer.github.com/v3/repos/commits/.

[46] Contents — GitHub Developer Guide, https://developer.github.com/v3/repos/contents/

[47] About pull requests - User Documentation, https://help.github.com/articles-

/about-pull-requests/

81

[48] Merging a pull requests - User Documentation, https://help.github.com/articles-

/merging-a-pull-request/

[49] Issues - Github Guides, https://guides.github.com/features/issues/

[50] Shortlisting Step-By-Step Guide For Candidate Recruitment,, https://ideal.com/-

shortlisting/

[51] Github - About, https://github.com/about

[52] Importance of Soft Skills for Software Engineers, https://medium.com-

/@anaida07/importance-of-soft-skills-for-software-engineers-7965be2074dc

[53] Artificial Intelligence Natural Language Processing, https://www.tutorialspoint-

.com/artificial intelligence/artificial intelligence natural language processing.htm

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Motivation
	1.1.1 Problems with Recruitment Process
	1.1.2 Growing Popularity of Social Networking Platforms

	1.2 Research Question and Scope
	1.3 Workflow
	1.4 Road-map

	Chapter 2 State of the Art
	2.1 Open Source Coding Platform : GitHub
	2.2 Finding Skills of Software Engineers
	2.2.1 Research on Coding Platform : Github
	2.2.2 Conclusion from research on GitHub

	2.3 Requirement Extraction from Job Advertisement
	2.3.1 Natural Language Processing
	2.3.2 Research on Text Mining and Information Extraction Systems
	2.3.3 Conclusion from research on Text Mining and Information Extraction Systems

	2.4 Recommending Software Engineers for Job
	2.4.1 Recommendation Systems
	2.4.2 Recommendation Techniques
	2.4.3 Research on Recommendation Systems for a Job
	2.4.4 Conclusion from research on Recommendation Systems for a Job

	Chapter 3 Approach
	3.1 Finding skills of software engineers
	3.1.1 Approach to find skills
	3.1.2 Approach to find proficiency of skills

	3.2 Requirement extraction from job advertisement
	3.2.1 Skill extraction from job description
	3.2.2 Scoring extracted skills

	3.3 Recommending software engineers for job
	3.3.1 Recommendation technique used

	Chapter 4 Implementation
	4.1 Developer Profile Generator
	4.1.1 Components Involved
	4.1.2 User Skill Scoring Engine
	4.1.3 Limitations of the approach

	4.2 Skill-Based Requirement Extractor
	4.2.1 Components Involved
	4.2.2 Required Skill Scoring Engine
	4.2.3 Limitations of the approach

	4.3 Recommendation System
	4.3.1 Components Involved
	4.3.2 Limitations of the approach

	Chapter 5 Evaluation & Result
	5.1 Evaluation of quality signals on GitHub
	5.2 Experimental Setup
	5.3 Evaluation of Output

	Chapter 6 Conclusion and Future Work
	6.1 Conclusions
	6.2 Future Work

	Appendix A Abbreviations
	Appendix B Evaluation of quality signals on GitHub
	Appendix C User Profile
	Bibliography

