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Abstract

User grouping is the act of treating users that share common characteristics
as groups that can be modeled. These characteristics can be called user fea-
tures. Transactional logs are records of interactions between users and sys-
tems. User features can be derived from transactional logs. It must therefore
be possible to derive user groups from transactional logs. One method of
forming groups from data points is with data clustering. As user features are
shared characteristics about users, it may be possible to form groups of users
using data clustering techniques on their use features.

However, is it possible to extract user features from transactional logs and
then cluster those features using data clustering techniques to form clusters
from which user groups can be derived? This thesis is an experiment to see
if such an idea is possible.

To that end this dissertation proposes a pipeline that will take transac-
tional logs as an input and will output data clusters from which user groups
can be derived. The outputted clusters will be validated and analysed using
data analysis techniques such as silhouette scores to see if it is possible to
derive suer groups from them.
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Chapter 1

Introduction

1.1 Motivation

The interaction between users(humans) and systems(computers is called Hu-
man Computer Interaction (HCI). In HCI, user models are the models sys-
tems have of users that reside inside of their environments (Fischer, 2001).
These models form representations of the users that system administrators
and architects can use to alter the system.

User modelling is a broad topic with many sub categories of models. It is
thus necessary to know what is the best model to use for a system in question.
This is dependant entirely on the amount of information that one wishes to
know about that systems’ users. It is also dependant on the type of informa-
tion about the users that one wishes to know.

Due to this, the source of the information that is used to model the system
is very important. An example would be to compare transactional log data
mining and polling the users.

Polling allows system administrators to get direct feedback of their sys-
tems. While this is a fine method for a large business with a large amount of
user interaction, such as a Facebook, it is less useful for smaller businesses or
other systems. This is because polls are both expensive and will only reveal
information that users either choose to reveal or are asked about.

However, by using transactional log data, it is possible to extract a user’s
interactions with the system in question. Transactional logs are the records
of interactions (or transactions) between two systems. In the case of websites
these interactions are between their systems and their users. These trans-
actions can hold hidden information, such as behavioural trends amongst
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group of users. Such information would not be possible to gain from a poll.

However, for log data to become information, it must first be manipu-
lated and mined. For it to become knowledge, that information must be in-
terpreted. This interpenetration is part of this projects motivation.

By mining transactional log data it is possible to get characteristics of its
users. To take this information and convert to knowledge requires an extra
leap. To bridge the gap between transactional log data, and user models, or
more particularly user groups is a key motivating factor for this thesis.

By understanding these models it is possible to learn more about the users
beyond how they act with the system. It is possible to extract the knowledge
a user has of what is contained within the systems domain.

Part of what motivates the user modelling for this project is the need to
understand the users’ knowledge of the domain they are accessing. What
do they know about the data stored in the system? Or about specific topics?
Where do their general interests lie regarding the type of data?

By modelling the users the hope is that these questions can be answered.
These answers can then be used to further improve the system in question. If
such a method proves reliable, it can be repeated with other datasets. If this
reliability were to extend beyond its initial dataset, then a method of improv-
ing systems without extra user interaction may be created.

1.2 Research Question

Having stated the motivation that drives this thesis, it is now necessary to
ask what is the full purpose of the project? To what end is the research and
implementation of this project directed? Transactional logs are a common
feature in the world of web based systems. For such systems user grouping
is an effective way of gaining a greater insight into their users. A greater in-
sight may lead to major system improvements for users.

With that knowledge in hand, the research question to be pursued:
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“Can a Pipeline be Defined and Implemented that allows

for the Creation of User Groups from Transactional Log Data?”

The reasoning behind this question can be found by breaking

down the title of this thesis into questions and then answering

them. The title of this thesis is"The Search for the Searcher: User

Identification using Web Search Log Mining". The questions

that are derived are:"What is web search log mining?","What

is meant by ’user identification’?” and finally"Can a replica-

ble method be found to achieve ’user identification’ using web

search log mining?"

All records of a users interactions with a web based system

are held in transactional logs. These logs contain information

regarding the queries used by a user as well as how they acted

with the information that was returned from using those queries().

The information store that contains a users interaction with a

web based system are those system’s transactional logs.

It is these logs that are the web search logs in question. To ex-

tract data from these web search logs is to"mine” them. By"mining”

them successfully it is possible to get information about the users.

This information can then be used to"identify” them.

"Identifying” the users in the context of this project means to

successfully model them. As already stated, there are multiple

methods of modelling users to greater and lesser abstractions.

The question remains as to which method of modelling the users

is most effective. The greater the information extracted from a

user the greater the level of"identification” that is possible.
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By compiling the information from the disparate users to-

gether, it is possible to achieve a more specific model of the

group. To that end by defining"User Groups” it may be pos-

sible to successfully model the users of this system. User groups

are groups of users that share common characteristics that can

be used to typify later users, who would then be added to such

a group (Kay, 2001). By defining and populating these groups,

one can model and"identify” the users successfully.

When speaking of a replicable method, one must first break

any such method down into its constituent parts. The informa-

tion being used for identification may not be in a form suited for

that task. A method to parse that data into a usable form is there-

fore necessary. Operations must then be performed on the data

in order to successfully extract the groups necessary to model

the users. These operations performed in sequence would natu-

rally form a pipeline. This pipeline would use transactional log

data as an input and output clustered data from which the user

groups can be formed. By combining smaller methods such as

these together a pipeline begins to appear.

By answering those three questions a new one is formed. Which

is the question posed at the commencement of this section namely

- “Can a Pipeline be Defined and Implemented that allows for

the Creation of User Groups from Transactional Log Data?”.

1.3 Goals and Objectives

The goal of this project is to create a pipeline through which

transactional log data can be converted into user groups. That is,
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to create a pipeline that will take transactional logs as an input

and output data that can be used to create user groups. How-

ever, how this is achieved is discussed here. The objectives that

will allow completion of this project are:

1. To Store and Process the logs so as to make them Usable

2. To extract the Pertinent Data from the logs and Process it

3. To Define and Extract User Features from that Data

4. To Cluster the Users of the System based on those Fea-

tures

5. To Validate and Analyse the Clusters that formed

6. To use that Analysis to derive User Groups if Possible

1.4 Overview

So far the main concepts defining the foundations of this project

have been discussed. These include the underlying motivations

for the project, the research question it hopes to answer and the

goals and objectives that are set to be achieved. The chapters

that follow, will expand on the concepts and approaches as fol-

lows:
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Chapter 2 discusses the state-of-the-art which provides a solid

grounding in the current state, progress and performance of sim-

ilar projects to date. This chapter analyses current modelling

methods and explores the stereotyping of users based on their

transactional log data.

Chapter 3 describes the design methodology behind the var-

ious stages of the project. This includes the definition of the

pipeline, as well as its various parts.

Chapter 4 outlines the implementation of the design and de-

tails the technical aspects of the pipeline in greater depth. The

topics discussed in this chapter include the setting up of the test

environment and the implementation of the various aspects of

the pipeline.

Chapter 5 evaluates the results of the project. This chapter

critically analyses the experiments and tests, as well as the re-

sults achieved from the project in order to evaluate whether the

pipeline is both feasible on other systems as well as useful.

Chapter 6 has some final concluding thoughts on the project

as a whole. This chapter discusses the achievements of the project,

its limitations and the obstacles which occurred in the pursuit of

the goal of the project. Also discussed in this chapter is the fu-

ture work to be explored and my recommendations for doing so.
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Chapter 2

State of the Art

. At the beginning of this project a number of design choices

regarding technologies and methodologies had to be made first

in order to structure a feasible solution to the issues raised in

the previous chapter. The discovery of these technologies and

methodologies was accomplished through identifying applica-

ble trends within the realms of user modelling, data clustering,

and cluster analysis.

This chapter aims to discuss these various state-of-the-art ap-

proaches to problems similar to those found in this project. This

will be done through the analysis of the technologies and meth-

ods applied, as well as the results that they produce.

2.1 User Modelling

One of the most important aspects of this project is the mod-

elling of the users. User modelling, as a concept, dates back to

the late 1970’s when user information was stored and contained

completely within an application. At that time little distinction

was given between user modelling and other general applica-

tion functions (Kobsa, 2001).
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Today, there are multiple disparate forms of user modelling.

When it comes to what models to use when modelling the users,

there are a large amount of choices available.

One such method of user modelling is to stereotype the users.

User stereotyping was proposed as a method of quickly build-

ing models of users using little data(Rich, 1979). Rich defined

these stereotypes as a collection of attributes that often co-occur

in people. Stereotypes solved the issue of the new user problem.

This problem is the issue of defining individualised user models

where there were no previous interactions from which to build.

Having a pool of stereotyped users can be extremely useful

as they allow the modeller to make a large number of inferences

from a small sample size. The drawback to user stereotypes

however is that they require non-monotonic reasoning techniques

(Rich, 1989).

Non-monotonic reasoning is a reasoning that creates an in-

ference in which the reasoner draws their own tentative conclu-

sions(Brewka, 1991). This allows the reasoner to withdraw their

conclusions at a later date when newer more accurate informa-

tion is available. As stereotypes require this reasoning it can be

inferred that they are, by design, tentative models.

This means that such stereotypes are understood to be pos-

sibly flawed from the use of the term stereotype. This flawed

nature is one reason why a decision was made not to attempt to

create stereotypes. While they do not require much data, they

do require a large amount of scepticism. If chosen user stereo-

types were used for the modelling paradigm of the project, one

could not be sure of the usefulness of the results.
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An alternative user modelling approach to grouping users ac-

cording to their common characteristics is to group them accord-

ing to their common interests in a community (Paliouras et al.,

1999). This is an explicit model of the shared interests of the

users.

Due to the differences in their definitions, it can be assumed

that stereotypes and communities are derived differently. This

is accurate. Stereotypes are generally constructed by individuals

(Paliouras et al., 1999) as opposed to by a computer. This means,

however, that while they hold the advantages laid out above,

they are inherently influenced by their designers own bias. This

leads to the aforementioned issue with the non-monotonic rea-

soning that is used in stereotype construction, namely the stereo-

types may be inaccurate or simply false.

Conversely, communities are mostly created using unsuper-

vised learning and clustering (Paliouras et al., 1999). This means

that communities tend to be more driven by the dataset as op-

posed to the bias of the modeller. This can lead to a more accu-

rate reflection of the common features of the users.

Unlike user stereotyping, communities fall victim to the new

user problem. This is because, unlike a stereotype, entry for a

user into a community requires similarity in features to the al-

ready present community members. This similarity cannot be

obtained without feedback from the user as to their features.

Features in this case might also be called interests, or whatever

term that describes the common aspects of the users.
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Stereotyping is unsuitable as a model due to its inability to be

accurate and unbiased. Communities are also unsuitable due to

their inability to solve the new user issue. The new user issue

is imperative to solve as there will be no initial users to form

communities with whose features (or interests) are of a known

quantity. For these reasons, user grouping was chosen, as the

modelling style for this project.

User grouping, or group modelling, is the modelling of a

group of users in order to serve them as a group, rather than as

individuals. This can be extremely useful for settings in which

users might interact with systems of particular types simulta-

neously. An example of this would be a media system such as

Youtube, where multiple users may watch the same video at the

same time. Having a user group of those users would allow

Youtube to recommend videos enjoyed by other members of the

same group.

User stereotyping is considered to be a form of user group-

ing. This is because it captures common features of groups of

users. However, there is a tendency for them to be used in dif-

ferent ways. The main difference being that stereotypes have

users belonging to multiple groups, whereas a user group have

no users in multiple groups.

Group models are meant to serve as models of groups of

users that use systems. It can be understood then, that the aim

of group modelling is not to solve the new user problem. How-

ever there are suggestions that it may in fact be able to do so

(Masthoff, 2003). This is because any new user joining a group

will have similar features to those already present.
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As group modelling hypothetically solves the new user issue

it stands to reason that for this project it would be most ideal.

This is due to the idea of deriving the groups or any other model

from the data post interaction, as opposed to in real time. So all

users will at some point be new users. It is also because the

models that are to be derived must be exclusive. This is to en-

sure that the users in question are not double counted when it

comes to altering the system to their benefit. This double count-

ing may lead to inaccuracies in the ability of the new system to

deliver what the users need.

2.1.1 User Features

To derive any form of user models it is necessary to have rele-

vant data from the users in question. To that end, as the data in

use in this project are user interactions with a web based archive,

the knowledge the user has of the archive is what can be consid-

ered to be of most interest.

In 2010, Kamps and Zhang published a paper that used “User

features” to stereotype their userbase (Kamps and Zhang, 2010).

Their dataset was transactional logs that detailed user interac-

tions with a web based historical archive which bears a broad

similarity to my own dataset.

Kamps and Zhang, defined two basic stereotypes of their users.

The first of these was the “novices” or users with low knowl-

edge of the archive in question. The second was the “experts”

or users with high knowledge of the archive. Having defined
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two stereotypes they proceeded to divide their users into these

stereotypes on the basis of their relevant user features. These

were different metrics of the users interactions with the archive.

These “user features” were extracted from the transactional logs.

Due to the similar nature of the datasets it is not improper

to assume that the users in the dataset of this project hold sim-

ilar features. To that end, using some of the features used by

Kamps and Zhang to stereotype their users may be the most ap-

propriate course of action with regards to metrics around which

to group the users for this project.

2.2 Data Clustering

In order to create the user groups in this project, it is necessary to

automatically group the users according to the metrics by which

the project will model them. It is from these groups, or clusters,

that the models will be formed. To that end, clustering algo-

rithms were explored as a basis for doing so.

Most of the examinations led to the view that the best choice

for an algorithm was the K-means clustering algorithm. This is

due in part to its versatility with large scale databases as well as

the ready number of machine learning tools available to imple-

ment it efficiently (Pedregosa et al., 2011).

K-Means clustering aims to partition N data points into K

clusters. In these clusters each data point belongs a single clus-

ter. The cluster with the nearest mean serves as a prototype of

the cluster. Each cluster is centred around a centroid M As a
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result the data space is partitioned into individual voronoi cells

(Hartigan, 1975).

The algorithm for K-means is as follows:

1. Begin with initial guesses for cluster centres (centroids).

2. For each data point, find the cluster centre with the closest

mean. This partitions the data points.

S
(t)
i = {xj : ‖xj−m(t)

i ‖ ≤ ‖xj−m
(t)
i∗ ‖for all i∗ = 1..., k} (2.1)

3. Replace each centroid by the average of the data points in

its partition.

m
(t+1)
i =

1

|S(t)
i |

∑
xjεS

(t)
i

xj (2.2)

4. Finally, iterate the second and third steps until convergence.

Though K-means is a powerful tool, there are different addi-

tions to it that can strengthen its ability to cluster data. One of

these is in the selection of initial values. Whilst traditional K-

means uses random initial values there are algorithms that exist

that aim to improve on this. One of these is K-means++.

A simplified K-means++ algorithm works as follows (Arthur

and Vassilvitskii, 2009):

1. First choose one uniform centre randomly from among the

data points.
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2. Then, for each data point X , D(x) is computed. This is the

distance between X and the closest previously chosen cen-

tre.

3. A new random data point is then chosen as the new cen-

tre. This is done using a weighted probability distribution

where the probability of new point x being chosen is pro-

portional to D(x)2.

4. Finally repeat the first and second step until k centres have

been chosen.

This method of choosing the centres around which clusters

are formed should decrease the possibility of sub optimal clus-

tering.

In figure 2.1 the advantages of K-means++ over K-means can be

FIGURE 2.1: An example of unclustered data vs. K-Means and
K-means++

(Ahlouche, 2013)

seen. K- Means++ shows the small light-blue cluster (in the first

clustering) as a complete cluster. On the other hand, K-means

sees it as part of a bigger cluster. Such inaccuracies could lead

to errors in the grouping of users in this project.
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2.3 Cluster Analysis

Having created the clusters it is necessary to analyse them so

as to validate their integrity and derive the user groups. By

analysing the resulting clusters, the hope is to be able to form

groups of users that have relevance regarding their knowledge

of the database.

The goal of cluster analysis is to identify groups that are formed

in the data clustering process(Norusis, 2012). There is no dis-

tinct analysis algorithm for all cluster types. As there are many

different clustering algorithms there can be no certain method

of analysing clusters that are formed using different processes.

That said, the majority of cluster evaluations can be split into

separate categories. Two of these are external and internal eval-

uations Halkidi, Batistakis, and Vazirgiannis, 2001. External eval-

uations rely on unused external data to evaluate the clusters.

Internal, on the other hand, relies only on the clustered data it-

self to form the evaluations Halkidi, Batistakis, and Vazirgian-

nis, 2001. In this project there is no unclustered data that can be

used to externally evaluate the clustered data. As such, all the

evaluations in this project are by nature internal.

While there are many forms of graphical and non-graphical

internal cluster analysis methods in use, silhouette scores have

been selected for the analysis and validation process in this project.

This is because silhouette scores are both natively supported in

the chosen machine learning library (Pedregosa et al., 2011) and

they are also a clear metric of cluster validity that can be reliably

graphed and interpreted.
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"Silhouettes” were first introduced in 1987 as a graphical aid

for interpretation and validation of cluster analysis (Rousseeuw,

1987). A silhouette score or silhouette coefficient, can be defined

as a representation of cohesion versus separation in a numerical

value. Cohesion is the measure of how closely related points are

within a cluster. Separation is the measure of how distinct or

separated a point within a cluster is from other clusters. As Sil-

houette coefficients are a measure of cohesion versus separation

it provides a measure of how well a data point was classified

when it was assigned to a cluster(Norusis, 2012). This can be

determined graphically by both the tightness of the clusters and

the separation between them.

Silhouette scores are calculated using the following formula

shown in 2.3. Where a(i) is the lowest average cohesiveness of

the point i in a cluster and b(i) is the lowest average separation

of that point to any cluster of which i is not a member. Together,

they calculate, s(i), which is the silhouette score of that point in

a cluster. This formula proves that −1 > s(i) < 1 for all points

in a cluster. However, for a K-means cluster the Silhouette score

cannot go below 0. This is because having a score of less than 0

means it has been assigned to the wrong cluster.

S(i) =
b(i)− a(i)

max a(i), b(i)
(2.3)

By using Silhouette scores, this project aims to both validate

the clusters formed from the user features and to analyse those

clusters to correctly determine the user groups.
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Chapter 3

Design

3.1 Introduction

. The main goal of this project is to create a pipeline that will

generate “User Groups” from transactional log data. There are

numerous steps necessary to complete this goal. These steps

range from storing the logs, converting them into a usable for-

mat, clustering the data extracted from the logs and deriving

groups from that data.

Before explaining in detail all of the steps required to com-

plete the goal of this project the pipeline, must be defined in full.

This will constitute an overview for the design of the project as

a whole.

3.1.1 Overview of the Pipeline

The pipeline, as previously stated, is a series of operations per-

formed on the inputted transactional log data with the intention

of producing data that can help extract user groups for the users

contained within the data. This pipeline can be divided into

three main stages.
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The first stage is called the “Extraction stage". At this stage,

the input log data is extracted from the logs and converted into

a format that is both readable and usable for the secondary ex-

traction process. The “User Features” are then extracted from

this data.

The second stage is called the “Clustering Stage". At this

stage, all of the “User features” extracted in the previous stage

are brought together to form clusters. These form the basis of

the “User Groups".

The third and final stage of the pipeline, is the “Validation

stage". At this stage, the clusters created in the previous stage

are analysed to determine both their stability and to see what

they represent.

Upon the completion of the third stage of the pipeline, the

outputted clusters are used to form “User Groups". An overall

view of the pipeline is shown in figure X

3.2 The Extraction Stage

This is the explanation for the design of the first stage of the

pipeline called the “Extraction Stage". It is so called because a

core tenet of this stage is the extraction of usable data from given

sources. The stage can be divided into smaller sections. Each

of these “substages" represent an operation that must be com-

pleted to continue the process of deriving “User Groups” from

the transactional log data.
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These substages are:

1. Extracting Data from the Logs.

2. Defining a User.

3. Extracting the User Features.

3.2.1 Extracting Data from the Logs

To extract data from the logs it is necessary to fully understand

both the type of logs in use and the nature of the data to be

extracted. To begin, one needs to describe the type of logs that

are in use in this project as well as their background. One must

then describe the nature of the data contained within the logs as

well as why the data should be extracted and into what form.

Background to the Dataset

The transactional logs in use in this project are records of inter-

actions between users and systems. In the case of this project the

system in question is a web based Information Retrieval system.

This system is an archival domain. An archival domain refers to

an online archive of historical documents. This archive has web

search logs that show user interaction with the archive. This is

in the form of user queries or in the users’ “clicks” on artefacts of

the web archive. This archives web search is not parametrised to

learn from the user or to develop any form of preferential results

based on past searches. All words that are entered are searched

for within the database using only those words.
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The domain in question belongs to the University of Dublin,

Trinity College. In particular they belong to the Digital Collec-

tions of the Library of the University of Dublin, Trinity College.

This collection is located at

http://digitalcollections.tcd.ie. The logs in question were collected

between the 24th of January 2016 and the 25th of January 2017,

roughly a year of log data.

This website contains the archival data of the large collec-

tion of historical artefacts (such as photographs, letters etc.) be-

longing to the university. All of these are marked with a name

and ID that is contextual to the artefact. This is done using En-

coded Archival Description (EAD) (Dublin, 2016). EAD is an

XML standard for encoding archival finding aids. These aids

are used by researchers to determine whether or not the archive

collection contains materials relevant to their research (Stockt-

ing, 2004). The users are searching for this data.

As it is an archival domain, a large portion of the userbase

is academia. They are likely to be either researchers, lectur-

ers or students. However, it should be noted that the draw of

unique works such as the Book of Kells, means that their are

non-insignificant portions of non academic users in this dataset.

It is the unique nature of this archive that allows for the project

to proceed. The userbase is limited to those with either an aca-

demic or personal interest in historical artefacts. The limited

nature of the users it receives permits grouping the users based

on their features.

http://www.tcd.ie
http://www.tcd.ie
http://www.tcd.ie
http://digitalcollections.tcd.ie/home/
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The Transactional Logs

Log files are a record of the transactions that take place between

a user and a system. They contain knowledge such as which

user accessed what resource. Logs are stored in plain text for-

mat usually with a “.log” filename extension. This format min-

imises dependencies on system processes, which allows for log-

ging when those processes are unavailable.

As the system is a web based archive it naturally has web

servers. There are two web servers of interest to this project with

their own log type in use. These are:

• Query Logs: These are the logs of Apache Solr web server.

It handles the search system used by the Digital Collections

website. The logs here containing the queries the user used

to search the system. An example of a log entry is listed

below.

0 . 0 . 0 . 0 − − [01/ Jan / 2 0 1 6 : 0 0 : 0 0 : 0 1 +0000]

"GET /home/ j s /briefDoc . j s HTTP/ 1 . 1 " 200 1210

" ht tp :// d i g i t a l c o l l e c t i o n s . tcd . i e /home/

index . php? d r i s _ i d =ms58_003v "

" Mozil la /5.0 ( compatible ; MSIE 9 . 0 ;

Windows NT 6 . 1 ; Tr ident / 5 . 0 ; Tr ident / 5 . 0 ) "

• Server Logs: These are the logs for the Apache web server

that handles the interactions the user had with the server

post query. These interactions are the clicks the user had on

the web artefacts displayed as the result of their query. An

example of a log entry is listed below.
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1 . 1 . 1 . 1 − − [01/Apr / 2 0 1 6 : 0 0 : 0 0 : 0 1 +0000]

"GET / s o l r / d r i s / s e l e c t ?rows=0& f a c e t =true&

f a c e t . l i m i t =1 f a c e t . mincount=1&json . nl=map

&f a c e t . f i e l d = t i t l e&f a c e t . f i e l d =name&

f a c e t . f i e l d =PID&f a c e t . f i e l d = s h e l f L o c a t o r&q

=∗:∗&wt=json&json . wrf=jQuery

17204357232106849551 _1461715900840&_

=1461715903400

HTTP/ 1 . 1 " 200 1204298 IE 9 . 0 ; Windows NT 6 . 1 ;

Tr ident / 5 . 0 ; Tr ident / 5 . 0 ) "

Both are formatted in Apache server format. This format, also

known as “The Common Log Format", is the standard text file

format used by web servers when generating server log files.

This standardisation lends itself to analysis and information ex-

traction using a variety of technologies.

The structure of the the logs is such that each contains an IP

address, a timestamp and a GET request. There are other sec-

tions contained within each log entry but, other than these, none

pertinent to the project.

3.2.2 Defining a User

Having explained the nature of the dataset it is necessary to de-

fine a “user” in the context of this project. A user is any indi-

vidual who has interacted with the Digital Collections system

in the time between January 2016 and January 2017 and whose

interaction is recorded in the log data.



3.2. The Extraction Stage 23

However, there are issues with leaving the definition so fluid.

There are billions of individual interactions recorded within the

logs. If a definition of what was accomplished by different users

is not defined, then all of those interactions will not be capable

of being grouped meaningfully.

One possibility is to determine each IP address as recorded

within the logs as being an individual user. While this solves

the proceeding problem of too many users that hold data of no

relevance, it may create another problem. What if there are mul-

tiple users using the same IP address? Some users of the sys-

tem may be doing so from common workspaces. As such, it is

likely that their IP addresses would be the same. The data ex-

tracted would therefore be conflicting as each user may end up

representing multiple people who may belong in different “User

Groups". This would make the “User Groups” inaccurate and so

of little value.

Instead, it is better to define a user as being an IP address

that interacted with the system within a time period dating from

the first interaction. By doing so the previous two problems

are avoided. There is still a possibility of multiple users from

the same IP address being in conflict and being recorded as one

user. However, by limiting the time period with within which

the “user” is defined, the likelihood of this problem occurring

is minimised. The drawback is that the interactions the user has

with the system over the full span of time the dataset covers is

not extracted. While this would be interesting to know, it would

be less beneficial comparatively.

The period of one hour after a Users first interaction with the
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system, will define what a “User” is. This time period will be

referred to as a “Session".

Each session is defined as being the period of one hour after

a user’s initial interaction with the system. In the context of the

logs that first interaction will come in the form of a search query

contained within the SOLR logs. This is because the majority of

users are assumed to have used the search system to gain access

to the archives artefacts. It must be noted however, that some

users may have entered the system via third party links.

Within a session each further interaction recorded from that

user(shown by IP address) will be counted as being done by the

same user as opposed to any different user. An interaction by a

user with the same IP address done outside of that session time

will initiate a new session. It should also be noted that any inter-

action towards the end of a session performed by the user, will

extend the session duration by fifteen minutes. Should more

interactions by the same user be found in this extended time pe-

riod, the session will continue to be extended as previously until

this is no longer the case. In this way, the session will hopefully

remain accurate to the user it is representing.

There is a reason why the length of the session is initially

capped at one hour, as opposed to the session duration of 30

minutes used in in Search Log Analysis of User Stereotypes, In-
formation Seeking Behavior, and Contextual Evaluation(Kamps and

Zhang, 2010). In their paper it was assumed that 30 minutes was

the most a user was likely to spend querying and interacting

with the system. However, in making that assumption they do

not account for the users who may take breaks in the middle of



3.2. The Extraction Stage 25

their sessions and then return. By failing to account for this they

expose themselves to the possibility of double counting users.

Due to the nature of their project such considerations were not

essential to the project as they were broadly stereotyping users,

not grouping them. However, in this project such double count-

ing could affect the accuracy of the resulting data.

3.2.3 Defining The User Features

Having defined the user and the session as well as giving a back-

ground to the dataset, it is now necessary to define the “User

Features” that will be extracted. These are the features to be

used to cluster the users in the clustering stage. These features

must meet certain criteria. These criteria include being cluster-

able, being replicable across all of the users (or most of them)

and that they return information relevant to the users.

The User Features chosen were chosen in part because in (Kamps

and Zhang, 2010) such features were used to successfully sort

the users into into two separate stereotypes. They have proven

usefulness in a project that attempted a similar concept using a

similar dataset. It should be noted that all of these features are

defined as being on a per session basis as it is the users of each

individual session that will be clustering.

The user features in use in this experiment were:

• Session Duration

• Average Query Length

• Number of Repeated Queries
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• Number of Total Queries

• Dwell Time

Briefly, these terms mean;

Session Duration is the length of the session in time. This

is useful because it can be quantified as a number. This makes

it easier to cluster. Furthermore, it can be assumed that users of

the system with very short session durations are users with little

knowledge of the domain. This can be assumed because a user

who actually has an understanding of the domain in question is

more likely to stay with the system for a longer period of time so

as to retrieve which they are seeking (Kamps and Zhang, 2010).

It was calculated according to the equation 3.1.

Session Duration = Timestamp of Final Interaction−Timestamp of Initial Query

(3.1)

This result was given in seconds, and it is this value that was

used as a user feature.

Average Query Length is the average length of the queries

used whilst searching the archive. This is measured in number

of terms as opposed to number of characters so as to give mean-

ingful comparison between users. It was computed according

to the equation in 3.2.

Average Query Length =
Total Length of all Queries

The number of Queries
(3.2)
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This was selected because the assumption is the shorter a

query is means the more general the query is. A longer query

will typify a more specific information need which in general

represents a more knowledgeable user. (Kamps and Zhang, 2010)

Number of Repeated Queries is the number of queries re-

peated whilst searching the archive. This was chosen because

the larger the number of repeated queries then the more likely

a user was unable to retrieve the information they wanted ini-

tially. So, a smaller number of queries will indicate a user that

was satisfied faster.(Kamps and Zhang, 2010)

Total Number of Queries is the total number of queries used

in a session by a user whilst searching the archive. This was

chosen because larger the number of total queries the greater

the engagement a user had with the system. This is particularly

useful when used in conjunction with the number of repeated

queries to give a likelihood of user satisfaction of the system

and knowledge of the domain.(Kamps and Zhang, 2010)

Dwell Time is the duration of time a user spent interacting

with the system post query. This could also be described as

the amount of time a user spent interacting with the results of

their query. This was chosen because the greater the dwell time

the greater the likelihood the user was to have been satisfied

with the results retrieved and the greater the likelihood the user

had a higher understanding of the domain (Kamps and Zhang,

2010).Dwell time was calculated according to the equation 3.3.
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Dwell Time = Timestamp of Final Apache Interaction−

Timestamp of Initial Apache Interaction
(3.3)

This value in seconds was what was used as the value for clus-

tering purposes for this feature.

3.3 The Clustering Stage

In the clustering stage, the user features are clustered using the

K-means algorithm to form clusters. These clusters are then in

turn validated and analysed in the validation stage. As the clus-

tering process has already been explained in chapter 2 therefore

it is unnecessary to explain clustering process here.

The clustering in question will cluster sessions based on user

features. This will hopefully form clusters of users with sim-

ilar user features from which meaningful user groups can be

formed.

3.4 The Validation Stage

This stage is the final pipeline stage. It is called the “Valida-

tion Stage". Here, the clusters are validated and analysed. The

process of validation uses Silhouette scores to determine cluster

validity. As Silhouette scores have been explained previously in

chapter 3 they will not be explained again here as it would be

unnecessary.
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The purpose of this stage is to analyse the clusters to ensure

that the data that is clustered can have user groups derived from

it.
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Chapter 4

Implementation

4.1 Introduction

The purpose of this project is the idea of creating a replicable

pipeline through which transactional log data could be converted

into "User Groups". In order to accomplish this a test environ-

ment in which the pipeline could be built and tested has to be

established. Furthermore, the pipeline itself had to be imple-

mented according to the specifications laid out in chapter 3.

There had to be an implementation of all 3 stages of the pipeline

(Extraction, Clustering, Validation). There also had to be meth-

ods to evaluate the given clusters beyond their validity as clus-

ters so as to correctly derive User Groups from that data.

It is necessary to review the tools used to implement this

project, followed by a brief description of the test environment

of the project. This will then be followed by the implementation

of the pipeline outlined in chapter 3, together with a discussion

of how results were derived from the pipeline. Finally the issues

encountered in the course of implementation of this project are

outlined.
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4.1.1 Tools in Use in this Project

In this project several tools and libraries were used to effectively

implement the project according to its design.

The transactional logs used in this project were stored, parsed

and searched using two tools from the Elastic Stack. This is a

suite of open source tools from Elastic designed to help users

take data from any form of source and in any format and search,

analyse, and visualize that data in real time. Whilst there are

several tools in this suite the only tools in use in this project

were Logstash and Elasticsearch.

Logstash is an open source, server-side data processing pipeline

that inputs data from a source, transforms it, and outputs it to a

chosen destination. It acts as a log aggregator that can perform

filter actions. It is used in this project for collecting and parsing

logs. It accomplishes this through configurable inputs such as

socket/packet communication and file tailing.

Elasticsearch is a distributed, RESTful search and analytics

engine which is written in Java. It is built upon Apache Lucene

and has the ability to handle a large number of search requests.

Using HTTP/JSON protocol it takes data and optimizes the data

according to language based searches. It then centrally stores

the resulting data. An instance of Elasticsearch on a server is

called a cluster. Within that cluster, indices are used to store

documents, which is data that Elasticsearch can search through

and alter.

The main project consisted of several Python scripts which

when run, executed the pipeline from beginning to end. These
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scripts were written using Python 3.6.1. These Python scripts,

relied on several Python libraries to implement the pipeline. The

two most important of these were the Elasticsearch Python Li-

brary and scikit-learn.

Elasticsearch is a Python interface to the Elasticsearch api which

allows for Python scripts to interact with Elasticsearch the same

way that a user would. This was used to allow the Python script

to interact with the log files in real time.

Scikit-learn, is a machine learning library for the Python lan-

guage. It contains both supervised and unsupervised learning

algorithms that include regression, classification and clustering

algorithms Pedregosa et al., 2011. In this project, it provided

both the clustering and cluster validation tools.

4.2 The Test Environment

The environment that this project was developed on was a Vir-

tual Machine located within the School of Computer Science and

Statisticsof the University of Dublin, Trinity College. This vir-

tual machine ran an instance of Debian version 8. It had 4 GB of

ram as well as 64 GB of memory. The transactional logs in use

in this project were stored in a plain-text unencrypted format on

this virtual machine.

This machine had only three users. An SCSS network admin-

istrator, a profile for the researchers assisting the project, and the

author. Access was strictly regulated and password protected. It

was not possible to gain access to the virtual machine when one

was not connected to the internet network of the university. As

http://scss.tcd.ie
http://scss.tcd.ie
http://www.tcd.ie
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such, protections were in place to prevent the leak of any confi-

dential data.

4.3 Configuring The Pipeline

Prior to the three stages of the pipeline being implemented, it

is necessary to convert the transactional logs from a log format

to a form that allows the data contained within to be easily ex-

tracted. The format log files are written in is called the "common

log format".

This format consists of the IP address of the user interacting

with the server of the log in question, followed by a timestamp.

This is followed by the GET request generated by the interac-

tion. This is the actual interaction performed by the user in a

form understood to the server. There are other parts of each log

entry but for the purposes of this project they are superfluous.

Due to the high amounts of noise between interactions due

to images and JavaScript files being loaded it was necessary to

parse the logs. To that end the logs are parsed and then entered

into a document searching and storing tool. This is done first

with Logstash and then Elasticsearch.

4.3.1 Parsing and Piping the Logs using Logstash

Logstash is a tool used for the parsing and piping of data which

does this using configuration files. These files take in an input,

run operations on that input and then output them to a chosen

destination. In this project the logs are used as an input and then
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they are put through a "grok filter".

The grok filter is a plugin for Logstash that parses log files ac-

cording to set patterns. Although the plugin comes with many

inbuilt patterns, for any log file that does not meet one of those

patterns’ standards it is necessary to create a new pattern parser.

The Apache weblog format is common, as such the grok plugin

comes with an inbuilt parser for it. However, the SOLR logs

have a slightly different form of the common log format and

as such they require a unique grok parse to successfully parse

them.

Upon being parsed each individual log file was split into sep-

arate "documents". Each of these "documents" represents an in-

teraction from an IP address to the server in question. This in-

cludes the timestamp and GET request also.

On finishing the parsing the decision of where to send the

logs needs to be made. In the case of this project, as they are

tools configured to run together natively, the decision was to

send the logs to an Elasticsearch cluster set up on the same server.

Due to having two different log types (Apache and SOLR),

it was necessary to create a particular configuration file, so that

it would parse the logs separately and then output them sepa-

rately to different destinations within the Elasticsearch cluster.
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4.3.2 Storing and Searching through the Logs Using Elastic-

search

Elasticsearch is a tool used for the storage and searching through,

or querying of data. In the case of this project the data in ques-

tion is the stored transactional logs that have been parsed by

Logstash into "documents".

These “documents” are then stored in one of two different

"indices" on the cluster, depending on their log type. The two in-

dices were "apache_index" for the Apache web logs, and "solr_index"

for the SOLR logs. On the completion of the parsing by Logstash

and subsequent storage in Elasticsearch the indices had the fol-

lowing number of "Documents" each 4.1.

TABLE 4.1: Table of Elasticsearch Storage

Index Number of Documents Size of Index
solr_index 545963 332.7mb
apache_index 25995545 12.3gb

As each document represents an interaction by user with the

server in question there is clearly a large amount of data to be

parsed and then extracted.

4.4 The Extraction Stage

This primary stage of the pipeline was dealt with entirely using

Elasticsearch, and its Python api library. It was used first to ex-

tract the relevant data from each "query" or "document"(user/server

interaction), and then the individual features were extracted and
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calculated from that data.

4.4.1 Extracting the Data from the Logs

Having stored the logs in their document form in Elasticsearch,

the relevant data was extracted in the form of user sessions.

These sessions as explained in the chapter 3 are what will be

used as representations of the individual users. As such, it is

necessary to extract the individual sessions, prior to extracting

the features for each of those sessions.

The sessions were extracted using the Elasticsearch Python

library. This library implements the functions that Elasticsearch

has in a format usable by Python. To extract the sessions, the

script searched for an interaction from any IP address to the

SOLR logs. Then, it took that IP and performed a second search

to return all interactions that IP had with the server between the

timestamps from the initial interaction, and the interaction one

hour from that point. If there were interactions within that hour

time frame to the SOLR server from the same IP address, the

ending timestamp was readjusted to fifteen minutes beyond the

final one of those interactions’ timestamps.

Below is a sample Python Elasticsearch, search function that

returns all of queries of every IP address that matches the user

string.

es . search ( " so l r_ index " ,

{ " query " : {

" bool " : {
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" must " : [ {

" match " : { " c l i e n t i p " : user }

} , ]

, }

} } )

These alterations to the timestamps were calculated using the

Python datetime library’s timedelta function. First the times-

tamps were converted into datetimes from strings, and then the

timedelta was applied to them. The timedelta in this case was

the difference in time between the timestamp that was begun

with and the new timestamp. In this case of this project, it would

either be one hour for creating the session or fifteen minutes for

the sessions’ extensions.

Upon creating the session using the data from the SOLR log,

the initial and final timestamp were then used as parameters,

along with the IP address of the user of the session in question.

These parameters were then used to create a new search through

the Apache web logs. This search returned all of the interactions

that that IP address had with the Apache server between the ini-

tial and final timestamp.

With these methods the data from the logs was extracted and

then parsed into sessions. When each session was extracted, the

user features of those sessions were calculated.

4.4.2 Extracting the User Features

To extract each of the user features, they had to be calculated in-

dividually on a per session basis. Each of the user features were
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calculated to reflect the design laid out in chapter 3.

Upon being calculated the User features were added to a dic-

tionary. In this dictionary, the value was a tuple of was the IP

address, followed by the five user features. The key was a ses-

sion identification number that was unique to each session.

The user features that were calculated were:

• Session Duration

The length of each session from the initial timestamp to the

end one.

• Average Query Length

The average length of each of the queries in each session.

Where length is the number of terms in each query.

• Number of Repeated Queries

This is the total number of times a query was repeated in

each session.

• Number of Total Queries

This is the total number of queries that were used in each

session.

• Dwell Time

The length of time that a user spent interacting with the re-

sult of each query.

4.4.3 Session Duration

Session duration, is the length of the session in total. It was cal-

culated by getting a timedelta two timestamps. The first, is the
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timestamp of the first interaction in the session. This is taken

from the timestamp of the SOLR log interaction, that starts the

session.

The second, was taken from the final interaction in the ses-

sion. This could be on of two values. In the case of there being

further interactions by the user within the session time frame in

the Apache logs, the final of those timestamps, was used. How-

ever, in the event that there were no interactions post query with

the query results in the time frame, then the timestamp of the

last query, or SOLR interaction was used.

This was result was calculated by calculating the timedelta

between the two timestamps in question. First they were con-

verted to datetimes. Then the timedelta was calculated from

that value. This is according to the formula shown in chapter 3.

4.4.4 Average Query Length

The average query length of each session was calculated very

simply. Upon the extraction of each query from the session,

the query string was parsed according to the number of blank

spaces. In doing so they were separated into a list of terms. The

length of this list was the length of the query in terms.

This number was then added together with the length of each

and every other query in that session. Again all of the lengths

were in terms. A count was started when the first query was

extracted. Therefore upon the cessation of the session, both the

total number of queries, and the total length of all queries cu-

mulatively were found. With these the average query length
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was calculated according to the formula shown in chapter 3.

4.4.5 Number of Repeated Queries

To calculate the number of repeated queries was similarly sim-

ple. I created a list of queries for each session. Upon a query

being extracted, it was compared to every query in that list. This

was done using Pythons inbuilt string comparison function. If

there was no match, that query was added to the list. If there

was a match however, a counter was incremented. This counter

is what was used as a value for the purposes of clustering this

user feature.

4.4.6 Number of Total Queries

To calculate the number of total queries, a counter was created a

that was incremented upon the extraction of each query for that

session. This counter was used as as a value for the purposes of

clustering this user feature.

4.4.7 Dwell Time

Dwell time was calculated using the extracted data from the

Apache logs. The interactions for the session were taken from

those logs, as explained above. Similarly to calculating the ses-

sion, the first timestamp for the interactions of the session was

parsed and converted into a datetime. The timestamp of the fi-

nal extracted interaction was then parsed and converted into a
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datetime. A timedelta was then calculated based off the differ-

ence of those two datetimes, according to the equation in chap-

ter 3. This value in seconds was what was used as the value for

clustering purposes for this feature.

4.5 The Clustering Stage

Upon completion of the extraction stage of the pipeline, the fea-

tures as well as their identifying IP addresses, and session ID

were clustered. This clustering was K-means clustering, as ex-

plained in chapter 3 and chapter 2. This K-means clustering was

done using the Python machine learning library “scikit-learn”.

However for that to be done the results had to be converted from

their tupled form into a form usable by scikit-learn.

To that end upon completing the extraction of all interactions,

and the formation of all sessions, the resulting dictionary was

parsed. Each of the relevant elements of the values tuple, was

converted into a list of that particular sub-value. These sub-

values were the IP address of the user, as well as all five of the

user features. These lists were what were used to create the clus-

ters.

4.5.1 Clustering the Users based on their Features

Due to the number of features in use several different clustering

methods were used to gain different insights into the interac-

tions between different user features. While the overall method

of those clusters was the same (i.e K-Means), each of the meth-

ods took in different types and numbers of values numbers. The
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value types were the features, and the number was from the

minimum required to cluster(two) all the way up to the maxi-

mum number of features(five).

As the overall clustering method is the same for each of these

methods, only the general clustering method will be described,

without making reference to any particular type or number of

features.

The lists for the features to be clustered, as well as the list of

the users, are taken into the clustering function. There the fea-

ture lists are converted using the numpy transform method, into

a multi-dimensional array, where the number of dimensions is

equal to the number of features. This array is what is taken into

the scikit-learn k-means clustering function.

At this stage it is necessary to select the number of clusters

for the data to be clustered into. Having done so, as well as

transforming the data into a suitable form for the method, the

k-means fit_transform() method is invoked. This method com-

putes the clustering as well as transforms the results into cluster-

distance space. This can then be graphed to represent the results

of the clustering visually.

Immediately after doing also the predictions for the cluster

were computed. This is done using the predict() function. This

is a function that will predict which cluster is closest for a given

sample set of values. Upon giving it the full set of values, the

results, are of the same size as the number of each individual

feature, as well as the number of sessions and thus the number

of users. They also maintain the same order as before. As such,it
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is possible to map which user is closer to which cluster, based off

of the results of this function.

4.5.2 Graphing the Results

Having clustered the features, it is necessary to display these

clusters in such a way as to be visually interpretable. This al-

lows for a clear representation of any fault in the system. To that

end two separate diagrams were used to display the results of

the clustering. The first is a scatter plot graph, and the second a

cluster regions diagram.

Scatter Plot Graphing

The scatter plot graphing was done using the matplotlib Hunter,

2007 library. Using its inbuilt plot function all of the clusters

data points were plotted onto a graph. If there were only two

features in the cluster then the axis were the features in question.

However if there were more than two features, the diagram

could not be drawn due to the multidimensional nature of the

data to be graphed. It was therefore necessary to transform the

data into a form that could be plotted. This was done using the

PCA function of scikit-learn.

PCA stands for Principal component analysis. This is a lin-

ear dimensionality reduction that uses singular value decom-

position of the data in question, to project said data to a lower

dimensional space. By using this it becomes possible to graph

data that is beyond two dimensional.
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Having plotted the points, the cluster_centers_ value that is

returned by the k-means fit() function was used. This is an ar-

ray that contains the locations of all of the cluster centres, or

centroids. These were marked with an x. This allowed for clear

viewing of the centroids against the clusters.

Cluster Region Diagrams

The cluster regions diagrams, are diagrams that are also gener-

ated using matplotlib Hunter, 2007. These diagrams, show each

of the clusters regions. These regions are areas of the graph,

where the points within are part of that cluster. They differenti-

ate each of the voronoi cells of the graph by colour. Each of these

cells is a representation of a cluster region. Similarly to above,

PCA was used for higher dimensional data, and the centroids

were marked with a large x so as to be found with ease.

4.6 The Validation Stage

Upon the successful creation of the clusters, the final stage of

the pipeline is entered. Here the validity of the clusters is deter-

mined according to their silhouette scores. This is according to

the design in chapter 3 and using the method explained in chap-

ter 2. The silhouette scores in question are calculated using the

Python machine learning library “scikit-learn”.
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4.6.1 Determining Cluster Validity

To determine the silhouette score of each of the clusters the sil-

houette metric function was used. This function takes in several

arguments. The first argument is the data to be checked, fol-

lowed by the predicted labels of that data. These labels were

taken directly from the results of the clustering using the .la-

bels_() method.

The next argument is the method with which to calculate

the distances between instances of the given array. For this eu-

clidean distance was chosen as it is with this that the clusters

are calculated. Finally the function takes in an the sample size

of the inputted data to check. Due to the size of the data, it was

not possible to use the full clustered data as a sample size. As

such the largest possible sample sizen was used. In this case, it

was 1/4 the size of the inputted data.

Some of the resulting silhouette scores for the different clus-

ter types can be found in 4.2

TABLE 4.2: Table of Silhouette Scores for the User Features of
in the Unaltered Paramter

Number Of Clusters Silhouette Score
2 0.652947835827
3 0.606859519945
4 0.602480831205
5 0.603267673385
6 0.633834602068
7 0.744855455533
8 0.797511097467
9 0.832294378563
10 0.91636005137
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4.7 Cluster Preprocessing

In order to achieve clusters that made data trends more evident

than the initial version of the dataset, certain preprocessing was

done to the user features values that are used to create those

clusters. This preprocessing created several parameters. These

included getting the natural logarithm of the feature values, fil-

tering the dataset as a preprocessing action and naturalising the

feature values.

4.7.1 Getting the Natural Logarithm of the Features

Getting then natural logarithm of data points, is a method of re-

ducing noise in a dataset. During the course of the implementa-

tion of this project, it was observed that the data being graphed

by the logs was noisy. Therefore, a second dictionary of features

was created. In this case, all of the features in question have val-

ues that are the natural logarithm of their normal values.

This was achieved by gathering all of the values as per nor-

mal, except when it came to adding the features to the dictionary

of the features, that was stores the feature values. There a sec-

ond dictionary was created that held a version of the data with a

natural logarithm function applied to each features’ value. This

was done using the verblog() function of Python.

This is a function that takes in two arguments normally. They

are the value of the number to be get the logarithm of, and the

value of the logarithm for it to be put to. However, if no second

argument is inserted, then it applies the natural logarithm.
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FIGURE 4.1: Average Query Length, No. of Repeated Queries
and Dwell Time of the Logarithmed Parameter clustered into 3

Clusters

An example result of this attempt can be seen in figure 4.1

4.7.2 Dataset Preprocessing

Another method implemented was to reduce the dataset size.

While this is not advisable, as it can skew the data uncontrol-

lably, by choosing how the data that was excluded was excluded,

it was hoped to skew the data into a manner that made the data

easier to cluster.

To that end all sessions that contained a dwell time of 0 were

excluded. This was done by creating another dictionary, similar

to the previous one. In the event that a sessions’ dwell time was
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zero, that session was excluded from this dictionary.

In this way it was hoped to eliminate those users who had

arrived at the website by accident. This may have reduced the

linearity of the dataset, by removing the lowest end of the users,

in terms of feature value. This would thus leave just the users

with generally higher feature score, that might yield more inter-

esting results.

Some of the results of this can be seen in figure 5.2.

4.7.3 Normalising the Feature Values

Having attempted two other forms of cluster preprocessing, next

the values of the user features were normalised. Normalisation,

is the scaling of values on different scales to a notionally com-

mon scale. In the case of this project all feature values were

scaled to be between 0 and 1. This was accomplished by ap-

plying equation 4.2 to the feature values on extraction.

zi =
xi −minx

maxx−minx
(4.1)

Where zi is the ith normalised data and x is the set containing all

users individual feature values for that feature.

Normalised versions of the three previous datasets (the initial

dataset, the logarithmed dataset, and the Preprocessed dataset)

were created by adding normalised versions of their feature val-

ues to a dictionary at the same point as they were added to their

dictionaries.
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This was done in order to make the outputted graphs and

values clearer by putting all the data values on the same scale.

Some of the results of this can be seen in figure 4.2:

FIGURE 4.2: Dwell Time and No. of Repeated Queries of the
Normalised and otherwise Unaltered Parameter clustered into

7 Clusters

In summary, at the end of the preprocessing there are 6 dis-

tinct versions of the dataset. They are the unaltered, the log-

arithmed, the filtered and the normalised versions of each of

those. Each of these datasets are taken into the clusterings stage

as a dictionary composed of a session identification number as

a key and an IP address, and a user feature value for each of the

features tupled together as a value. Each dictionary was of the

same size as the number of sessions extracted.
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4.8 Implementation Issues

Throughout the implementation of this project, issues arose. While

some were minor and unworthy of mention, some others were

to a degree that made executing the project far more difficult

than would be initially presumed. These can be roughly divided

into two separate issue areas. These are: memory issues and

data issues.

4.8.1 Memory Issues

Due to the extremely large nature of the dataset in use, as well as

the size of some of the feature values, it was possible to run into

memory issues whilst performing clustering or related tasks.

This occurred in part due to the need for Elasticsearch to be run-

ning during the course of the clustering. Elasticsearch as a tool

was quite resource intensive due to the size of the dataset it was

storing and querying.

As the issue was due to the nature of the tools in use it was

not possible to fix the underlying root cause of the issue. Instead

alterations were made to the Python scripts at the point that the

issue would occur. By altering parameters such that the data

that was causing the issue was treated differently to the rest of

the data at those points, the issue was overcome.
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4.8.2 Data Issues

As will be seen in chapter 5 issues occurred in the post clustering

analysis of the clusters. Whilst there was no issue with the va-

lidity of the clusters, the graphical output of the clusters showed

that the clusters had not formed according to the expectations.

The assumption upon beginning the project, was that the data

would yield clusters that were of the normal K-means variety.

These being tight clumps of data points that would be roughly

spherical in shape. Instead the resulting graphs showed data

that was either extremely noisy, or extremely linear in shape.

Often the results were both linear and noisy.
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Chapter 5

Evaluation

5.1 Introduction

In total, upon running them projects Python script on the dataset,

643 files were generated per parameter. The parameters in this

case refer to the six variants of the dataset I ran my program

against.

The first three parameters were the normal full dataset of

users, a dataset where all of the user features values were substi-

tuted for the logarithm of those values and a test dataset which

removed all users without a dwell time below a certain thresh-

old. The other three were the same datasets as above, except

that their feature values were normalised to be between 0 and 1.

At the conclusion of the program that was run, 3858 unique

files had been created. The large number of files generated, is

in part due to the six different parameters, it is also however

due to the repeated clustering of features with different num-

bers of clusters (between 2 and 10). It is also due in part to the

need to output all results to a file in order to view them. Due to

the remote nature of the test environment if any result was to be

viewed (e,g predictions for which cluster a user was in for a par-

ticular parameter and feature set, etc.) it needed to be outputted



54 Chapter 5. Evaluation

to a unique file that could be analysed.

All of these files contain pertinent information regarding the

projects outcome. However, due their size, the vast majority of

the results will not be included in this document. Results that

typify the issues that arose over the course of this project will be

displayed and discussed. Some of the results, that are not dis-

played in this section, are within appendix A.

5.2 Results of the Clustering

There are three main forms of cluster graphs whose information

is pertinent to the analysis of the clusters.

FIGURE 5.1: Average Query Length and the Number of Re-
peated Queries in a Session Clustered into Two Clusters

Figure 5.1 is a scatter plot diagram that shows clusters of the

unaltered parameter that has been clustered into two clusters.
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The features used were average query length and number of re-

peated queries. It is evident from a first glance that this graph

does not display a useful K-means clustering result.

There are no typical spherical clusters formed. Instead there

are two parallel and linear groups of data. Each of those lines

represents a feature. The resulting data points are extremely

sparse also. Beyond that, the Silhouette sore for these clusters

is 0.9657. This high Silhouette score demonstrates a key failing

of Silhouettes, which is that if the logarithm in any way is un-

suitable for the data (or vice versa) it can not cope with this.

The lack of normalisation may have played a small role in the

outcome of the distance between the two groups of data. How-

ever the linearity of the graph could not be altered by normali-

sation.

Figure 5.2 is a cluster region diagram that shows the voronoi

cells that clusters of the filtered parameter that has been clus-

tered into eight clusters. All 5 features are clustered together in

this graph.

This graph displays less data than a similar graph(such as

5.3). This is clear evidence of the filtering removing users that is

skewing the data. However this graph also displays the sparsity

that is the result of such an action. Little meaning can be derived

from this graph, due to its low Silhouette score (0.5674), which

shows that the clusters that have formed, are inaccurate.

Figure 5.3 shows a cluster region diagram that shows the

voronoi cells that clusters of the logarithmed parameter that has
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FIGURE 5.2: All Five Features of the Filtered Parameter clus-
tered into Eight Clusters

been clustered into ten clusters. All 5 features are clustered to-

gether in this graph.

This graph displays more data than the proceeding two, due

to the higher number of features, and the lack of filtering. How-

ever the trends that were expected to be shown with the loga-

rithmed data have not appeared.

Moreover, this graph is both linear, noisy and poorly clus-

tered. Its silhouette score is 0.4432. The large black bars are

groups of linear data points grouped together.

It can be seen from these graphs that the clustering has been
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FIGURE 5.3: All Five Features of the Lograithmed Parameter
Clustered into Ten Clusters

successful, but that no meaning can be derived from these clus-

ters. This can be assumed to be from several different causes.

K-means does not handle non spherical clumped data well.

Evidently the data at hand is not of a type that K-means is able

to cluster effectively. Alternatively, different, more clusterable

user features could have been chosen that may have been better

able to form clusters.
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Chapter 6

Conclusions

The main goal of this project was to develop a pipeline which

would take transactional log data as input and then output data

clusters from which user groups could be derived. The solu-

tion proposed in this paper, involved the parsing of logs into

separate interactions using Logstash and Elasticsearch. These

logs were then to be searched through to form sessions. Using

user features inspired by Kamps and Zhang, 2010, these sessions

were to be clustered using scikit-learns implementation of the K-

means algorithm. The formed clusters were to then be validated

using sci-kit learns implementation of Silhouette scoring. The

resulting values could then be taken as validation of the clusters

which could be further analysed to derive the user groups.

This project has not succeeded in its attempt to build such a

successful pipeline. While the author remains confident in the

general design and idea of the pipeline, the failure of this project

to successfully derive user groups means that the question of

where the failure stems from must be answered.

It is the opinion of the author, that the failure to form clusters

of a stable nature stems from one of two sources. These are ei-

ther the algorithm chosen to cluster the data, or the data itself.
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If one takes the view that the overall design of the project is

sound, then the failure of the project can be seen to stem from

the data itself. The data was found to be noisy and linear in

nature. Neither of these are aspects of data that K-means deals

with effectively.

Alternatively, one could take the view that the projects goal

was to form user groups from the given data. If this is the case,

then the failure results entirely from the choice of K-means as an

algorithm. The author feels that to assume such is incorrect, as

it places to great an emphasis on the choice of algorithm as op-

posed to the inherent problems with the datasets clusterability.

The projects goal was to create a replicable pipeline through

which transactional log data could be converted into user groups.

While user groups were not derived, clusters based on user fea-

tures were. The inability of these clusters to yield user groups

can not diminish this fact.

This project as an experiment has failed, but a failure is still

a valid result and one that can be learned from. Going forward,

this experiment could be repeated using different datasets or

algorithms to hopefully prove the accuracy of the project’s hy-

pothesis.
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Appendix A

Graphs of Number of Clusters
versus Silhouette Scores

FIGURE A.1: Two Features clustered with the Unaltered Param-
eter
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FIGURE A.2: Four Features clustered with the Unaltered Pa-
rameter

FIGURE A.3: All Five clustered with the Unaltered Parameter
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FIGURE A.4: Two Features clustered with the Filtered Parame-
ter

FIGURE A.5: Four Features clustered with the Filtered Parame-
ter
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FIGURE A.6: All Five clustered with the Filtered Parameter

FIGURE A.7: Two Features clustered with the Logarithm Pa-
rameter
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FIGURE A.8: Four Features clustered with the Logarithm Pa-
rameter

FIGURE A.9: All Five clustered with the Logarithm Parameter
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FIGURE A.10: Two Features clustered with the Normalised Pa-
rameter

FIGURE A.11: Four Features clustered with the Normalised Pa-
rameter
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FIGURE A.12: All Five clustered with the Normalised Parame-
ter

FIGURE A.13: Two Features clustered with the Normalised Fil-
tered Parameter
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FIGURE A.14: Four Features clustered with the Normalised Fil-
tered Parameter

FIGURE A.15: All Five clustered with the Normalised Filtered
Parameter
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FIGURE A.16: Two Features clustered with the Normalised
Logarithmed Parameter

FIGURE A.17: Four Features clustered with the Normalised
Logarithmed Parameter



72 Appendix A. Graphs of Number of Clusters versus Silhouette Scores

FIGURE A.18: All Five clustered with the Normalised Loga-
rithmed Parameter
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