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Summary

This research focused on understanding evolving threats to the security of systems

which are becoming increasingly sophisticated. Organisations in 2018 are in desperate

need of adaptive threat detection capabilities to protect their systems, which are increas-

ingly becoming more interconnected and consequently more exposed. The problem of

interest is how effective threat intelligence mechanisms can be implemented to provide

mitigations against such threats.

To identify the area of research and approaches that were ultimately taken, an in-

depth exploration of the current state of the art in cybersecurity, intrusion detection and

the hosting of modern systems infrastructures was undertaken. This research identified a

wealth of approaches taken in the past to implementing solutions driven by active network

defence. However, these solutions were largely found to focus on prolonging attack sessions

rather than providing practical, feasible solutions for deploying active network defence in

these environments.

The primary contribution of this research is the development of a containerised cyber-

incident monitoring system. The novel component of this solution is a highly deployable

pre-configured network of honeypots, devices that are capable of providing active threat

detection in IT infrastructures. Attack event data captured by these devices makes it

possible to provide enhanced threat intelligence through visualisation and alert genera-

tion, enabling rapid response and meaningful deductions to be made. Additionally, the



design of adaptive honeypots to improve threat detection was explored, with a focus on

understanding the most enticing properties of victim systems.

This research has suffered from unanticipated setbacks which have limited the degree

to which definitive conclusions can be drawn regarding enhanced adaptivity of honeypot

design. However, the successful implementation of an end-to-end solution which provides

concise descriptions of complex threat data, whilst also proposing a means of making

active network defence feasible for organisations, is a valuable contribution to bringing

active network defense into widespread use.
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All warfare is based on deception.

Hence, when we are able to attack, we must seem unable;

When using our forces, we must appear inactive;

When we are near, we must make the enemy believe we are far away;

When far away, we must make him believe we are near.

- Sun Tzu, The Art of War
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Abstract

The Internet is becoming an increasingly hostile environment, and though the deployment

of security technologies is steadily improving over time, there is a huge and increasing gap

between current technological threats and the measures in place to mitigate them.

This research has focused on providing enhanced security through incident-monitoring,

devising a highly-deployable cyber-incident monitoring system to consolidate threat in-

telligence collected from a network of honeypots: An approach which promotes reactivity

in the face of increased uncertainty about the nature of attacks, emphasising an active

rather than passive approach to securing modern infrastructures which have seen an un-

precedented growth in connectivity in critical services including health, transport and

energy.

In particular, much attention in this research has focused on how such a system can

feasibly provide active network defence for organisations in a way that is both practical and

usable to operate and maintain. The use of containers and Platform-as-a-Service solutions

in the deployment of security applications is an area where there is huge potential in this

regard.

While research and industry projects have explored these uses of honeypots before

including in the context of cyber-incident monitoring, this research distinguishes itself on

the basis of providing a fully-networked system of honeypots packaged as a single deploy-

able unit which can be hosted in Linux-based environments to provide active network

defence in modern IT infrastructures.

Attention has also been given to the adaptation of honeypot design to more effectively

entice attacks and hence provide improved threat detection, something for which limited

conclusive research exists. The exponential increase in connectivity of systems which
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were traditionally isolated motivates the targeting of such designs at Internet-of-Things

botnets, automated attackers whose activities are a growing threat to critical service

infrastructures.
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Chapter 1

Introduction

This research aims to demonstrate the potential of adaptive honeypot technology in

emerging cybersecurity use-cases: In particular, in cyber-incident monitoring in criti-

cal service infrastructures which are increasingly becoming the targets of severe cyber

attacks.

Section 1.1 gives a high-level overview of the area in which this research is based, laying

the foundations to highlight the importance of this research for effective cyber-incident

monitoring systems.

Section 1.2 outlines the objectives that were identified in this research, motivated by

the challenges outlined in Section 1.1. These objectives include the development of a

novel cyber incident monitoring system for effective intrusion detection, and a proposal

for increased adaptivity of honeypots to enhance their threat detection capabilities.

Section 1.3 gives a brief description of the contributions made by this research to the

field of cyber security.

Section 1.4 provides an overview of the structure and contents of the remainder of this

document.

Finally, Section 1.5 provides a brief note regarding the sources cited in this document.
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1.1 Problem Area

There are more systems and devices connected to the internet now than ever before as

society’s reliance on interconnected services continues to grow. These huge numbers of

devices are increasingly being operated by individuals with limited technical knowledge,

and even less awareness of threats to their security. With the scale of poorly configured

security measures in systems expanding, the modern internet is an ideal playground for

hackers - endless devices to be compromised, exploited and used for nefarious purposes.

Critical service infrastructures are being heavily targeted in attacks, impacting upon

thousands of people and having major consequences for the operation of organisations.

There is a growing trend of these attacks being attributed to nation-states across the

world: A recent example is from February 2018, where the Russian military were accused

by multiple nations of being responsible for NotPetya, an attack that saw the entire

Ukranian economy grind to a halt in June 2017. [1] There is no doubt that the growing

role of cyber attacks in global warfare and terrorism is cause for major concern, and the

operators of critical infrastructures are facing increased uncertainty about the safety of

their systems.

There is also a major shift in the hosting of these infrastructures, as organisations

continue to migrate to outsourced infrastructure management solutions. The concept of

decoupling services by deploying them as microservices has enhanced operational efficiency

in organisations. How to translate workable security solutions into these deployments is

still largely an unsolved problem however. With the rate of migration to these deployments

growing steadily year-on-year, it is crucial that security catches up sooner rather than

later.
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1.2 Research Objectives

The research described in this document is motivated by the current state of intercon-

nectivity, changing system infrastructures and global cyber warfare. In recognition of

the gargantuan challenges being faced in an increasingly connected world, it is clear that

there is a need to explore options to both deter and to more effectively defend against

exploitation by malicious cyber-entities, whatever their motivations. Exploring technolo-

gies that can actively defend systems against the perpetrators of these activities is key to

addressing these challenges.

This research explores an approach to providing practically feasible active defence for

critical service infrastructures that are being targeted in ever-more sophisticated attacks,

establishing that the use of containerisation and a centralised incident monitoring platform

are ideal in achieving this objective. The novelty of this approach is primarily in the use

of containers to host a honeynet, a fully-networked active defence system packaged as a

single unit that can be automatically deployed within a matter of minutes.

Additionally, the design of adaptive honeypots1 to improve threat detection in these

systems is also explored, with a focus on understanding the most enticing properties of

victim systems. Internet-of-Things botnets, a recent and evolving attack phenomenon,

are targeted in the design of these honeypots as a topical and relevant use-case.

With the evolution of new threats to the security of data and systems every day as

technology continues to advance, proposing a novel and effective system to address the

stated objectives is the central aim of this research.

1.3 Contributions

Though this research has been limited in its scope due to the time constraints associated

with an 8-month Masters programme, it produced a containerised honeynet-driven inci-
1Adaptivity in this context should be interpreted as the ability of a honeypot to assist the attacker in

believing that they have achieved their goals.
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dent monitor: An end-to-end system that can be efficiently employed as an active network

defence measure to enable rapid response to security incidents. As an area which is still

catching up with transformations in modern systems architectures, this proof-of-concept

design demonstrates the feasibility of containerising security solutions to deploy at scale.

1.4 Report Structure and Contents

The remaining sections of this document are structured as follows.

Chapter 2 is entitled State of the Art. It provides an in-depth look at the state of the

art in cybersecurity in 2018, giving particular attention to increased connectivity and the

implications of this for critical service infrastructures. Intrusion detection techniques and

their role in cyber-incident monitoring is explored, comparing and contrasting passive and

active defence intrusion detection mechanisms. Modern infrastructure hosting solutions

in widespread use by organisations today are discussed, with an analysis of what these can

contribute to modern security applications. Finally, a number of projects closely related

to the work carried out in this project are evaluated.

Chapter 3 is entitled Problem Formulation. It explores the formulation of the research

objectives in the context of the major challenges identified in Chapter 2, addressing them

in the establishment of the proposed work for this research.

Chapter 4 is entitled Design. It describes the considerations and challenges involved

in the initial design phases of the project, as well as the decisions that resulted from this

process.

Chapter 5 is entitled Implementation. It details the implementation phase of the

project, describing the steps involved in developing the various components of the system.

A number of pivotal design decisions as the project evolved are also discussed before

arriving at the final solution.

Chapter 6 is entitled Evaluation. It provides an evaluation of the implemented system

as well as detailing the experiments that were carried out and the challenges faced in
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doing so.

Finally, Chapter 7 is entitled Conclusions and Future Work. It gives some overall

conclusions regarding the final solution, before exploring a some potential avenues for the

continuation and enhancement of the work done in this project. It concludes with some

final remarks and recommendations based on the research conducted.

1.5 A Note on Sources

Research in the area of cyber security is interesting in that it relies heavily on current, up-

to-date awareness of unfolding events. This often means that the sole reference resources

from which information can be obtained about these events are not from academia, since

academic research almost always lags behind the most current trends documented by the

media, security companies and government bodies.

Many of the sources cited in this document are non-academic, and hence often not peer-

reviewed by independent bodies. The greatest of care has been taken to select maximally

reputable, objective and independent sources as reference material for the work. However

sources cited which do not originate from peer-reviewed publications should be carefully

considered by the reader based on the potential for bias of any parties involved in the

writing.

All visual figures were generated as part of the writing of this document unless stated

otherwise, in which case the original source is cited.
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Chapter 2

State of the Art

This section is intended as an introduction to the state of the art in cybersecurity and

cyber-threats as they exist in 2018, with an aim of giving the reader in-depth context on

the area in which the research fits.

Section 2.1 outlines the current state of cybersecurity in the world as it stands in

2018, providing an illustration of the range of attacks and attackers threatening modern

systems. The rapid introduction of connectivity into systems as a result of the Internet-

of-Things phenomenon is explored, with reference to the evolution of threats that exploit

this increased connectivity.

Section 2.2 considers the role of effective intrusion detection in securing systems and

devices, emphasising the need to move away from reliance on passive threat detection

mechanisms that are widely deployed in systems. The role of honeypot technology in

providing active network defence is discussed in particular, with a detailed analysis of the

important characteristics of their design in order to employ them effectively as well as

the challenges that they face in widespread deployment. Lastly, the strengths of cyber

incident monitoring platforms with regards to enhanced usability and communication

capabilities are highlighted.

Section 2.3 explores the current state of the art in deployment platforms that are

widely in use in production systems, considering both Infrastructure-as-a-Service (IaaS)
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and Platform-as-a-Service (PaaS). Both the opportunities and challenges to implementing

security in evolving systems architectures are addressed here.

Section 2.4 describes a number of closely related projects encountered during this

research, highlighting their interesting attributes and contributions to the area of cyber-

security. These projects focus variously on the design of adaptive honeypots, the use of

containerisation in facilitating their easy deployment, and the benefits that can be gained

from visualisation of threat data.

Finally, Section 2.5 summarises the knowledge gained from the state of the art as

explored in this chapter, motivating the decision to tackle the challenges that have surfaced

in this chapter.

2.1 The Modern Cyber-Threat Landscape

The cyber-threat landscape is continuing to shift and transform at pace in 2018. Cyber

incidents are not localised but instead are happening on a global scale, their reach ex-

tending across all physical borders and legal jurisdictions and affecting a diverse set of

victims. The growth in diversity and severity of attacks has resulted in the formation of

new security taskforces1 by nations across the world in order to identify how to protect

their society from growing cyber threats.

2.1.1 Cyber Attacks

Cyber attacks continue to grow in prevalence and diversity with the continuous conception

and deployment of new technologies. The success of these attacks is often less to do with
1For instance, in February 2018 US Attorney General Jeff Sessions announced the formation of a new

Cyber-Digital Task Force as part of the US Department of Justice. In the Memorandum published by
the department, they state that ”many of the most pressing cyber threats that our nation faces transcend
easy categorization. These threats include: efforts to interfere with, or disable, our critical infrastructure;
efforts to interfere with our elections; use of the Internet to spread violent ideologies and to recruit
followers; theft of corporate, governmental, and private information on a mass scale; use of technology to
avoid or frustrate law enforcement, or to mask criminal activity; and the mass exploitation of computers,
along with the weaponizing of everyday consumer devices ... to launch attacks on American citizens and
businesses.” [2]
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the skill of those behind the attacks, and more with the lack of awareness and care taken

by their victim. Many successful cyber attacks have not been particularly sophisticated,

often resulting from preventable, known vulnerabilities that had not been addressed.

2.1.1.1 Overview

Attacks can be broadly classified as being either intentional or unintentional.

1. Intentional

Cyber attacks can be classified as intentional if the victim has been targeted by the

attacker. The most common motivations for intentional cyber attacks are as follows:

• Cybercrime

Cybercrime is most often motivated by financial gain, and manifests in a huge

variety attacks including social engineering, ransomware2 and identity theft.

• Activism and Terrorism

Cyber-activism, or ”hacktivism” as it is also known, involves launching cyber

attacks in order to raise awareness of a cause: Cyber-terrorism often fits the

same description. These attacks generally focus on spreading propaganda,

website defacement, Distributed-Denial-of-Service (DDoS), and data leaks.

• Nation State Attacks and Cyberwar

Cyber war refers to attacks by nation states as part of their political agenda.

There is increased activity across the world from attackers acting on behalf

of nation states with the intention of achieving military and political impact.

As stated in a whitepaper published by Cisco Corporation in 2017 [4], ”states

have built their own cyber attack teams. These teams are no less important to
2Ransomware is a category of malicious software (malware) which, when present on a system, will

render some part of the system inoperable until a ransom is paid to release it. In the case of the WannaCry
ransomware, all files on the infected system were encrypted and the attackers demanded a payment of
bitcoins to a particular bitcoin wallet in order to release it. [3]
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their state strategies than their army or navy... Whether you know it or not,

you are in a cyber war”.

2. Unintentional

Cyber attacks can be classified as unintentional if the victim was not specifically

targeted, but happened to be a victim of an attack as a matter of circumstance.

The most common motivation for unintentional cyber attack is social engineering

through schemes such as email phishing scams.

The phases involved in the progression of a cyber attack depend on a variety of factors

including the motivation for the attack, the type of attacker and the nature of the attack.

2.1.1.2 Attackers

Attackers in the context of this work are those who intentionally attack IT systems and

infrastructures. Various terms including ”bad actors” and ”black hats” are widely used

in the security industry to refer to these individuals.

In the world of today, it is very easy for anyone who feels inclined to attack IT systems

to learn how to do so. There are endless resources, toolkits and communities available

across the Internet to enable an individual to conduct successful exploits on any scale.

Attackers, as individuals performing malicious activity, will generally strive to conceal

their real identity. There exists a variety of distinct attacker classifications, outlined

below.

• Sophisticated Attackers

These are attackers with high-level technical skills, capable of discovering new cate-

gories of vulnerabilities and writing powerful attack toolkits. In general they are the

most difficult to defend against because of their substantial knowledge and skills,

and are widely recruited by nation states to conduct espionage or sabotage activities.
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• Script-Kiddies

So-called ”script-kiddies” launch attacks using malware and toolkits created by oth-

ers, and are not very sophisticated. In general they are motivated by peer-group

competition and reputation rather than financial gain or political causes.

• Hacktivists

These attackers carry out hacktivisim attacks. They are motivated by a cause that

they aim to promote and publicise, and can include terrorists and government-

funded organisations as well as vigilante groups. They often seek to damage another

party. A well-known active hacktivist group that often make headlines are the

Anonymous hacktivist group3.

• Insiders

Insiders are one of the greatest threats to the security of organisations, since they

are trusted individuals inside the organisation’s network. Similarly to cyber attacks,

there are two categories of insider attack: Intentional, and unintentional.

1. Intentional

These individuals often have sophisticated technical knowledge and a motiva-

tion to damage the organisation, such as being paid by a competitor or nursing

a personal vendetta, allowing them to launch an attack on the systems from

the inside. Rigorous background checks during the hiring process as well as

incentivising loyalty within the organisation can help to mitigate this threat.

2. Unintentional

Unintentional attacks mostly occur due to social engineering schemes such as

phishing email scams. Promoting the security vigilance of members of an or-

ganisation through education and training is crucial in preventing these attacks.
3A recent example of a successful attack by members of the Anonymous group was to take down the

website of Spain’s Constitutional Court in support of the ”Free Catalonia” movement in October 2017.
[5]
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• Bots

Bots are attackers which conduct attacks by executing malware. A group of devices

controlled by such malware is called a botnet. The malware used to infect these

devices is propagated from device to device, seeking to infect as many devices as

possible. When compromised, the computational resources of the devices are har-

nessed, allowing the so-called botmaster - the individual controlling the botnet - to

coordinate the devices to perform a specific function as a collective group.

2.1.1.3 Attack Vectors

There are countless different attacks vectors that exist, a number of categories of which

are outlined below.

• Social Engineering

These attacks include deception tactics like email phishing, which involves obtaining

the trust of privileged insiders by posing as a trustworthy entity in a communication.

An emerging social engineering tactic is the use of social media botnets to influence

the opinions and actions of unsuspecting users: An excellent example of this is

the so-called Brexit Botnet, where large numbers of Twitter accounts were observed

posting and re-tweeting tweets promoting the ’Vote Leave’ campaign, before being

removed shortly after the referendum results were released. [6]

• Vulnerability Exploits

This involves intentionally exercising a vulnerability in software or firmware. Every

system has vulnerabilities: It is up to those who develop them to develop mitigations

against them once they are discovered, and those who use them to make sure that

they keep up-to-date with patches as they are released. Typical examples of severe

exploit vulnerabilities include the OpenSSL Heartbleed vulnerability4.
4This vulnerability allowed attackers to bypass encryption protections by sending carefully crafted

requests in order to obtain a chunk of private memory in response. [7]
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• Authentication Attacks

Authentication attacks generally make use of either stealing credentials or brute-

forcing authentication5.

• Network Attacks

These attacks can be either passive or active. A passive network attack could involve

eavesdropping on network traffic, whereas an active network attack could be a DDoS

attack using high volumes of network packets to cause service outages.

2.1.1.4 Anatomy of an Attack

There are 5 primary steps involved in the steps typically involved in the formulation

of an attack on a system: Reconnaissance, enumeration, penetration, exfiltration and

sanitisation. [4]

1. Reconnaissance

Reconnaissance involves investigating the target, generally by gathering information

that is available in the public domain and not interacting directly with the systems

associated with the target. This kind of information gathering can include investi-

gating elements of the systems such as the technologies in use, enabling the attacker

to hone in on the targets of choice in the system.

2. Enumeration

In this phase, the attacker will utilise information gathered in the reconnaissance

phase to begin probing the target systems using various techniques and toolkits6, i.e.

direct interaction with the target systems in order to fingerprint7 them. As well as
5Brute-force authentication works on the basis of weak authentication mechanisms being implemented

to allow access to the target system. This includes design flaws such as weak username-password creden-
tials being used, or allowing an unlimited number of login attempts to the system. Bots often use this
strategy in attacks by trying as many combinations of username and password as possible.

6One such toolkit is Nmap, a powerful port scanner and device fingerprinting tool.
7Fingerprinting in relation to security refers to the identification of a system based on tell-tale char-

acteristics: For example, based on a response obtained for a request sent over a particular protocol, it
may be possible to identify what version of that protocol is supported by the recipient.
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this, measures are often taken to trick those with knowledge of the system internals

into giving away valuable information through tactics such as spear-phishing8.

3. Penetration

This stage involves the exploitation of any vulnerabilities identified by the attacker

in the reconnaissance and enumeration phases, with the intention of gaining access

to the target system. There is a wide variety of ways in which a vulnerability can

be exploited: For example, an interface to a database management system may not

have been fuzzed9 sufficiently, allowing a SQL injection10 attack to occur.

Once the attacker gains access, they will attempt to maintain a foothold in the sys-

tem through measures such as privilege escalation and exploitation of further con-

nected systems, with the intention of maintaining ”Command and Control” (C+C).

In an automated attack, this allows the compromised device to communicate with

external C+C systems to receive commands and subsequently act on them.

4. Exfiltration

After compromising the target system, an attacker will try to maintain access to the

system such that they will not lose control of it in the future. They will often install

backdoor mechanisms11 or extract data from the system to ensure this, which they

will do this as stealthily as possible in order to avoid being detected.

5. Sanitisation

As explained previously Section 2.1.1.2, attackers will almost always strive to remain

anonymous: It is in their best interests to remain undetected after compromising
8Spear-phishing is similar to regular email phishing, except that malicious emails are sent from a

known or trusted sender. This deception tactic makes spear-phishing very effective in inducing targets
to reveal confidential information.

9Fuzzing is a process used for input testing of systems, where many combinations of invalid, unexpected
or random data are provided as inputs and the system then observed for failures.

10SQL injection is an attack where a web interface accept malicious SQL inputs that lead to the attacker
having control of the underlying database.

11A backdoor mechanism is a means of accessing the system in question which bypasses any security
mechanisms in place.
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a system so that their exploitation of the system is not discovered and removed.

Before disconnecting from the compromised system, the attacker will attempt to

remove all evidence of their presence on the system to ensure this.

2.1.2 The Internet of Things

The Internet-of-Things (IoT) is a concept with many dimensions as it encompasses an

enormous range of technologies, standards and services. In general, an IoT system is

understood to be a collection of smart devices working on a collaborative basis to fulfil a

common goal. [8]

The IoT has taken the world by storm in the past several years, bridging the gap

between the physical world and the Internet. Connectivity has been introduced rapidly

into critical systems and processes: Industries and sectors including agriculture, energy,

health and transport have all seen revolutionary transformations as part of what has been

dubbed ’Industry 4.0’.

2.1.2.1 Pervasive Technologies

According to statistics published by Statista12 in 2018, [9] by 2025 it is predicted that

there will be over 75 billion IoT devices online globally: Several times greater than the

human population of the world13. Figure 2.1 shows their predicted exponential growth

trend over the period from 2015. These devices include everything from environmental

sensors to wearable technologies and process automation components, and are playing an

increasingly important role in the lives of all members of society. For a single IoT system,

sensors could be used to collect information about a particular environment in a Wireless

Sensor Network (WSN) configuration whilst communicating the information to a remote

application, where it is aggregated and pushed to a set of distributed smartphones.
12Statista cite the original source of this data as being from IHS Markit, an analytics firm headquartered

in London.
13The latest population statistics published by the Department of Economic and Social Affairs Popu-

lation Division of the United Nations in 2017 [10] estimate the population of the world at approximately
7.6 billion individuals.
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Figure 2.1: Statista: Predicted Growth in Online IoT Devices by 2025
This graph is provided based on research by Statista Gmbh, showing their predicted growth
trend for the number of internet-connected IoT devices by 2025. Historical data is included

back to 2015.

2.1.2.2 Security of IoT Devices

Whilst connectivity between devices and processes has enhanced and optimised indus-

trial processes, enabling the conception of countless new applications, the pace of this

transformation has resulted in little to no attention being given to the security of these

systems. Apart from concerns about the extent of pervasive monitoring conducted by IoT

systems14, new applications are being found for IoT devices at such pace that instead of

being built into these applications from the beginning, security is largely being left behind

to catch up on later. Most of the time, it can be taken that there is no such thing as
14The extent to which connected devices have become part of everyday life concerns many individuals,

particularly since the primary purpose of IoT devices is to continuously gather, analyse and transport
data to other systems. In an eye-opening paper published in 2017, [11] Lackorzynski et al. emphasise the
dangers of internet-connected devices such as the Hello Barbie childrens toy, which is ”a doll that could
talk back to the user... in this case very probably a minor”.
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”security by default”.

The risks - both to security and privacy - associated with the pervasiveness of the

Internet in everyday life today are something that the general population are largely

oblivious to. Insecam, which is a website broadcasting online feeds from thousands of

IP cameras with default login credentials without the owners’ knowledge, illustrates the

gravity of this issue. [12] Devices and systems which never had communication capabilities

before are being brought online, exposing them to significant potential tampering and

misuse in ways that could affect the welfare of entire populations. Crucial systems on

which society relies on a daily basis such as power grids, medical devices and traffic

control systems are increasingly falling into this category, becoming exposed to attacks in

a way that they never were in the past.

Some of the greatest issues with the security of these devices include the following:

1. Weak Default Credentials

The main contributor to the success of most attacks on IoT devices to date is the

fact that these devices are shipped with weak default credentials that are identical

across all instances of a given model. Additionally, these credentials are usually the

only security measure used to mitigate against threats to these devices: There is

very little effort required for an attacker to successfully compromise such a device.

2. Limitations in Applying Updates

The environments in which many IoT devices are deployed make it very difficult to

patch vulnerabilities and apply updates to these devices. In general, large numbers

of heterogeneous devices are deployed in a geographically dispersed, distributed

setup and communicate over a variety of different networking protocols. Applying

updates in such a deployment is inherently challenging.

3. Limited Capacity for Encryption

Due to the limited computational capacity and bandwidth of many low-powered
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IoT devices, the deployment of encryption on these devices is near to impossible.

The compute-intensive operations required by most encryption protocols to both

encrypt and decrypt data-in-transit and data-at-rest make it very difficult to im-

plement encryption practically. To illustrate this, the Internet Engineering Task

Force (IETF) stated in their most recent specification for Low-Powered Wide-Area

Networks (LPWANs) that implementing key authentication mechanisms becomes

”challenging to handle in LPWANs with bounded bandwidth.” [13] As discussed by

Dowling et al., if encryption is not implemented correctly, this can open the door

for attacks on confidentiality, origin authentication and data integrity if the device

in question is compromised. [14]

4. Insecure Communication Protocols

Many IoT devices use insecure communication protocols because of their require-

ment for low power consumption. The telnet network protocol, which runs on port

23/TCP, has been largely retired as it is highly insecure, transmitting all traffic

in clear-text including login credentials15. It is however a lightweight protocol to

deploy on a low-powered device, meaning that it has been widely included in IoT

devices for authentication. This further weakens the security of these devices: A

passive attacker eavesdropping on network traffic can capture IoT device data for

later analysis or compromise the device itself.

For attackers, IoT devices are very enticing: They are always online, using weak

security mechanisms and often with access to powerful shells. The emergence of freely-

available online scanning tools such as Shodan16 mean that identifying these devices be-

comes trivial. As affirmed by leading cybersecurity expert Bruce Schneier in his article

The Internet of Things is Wildly Insecure - And Often Unpatchable in 2014, ”if we don’t
15The full telnet protocol specification was finalised by the IETF 35 years ago in 1983, and explains

the motivations behind the protocol and its intended uses. [15]
16Shodan is a search engine for internet-connected devices. If a search is performed for ”default pass-

word”, devices using default passwords are identified all over the world and returned to the user as a
result. [16]
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solve this soon, we’re in for a security disaster as hackers figure out that it’s easier to hack

routers than computers”. [17]

2.1.2.3 Internet of Things Botnets

Given the exponential growth in the number of internet-connected devices over the past

several years, and given that attacks will always evolve as new technologies emerge, new at-

tack vectors and threats have been realised in relation to IoT devices since Bruce Schneier’s

insightful and telling article in 2014. [17] Though many IoT devices are low-power devices

commonly deployed in remote areas with low network bandwidth, large numbers of these

devices can have a combined impact that packs a significant punch: Enter IoT botnets.

IoT botnets are likely the most active and topical breed of botnet at present. They

are botnets composed entirely of compromised IoT devices. Most of these devices have

been found to run the Secure SHell17 (SSH) and telnet authentication protocols with

simple default username-password combinations, making it straight-forward to launch

brute-force authentication attacks to gain root access to the device.

The highest profile attack to-date by an IoT botnet took the world by surprise in

late 2016. The Mirai botnet, which amassed an army of over 300,000 IoT devices by

capitalising on their poorly-implemented authentication mechanisms, conducted one of

the biggest ever DDoS attacks by volume. The attacks began by targeting Krebs on

Security, [19] the website of well-known investigative security journalist Brian Krebs,

eventually peaking at almost 1Tbps with an attack on French cloud hosting provider

OVH. Research conducted by Antonakakis et al. [20] on the success of Mirai found that

for the 3 most common architectures found to be running the telnet protocol18, ”security

cameras, DVRs, and consumer routers represent(ed) the majority” of these devices.

The scale and impact of this botnet was a revolutionary development. The fact that
17The SSH protocol runs on port 22/TCP, and was designed by the IETF for secure remote login using

encryption. [18]
18MIPS 32-bit, ARM 32-bit, and x86 32-bit were the three most common CPU architectures identified

in the collected device samples, accounting for circa 74% of these. [20]
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Figure 2.2: The Mirai Botnet: Most Common Default Passwords
A table provided in the Understanding the Mirai Botnet paper, [20] showing the passwords

that were most commonly found across all of the devices analysed in their research.

it was capable of threatening some of the worlds best-defended targets using enormous

numbers of devices with low computational capabilities speaks volumes about the scale of

issues that are currently being faced in IoT device security. As stated by Bruce Schneier

in his 2017 article Botnet of Things, ”botnets will get larger and more powerful simply

because the number of vulnerable devices will go up by orders of magnitude over the next

few years ... overall, the trends favor the attacker”. [21]

A number of other IoT botnets have surfaced since the Mirai attack, many of them

variants of the original Mirai source code which was published online by a user called

Anna Senpai on the popular HackForums site. [22] One noteworthy botnet is BrickerBot,

an IoT botnet which surfaced shortly after the initial Mirai attacks on KrebsOnSecu-

rity. [23] The author of this botnet, who calls themselves the janit0r, claims to be a

white hat19 hacktivist intent on performing what they termed ”Internet Chemotherapy”:

The complete destruction of IoT devices with poorly-implemented security measures as
19This is a term commonly given to individuals who try to identify security vulnerabilities through

hacking. They are different to malicious attackers in that they respect any relevant laws, and do not hack
in order to damage the target system. Clearly, the janit0r doesn’t fit this description.
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a punishment to their owners. In a farewell email made available to security site Bleep-

ingComputer on 10th December 2017, the janit0r warns that the world should ”WAKE

UP TO THE FACT THAT THE INTERNET IS ONLY ONE OR TWO SERIOUS IOT

EXPLOITS AWAY FROM BEING SEVERELY DISRUPTED”, and that organisations

and individuals must take action to prevent this. [24]

2.1.3 Critical Service Infrastructures

At a time where heightened political tensions exist between many of the world’s most pow-

erful nation states20, cyber attacks are playing a prominent role in warfare and terrorism.

Cyber attacks on critical service infrastructures have the potential to cause responses

with severe impact. Illustrating the severity of threats from competing nation states,

Unal et al. [26] discuss the growing reliance of nuclear weaponry on digital technology

and communication systems, stating that ”the likelihood of attempted cyber attacks on

nuclear weapons systems is ... increasing from advanced persistent threats from states

and non-state groups”.

In a report published in 2017 containing recommendations to the U.S. administration

on national cyber-security, [27] M.I.T. researcher Joel Brenner states that one of the eight

major challenges facing the United States government currently is to ”enable critical

infrastructure operators to quickly identify and respond to cyber risk arising from cross-

sector linkages as well as from their own network”. This statement encapsulates precisely

the issues facing critical service providers worldwide today, and is something that is being

reflected in incidents across the world with an increasing number of attacks on high-profile

targets.
20The United States are currently locked in a cyber-combat against ”HIDDEN COBRA”, a codename

for what they claim is North Korea’s DDoS botnet infrastructure, as part of ongoing disputes between
the two nations. A US national alert [25] issued in June 2017 by the US-CERT claimed that HIDDEN
COBRA had ”likely targeted the aerospace, telecommunications, and finance industries” in the United
States.
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2.1.3.1 Vulnerable Critical Infrastructures

It is clearer now than ever that key organisations and critical services require a renewed

focus on defence strategies for their IT infrastructures. One such category of critical

infrastructures is Supervisory Control and Data Acquisition (SCADA) systems, which

are employed in industrial control environments to perform functions such as process

control and monitoring. Typically, these systems deal with lots of components including

sensors and mechanical parts like motors, enhancing the efficiency of operations in these

environments.

Securing these systems is vitally important: They are the underlying control system

of almost all nation-critical infrastructures such as transport, power and water. It is clear

that the consequences of compromising these systems have the potential to be serious and

far-reaching.

2.1.3.2 Case Study: National Health Service Attacks 2017

In May 2017, one of the more memorable attacks in recent years on a nation-critical

service occurred in the United Kingdom. The global WannaCry ransomware attacks,

which successfully compromised more than 200,000 systems in over 100 countries, knocked

systems in the UK National Health Service (NHS) at 37 sites offline for over a week with

more than 6,912 appointments cancelled in that time. Though the NHS was almost

certainly not a specific target of the ransomware authors21, the attacks had a huge impact

on health services across the UK. [29]

Examining the compromise of the NHS infrastructure by the WannaCry ransomware

presents a strong basis for addressing many issues seen across critical service infrastruc-

tures. Being such a high-impact incident, it emphasises the severe consequences that a

cyber attack can have on a critical service. An audit report published by the UK National

Audit Office after the incident [29] highlights a number of substantial shortcomings in the
21According to a paper published in the aftermath of the attacks, many other sectors across the world

including transport and energy were also affected. [28]
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Figure 2.3: Illustration of WannaCry Infection in the NHS
An illustration of the infection of systems at NHS hospital sites by the WannaCry ransomware.

The infection was not limited to user devices and servers, affecting systems including MRI
scanners and blood test analysis devices. [30]

NHS security defence strategies up to 12th May 2017 when the attacks occurred:

1. There was no incident monitoring in place to alert security first-responders to any

unusual behaviour in the NHS systems: Evident from the fact that it took over half

a day to reach those who could take remedial action.

2. There was no centralisation of system data, meaning that security experts had to

physically attend the affected sites in order to collect crucial data about the attacks.

This further prolonged the period for which these systems remained inoperable.

3. Prior to the incident, recommendations regarding updates for the NHS IT systems

were issued but not followed at the affected sites. Further to this, there was no

system in place to determine whether or not the actions had ever been taken. Out-

dated and unpatched operating systems were a major contributor to the success of
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the compromise, which was entirely based on a Windows exploit22.

Ultimately, the lack of monitoring within the NHS systems meant that when the

attacks occurred, the systems at the affected sites remained offline for an extended period

of time, causing chaos across the entire healthcare system in the UK. It is clear that

in order to protect both their own systems and those of others that depend on them,

organisations must place emphasis on security training for their members, the security

and maintenance of their technologies, and the rigorousness of governance of their systems.

2.2 Intrusion Detection

An Intrusion Detection System (IDS) is a security application that is employed to detect

attempts from an attacker to gain unauthorised access to a system or system resource.

They are usually deployed in a region known as the De-Militarised Zone (DMZ), a sub-

network separating an internal network from untrusted external networks, providing an

added layer of isolation between internal and external systems23. Most traditional IDSs

work off the basis of comparing activities to a defined security policy, and either permitting

or denying the action on this basis.

In this section, the motivations for intrusion detection, along with two primary types

of intrusion detection system, are discussed and compared.

2.2.1 Motivations for Intrusion Detection

IDSs play an important role in securing both enterprise and personal systems. Among

the many advantages are the following:
22WannaCry and NotPetya, two ransomware strains which made their first appearance in 2017, both

exploited this vulnerability. Officially named ’EternalBlue MS17-010’ by Microsoft, a patch was released
for it after major attacks by both of these ransomware strains. According to an article by Brian Krebs, [3]
The EternalBlue vulnerability exploits the Microsoft Server Message Block (SMB) network file sharing
protocol. SMB allows applications on a computer to read and write to files and to request services that
are on the same network.

23Usually, content-serving systems are placed in this region of the network so that they can be accessed
from external networks.
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• By detecting an intrusion in the early stages, the intruder can be removed from the

system before any damage is done.

• Attackers in general strive to remain anonymous and undetected. If a potential

intruder has some knowledge of an effective IDS being in place in a system, they

may be deterred from proceeding with an attack.

• Valuable information may be collected about the nature of the intrusions and how

they took place, enabling administrators to continuously re-evaluate their system

design and security strategies.

How each of these advantages are provided, and to what extent, is dependent on the

type of IDS being employed. It should be recognised that threats can come from nodes

both internal and external to the network in question, and so a maximally effective IDS

will address both.

IDSs can be broadly categorised as either being passive or active.

• Passive IDSs are not proactive about preventing or interfering with attacker activi-

ties.

• Active IDSs are proactive about engaging with the attacker in order to counter an

attack.

In this section, two particular IDSs will be discussed in detail: firewalls and honeypots.

2.2.2 Firewalls

Firewalls are the most commonly deployed type of IDS, and are used in virtually all

enterprise networks as part of an organisation’s network security. In general, they are

classified as a passive network defence mechanism. According to a literature survey by

Voronkov et al., ”a firewall is a system consisting of software and/or hardware that is

designed to prevent unauthorized access to/from a network or device”. [31]
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2.2.2.1 Overview

The basic principle of operation of a firewall is to act as a barrier on the periphery of a

network, preventing intruders and malicious forces from gaining access to the system being

protected. In practical terms, they filter network packets based on a defined security policy

which is a set of configured rules, and either accept or reject a given packet according to

this policy.

Figure 2.4: Use of Firewalls in a De-Militarised Zone
An illustration of a typical corporation network where firewalls have been employed at the

internal and external entrypoints to the De-Militarised Zone (DMZ).

2.2.2.2 Design

A number of commonly employed approaches to implementing firewall policies are iden-

tified by Omar Santos in End-to-End Network Security defence-in-Depth. [32] Some of

these are described as follows:

• Pattern Matching
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The firewall tool searches for a fixed sequence of bytes within a packet, often aligned

at a specific position corresponding to a field within the packet. It then makes a

filtering decision by consulting its defined security policy.

One of the primary limitations of pattern matching is that it generally exhibits a high

rate of false positives, making it relatively inaccurate as a technique of classifying

packets that should be denied access.

• Protocol Analysis

Protocol analysis is accomplished by decoding protocol-specific communications, i.e.

by examining the packets corresponding to particular communication protocols. The

firewall will identify elements of the protocol and examine them for an infringement,

for instance by examining explicit fields within the packets. An example for an

SMTP packet might be examination of fields such as HELO, MAIL, RCPT, DATA,

SET, NOOP, and QUIT.

• Heuristic-Based Analysis

Also known as misuse detection, this technique tries to identify intruders based on a

set of known undesirable behaviours and patterns that can be determined according

to rules. Systems built upon this concept are severely limited in intrusion detection

capabilities since they cannot detect an intrusion for which no rule is defined.

• Anomaly-Based Analysis

Anomaly-based analysis techniques try to define the behaviour of a normal user over

time, and compare the behaviour of all users to this in order to identify suspicious

behaviour that may relate to an intrusion.

• Deep-Packet Inspection

Deep-Packet Inspection (DPI) involves closely examining information embedded in

network packets in order to make more informed decisions about how to handle
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the packet. This often allows for more effective mitigation against attacks such as

DDoS, where DPI allows for the more accurate identification of packets that have

undesirable contents or are in some way not legitimate.

2.2.2.3 Challenges

There are a number of issues with using firewalls alone for intrusion detection. Though at

a point in time these systems reflected the configuration of enterprise networks accurately,

in the world of the modern web many of the premises of using firewalls simply do not

hold any more. As enumerated by Steven M. Bellovin in Thinking Security: Stopping Next

Year’s Hackers, [33] the design and use of firewalls is based on the following premises:

1. A firewall operates at a topological chokepoint in the network it is protecting, such

that it partitions two sections of the network.

2. All nodes being protected inside the firewall have the same security policy.

3. All nodes inside the firewall are trusted.

If all of these conditions hold, then a firewall will work well in the system in question.

However, taking any modern IT infrastructure in an organisation today, most - if any -

of these assumptions do not hold true.

• Enterprise networks increasingly deal with nomadic users, who are facilitated in con-

stantly connecting to and disconnecting from these networks without any security

auditing being performed.

• The devices that connect to enterprise networks today are incredibly diverse, and

implement an even more diverse and inconsistent range of security policies.

On top of this, it is increasingly becoming difficult for firewalls to use packet inspection

techniques to filter network traffic because of incompatibility with other security mecha-

nisms. An increased uptake in TLS encryption and the push for packet header encryption
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is causing enormous issues for the operation of firewalls, which cannot decrypt packets in

order to make the required filtering decisions that it depends on.

There is no question that firewalls are no longer sufficient on their own in providing

security for modern networks. They can be reasonably effective against known, less so-

phisticated attacks and are less effective against more sophisticated targeted attacks which

are more likely to use new exploits. As Fred Schneider explains in his paper Blueprint for

a Science of Cybersecurity, ”a secure system must defend against all possible attacks - in-

cluding those unknown to the defender. But defenders, having limited resources, typically

develop defences only for attacks they know about.” [34]

Overall, firewalls are most effective when used in combination with other security

mechanisms, but their inability to classify and mitigate against new threats is a major

limitation to their use. [33]

2.2.3 Honeypots

Well-known security expert and Honeynet Project founder Lance Spitzner defines honey-

pots as ”a security resource who’s value lies in being probed, attacked or compromised”.

Honeypots leverage the concept of deception in order to combat attackers. As explained in

a paper by Cliff et al., ”the essential parts in cyber deception include crafted information

by the defender (that will be used to mislead) and wrong actions taken by the adversary

as a result of the deception.” [35]

Put simply, honeypots are devices which masquerade as legitimate and systems in

order to detect, track and analyse patterns of user behaviour when the system is illegally

accessed. They are categorised as an active network defence mechanism, and are deployed

solely with the intention that they will be attacked. A key characteristic of a successful

honeypot is attractiveness to an attacker. ’Attractive’ in this context means that the

honeypot should appear to be exactly the device that the attacker is looking for: A

device that has the potential to be easily exploited, whilst offering maximum value to the
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attacker.

2.2.3.1 Overview

Honeypots are broadly seen as acting as both decoys and sensors in the network in which

they are deployed.

• Honeypots as Decoys

A honeypot can be used to divert an attacker’s attention away from the valuable

components of the network in which it is deployed. This is particularly useful in a

production environment, when there is a need to protect important systems on the

network.

In order for this strategy to be effective, the honeypot should appear to be exactly

what the attacker is looking for. By then being attacked, the honeypot can imme-

diately notify system administrators of an intruder being present in the network,

allowing them to take the appropriate course of action to secure it.

• Honeypots as Sensors

Honeypots can also be viewed as sensors, since they can collect valuable data about

the attacks that they receive. This is particularly useful for detecting weaknesses

and vulnerabilities in system design, since the captured attack data can be analysed

to understand the attacker’s behaviour and strategies as well as their motivations.

Thus, the value of honeypots is both in their ability to capture information as well as

to defend the system within which they are deployed.

Amongst the many benefits of using honeypot technologies are the following:

1. Configurability

In general, honeypots are highly configurable and customisable and can be made to

mimic real systems. This configurability allows those deploying them to adapt their

defence strategy to tackle evolving attack behaviours.
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2. Inside the Network

Honeypots are deployed inside the infrastructure of the system they are protecting,

rather than on the fringes as with firewalls. This allows for security much closer to

the real systems that are being targeted by attackers.

3. Logging Capabilities

Honeypots give a unique opportunity to capture valuable information about the

nature of attacks being launched against a system, providing a means of observing

attackers ’in the wild’ without being detected. This gives system administrators a

better chance of staying up-to-date with the evolving security requirements of their

systems.

4. Few False Positives

The premise of using a honeypot is that nobody should communicate with it: There

is no legitimate reason to interact with a honeypot, since it is deployed with the sole

purpose of attracting attacks. This means that typically, a honeypot will trigger

very few false positives, since every interaction with a honeypot is automatically

distrusted. This has added benefits for system administrators in that there is a lesser

requirement to comb through very large log files in order to identify a significant

event, which is common practice with firewalls and many other IDSs.

It is important to consider however that individuals within an organisation may

mistakenly interact with the honeypot out of curiosity, something which can often be

deduced from looking at the logging captured. In general, the presence of honeypots

in a system should not be well-known within the organisation for this reason.

5. Offensive and Defensive

As explained, honeypots are an active defence mechanism. They allow for learning

about adversarial intent, capability, and techniques as well as thwarting attempts
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to compromise real systems. By using honeypots, cyber attacks can be mitigated

against by making access to valuable systems both expensive and ineffective.

2.2.3.2 Design

The design of honeypots to suit the context of their deployment is key to their ability to

provide effective intrusion detection in a system. The primary design categorisations of

honeypots were outlined in a paper by Mokube et al. [36] on the basis of (i) their level of

interactivity with an attacker, and (ii) the context of their deployment.

2.2.3.2.1 Interactivity

Interactivity levels of honeypots are an important consideration, which define (i) the

ability of the attacker to interact with the honeypot, and consequently (ii) the volume

and type of information that can be gathered by that honeypot. Levels of interaction

range from simply allowing a connection to be made, to being able to download and

install malware binaries. The cost versus learning benefits of honeypot interactivity levels

increase proportionally, meaning that a highly interactive honeypot will likely be expensive

to host and maintain.

Any effective honeypot must be capable of interacting at some level with an attacker,

while also quietly monitoring their actions. There are three practical classifications of

honeypot interactivity level: Low, high and medium.

• Low

Low-interaction honeypots are most commonly used to alert someone to the fact

that an attack has occurred, but do not provide any means of interacting with

the attacker or capturing the attack data. They are used in cases where a lower-

risk solution is preferred: In general, a low-interaction honeypot will simply be

an emulation of a real service, and so does not offer any opportunity for system

compromise by an attacker. This can be a major limitation to their use, since there
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is very little knowledge to be gained from preventing further interaction with an

attacker.

• High

High-interaction honeypots are at the other end of the spectrum compared to low

interaction honeypots. They are fully-fledged systems, and give the opportunity

for attackers to use real applications during their interactions. A great deal can be

learned about the nature of attacks from using high-interaction honeypots, since it

is the closest thing to observing attacks ”in the wild”. The trade-off is the high-risk

associated with the exposure of a real device to a malicious attacker, which in the

worst case could see the entire system taken over by an attacker and used to launch

further attacks on other devices. Some of the ethical considerations around this

issue are discussed in Section 4.2.2.

• Medium

As described, the appropriate level of interactivity of a honeypot depends on the

use context: Low-interaction devices are commonly used for detecting connection

attempts, whereas high-interaction devices are live systems that can capture detailed

information about the behaviour of attackers ”in the wild”. Medium interaction

honeypots offer a good middle-ground, using emulated components of a real system

to allow a level of interactivity with the attacker whilst not exposing any real systems

that could be compromised.

A summary of the characteristics of each of these categories of honeypot are given in

table 2.1.

2.2.3.2.2 Deployment Scenarios There are primarily two deployment scenarios for

honeypots: Production and research. This distinction mainly distinguishes between the

function that the honeypot needs to provide for the system in which it is to be deployed.
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Interaction Level Information Quality Risk Maintenance Cost
High Excellent High Difficult
Low Poor Low Simple

Medium Good Medium Relatively Simple

Table 2.1: A summary of the characteristics of each different honeypot interactivity level,
similar to that provided in a survey of honeypot technologies by Nawrocki et al.. [37] In
general, the higher the interaction level the higher the cost, risk and value of information
captured.

• Production Honeypots

Production honeypots are generally deployed in large, enterprise networks with the

intention that they will act as a part of the active network defence in the organisa-

tion’s infrastructure. An example of such a deployment is shown in figure 2.5. Their

primary purpose is to act as a decoy, luring the attacker away from valuable ma-

chines on the network with a seemingly more valuable and vulnerable target. This

enables the honeypot to alert system administrators early on to the fact that there

has been an intrusion, giving them the opportunity to isolate the valuable devices in

the network from the infected honeypot. As previously highlighted, it also enables

system administrators to identify vulnerable points in their infrastructure.

The idea of attracting attackers into the system, encouraging them to interact with

it and give away their attack strategies without causing any harm to the systems

with real production value is the major attraction of using honeypots in a production

environment.

• Research Honeypots

As the name suggests, these honeypots are generally deployed for the purpose of

research rather than as a security measure. The emphasis with these honeypots

is not so much on the ability of the honeypot to act as a decoy, and more on the

ability of the honeypot to collect valuable data for analysis. By allowing attackers

to interact with and infect the honeypot, research can be carried out relating to the
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Figure 2.5: Use of Honeypots in a De-Militarised Zone
An illustration of a typical corporation network where honeypots have been employed in

conjunction with internal and external firewalls, inside the DMZ.

behaviour and strategies of the attackers.

2.2.3.3 Comparison with Firewalls

When compared to traditional, passive intrusion-detection mechanisms such as firewalls,

honeypots exhibit some crucial differences.

• Firewalls define all attackers passively and simply alert to the fact that a security

incident, such as an unauthorised connection attempt, has occurred. A system ad-

ministrator can then, for instance, blacklist24 the source IP address of the connection

to deny it access to the system.

However, if a new attack comes along for which there is no rule defined in the

firewall’s security policy, the firewall is not able to deal with this attack. This

illustrates how firewalls can only provide known-threat mitigation.
24Blacklisting an IP address means that it is added to a list of addresses that aren’t considered trust-

worthy.
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• In contrast to firewalls, honeypots proactively entice attackers to give away their

attack strategies and intentions by leaving their tracks behind on the device. This

enables the same system administrator to do far more to enhance their system

security policies and identify potential flaws in their infrastructure, allowing them

to improve their system’s security.

As well as this, the honeypot can attract and deal with previously unknown threats,

giving them another edge over firewalls since they can provide unknown-threat mit-

igation as well as known-threat mitigation.

By using honeypots, system administrators are able to learn what attackers are target-

ing in their systems, enabling more effective defences to be implemented as vulnerabilities

and flaws are identified. As suggested by Bellovin, ”the world has changed ... the deci-

sion to rely on (firewalls) should be reexamined and perhaps abandoned”. Despite this,

firewalls are not obsolete and will continue to play an important role in IT and network

security with their ability to detect and classify potential security risks at the edge of

the network they are protecting. They are however best used in conjunction with active

network defence mechanisms such as honeypots. [33]

2.2.3.4 Honeynets

Honeynets are networks of interconnected honeypots, which coordinate their efforts to

provide active network defence. Given that they consist of more than one honeypot,

they have additional abilities to capture valuable attack information regarding threats

compared to standalone honeypots: For instance, it is possible to study the propagation

of attacks from one honeypot to the next, and to simulate a variety of different systems

that may attract different categories of attack.

Honeynets are significantly more complex than standalone honeypots given that they

consist of a network of honeypot devices designed to be attacked. In general, a honeynet

will contain high interaction honeypots so that an attack is able to propagate from one
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real system to another real system. As with individual honeypots, any connections to a

system in the honeynet are immediately distrusted and assumed to be malicious.

An element of a honeynet which is described by Lance Spitzner in Honeypots: Catching

the Insider Threat [38] is something that he refers to as the honeywall gateway, a bridging

device between external systems and the honeynet. All traffic between the external system

and the honeynet must pass through this gateway. The honeywall will typically have

two interfaces: One to connect it to the external web, and the other to connect to the

honeynet. The honeywall thus acts to separate the honeynet from the external web. Since

the honeynet is only reachable through the honeywall, which can monitor and control

network traffic to and from the honeypots in the network, extensive extra monitoring can

be performed on attackers of the system. Depending on the configuration, this component

has the opportunity to capture data including network traffic and keylogging data.

In summary, using a honeynet allows for deployment of a highly-controlled active

defence network where all activities of attackers are made visible. The insights that

can be gained from observing the behaviour of attackers in an unrestricted networked

environment are highly valuable to those who wish to continuously improve their system

defences. However, the risk associated with hosting a system of this type is a major trade-

off since there are many more points of failure in a network of intentionally vulnerable

devices.

2.2.3.5 Challenges

There are a number of challenges to the widespread deployment of honeypots in networks,

outlined below.

1. Detection

One of the major considerations when designing or using a honeypot-driven solu-

tion is the risk of the honeypot being detected as a non-genuine system. This is

particularly relevant to low and medium-interaction honeypots which emulate a real
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Figure 2.6: Lance Spitzner’s Proposed Honeynet Architecture
This figure shows a diagram taken from Lance Spitzners paper proposing a honeynet

architecture. Original source: Honeypots: Catching the Insider Threat. [38]

system: It is never possible to exactly mimic the behaviour of the corresponding

real system. This means that carefully crafted actions by an attacker may allow

them to detect that they are not interacting with a bona-fide system by triggering

different responses: A form of fingerprinting. It is an ongoing challenge for honeypot

designers to combat fingerprinting checks by attackers.

In general, honeynets are less likely to be fingerprinted successfully than an in-

dividual honeypot since they provide a network of interconnected high-interaction

honeypots providing real services. This kind of system is highly enticing to attackers

because of the advanced system capabilities that it provides, and thus a less likely

suspect as a non-genuine system.
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2. Adoption

There are many challenges to overcome in order to make the use of honeypots more

widespread. To many, the idea of inviting a malicious actor into a production system

seems like a potentially destructive action, and so many system administrators do

not consider honeypots as part of their security infrastructure. Canary, a honeypot

solution developed by Thinkst Applied Research, highlight on their product landing

page the challenge behind adopting honeypots in large networks: ”With all the

network problems we have, nobody needs one more machine to administer and worry

about”. [39] Although it could be argued that this is a sales pitch, this statement

highlights the demand and lack of supply of feasible solutions for large organisations

regarding deployment and maintenance of honeypot-based systems.

3. Ethical Concerns

The use of any surveillance technology, which is the category into which honeypots

fall, has ethical questions associated with it. Honeypots are widely accepted as an

ethical approach to intrusion detection and understanding cyber attacks. Since there

is no legitimate reason for interacting with a honeypot, any interactions are likely to

be of a malicious nature - in which case, the honeypot simply serves to counteract

further attacks of this type in the future. Mokube et al. discuss these ethical issues

in detail in their paper. [36] However, a discussion in a whitepaper published by the

System Administration, Networking, and Security Institute (SANS), [40] it can be

concluded that their use does not involve:

• Entrapment, since there is no inducement to attack the honeypot - rather, it is

something that all devices are vulnerable to because attackers will always seek

to attack devices within their reach, regardless of whether it may be a honeypot.

As aptly phrased by security researcher Lance Spitzner [41], ”attackers find and

break into honeypots on their own initiative”.
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• Invasion of privacy, since surveillance mechanisms are broadly seen to be ac-

ceptable where they serve simply to protect their own environment. A com-

monly encountered example in physical environments is the use of CCTV cam-

eras.

Overall, the ethical concerns around the use of honeypots are widely accepted to be

resolved by the nature of the deployment of honeypots: Ultimately, their purpose

is to defend against unethical actions by attackers. With reference to the research

being undertaken in this project, ethical considerations are discussed later in relation

to the design of the research environment in Section 4.2.2.

2.2.4 Cyber-Incident Monitoring

Cyber-incident monitoring forms an important part of providing effective intrusion de-

tection. Cyber incident monitors are platforms that support system administrators in

identifying and acting upon threat intelligence collected through intrusion detection mech-

anisms such as honeypots and firewalls, primarily through providing enhanced usability

and more effective communication. It is concerned with the effective management of in-

trusion detection tools, the recording of threat events, and the provision and presentation

of threat information to first-responders.

2.2.4.1 Usability in Security

It is widely accepted that the ability of a user to easily employ security systems makes a

crucial contribution to their effectiveness: As argued by Sasse et al., ”security mechanisms

are often too time consuming for people to bother with, or so complex that even those

willing to use them make mistakes.” [42] The use of security mechanisms adds an overhead

to the use of systems almost without exception. Apart from the consequent disincentive

for individuals to use these mechanisms, it becomes very hard to use them effectively

when their use is not straight-forward.
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In a literature review addressing the usability of firewall applications in particular,

Voronkov et al. found that usability studies could greatly enhance the effectiveness of

security mechanisms, since configuring them ”is a process that is complicated and prone

to error... misconfiguration of firewalls leads to a broad number of vulnerabilities in the

network; environments with distributed and multiple firewalls just make matters worse.”

[31]

2.2.4.2 Visualisation in Security

Visualisation techniques have become crucially important in delivering usable security

solutions. Security problems are inherently complex: In the case of tools such as firewalls

which work off the basis of a list of defined rules, it becomes very difficult to understand

and maintain the overall security policy as the list grows.

The impact of using visualisation in security mechanisms is that threat intelligence is

communicated more clearly and effectively to those consuming the data. Ease of visibility

of the state of a system is a crucial element of active network defence in identifying

and investigating potentially malicious activities and detecting unknown threats before

they can do damage. As explained by Vasilomanolakis et al. in a paper detailing the

development of a honeypot-based incident monitoring system, such a system ”unif(ies)

the various alert generators into a single system that assists the user to make informed

decisions”. [43]

2.3 Modern System Infrastructures

There is a significant shift in the hosting solutions that are being used by large organisa-

tions that rely heavily on their IT infrastructure, particularly for those providing services

on such a platform. Outsourcing of resource management is now the preferred approach

for many large organisations, given that specialised hosting providers are increasingly

offering end-to-end solutions for hardware, network and security infrastructure manage-
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ment.

The architectural design of these distributed services is also evolving. The concept of

decoupling services by deploying them as microservices has enhanced operational efficiency

in organisations, moving away from failure-prone monolithic designs of the past.

2.3.1 Infrastructure-as-a-Service

In the past, organisations hosted their systems on servers and physical infrastructure

that they owned and managed themselves. This approach was resource-intensive for

organisations, motivating the development of IaaS. IaaS is a service model where physical

infrastructure is provided to organisations on an outsourced basis including hardware,

storage, servers, data centre space and network components, and the use of cloud platforms

which allow an organisation to host their services on another organisation’s hardware offers

a practical solution to this.

2.3.1.1 Benefits

The benefits for organisations of outsourcing their infrastructure management to third-

party providers include the following:

• There is a guarantee of maximum uptime since cloud platforms are a paid service.

• There is no need for upfront capital investment, since there are none of the instal-

lation or maintenance costs associated with hardware upgrades or expansion.

• There are a wide range of geographic locations available for deployment since hosting

services are located all over the world, allowing organisations to host their services

closer to users that are geographically dispersed.

In essence, using a cloud platform to host enterprise-level systems is highly econom-

ical, simplifying the management of resources and deployment with the result that they

consume less of the focus of system administrators. With an ever-increasing number of
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companies moving their operations to the cloud, a cloud-deployment appears to be the

most feasible deployment solution for cyber-incident monitoring systems in the long-term.

2.3.1.2 Virtual Machines

Cloud platforms have typically leveraged virtualisation of the underlying bare-metal hard-

ware through the use of virtual machines (VMs), which run software on top of physical

servers to emulate a particular hardware system, and are the enabling component of IaaS.

There are a number of components to any virtualised system:

• A VM host, which is a server that supports virtualisation.

• A hypervisor, or a VM monitor, which can be any of software, firmware, or hardware

that is used to create and run VMs. The hypervisor sits between the physical host

and the VM.

• The VMs themselves, which are isolated software environments that imitate dedi-

cated bare-metal systems25.

VMs are relatively heavyweight and expensive to maintain, since each separate VM

maintains its own operating system (OS) image26: An overhead in memory and storage

footprint. This lack of flexibility also limits the portability of applications that run on

virtual machines between different hosting solutions: It is difficult to replicate the same

environment configuration on a second VM.

However, VMs allow for multi-tenancy on a single piece of physical hardware, as well

as fine-grained resource allocation.
25The term bare-metal refers to the hosting and management of applications directly on the underlying

hardware, without an intermediary software layer.
26An OS image is system image is a copy of the entire state of an OS stored in a persistent, non-volatile

form. It is a package that contains all of the information required to run the OS on the machine, and is
usually relatively large as a consequence.
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Figure 2.7: Components of a Virtualised Environment
A conceptual diagram showing the components of a virtualised environment. Original source:

Boolean World. [44]

2.3.2 Platform-as-a-Service

The idea of PaaS is that users are able to focus on running and developing applications

instead of managing the infrastructure that supports them. PaaS systems mean that

a virtual infrastructure is provided and users can deploy any application on it without

needing to worry how resources are allocated to it.

2.3.2.1 Containers

A container is an isolated execution environment defined by a single package that includes

everything needed to run it: Code, runtime, system tools, system libraries, settings. They

are type of OS-level virtualisation, isolating an application from the host infrastructure

on which it is being run: They are almost completely host-agnostic27. An application and

all of its dependencies can be packaged up in a container image that can be published in
27Host-agnostic in this context refers to the fact that containers do not have an affinity to any particular

host system.
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a container registry so that unlimited numbers of users can work in identical application

environments.

Figure 2.8: Components of a Container Environment
A conceptual diagram showing the components of a container. Original source: Boolean

World. [44]

For setting up a standard application environment and deploying a large number of

instances on-demand, containers are simple to configure and much faster to launch than

VMs. Among the many advantages of using containers compared to VMs are the following:

1. Hosting a container does not include anywhere near the same storage overhead as

a VM: Containers do not need to maintain their own copy of the OS image, since

they share the kernel of the host OS.

2. All dependencies required by an application are packaged into a single, replica-

ble image. This means that the portability of application environments that is so

difficult to achieve with VMs, is native in containers.

3. Containers come with their own separate network stack and storage without the

overhead of building and running a VM.
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Many organisations are migrating their infrastructure deployments from VMs to con-

tainers. A recent example of this is Netflix, who started migrating their infrastructure

hosting to the AWS cloud in 2008. At the time of writing in 2018, Netflix are migrating

the hosting of all of their applications from VMs to containers. In a paper discussing this

shift in Netflix’s infrastructure approach, [45] Leung et al. state that ”one of the bene-

fits of using containers ... is that it abstracts much of the machine-centric management

that applications were doing in VMs”. This is one of the notable benefits of using con-

tainers over VMs: Those deploying the application no longer need to concern themselves

with the environment specifics, and get the opportunity to focus on building and running

applications.

2.3.2.2 Security through Containerisation

An area where much work remains to be done is in bringing security applications into

the progressively more popular container ecosystem. There is tremendous potential for

the containerisation of security applications, and a number of identified benefits of this

approach are described below.

• Disposability

A major selling point of containers is that they are virtually disposable. In the event

that a container becomes infected with malware, it is straightforward to remove it

entirely and re-deploy it with minimal disruption to the system.

• Isolation

One of the key features of containers which has contributed to their widespread

adoption is the ability to restrict and isolate application environments.

– Containers leverage a Linux functionality known as ”namespaces”, placing ap-

plications that run on them in restricted environments, isolated from each
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other. Individual containers are run in their own independent namespace, and

are given their own independent view of a variety of operating system resources.

– Containers can also be restricted such that any ”root user privileges” do not

have to correspond to the root user privileges on the host machine: The defi-

nition of ”root user privileges” is completely separate from those of the host.

The net impact of this isolation on the security of containers is that the applica-

tions running inside one container will not interact, unless explicitly configured to

do so, with applications inside another container or on the host machine. This is a

substantial increase in security compared to running multiple non-containerised ap-

plications on the same system, and means that even if one container is compromised

by malware, the others can continue to operate. This loosely-coupled approach to

operating services has the capacity to deliver greater fault tolerance and scalability

in systems in which they are deployed, reducing the exposure of the overall system

to compromise.

• Standard Base OS Images

Containerised solutions benefit greatly from being able to build customised con-

tainers off standard, widely-used OS images. These standard images benefit from

ongoing security auditing and patching, making them a secure foundation for build-

ing customised containers.

• Customisability

Containers are highly customisable, and enable fine-grained control for system ad-

ministrators. It is possible to restrict everything from the privileges to the runtime

services, enabling restriction of what resources can be accessed by any given con-

tainer.

In an infrastructure ecosystem where services are increasingly being containerised, the

containerisation of security applications is a must in order for them to remain compatible
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with these new architectures. However, the introduction of new technologies into systems

will always bring additional security risks, something that must be carefully considered

by organisations migrating their operations to container-based architectures. [46]

2.4 Closely Related Work

The closely related projects described in this section are explored from the point of view

of their most interesting characteristics rather than the achievement of their respective

research objectives.

2.4.1 Adaptive Honeypots

The goals of honeypot deployments can vary greatly, and most honeypots offer a wide

variety of options and different functionalities in order to provide flexibility to this end. As

identified in Section 2.2.3.2, increasing the interaction capabilities of a honeypot results in

more extensive and detailed information but also more potential damage to the system.

Different trade-offs in honeypot design are clearly more suitable for some deployment

scenarios than others.

At the time of writing, there were over 1,000 open-source honeypot projects listed

publicly on GitHub28. These range from open-sourced production honeypots to major

open-source collaborations and hobbyist projects. Research honeypots discussed in jour-

nals and conference papers add even more to this number, and there is little doubt that

many proprietary production solutions also exist. [39]

Some of the more significant honeypot projects encountered during this research are

described below. These include research honeypots and community-based honeypot de-

velopments.
28On 24th March 2018, a search for the query ’honeypot’ provided 1,405 repositories as results.
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2.4.1.1 Kippo

Kippo is an open-source SSH honeypot written in Python which is no longer under active

development. It is a medium-interaction honeypot developed by an online development

community, and is designed to capture the entire session interaction of an attacker. [47] It

emulates a Debian Linux installation, and provides a wide variety of features as follows:

• Kippo provides an out-of-the-box configurable file system and shell for each attacker

to interact with. It does not limit the number of simultaneous sessions, and can

present a mock file system and shell to each attacker independently.

• Kippo implements a falsified SSH service to which attackers can connect.

• Kippo includes configuration options for permitted usernames and password com-

binations which can be controlled by the user.

• All interactions with Kippo are logged, including brute-force login attempts, source

IP addresses, attacker protocol information, commands executed and records of any

attempted downloads.

The fact that Kippo is implemented as a Python application means that attackers will

not interact directly with the underlying OS, adding an extra layer of protection for the

host system. The fact that it doesn’t call on any external software for its core operations

makes it much less vulnerable to third-party compromises.

Kippo does not have the capability to execute malware, but can be used in conjunction

with other solutions such as Cuckoo Sandbox29 in order to execute and analyse malware

safely in a controlled environment.

Unfortunately, Kippo is an example of a honeypot which is susceptible to fingerprinting

due to the fact that it emulates a real system: In its emulation of the OpenSSH service, it

is possible to trigger characteristic responses identifying the device as a Kippo honeypot
29Cuckoo Sandbox is an open-source malware analysis system, which allows malicious files to be exe-

cuted inside an isolated environment in order to analyse their behaviour and properties. [48]
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using carefully crafted messages. [37] This flaw led to the eventual cessation of active

development on the honeypot, rendering it largely unusable in the development of new

honeypot-based solutions.

2.4.1.2 Cowrie

Cowrie is a medium-interaction honeypot which was originally forked from the Kippo

project by security researcher Michel Oosterhof. It is actively maintained and supported

by a dedicated community, who provide quick response times to queries and bug-fixes. It

is widely used in both research and production projects as a medium-interaction honeypot.

[49] [50] [51]

In addition to the capabilities and features provided by the Kippo honeypot, Cowrie

has some additional features [52] [53] including but not limited to the following:

• Cowrie enables attackers to gain access to the honeypot using an emulated telnet

client as well as SSH, supporting the two protocols which are most widely-targeted

by IoT botnets. [20] [54]

• Cowrie logs all attack session information in JSON format, which is a widely-used

format that can be processed by many tools;

• Cowrie provides integration with a number of useful tools including VirusTotal

malware database and the Mailoney SMTP honeypot;

• Cowrie also improves substantially on its predecessor, Kippo, resolving many of the

major fingerprinting issues.

Interestingly, there is also some activity with respect to containerisation of the Cowrie

honeypot. A basic Cowrie container image has been developed by contributors to the

Cowrie project, [55] which illustrates an increasing awareness of the need to migrate

security applications into container-driven architectures.
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2.4.1.3 Honeyd

Honeyd is an important predecessor to many of today’s honeypots, and is likely the best-

known honeypot implementation. It is an open-source, virtualised low-interaction honey-

pot released originally in 2002, and is currently in maintenance mode. It was originally

developed by Niels Provos.

Honeyd is flexible and adaptive in that it can be configured both to run arbitrary

services and to advertise itself as running different operating systems, learning the service

”personalities” by reading Nmap fingerprint files in order to mimic them. [56] It cannot

however emulate system components such as file systems or command execution. As

explained in an article [57] by creator Niels Provos, Honeyd ”listens to network requests

destined for its configured virtual honeypots” and ”responds according to the services

that run on the virtual honeypot. Before sending a response packet to the network, the

packet is modified by Honeyd’s personality engine to match the network behaviour of the

configured operating system personality.”

Additional features of Honeyd include the ability to create virtual routing topolo-

gies, and the ability to enhance configured routes with realistic latency and packet loss

characteristics in order to appear more convincing. Though it has provided inspiration

for finding adaptive solutions for honeypots, the fact that it is no longer being actively

developed renders it largely unusable in new deployments.

2.4.1.4 IoTPot

IoTPot is a research honeypot developed by Yin Minn Pa Pa et al., which they describe

as ”a novel honeypot that emulates interactions of the telnet protocol and a variety of

IoT devices”. [58] It is a reactive IoT honeypot that targets the study of telnet-based

attacks. It is particularly interesting because of its ability to react to the requests sent

by attackers, providing them with a dynamically generated response deemed to be most

likely to match the CPU architecture of the system that is being targeted in the attack.
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Figure 2.9: The IoTPot Honeypot Architecture
This diagram is originally from a paper published by the researchers who developed the

IoTPot honeypot, and illustrates the operation of the IoTPot system. [58]

IoTPot was designed in recognition of the fact that there are too many different types

of IoT device to be able to develop honeypots for all of them. The principles behind the

operation of IoTPot are very much based on a honeypot network called SGNET, where

low-interaction sensors forward attacks that they receive to a high-interaction honeypot

to handle. [59] This is similar to the function of the front-end responder in IoTPot, which

is the component of the system that interacts directly with attackers. A diagram of the

system architecture can be seen in figure 2.9.

• The front-end responder component deals with negotiating the Telnet protocol with

an attacker based on what it believes they are looking for. It emulates a number

of different device profiles, and for each device profile deals with authentication

attempts, command interactions and emulation of device-specific telnet options.

51



• If a command is issued by the attacker that the front-end responder doesn’t know

how to handle, it connects via Telnet to the back-end responder, a component called

IoTBox. This component contains emulated operating systems for a number of

different CPU architectures, meaning that the command can be executed on each

of these and an appropriate response returned to the attacker as a result.

Most honeypots are far more passive in their approach to handling incoming commands

from attackers, and are incapable of providing any more than one valid response to a given

request. At the time that it was developed, the researchers claimed that there existed

no other IoT honeypot ”that can mimic IoT devices of many different CPU architecture

while listening on 23/TCP with the ability to learn unknown command interactions.”

As an adaptive telnet honeypot, IoTPot appears to be very effective. However, it is

relatively restricted in that it can only deal with telnet-based attacks, limiting the attacks

it can capture. According to the paper, the researchers ”plan to extend IoTPot to support

more protocols that are likely the target of attacks” in the future.

2.4.1.5 IoTCandyJar

IoTCandyJar is a recent IoT honeypot developed by Luo et al. who classify it as an

intelligent-interaction honeypot rather than as low, medium or high-interaction. [60]

The researchers explain that ”the goal of intelligent interaction is to learn the ’correct’

behaviors to interact with clients from zero knowledge about IoT devices”. Their approach

is to utilise machine learning techniques to determine the most appropriate tactics to

prolong attacks.

The IoTCandyJar honeypot is composed of a number of primary modules, which can

be seen in figure 2.10 as follows:

• The IoTScanner module leverages the fact that there are powerful scanning tools

freely available to identify IoT devices, using Shodan, Censys, Masscan and Zoomeye

scanning tools to identify IoT devices on the internet. It actively probes these
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devices, collecting their responses to various requests that have previously been

captured by IoTCandyJar.

• The IoTLearner module builds intelligence into the honeypot, using the responses

captured by the IoTScanner module to train a model using machine learning algo-

rithms. The accuracy of the responses provided to requests improve with increasing

numbers of interactions with attackers: If an attacker sends a second request af-

ter receiving a response from IoTCandyJar, the response is deemed to have been

correct.

• The IoTDatabase stores all of the captured requests and responses, and stores any

information relating to the machine learning model.

Figure 2.10: The IoTCandyJar Honeypot Architecture
This diagram is originally from a paper published by the researchers who developed the
IoTCandyJar honeypot, and illustrates the operation of the IoTCandyJar system. [60]

The major selling point of IoTCandyJar is the dynamic approach that it takes to

reacting to probing by IoT botnets. Similarly to IoTPot, IoTCandyJar aims to provide

the best response to an attacker based on what they are determined to be seeking. The

major difference between these two honeypots is in the approach they take to achiev

this: Where IoTPot determines the most appropriate response by generating the correct
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response through execution of the request, IoTCandyJar learns the best response to a

request based on interacting with attackers. Responses to attacker requests are generated

based purely on what the system has learned from previous interactions with attackers,

and not through any execution of requests. [60]

2.4.1.6 Zigbee Honeypot

Dowling et al. developed a research honeypot targeted at attackers of Zigbee devices,

which are devices commonly used in WSNs. [14] The development of this honeypot was

motivated by the fact that as these IoT devices are being more widely-deployed and their

vulnerabilities are also becoming well understood: Therefore, an assessment of the threat

to these devices is essential.

In their implementation of the honeypot, Dowling et al. included a number of inter-

esting measures to initiate the interest of attackers in the honeypot:

• The host name for the honeypot was configured to be zigbee-gateway as a means of

assessing whether there is any awareness of Zigbee devices amongst attackers;

• The researchers implemented a means of transmitting of fictitious medical traffic,

which is transmitted in cleartext over an unfiltered network.

The generation of potentially interesting network traffic in order to entice attackers to

attack the honeypot is a thought-provoking feature of this solution. Though the research

conducted is largely focused on identifying whether there is any awareness of Zigbee

devices specifically, the idea of adapting the honeypot to the attackers it wishes to attract

is a useful one.

2.4.2 Containerised Honeypots

Related projects identified in the domain of containerisation of honeypots are limited in

number, primarily because the security domain is still catching up with the migration of
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infrastructures to container-based architectures. The research conducted in these related

projects focus on both the benefits of using containers for hosting honeypots, and the

challenges that are faced in doing so.

2.4.2.1 Distributed Virtual Honeynets

In 2014, Pisarcik et al. developed a distributed honeynet of high-interaction honeypots

using containers for OS-level virtualisation, an approach which at the time was relatively

unexplored in research. [61] Their motivations for developing such a solution were:

• The fact that administering honeypot-driven systems is time-consuming, motivating

the use of containers to simplify their management; and

• The ability of honeypots to correlate attack events in order to determine whether

they are localised or distributed in nature, quickly allowing for identification of

attack trends.

Though the approach to designing and evaluating their honeynet solution is worthy

of note, the more significant contribution made by this research is in relation to the con-

tainerisation of honeypots and honeynets. The research highlights that when compared

to virtual machines or bare-metal systems, OS-level virtualisation incurs very little per-

formance or maintenance overhead. [61] As well as this, they note that using containers

adds an additional layer of deception to honeypots: Since they are isolated environments

sharing the kernel of a real OS, they are more likely to appear as a legitimate system

when fingerprinted.

All of these features would make it seem that containers are a perfect deployment

solution for honeypots: However, they also address the potential security pitfalls of using

containers to host honeypots, particularly because of the risk to the host system by

virtue of sharing its OS kernel with containers. These are interesting insights regarding

the practicality of using containers in honeypot-driven solutions.
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2.4.2.2 Using Linux Containers for Deceptive Honeypots

In a paper published in 2017, Kedrowitsch et al. explore the use of Linux-based containers

(LXCs) in honeypot deployments. [62] However, the use of LXCs here is examined from

the perspective of their ability to evade detection by malware, which has often been found

to change its behaviour after detecting a VM-based environment. [63] The motivation

behind this is to identify whether container environments will be feasible in the long term

as an approach to hosting honeypots without being detected by malware.

The researchers performed a number of experiments where they compared the fin-

gerprinting weaknesses of LXCs to those of bare-metal systems and VMs. They focused

on the typical techniques that malware employs in fingerprinting VMs: Comparing the

response generated for a particular input against the response that would be expected

from a bare-metal system. In particular, they chose to test and compare the following

properties of VMs and containers as a means of fingerprinting:

• Variability and execution time in CPU clock sampling;

• Reported CPU information;

• Instruction execution time.

When evaluating their experiments, it was found that containers were much less sus-

ceptible to fingerprinting than their VM counterparts, which was expected due to the fact

that LXCs are executed directly on bare-metal hardware as isolated processes whereas

VMs are not. However, it was strongly concluded that if a malware author wanted to

detect a container environment as a means of fingerprinting a system, they would have

no difficulty in doing so.

2.4.3 Honeypot-Driven Cyber-Incident Monitors

Projects listed in this section are relevant since they make the use of honeypots much

more accessible to individuals and organisations. They recognise the importance of data
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aggregation and visualisation from multiple honeypots in order to provide important data

to key decision makers, encouraging the use of active network defence by making it much

easier to manage and benefit from.

2.4.3.1 TraCINg

TraCINg is a honeypot-driven cyber incident monitor developed by academic researchers

Vasilomanolakis et al. in 2015, [43]. Its development was motivated by the observation

that the consolidation of data gathered from honeypots in different deployment contexts

can allow attack data to be correlated, enabling the identification of emerging outbreaks

of related attacks.

The TraCINg system gathers data from a large number geographically distributed

honeypots with the aim of correlating attack events. Many of these honeypots are deployed

on cloud platforms, which was the approach determined by the researchers to provide the

greatest diversity of deployment locations and maximum system uptime for uninterrupted

monitoring. Arbitrary open-source honeypots can be used with the TraCINg system,

provided that their data is logged in JSON format.

This incident monitoring solution is not intended to be highly deployable or low-

cost for use in production systems, but addresses the consideration of aggregating and

summarising complex data in a meaningful manner through visualisation, enabling the

succinct description of important data for key decision-makers. Their proposal for corre-

lation of data from large deployments distributed honeypots is very interesting: However,

their solution uses two low-interaction honeypots, limiting the level of detail of the attack

data captured. An improved system would be able to capture more data about attack

events in order to gain greater insights into the motivations and methods of attackers.

2.4.3.2 TPot

The TPot project is a honeypot-based incident monitor that was developed by Deutsche

Telekom, and which they use in their production networks for early threat detection.
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They decided to open-source their development with the aim of making the deployment

of honeypots in production networks more feasible for organisations. [50]

TPot supports multiple open-source honeypots hosted in containers. The system con-

sists of a number of components, the most relevant of which are listed as follows:

• Containerised Honeypots

The TPot system leverages the benefits of containers listed in Section 2.3.2.2 in

order to provide a highly deployable honeypot system. The containerised honeypots

supported by the TPot platform are all actively maintained and target a variety of

different interactivity levels and attackers30.

• The ELK Stack

The Elasticsearch-Logstash-Kibana (ELK) stack is a collection of log management

tools that perform search, logging and visualisation functions respectively. In TPot

they are used to analyse, index and represent logged attack data captured by the

honeypots.

An infographic provided by the TPot developers can be seen in figure 2.11. All con-

tainer images for the honeypots are built based on the Alpine Linux31 container image,

which has a particularly small image size meaning that its storage footprint is minuscule.

A benefit of running the honeypots inside containers that the developers highlight on

their webpage is that they can ”run multiple honeypot daemons on the same network

interface while maintaining a small footprint and constrain each honeypot within its own

environment”. [64]

The proposition of leveraging the benefits of containers in order to host honeypots is an

intriguing one, particularly since the difficulties of deploying and maintaining honeypots

have been a huge barrier to their widespread adoption to-date. The work on this project
30The honeypots supported by the TPot platform at the time of writing are Conpot, Cowrie, Dionaea,

Elasticpot, eMobility, Glastopf, Honeytrap, Mailoney, rdpy and VNClowpot. [50]
31Alpine Linux describes itself as a security-oriented, lightweight Linux distribution based on musl, libc

and busybox.
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Figure 2.11: Diagram of the TPot Architecture
This diagram is provided by the developers of the TPot project as an explanation of the

operation of the system. [64] Each honeypot is defined by a Dockerfile, which is built into an
image. This image is then used to run the honeypot, and data generated by the honeypot is

stored in volumes shared with the host system. The data can then be passed to other systems
such as Deutsche Telekom’s in-house data aggregation tool EWSPoster as shown.

by Deutsche Telekom strengthens the case for the coupling of containerised honeypot

deployments and visualisation tools.

2.4.3.3 Modern Honey Network

The Modern Honey Network (MHN) is a production system developed by Anomali Inc.

to manage enterprise honeypot deployments. Their decision to open-source the system

was motivated by similar reasons as those given by the TPot developers, being that the

deployment and maintenance of honeypot deployments has always been ”a complicated

process reserved for security companies and security researchers.” [51] The result is that

the MHN simplifies the process of deployment and management of honeypots, making it
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more feasible for organisations to use active network defence.

The MHN is a centralised server system which is concerned with managing the de-

ployment of honeypots as well as the aggregation of their data. It has support for a

large number of open-source honeypots, including the Cowrie honeypot32. All of these

honeypots are low or medium interaction open-source honeypots, which the MHN team

say were selected to minimise the risk associated with a deployment of honeypots in a

production environment. Honeypot data collected by the MHN system can be visualised

with Splunk, a data analysis and visualisation tool: However, unlike TPot’s support for

the ELK stack, Splunk is not shipped as part of the MHN system.

2.5 Summary

Based on the background provided in this section, it is obvious that the field of cyberse-

curity is dynamic and full of challenges. As aptly phrased by Fred Schneider, ”like good

health, cybersecurity is never going to be a solved problem”.

Many of these challenges are the result of gross negligence on the part of manufacturers

and system designers; Others are due to obvious oversights and mistakes resulting from

a lack of usability; Yet others are a consequence of not understanding the implications

that insecure technologies can have for privacy and safety. What all of these present is an

opportunity for improvement of current approaches to the implementation of technologies

and connected systems.

The work done by those researchers and developers behind the closely related projects

described in Section 2.4 indicates the awareness and interest that exists around tackling

the challenges that are being faced in the security of modern systems. It is a similar

interest and awareness on the part of the author which motivates the decision to improve

on the current state of the art in this area.

32The full list of supported honeypots is as follows: Amun, Cowrie, Conpot, Dionaea, ElasticHoney,
Glastopf, Shockpot, and Wordpot. MHN also supports threat detection tools including Snort, Suricata
and p0f.
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Chapter 3

Problem Formulation

As discussed at length in Chapter 2, the rapid advancement of security threats in response

to technological developments and innovations makes it crucially important for mitigation

techniques and tools to keep pace. One thing is abundantly clear: That there is an urgent

need for re-evaluation of current best-practice in cybersecurity defences, particularly for

critical service infrastructures whose general lack of implemented security mechanisms is

positively dangerous. It is this consideration that is at the heart of formulating objectives

for this research.

Section 3.1 explores a number of the major challenges identified in Chapter 2, seeking

out the heart of the issues and hypothesising about how these can be resolved in tandem.

Section 3.2 addresses the identified challenges in the formulation of proposed work

for this research, and outlines the basis of the research objectives. How these research

objectives will be addressed in practise is the subject of Chapter 4.

3.1 Identified Challenges

A number of challenges currently facing the security of modern infrastructures and systems

were explored in Chapter 2. The challenges found to be of most interest to this research

are outlined in the following subsections.
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3.1.1 Incident Monitoring in Critical Service Infrastructures

As explained in the context of the WannaCry ransomware attacks on the NHS in Section

2.1.3.2, IT systems in many organisations are comparable to a black-box system1, an

illustration of which can be seen in figure 3.1. Such a system gives no indication of

what is happening internally until it begins to behave unexpectedly, meaning that when

issues arise they are difficult to diagnose and almost impossible to resolve. However,

ineffective feedback mechanisms are often as bad as having no mechanism in place: Passive

mechanisms like firewalls are imprecise in their suspection of malicious activity, meaning

that when a significant event does occur it can easily go unnoticed. [31] It is crucially

important that effective feedback mechanisms are employed which are simple to use and

capable of communicating key information to those who can act upon it.

Figure 3.1: Illustration of a Black-Box System
An illustration of a black-box system, where a known input f(x) is provided to the system,

unknown operations are performed on it, and a known output g(x) is generated as a result.

It is obvious that in order to implement effective threat mitigation mechanisms, the

most relevant risks to that system must first be understood: Something that was high-

lighted in an interview with Stuart Reed, senior director at NTT security, who argues
1This is a term commonly used in control systems theory meaning that the inputs and outputs of a

system are known whilst the internal workings are not.
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that ”the best starting place is to understand where... risks come from”. [65] To illustrate

this, consider critical service infrastructures such as the NHS: These are most at risk from

those with a political motivation to do damage to a nation-critical infrastructure, such as

nation-state attackers. While such infrastructures generally rely on firewalls which may

protect against script-kiddies and other unsophisticated attackers, nation-states gener-

ally employ sophisticated technical attackers who are capable of discovering entirely new

flaws and exploits in systems. This motivates and highlights the need for a technology

that is able to provide intelligence on these active, dynamic threats for critical service

infrastructures.

3.1.2 The Need for Active Defence Mechanisms

As discussed in Section 2.2.2.3, although the use of passive intrusion detection technolo-

gies such as firewalls hold an important place in securing IT systems, they have limited

diagnostic capabilities since they can only mitigate against known threats. In an anal-

ogy comparing cybersecurity to health, Fred Schneider explains that ”as with medical

problems, some attacks are best addressed in a reactive way”. [34]

Honeypot-driven solutions are promising in what they can offer with regards to active

network defence and rapid incident response. Modern IT infrastructures are sorely in

need of such adaptive approaches to defence: Defence mechanisms that, in the face of

uncertainty about the nature of attacks, can continue to provide threat mitigation. It

is clear from the discussion provided in Section 2.2.3 that honeypot solutions have the

ability to address this requirement.

• The information that honeypots can capture enables continuous improvement of

infrastructure design and defences;

• The low number of false positives that result from honeypots make identifying

threats straight-forward: All logged events can generally be assumed to be threats;
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• Honeypots are capable of alerting first-responders to highly-probable threats as

soon as they occur, enabling rapid response before an attack has the opportunity

to spread.

However, these benefits are identified in recognition of the fact that the widespread

deployment of honeypot-based systems to-date has been impeded by the maintenance

overhead that they incur for system administrators, as was identified by the developers

of Deutsche Telekom’s TPot as outlined in Section 2.4.3.2. In order for such a system to

be practical and feasible to deploy in a production system, it must be:

1. Inexpensive to deploy, operate and maintain;

2. Effective and reliable in securing a network;

3. Simple to use.

In order to be viable for widespread adoption as a security service, a honeypot-based

deployment solution must address all of these requirements.

3.1.3 The Effectiveness of Honeypots in Enticing Attacks

As identified from the closely related work explored in Section 2.4, although there has been

excellent progress made in the enhancement of honeypot design so that attack sessions are

prolonged and more attack data is captured for analysis, there is little conclusive research

found regarding how to enhance the design of honeypots in order to initiate the interest

of attackers.

In almost all research found, there was a heavy focus on encouraging the prolonged

interaction of attackers with honeypots rather than on attracting that interaction in the

first place. [53] [58] [60] [14] Dowling et al. explored some interesting measures to entice

attackers seeking to compromise Zigbee devices, but the impact that these measures had

on the number of attacks attracted was not a metric of interest in their research. [14]
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The effectiveness of honeypot-based technologies in defending systems is influenced

greatly by their ability to attract attacks away from valuable systems in the environment

they serve to protect. Understanding how honeypots can be designed to be as irresistible

as possible to attackers would further their adaptivity in rapidly alerting first responders

to the fact that they have been attacked, allowing action to be taken before a subsequent

attack is targeted at valuable systems.

3.2 Proposed Work

It is clear that taking an active approach to mitigating risks to critical service infras-

tructures is the way forward, and that the capabilities of honeypots can aid greatly in

achieving this. Though there are a number of existing approaches both in research and

production outlined in Section 2.4 that have contributed excellent work towards such a

solution, there exists no one solution which can provide a practical, feasible means of

employing active network defence as a single networked deployable unit.

Given the challenges identified in Section 3.1, two research objectives were formulated

as a proposal to tackle them.

3.2.1 Objective 1: A Honeypot-Driven Cyber Incident Monitor

for Critical Service Infrastructures

This objective addresses the need for a feasible active intrusion detection solution to

enable rapid response in critical service infrastructures by enabling action to be taken on

threats with minimal operational overhead.

The requirements of such a solution include:

1. A deployment solution that is cost-effective, quick to deploy and quick to scale,

whilst compatible with existing IT infrastructure.
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2. A number of highly-attractive honeypots, which can effectively lure attackers away

from valuable machines in the network in which they are deployed.

3. A centralisation point for data collected from any deployed honeypots, such that

administrators may be given a holistic view of their system in order to facilitate

them in making quick, well-informed decisions.

4. An effective and reliable alert system, such that the key parties can be alerted as

soon as possible after a threat event is detected by the system.

The constituent components of such a system are addressed in the following sections.

3.2.1.1 Honeypots for Active Network Defence

As outlined at length in Section 2.2.3, honeypots enable the identification of vulnerabil-

ities and flaws in the system in which they are deployed and are capable of mitigating

against risks that were previously unknown to those administering the system, unlike

passive defence mechanisms like firewalls. This makes them an obvious choice for the

implementation of active network defence in critical service infrastructures.

In the proposed incident monitoring system, the use of a number of honeypots in

a honeynet configuration has been identified as a ideal approach to providing effective

incident monitoring. There are multiple benefits of a honeynet-based approach here,

including the potential to study attack propagation through a network and the fact that

there is an increased honeypot attack surface to distract an attacker away from valuable

systems in the same environment. The honeypots in the proposed system would act

as sensors, providing a feedback mechanism regarding threat events in the network by

logging attack activities for analysis.

3.2.1.2 Containerised Honeypots

Containers have been identified as an effective deployment option for the proposed system,

given the properties that were outlined in Section 2.3.2.2, since they cater for many of
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the requirements of a scalable honeypot-based incident monitoring system as outlined in

the previous section.

By deploying honeypots in inter-networked containers it becomes possible to provide

a flexible, low-cost, low-maintenance deployment solution for organisations. A single

container will only use a relatively small proportion of a machine’s CPU power and storage,

and a number of containers on a single host can use the same physical network interface

whilst implementing their own independent network stack. [62] Importantly, any container

can be deployed and removed with minimal operational overhead because of their portable

configuration. In the case of critical service infrastructures, using such an architecture

would enable recovery of any containerised component of the system after compromise

with minimal downtime.

From the perspective of overhead and maintenance, containers are an excellent choice

as a hosting platform for applications in today’s IT infrastructures. The migration of

security applications to container-based architectures is both beneficial and essential for

organisations hosting their infrastructure in containers: The success of containerised hon-

eypots in the TPot platform illustrates this. [50] As well as this, containers enable a

degree of reproducibility not usually achievable in computer science research, as pointed

out by Cito et al.. [66] All of these benefits give a strong basis for the use of containers

in hosting a honeypot-driven solution.

3.2.1.3 Visualisation of Honeypot-Generated Data

Analysis of honeypot data is simplified greatly through use of visualisation tools, which

enable classification and visualisation of complex attack data in order to make meaningful

deductions.

As part of a honeypot-driven incident monitoring solution, it is clear that information

gathered from honeypots would benefit from being aggregated, analysed and visualised

in a central management system that consolidates the data and perform processing op-

erations on it before making it available to a user: Both the MHN and TPot projects
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exemplify this approach. [50] [51]

Such a management system is a crucial component of the cyber incident monitoring

system, where attack data is gathered centrally and made accessible to system admin-

istrators who require a holistic view of the state of the system. A management system

performing this function should be directly reachable by the honeypots, but obscured

from attackers within them.

3.2.1.4 Notification System for Threat Events

The challenges faced in the aftermath of the WannaCry ransomware infection of NHS

systems have illustrated the importance of having a feedback mechanism in place, which is

capable of notifying first-responders in the event of undesirable behaviour being detected.

An effective cyber incident monitor should provide this feedback mechanism, allowing

threat data to be presented to those who can act on it as soon as it is detected.

3.2.2 Objective 2: A Proposal for Adaptive Honeypots

It is clear that the effectiveness of honeypots in intrusion detection depends heavily on

their design, which in turn depends on the context of their deployment and the value that

they are required to deliver. The single point of commonality between all honeypot de-

ployments is that they must be adaptive in order to deceive attackers effectively, assisting

them in what they believe to be the successful progression of their attack whilst quietly

monitoring their actions.

This need for adaptivity is beginning to be addressed in research more commonly, but

there are gaps in current research that have provide an opportunity for improvement. In

particular, all of the closely related honeypot projects identified in Section 2.4.1 which

address the adaptivity of honeypots focus on approaches to maintaining the interest

of an attacker, rather than on initiating the interest in the first place. [53] [58] [60]

Designing adaptive honeypots such that they advertise the most commonly sought-after
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characteristics of victim systems is a problem of major interest.

3.2.2.1 Measuring the Effectiveness of Honeypot Characteristics

Conducting a robust evaluation of the effectiveness of particular honeypot characteristics

in attracting the interest of attackers is an interesting but difficult problem. The effec-

tiveness of a honeypot is difficult to quantify, but it is clear than an effective honeypot

will provide effective intrusion detection and, depending on the context of its deployment,

capture relevant attack data in a certain level of detail.

Honeypot effectiveness can potentially be measured through such properties as the

number of attacks that are attracted, the number of true positives detected, the ability to

deduce attacker motivation based on data captured, etc. [37] Credible measurement of any

of these properties is largely dependent on maintaining a consistent research environment

within which relative performance can be evaluated accurately.

A honeynet is an effective way of accurately and simultaneously measuring the appeal

of certain characteristics of honeypots in experiments, since multiple characteristics can

be trialled in the same environment over the same period of time. By using a honeynet

configuration in the research environment, data can be captured from multiple honeypots

under the same environmental conditions, and the relative performance based on slightly

different configurations can be measured.

3.2.2.2 Targeted Honeypots for the Internet of Things

From the outset of this research, one of the most interesting and active categories of

botnet identified was that of IoT botnets, a revolutionary and recent phenomenon which

is cause for serious concern.

Proposing an approach to designing adaptive honeypots with a focus on making them

maximally attractive to IoT botnets would contribute to current knowledge of these at-

tackers by understanding more about their preferred vulnerabilities and target systems.

The configurability and informative capabilities of honeypots makes them an attractive
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option in this regard. Targeting these attackers in the design and implementation of the

proposed system would be a valuable additional contribution to the field of security as an

application of the cyber incident monitor.
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Chapter 4

Design

To meet the research objectives outlined in Chapter 3, the requirements defined in Section

3.2 must be addressed in the design of the proposed system. With these in mind, an initial

system design was devised.

There are countless factors that must be taken into consideration when designing

a research environment, and particularly when a flawed design can have far-reaching

implications and consequences for the security of others unaware of the project in the

first place. In order to develop solutions that were both secure and effective, every aspect

of the design required scrutiny and careful planning.

Section 4.1 details the initial design decisions that were made to address the functional

requirements of the research environment.

Section 4.2 addresses a number of identified challenges that required additional anal-

ysis to fully satisfy the requirements of the proposed system.

Section4.3 provides a summary, recognising in particular the unpredictable nature of

research as it evolves.
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4.1 Functional Considerations

This section describes many of the functional design considerations and decisions made

relating to the implementation of the research environment. These include initial de-

sign decisions regarding the environment deployment platforms, the configuration of the

honeynet and the design of the monitoring system.

4.1.1 Deployment Platform

Selection of the hosting infrastructure and platforms for the proposed system was an im-

portant consideration in the design which would have a significant impact on the success-

ful development of cyber-incident monitor as well as on the design proposal for adaptive

honeypots.

4.1.1.1 Choice of Hosting Solution

The benefits of outsourcing the hosting of services to a third-party cloud platform were

discussed at length in Section 2.3.1. As explained by Vasilomanolakis et al., ”cloud ser-

vices provide resilience and uptime reliability ... which ensures uninterrupted monitoring.”

[43]

Amazon Web Services (AWS) is a subsidiary of Amazon Inc., which describes itself

as ”a secure cloud services platform, offering compute power, database storage, content

delivery and other functionality to help businesses scale and grow.” [67]

The AWS Elastic Compute Cloud (EC2) service is a very flexible means of quickly

setting up configurable server instances on-demand. Though other hosting solutions in-

cluding DigitalOcean and Trinity College’s OpenNebula infrastructures were considered,

the flexibility of options offered by AWS as well as the fact that it is an industry leader

in providing cloud services resulted in it ultimately being the hosting platform of choice

for this research.
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4.1.1.2 Use of Containers

After first deciding that containers were the platform of choice for deploying honeypots

in the proposed system, it was decided that Docker container technology would be used

to implement the research environment. Docker is the industry standard for container

solutions and is an open-source technology with a global support community.

Some of the benefits of using of Docker containers in particular for the implementation

of the research environment include:

• The fact that each container has an independent networking stack, simplifying the

implementation of a honeynet compared to virtual networks or bare-metal.

• The independence and flexibility of isolated container storage.

• Docker repositories, the use of which means that a rigorously-audited base OS image

can be used as a foundation for the honeypot containers and then built upon with

customised configuration options.

• The existence of research regarding the security of Docker technology. [68]

• The presence of comprehensive documentation for the Docker ecosystem as well as

a globally active support community.

All of these factors would enable confident decisions to be made regarding the use of

Docker in a security application.

4.1.1.3 Host Operating System

It was decided that Linux-based operating systems would be used for both the EC2 VM

hosts and the container images used in the research environment, for a number of reasons.

1. Linux is regarded to be the most commonly deployed operating system for servers
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and embedded devices1. Targeting the solution at deployment in Linux-based infras-

tructures is thus most likely to be the real deployment scenario for such a system.

2. Linux is natively supported by almost all open-source and industry tools, which

would enable the use of almost any technology in the implementation of the project.

3. It is widely accepted that as a very popular OS for powerful servers, a very large

proportion of cyber attacks are targeted at Linux-based systems.

4.1.1.4 Choice of Honeypot

Motivated by the level of activity of IoT botnets, it was decided that an IoT honeypot was

the most appropriate choice for this project. The Cowrie honeypot, which was discussed

in detail in Section 2.4.1.2, is a mature open-source IoT honeypot. It was identified as an

ideal option for targeting IoT botnets in the proposed deployment, particularly since it

is an SSH/telnet honeypot: The two protocols which have been found to be most highly

targeted by recent IoT botnets. [20] [54]

The fact that Cowrie is medium-interaction means that the risks of compromising a

real system are mitigated whilst also enabling a relatively high level of interactivity with

an attacker. As an open-source project it is also highly configurable, both offering a high

degree of customisability and the ability to extend the source code. This is important

in order to successfully conduct experiments with a view to proposing effective design

approaches for IoT honeypots.

Crucially, Cowrie allows for a high level of interactivity with attackers, whilst also

mitigating the risks of compromising a real system such as not providing the ability to

execute code but instead storing the SHA-checksum of any attempted downloads. The

fact that it is being actively maintained and supported, and that the rudiments of a

containerised solution for the honeypot are already in place, are all selling points for the

use of the Cowrie honeypot in this research.
1Though it is not possible to determine the exact number, in the research conducted by Yinn Min Pa

Pa et al. it was measured that 91% of hosts found to be scanning the darknet were running Linux. [58]
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4.1.1.5 Container Capabilities

It is clearly important to consider how restricted the capabilities of honeypot containers

should be in order to capture attacks, whilst also keeping the systems secure. Since the

Cowrie honeypot will be running in these containers, if an attacker managed to circumvent

the Cowrie application they should be restricted in what activities they can engage in

when interacting directly with the underlying container. Additionally, if an attacker

was to discover they were being monitored by a honeypot, it is plausible they could

launch an attack on the platform on which it is hosted. As quoted from Upi Tamminen

a.k.a. desaster, the original developer of the Kippo honeypot, ”By running kippo, you’re

virtually mooning the attackers. Just like in real life, doing something like that, you

better know really well how to defend yourself!” [69]

These considerations are addressed more fully in an exploration of the security consid-

erations of using Docker in Section 4.2. However, overall precautionary measures identified

regarding restricting container capabilities include:

• Running the honeypot containers as a non-root user, restricting the default privilege

level of the containers.

• Installation of a minimal quantity of Linux utilities such that an attacker who man-

ages to interface directly with the container will have very few tools at their disposal.

4.1.1.6 Honeynet Design

As part of the design of the honeynet, a component that provides the functionality of

a honeywall gateway as described in Section 2.2.3.4 is required. This device is the first

component of the honeynet that an attacker will interact with, and so should be max-

imally attractive as a gateway router which if compromised, promises the attacker the

compromise of many more devices.

In order to develop an effective solution using a honeynet, the final design should

incorporate measures to meet a number of requirements.
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• It should be simple to configure and maintain control of each component of the

honeynet independently.

• Honeypots in the honeynet should be isolated from the host system as much as

possible.

• It should be easy to scale the honeynet on-the-fly by adding or removing honeypots.

• The configuration of the honeynet should be portable such that it is straight-forward

to remove and redeploy the honeynet environment.

• It should be possible for an attacker interacting with the honeywall component

to map out the configuration of the remainder of the honeypots in the honeynet,

facilitating attack propagation and the capture of valuable attack data. It should

not however be possible to detect that the system is a honeynet.

It was well-understood that deploying and configuring a network of honeypots to

meet all of these requirements would be an error-prone and time-consuming process,

particularly given limited prior experience with the Linux networking stack.

Given that it had already been decided to host the project on an AWS EC2 VM

instance, hereafter referred to as the honeypot instance, this instance would need to be

dedicated to hosting multiple containers, inter-networked to appear as though they are

individual machines within the same network. The idea of a honeywall discussed in Lance

Spitzner’s 2003 paper [38] is clearly a component of major interest in the implementation

of the honeynet: This component must be capable of being used as a jumpbox2 with

outbound network connection capabilities in order to give an attacker access to the rest

of the honeynet.
2A jump-box is a term commonly used in networking to refer to a dedicated device on a network that

is used to manage devices in a separate security zone.
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4.1.1.7 Ease of Deployment

As outlined in Section 3.2.1, in order for a honeypot-based system to be feasible to

use in a production environment it is key that it is easy to deploy and maintain. In

particular, if a honeypot becomes compromised in an attack it should be simple to remove

and redeploy it in the system whilst also persisting any data captured by the removed

honeypot. Containers have been identified as providing many of these required functions.

One of the significant benefits of container technologies is the ease with which iden-

tically configured environments can be deployed. However, the same ease of deployment

for a fully-networked system is not something that can be catered for by container tech-

nologies. This made it important that a deployment mechanism for the entire system be

developed such that it could be removed and reinstated in minimal time.

The identified approach to achieving this was to capture the configuration of the sys-

tem in a set of bash scripts, which could be used to automate the deployment of the entire

honeynet environment. These scripts could be maintained and updated as the configura-

tion of the system evolved, such that if the system was removed it could be identically

redeployed using the scripts. These scripts should also include some simple usability mea-

sures such as a usage function3 to assist in the efficient and simple deployment of the

system.

4.1.2 Incident Monitoring

The incident monitoring component of the proposed system would handle the aggregation,

processing and visualisation of data as well as the generation of threat detection alerts. A

number of decisions needed to be made regarding how best to achieve this, as explained

in the following subsections.
3Such a function, when specified as a parameter to the script, will typically list the arguments and

execution options that are available from that script.
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4.1.2.1 Isolating the Monitoring System

It is clearly crucial to ensure that the monitoring system which an administrator will rely

on for key threat information is minimally susceptible to compromise. Given that the

proposed honeypot-driven system is actually intended to invite attacks, this becomes an

even more important consideration.

It was decided on this basis that physically isolating the monitoring system as much

as possible from the honeypot system would reduce the likelihood of such an event oc-

curring. Hosting the monitoring system on an independent remote EC2 instance would

deliver some of this isolation, and so was included as part of the system design. This

component is hereafter referred to as the management instance. This brings some ques-

tions regarding obscuring communication between the honeypot instance and the remote

monitoring system into the picture, since it is undesirable for an attacker to notice regular

communications between one of their victims and another valuable device.

4.1.2.2 Secure Transfer of Honeypot Logs

As data that an attacker would not want captured in relation to their activities, it should

not be possible for an attacker to view or to redirect the logs generated by the honeypots

to another destination when they are being transported between the honeypots and the

monitoring system. Thus, the mechanism for transferring logs between the honeypot in-

stance and the management instance needed to be able to support both origin/destination

authentication as well as confidentiality and integrity.

Filebeat is a widely used open-source log-shipping agent which transports log files from

client servers to another host. This is exactly the kind of functionality that is required to

send the logs generated by the honeypots from the honeypot instance to the management

instance. As a technology that is widely supported and used, Filebeat seemed an obvious

choice for transporting the log files in the research environment.

Importantly, with Filebeat it is possible to add the required layer of security by gen-
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erating an SSL certificate and key pair for the management server. The certificate can

then be shared with the honeypot instance, ensuring that Filebeat sends encrypted data

only to the trusted management server and vice-versa. [70]

4.1.2.3 Visualisation of Honeypot Log Data

Visualisation is clearly a key component of the proposed cyber-incident monitor, enabling

greater usability and informational value through succinct description of attack data cap-

tured by the honeypots.

The ELK stack is a well-established means of log analysis, aggregation and visualisa-

tion. Based on its successful use in the TPot development [50] and the fact that it has

been endorsed as a visualisation approach for the Cowrie honeypot, [53] it was decided

that the ELK log management stack would be used to process and visualise log data

generated by the honeypots4. The Filebeat application discussed in Section 4.1.2.2 above

is also coincidentally developed by the same group, meaning that the interoperability of

these tools should be straight-forward to achieve.

4.1.2.4 Intrusion Alert/Notification Mechanism

PSAD is an open-source intrusion detection tool that is used to detect port scans and

other malicious traffic on Linux systems. It operates by monitoring the networking logs

of the device, and from this determining whether a scan or attack event has occurred.

PSAD was identified as being a suitable alert mechanism for the purposes of the cyber-

incident monitor, since by examining the networking logs of the honeypot instance email

notifications could be configured to be sent to a specific email address upon noticing

suspicious activity. This would enable timely notification of undesirable activity in a

production environment so that remedial action can be taken as soon as possible.

Prior to this, another alerting mechanism built by the same group as the ELK Stack
4Though alternative visualisation tools such as Splunk used by the MHN project were also explored,

[51] the ELK stack was generally found to be less complex and so was the favoured option.
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and Filebeat was considered as a potential notification option. The XPack plugin is capa-

ble of generating notifications based on the logs received by the ELK stack. [71] However,

after consideration it was realised that this would mean that an alert would only be sent to

an administrator after the honeypot logs had been processed by the management instance,

meaning that there was potential for an unbounded delay in time-to-notification5. This

realisation motivated the decision to use PSAD, which would generate the notification as

soon as suspicious activity was identified.

4.2 Challenges

Additional to the functional design considerations and decisions outlined in the previous

section, a number of specific challenges to the implementation of the proposed system

were encountered. These were carefully explored and resolved as part of the design of the

system.

4.2.1 Fingerprinting Honeypot Environments

As highlighted in Section 2.2.3.5, the fingerprinting of honeypot environments by attackers

presents an ongoing challenge for honeypot designers.

As was discussed by Barron et al. in their study of attacker behaviours using the

Cowrie honeypot, it is likely that an informed attacker would be able to fingerprint the

Cowrie honeypot as not being a legitimate environment and disconnect. [49] For example,

by default the Cowrie honeypot assigns hostname svr04 to the honeypot. An attacker

interacting with this honeypot who is aware of the default properties of Cowrie will

certainly be aware of this default value and detect that they are interacting with a Cowrie

honeypot.
5It is possible that in an unreliable network, logs generated by the honeypots that contain crucial

attack information may be delayed in reaching the management server, meaning that crucial time would
be wasted before an alert can be sent to a system administrator. In this time, it is possible that the
attacker could have compromised the entire system, rendering this option infeasible.
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However, in order to conduct a fair comparison between the impact of differently con-

figured characteristics of honeypots in the experiments in this research, it was important

to have a plain, out-of-the-box Cowrie installation in the honeynet as a control. Thus it

was concluded that in spite of fingerprinting concerns, in each experiment iteration there

would need to be one such Cowrie honeypot deployed in the honeynet.

4.2.2 Ethics of Honeypots

There are a number of potential ethical issues associated with a project using honeypots

that have already been outlined in Section 2.2.3.5. A further ethical concern is the ability

for a honeypot to be compromised, and then used as an attack platform to launch attacks

on other devices.

It is difficult to balance obtaining useful results from research with the inherent risks

of implementing a honeypot. This consideration required careful deliberation, after which

the following conclusions have been drawn.

• This risk can safely be viewed as the general risk associated with using devices con-

nected to the web, and not necessarily related to the use of honeypots in particular.

This view is in line with that held by Nawrocki et al., who discuss the issue in a

survey on honeypot software. [37]

• Although it is never possible to entirely eradicate the risk of attack propagation, the

honeypot components of the project should be implemented so that they provide

mitigation against this risk. The containers in which the Cowrie honeypots would

be hosted would be heavily based on the official Docker-Cowrie Docker image6 [55]

developed and endorsed by the maintainers of the Cowrie development community.

This container image runs the Cowrie honeypot under a non-root user account with

minimal services available within the container, so that even if an attacker did
6The version of the Docker-Cowrie image off which the images in this research were based was that

of January 29th 2017.
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bypass the Cowrie application and gain direct access to the container it is unlikely

that they would be able to launch any attacks on other devices.

• Dedicated research environments where honeypots are isolated from important de-

vices and networks are also effective for protecting external systems. The fact that

AWS instances are being used to host the research environment means that the

system is being hosted in an environment with enterprise-level security. Given this

fact, it is highly unlikely that an attack would have the ability to do any significant

damage if it did propagate outside of the system.

4.2.3 Persisting Volatile Container Content

A characteristic of Docker containers is that by default, their contents are not persisted

once they stop running: As explained by the developers of the TPot project, ”all data in

docker is volatile. Once a docker container crashes, all data produced within its environ-

ment is gone and a fresh instance is restarted.” [64] This is a design feature of containers:

As well as enabling a container to be run without any affinity to a specific host, by sepa-

rating the file system of a container from that of its host it is possible to achieve enhanced

security through isolation.

In this system, the persistence of logs generated by honeypots running inside these

containers is crucial. The solution to this data volatility issue, according to the TPot

developers, is to have ”persistent storage ... on the host in order to make (the data) avail-

able and persistent across container or system restarts.” [64] This can be achieved through

the use of Docker volumes, a persistence mechanism available for container directories.

Docker volumes are the recommended approach to persisting data that is generated and

used by Docker containers. When a container accesses a volume, Docker’s storage driver

is bypassed and the container interacts directly with the mounted volume on the host file

system.

It was decided that given these considerations, Docker volumes should be used to
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persist the log data generated by the honeypot containers in the research environment.

4.2.4 Docker Security Considerations

As with any technology, there are security concerns about Docker. Though Docker Inc.

have a historically excellent record for keeping on top of security of containers and pro-

viding extensive documentation, [72] there are inherent risks in using containers that

have been highlighted in literaure. [46] [68] [62] [73] [61] These have been very carefully

contemplated during the undertaking of the project.

The greatest security concern identified regarding the use of Docker containers is the

potential for an attacker to propagate the attack to the system hosting the containers:

Compromise of this system is highly undesirable.

• Inherently, Docker containers share the kernel of the host, and many claim that

this increases the attack surface of Docker containers when compared to VMs: As

described by Chelladhurai et al., VMs are only able to communicate with the VM

kernel, and not with the host. [73] This is a concern that is also raised by Kedrow-

itsch et al. and Pisarcik et al. in their use of containers for deploying honeypots.

[62] [61]

• As described in Section 4.2.3, a number of Docker volumes are being used to mount

directories on the host system to each container. This presents a potential security

risk, since an attacker inside a honeypot container could potentially interface di-

rectly with the linked host volume and place whatever they want into the mapped

directory.

• The Docker engine is known to automatically create a number of virtual networks

on the host on which it is running, so that containers can communicate with the

host and with each other. Any connectivity between containers and their host is a

risk to the host, since it could potentially result in an attacker connecting into the

host machine over a Docker network and compromising a real server.
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These concerns are not insubstantial, and required careful consideration to handle

correctly. The result is a number of reasonable precautionary measures to be incorporated

into the initial design as follows:

• The isolation characteristic described in Section 2.3.2.2 in relation to containers

addresses the concerns regarding the increased attack surface of containers compared

to VMs. Since each container runs in its own namespace and uses its own network

stack, provided that careful consideration is given to the shared resources to which

it has access and to the privilege level allocated to the container it is possible to

sandbox the container quite well from the host machine. This is discussed at length

in the Docker security documentation. [72]

• All honeypot containers to be used in the research should be configured to run the

bare minimum of services required to facilitate attacks. This is another measure

designed to ensure that the activities of an attacker inside a container are relatively

limited.

• The containers to be used in the implementation of the honeynet should be built

upon well-maintained base OS images from the official Docker Hub repositories. [74]

This will ensure that the most recent security updates available for the base images

are inherited by all containers as a robust security foundation.

• An effective measure identified by Chelladhurai et al. [73] is to restrict the network-

ing capabilities of containers as much as possible, allowing communication only

between trusted containers. To facilitate this, careful attention needs to be given to

the configuration of the containers such that they do not expose any unnecessary

ports or belong to any unnecessary networks.
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4.2.5 Enticing IoT Botnet Attacks

Clearly in order to attract the attention of IoT botnets, identified as the target of choice

for the honeynet deployment, the honeypots should be as attractive as possible based on

the characteristics of devices that have been found to attract IoT botnets. [20] [23] [54] In

their paper, the developers of IoTPot discuss the importance of (i) supporting all options

that attackers want to use, (ii) providing realistic login interfaces and (iii) facilitating

logins, in the successful design of an IoT honeypot. [58]

Upon analysis of related publications and research, a number of IoT device character-

istics which are likely to attract IoT botnets were identified as follows:

• The ability to use brute-force authentication to access a device, i.e. weak or default

device credentials.

• The presence of either or both of the SSH and telnet protocols on the device.

• An unpatched or vulnerable version of either services present on the device, or of

the OS.

• The presence of ”interesting” network traffic to or from the IoT device, particularly

if that traffic is not encrypted, similar to what was implemented by Dowling et al.

[14]

• The ability to fingerprint the device as a product of a particular vendor whose

devices are widely known to be vulnerable.

These characteristics could all be considered as potential variables in the experiments

to be conducted, assisting in the proposal of an effective, adaptive design for honeypots

targeting IoT botnets.
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4.2.6 Identifying Attacks from IoT Botnets

A further difficulty in evaluating any results captured by the honeynet is that of how

attacks by human attackers can be distinguished from automated attacks by bots. This

distinction is particularly important towards the second objective of the research, where

a proposal for designing effective honeypots targeted at IoT botnet attacks is desired.

In a paper detailing observations about attacker behaviours elicited through the use

of a large deployment7 of Cowrie honeypots, Barron et al. note that ”bots perform

specific environment-agnostic actions... human attackers are affected by the underlying

environment, e.g., executing more commands on honeypots with realistic files and folder

structures”. [49] Some of their more specific conclusions are that:

• Humans care about user files with realistic looking names and data, whereas bots

do not;

• Humans make spelling mistakes when using a shell, whereas bots do not;

• Bots will behave in the same way regardless of the host that they are running on

(i.e. environment agnostic);

• The time taken between subsequent commands is greater for a human attacker than

for a bot, whose sequence of attack commands is automated;

• Most attackers are bots.

These observations are useful in distinguishing human attackers from bots. In order to

distinguish IoT botnets from other botnets, observations from literature regarding active

IoT botnets offer the most value in discriminating between IoT bots and other bots.

[20] [54] For example, both the Mirai and Hajime IoT botnets are known to test for the

presence of the BusyBox shell8 on victim devices. [75] This test is conducted in order
7The experiments conducted by Barron et al. included 102 individual Cowrie honeypots.
8BusyBox is a lightweight shell which combines miniature versions of common UNIX utilities into a

single small executable, making it very popular for use in IoT devices.
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to verify that the device is running a real Linux shell: As explained by Edwards et al.

in a paper discussing the Hajime IoT botnet, [54] ”a proprietary CLI is likely to reject

the command, but a legitimate Linux shell would execute Busybox ... letting Hajime

know that it has a bona fide Linux shell”. These kinds of indicators that can be observed

through examining logged attack sessions will also aid in identifying the type of botnet

behind any attacks captured by the honeynet.

4.2.7 Credible Evaluation of Honeypot Experiments

As already highlighted in Section 3.2.2.1, the use of a honeynet in the proposed research

environment enables credible evaluation of the relative performance of different character-

istics of honeypots. The design of such an experimental setup however requires that there

as few variables between honeypots as possible. Thus, in the honeynet it is necessary to

include:

• A plain, baseline ”control” device with no enhancements, as discussed in Section

4.2.1;

• A variety of improved honeypots, each exhibiting a different variation of the same

potentially attractive characteristic.

Taking this approach means that for the purposes of evaluation, the sources of vari-

ability in the experiment are maximally controlled: All honeypots will be exposed to

attack under the same environmental conditions, with a single controlled variation per

honeypot. This approach eliminates the need to account for many otherwise significant

environmental variables, such as if the honeypots were each evaluated independently on

different host servers. Such variables could otherwise bring the credibility of claims about

relative effectiveness of different honeypot characteristics into question.
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4.3 Summary

It was recognised from the beginning that given the unpredictability of research, and

in particular the unpredictability of attacks, the requirements of the system and the

resulting design were likely to evolve as the project progressed. However, a solid, robust

and considered design based on informed decisions, and supported by previous research

and current best practice, are sure to contribute positively to the effective implementation

of the overall solution.

As part of a research progress update for this system 3 months after it had begun, a

conceptual diagram similar to that provided in figure 4.1 was produced to give a high-level

overview of the system architecture and operations.
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Figure 4.1: Overview of the Proposed System Design
A high-level overview of the intended architecture and components of the system. The

components include 2 AWS EC2 servers, a container network consisting of containerised
honeypots hosted on the EC2 honeypot instance, an ELK log processing and visualisation

pipeline hosted on the EC2 management instance, and a web console access to the
visualisations generated by the system.
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Chapter 5

Implementation

In this chapter, the implementation of the various components of the research environ-

ment are described in-depth. This includes the challenges that were encountered in the

implementation as well as alterations that were made to the system design as issues were

unearthed.

In the interest of succinctness, low-level details of installation of tools etc. are not

explained in great detail. Instead, attention in this section is given to the implementation

of components of the system, detailing decisions that were made and the challenges that

were faced in doing so.

Section 5.1 describes an initial exploration of the major components that would be

involved in the implementation of the proposed system: Namely AWS EC2, the Cowrie

honeypot and Docker. The knowledge gained from this investigation is highlighted.

Section 5.2 explains the process of deploying the AWS EC2 instances that would be

used to host the research environment, and how they were configured to facilitate the

requirements of the system.

Section 5.3 details the configuration of the core component of the proposed system:

The Docker honeynet. Details of the initial implementation of the containers and their

inter-networking are described, before discussing a major challenge that was encountered

in this process. A re-evaluated design and implementation is illustrated in detail, before
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finally explaining how the entire system was consolidated into a single deployable unit.

Section 5.4 explains the installation and configuration of the log processing and visu-

alisation tools used, including how the honeypot data was provided to this system.

Section 5.5 describes the configuration of PSAD, the alert generation system identified

in the design phase as the tool of choice for notifying administrators of threats to their

system.

Finally, Section 5.6 provides a brief summary of what was achieved through the im-

plementation of the system.

5.1 Understanding Containerised Honeypots

In order to first understand the capabilities of AWS EC2, the Cowrie honeypot and Docker,

some initial exploration of how these components work in practice formed a useful starting

point. An AWS EC2 instance was first deployed, followed by a full installation of a Cowrie

honeypot and finally some experimentation with Docker and its components.

5.1.1 Deploying an AWS EC2 Instance

A single AWS EC2 instance was provisioned under the AWS 12-month free tier1 to facil-

itate exploring the Cowrie honeypot and the use of Docker containers.

5.1.1.1 Provisioning an Instance

Provisioning an EC2 instance on the free-tier is a straight-forward process, which involves

creating an AWS account and following an EC2 deployment setup wizard, selecting the

system specifications required. In this case, an Ubuntu 16.04 LTS server instance was

provisioned with the same resource allocations as those provided with the free tier.
1The AWS free tier is an offer that allows certain AWS services to be used up to a limit for a defined

period. For the EC2 service, the free-tier includes 750 hours of compute time on an EC2 server instance
with 1 virtual CPU and 2GB of RAM for up to 12 months.
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5.1.1.2 Key Authentication

As part of the deployment of an EC2 instance, an SSH public key2 is generated. This key

can then be used to securely authenticate with the instance over SSH in place of password

authentication.

5.1.1.3 Security Groups

AWS EC2 uses security groups to control the inbound and outbound traffic to an instance,

and every EC2 instance must have at least one security group associated with it. Security

groups act as a virtual firewall, with a set of security rules that define address ranges,

protocols and ports that are permitted for communication with that instance. The default

EC2 security group allows for SSH access over port 22/TCP from all IPv4 addresses. This

default security group can be seen in figure 5.1.

Figure 5.1: AWS EC2 Default Security Rules
The default security group associated with an AWS EC2 instance when it is launched. The

only security rule that is defined for this security group is SSH access over port 22/TCP from
all IPv4 addresses.

5.1.2 The Cowrie Honeypot: A First Look

By installing and configuring a plain Cowrie honeypot on the deployed AWS EC2 instance,

it would be possible to understand the basic setup and configuration of the Cowrie hon-

eypot before attempting to encapsulate it in a container environment. This was the
2The encryption used by AWS for the generation of these keys is 2048-bit SSH-2 RSA encryption.
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next step undertaken in understanding the details of how the proposed system would be

implemented.

5.1.2.1 Installing Cowrie

As discussed in Section 2.4.1.2, the Cowrie honeypot is an emulated of a Debian instal-

lation written in Python. A comprehensive installation guide for the Cowrie honeypot

is provided on the Cowrie Github page. [76] By following this guide, it was relatively

straight-forward to set up a Cowrie honeypot running as a Python virtualenv3. The cru-

cial requirement was to ensure that Cowrie is run by a non-root user, since it should be

difficult for an attacker to achieve privilege escalation if they manage to interface directly

with the host environment. Cowrie provides a safety net in this regard: If one was to

attempt to launch the honeypot as a root user, it will fail to launch and output the log

message ’ERROR: You must not run cowrie as root!’

The most significant configuration step in this process was to enable Cowrie to receive

attack traffic destined for the EC2 host instance. By default, Cowrie listens for incoming

traffic on ports 2222/TCP and 2223/TCP of its host, and thus for it to receive traffic

from privileged ports 22/TCP (SSH) and 23/TCP (telnet) some level of traffic forwarding

was required. There are two approaches to achieving this recommended in the Cowrie

installation guide: [76]

1. Port Forwarding

Port forwarding involves using iptables rules to forward incoming traffic on ports

22/TCP (SSH) and 23/TCP (telnet) to ports 2222/TCP and 2223/TCP.

2. Direct Listening using Authbind

As privileged ports, listening directly to incoming traffic on 22/TCP and 23/TCP

requires root-user privileges. Cowrie will not run with such privileges, and so the
3Python virtualenv is a tool for creating isolated Python environments. It is used in Cowrie to create

a virtual honeypot environment. [77]
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authbind Linux utility can be used to allow it to listen directly to traffic on these

ports.

In this initial installation of the Cowrie honeypot, listening as non-root using the

authbind utility was the approach taken.

The last step in this process is to update the configuration of the SSH daemon on the

host instance so that it is still externally accessible by administrators. This is required

since all incoming traffic on the default SSH port 22/TCP is now being forwarded to

Cowrie, and involved a simple edit to the /etc/ssh/sshd config file, changing the Port

value from 22/TCP to a different available port number.

5.1.2.2 Configuring Cowrie

There are three primary components of Cowrie that can be used to customise the honeypot

environment.

• userdb.txt

This file is used by Cowrie to determine what username-password combinations the

honeypot should accept from an attacker. The default values for a clean Cowrie

installation can be seen in figure 5.2.

• cowrie.cfg

This file is the main configuration file that is used by Cowrie to determine how to

set up the honeypot environment. It comes with a multitude of settings, including

parameters for integration with external tools4 and other parameters to control how

the honeypot environment appears to an attacker.

• honeyfs/
4Currently, the external tool support for Cowrie listed on the Github repository README is listed

as follows: Cuckoo Sandbox, ELK stack, Graylog, Kippo-Graph, Splunk, SQL (MySQL, SQLite3, Re-
thinkDB). [52]
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Figure 5.2: Cowrie Honeypot Default Passwords
This image shows the default username-password combinations that are provided in Cowrie’s

userdb.txt file. The first entry root:x:!root specifies that username root should be accepted, but
not when the password specified is also root. The third entry root:x:* specifies that username

root should be accepted, with any other passwords for which there is no rule specified.

It is possible to configure the file system contents of the honeypot environment

through the addition of files and directories to the honeyfs/ directory.

For this initial investigation into the operation of Cowrie, the configuration of all of

these components were left almost completely unaltered with default values.

5.1.2.3 Exposing the Honeypot to Attacks

In order to understand the logging data produced by Cowrie, the honeypot was set up

and exposed to the public internet. The installed Cowrie honeypot was configured with

a name corresponding to a particular model of TPLink IP camera5, devices which are

commonly targeted by IoT botnets. The default EC2 security group was left unaltered,

meaning that the honeypot was exposed to the entire IPv4 address space on port 22/TCP

(SSH).

The environment was exposed for 1 hour, and in that time logged brute-force authen-

tication attacks from 4 different IP addresses. These attacks were identified to be bot
5The TPLink-TL-SC3171 model was chosen, since upon conducting a brief web search this model

was immediately identified as having a Remote Code Execution (RCE) vulnerability: A highly desirable
target. [78]
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attacks6 whose source IP addresses were identified to be from multiple different countries

including Egypt, Russia, China and Vietnam7.

One of the attack sessions was of particular interest, since upon comparison of the

attempted login credentials it was observed that several of the passwords were the same

as those identified by Antonakakis et al. in the source code of the Mirai botnet8. [20]

This was an interesting find, and illustrates the sheer scale of the infection of devices by

this botnet and its variants.

The Cowrie log, which captured the attack session data in JSON format, gave an

insight into the level of detail of information that Cowrie can capture. The information

captured in these sessions included:

• The source IP and port of the connection;

• The remote SSH protocol version and encryption algorithm used;

• The username-password combinations that were attempted, and whether the at-

tempt succeeded or failed;

• How long the connection was maintained for, and the reason why the connection

was terminated9;

• Timestamps corresponding to each event, and a unique session ID per connection.

As information that would later be processed by the ELK stack tools in the incident

monitoring system, seeing the level of detail of JSON logging provided by Cowrie was use-
6Based on the timestamps logged by Cowrie, subsequent login attempts were spaced broadly 1 second

apart: A speed which would be difficult for a human attacker to achieve consistently, leading to the
classification of these attacks as bot attacks.

7The source location was determined by using Maxmind GeoIP Database which approximates the
geolocation of IP addresses. [79]

8A number of the default passwords observed by Antonakakis et al. in their research can be seen in
Section 2.1.2.3. Of these, passwords admin, 7ujMko0admin, 1234, admin1234, default, password were
passwords in common with the bot attack observed here. The highly unusual password 7ujMko0admin
would appear to indicate that this attack was conducted by a device that had been compromised by Mirai
or one of its variants.

9For example, this could be something like too many incorrect login attempts, in which case the
message ”too many bad auths” would be logged by Cowrie.
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ful towards understanding what visual data could potentially be generated from honeypot

logs.

5.1.3 Building Docker Containers

The Docker ecosystem is straight-forward in principle, but is composed of a number of

distinct components that together enable the stateless hosting of applications in contain-

ers. Understanding the components of this ecosystem and how they interoperate would

be essential to effectively using this technology to implement the honeynet.

The basic Docker-Cowrie source code provided by the Cowrie Project [55] was used

to understand the construction of container environments and how to interoperate them

before progressing to the implementation of the containerised honeynet.

5.1.3.1 Docker Images

A Docker container environment is completely specified by its image definition. This image

definition can be defined using a Dockerfile. The Dockerfile defines what the environment

inside a container looks like, and consists of a set of text commands that are used to build

the image10. Any external files referred to within the Dockerfile form part of the build

context of the image.

The lifecycle of a container is often referred to as the build-and-run cycle, illustrated

in figure 5.311.

1. Building a Docker Image

By issuing the docker build CLI command with reference to a Dockerfile, a con-

tainer image is generated by the Docker engine using the Dockerfile and the build

context. The instructions in the Dockerfile are executed one-by-one and committed
10The full set of commands that can be specified in a Dockerfile can be found in the Docker documen-

tation. [80]
11This illustration is adapted from a diagram in a presentation given by the authors of the paper Using

Docker Containers to Improve Reproducibility in Software and Web Engineering Research. [66] [81].
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incrementally to the new image before finally generating an ID for the image. The

new image usually uses a base image as a foundation, which is a top-level image

upon which other images can be built.

2. Running a Docker Container

If the docker create [arguments] [image-ID] CLI command is issued with reference

to an image ID, a writeable container layer is created based on that image and is

prepared for running using any arguments provided. The resulting container layer

is tagged with a container ID. However, the container is not automatically launched

after being created: Issuing a docker start [container-ID] CLI command will launch

the container.

If instead the docker run [arguments] [image-ID] command is issued with reference

to the image ID, the same writeable container layer is created and the container is

immediately launched.

3. Stopping or Removing a Container

After being launched, a container can be stopped using the docker stop [container-

ID] command. The container can also be removed using the docker container rm

[container-ID] command, but only if either (i) it is not running, or (ii) it is running

but the removal is forced by specifying additional arguments.

5.1.3.2 Entrypoint Scripts

Different elements of a container environment must be configured at particular points in

the container lifecycle: Certain configuration options can be specified pre-runtime, whilst

others must be specified at runtime. For example, one cannot update a container’s internal

routing table until that container is actually running, and hence this configuration cannot

be directly specified as part of the static Docker image. This seems a nuisance since it

98



Figure 5.3: The Docker build-and-run Cycle
An adapted illustration of the Docker build-and-run cycle. The Dockerfile is used to build a

Docker image, which in turn is used to run a Docker container.

means that not all environment configuration can be directly defined within the container

image, but it is here that the use of the Docker ENTRYPOINT command becomes useful.

The ENTRYPOINT command can be used in a Dockerfile to specify a script which

should be run when a container using that image is launched. This means that in the

previous example, a script defining updates to the container’s internal routing table can

be specified as the ENTRYPOINT command in the Dockerfile. After launching the

container, this script will be executed and the routing table will be updated. This is a

useful and flexible option in the configuration of a container environment.

5.1.3.3 Docker Volumes

Docker volumes were discussed in Section 4.2.3 as a means of persisting volatile content

generated by a container. They can be mounted by using the VOLUME command in the

Dockerfile for a container image, and the corresponding host directory to which they are

mapped is specified as an argument to the docker create or docker run CLI commands

at a later stage. Once a container is stopped, any volumes that are mounted to it and

their contents are persisted: It is only when the container is completely removed that the

volume is also removed.
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Figure 5.4 shows a conceptual view of how volumes can be used to persist content

generated within a container, on the host system.

Figure 5.4: A Conceptual Representation of Docker Volumes
A conceptual view of how Docker volumes operate. Files in this volume are accessible both

from the host and the container in a specific directory on each system. Changes can be made
dynamically to the contents of either directory and are immediately available in the

corresponding mapped directory.

5.1.3.4 Docker Networking

Containers, like a physical machine, have their own networking stack. Each container

has its own ports, and can have virtual interfaces connecting them to virtual Docker

networks. This is the key piece of functionality that makes Docker so well-suited to the

implementation of the honeynet in the proposed system.

There are two different ways of exposing ports through the docker create and docker
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run CLI commands, which have different effects.

• Using the –expose argument exposes the specified container port to the host machine

and to other containers. It is not however published to the host’s network interfaces.

• On the other hand, using the –publish argument publishes the specified container

port to the host’s network interfaces meaning that it is accessible through these

ports on the public internet.

An EXPOSE argument can also be specified in the Dockerfile of an image, meaning

that when a container is built from that image the specified ports are exposed for inter-

container communication only. This is the default option specified in the Docker-Cowrie

Dockerfile built by the Cowrie Project developers. [55]

All containers, unless a network is otherwise specified, are automatically connected to

a default Docker bridge network12 called bridge once created. This network allows the

containers to communicate directly with each other and with the host machine through

a virtual network interface called docker0. Additional networks can be manually defined

as bridge or overlay13 networks.

5.1.4 Conclusions

Having explored the operation of AWS EC2, the Cowrie honeypot and the Docker con-

tainer ecosystem, a solid understanding and some basic configuration had been achieved

regarding the next steps in the implementation of the research environment described in

Chapter 4. In particular, by the time all of the aforementioned Docker functionalities

had been explored a rudimentary deployment script named do honeypot.sh had been de-

veloped for the rapid removal and deployment of containers. This script could, based on
12As explained in the Docker documentation, [82] ”a bridge network is a Link Layer device which

forwards traffic between network segments... In terms of Docker, a bridge network uses a software bridge
which allows containers connected to the same bridge network to communicate.”

13An overlay network is described in the Docker documentation as ”a distributed network among
multiple Docker daemon hosts. This network sits on top of (overlays) the host-specific networks, allowing
containers connected to it ... to communicate securely. [83]
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simple parameters, perform functions including:

• Building the basic Docker-Cowrie image;

• Creating a container based on the pre-built image, given a unique container name;

• Launching and stopping a container given its name;

• Entering a running container, presenting an internal container CLI to the user;

• Providing usage instructions on how to use the script to manage containers on the

system.

This, coupled with the knowledge gained about the operation of Cowrie and AWS EC2,

formed a solid starting point from which to begin implementing the research environment.

5.2 Host Server Deployment

There were two AWS EC2 server instances deployed for the implementation of the system:

A honeypot server instance and a management server instance, as designed in Chapter

4. The same deployment process described in Section 5.1.1 was followed. Both instances

were hosted in the Amazon US East (Ohio) availability zone14 running Ubuntu 16.04 LTS

operating systems. Each instance was allocated different hardware resources depending

on their requirements. In both cases, the hardware requirements were such that those

provided by the AWS 12-month free tier were not sufficient, meaning that more expensive

cost-incurring instances were needed.

5.2.1 The EC2 Honeypot Server Instance

In order to host a number of Docker containers as part of the proposed containerised

honeynet, a relatively powerful server instance was required. Based on the initial ex-
14As explained in the AWS EC2 documentation, ”Amazon EC2 is hosted in multiple locations world-

wide. These locations are composed of regions and Availability Zones. Each region is a separate geographic
area. Each region has multiple, isolated locations known as Availability Zones.” [84]
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perimentation with running Docker containers on the free-tier instance, an EC2 instance

with 16GB RAM and 4 virtual CPUs was provisioned in order to allow multiple Docker

containers to be hosted15.

To be able to attract the attention of IoT bots scanning the public internet for vulner-

able devices, the SSH (22/TCP) and telnet (23/TCP) default ports needed to be visible

on this server instance. In total, just these two ports were exposed to the entire public

internet by configuring security rules16,17.

One other port was opened on the server instance but with greater access restrictions.

As described in Section 5.1.2.1, the purpose of this port is to ensure that administrative

access to this server instance would be maintained. The port was chosen at random

as 45678/TCP, and was exposed only to the IP address of the management instance to

obscure the fact that this port was open as much as possible.

All security rules configured for the honeypot server instance can be seen in figure 5.5.

Figure 5.5: AWS EC2 Honeypot Server Instance Security Rules
The ’Cowrie Instance Rules’ security group, showing the rules defined for access to the AWS
EC2 honeypot server instance. For each of SSH (22/TCP) and telnet (23/TCP), these ports
were exposed to the entire IPv4 and IPv6 address spaces, whilst port 45678/TCP was only

exposed to the IP address of the management server instance.

15The free-tier specifications of 2GB RAM were determined to be insufficient for hosting multiple
Docker containers, since it was found that multiple Docker containers launched simultaneously would
cease to run due to memory shortages.

16It was deemed unnecessary to allow access on other ports, since for the purpose of collecting data for
experiments the activities of interest were limited to attacks over SSH and telnet as are typical of IoT
botnets.

17During the initial development of the system, access to these two ports was restricted through the
AWS EC2 security rules to a select IP address for testing purposes.
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5.2.2 The EC2 Management Server Instance

Since the management server instance was required to host the ELK log processing stack,

there were certain minimum hardware resources required to be able to run these tools. Due

to cost considerations, a minimal set of resources were allocated to meet the requirements:

A server with 4GB of RAM and 2 virtual CPUs18 . The installation and configuration of

the tools to be hosted on this EC2 instance are described later in Section 5.4.

On this server instance, there were three ports which were exposed using security rules:

• Port 22/TCP for SSH administrator access;

• Port 5045/TCP, which was a port randomly chosen to allow the honeypot server

instance to transfer logs to the management server instance;

• Port 80/TCP, to allow HTTP access from a web browser to view the visualisations

that would later be available from this server.

All security rules configured for the management server instance can be seen in figure

5.6.

5.3 Building the Docker Honeynet

One of the initial considerations that was described in Section 4.1.1.7 was that the Docker

honeynet should be deployable automatically by recording all commands required to build

the networked environment in bash scripts. Throughout the development of the Docker

honeynet described in this section, the do honeypot.sh deployment script described in Sec-

tion 5.1.4 was incrementally expanded to include multiple functions and verbose output

messages for easy deployment, removal and maintenance of the honeynet.
18The default RAM allocated to Elasticsearch, which is more resource-hungry than Logstash and

Kibana, is 1GB. [85] Upon the first installation of Elasticsearch on a server with 2GB RAM, it was found
that this memory allocation was insufficient since Elasticsearch would continuously run out of heap
memory. In a comprehensive tutorial by DigitalOcean which explains the steps required to configure
these tools on an Ubuntu installation, 4GB of RAM was deemed sufficient. [86] This led to the eventual
decision to allocate a server with 4GB of RAM.
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Figure 5.6: AWS EC2 Management Server Instance Security Rules
The ’Management Server’ security group, showing the rules defined for access to the AWS EC2
management server instance. Port 80/TCP here is seen to be exposed to a single IP address,
from which access to the visualisations generated could be accessed via a web session. Port

5045/TCP is exposed to the IP address of the honeypot server instance to allow the Filebeat
log-shipping application to transfer encrypted log files to the management server instance. Port
22/TCP is also exposed to a single IP address to allow administrative access to the instance.

5.3.1 The Cowrie Container

It was decided in the design phase that the Docker image for the Cowrie honeypot con-

tainers would be heavily based off the existing image developed by the maintainers of the

Cowrie Project, which had already been explored in the experimentation phase. [55] This

image definition provides a sound basis for building an enhanced Cowrie container image

which can facilitate the inter-networking of multiple containers in a honeynet configura-

tion.

5.3.1.1 Building an Enhanced Docker Image

The Dockerfile developed by the maintainers of the Cowrie Project performs the following

operations when being built into an image:

• The debian:jessie-slim base OS image is downloaded and used as a foundation for

the container image.

• All dependencies required by Cowrie are installed, most of which are build depen-

dencies.

• The Cowrie application is configured in accordance with the mandatory installation
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steps specified on the Cowrie Github repository, [76] before removing all unnecessary

build packages.

• A non-root user cowrie is created, and set as the default user for the container.

The Dockerfile also specifies a command to launch Cowrie at runtime under the cowrie

user, as well as specifying a working directory /cowrie/cowrie-git/, mounting two Docker

volumes and exposing ports 2222/TCP and 2223/TCP, the default host ports on which

Cowrie listens for incoming traffic.

The creation of a default non-root user and removal of unnecessary build packages

make the container environment suitably restrictive in the event that an attacker was

able to bypass the Cowrie application and interface directly with the underlying container.

Additional customisations were added to this base image definition to facilitate functions

required by the Cowrie honeynet.

5.3.1.2 Additional Linux Utilities

The Cowrie application is capable of emulating many common Linux utilities including

cat, wget, echo and many others. As an open-source project it is even possible to add

new utility emulations if desired. Thus, there are very few packages that actually need

to be installed on the Cowrie container, and those that are required are mostly build

dependencies. [55] The only additional dependency required was authbind, to allow Cowrie

to receive incoming attack traffic from its host container.

In the customised Cowrie Dockerfile, an entrypoint script was specified to be executed

at container runtime. This script was used to configure authbind as in Section 5.1.2.1 so

that Cowrie could listen to traffic on ports 22/TCP (SSH) and 23/TCP (telnet) of the

container. The script is shown in Snippet 5.1.
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#!/ bin /bash

# Allow cowr ie to l i s t e n as non−root on por t s 22 and 23

touch / e tc / authbind / byport /22 && \

touch / e tc / authbind / byport /23 && \

chown cowr ie : cowr ie / e t c / authbind / byport /22 && \

chown cowr ie : cowr ie / e t c / authbind / byport /23 && \

chmod 777 / e tc / authbind / byport /22 && \

chmod 777 / e tc / authbind / byport /23

# Te l l Cowrie that authbind i s be ing used

sed − i ’ s /AUTHBIND ENABLED=no/AUTHBIND ENABLED=yes / ’

/ cowr ie / cowrie−g i t / bin / cowr ie

## Star t the cowr ie s e r v i c e

su − cowr ie −c ’ ’ / cowr ie / cowrie−g i t / bin / cowr ie s t a r t −n ’ ’

Listing 5.1: The entrypoint script specified in the customised Cowrie Dockerfile. This

shows the configuration of authbind by creating 2 new empty files using touch, the assign-

ment of ownership of these files to the cowrie user, and full read-write-execute permissions

being given to cowrie user for both of these files. This allows the cowrie user to use au-

thbind to receive incoming traffic on these ports. Cowrie then needs to be notified that

authbind is being used, achieved by setting the AUTHBIND ENABLED configuration

parameter. Finally, the script launches the Cowrie honeypot under the cowrie user.
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5.3.1.3 Sharing and Persisting Container Data

As identified in Section 4.2.3 and explored in Section 5.1.3.3, volumes are useful for

dynamically sharing information between a container and its host. The use of volumes in

the Cowrie containers in this system serves two purposes:

1. Cowrie configuration files can be specified on the host, and accessed by a container

through a shared volume;

2. Logs generated inside a container by Cowrie can be accessed by the host through a

shared volume, making them both accessible and persistent outside the container.

Thus, in the honeynet deployment script an extended function was defined for the

creation of Cowrie containers, specifying a number of volumes to be mounted to them.

• The dl/ directory in the Cowrie container was mounted as a volume to allow con-

tainer access from the host. This is the default location where checksums of at-

tempted downloads by attackers are stored.

• The log/ directory in the Cowrie container was mounted as a volume to allow

container access from the host. This is the default location where log files generated

by Cowrie are stored.

• The data/ directory in the Cowrie container was also mounted as a volume to

allow host access from the container. This is the default location for the userdb.txt

password configuration file used by Cowrie.

As well as using volumes to make configuration files available inside Cowrie contain-

ers, the docker cp command was used to copy the cowrie.cfg file from the host into the

container without using a volume19.
19This was necessary because of an intricacy in the mounting of nested volumes from the host to a

container: If the directory containing this file was mounted as a volume to the container, an issue would
arise where the volumes corresponding to the nested /data, /log and /dl directories would be overwritten.
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5.3.1.4 Port Publication

Because all containers need to be able to communicate with each other over ports 22/TCP

and 23/TCP to enable the desired attack propagation between honeypots in the hon-

eynet, the EXPOSE command was used in the Cowrie Dockerfile. This meant that when

launched, ports 22/TCP and 23/TCP on any Cowrie container would be visible to any

other containers on the default Docker bridge network.

In the case of the honeywall Cowrie container, the situation was slightly different:

In order to be able to receive attacks, it needed to be able to access incoming traffic

from the network interface of the host. To achieve this, when creating the honeywall

container the –publish argument was used to map ports 22/TCP and 23/TCP on the host

network interface to the corresponding ports on the container. The use of the –publish

argument also meant that the container would automatically be assigned a virtual network

interface on the bridge Docker network, such that it would be able to receive the incoming

network traffic on these ports from the host instance. Figure 5.7 illustrates how this looks

conceptually.

A separate function was added to the do honeypot.sh script to create and launch this

container as distinct from an ordinary Cowrie container which would not be publishing

these ports.

5.3.2 The Docker Honeynet

The Docker honeynet is one of the novel components of the system design, and would

consist of new Docker network with a number of Cowrie containers connected to it. The

honeywall Cowrie container would act as a gateway between the EC2 honeypot instance

and this Docker network, meaning that it would need to have virtual interfaces on both

the bridge Docker bridge network and the new Docker network hosting the other Cowrie

containers.
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Figure 5.7: Port Publication on the Honeywall Container
An illustration of the publication of ports 22/TCP, 23/TCP on the honeywall container to

ports 22/TCP, 23/TCP on the host. Any traffic received by the host on these ports is mapped
directly to the corresponding ports on the container, essentially making these container ports

directly available from the Internet.

5.3.2.1 Defining a Docker Bridge Network

The new Docker network that would host the Cowrie honeypot containers was defined as

a bridge network with address 10.0.0.0/820. This network address was chosen because it

is an address reserved for use in private networks, i.e. those not directly connected to the

public internet. [87] The network was given the name dmz corresponding to the notion

of a DMZ explained in Section 2.2.1.

In the do honeypot.sh deployment script, a new function was added to allow a user to

automatically define this network without needing to provide configuration details. This
20A /8 subnet can have up to 16,777,214 nodes with different IPv4 addresses. Though this scale is

certainly not required here, the fact that these subnets are supported in Docker allows for many containers
to belong to a single network.
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function can be seen in Snippet 5.2.

# Local DMZ br idge network to which a l l c o n t a i n e r s are connected

create dmz net ( ) {

# Def ine the network

ne twork ex i s t s=$ ( docker network l s | grep ”dmz” )

i f [ [ −n ” $ne twork ex i s t s ” ] ] ; then

echo ”DMZ network de f ined ”

e l s e

echo ” Creat ing DMZ network ( 1 0 . 0 . 0 . 0 / 8 ) ”

docker network c r e a t e −d br idge \

−−subnet 1 0 . 0 . 0 . 0 / 8 \

−−at tachab l e \

dmz

f i

}

Listing 5.2: This script shows the commands used to create the virtual Docker bridge

network, dmz. The script uses the docker network ls command to check whether the

network already exists, and if not creates it. The -d bridge argument specifies that the

Docker bridge network driver should be used to create the network, and the attachable

argument indicates that containers can be added to the network manually on-the-fly.

5.3.2.2 Connecting Containers to the Honeynet

As discussed in Section 4.2.4, ensuring that the honeypot containers did not have any

unnecessary networking capabilities needed to be considered in the implementation. By

specifying that Cowrie containers should be connected to the dmz network as part of the

do honeypot.sh deployment script, they would not be added to any other networks by the
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Docker engine, ensuring this.

Connecting these containers to the dmz network involved adding a single extra ar-

gument to the docker create CLI commands for the Cowrie and honeywall containers in

the do honeypot.sh script: –network ”dmz”. When executed, the docker create command

would now randomly assign an IP address on the dmz network to the Cowrie containers,

and a specific IP address to the honeywall container21.

5.3.2.3 Network Configuration of the Honeywall Container

The function of the honeywall Cowrie container differs from that of other Cowrie contain-

ers in that it should act as a gateway between the Cowrie honeynet and the EC2 host.

This requires that the honeywall Cowrie container have two virtual network interfaces:

One on the default bridge network in order to communicate with the host instance, and

the other on the dmz honeynet.

Configuring the honeywall container as the gateway for the dmz network was not as

easy to achieve as it first seemed. The issue encountered was as follows:

• The IP address of the network gateway must be specified at the time of creation

of the network. It is not possible to specify a network component as the gateway,

i.e. the honeywall container cannot be specified as the gateway, but in theory its IP

address could be.

• Clearly, a container cannot have an IP address for a network that has not already

been created: Thus, a container cannot first be given an IP address and then that

IP address specified as the gateway during the creation of the network.

In essence, it is not possible through Docker to the honeywall container as the gateway

for the dmz network, since the network must already be defined with a gateway before

the container can be a part of it in the first place. As an issue for which no reference
21The address 10.0.0.254/8 was specified for the honeywall container, since this address is commonly

configured as the address for routing devices in real-world networks and so was determined to add to the
attractiveness of this container from an attackers perspective.
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documentation existed, overcoming this issue took substantial troubleshooting and trial-

and-error. Eventually, it was resolved by manual manipulation of the iptables rules and

routing table configuration once the container was running.

To ensure that this configuration would always be present when this container is

launched in future, a new Dockerfile was created for the honeywall container. The Dock-

erfile contained the same configuration options as that of the other Cowrie containers,

but used a different entrypoint script at runtime that would configure the iptables rules

and routing tables.

5.3.3 Design Pivot: A New High-Interaction Honeypot

It was discovered during the configuration of the honeywall container that the Cowrie

honeypot does not have outbound networking capabilities such that it can make outbound

SSH or telnet connections. This was something that was not fully understood about the

Cowrie honeypot initially22, unearthed through implementation issues and verified by the

maintainer of the Cowrie honeypot, Michel Oosterhof. In response to an email query on

the subject, he outlined the following:

”Cowrie by design doesn’t do any outbound connections from within the honeypot... So if

you want communicatoin between the instances, that’ll be a fairly significant

programming exercise. You’ll need to learn some Python/Twisted and basically

implement an SSH/Telnet client inside Cowrie that can connect to the next instance. Or

you’ll have to create some way to bypass this and make it appear that this is what

happens to the attackers.”

When this realisation was made, the original approach to implementing the honeynet

required immediate re-evaluation. The ability to make outbound network connections
22It was understood before beginning the implementation of the system that the Cowrie honeypot did

have this functionality, since it is known that issuing a wget download request inside the Cowrie honeypot
downloads the requested resource and computes its SHA-checksum whilst appearing to the attacker to
have failed. Such functionality would require the honeypot to make an outbound network connection,
and the same approach was assumed to have been taken to the implementation of the SSH and telnet
services in Cowrie.
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from the honeywall container is essential so that an attacker can access the honeynet.

However, the honeywall container should also be a maximally restricted environment

to minimise the risk of attack propagation outside of the system. These considerations

motivated a re-assessment of the system design.

5.3.3.1 Re-Evaluation of Initial Design

Given the time within which the research was being conducted, it would not be possible

to extend the Cowrie source code to give the honeypots the ability to make outbound

network connections over SSH and telnet. Instead, a decision was made to implement a

new high-interaction Docker honeypot23 to facilitate the propagation of attacks beyond

the honeywall: A component referred to hereafter as the router container.

As a high-interaction honeypot, the router container faced an array of new challenges.

• Since attackers would no longer be interacting with an emulated environment inside

the Docker container, real libraries and toolkits would have to be made available to

encourage them to interact with the system.

• The Cowrie application gives a simple configuration option for specifying username-

password combinations that should be allowed or disallowed for authentication by

the honeypot. This is not so easy to replicate in a real system, where a user account

can only be configured to accept either (i) a single correct password24 or (ii) no

password to authenticate a login.

• Attackers will always seek to gain root access to a system in order to have unre-

stricted control over it. Cowrie emulates this root access effectively, but this cannot

be falsified in a real system and would require giving real root privileges to the
23It was decided to implement an entirely new high-interaction honeypot since there are very few high-

interaction honeypots that exist, and none that were found to be actively maintained. In their survey
of honeypot software, Nawrocki et al. found that the majority of honeypot solutions are low-interaction,
and that when it comes to high-interaction solutions ”only few exist”. [37]

24This also presents an additional issue, since if only a single correct password is permitted per user
the probability of an attacker actually attempting this password is low.
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attacker25. This is highly risky, since there is no limitation on what actions they

can then perform inside the system.

• An approach to logging network traffic and command execution would need to be

identified in order to capture attack data, since these capabilities of the Cowrie

honeypot would also no longer be available to this container.

The approaches taken to deal with each of these new difficulties are detailed in the

subsequent sections.

5.3.3.2 Defining a New Container Image

Since the requirements of the router container would be significantly different to that of

the highly-restricted Cowrie container, a new Docker image definition was required.

It was decided that in order to have access to a wide variety of powerful Linux util-

ities26, the ubuntu:latest Docker base OS image would be used as a foundation for the

router container image. The container would also need to expose ports 22/TCP and

23/TCP as with the Cowrie containers, and so these were specified in the Dockerfile using

the EXPOSE command.

The most generic Linux utilities that were specified as part of the Docker-Cowrie im-

age were also included in this new image: In particular, the apt-utils and build-essential

packages, which are required as basic utilities in almost all Debian-based Linux environ-

ments.

Once the basic Dockerfile was defined, the do honeypot.sh script was updated to use the

new router container image instead of the old honeywall container image. The docker cre-

ate arguments for adding the container to the dmz network and publishing ports 22/TCP
25This would be required since if attackers are not permitted to login as root, it is less probable that

any attackers will ever reach the Cowrie honeynet.
26This variety would be required to facilitate an attacker in accessing whatever utilities they required

in order to progress with their attack: It would be undesirable for the attacker to disconnect from this
container without progressing to the Cowrie honeynet, since experimental data would then never be
captured by the honeynet.
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and 23/TCP to the host interface were left unchanged, since the router container would

still require this configuration.

5.3.3.3 Configuring SSH and Telnet

Since there was now no emulation of SSH and telnet connectivity, it was necessary to

install and configure utilities for these on the router container. The installation of the re-

quired packages was specified as part of the router container Dockerfile, and their runtime

configuration properties specified in an entrypoint script.

5.3.3.3.1 SSH

The installation of the openssh-server utility was specified in the Dockerfile. Then, the

entrypoint script was used to update the configuration of the SSH daemon sshd to facilitate

SSH logins to the container. Some noteworthy configurations specific to enabling easy

access by attackers to the container include the following:

• The PermitRootLogin field was updated to allow SSH logins as user root;

• The PasswordAuthentication field was updated to allow authentication by password

and not just by using an encryption key;

• The PermitEmptyPasswords field was updated to allow authentication with an

empty password, if this was valid for a particular user.

Lastly, the entrypoint script was updated to restart so that the updated configuration

would take effect.

5.3.3.3.2 Telnet

The installation of the telnet, openbsd-inetd and telnetd package utilities were also added

to the Dockerfile. A number of configuration steps were also added in the entrypoint
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script to be applied at container runtime: In particular, the allocation of a number of

ttys27 to allow multiple simultaneous telnet sessions to take place.

A telnet configuration file called telnet was also added to the container, which in-

cluded a number of essential configuration options as well as some logging parameters.

This required use of the Dockerfile COPY command to copy the file into the container’s

/etc/xinetd.d directory. As with the configuration of SSH, the telnet daemon is restarted

to allow the changes to take effect.

5.3.3.4 Device Banner Configuration

As part of the enumeration phase of an attack, an attacker will often use a scanning

tool such as Nmap or Masscan to fingerprint the target system. These scanning tools

usually send a message probe over particular protocols with the intention of receiving an

acknowledgement (ACK) from the target, allowing the attacker to deduce some properties

of the system. In the case of IoT devices, being able to fingerprint the device type and

model is very useful to an attacker in identifying a vulnerable target, and so the router

container needed to be capable of presenting such information.

There are two primary messages that are presented to those initiating a user authen-

tication connection with a Linux-based system: The issue.net and mot.d files.

• issue.net / issue

This file is used to set the banner that is sent in a protocol negotiation, e.g. for a

client requesting to connect to the system via telnet, this would be the information

that is used to greet the client prior to the login step. For SSH, this file is called

issue whereas for telnet the file is called issue.net.

• motd / legal

This file is used to display a message to a client after they have successfully logged
27In Linux systems, a tty is a representation of a text input/output device to the system, such as a

terminal session.
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into the system. Often, administrators will use this to present a notice about per-

mitted uses of the system after a user has successfully logged in. For SSH, this file

is called legal whereas for telnet the file is called motd.

In the Dockerfile for the router container, commands were added to copy customised

issue.net, issue, legal and motd files defined on the host into the container. Some ad-

ditional updates were then made to the entrypoint script so that these banners would

be presented in connection negotiations. Figure fig:router-telnet-banner shows how these

banners appear to an individual attempting to gain access to the system via telnet.

Figure 5.8: The Router Container Honeypot Telnet Banner
This screenshot shows a login attempt via Telnet to the EC2 honeypot server instance. It can
be seen that a banner advertising a Huawei device is presented as part of the login prompt. It

can be observed that the ”attacker” proceeds to successfully log in as user root.

5.3.3.5 Privileges and Authentication

As identified in Section 5.3.3.1, for an attacker to interact with the system they would

need to believe that they have gained root-level access to the router container. This is not

something that can be falsified without the use of an emulated environment like Cowrie,

and so the decision was made to allow root access by default for all user accounts on this

container.
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A related issue is the fact that arbitrary user-name password combinations could not

be accepted in the same way on a real Linux environment as they could be with the

emulated Cowrie environment.

• In order for an attacker to log in to the router container under a particular user, an

account needs to exist for that user.

• As well as this, it is only possible to specify one valid password per user account.

The reality of this was that the number of username-password combinations that could

be accepted for this honeypot would be greatly restricted.

The solution to these issues was to define a number of user accounts with usernames

commonly observed in brute-force authentication attacks, and give each of these users

root privileges by default. Since the exact username-password combinations used in the

system would be determined through experiments, a single account for user admin was

created as part of the Dockerfile.

In order to give root privileges to user accounts, they needed to be declared as sudo

users28. This involved the installation of the sudo package as part of the Dockerfile, and

the use of the COPY command in the Dockerfile to copy a pre-configured sudoers file

into the container from the host. This sudoers file was configured such that it granted

root-level privileges to the admin user for all utilities in the container.

This configuration should now allow an attacker authenticated as user admin to suc-

cessfully carry out unrestricted activities inside the container.

5.3.3.6 Logging Attack Events

As with the Cowrie honeypot containers, it was essential that the router container could

monitor the activities of an attacker on the system. This container is a high-interaction

honeypot: A fully-fledged container with a real networking stack, toolkits and file system.
28A sudo user is one which has root privileges on the system, with unrestricted read, write and execute

capabilities.

119



As described in Section 2.2.3.2.1, these honeypots offer the highest value in terms of cap-

turing information about interactions with attackers since attacker activities are usually

unrestricted. The most important elements of attack activities that needed to be cap-

tured in logging were the commands executed by attackers, and details of the attacker’s

connection session.

5.3.3.6.1 Network Event Logging

The most commonly used logging utility for network events is syslog. Syslog is IETF

standard Linux logging utility, which logs network and process events that occur on a

system. It is heavily used by system administrators for system management and security

auditing purposes. [88] It was identified as a straight-forward logging solution for captur-

ing information about attacker connections to the router container, since it is capable of

capturing logging information for both SSH and telnet.

In order to use syslog, the rsyslog package was added to the Dockerfile as part of

the image installation for the router container. A custom-defined configuration file called

rsyslog.conf was then added to the container image, and in the entrypoint script for the

container the rsyslog utility was launched29.

In order to persist the logs generated by rsyslog inside the router container, a volume

was mounted to the router container in the /var/log directory as part of the function to

create the router container in the do honeypot.sh script. SSH and telnet events are logged

to a number of different log files within this directory, including auth.log, messages, secure

and syslog.

5.3.3.6.2 Keylogging

Logkeys is an open-source Linux keylogger. [89] As one of the only identified Linux
29The launching of the rsyslog utility was the last operation specified in the entrypoint script in order.

This was to ensure that none of the environment configuration updates applied by the script were included
in the log files, meaning that if an attacker was to inspect the syslogs on the container they would not see
any records relating to the configuration of the environment, reducing the likelihood of them fingerprinting
it as a honeypot.
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keyloggers freely available and relatively recently maintained, it was originally selected as

a keylogging solution for monitoring the activities of attackers inside the router container.

There were a number of significant difficulties encountered with the use of logkeys:

Seemingly, these were due to its incompatibility with Docker.

• There was no single reference which specified all of the dependencies required to

be installed in order for logkeys to operate. Since Docker containers take a lean

approach to sharing libraries and packages with their host30, many of these de-

pendencies had to be installed from the apt repositories. These dependencies were

eventually identified through investigating dumpkeys, an ancient Linux keylogger

which shares a lot of the same library dependencies. [90]

• The fact that logkeys depends on being able to reference a keyboard device driver

on the host machine presented a number of issues to the use of keylogging. Input

device drivers are stored in Linux systems in a device file, which appears as an

ordinary file under the /dev/input directory. Although a –device argument exists

for the docker create CLI command which can be used to reference a device driver

on the host, the keyboard input device remained inaccessible by logkeys inside the

Docker container despite over a week of dedicated effort.

After exhausting all identified venues for implementing keylogging with logkeys, a

number of additional options were investigated.

• The idea of using the Linux .bash history file for keylogging was explored. This

file is created by the Bash utility, and captures all executed command-line inputs.

This initially seemed a reasonable approach to keylogging: However, the fact that

commands are not logged with timestamps would render the data largely unusable

for identifying distinct attack sessions, making this an unsuitable approach.
30In general, Docker base images such as the Ubuntu Docker image are shipped only with the bare

minimum of packages included, and require a lot of additional packages to be installed in order to run
and manage applications.
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• A manual keylogging approach was attempted, inspired by a recommendation on

the online forum askubuntu.com. [91] This keylogging approach involved using pure

shell command manipulation, leveraging off SSH and telnet environment variables

generated as part of syslog network event logging. However, this approach was found

to be unreliable and brittle, and so was also abandoned.

With the time constraints involved in the implementation of the system, the idea of

keylogging was eventually put to one side as future work to improve the router container

honeypot.

5.3.3.7 Package Utilities

As identified in the design re-evaluation in Section 5.3.3.1, a number of Linux utilities

that an attacker would expect to find in a legitimate system needed to be made available

in the container, since the emulation of these utilities provided by Cowrie were no longer

available. In particular, it was important to facilitate an attacker in probing the dmz

network in order to discover the Cowrie honeypot containers, and so providing common

networking packages was a must.

The initial utilities that were added to the Dockerfile for the router container were

net-tools, nmap, traceroute, inetutils-ping, iptables and tcpdump. These are all networking

packages that would allow an attacker to perform actions such as viewing and manipu-

lating the container’s routing table, scanning nearby hosts and capturing packets on the

network.

5.3.4 Finalising the Docker Honeynet

Now that all required components of the Docker honeynet had been implemented, all

that remained was to ensure that the network configuration was operating correctly. An

attacker should be able access the router container from the public internet and from

there, interact with any available Cowrie containers on the dmz network.
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The targeted network configuration for the deployment is illustrated in figure 5.9.

Figure 5.9: Docker Network Configuration of the EC2 Honeypot Instance
This figure illustrates the desired network configuration for the honeynet deployment on the
EC2 honeypot instance. It can be observed that there are two bridge networks: bridge and

dmz. The host instance is forwarding its incoming traffic on ports 22/TCP and 23/TCP to the
docker0 virtual interface on the bridge. This interface connects the host to the router

container’s virtual interface eth0. The router container also has a second virtual interface, eth1
which connects it to the dmz network. It is through this interface that the Cowrie honeypots

in the dmz network can be accessed.

5.3.4.1 The Docker bridge Network Configuration

For the router container to be accessible from the public internet, its configuration on the

bridge Docker network needed to be set up to facilitate this. The first step was to inspect

the configuration of the bridge network and the routing table on the EC2 instance itself.

The desired configuration is illustrated in figure 5.10.

The internal routing table of the EC2 honeypot instance can be seen in table 5.1,

showing the networks associated with its physical network interface eth0 and Docker vir-

tual network interface docker0. By design, the host cannot interface directly with the dmz

bridge network: As discussed in Section 4.2.4, by preventing the host and containers from

being connected to unnecessary networks the risk of these systems being compromised in
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Figure 5.10: Routing of Attack Traffic to the Router Container
An illustration of the desired routing of attack traffic from the host network interface to the
router container. The attacker is shown to attempt a brute-force authentication attack over

either SSH or telnet, which is forwarded from the real host interface eth0 to the docker0
virtual interface on the bridge network. From this interface, the traffic is forwarded to the eth0

router container interface. For the response to the attacker, the flow of traffic through the
network is in reverse order through these interfaces.

an attack is minimised.

Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 172.31.0.1 0.0.0.0 UG 0 0 0 eth0

172.17.0.0 0.0.0.0 255.255.0.0 U 0 0 0 docker0
172.31.0.0 0.0.0.0 255.255.240.0 U 0 0 0 eth0

Table 5.1: The routing table produced by the command route -n executed on the honeypot
instance, which hosts the Docker honeynet. Two interfaces can be observed: eth0 and
docker0. eth0 connects the host to the 172.31.0.0/24 network, which is an external network
managed by AWS. The docker0 interface corresponds to a default bridge network called
bridge with address 172.0.0.0/16, which containers are connected to by default if not
specified otherwise.

124



By executing the command docker network inspect bridge, the properties of the Docker

bridge network can be inspected. The output of executing this command can be seen in

figure 5.11. It can be seen that there is only 1 container on this network, corresponding

to the router container router. If the command docker container inspect router is subse-

quently executed, the output obtained31 demonstrates the following expected properties:

• The router container is connected to the bridge network with an IP address of

172.17.0.2/16;

• The router container is also connected to thedmz network with an IP address of

10.0.0.254/8;

• Ports 22/TCP and 23/TCP of the router container are published to ports 22/TCP

and 23/TCP of the host interface.

The correct routing of attack traffic through the bridge network could be tested from

outside the EC2 honeypot server instance, by connecting over SSH or telnet to the instance

and verifying that the router container login prompt is presented. Figure 5.12 shows the

console output when an SSH connection is made to the EC2 honeypot server instance,

demonstrating the correct routing of this traffic to the router container.

5.3.4.2 The Docker dmz Network Configuration

To verify that attack traffic could reach the Cowrie containers in the dmz network, the

configuration of the router container and the dmz network needed to be verified. An

attacker, once inside the router container, should be able to connect through an inter-

face on the router container to any Cowrie container on the dmz network. The desired

configuration is illustrated in figure 5.13.

The internal routing table of the router container can be seen in table 5.2, showing

the networks associated with the container’s two virtual interfaces eth0 and eth1. These
31The volume of output generated by this command is not feasible to include as a figure in this

document, and so a description of the most important contents of the output was deemed sufficient.
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Figure 5.11: Console Output of docker network inspect bridge
An image showing the console output obtained by executing the command docker network

inspect bridge. It can be observed that there is only 1 container on this network: The router
container.

networks correspond to the bridge network 172.17.0.0/16 and the dmz network 10.0.0.0/8.

Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 172.17.0.1 0.0.0.0 UG 0 0 0 eth0
10.0.0.0 10.0.0.254 255.0.0.0 U 0 0 0 eth1

172.17.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0

Table 5.2: The routing table produced by the command route -n executed inside the
router container. Two interfaces can be observed: eth0 and eth1. eth0 connects the
router container to the 172.17.0.0/16 bridge network, whereas eth1 connects it to the
10.0.0.0/8 dmz network.
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Figure 5.12: Attempted SSH Login to the Router Container
An image showing the console output obtained when a connection attempt is made over SSH

to the EC2 honeypot instance. It can be observed that a Huawei banner is presented, and that
the attacker is permitted to log in as root.

From inside the router container, an attacker should be able to access a domain on

the public internet in order to perform downloads to progress their attacks on the system.

This is achieved through the configuration of Network Address Translation (NAT) rules

in iptables. The rules shown in snippet 5.3 were used to achieve this objective, enabling

an attacker to perform downloads from external domains. This temporarily caused a

diffiult-to-diagnose issue with the iptables of the EC2 instance32, which was eventually

resolved by executing the command iptables -t nat –flush to remove some conflicting NAT

rules on the host.

i p t a b l e s − −t ab l e nat − −append POSTROUTING

− −out−i n t e r f a c e eth0 −j MASQUERADE

i p t a b l e s − −append FORWARD − −in−i n t e r f a c e eth1 −j ACCEPT

Listing 5.3: The iptables rules that were configured to enable NAT inside the router

container.

The routing table generated inside a Cowrie container can be seen in table 5.3. In this
32The issue manifested as an inability to connect to containers on ports 22/TCP and 23/TCP, where

Nmap would show these ports as being ’filtered’.
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Figure 5.13: Routing of Attack Traffic to a Cowrie Container
An illustration of the desired routing of attack traffic from the host network interface to a

Cowrie container. Assuming that the attacker has already successfully compromised the router
container through the process in figure 5.10, they should be able to connect to the Cowrie

container over SSH or telnet in the same way through the router container’s eth1 interface on
the dmz network.

case, the container is connected to only one network: The dmz network, which it accesses

through its virtual interface eth0.

Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.0.0.254 0.0.0.0 UG 0 0 0 eth0
10.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 eth0

Table 5.3: The routing table produced by the command route -n executed inside a Cowrie
container. One interface can be observed: eth0. eth0 connects the container to the
10.0.0.0/8 dmz network.

By executing the command docker network inspect dmz, the properties of the Docker

dmz network can be inspected. The output of executing this command can be seen in

figure 5.14. It can be seen that there are 2 containers on this network, corresponding to

the router container router and a Cowrie container hp1. If the command docker container
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inspect hp1 is now executed, the following can be observed:

• The hp1 container has an IP address of 10.0.0.2/8 on the dmz network;

• Ports 22/TCP and 23/TCP of the hp1 container are exposed on the network, but

have no mapping to the host.

Figure 5.14: Console Output of docker network inspect dmz
An image showing the console output obtained by executing the command docker network

inspect dmz. It can be observed that there are 2 containers on this network: The router
container, and the hp1 Cowrie container.

The correct routing of attack traffic from the router container through the dmz to the

hp1 Cowrie container could be tested from inside the router container. Once inside the

router container, connecting over SSH or telnet to the hp1 honeypot and being presented
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with the Cowrie login prompt verifies the correct configuration of the network. Figure

5.15 shows the console output when an SSH connection is attempted from the router

container to the hp1 container, demonstrating the correct routing of traffic within the

dmz network.

Figure 5.15: A Denied SSH Login from the Router to a Cowrie Honeypot
This screenshot shows a simulated attack session from the router container to the hp1 Cowrie

honeypot container. It can be observed that the ”attacker” attempts to log in to the hp1
container as user admin. The first password provided for login is rejected, and a second prompt
for the correct password is requested by the hp1 Cowrie honeypot. In this case, the attacker

decides to cancel the login attempt rather than proceeding with a second login attempt.

5.4 Visualisation of Attack Data

As decided in Section 4.1.2.3 as part of the design process, the data generated by honey-

pots in the Docker honeynet would be visualised using the ELK log processing stack on

a separate EC2 server instance. The deployment of the EC2 management server instance

was already described in Section 5.2.2, and this section details the installation and con-

figuration of the tools on this instance to enable the processing and visualisation of the

honeypot data.
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5.4.1 Management Server Instance

The EC2 management server instance had already been deployed with sufficient hardware

resources to meet the requirements of the ELK stack. Since the ELK stack is widely used

for log processing and visualisation, there were plentiful resources available from which

to learn, showing how to configure these open-source tools to work together.

Some complementary tools were also used in order to facilitate the use of the ELK

stack for analysis of logs from a remote machine: In particular, Nginx and Filebeat.

The configuration and interoperation of all of these tools is described in the following

subsections.

5.4.1.1 Elasticsearch

Elasticsearch is an open-source search and analytics engine built on the Apache Lucene

API. The fact that it supports analysis of JSON-formatted files made it an ideal choice

for the analysis and indexing of the Cowrie logs, which are logged in JSON format.

To set up the environment to run Elasticsearch, Java 8 was first required as a prereq-

uisite installation. Once Java 8 has been installed, Elasticsearch was then also installed.

Next, in order to configure Elasticsearch securely external access to the application needed

to be restricted. This is important, since Elasticsearch provides a HTTP API that can be

queried to perform manipulation on the data stored in the Elasticsearch index. If access

to this was not restricted, the data in the index could be modified or removed without

authorisation.

By editing the /etc/elasticsearch/elasticsearch.yml configuration file for Elasticsearch,

external access was completely restricted by setting the access address network.host to

localhost33. This meant that Elasticsearch could only be accessed from the management

instance itself on localhost, on the Elasticsearch default port 9200/TCP.
33The IP address 127.0.0.1 is known as the localhost address.
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5.4.1.2 Kibana

The Kibana visualisation engine was the second component of the ELK stack to be in-

stalled and configured. Kibana is an open-source analytics and visualisation platform,

designed specifically to work with the Elasticsearch search platform. The use of Kibana

in this project was intended to make analysis of the honeypot log files painless and im-

mediate.

Kibana provides a web interface through which visualisations can be accessed. By

configuring rules to visualise incoming log data, Kibana makes it possible to understand

crucial information about the state of the system instantaneously.

Similarly to Elasticsearch, it was important to set up Kibana to have restricted accessi-

bility from external systems. In order to achieve this whilst still allowing an administrator

to access the visualisations through the web interface, the Nginx reverse proxying tool

was used.

5.4.1.3 Nginx

Nginx is an open-source tool focused on providing services like web serving, reverse prox-

ying, caching, and load balancing. [92] In this system, it was used to allow access to the

Kibana web interface using reverse-proxying.

An authentication step was configured with a single valid username-password creden-

tial to allow for authenticated login from a web browser. A small amount of additional

configuration was then required to direct incoming HTTP traffic to the Kibana applica-

tion34.

5.4.1.4 Logstash

Logstash is an open-source log pipeline tool which accepts, processes, transforms and

outputs data from log files provided to it, and was the final component configured on the
34This involved the addition of the EC2 management server instance’s public IP address to a Nginx

configuration file in the sites-available directory.
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management server instance.

As discussed in Section 4.1.2.2, an SSL certificate was generated by using the private

IP of the server in the SAN field. This would later be used by Logstash to verify the

origin of log data shipped by Filebeat.

In order to configure the processing components of Logstash, a number of configura-

tions needed to be defined to deal with each of the incoming log formats: Input, filter and

output configurations. These were all specified as part of the same file, 03-cowrie.conf.

• Input

Inputs are a field used to pass data into the Logstash pipeline. In this system, a

single input was defined to accept data of type beats, corresponding to data shipped

by Filebeat.

A port number was specified from which this data should be received by Filebeat.

The path to the generated SSL certificate was also specified, so that the data received

on this port could be verified by Logstash.

• Filter

Filters are an intermediary processing step in the Logstash pipeline, where opera-

tions can be applied to the input data. An excellent tutorial was identified which

explained a number of different filtering operations that could be applied to the

Cowrie logs. These formed the basis of the filtering operations configured in this

field35. [93]

• Output

Outputs are last field in the Logstash processing pipeline, piping the results of the

processing to a designated output process. In this case, the output process was

Elasticsearch, which had been configured to listen for incoming data on localhost,
35It should be noted that although substantial effort was expended to perform the similar filtering op-

erations on the syslog files generated by the router container honeypot, there were multiple compatibility
issues encountered which resulted in the failure to visualise these logs on the Kibana web interface.
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port 9200. Some additional options were specified regarding the formatting of the

data to be stored in the Elasticsearch index.

5.4.2 Honeypot Instance

To provide the EC2 management instance with honeypot data to visualise, the logs gen-

erated by the honeypot containers on the EC2 honeypot instance needed to be aggregated

and then transferred securely to the management instance. This was achieved as described

below.

5.4.2.1 CRON

A CRON job was configured to run every 60 seconds on the honeypot instance, shipping

the honeypot logs from their respective container volumes to a defined location on the

honeypot instance: The /var/logs/ directory. This meant that logs generated by all

honeypots present would be aggregated in a single location on the honeypot instance.

# m h dom mon dow command

∗ ∗ ∗ ∗ ∗ / bin /cp −a /home/ubuntu/ cowrievolumes /∗/

/ var / log / cowr ie / >> / var / log / cowr ie / c ron log . l og

∗ ∗ ∗ ∗ ∗ / bin /cp −a /home/ubuntu/ route r /∗/

/ var / log / cowr ie / route r / >> / var / log / cowr ie / c ron log . l og

Listing 5.4: This snippet shows 2 tasks scheduled using CRON, which copy the contents

of the honeypot container volumes to the /var/logs directory. These jobs are run every

60 seconds, the maximum possible frequency for a CRON job.

5.4.2.2 Filebeat

Filebeat is an open-source application which was discussed in Section 4.1.2.2 in the con-

text of securely transferring honeypot logs from the EC2 honeypot instance to the EC2
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management instance using SSL certificates. The SSL certificate previously generated by

the management server was shared with the honeypot instance using Secure Copy (SCP).

The Filebeat configuration file, /etc/filebeat/filebeat.yml, was configured to inspect the

/var/log directory on the EC2 honeypot instance for the presence of log files any time

updated log files were added to it by CRON. It was then configured to send the logs to the

EC2 management instance using private IP addressing, specifying the destination port to

be the same as that configured in the input field of the Logstash configuration file. Lastly,

Filebeat was configured to use the SSL certificate generated by the EC2 management

instance for all data transferred.

5.5 Alert/Notification System

As another important element of the cyber incident monitor identified in Section 4.1.2,

the configuration of a threat notification system was the final step in the implementation

of the cyber incident monitor.

5.5.1 PSAD

As explained in Section 4.1.2.4, PSAD was identified as the tool of choice to enable alert-

ing of system administrators to potential attacks happening on the honeypot host. It

was deployed on the honeypot instance in order to provide an instantaneous notifica-

tion to system administrators of potential attacks. A basic configuration generated email

alerts when probing of the honeypot instance was detected, sending notification emails to

the address itsmyjobtofixtheproblem@outlook.com, which could be specified in the /etc/p-

sad/psad.conf configuration file. It was possible to configure PSAD to check the state

of the network event logs as frequently as desired, for which a reasonable frequency was

chosen to be every 5 seconds.

With PSAD it is also possible to completely blacklist or whitelist36 certain IP addresses
36Whitelisting an IP address means that it is added to a list of addresses that are considered trustworthy.
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Figure 5.16: An Email Alert from PSAD
This screenshot shows the email inbox to which PSAD was configured to send email alerts. It

can be seen that a port scan generated an email alert shown in the right-hand pane of the
email inbox. PSAD has detected that the source of the scan is a domain io-in-f103.1e100.net
which has sent a number of ICMP packets to the EC2 server instance, triggering this alert.

by editing the /etc/psad/auto dl configuration file. This functionality was used to reduce

the number of false positives being generated by PSAD37.

5.6 Summary

By the time all of the system components had been configured and implemented as de-

scribed in this chapter, an end-to-end system cyber incident monitoring system was in

place.

• Attack sessions could be simulated, connecting to the EC2 honeypot instance over
37After PSAD was initially configured, there were many email alerts generated from a particular server

called chillipepper.canonical.com. Upon contacting Canonical Ltd. about the possibility of their server
being compromised and used to launch attacks, it was found that the alerts were being generated by
benign Network Time Protocol (NTP) time synchronisation traffic.
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SSH or telnet and being presented with the router container login prompt. After

authenticating with the router container, it was possible to connect in the same way

to any container in the honeynet and interact with a Cowrie honeypot.

• All activity generated from interactions with the Cowrie containers was being suc-

cessfully shipped, processed and visualised, with the visualisation dashboard acces-

sible from a web browser.

• The entire Docker environment could be completely removed and redeployed with

an identical configuration if required.

Thus, the objective of developing a honeypot-driven cyber incident monitor had largely

been achieved at this point, with much remaining scope for configuration of both the

honeypots and the visualisations once attack data had been obtained. This system would

be used to conduct a series of experiments focused on determining effective design for

adaptive honeypots, detailed in Chapter 6.
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Chapter 6

Evaluation

This chapter focuses on providing an evaluation of the implemented cyber incident moni-

toring system, as well describing the design and conducting of experiments as part of the

proposal for adaptive honeypot design.

Section 6.1 provides an in-depth explanation of how the experiments were designed for

evaluating the impact of attractiveness honeypot characteristics on the number of attacks

received.

Section 6.2 discusses how the experiments were conducted and their limited findings,

detailing the nature of numerous setbacks that occurred and how these were dealt with.

An explanation for the early conclusion of these experiments is also provided.

Section 6.3 discusses the limited findings of the experiments as well as a qualitative

evaluation of the cyber incident monitoring solution produced.

Finally, Section 6.4 provides some brief conclusions regarding the evaluation of the

honeypot experiments.

6.1 Design of Experiments

The conducting of experiments in this research is focused on the delivery of the second

objective outlined in Section 3.2.2: To determine an improved design for effective, adaptive
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honeypots. It was decided that the measure of effectiveness in these experiments would

be defined by how many attacks each honeypot received. From this, it would be possible

to present findings and draw conclusions regarding the development of effective adaptive

honeypots.

The design of the experiments was influenced greatly by the time that remained to

complete the entirety of the research: A period of just four weeks. A series of experiment

iterations were devised to be run over the course of these 4 weeks. Table 6.1 describes the

variables involved in each iteration, and the intended execution of these iterations with

respect to time.

Vendor A Vendor B Vendor C Control
Week 1 Week 2 Week 3 Week 4

LC SA DT LC SA DT LC SA DT LC SA DT
HP1 A X P A X P A X P A X P
HP2 B Y Q B Y Q B Y Q B Y Q

... C Z R C Z R C Z R C Z R
HPN D W S D W S D W S D W S

Control * * * * * * * * * * * *

Table 6.1: A set of planned experiment iterations in order to propose an optimal hon-
eypot design. Three characteristics of the N Cowrie honeypots HP1, HP2 ... HPN are
considered: The login credentials accepted (LC ), the services advertised to be running on
the container (SA), and the type of device advertised (DT ). For each week, only one char-
acteristic of the router honeypot is varied: The device vendor, corresponding to columns
Model A, Model B, etc. Each variation of a Cowrie honeypot characteristic (LC, SA, DT )
should be in place for 2 days, with all 12 experiment iterations taking place over 4 weeks.
There is one day allocated per 7-day week for setting up the experiments, represented
by the empty column for each week. In each iteration there is a single Control Cowrie
honeypot used as an indication of baseline performance, and in Week 4 a Control router
honeypot is also employed for the same reason.

An explanation of how this plan translates into the configuration of the research en-

vironment is explained in the following subsections.
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6.1.1 Router Honeypot Container

As the gateway between the public internet and the Cowrie honeynet, it is obvious that

the router container should aid an attacker in accessing the deployed system. Facilitating

easy access to this container is likely to increase the chance of a successful venture into

the Cowrie honeynet, enabling valuable data to be captured. Thus, it was important to

configure the router container to be as attractive and open as possible to the targeted

attackers, IoT botnets.

The system had already been designed and implemented to facilitate exactly these

requirements, and so the router container could easily provide:

• Remote access over either SSH or telnet from the public internet;

• Authentication using a number of valid username-password combinations;

• Root privileges inside the system;

• A powerful OS and toolkits;

• A network of nearby hosts to which an attack could be propagated;

• An attractive device banner indicating a device type.

In order to gain some insights regarding honeypot design from the router container

and not just from the Cowrie honeypots, it was decided to vary a characteristic of the

router container honeypot as part of the experiments: The device vendor advertised1.

All other characteristics of the router container would be held constant, such that the

same username-password credentials, services, toolkits, etc. would be available on this

honeypot in all experiment iterations.
1In order to facilitate easy access to the Cowrie honeynet whilst also gaining some insights from

allowing attackers to access the router container, the device vendor advertised in the SSH and telnet
banners of the router honeypot was deemed to be a suitable and useful characteristic to measure. If this
characteristic was found to impact upon the number of attacks received, it would give an indication of
vendor awareness in IoT botnets.
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With reference to the experiment iterations plan in table 6.1, the following experiments

were designed for the measurement of the impact of device vendor on the number of attacks

received:

• For each of Week 1, Week 2 and Week 3 shown in the table, the router container

would be configured to advertise a different brand of router to through SSH and

telnet banners. Each banner will be left on the router container for 6 consecutive

days of that week, with every other variable in the router honeypot environment

being held constant.

• In Week 4, a Control router container would be used: One which doesn’t advertise

any brand or model, but which simply uses the default ’Ubuntu 16.0.4 LTS’ SSH and

telnet banner with hostname router. By having a control, it is possible to compare

the results of the other three weeks against a baseline to determine whether or not

it matters that a device is advertised as being from a particular vendor.

For the 3 device banners to be configured on this honeypot for Week 1, Week 2 and

Week 3, it is desirable to base those device brands used in the banner configuration

on real-world data. Masscan is a powerful asynchronous port scanner which was used

by the researchers behind the IoTPot honeypot to capture device banners from devices

on the public internet listening on the telnet 23/TCP port. [58] The researchers used

these banners to customise the honeypots to look like a real telnet-enabled device on the

Internet. The effectiveness of this approach in their evaluation of IoT botnet behaviour

motivated the decision to use Masscan to capture device banners in this research for use

in the experiments. The most commonly occurring device vendor banners would be used

as a basis for the experiments, since a more popular device vendor can be assumed to be

more likely to be attacked than a less popular one.
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6.1.2 Cowrie Honeypot Containers

In the Cowrie honeynet, there is substantially more scope for measuring the impact of

varying honeypot characteristics since there are a greater number of honeypots available:

As motivated in the formulation of the research objectives in Section 3.2.2.1, a honeynet

provides a solution to the accurate measurement of relative effectiveness of honeypots in

the same environment, since the effects of time can be largely disregarded2.

For each of the 4 weeks for which the experiments would be run, it was decided that

3 honeypot characteristics would be varied for a period of 2 days per week each. These

characteristics are:

1. The login credentials accepted by the honeypot;

2. The services running on the honeypot’s container ports3;

3. The type of device advertised by the honeypot.

To illustrate how this translates into an experiment iteration, consider column LC in

Week 1 in table 6.1 as an example.

• LC corresponds to the variation of the login credentials accepted by honeypots HP1,

HP2, ... HPN over a 2-day period.

• For each of honeypots HP1, HP2, ... HPN, the login credentials accepted should

vary. Other variabls should be held constant4.

It was decided that five Cowrie honeypots would be deployed in each experiment

iteration, one of which would be the control honeypot. The presence of a control iteration
2Since all honeypots in the honeynet should be simultaneously exposed to the same environmental

conditions, the effect of time variability in the experiments is minimised.
3In the research conducted by Dowling et al. in the implementation of a Zigbee honeypot, the gen-

eration of unencrypted network traffic was an interesting honeypot characteristic used in an attempt to
attract the attention of attackers. [14] Measuring the impact that such a measure has on the number of
attacks received by a honeypot was deemed a useful characteristic to measure.

4This means that if the login credentials (LC ) are the characteristic being varied, both the services
advertised (SA) and the device type (DT ) should be held constant
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is important, since it allows for definitive conclusions to be drawn as to whether or not

the results obtained by customised honeypots have any impact on the number of attacks

they receive.

6.2 Conducting Experiments

The experiment iterations were planned to be conducted in the order in which they are

specified in table 6.1, starting with varying the login credentials of the Cowrie honeypots

and the addition of a banner advertising a device manufacturer.

6.2.1 Capturing Device Banners

Masscan was used to scan the entire IPv4 address space for devices listening on ports

22/TCP (SSH) or 23/TCP (telnet) over the course of two days. The telnet and SSH

banners of any device that responded were captured in log files. The IP addresses of

these devices were also captured.

The banners were extracted from the log files into a new file, where they were counted

using shell commands. In total, 71,149 banners were captured after scanning port 23/TCP

(telnet) and 179,849 banners were captured after scanning port 22/TCP (SSH).

Many of the banners obtained specified vague information regarding device models

and manufacturers, with many not being identifiable from the device banners at all. In

order to make the results obtained relatively usable for falsifying honeypot device banners,

the Masscan results were used in conjunction with Google searches to identify vulnerable

device models.

6.2.2 Experiment 1, Attempt 1

The first experiment iteration undertaken corresponds to the Week 1, LC experiment

shown in table 6.1. This involved the variation of login credentials accepted by the Cowrie
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honeypots deployed in the Docker honeynet, and the configuration of a vendor-specific

device banner on the router container.

6.2.2.1 Configuration of the Router Honeypot

Huawei devices were encountered 42 times explicitly in telnet banners, and 6 times explic-

itly in SSH banners5. This made Huawei the most popular router manufacturer that could

be identified from the captured banners. However, since no discernible models could be

identified from these banners some research was conducted into vulnerable Huawei router

models, immediately identifying their HG-532d model as being highly vulnerable to ex-

ploit. [94] [95] The device manual was found to contain the default username-password

credentials user/user. Thus for this experiment iteration, the router container was adver-

tised as a Huawei HG-532d router.

In order to facilitate as many successful logins as possible, the router container was

configured to allow passwordless login for 14 different user accounts. These user accounts

were added based on results captured from a temporary deployment of a plain Cowrie

honeypot on an AWS EC2 instance, which was set up to capture credentials that are

actually being used by IoT botnets for brute-force authentication6.

6.2.2.2 Configuration of the Cowrie Honeypots

As discussed, five Cowrie honeypots were deployed as part of this experiment iteration.

One of these honeypots was the control, a plain Cowrie honeypot with no customisations

added to it.

Since the login credentials were the characteristic being varied across the remaining
5It is assumed that not all Huawei devices scanned will have provided an explicit Huawei banner in

response to the Masscan probes. Thus, there could have been many more Huawei devices present in the
results found which could not be identified simply from their banners.

6The full list of user accounts added were root, admin, cisco, guest, admin1, support, ubnt, default,
Admin, service, supervisor, Administrator, administrator, and user. There were also a number of addi-
tional usernames captured: However, these contained numbers which are invalid characters for Ubuntu
usernames, meaning that they could not be added as an user. The user username was added based on
the fact that the Huawei HG532d device manual specified this as the default username.
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4 honeypots in this experiment iteration, the device type and services available on the

honeypots needed to be kept constant.

• Device Type Advertised

All honeypots were given device names similar to the default hostname assigned

to Cowrie. Thus the Cowrie honeypots were named srv01, srv02, srv03, srv04 and

srv05, where srv04 was the control honeypot.

• Services Advertised

The simplest solution to keeping the services advertised by the honeypots constant

was to use the default Cowrie container configuration, where the emulated SSH

and telnet services were the only services that would be detected by an attacker

performing a port scan on these honeypots.

• Login Credentials Accepted

Different accepted login credentials were configured on each of the Cowrie honeypots,

with the exception of the control honeypot srv04. These were as follows:

1. srv01 accepted username root with any password;

2. srv02 accepted username admin with any password;

3. srv03 accepted any credentials provided after a random number of attempts,

which can be configured using the Cowrie’s AuthRandom option7 in the cowrie.cfg

file;

4. srv05 used the username-password combinations captured from one of the four

attackers in the first exposure of Cowrie to attack8, explained in Section 5.1.2.3;
7By setting this option in the cowrie.cfg file, access will be granted to an attacker after

randint(minimum, maximum, cache combinations) login attempts. In this case the parameters speci-
fied were 3, 5 and 10 respectively.

8All of the brute-force login attempts from this bot used the username admin, along with a total of
13 different passwords.
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6.2.2.3 Findings of the Experiment

Once the system was exposed to the public internet on ports 22/TCP (SSH) and 23/TCP

(telnet), there were immediately plenty of connection attempts captured by the router

container over both SSH and telnet. However, it was soon observed based on the event

timestamps that most connections were terminated immediately after connecting.

It was concluded upon reflection that this behaviour could be due to detection of the

system as a honeypot environment: Since attackers were being given passwordless root

access to the router container, it would be reasonable to expect this to raise suspicions

about the legitimacy of the system. This is not ideal, since the intention behind allowing

passwordless access was to enable attackers to easily gain access to the system: The

addition of password authentication, which allows only 1 password per system user, would

restrict the number of attackers that could successfully access the system.

The experiment iteration was concluded after 2 days. By this time, there were no

attacks logged by any of the Cowrie honeypots in the honeynet, since no attackers had

progressed beyond the router container. It was decided on this basis that the experi-

ment iteration should be repeated under the same conditions, with the exception that

passwordless access to the router container should no longer be provided.

6.2.3 Experiment 1, Attempt 2

Based on the failure of the system to capture any substantial attack data in the first

attempt of experiment iteration 1, the system was re-deployed with the same configura-

tion. This time however, passwordless authentication to the router container would not

be permitted.

6.2.3.1 Reconfiguring the Router Credentials

As an alternative to passwordless authentication, it was decided that the password for

each existing user account would be configured to be identical to the username for sim-
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plicity: For instance, for user admin the password would also be admin. This seemed a

reasonable choice for permitted login credentials for each user account on the router con-

tainer, since identical username-password combinations are commonly used in brute-force

authentication attacks.

Adding this involved some simple edits to the router container’s entrypoint script.

6.2.3.2 Findings of the Experiment

It was discovered after less than 24 hours of running this experiment that the EC2 hon-

eypot server instance had completely crashed. Upon investigation, this crash appeared

to be due to an unusual fork bomb9 behaviour by CRON: The syslogs showed that it had

recursively restarted itself until there were too many processes for the EC2 host to handle,

eventually crashing the instance entirely.

After checking the logs generated by the router container, there were a number of

successful connection sessions logged for both SSH and telnet: However, after examining

the .bash history file none of the commands executed looked like they could have caused

this fork bomb behaviour to occur intentionally. It was thus concluded that this had

occurred due to a resource overload on the system

Though the system had been offline for quite some time before the failure was discov-

ered, in the few hours that the experiment had been running there had been a number

of successful login attempts to the router container. However, there were also no attacks

that had reached the Cowrie honeynet.

The contents of the .bash history file showed only 6 commands had been executed

during the time that the experiment was running. Three similar sequences of commands

had been executed as follows:

cat /proc/mounts; (/bin/busybox LWQTL —— :)
9A fork bomb is an unintended behaviour of a system, where processes are continually made to replicate

themselves until all available CPU resources are depleted, resulting in a crash failure of the system. It is
often used as a DOS attack.
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cd /dev/shm; cat .s —— cp /bin/echo .s; (/bin/busybox LWQTL —— :)

cat /proc/mounts; (/bin/busybox GQZJN —— :)

cd /dev/shm; cat .s —— cp /bin/echo .s; (/bin/busybox GQZJN —— :)

cat /proc/mounts; (/bin/busybox WEGOD —— :)

cd /dev/shm; cat .s —— cp /bin/echo .s; (/bin/busybox WEGOD —— :)

Of note was the fact that these commands attempted to invoke the BusyBox shell,

which had not been installed in the router container as an oversight in the implementa-

tion process. In their analysis of the behaviour of the Hajime IoT botnet, Edwards et al.

noted almost identical invocations of the BusyBox shell as part of what they deduced was

a fingerprinting mechanism to determine the properties of the victim system. [54] A legit-

imate system on which BusyBox had been installed would return the response ’CHDGL:

applet not found’. Also noted by these researchers is the purpose of the cat /proc/mounts

command sequence which ”checks the system mounts for a writeable location in the target

filesystem”, and the sequence cd /var; cat .s —— cp /bin/echo .s; /bin/busybox ECCHI,

which among other things ”picks the first writeable path that is not /proc, /sys, or / and

uses that as its working path”. The fact that these commands were observed may indicate

the presence of the Hajime botnet.

Overall, the results of this experiment iteration were interesting but not complete,

since no attacker progressed beyond the initial fingerprinting stage because of the absence

of the BusyBox utility. It would be necessary to run this experiment iteration a third

time with the utility installed.

6.2.4 Experiment 1, Attempt 3

The same experiment that was set up in the previous two iterations was re-deployed for

a third time after adding the BusyBox utility to the router container Dockerfile. There

was no additional configuration of this utility required, and it was simply installed upon

rebuilding the container image.
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6.2.4.1 Findings of the Experiment

As planned, the experiment iteration was run for two days before the system was taken

offline and the results examined. This time, the network events logged by syslog showed

that several more attackers had managed to successfully authenticate with the router

container over both SSH and telnet.

The environment was examined, and the findings were as follows:

• Even after repeating this experiment for a third time, no attacker had proceeded

from the router container to the Cowrie honeynet. This was evident from the

fact that there were no Cowrie visualisations generated on the Kibana dashboard

hosted by the management server. There were also no commands observed in the

.bash history file that would indicate an attacker having probed the dmz network.

• Like the previous iteration, commands were observed in the .bash history file that

could be attributed to bot attackers. However, only one sequence similar to those

highlighted in Section 6.2.3.2 was observed. Instead, another sequence enable; sys-

tem; shell; sh was repeatedly observed. This was another sequence discussed by

Edwards et al., which they explain ”are sent in a blind attempt to navigate what-

ever vendor-specific command-line interface (CLI) the Telnet server implements....

If any command fails, it will fail”. [54] Upon manually attempting to execute the

same sequence inside the router container, it was found that the system and shell

commands did not execute inside the container, explaining the fact that the attack

sequence ended at this point.

• It appeared that a human attacker had gained access to the system in this exper-

iment10. The .bash history, when examined, showed that the attacker had down-
10This was inferred by the commands that were found to have been executed after inspecting the

.bash history file, in particular the clear command which is used to clear the output displayed in a Linux
console window. This is a command that would be useless to an automated bot attacker, and was a
tell-tale sign of a human attacker.
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loaded a Python script from a web domain11 after installing the wget utility. Upon

visiting this domain, the script was found to contain open-source licensing informa-

tion, and was traced back to an open-source Github project called speedtest-cli. [96]

This is a tool used to test the network bandwidth available to a device, something

that is undoubtedly of interest to an attacker intending to conduct a volumetric

network attack such as DDoS. Other activities within the same session included the

creation of a new user huawei, checking the uptime of the system using the uptime

command, and checking the system specifications using the lscpu command.

Figure 6.1: DDoS-for-Hire: The Web Domain of a Human Attacker
The webpage shown was linked to an attack session in the router container honeypot, where a

Python script was downloaded from this site and used to measure the network bandwidth
available to the system. The homepage shown in this image advertises DDoS-for-hire services,

where it costs e15 to buy a 2GB/second attack and a 4GB/second attack costs e20.

6.2.5 Concluding the Honeypot Experiments

Something that became very clear from the experiments conducted was the unpredictabil-

ity of conducting honeypot experiments. Given that 4 weeks had been allocated to com-

plete all 12 iterations of experiments planned, it was crucial that there were minimal

setbacks to the progression of the experiments within this time.

Over a week after setting up the first of these 12 iterations, the first experiment

iteration had been deployed a total of three times due to the issues outlined in Section
11The URL from which this script was downloaded is http://cybernetik.000webhostapp.com/speedtestvps.py.

At the time of writing, the site hosted at this address had been taken down: However, a screenshot of
the domain landing page captured after discovering this activity can be seen in figure 6.1.
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6.2. It was concluded that conducting the remainder of the planned experiments was

infeasible, given that less than three weeks remained to conduct the remaining iterations.

Thus, the conducting of the planned experiments was discontinued.

6.3 Discussion

Both the achievements and the limitations of the research are evaluated and discussed in

this section.

6.3.1 Honeypot-Driven Cyber Incident Monitoring

The first objective of this research was to develop a honeypot-driven cyber incident mon-

itor that would be feasible to deploy in modern IT infrastructures, making it feasible for

organisations to implement active network defence.

6.3.1.1 Effectiveness of the Containerised Honeynet

As one of the novel features of the implemented incident monitoring system, the effective-

ness of the honeynet deployment proposed by this research forms an important component

of the evaluation. A useful set of criteria outlined by Chin et al. [97] and used by Piscarcik

et al. [61] to evaluate their honeynet deployments specifies a number of key criteria that

should be fulfilled by an effective honeynet. These are discussed below in relation to the

system implemented in this research.

1. Scalability

The proposed solution is scalable insofar as it has been tested. The largest honeynet

deployment trialled during the research consisted of 11 containerised honeypots12,

which was hosted continuously for 2 days without any component failing. However,
1210 Cowrie honeypot containers and the router honeypot container.
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during this period there was very little interaction with the system, limiting the

load on system resources that would be present in a production environment.

In theory, the honeynet is capable of supporting a large number of honeypot con-

tainers. The ability to add more honeypots is largely dependent on the system

resources available: The host system must have sufficient resources to support the

number of containers deployed. This is however certain to be much less than that

required for an equivalent number of virtual machines on the same host.

2. Flexibility

The implemented honeynet solution is flexible in its operability, configurability and

maintainability.

• Control over the honeynet from an administrative perspective is straight-forward:

Containers can be managed through the host even whilst running, meaning

that reconfiguration of the networking and administrative access to container

resources can be done on-the-fly as required.

• The use of the Cowrie honeypot also contributes to the flexibility of the hon-

eynet. As a highly configurable and customisable open-source honeypot, tweak-

ing the configuration of the honeypots in response to new threat insights is very

achievable.

• It would also be relatively straight-forward to use a different honeypot in place

of Cowrie in this system: Without having to make any changes to the net-

work configuration, new Dockerfiles can be defined for alternative honeypots if

required, integrated to the system with simple edits to the deployment script.

3. Attack Containment

Attack containment refers to the restriction of propagation of attacks if a honey-

pot is compromised. Though attack containment is never completely assured, the
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measures taken to provide attack containment described in Section 4.2.4 mitigate

against undesirable attack propagation outside the honeynet.

• The isolation of the host from the dmz network on which the honeynet is hosted

restricts the ability of an attacker to launch a network-based attack from within

the honeynet.

• The carefully considered restrictions placed on an attacker inside the Cowrie

honeypots mean that it is highly improbable that an attacker would be able

to launch an attack from these honeypots in the first place. The fact that

the Cowrie honeypot is an emulated environment in particular restricts an

attackers activities, since they are not interacting with a real system with a

networking stack, OS and powerful utilities.

• The high-interaction router container is the only component of the system

where attack containment may not be fully assured, since this container inter-

faces directly with a network to which the host is connected. This is a potential

area for improvement, where given additional time investigating the use of al-

ternative networks that don’t interface with the host system could yield an

improved level of isolation.

4. Stealth

Stealth refers to the ability of the honeynet to deceive an attacker and convince

them that it is a legitimate system. It is difficult to provide a definitive conclusion

regarding this property of the deployed honeynet, given that the interactions of

attackers with the system were limited at best.

There is certainly scope for improvement of the stealth of the honeynet based on the

little data that was obtained through the experiments outlined in Section 6.2, since

in each iteration it was found that IoT bot attackers did not progress their attacks

beyond their known initial phases. [20] [54] To reach any definitive conclusions
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about this property would require substantially more time and experimentation.

However, the properties of the containerised honeynet lend themselves to deceiving

attackers about the legitimacy of the environment, since all honeypots are hosted

in containers with real OS images and networking stacks. For instance, Chin et

al. propose that stealth can be achieved through measures such as falsifying high

network latency. [97] An attacker testing the legitimacy of this honeynet based on

such properties will receive legitimately delayed responses by virtue of the use of

containers in the system.

5. Resource Management

This criterion refers to the presence of simple mechanisms for allocating resources

in the honeynet, which is largely provided through the use of Docker in this imple-

mentation.

• The nature of containers is that the resources allocated to the running of an

application are highly controlled and specified entirely by their image defini-

tion. In order to allocate additional resources, a simple update to this image

definition is all that is required.

• The host system resources consumed by containers are controllable primarily

through the specification of arguments when creating containers. As stated in

the Docker documentation, ”by default, a container has no resource constraints

... Docker provides ways to control how much memory, CPU, or block IO a

container can use, setting runtime configuration flags of the docker run com-

mand”. [98] Though these resource restrictions were not explicitly addressed

as part of the development of the containerised honeynet, it would be straight-

forward to add these resource restrictions to the deployment script as part of

the docker create commands.

6. Ease of Deployment
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Chin et al. state that for a honeynet to be considered easy to deploy, ”users are

not burdened by complicated configurations and procedures in order to set up their

own honeypots”.

In the proposed system, the use of containers and the automation of network con-

figuration through scripting means that a fully configured honeynet of connected

containers can be removed and re-deployed on a Linux host in approximately 5

minutes13. As the initial motivation behind using containers in the proposed sys-

tem, this criterion has certainly been met by the system.

Ease of usability through an interface to the system is also highlighted by Chin et al.

as being of importance to the ease of deployment of a honeynet. [97] The usability

aids implemented in the do honeypot.sh deployment script remove additional com-

plexity from the deployment process, providing simple console messages to guide in

the deployment and configuration of the system.

Thus, it is concluded that although there is room for improvement of various aspects of

the implemented honeynet, the requirements outlined in this classification have largely

been delivered by this system.

6.3.1.2 Architecture of the Monitoring System

A limitation that has been identified upon evaluation of the system architecture is that

of the centralisation of log processing in the incident monitor. Although the centralised

aggregation of honeypot data for visualisation in the system enables the correlation of

attack data to provide a holistic view of the entire honeynet, it also means that the

system is architected in such a way that it has a single point of failure.

The current system architecture is non-ideal from the perspective of system reliability,

since if the EC2 management server instance was to become overloaded and crash, the

incident monitoring system would no longer be able to provide its intended service. A
13This value is based on empirical timing measurement of the time taken to deploy the system from

scratch on a clean EC2 host.
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more distributed approach to processing and visualising data generated by the honeynet

would improve the reliability of the proposed system. This will be discussed in Section

7.2.5 in the context of future work for this project.

However, there are some features of the architecture of the implemented system which

make it more scalable: In particular, that the honeynet in this deployment is hosted lo-

cally with Docker rather than as a distributed network. In the evaluation of the TraCINg

incident monitor by Vasilomanolakis et al. [43], they note that their distributed architec-

ture creates a bottleneck with regards to resource competition ”when the number of new

sensors is massively increased”, since multiple distributed honeypots individually provide

their results to the centralised incident monitoring system. In the system developed in

this research, the data generated by the honeypots is aggregated locally through the use

of Docker volumes and CRON rather than being transmitted by each honeypot, reducing

the network traffic to the centralised management instance.

6.3.1.3 Impact of Visualisation on the Usability of Honeypots

The use of visualisation in this project was motivated by the need to make honeypot-driven

solutions more usable, providing a way for administrators to easily obtain a holistic view

of the state of active network defence in their systems.

Though there was no experimental data captured by the Cowrie honeypots whose logs

could be processed and visualised on the Kibana web interface, simulated attacks were

conducted to allow visualisations to be produced for evaluation. Figures 6.2, 6.3 and 6.4

illustrate the capacity of the ELK log management stack to communicate complex log

data concisely and effectively.

What can be noted about these visualisations is the effectiveness with which informa-

tion is imparted to the user: Rather than sifting through reams of honeypot log data,

correlated information regarding attack behaviours and patterns is represented succinctly

in the visualisations. The fact that the logs used to produce these are shipped from
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Figure 6.2: Cyber Incident Monitor on Kibana
This image shows the Kibana visualisation dashboard that was created as part of the incident
monitoring solution. A number of charts are shown, measuring everything from the popularity
of passwords per honeypot to the proportion of telnet and SSH attacks received by each Cowrie
honeypot. The dashboard provides a concise description of the threat state of the honeynet.

the honeypot server approximately every 60 seconds14 means that an administrator is

facilitated in understanding the current threats to their system rapidly.

6.3.2 The Design of Adaptive Honeypots

As such, it would appear that unpredictability is the nature of research where honeypots

are involved. It had been hoped that a quantitative evaluation would be provided in this

section: However, due to the issues encountered with completing all planned iterations

of experiments, the evaluation of the contribution of this research towards the design of

adaptive honeypots is restricted by the incomplete results obtained in Section 6.2.
14As explained in Section 5.4.2.1, the honeypot logs were made available to Filebeat every 60 seconds

before being shipped to the EC2 management instance. Any additional delay in delivery is likely to be
due to network conditions.
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Figure 6.3: Visualisation: Attacks per Honeypot
This image shows a single visualisation created in Kibana as part of the cyber-incident

monitor. This pie-chart shows the proportion of attacks each Cowrie honeypot received within
a month.

6.3.2.1 Unpredictability of Honeypot Experiments

It has been found that the process of designing honeypots to be adaptive to dynamic

threats is a time-intensive one. Unforeseen issues such as the requirement to implement

a high-interaction container honeypot, and the further significant challenges which were

faced in implementing this effectively, are illustrative of the unpredictability of designing

adaptive honeypots.

The fact that the contributions of just 3 characteristics of honeypots were considered

in the experiments outlined in Section 6.1 is explained by the limited remaining time

within which the experiments could be conducted. Had more time been available, a set

of comprehensive honeypot experiments could be conducted accounting for several other

honeypot characteristics.

When compared to the time spent conducting similar research experiments in the

closely related projects discussed in Section 2.4, the findings were as follows:
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Figure 6.4: Visualisation: Most Popular Protocols per Honeypot by Month
This image shows another visualisation created in Kibana as part of the cyber-incident

monitor. This chart shows the proportion of SSH and Telnet attacks received by each of the
honeypots for each week over the last month.

• The researchers involved in the IoTPot project conducted experiments to evaluate

the effectiveness of their design in 2 separate phases: a 144-day trial period from

2014/11/07 to 2015/03/31 which was used to ”understand the attackers’ behavior

and (discuss) the proper setting of the honeypots”, followed by a 28-day stable

period from 2015/04/01 to 2015/05/09 in which more structured experiments were

conducted. [58]

• In their evaluation of honeypot performance in the TraCINg incident monitor,

Vasilomanolakis et al. explain that a five-month deployment of their honeypot-

driven incident monitor allowed them to obtain meaningful results. [43]

These findings further illustrate the unpredictability of evaluating the effectiveness of
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honeypots. It is perhaps an oversight that the time that would be required to conduct

such experiments was not realised at an earlier stage.

In recognition of the fact that none of the experiments conducted could provide con-

clusive evidence regarding the design of adaptive honeypots, there was a need to consider

what was (i) necessary, (ii) sufficient and (iii) additional towards the achievement of the

original objective.

1. Necessary

It is necessary that knowledge is gained about the contribution of a honeypot’s

design to its effectiveness in attracting attacks through experiments.

2. Sufficient

It is sufficient that the knowledge gained is not conclusive but is based on experi-

mental data.

3. Additional

It is additional that the knowledge gained is definitive and conclusive based on

experimental data.

It is clear that obtaining conclusive results regarding effective design for adaptive hon-

eypots became infeasible because of time constraints, ultimately resulting in the early

termination of the experiment phase. However, the data obtained from the three ex-

periment attempts, although not definitive, did provide some insights into the nature of

designing adaptive honeypots.

• The presence of expected utilities and toolkits in a honeypot environment is clearly

crucial to its success in encouraging attacks. This was evident from the data cap-

tured in attempts 2 and 3 of the experiment iteration performed, where bot attack-

ers did not proceed with compromise of the system when certain utilities were not

present in the honeypot environment.
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• Support for protocols and services which are commonly exploited by attackers is

an important feature of effective honeypots: this is evident by virtue of the sheer

volume of brute-force authentication attacks which were received

• Basing honeypot design on current knowledge of attacks is a useful starting point in

enabling attacks to be studied. In the design of the high-interaction router honeypot,

it is likely that the experiments would have been more successful if more emphasis

had been placed on configuring the environment to provide responses and utilities

sought after by active IoT botnets, knowledge of which already exists in research.

[20] [54]

• Honeypots must be designed to combat both automated and human attackers. It

was not expected based on the findings of Barron et al. that attacks by human

attackers would be likely to be encountered in the honeypot environment. [49] The

fact an attack session by a human attacker was captured in the limited period for

which experiments were conducted illustrates that honeypots should be designed to

adapt to threats from human attackers, and not solely the more predictable attack

patterns of bots.

6.3.2.2 Ability to Capture Attack Data

As evidenced during the conducting of experiments in Section 6.2, the fact that keylog-

ging was not available on the router container honeypot severely limits the conclusions

that can be drawn regarding any experimental results that were obtained. For instance,

although patterns of command execution were observed in the .bash history, the lack of

timestamping and session IDs for these events meant that inferences were made regarding

these sequences being from a single attacker.

There is plenty of room for improvement regarding the capturing of attack data, and

given more time, it would almost certainly be possible to develop an effective and reliable

keylogging mechanism for the router container.
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6.3.2.3 Hosting Honeypot Experiments on a Cloud Platform

It is quite probable that some of the attack patterns observed in Section 6.2 may have

been different had a different hosting solution been used to host the system. As noted by

Vasilomanolakis et al. in their implementation of a honeypot incident monitor, [43] many

cloud service providers publish their IP ranges on the public internet: AWS is one such

provider. [99] In their paper examining the difference between human and automated

attacks, Barron et al. also find that ”location and host matters... if someone is operating

on a constrained budget and wants to maximize the number of brute-forcing IP addresses

collected, AWS appears to be the infrastructure that will facilitate this”. [49]

As AWS are a very well-known and popular cloud hosting provider, they are likely an

attractive target for attackers who have knowledge of their public IP ranges. Thus, there

is potential for some bias in results obtained in a deployment such as that implemented

in this research, where all honeypots are hosted in a single geographical region by a single

hosting provider.

6.3.2.4 Fingerprinting Container Environments

An interesting observation regarding the fingerprinting of honeypot environments is that

there are many ways in which an attacker can detect that they are inside a container, if

the honeypot is indeed the container itself. This was noted during the implementation of

the system, when the command cat /proc/1/cgroup was executed, leading to the output

shown in figure 6.5. This is consistent with the findings of Kedrowitsch et al. when

evaluating the suspectibility of containers to being fingerprinted. [62]

This may not come as a surprise to an attacker: As organisations increasingly include

containers as part of their infrastructure, this information would likely not identify the

container as being a honeypot. However, it is certainly worth considering that if con-

tainerised honeypots begin to be used more widely, fingerprinting of these systems as

honeypot environments may also become more common.
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Figure 6.5: Fingerprinting of Docker Environments
This console output was generated as a result of executing the command cat /proc/1/cgroup

inside the router container. It clearly includes several references to ’docker’, which any
attacker aware of Docker would immediately recognise as being a container environment.

6.4 Summary

It is clear that the unpredictability of conducting honeypot experiments was a barrier

to obtaining measurable data and providing definitive conclusions regarding the adaptive

design of honeypots. This was largely an oversight in the design phase of the research,

where had more time been available, there would have been a greater opportunity to

achieve this objective as part of this research.

However inconclusive, useful insights have been obtained from the experiments con-

ducted. This is an encouraging indication of the potential for a real contribution to be

made through experiments of this nature, and provides a strong basis for completing the

remaining iterations of the project as future work.
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Chapter 7

Conclusions and Future Work

The objectives set out for this research in Section 3.2 of this document, although not

achieved fully, yielded enhancements to the deployability of active network defence through

incident monitoring as well as valuable insights into the way in which such systems should

be designed to improve their threat detection capabilities.

Section 7.1 draws some conclusions regarding the outcomes of the research, focusing

on the original elements of the research objectives.

Section 7.2 explores a number of potential avenues for expanding upon the research

conducted in this project. These include potential improvements to the proposed approach

as well as opportunities to conduct additional work building on the foundations laid by

this research.

Finally, Section 7.3 includes some final remarks and recommendations based on the

research conducted.

7.1 Conclusions

Though it is clear that this research would have benefited significantly from additional

time within which to meet its objectives, the substantiality of knowledge gained from the

exploration of challenges in the field of security today was unprecedented.
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The major achievements and conclusions drawn from this research are described in

the following subsections.

7.1.1 Cyber Incident Monitoring in Critical Infrastructures

The major contribution of this work has been the development of a novel containerised

honeynet-driven incident monitor. The value that can be provided by the succinct de-

scription of attack data through visualisation is evident: These incident monitors allow

system administrators to represent threat data in a meaningful way, enabling a holistic

view of their systems.

There is tangible evidence that the incident monitor developed in this research provides

greater usability of honeypot data than that which would have resulted from just using

honeypots alone:

• Visualisation of the honeypot data means that reams of logs don’t have to be

searched through in order to understand the most relevant threat information;

• The aggregation of data from multiple honeypots by a centralised logging system,

allowing trends to be easily identified;

• The ability to receive instantaneous threat intelligence alerts via email, pin-pointing

the perpetrator;

• The fact that installation and configuration of the honeypots is automated, as well

as the networking required to connect them.

As such, this development has effectively addressed many of the major barriers to

employing active network defence in infrastructures today: A valuable contribution to

the field of security.
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7.1.2 The Potential of Containers for Security Applications

The use of containers has added substantial value to the honeynet solution implemented

in this project. It serves as a proof-of-concept with regards to usability of active network

defence mechanisms for network administrators by providing the ability to automatically

install and configure multiple replicable environments on-the-fly.

As evidenced by this research, the work being done to containerise security applications

is something that presents many challenges: There are no manuals or existing resources

to refer to in the development of such systems, and so there is a lot of room for research

and evaluation of different approaches to doing so.

7.1.3 The Importance of Honeypots in Active Network Defence

As has been observed during the course of this research, working with honeypots can

be highly unpredictable, making conclusive research difficult to achieve under time con-

straints. However, it is clear that the ability of honeypots to provide active network

defence through deceiving and monitoring attackers make them an attractive option for

combating the dynamic, evolving threats that are increasingly impacting individuals and

organisations across the world. Critical service infrastructures are in desperate need of

the adaptive threat detection capabilities of honeypots to protect their systems and those

who depend on them.

7.1.4 The Future of IoT Security

It is clear even from the limited experiments that were conducted in this research that

IoT botnets are extremely active: Every ”thing” with internet connectivity is a means

of exploiting communications and interaction. People are increasingly dependent on in-

terconnected services and applications, and as a result are vulnerable to cyber threats

beyond the reach of their own devices.

Critical service architectures will continue to be targeted by severe cyber attacks well
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into the future as nation states continue to engage in cyber-combat. There will need to

be huge innovation in the area of IoT security before the gargantuan challenges being

faced by these infrastructures can even be remotely resolved: It is only when a system

is designed with security in mind that a system can be considered even relatively secure.

Applications are continuing to have connectivity integrated into them with very little

consideration given to their security, and this is something that is not likely to end any

time soon. It is likely that until there is a truly market-driven incentive for manufacturers

to implement decent security mechanisms in their products, this is unlikely to change.

7.2 Future Work

Whilst an end-to-end cyber incident monitoring system was successfully developed in

this research, the full intended evaluation of the system was not possible as discussed

in Section 5.3.3. However, this gives rise to opportunities for additional developments

and enhancements based on the foundations laid by this research, a number of which are

discussed below.

7.2.1 Extension of the Cowrie Honeypot

As explained in the Section 5.3.3, the Cowrie honeypot by design does not allow outbound

network connections. This research would have benefited greatly from the extension of

the Cowrie honeypot to include this functionality, but time constraints meant that such

a development was not within the scope of the project.

Though an in-depth inspection of how such an extension could be added to the Cowrie

source code was not conducted, it is clear that it would involve relatively significant devel-

opment effort to implement an additional networking client as part of the Cowrie appli-

cation in Python. The Cowrie application already includes Python modules for SSH and

telnet traffic forwarding which would form a useful starting point in this implementation.

Such a networking client would need to be able to have a view of the underlying net-
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working stack of the host, such that outbound connections to other Cowrie honeypots can

be facilitated and a view of hosts nearby can be obtained so that an attacker is not ex-

pected to probe IP address ranges blindly. However, the addition of outbound networking

capabilities in the Cowrie honeypot would bring it closer to becoming a high-interaction

honeypot, which creates a number of new issues for the use of Cowrie. Circumventing the

risks associated with high-interaction honeypots is challenging, as was found during this

project.

• The networking client would need to implement some destination authentication

mechanism such that outbound connections from Cowrie are only permitted to other

Cowrie honeypots. This would minimise the risk of a Cowrie honeypot propagating

an attack to another Cowrie honeypot;

• The interface between the networking client and the network stack of the host system

would need to be very carefully implemented and audited for it to be shipped as

part of the Cowrie honeypot package, since it should be very difficult for an attacker

to exploit such an interface to the host system.

The addition of this feature as an optional function of the Cowrie honeypot would

facilitate the future deployment of honeynets entirely based on the Cowrie honeypot,

leveraging all of its configuration and logging capabilities. This would be a very useful

contribution to the Cowrie development effort, and would be an excellent starting point

for a continuation of the work conducted in this research.

7.2.2 An Improved High-Interaction Containerised Honeypot

It is clear from the challenges encountered in both the implementation of the incident

monitor and the experiments to determine an effective design for adaptive honeypots, that

the router container honeypot left much to be desired in terms of its ability to facilitate

attacks. This is largely due to the fact that this honeypot was not included as an original

component of the proposed system, and so did not benefit from the substantially greater
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consideration of related literature that preceded the design of other components of the

system.

There is much opportunity for improvement of the router container honeypot. There

were no existing container-based high interaction honeypots found during the course of

this research, a gap which many would benefit from being filled.

Some potential areas for improvement of the existing router honeypot that have been

identified include the following:

• Further isolation from the host system through investigation of alternative Docker

networking approaches;

• The implementation of reliable, detailed keylogging inside the router container that

could be used to visualise the commands executed by attackers;

• Extension of the image definition of the router honeypot to target requirements

of specific IoT botnets, rather than solely improving the design by incrementally

altering the environment on an experiment-by-experiment basis.

Given these improvements and sufficient time, it would be strongly recommended

that the experiment iterations or an extension of these should be resumed in a bid to

improve upon the current state-of-the-art in adaptive honeypots. It is however strongly

recommended that any future work conducted into experiment-based design of honeypots

should consider the unpredictability factor associated with such work during the design

phase.

7.2.3 Machine Learning Approaches to Adaptive Honeypot De-

sign

There is huge potential for the implementation of machine learning-based honeypot so-

lutions, similar to that developed by the researchers behind IoTCandyJar. [60] The use

of such techniques enables honeypots to self-improve by learning what makes them most
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effective in enticing and maintaining the interest of attackers, making for ultimately more

effective active defence in networks.

In the context of the work that has been done in this project towards proposing design

approaches for adaptive honeypots, a machine learning back-end component similar to the

IoTLearner module implemented by the IoTCandyJar researchers would be an excellent

enhancement to the system that has been developed. [60] Such a module could potentially

perform many of the functions currently performed by the router honeypot, providing

responses that would encourage the attacker to progress their attack to the stage that

they would look to propagate it to nearby hosts. To enable this propagation would either

require:

• A traffic routing module similar to that proposed in Section 7.2.1 to route SSH and

telnet attack traffic to the Cowrie honeynet; or

• An architecture similar to that proposed by the IoTPot researchers, where the

IoTLearner machine learning module would act as the front-end responder in the

IoTPot architecture and forward connection requests to a high-interaction backend

to be handled. [58] [60]

In summary, the use of machine learning approaches in the implementation of dynamic,

reactive honeypots coupled with the novel architecture and deployability of the incident

monitoring solution developed in this research would be a very worthwhile investment as

a future project.

7.2.4 Alternative Threat Notification Systems

The alert generation system that was used in this project was the commonly used port

scan detection tool PSAD. It was found to effectively detect probing of the EC2 honeypot

instance on which the containerised honeypot was hosted, generating email alerts for

any probes detected almost instantaneously. However, it was also relatively prone to

generating false positives because of scenarios such as that described in Section 5.5.
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There is certainly potential for other alerting mechanisms to be used in this system

which may provide more accurate and effective communication of threat intelligence.

Of note is the fact that the Cowrie project supports integration with Slack, an instant

messaging and collaboration service that is used in many organisations for workplace

communication. As a system that can provide instant messages to a distributed set of

mobile users, there is potential for the use of Slack and similar messaging channels as a

means of providing threat intelligence alerts generated by the Cowrie honeynet.

7.2.5 Alternative System Architectures

As identified in Section 6.3.1.2, the fact that there is only a single management server

supporting the processing and visualisation of all of the honeypot log data means that

there is a single point of failure in the system. Should the management instance crash

due to any system failure, the entire incident monitoring system would not be available

to provide analysis and visualisation of attack data.

More distributed approaches such as passive replication could provide greater reliabil-

ity for the system: By passively replicating the management instance, there would always

be a node capable of processing honeypot logs and providing visualisations to system

administrators. This would incur significant initial configuration overhead: An initial

estimation of effort involved here for a single replica would include:

• The provision of a new EC2 instance capable of hosting the ELK log processing

stack;

• Replicated configuration of the ELK stack tools and Nginx on the new EC2 instance;

• The generation and distribution of an additional SSL certificate to the EC2 honeypot

instance;

• Updating the configuration of Filebeat to ship honeypot logs to both server in-

stances;
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• The addition of a monitoring communication between the two management servers,

such that the passive replica can take over if the primary fails.

In addition, ongoing maintenance overheads must be considered by virtue of the ad-

dition of another node to the system. However, adding replication would significantly

increase the reliability of what is a time-sensitive threat mitigation service.

7.3 Closing Remarks

This research has seen the development of a containerised cyber-incident monitor: A

proposal to address the need for active defence mechanisms in systems of critical services.

Though there is significant work remaining to make this system production-ready, there

are many elements of the proposed system which address the current issues being faced

in these infrastructures by providing a feasible, flexible active defence solution.

Active network defences with their ability to adapt to detect new threats will only

become more important into the future as the gap between threats and the mitigations

against them continues to widen. There is a fundamental shift in outlook required by

those managing the security of IT systems, such that preventative security measures are

not the sole mechanisms protecting them from increasingly sophisticated threats.

The crucial takeaway from this research is that it is of critical importance in the

development of any software system that a threat model is included in the design from the

very beginning. If this is widely included as part of software design and implementation, it

is likely that more risks will be mitigated and that fewer vulnerabilities will arise. Though

it is only theoretically possible to evaluate and eradicate all vulnerabilities in a system,

a security-oriented approach to designing software systems would go a long way towards

reducing the implications of serious attacks on their users.
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Appendix A

Abbreviations

Abbreviation Expanded Term

ACK Acknowledgement

API Application Programming Interface

AWS Amazon Web Services

C+C Command and Control

CLI Command Line Interface

CRON Command Run-ON

DoS Denial of Service

DDoS Distributed Denial of Service

DMZ De-Militarised Zone

DNS Domain Name System

DPI Deep-Packet Inspection

DVR Digital Video Recorder

EC2 Elastic Compute Cloud (AWS)

ELK Elasticsearch-Logstash-Kibana Stack

FTP File Transfer Protocol
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Abbreviation Expanded Term

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IT Information Technology

JSON JavaScript Object Notation

LPWAN Low-Powered Wide-Area Network

LXC Linux Container

MHN Modern Honey Network

NAT Network Address Translation

NHS National Health Service, UK

NTP Network Time Protocol

OS Operating System

PaaS Platform as a Service

PSAD Port Scan Attack Detection

RAM Random Access Memory

RCE Remote Code Execution

RSA Rivest, Shamir, and Adelman

SAN SubjectAltName field of SSL certificate

SANS System Administration, Networking, and Security Insti-

tute

SCADA Supervisory Control and Data Acquisition

SCP Secure Copy
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Abbreviation Expanded Term

SHA Secure Hash Algorithm

SMB Server Message Block

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SSH Secure SHell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

TLS Transport Layer Security

VM Virtual Machine

WSN Wireless Sensor Network

YAML Yet Another Markup Language
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