
School of Computer Science and Statistics

Authenticated Payload Encryption
Scheme for Internet of Things Systems

over the MQTT Protocol

Sorcha Nolan
13317836

May 17, 2018

A dissertation submitted in partial fulfilment
of the requirements for the degree of

MAI (Computer & Electronic Engineering)

http://www.scss.tcd.ie

Declaration

I, the undersigned, declare that the following dissertation, except where otherwise

stated, is entirely my own work; that it has not previously been submitted as an exercise

for a degree, either in Trinity College Dublin, or in any other University.

Sorcha Nolan

May 17, 2018

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Sorcha Nolan

May 17, 2018

Acknowledgments

I would like to thank a number of people who have made this dissertation possible. First

of all, I would like to sincerely thank my supervisor Dr. Stefan Weber for all of his

help, guidance and valued time given throughout the project. The constant support,

consultation and encouragement have been invaluable in the completion of the following

dissertation.

I am very grateful for the technical advice I have received from Dr. Jonathan Dukes,

along with his introduction to the Internet of Things, providing me with the strong

background necessary to complete this dissertation.

I would also like to include a special note of thanks to all those involved with the

Masters programme at Trinity College Dublin, in both the Engineering department and

Computer Science department. In particular, Dr Mike Brady, MAI coordinator in the

Department of Computer Science.

Finally, I would like to express my sincere gratitude to my family for their advice and

endless encouragement in my academic endeavours, without them this dissertation would

certainly not have been possible.

Sorcha Nolan

University of Dublin, Trinity College

May 2018

iv

Abstract

The Internet of Things (IoT) comprises resource-constrained devices connected to the

Internet, interacting with the real world within a wide range of applications. The recent

large-scale commercialisation of these low-powered devices has lead to significant secu-

rity concerns. Message Queue Telemetry Transport (MQTT) is the most widely used

application-layer protocol over IoT. A robust and lightweight security scheme is required

for use with this protocol, as the security aspect has been omitted from the protocol de-

sign. Transport Layer Security (TLS) is recommended in this scenario, though it is often

unsuitable due to its resource-intensive nature and lack of end-to-end security provision.

A scheme has been proposed using symmetric-key payload encryption, designed entirely

over the MQTT protocol. This solution requires minimal overhead on the IoT device,

o✏oading the bulk of the resource-intensive computation onto a central Key Management

Service. Overhead is minimised with regard to bandwidth, time-to-idle, memory and com-

putation, and improves upon TLS in all of these areas. The scheme successfully provides

secure and authenticated end-to-end communication between clients in the system.

v

Contents

Acknowledgments iv

Abstract v

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Overview . 2

1.3 Roadmap . 3

Chapter 2 State of the Art 4

2.1 Internet of Things Protocols . 4

2.1.1 Message Queue Telemetry Transport 7

2.1.2 Constrained Application Protocol 8

2.1.3 6LoWPAN . 9

2.1.4 Bluetooth Low Energy . 9

2.2 Security . 9

2.2.1 Transport Layer Security . 11

2.2.2 Payload Encryption . 12

2.2.3 Symmetric-Key Encryption . 13

2.3 Closely-related Projects . 14

2.4 Problem Formulation . 17

Chapter 3 Design 19

3.1 Overview . 19

3.2 Logical Architecture . 20

3.2.1 Publisher . 21

vi

3.2.2 Subscriber . 21

3.2.3 Broker . 22

3.2.4 Key Management Service . 22

3.3 Sequence of Events . 23

3.4 Encryption . 25

3.5 Authentication & Access Control . 26

3.6 Key Cache . 27

3.7 Data Architecture . 28

3.8 Summary . 29

Chapter 4 Implementation 30

4.1 Deployment Architecture . 30

4.2 MQTT Broker . 31

4.3 Key Management Service . 32

4.4 IoT Device Library . 35

4.5 IoT Service Module . 43

4.6 Summary . 44

Chapter 5 Evaluation 45

5.1 Overhead . 45

5.2 Secureness . 50

5.3 Discussion . 52

5.4 Summary . 54

Chapter 6 Conclusions & Future Work 56

6.1 Conclusions . 56

6.2 Future Work . 57

Bibliography 58

vii

List of Tables

2.1 Comparing symmetric key modes of encryption. 14

5.1 Average TLS handshake message sizes. 46

5.2 Overhead experiment parameters. 47

viii

List of Figures

2.1 CISCO Reference Model . 5

2.2 IoT Protocol Stack . 6

2.3 Border Router Setup . 7

2.4 The Architecture of MQTT . 8

2.5 The Architecture of TLS . 11

3.1 Logical Architecture . 21

3.2 Sequence Diagram for Message Delivery . 23

3.3 Security Relationships for Symmetric Key Encryption 25

3.4 MQTT Message Format . 28

4.1 Deployment Architecture Diagram . 31

4.2 Entity Relationship Diagram for the KMS 34

4.3 Entity Relationship Diagram for KMS Monitoring 35

4.4 Encryption and Key Request Process . 38

5.1 Time-to-Idle vs. Message Size . 48

5.2 Round-Trip Time vs. Message Size . 49

ix

Nomenclature

6LBR 6LoWPAN Border Router

6LN 6LoWPAN Link Node

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

ABE Attribute-Based Encryption

ACL Access Control List

AES Advanced Encryption Standard

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

AWS Amazon Web Services

BLE Bluetooth Low Energy

CA Certificate Authority

CBC-MAC Cipher Block-Chaining Message Authentication Code

CCM Counter Mode with CBC-MAC

CIA Confidentiality, Integrity & Availability

CoAP Constrained Application Protocol

DDoS Distributed Denial of Service

DES Data Encryption Standard

DTLS Datagram Transport Layer Security

DoS Denial of Service

ECDSA Elliptic Curve Digital Signature Algorithm

GCM Galois/Counter Mode

HMAC Hash-based Message Authentication Code

HTTP Hypertext Transfer Protocol

IP Internet Protocol (IPv4/IPv6)

IV Initialisation Vector

IoT Internet of Things

KMS Key Management Service

LLN Low-powered & Lossy Networks

LRU Least Recently Used

LSB Least Significant Bit

M2M Machine-to-Machine

MAC Message Authentication Code

x

MQTT Message Queue Telemetry Transport

MQTT-SN Message Queue Telemetry Transport

MSB Most Significant Bit

MTU Maximum Transmission Unit

NIST National Institute of Standards and Technology

OSI Open Systems Interconnection model

QoS Quality of Service

REST Representational State Transfer

RFID Radio-Frequency Identification

RSA RivestShamirAdleman cryptosystem

RTOS Real-Time Operating System

SDK Software Development Kit

SHA Secure Hash Algorithm

SQL Structured Query Language

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLRU Time-aware Least Recently Used

TLS Transport Layer Security

UDP User Datagram Protocol

XMPP Extensible Messaging and Presence Protocol

xi

Chapter 1

Introduction

The Internet of Things (IoT) is connecting physical objects to the Internet at an unprece-

dented rate - from smart homes to smart cities, the healthcare system to autonomous

vehicles. Gartner estimates that there will be 21 billion connected “things” by 2020

(Hoeppe, 2017). IoT has provided a platform to allow unprecedented development and

discovery within a wide range of applications. Along with this potential, however, are

the rapidly increasing requirements for the large-scale deployment and commercialisation

of IoT, resulting in major security concerns (Alaba et al., 2017). This is due to the fact

that implementing security is resource-intensive, and can be a di�cult and expensive en-

deavour to apply to low-powered devices. It is therefore not always seen as a worthwhile

pursuit.

The majority of IoT devices and networks are constrained in resources, depending on

their application, design, location and topology. They can be constrained with regard

to battery power, memory, processing power, bandwidth and transfer unit. For this

reason, standard Internet transport protocols are not used for most IoT implementations.

Lightweight protocols or adapted versions of standard protocols are instead used, allowing

minimum processing and overhead on the IoT device. In order to keep these protocols as

lightweight as possible, security protocols are generally omitted, allowing the implementer

to decide the level of security necessary for their particular application (Nguyen et al.,

2015).

One of the most prevalent application-layer protocols over IoT is Message Queue

Telemetry Transport (MQTT). MQTT is a lightweight publish/subscribe messaging trans-

port protocol for machine-to-machine (M2M) and IoT contexts. This employs a central

broker, hosting topics that can be published and subscribed to by system clients. It is

concerned only with message transmission, and it is the implementer’s responsibility to

provide appropriate security features (A. Banks, 2014). This is commonly achieved by us-

1

ing Transport Layer Security (TLS). While TLS may be the most straightforward security

protocol to implement, it is not always the most appropriate one for an IoT application.

This chapter gives a brief introduction into the research area, context and contents of

the dissertation to follow. The motivation and relevancy of the research area is delineated

in Section 1.1. Section 1.2 gives an overview of the solution that has been proposed.

Finally Section 1.3 outlines the structure of the dissertation, introducing each chapter

and its respective contents.

1.1 Motivation

Security is a significant issue in resource-constrained IoT environments. The number

of commercial IoT systems deployed without adequate security mechanisms is growing

exponentially, leading to an abundance of vulnerabilities and insecurities. A study carried

out by HP Fortify (2014) states that 70% of IoT devices currently in market do not have

an adequate security implementation. The Mirai botnet attack (Jerkins, 2017) is a notable

example of IoT security failure, where thousands of insecure IoT devices were infected

by malware and controlled for use in a massive Distributed Denial of Service (DDoS)

attack. These insecurities have lead to a lack of trust in IoT in some spheres, somewhat

limiting confident growth in the industry. Security is di�cult, particularly in a resource-

constrained environment. It is imperative that research in security keeps up with the

fast-paced ongoing developments in other aspects of IoT.

1.2 Overview

This dissertation presents a payload encryption scheme for use in MQTT-based IoT sys-

tems. The proposed scheme runs entirely over the MQTT protocol, to be integrated

seamlessly into an IoT application. The scheme aims to provide a flexible, robust and

thorough security architecture. Capabilities are provided for the clients in the system to

encrypt and decrypt messages using symmetric-key encryption for confidentiality, as well

as ensuring the integrity of the message through Message Authentication Codes (MACs).

These messages remain encrypted while being stored by the broker, ensuring end-to-end

security within the publish/subscribe framework. A central Key Management Service

(KMS) provides key exchange, key lifecycle management, authentication, access control

and monitoring services to the system. This service is unconstrained in resources and

handles any complex or extraneous processing, allowing only the essential computation

to occur on the IoT devices.

2

1.3 Roadmap

The structure of the dissertation is laid out as follows. Chapter 2 contains the State of

the Art, describing the background, existing work and research going into the area of

IoT security. This details IoT protocols, particularly MQTT, security implementations

and considerations and closely-related research. These are examined to formulate the

problem to be solved. Chapter 3 is the Design chapter, specifying how and why the

solution was devised in light of the problem formulation. An in-depth exposition of

the scheme implementation is presented in Chapter 4. This outlines the deployment

architecture, technologies used and components involved in the development of the system.

An evaluation of the system is carried out within Chapter 5, providing an analysis of

overhead, security and a general discussion of design decisions and scheme implementation.

Finally, conclusions and future work are considered within Chapter 6.

3

Chapter 2

State of the Art

The State of the Art describes the background, existing work and current research go-

ing into the area of IoT security. Section 2.1 begins with an analysis of IoT protocols

and protcols providing for a resource-constrained environment. This section focuses on

MQTT, as well as detailing other relevant protocols such CoAP, 6LoWPAN and Blue-

tooth Low Energy. Following this, Section 2.2 gives an in-depth review of security, in

general and within the scope of IoT. Within this section exists an assessment of various

security implementations, with a more granular focus on the most relevant implementa-

tions for the solution design. These include TLS, payload encryption and symmetric-key

encryption. Section 2.3 reviews current research into closely-related areas, providing a

critical view of this research, used to inform the subsequent design. These sections are all

used to consolidate a problem formulation, which is detailed in Section 2.4.

2.1 Internet of Things Protocols

The Internet of Things is a framework that allows physical objects to be connected to the

Internet, share information and coordinate decisions. Due to the heterogeneous and varied

nature of IoT, a suite of IoT protocols have been developed to satisfy the unique concerns

that arise. A flexible, multi-layered architecture is necessary to accommodate the needs

of billions of heterogeneous devices (Al-Fuqaha et al., 2015). Standard Internet protocols

have been designed over the years for a human-to-machine, resource-unconstrained envi-

ronment, with little concern for added communication overhead. On the other hand, the

IoT environment involves mainly M2M communication, with several small, low-powered

resource-constrained devices. Protocols have been developed to minimise processing on

the IoT device, and be able to integrate with standard Internet protocols to form an

Internet connection.

4

A universal IoT architecture has yet to be established, though several potential refer-

ence models have been proposed with varying levels of complexity (Mosenia & Jha, 2017).

A three-layer architecture (application, network and perception layers) and a five-layer,

middleware-based architecture have both been proposed. In 2014, CISCO developed a

seven-layer architecture that has the potential for standardisation across IoT (Fig. 2.1).

Figure 2.1: CISCO Seven-Level Reference Model (CISCO, 2014).

The first level consists of the physical devices - such as sensors, actuators and RFID

tags. The next level is the communication layer, consisting of components and protocols

that enable transmission of information between devices and to the cloud. Level 3 en-

capsulates edge computing, enabling data to be processed close to or at the source. This

process reduces computational load and decreases latency (Morabito et al., 2018), and

is particularly useful in real-time applications. Level 4 is the data accumulation layer,

where network packets are filtered according to storage requirements and converted to

database tables. The data abstraction layer renders the data for more e�cient process-

ing, using processes such as normalisation, consolidation and indexing. The application

layer is where the data is interpreted and analysed. The final layer represents the users

and business processes that make use of the data and system as a whole.

Several communication protocols have been developed or adapted to suit the IoT

paradigm, and serve the needs of layer 2 of the CISCO reference model. In order to ade-

quately serve the resource-constrained devices prevalent in IoT - compressed, lightweight

and e�cient protocols are necessary. Protocols must be robust and self-healing to serve

M2M communication, often over low-powered and lossy networks (LLNs). The protocols

5

should support the transmission of short bursts of information with a small number of

bytes, before allowing the device to return to standby mode. Ideally, communication

should be connectionless, asynchronous and event-driven (Karagiannis et al., 2015).

Figure 2.2: IoT Communication Protocol Stack.

Fig. 2.2 depicts the IoT communication protocol stack, identifying common protocols

at each layer that have been designed or adapted to fit the IoT model. The lower OSI layers

are provided by network infrastructure protocols such as Bluetooth Low Energy (BLE)

or IEEE 802.15.4. The Internet layer creates IPv6 packets from IoT data to transmit.

6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks) is a standard that

allows adaptation between constrained IoT protocols and IPv6. Several application-layer

IoT protocols exist, the most prevalent being MQTT and CoAP. MQTT runs over TCP

as the transport layer, and CoAP uses UDP. The IoT application interacts with the

application-layer messages to utilise and act upon the information transmitted.

A common IoT network configuration can be seen in Fig. 2.3. This consists of a

number of resource-constrained devices in an environment, communicating with an IoT

gateway that forwards packets to the cloud. This gateway can also have edge computing

capabilities, as in Fig. 2.1 level 3. The gateway can provide support on all levels of

the IoT protocol stack. Network standards such as BLE have a low transmission range

(approximately 100m) and a gateway is necessary to act as the central router for any BLE

6

Figure 2.3: Border router setup.

peripherals. 6LoWPAN also requires a border router (6LBR) that can convert 6LoWPAN

packets from link nodes (6LNs) to regular IPv6 packets. On the application layer, MQTT

can use the IoT gateway as a broker bridge, which forwards all packets to an identical

broker hosted in an accessible location such as on the cloud.

2.1.1 Message Queue Telemetry Transport

MQTT is the most widely used application-layer transport protocol over IoT. It is an

extremely lightweight broker-based publish/subscribe messaging protocol, layered on top

of TCP/IP, and often 6LoWPAN. It is designed for use over networks with low power

and bandwidth, high latency and variable availability (Karagiannis et al., 2015). These

aspects make MQTT an ideal protocol for use in IoT systems.

MQTT is made up of publishers, subscribers and a broker, as seen in Fig. 2.4. IoT

devices such as sensors can publish their data regularly to a particular topic hosted by

the MQTT broker. An IoT server can subscribe to this particular topic, allowing it

to receive this information and process it as required. This process can be reversed to

allow the server to invoke actuation on a device. This architecture allows asynchronous

communication between publishers and subscribers. They have no direct connection and

therefore do not need to be aware of the others’ existence, which is a huge advantage of

such a protocol (Ammar et al., 2018).

7

Figure 2.4: The architecture of MQTT.

The underlying transmission protocol, TCP/IP, aims to guarantee message delivery.

This can be built upon by MQTT’s quality of service (QoS) setting, which can be set

to deliver a message At Most Once, At Least Once or Exactly Once (A. Banks, 2014).

However, guaranteed delivery does not ensure data integrity, privacy or authenticity of

the message. In order to ensure these considerations, a security layer must be imple-

mented on top of the TCP/IP layer. To begin with, TCP/IP incurs a significant amount

of transmission overhead compared with UDP. Transmission standards for low-powered

wireless networks tend to use a small Maximum Transmission Unit (MTU). For example,

IEEE 802.15.4 uses an MTU of 127 bytes, and the Bluetooth MTU can be as low as 27

bytes. This restricts the type and complexity of security protocols which can realistically

be integrated into IoT protocols.

2.1.2 Constrained Application Protocol

The Constrained Application Protocol (CoAP), developed by the IETF, is a RESTful

web transfer protocol based on HTTP for use in resource-constrained environments. It

provides a simpler and more lightweight HTTP implementation, communicating through

GET, POST, PUT and DELETE messages. CoAP is bound to UDP by default, making

it a suitable protocol for IoT scenarios due to UDP’s minimal and connectionless design

(Z. Shelby, 2014). It is designed for flexible communication with HTTP through a proxy.

CoAP is a secure protocol since it is built on top of datagram transport layer security

(DTLS) to guarantee integrity and confidentiality of exchanged messages (Al-Fuqaha

8

et al., 2015).

2.1.3 6LoWPAN

6LoWPAN denotes IPv6 over Low-Power Wireless Personal Area Networks, a standard

aiming to provide the Internet Protocol to low-powered devices with limited capabilities.

IPv6 allows tra�c to be routed across the Internet, providing unique IP addresses to

devices for identification. Communication across the Internet then occurs through the

transmission of IPv6 (and IPv4) packets, consisting of 320 bit headers and a maximum

payload size of 64KB. This is extremely unsuitable for the majority of IoT devices, that

are unable to support the resource-intensive nature of the protocol. IoT data rates are

much smaller, and most protocols will support an MTU of 127 bytes or smaller.

6LoWPAN adapts the IPv6 protocol to allow even the smallest of devices to commu-

nicate over the Internet. It implements an adaptation layer between the Network and

Data-Link Layers in order to provide the required adaptation capabilities. These include

header and payload compression, fragmentation and direct IP addressing for nodes. The

nodes communicate with a 6LoWPAN border router (6LBR) in order to convert 6LoW-

PAN packets to ordinary IPv6 packets, to be transmitted on the Internet (Wang & Mu,

2017).

2.1.4 Bluetooth Low Energy

Bluetooth Low energy (BLE) is a wireless personal area network technology that lever-

ages the classic Bluetooth framework for a resource-constrained environment. This allows

low-powered communications to occur between devices such as sensors, actuators and mo-

bile devices. BLE provides considerably reduced power consumption and cost compared

to classic Bluetooth, while maintaining a similar communication range of approximately

100m. It was originally designed using a star topology, with BLE peripherals communi-

cating with a central router, but further iterations have also provided support for mesh

topologies (Darroudi & Gomez, 2017).

2.2 Security

Security should be a major factor in the design and development of technical systems.

The purpose of security is to prevent losses, both accidental and malicious, and di↵erent

systems will have di↵erent security priorities. In order to identify these, it must be known

what is being protected and against whom. From there the weak points of the system

9

can be determined. The nature of technology means that things are constantly changing

and improving, and security must reflect that in terms of flexibility. Changes can be

constantly seen in performance, capability, cost and environment. However, flexibility

must be balanced with complexity, as an overly-complex system is fatal for security.

Contingency planning can lead to bloated systems that are di�cult to maintain. This can

lead to security flaws appearing that are harder to identify and analyse (Bellovin, 2016).

There are a wide range of security aspects to consider in the design of a secure system.

The three most crucial considerations for information security are known as the CIA triad

- confidentiality, integrity and availability. Confidentiality determines a set of rules that

limits unauthorised access to the information, which can be seen as privacy. Encryption

is a common means of ensuring confidentiality. Integrity involves ensuring the legitimacy

of the data, by maintaining its consistency, accuracy, and trustworthiness over its entire

life cycle. Finally, availability guarantees reliable access to the information by autho-

rized users. The CIA triad addresses a large number of security concerns, though new

threats are always emerging (Mosenia & Jha, 2017). A system must also try to address

accountability, auditing, non-repudiation and privacy policies.

Implementing security in IoT incurs limitations that do not generally arise in conven-

tional Internet security. IoT comprises a wide range of smart devices, with di↵erent uses,

size, energy capacity and computation power. Transmission protocols are lightweight

with minimal overhead, before being integrated with standard Internet protocols. Se-

curity must be adapted to fit this paradigm, with each application demanding varied

requirements (Kouicem et al., 2018). No inherent security framework exists for IoT, and

conventional frameworks, such as TLS, are frequently unsuitable. Security is often not

well recognised in commercial IoT, due to this lack of framework and regulation. This

leads to a whole host of security concerns, and the undermining of trust in IoT systems

that are perceived as insecure.

In order to ensure secure IoT communication, vulnerabilities should be addressed

in terms of possible attacks that may occur. Common IoT intrusions are discussed by

Mosenia & Jha (2017). An eavesdropping attack occurs when unencrypted data is sni↵ed

over communication links. This can often be used to garner information in order to design

other tailored attacks. Side-channel attacks are serious and complex attacks against

encryption. A node may leak critical information under normal operation, for example

its EM signature, or the regularity and timing of message transmission. They are usually

non-invasive and therefore undetectable. Minimising leakage as much as possible will

mitigate against these kinds of attacks.

Injecting fraudulent packets into the system can provoke chaos for an insecure system.

Denial of Service (DoS) attacks can be used to jam transmission by bombarding the system

10

with unnecessary requests. It can also be done intermittently to lower the performance of

time-critical tasks. Malicious packets can be inserted along with normal communications,

existing packets can be manipulated in some way, or packets can be replicated repeatedly

to overload the system. Keeping track of state and previous packet information can help

to defend against these type of attacks. Similarly, attacks can be conducted by routing

manipulation - to spoof, redirect, misdirect or drop packets. This can occur through

routing loops, false error messages or malicious nodes.

2.2.1 Transport Layer Security

Figure 2.5: The architecture of TLS (Unger et al., 2012).

Transport Layer Security (TLS), also known as the Secure Socket Layer (SSL), is

the de-facto standard for establishing a secure communication channel between two ma-

chines. As seen in Fig. 2.5, there are two facets to the protocol - the first establishes a

connection between devices and negotiates parameters, and the second (Record Layer)

carries the payload data, ensuring message integrity and confidentiality (T. Dierks, 2008).

The handshake protocol that establishes a connection between devices uses asymmetric

(public-key) cryptography to secure the interaction. A session-specific shared key is de-

cided upon within this communication, which is then used to encrypt and decrypt the

data transmitted between the two sources (symmetric encryption). TLS lies between the

11

application layer (MQTT) and the transport layer (TCP/IP).

Due to the fact that TLS is a widespread and well-accepted existing protocol, new

technologies often adopt it as their security implementation rather than designing a new

protocol to suit the needs of the technology. In the case of resource-constrained IoT

devices, there are many drawbacks to using TLS. In order for authentication to occur

between devices, they must be able to handle asymmetric cryptography and X.509 certifi-

cates. These techniques require the devices to transmit a high amount of data and to run

complex algorithms. Di↵erent authentication mechanisms that might be more feasible are

not supported by TLS (Unger et al., 2012).

TLS incurs a significant amount of processing overhead when considering distributed

topologies and multihop scenarios. There is no option to encrypt particular parts of a

message in order for sensitive data to be protected while metadata remains accessible.

Therefore in order to route the packet correctly, each node must decrypt and then re-

encrypt it before passing it on (Unger et al., 2012). Another aspect to consider is that due

to TLS existing on a lower layer, the payload is decrypted before it reaches the application

layer. Encryption on an application level could prevent the caching of sensitive data in

plaintext and foster secure data storage. With regard to MQTT, this means that data

stored by the broker will be unencrypted, and anyone with access to the broker and topic

could retrieve the unencrypted data.

2.2.2 Payload Encryption

The publish/subscribe paradigm is useful in IoT scenarios due to its event-based nature,

decoupled communication, high throughput and scalability. However, these factors also

give rise to confidentiality concerns. Both messages and subscriptions must be kept pri-

vate, and the broker can be seen as a potential point of failure if it is compromised (Bacon

et al., 2009). The broker may also be a third-party system that should not have access to

sensitive information that passes through it. It must have access to routing information,

however, such as the topic name. Ensuring confidentiality in such a system is therefore a

compromise between the ability to accurately route publications and the risk of leaking

information (Onica et al., 2016). Due to the decoupled nature of communication, end-to-

end security cannot be ensured by using TLS. A secure channel can be established from

the publisher to broker, and broker to subscriber, but the data stored in the broker will

be unencrypted. The only way to adequately ensure end-to-end security in a publish/-

subscribe system is to implement some form of payload encryption - where sensitive data

is encrypted and routing information is left unencrypted.

Payload encryption can be implemented through asymmetric and symmetric tech-

12

niques. Asymmetric encryption uses two keys - a public key for encryption and private

key for decryption. This approach works best for a system with a small number of trusted

subscribers who have access to the private key, and several possibly untrusted publishers.

Asymmetric techniques, though more flexible, are generally more intensive with regard

to computation, memory and bandwidth than symmetric techniques. These are always

significant considerations for resource-constrained devices. Symmetric encryption uses

the same key for encryption and decryption. It is simpler to implement and the measure

of security is o✏oaded in a large part to the robustness of the key exchange mechanism

(Katz, 2014).

Payload encryption ensures end-to-end data confidentiality in a constrained environ-

ment such as IoT, particularly in cases where TLS cannot be supported. In order to

provide complete data transmission security, keys must be provisioned securely, with an

authentication and an access control policy. These mechanisms can be o✏oaded to a

central server that will transfer a significant amount of the processing away from the

constrained devices.

2.2.3 Symmetric-Key Encryption

Symmetric-key encryption is an appropriate choice for use in an IoT-based payload en-

cryption scheme, as long as su�cient key-exchange policies are enforced. There are three

facets to consider in deciding on the symmetric-key technique to use - the algorithm it-

self, the mode of encryption and the key size. There are several di↵erent algorithms to

choose from, for example AES, DES, 3DES, Blowfish, Camellia and ARCFOUR. These

algorithms have di↵erent properties and optimisations making them suitable for various

scenarios. Some of them, such as DES and ARCFOUR, have been rendered unusable due

to technology improvements and detection of vulnerabilities within them (Kong et al.,

2015). Each algorithm has permitted key sizes, and is implemented using one of the

modes of operation outlined in Table 2.1.

The most common modes of encryption are detailed in Table 2.1. These encryption

modes determine how each block is translated to ciphertext by the algorithm, and each

varies in complexity and overhead (Almuhammadi & Al-Hejri, 2017). The Initialisation

Vector (IV) is a string of bytes used to initialise some of the modes, and must be sent

alongside the message to be used for decryption. Modes that use padding require message

length to be a multiple of the block size, and padding is added to the end of messages to

ensure this. These factors both lead to larger message sizes and additional bandwidth.

A parallel architecture allows improved performance, and can generally be implemented

by stream ciphers. Some modes of operation o↵er not only encryption, but also a mes-

13

Name Cipher IV
(bytes)

Padding Description Parallelism MAC

Electronic
Code Book
(ECB)

Block None Yes Identical plaintext blocks
encrypted into identical
ciphertext.

Yes No

Cipher
Block
Chaining
(CBC)

Block 16 Yes Plaintext block first
XORed with previous
ciphertext block.

No No

Cipher
Feedback
(CFB)

Block 16 No Plaintext block is XORed
with output of encryption.

No No

Output
Feedback
(OFB)

Block 16 No Portion of encryption out-
put is used as feedback for
the shift-register.

No No

Counter
Mode
(CTR)

Stream 8 No Counter and nonce gener-
ate key stream, which is
XORed with plaintext to
produce ciphertext.

Yes No

Counter
with CBC-
MAC
(CCM)

Stream Arbitrary
length

No Counter mode used for en-
cryption with CBC-MAC
for message integrity.

No Yes

Galois/
Counter
Mode
(GCM)

Stream Arbitrary
length

No High-speed counter mode
encryption with GMAC
for message integrity.

Yes Yes

Table 2.1: Comparing symmetric key modes of encryption.

sage authentication code (MAC) for data integrity. This process is integrated within

the encryption process, making it more e�cient than providing the two functionalities

separately.

2.3 Closely-related Projects

A significant amount of research is underway in the area of optimising security protocols

over IoT networks and application protocols such as MQTT. With the present exponential

growth and commercialisation of IoT, security has become a focal area of research. New

protocols are being developed to suit the IoT framework, and standard techniques are

being adapted. The crucial component of research regards the resource-constrained nature

of IoT, and the aim to balance security with usability in such contexts (Nguyen et al.,

2015).

Several areas of research focus on providing an adequate security framework for the

MQTT protocol. MQTT presents its own challenges as a protocol, having a publish/sub-

scribe architecture and few inherent security mechanisms (Yassein et al., 2017). As TLS

14

is the recommended protocol for use over MQTT, some research looks into adapting this

protocol for use in a resource-constrained environment. Other areas of research concen-

trate on using techniques such as payload encryption to provide lightweight end-to-end

security. This can be implemented using a wide range of approaches, using symmetric,

asymmetric or hybrid techniques.

A symmetric-based security framework is proposed by Shin et al. (2016), detailing an

adaptation of the Augmented Password-Only Authentication and Key Exchange (Aug-

PAKE) protocol for use over MQTT. The AugPAKE algorithm transmits authenticated

session keys between the client and broker. Data is then transmitted with a secure

symmetric-key encryption scheme using the established session key. The initial authen-

tication of clients is simplified compared to TLS and the overall transmission overhead

is reduced. However, this does not ensure end-to-end security as communication is only

secured between client and broker.

A secure MQTT implementation is proposed by Singh et al. (2015), using asymmetric-

key encryption. This uses lightweight attribute-based encryption (ABE) over elliptic

curves. Using ABE, the data is encrypted based on an access control policy, and only

approved clients can decrypt the data. This implementation does ensure end-to-end en-

cryption, as only valid subscribers can decrypt the data, and though the broker has access

privileges, it cannot decrypt it. An advantage of this approach is its support of broad-

cast encryption - where one encryption process is needed to deliver the message to all

subscribers. The proposed protocol is secure against several common attacks. However,

complex multiplicative inverse operations are necessary to implement ABE, incurring a

significant processing overhead.

Rizzardi et al. (2016) propose a key management and policy enforcement framework

for use in providing secure MQTT communications. The solution proposes an IoT mid-

dleware based on several Networked Smart Objects, using HTTP to communicate with

the IoT devices. This enforcement framework requires devices to initially register with

it in order for secure encryption to be provided. The devices are granted credentials,

which can be used to authenticate themselves for future communications. The framework

accepts key requests for devices to encrypt and decrypt data, which are granted based

on authentication and the enforced policy. A similar system is proposed by Neisse et al.

(2015), implementing SecKit, a security policy enforcement model. It o↵ers a framework

that can be applied to several IoT protocols, with an aim to decouple security from the

everyday running of the system. This framework has been applied to the MQTT pro-

tocol (Neisse et al., 2014), and is executed as a broker extension. SecKit implements a

context-based policy template that must be explicitly instantiated.

The solution proposed by Mektoubi et al. (2016) details a method to secure end-to-

15

end MQTT communications with a certification authority (CA) generating certificates

for both the client and topic. Asymmetric encryption techniques are used to implement

this. The RSA and Elliptic Curve (ECDSA) algorithms are analysed for performance,

noting that ECDSA uses smaller keys and RSA has a quicker execution time for data

encryption. It goes on to o↵er a hybrid approach of the two algorithms, using RSA for

data encryption and ECDSA for the digital signature. End-to-end encryption is provided,

however, it does not adequately outline the transmission overhead involved, indicating

that it may be comparable to the overhead incurred by TLS.

An asymmetric security protocol is proposed by Moustaine & Laurent (2012), focusing

on the issue of authentication. This paper is based on RFID technology, which is extremely

low-powered and concerned with operational overhead. It proposes authentication using

an optimised implementation of NTRU, one of the fastest public-key cryptosystems. This

implementation delegates the complex NTRU operations to a server, leaving the low-

powered nodes to process only the lightweight operations such as additions and circular

shifts. This system performs extremely well, with proven resistance to replay attacks

and Man-in-the-Middle attacks with greatly reduced overhead. Its implementation over

MQTT would mean that the broker must provide a dedicated server to process the NTRU

calculations. This o✏oading of heavy computation away from the low-powered IoT devices

should be at the forefront of design for an IoT system.

Several areas of research look into tailoring TLS to suit the IoT environment. It

should be noted that due to the fact that TLS does not exist on the application layer, it is

feasible for both TLS and payload encryption schemes to be used in tandem. Urien (2017)

suggests Secure Access Modules for IoT. These are tamper-resistant microcontrollers to

be added on either end of communication, implementing TLS/DTLS. These external

pieces of hardware deal with the security features that are required, without draining the

resources of the constrained devices. This allows a full TLS implementation to occur in

an IoT network. However, an added piece of hardware would increase the cost of a device,

which may not be feasible in many scenarios.

Another attempt at adapting TLS to an IoT context is proposed by Chung & Cho

(2016). This approach uses fuzzy logic to adapt the TLS method in order to provide

the most suitable and energy-e�cient implementation. The system analyses the context,

based on parameters such as the message length, residual device power and required

security level in order to identify the most e�cient ciphersuite to use. This solution

primarily deals with the energy limitation, but does not address other constraints on the

system, such as memory or bandwidth.

Katsikeas et al. (2017) analyse various AES encryption techniques over the MQTT

protocol, in order to identify the most e�cient regarding round-trip time and memory

16

usage. Payload encryption was compared with link layer encryption, as well as comparing

encryption modes with and without an accompanying MAC. Link layer encryption was

found to have less of a performance impact due to the chip used, which has hardware

accelerated AES encryption capabilities. However, it has a disadvantage in that it provides

node-to-node encryption, rather than application-layer end-to-end encryption. AES-OCB,

the authenticated encryption technique, was found to be the most resource-intensive, due

to the complexity of the algorithm.

A payload encryption scheme is proposed by Jan et al. (2017) for use over the CoAP

protocol. This is a lightweight mutual authentication scheme, by way of a four-way

handshake mechanism. This is based on CoAP’s client-server interaction model, aiming

to improve upon DTLS, which is the most widely used security infrastructure in CoAP-

based IoT communication. It aims to integrate security features into CoAP, rather than

have them decoupled and existing as separate protocols. The authentication process

aims to be as lightweight as possible, only requiring a small number of request/response

interactions to exchange a session key and begin communication. Pre-shared secrets are

used to verify the identity of legitimate system entities. It shows significant improvements

over DTLS in handshake duration, memory consumption and average response time.

Due to the growing requirements of IoT, a robust, scalable and lightweight security

mechanism is required for MQTT, the most prevalent IoT application-layer protocol.

Though TLS may be the most straightforward security implementation, there are several

reasons why it is not suitable for resource-constrained devices that comprise IoT. There

is a significant amount of research going into other possibilities. These solutions aim to

reduce transmission overhead on the security layer, reduce the necessary computation and

memory requirements for TLS implementation, or deal with various insecurities related

to TLS over MQTT.

2.4 Problem Formulation

Upon analysis of the background and research involved in this area, it is apparent that

security is a significant concern in IoT. The monumental growth and commercialisation

of IoT has lead to the deployment of several insecure systems. This is due to the fact

that implementing security is resource-intensive, and can be a di�cult and expensive en-

deavour to apply to low-powered devices. It is therefore not always seen as a worthwhile

pursuit. A study by HP Fortify (2014) found that 70% of IoT devices contain vulnera-

bilities, including password security, encryption and general lack of granular user access

permissions. These insecure systems pose a threat, not just to their users, but to the

industry in general. IoT su↵ers from a loss of trust, and the perception of vulnerability

17

due to its security shortcomings (Sicari et al., 2015). Therefore, the development of an

appropriate solution to this problem is a necessary and worthwhile undertaking.

The problem to be addressed is how to apply a security scheme e�ciently in an

extremely resource-constrained environment, using a publish/subscribe communication

framework. This encompasses a many-pronged problem. First of all, the design must

accommodate for low-powered devices with limited capabilities. Processing on the device-

end should be reserved for essential functionality, and this should be optimised for minimal

overhead. An IoT device aims to remain in idle state as much as possible to preserve re-

sources, and aims to transmit messages with minimal bandwidth. Secondly, the design

should take the MQTT architecture into consideration, providing end-to-end encryption

from publisher to subscriber. It should improve upon TLS with regard to resource con-

sumption and providing within-broker security. Finally, the scheme should be robust

in its security mechanisms, ensuring that confidentiality, integrity and availability are

maintained throughout.

18

Chapter 3

Design

This chapter gives an outline of how the problem formulation described in Section 2.4

has been translated into a solution. Section 3.1 gives an initial overview of the design,

outlining the high-level aims and purpose of the solution. The logical architecture of the

scheme is illustrated in Section 3.2, describing the system components, their role and

how they fit together. In Section 3.3, a sequence diagram is used to demonstrate the

inner processes involved when the scheme is in use. The most significant processes are

expounded within Sections 3.4, 3.5 and 3.6 - detailing the encryption, authentication and

access control and key caching designs respectively. These functions are fundamental to

the successful and e�cient implementation of the scheme within an IoT system. Section

3.7 details the data architecture of the scheme, displaying the packet structure used and

defining the contents of the header and payload. Finally, the design is summarised in

Section 3.8.

3.1 Overview

A secure and e�cient transmission architecture has been designed to serve a resource-

constrained environment over the MQTT protocol. This design aims to minimise the pro-

cessing, bandwidth and memory overhead involved in encryption on resource-constrained

devices, as well as minimising the number of necessary MQTT messages to be sent and

received by the device. The design provides confidentiality and integrity to IoT mes-

sages using symmetric-key payload encryption. Authentication, access control and key

management are provided through a Key Management Service (KMS). MQTT’s publish/-

subscribe architecture necessitates asynchronous communication between clients through

the MQTT broker. The design ensures end-to-end encryption, so that sensitive informa-

tion stored by the broker is encrypted and message data cannot be compromised through

19

a broker attack.

Several symmetric-key encryption algorithms were compared to identify the most suit-

able encryption for the IoT environment, with regard to processing power and message

overhead. It was determined that AES (Rijndael) should be used in counter mode with

CBC-MAC (CCM), using a 128-bit key. The payload of each message sent between clients

in the system is encrypted and decrypted using this algorithm. The MAC is then used

to assure message integrity, identifying if the packet has been tampered with in any way.

Header information is not encrypted, so that the packets can be routed accordingly with-

out the need to decrypt them at each node.

The KMS provides keys to publishers and subscribers after authentication, based on

a defined access control policy. All clients in the system must be initially registered in a

secure manner with the central KMS, wherein they are provided with a private key and

private topic that only they (and the KMS) have access to. They are also assigned a

client ID and password. When a client requests a key, either to encrypt or decrypt, they

are first authenticated by the KMS using these credentials. The requested key is then

encrypted by the KMS using the client’s private key, and sent to the private topic for the

client to receive. The client uses their private key to decrypt the requested key, which

can then be used to encrypt or decrypt their message. Each encryption key expires after

a certain amount of time, and the publisher must request a new key when this occurs.

The various design choices were made with the intention of providing a lightweight

security framework for use in resource-constrained IoT contexts, and improve upon the

use of TLS with MQTT, which is often unsuitable in these scenarios. The balance between

security and usability was at the forefront of the design. Optimisations have been made

to o✏oad any resource-intensive processing away from the device and towards external

capabilities. The purpose of this system is to ensure secure and e�cient transmission of

IoT messages over the MQTT application-layer protocol. It is noted that security concerns

exist on all layers, and message transmission security does not necessarily ensure full-stack

network security.

3.2 Logical Architecture

The logical architecture seen in Fig. 3.1 represents a high-level design of the system,

identifying the essential components involved and the dependencies between them. It

depicts a classic MQTT architecture with publishing and subscribing entities communi-

cating asynchronously through the central broker. In addition to this is the KMS, which

is essentially a publisher and subscriber providing a management service to the devices

involved in the system. As MQTT has a centralised architecture, each component has a

20

Figure 3.1: Logical Architecture.

direct dependency only with the broker.

3.2.1 Publisher

The publisher sends messages to topics on the broker to be forwarded on to the subscriber.

When a message is to be sent to a topic, it first checks the validity of its encryption key

for that topic in its key cache. If it does not exist, has expired, or is invalid due to

length or corruption, a request is made to the KMS to obtain a new key. The response is

first decrypted using the private key, then the key is used to encrypt the payload of the

message. The corresponding key ID is sent within the packet header in plaintext. If the

payload exceeds the MTU of the underlying protocol, the message will be fragmented and

sent in multiple packets. Depending on the Quality of Service (QoS) level of the MQTT

configuration, the publisher may receive acknowledgement from the broker upon receipt

of the packet.

3.2.2 Subscriber

The subscriber is an entity that subscribes to topics on the broker and is forwarded any

message that is received on these topics. When a packet has been received, it is parsed to

identify the various packet elements. If large messages have been fragmented and arrive

in multiple packets, the subscriber waits for all fragments before reassembling the full

message. The decryption key ID is extracted from the header and the subscriber checks

its key cache to see if it contains the corresponding key. If not, it must request this

21

key from the KMS. The decryption key response is received and is decrypted with the

private key. This received key is then used to decrypt the payload of the original message,

and message integrity is established using the MAC. The subscriber can then process the

plaintext message accordingly.

3.2.3 Broker

The broker is an impartial component that performs routing based on the MQTT pub-

lish/subscribe protocol. The broker can host any number of topics for the publishers and

subscribers to communicate through. It can implement an access control policy on these

topics, using a username/password whitelist. It also provides some defined topics for com-

munication between the devices and the KMS. These include topics for both requesting

an encryption key and requesting a decryption key. It also provides private topics, estab-

lishing a dedicated asynchronous channel between the KMS and each particular device

for key exchange.

3.2.4 Key Management Service

The KMS provides key management, authentication, monitoring and access control for

the system. As symmetric-key encryption is being used, the same key is required to

encrypt and decrypt the data. This service provides such functionality in a secure and

easy-to-manage way, while also providing other essential capabilities so that they do not

need to be performed on the device itself. Communicating over MQTT and existing in

parallel with the broker, it fits seamlessly with the MQTT paradigm and conforms to the

asynchronous nature of the system. The KMS monitors and analyses all tra�c passing

through the system.

Authentication is established by means of a client ID and password for each involved

entity (publisher, subscriber or both), which must be checked and confirmed for every

request. Upon initial registration of the entity, the access policy is determined on a more

granular level. The KMS can restrict a device based on publishing and subscribing rights,

as well as on the particular topics they can access. Each request is reviewed based on

this access policy, and keys will only be provided to entities that are approved for their

requests.

The KMS subscribes to two key request topics - one for encryption keys and one for

decryption keys. Publishers request encryption keys to encrypt messages they wish to

send. Subscribers request decryption keys to retrieve the original key that was used to

encrypt the message they have received. These are all stored securely by the KMS once

they have been issued. When an entity has been authenticated, its private key is retrieved

22

and is used to encrypt the key to be sent. This encrypted message is then sent to the

device through its private topic.

3.3 Sequence of Events

Figure 3.2: This sequence diagram outlines the process involved when
a publisher wishes to send a message to a topic. This scenario assumes
neither publisher nor subscriber hold the requisite keys in their respec-
tive caches. The broker has been omitted from the diagram for clarity.

• Publisher wishes to send a message to a topic.

23

• Publisher checks if the cached key for the topic is still valid. If so it can be used to

encrypt the message.

• If the key has expired, an encryption key request is sent to the corresponding topic.

• This request is forwarded to the KMS by the broker and decrypted using the pub-

lisher’s private key.

• KMS authenticates the publisher.

• KMS checks that the publisher has permission to publish to the requested topic.

• KMS creates a new encryption key for the publisher and stores the relevant infor-

mation.

• KMS uses the publisher’s private key to encrypt the new key data, and sends it

through their private topic.

• Publisher receives this response and decrypts it to obtain the encryption key.

• Publisher uses this encryption key to encrypt the message.

• The packet is constructed with all relevant header information, and one or more

fragments are sent to the topic.

• Subscriber receives these packets, reassembles them and extracts the header infor-

mation and encrypted message.

• Subscriber checks its key cache using the key ID sent in the message header. If

present, it is used to decrypt the message.

• If not, subscriber sends a decryption key request to the KMS, using the key ID.

• KMS receives the request, authenticates then verifies the subscriber against the

access control policy.

• The key ID is used to retrieve the required key, which is then encrypted with the

subscriber’s private key.

• KMS sends the encrypted message through the subscriber’s private topic to the

subscriber.

• Subscriber decrypts the response, and uses the obtained key to decrypt the original

message from the publisher.

24

3.4 Encryption

Confidentiality is ensured by the system using symmetric-key payload encryption, specif-

ically AES CCM mode encryption with a 128-bit key. AES is the Advanced Encryption

Standard, an algorithm established by the National Institute of Standards and Technol-

ogy (NIST) in 2001. It uses the Rijndael cipher, allowing key sizes of 128, 192 and 256

bits. This is by far the most widely used symmetric-key algorithm, and there is no known

attack that would allow someone without knowledge of the key to access AES-encrypted

data (McKay et al., 2017). Due to its broad use, it is supported by a wide range of

security packages. For these reasons, this was the algorithm chosen for use in the design.

Figure 3.3: Relationships between the three security qualities to con-
sider for symmetric key encryption.

The implementation of the algorithm should be optimised by considering the three

vertices of the security relationship illustrated in Fig. 3.3. The AES key sizes of 128, 192

and 256 bits correspond to 10, 12 and 14 rounds respectively. As seen in Fig. 3.3, a smaller

key size and number of rounds relates to superior performance and overhead, yet detracts

from the level of security provided. These are all extremely important considerations in

the system design. The practical limit of breakability for symmetric key sizes is 80 bits

with current technology (Kong et al., 2015). As all AES keys are above this limit, they are

all unbreakable through a brute-force attack. Similarly, the extra rounds do not linearly

25

produce a more secure system, yet they make the encryption process 40% slower (Katz,

2014). For these reasons, it was concluded that AES-128 would be su�cient.

CCM mode proved to be the most suitable mode of encryption to use, for several

reasons. It is intended for use in a packet environment, which is ideal for IoT. This

mode combines the counter encryption mode with a CBC-MAC for message integrity.

Counter mode was found to be the most e�cient and suitable encryption-only mode. This

mode transforms a block cipher into a stream cipher by encrypting each block using an

incrementing counter. Due to the fact that counter mode is not a block cipher, is does not

require padding to fill remaining bytes in the block. This reduces the number of bytes to be

sent, reducing the average packet overhead. A random 8-byte nonce (unique Initialisation

Vector (IV)) is used to initialise the counter to a unique value. This combination must

only be used once with the same key, and is incremented for each block that is encrypted.

The nonce is sent in plaintext along with the encrypted message in the packet. This

improves upon other modes of encryption that use a 16-byte IV, as it is only half the size.

The CBC-MAC uses cipher-block chaining to produce a MAC tag, which can be used

to ensure the message is authentic. This MAC adds 8 bytes to the message length, and

CCM mode calculates it on the plaintext before encrypting the whole message, including

the MAC. This is in comparison to using a separate CBC-MAC or HMAC function to

provide integrity, which would entail passing around another key and is less e�cient

than CCM. Galois/Counter Mode (GCM) is another encryption/MAC hybrid technique,

though it is less commonly found and it is much more resource-intensive. Its expensive

operation can be accelerated using previously computed lookup tables, though this still

requires a significant amount of memory (Szalachowski et al., 2010).

An MTU is often set by an underlying protocol, limiting the maximum size packet that

can be sent by a device. When a message is being prepared to be sent, the entire length

of the message (headers and payload) is identified, and compared with the MTU. If the

length is larger than the MTU, the packet will fail to send and must be fragmented. In the

case of fragmented messages, only one security header is necessary for the entire message.

A fragmentation o↵set is stored in the first byte of the security header. The subscriber

will store all fragments that are received, until the fragmentation o↵set indicates that

it contains the final fragment. The first fragment contains the security header, and the

payloads of all other fragments are concatenated and decrypted accordingly.

3.5 Authentication & Access Control

Authentication and access control are policies enforced primarily by the KMS, with added

capabilities enforced by the broker. The perspective of the system is of a distributed IoT

26

system. This involves a known number of clients that are authorised to access the data,

and actuate some function on the system. Clients can be both publishers and subscribers

within the MQTT paradigm. There are also a number of topics relevant to the system,

with restrictions on entities that can publish or subscribe to these topics. The policies

are stored and configurable within the KMS, and encryption and decryption keys are

only entrusted to those entities that have been approved. Each key is associated with a

particular topic, and the KMS ensures that only authenticated and authorised clients for

that topic can access the key. It also ensures, through system monitoring, that the key is

only being used for approved operations.

Upon initial registration of an entity within the system, its individual access policy is

established. The client ID and hashed password are stored within the KMS as a trusted

party, and these are used to authenticate the client upon the receipt of a request before

any further processing is carried out. Along with this identification, the KMS stores

whether the entity has publishing rights, subscribing rights or both. Any topic used by

the system is stored by the KMS, and a granular restriction level can be set on particular

entities accessing particular topics. A hierarchy of access limitations can be enforced by

configuring the KMS to the needs of the system. Another layer of security can be enforced

by the broker itself, in that PUBLISH and SUBSCRIBE requests can be denied by it if

the entity is not on an approved whitelist for such a request.

3.6 Key Cache

An in-memory key cache is used for clients to store recently and regularly used keys for

quicker access, instead of issuing key requests for every message to be sent and received.

Two types of key cache are used, one for encryption keys and one for decryption keys.

These are implemented in slightly di↵erent ways, and can vary in caching policy. Both

key caches are created using synchronised hash tables. The encryption key cache stores

keys based on topic, so that each publisher uses one key per topic until it expires or is

otherwise invalid, after which a new key is requested for the topic when it is needed.

This uses a time aware least recently used (TLRU) cache replacement policy, in order to

remove keys for topics that are not used very often, being aware of their expiry time.

The decryption key cache stores keys based on the key ID. It uses a least recently

used (LRU) cache replacement policy. This di↵ers as decryption keys do not technically

expire, as old messages encrypted by an expired encryption key must still be able to be

decrypted. However, these expired keys cease to be regularly used, and can be removed

from the key cache when newer keys are obtained. It is likely that the decryption key

cache will be significantly larger than the encryption key cache. This is because it is likely

27

for a client to publish to a small amount of topics, and to receive messages from several

di↵erent topics and several di↵erent clients. The system can define the maximum size of

the caches, depending on resources available to each client.

3.7 Data Architecture

The vast majority of packets sent between the components in the system are MQTT PUB-

LISH messages. These packets follow a defined structure, with a fixed header, variable

header and payload (Fig. 3.4). An additional security header is implemented at the start

of the payload in the design. This allows messages to communicate necessary security

information in plaintext, while having the sensitive data encrypted in the payload. One

of the fundamental aims of the system is to minimise the packet overhead and bandwidth,

in that a minimal number of packets should be sent, and each packet should contain as

few bytes as possible. For this reason the data architecture is optimised to its fullest as

part of the design.

Figure 3.4: Message format of MQTT PUBLISH packet used within the
scheme.

The fixed header is two bytes long. The first byte defines the packet type (PUBLISH

in this case) and flags identifying the QoS level, duplication and retain instructions. The

second byte records the remaining length of the packet. The variable header contains

the topic name and the packet identifier (only necessary when QoS is greater than zero).

The security header is 11 bytes long. The first byte represents the fragmentation o↵set.

28

The following two bytes contain the key ID of the key used to encrypt the payload. The

final 8 bytes are used to communicate the nonce, which must be used in the encryption

and decryption process. Finally the encrypted message, along with the encrypted 8-byte

MAC, is sent in the remaining bytes in the payload. In case of fragmentation, the first

packet contains the full security header, and all following fragmented packets will only

hold their fragmentation o↵set in the security header.

3.8 Summary

A high-level overview of the scheme design has been outlined in the above chapter, which

will be expanded upon and detailed within Chapter 4, Implementation. The design spec-

ifies how the system components communicate with one another, and the processes in-

volved in the typical operation of the system. It indicates the purpose of each component

and why they have been implemented in such a way. The core security functionalities are

outlined, detailing how the CIA triad is realised to produce a secure system. Confiden-

tiality and integrity are provided with the encryption and MAC techniques described in

Section 3.4. These are operations that occur on the device itself. The majority of the

availability functions are provided by the KMS, which equips the system with authentica-

tion, access control and key management. Availability is aided by the key cache (Section

3.6), allowing immediate encryption for regularly used keys and approved communication.

The design encompasses a secure, e�cient communication mechanism for IoT systems.

29

Chapter 4

Implementation

This chapter outlines the actual work that has been carried out in implementing the

design laid out in Chapter 3. Section 4.1 presents a high level view of the implementation,

defining the architecture of how all system components have been deployed, and how they

interact with one another. Section 4.2 details the broker configuration used in order for

all components to communicate through it. Section 4.3 describes the implementation

of the Key Management Service, deployed as a resource within the MQTT framework.

Section 4.4 defines the C library that has been developed to provide capabilities to the

resource-constrained IoT devices. These capabilities have also been provided for resource-

unconstrained system components in the form of a Python module, outlined in Section

4.5. Finally, Section 4.6 summarises the end-to-end implementation and deployment of

the scheme.

4.1 Deployment Architecture

The scheme outlined in Chapter 3 has been deployed as an end-to-end IoT package, en-

compassing all necessary components to be easily integrated into an IoT-over-MQTT

application (Fig. 4.1). This scheme has been abstracted to library form, to provide se-

cure transmission functionalities to the various application components. The necessary

MQTT configuration has been outlined and identified, using Eclipse Mosquitto as mes-

sage broker. The Key Management Service (KMS) is deployed as an autonomous utility

providing services to the system components. A C library has been developed to provide

the capabilities required for the resource-constrained IoT devices. Finally, utilities have

been provided, in the form of a Python module, for resource-unconstrained components

participating in the IoT system.

30

Figure 4.1: Deployment Architecture Diagram.

4.2 MQTT Broker

Mosquitto is a lightweight, open source implementation of an MQTT broker that is suit-

able for use on all types of devices1. It requires very little configuration, merely listening

on port 1883 for any MQTT packets to be dealt with accordingly. Topics do not have

to be previously configured on the broker to be published or subscribed to. Rather, if

the broker encounters a request for a previously unencountered topic, it will provision

resources for it and route any subsequent messages for the topic appropriately.

MQTT Bridge

The broker deployment, as seen in Fig. 4.1, is implemented using a border router in

the IoT device environment, forwarding MQTT packets to and from the central broker

hosted on the cloud (AWS). Bluetooth Low Energy is the network protocol used in this

IoT implementation, which has a range of approximately 100m. The border router, hosted

on a local Linux virtual machine, runs an identical Mosquitto broker that picks up the

MQTT packets over Bluetooth. An MQTT bridge is configured between the two brokers.

This essentially allows one of the brokers to act as a client to the other, publishing

and subscribing to all relevant topics. Some simple configuration is done on one of the

brokers’ mosquitto.conf files, identifying the address and port of the remote broker,

along with any topic specifications or remapping necessary. This essentially implements

1https://mosquitto.org/

31

MQTT packet forwarding.

Security

In terms of security, the broker is capable of implementing an authorisation policy. In

Mosquitto, settings can be changed in the mosquitto.conf file to enforce limitations on

client access. This is a desirable feature for most IoT applications, to ensure that only

authorised clients can connect to the system, and be able to publish or subscribe only to

their relevant topics. A password file can be stored in the broker’s conf file that stores ap-

proved clients. The MQTT CONNECT packet contains optional username and password

fields, which are checked against the password file before connection is approved. The

broker can also store an access control list (ACL) file, similarly implementing restrictions

on a more granular level, specifying approved topics, operations (publish, subscribe or

both) and QoS levels. This is based on the client ID that can be sent in the header of

MQTT packets.

These measures add a weak layer of security to the system in place. However, a secure

transmission channel does not exist between client and broker in this implementation,

and the MQTT header is transmitted in plaintext. For these reasons, packets could be

intercepted in transmission and the relevant authorisation criteria could be gleaned and

spoofed to gain access to the broker. The KMS provides a much more secure means of

ensuring authorisation and access control.

4.3 Key Management Service

The KMS is deployed as a central server communicating entirely over MQTT, directly with

the cloud-based MQTT broker. It is responsible for ensuring secure key exchange, key life-

cycle management, client authorisation and access control. Though the communication

protocol used is MQTT instead of HTTP, the service has been designed to emulate a

RESTful API in several ways. The KMS provides resource endpoints through the use of

topics. The entire scheme is constructed on an event-based architecture, where minimal

processing is done until an event triggers the appropriate response. This is reflected in the

stateless nature of the KMS, where each request is dealt with accordingly, before returning

to idle state. This design is adapted to fit the asynchronous, decoupled request-response

nature of MQTT systems.

32

Registration

A design decision that has been enforced on the scheme is that any client participating in

any way must first be registered in a secure manner with the KMS. This process should

be done o✏ine by the system administrator, in a way that does not transmit any of the

sensitive information over the network. The client is assigned a client ID and password

that it can use to identify itself to the KMS (with the KMS storing the SHA-1 hashed

password). It is also assigned a private topic for direct communication from the KMS,

and a private key used to decrypt any responses received from the KMS. Both entities

store these four pieces of data, which are essential for ensuring secure communications

throughout the system. It is assumed for this implementation that all devices in play

have been successfully registered.

Requests

The basic request endpoints provided by the KMS are encryption and decryption key

requests. An encryption key is required by a publisher to publish a message, and a

decryption key is required by a subscriber to decrypt a message it has received. Requests

are filtered based on the topic they have arrived through. The client is first authorised and

approved for access regarding the particular request. In the case of an approved encryption

key request, a new key is created by the KMS. This is sent back to the publisher through

their private topic, along with the key’s ID and expiration time. These values are stored

by the KMS, along with the client ID of the requester. An approved decryption request

will include the ID of the key it wishes to obtain. If this is successfully retrieved by the

KMS, it is sent back to the subscriber through their private topic.

Encryption and Decryption

Each request is encrypted by the client using its private key for transmission. The client

ID is left unencrypted in the header of a request, which is used by the KMS to locate

that client’s private key. This is then used, along with the nonce sent in the header, to

decrypt the request. Similarly, the response is encrypted with the same key and a new

nonce, to be returned to the client through their private topic. The same encryption

technique, AES-128 with CCM Mode, is used throughout the scheme for encryption and

decryption. Since MQTT payloads are always binary, its not necessary to encode the

encrypted message, a raw byte array, to a textual representation such as base64. This

saves on additional bandwidth, as base64 encoding is more bloated, using 4/3 times as

many bytes.

33

Authorisation and Access Control

The KMS must verify that each request is valid with regard to the application’s access

policy. Authorisation is carried out by means of the client ID and password established

upon registration. The client ID is stored in the request header, and the password is

stored within the payload of the request that is encrypted. This implements a form of

two-factor authentication, in that the requester must have both the private key in order

to properly encrypt the packet, and the password itself. The password is not sent directly,

as this should only be known by the client. A cryptographic hash, SHA-1, is instead used,

and this is the value that is stored in the KMS to compare and authenticate the client.

Once the client has been authenticated, the rest of the request is analysed. Each

request must include the intended topic, and QoS level in the case of publishing. An

access control list, similar to the broker’s ACL, is stored by the KMS. Upon receipt of an

encryption key request, the KMS checks whether the client has publishing rights for the

specified topic and QoS level. If access is granted, the key issued is associated with those

particular criteria. When a decryption key request is received, the client is first checked

to make sure that they have subscribing rights to the topic in question. It is then ensured

that the key requested has been associated with the correct topic. This is to prevent

topic spoofing, where the publisher or subscriber requests a key for a topic that is not the

intended one, that perhaps they do not have access rights to.

Figure 4.2: Entity Relationship Diagram for the KMS.

In order for these policies to be enforced, a relational MySQL database was imple-

mented to store the relevant persistent information, as seen in Fig. 4.2. Whenever a client

34

is registered onto the system, a row in the Client table is added. The Access Control

table stores all information on the rights and restrictions of each client. Any topics in

use are stored in the Topic table. Both the Access Control and Topic tables should

be synchronised with the broker’s ACL and topic list to ensure there is no mismatch.

All requests made to the KMS are stored, along with whether they have been authorised

and approved. Tracking of requests can help to identify potential security breaches and

trigger an alert in these cases. When an encryption key request leads to a new key being

created, it is stored in the Key table. Finally, a table is implemented that stores all clients

that have accessed each particular key, for encryption or decryption.

Monitoring

Figure 4.3: Entity Relationship Diagram for KMS Monitoring.

Along with the data represented in Fig. 4.2, the KMS also stores information on every

message passing through the system (Fig. 4.3). In order to do this, the KMS subscribes

to all topics supported by the broker. The actual payload of the message is not decrypted

or stored, but information such as the topic it was sent to, time it was sent and key ID

are stored. The key ID can be used to link the message to the client who sent it. These

messages are passively monitored in order for the KMS to be aware of the operation of the

system. Monitoring can identify any unusual system operation, such as a client suddenly

stopping its transmission or an influx of unexpected messages. In this way security attacks

such as DoS attacks can be identified, thwarted and alerted to as quickly as possible.

4.4 IoT Device Library

The IoT device implementation has been deployed as a C library, providing secure com-

munication capabilities to a sample application running on a microcontroller board. Func-

35

tionalities of the system include MQTT communication, payload encryption of messages

and secure key exchange. The decision was made to develop such a system on a micro-

controller rather than a simulator (Cooja, Omnet++) or emulator (QEMU, Mininet) for

several reasons. Simulations are the most straightforward way to implement a system

such as this, however, they are likely to be unrealistic and not account for real-world

complications. Emulators will produce a more practical and realistic operation of an IoT

system. Due to the varied and often unpredictable nature and environment of IoT, it was

anticipated that these implementations would not adequately identify issues that may

arise. The aim of producing such a system was to determine the most suitable security

protocol for a constrained environment, and in order to do so the implementation should

reflect a real-life IoT system to the fullest extent possible.

Technologies

IoT device development has been carried out on a Nordic Semiconductor NRF52 Devel-

opment Kit2. This microcontroller integrates a low power ARM Cortex-M series micro-

processor with memory and peripherals into a single microcontroller package, including

a 2.4GHz radio designed for Bluetooth Low Energy communication. The Nordic Semi-

conductor nRF5 SDK is used on the microcontroller as the BLE “softdevice” for devel-

opment. SEGGER JLink software3 has been used for flashing and debugging the device,

along with command line tools provided for the Nordic Semiconductor nRF5x range.

The GNU ARM Embedded Toolchain4 provides compiler and linker functionalities to the

development system.

The operating system employed by the device is Zephyr5, a real-time operating system

(RTOS) designed for use on resource-constrained devices. Zephyr is an open source,

highly configurable RTOS that is optimized for small memory footprint devices with

security in mind. Functionality is provided for MQTT communication, with support for

BLE and 6LoWPAN. On top of this, a security library, mbed TLS6, is used to provide

cryptographic functionalities such as encryption and hashing. These systems are written

in the C programming language, and therefore the library and application developed is

also written in C. Finally, in order to debug and display system outputs from the board,

a serial port terminal application, CoolTerm7, is used.

2http://infocenter.nordicsemi.com/index.jsp
3https://www.segger.com/downloads/jlink
4https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
5https://www.zephyrproject.org/
6https://tls.mbed.org/
7http://freeware.the-meiers.org/

36

Application

An application was deployed to run on the microcontroller board, providing a means of

testing and analysing the functionalities developed. This application provides a regular

stream of messages to be encrypted and sent to the broker. The content, length, num-

ber and delay between messages can all be varied, in order to test the robustness and

performance of the system. It also subscribes to a particular topic, which is used as an

input endpoint. A user can publish any message to this topic, which the application will

receive, encrypt and send over MQTT.

s t a t i c void handle input msg (char⇤ msg) {
i f (s t a r t s w i t h (‘ ‘ rand ’ ’ , msg)) {

msg = msg + 5 ;

i n t rand l ength = a t o i (msg) ;

char⇤ r and s t r ;

r and s t r i n g (rand st r , rand l ength) ;

encrypt and send (r and s t r) ;

} e l s e {
encrypt and send (msg) ;

}
}

Listing 4.1: Handler function for messages received on the input topic. User can input

a message of any length to be encrypted and sent. The user can also input the keyword

rand followed by a number to send a random string of the specified length.

Encryption and Key Request Process

Fig. 4.4 depicts the steps undertaken when an application requires a new message to be

published. Functionality is provided for the device to be both a publisher and subscriber

to topics. For the purpose of description, the encryption and publishing process will be

outlined for the IoT device, and message receipt from subscription and decryption process

will be outlined for the resource-unconstrained service (section 4.5). This is based on the

conventional perspective of IoT devices such as sensors publishing information about their

environment, which is then utilised by services to make sense of the data provided. It

is also noted that systems operate bi-directionally, and services can publish messages in

order to actuate some function on the IoT device.

37

Figure 4.4: Encryption and Key Request Process

Message to Send. The aim of most IoT systems is for the application to lie in idle

state until some event (a timer, change in environment, received message etc) triggers a

response. The response usually requires some form of communication. When this arises,

the application will call a function from the library to send the message.

38

Check Key. The first step in the process is to verify whether the encryption key cur-

rently in use for the topic is valid. The first check is on whether the key exists. When a

device starts initially or restarts, it will not have any keys stored in the key cache. If one

does exist, the expiration time is checked to make sure it has not expired yet. Finally, it

is checked to make sure the key itself is valid, in that it is the correct length and format

for the encryption algorithm.

s t a t i c bool check key (char⇤ t op i c) {
key s t r u c t ⇤ encrypt ion key ;

i n t rc = hash tab l e g e t (key cache , top ic , &encrypt ion key) ;

i f (r c != 0) {
// Key has not been r e c e i v ed yet

i f (! r e que s t i ng)

r eque s t enc ryp t i on key (t op i c) ;

r e turn f a l s e ;

}
i f (k upt ime get () > encrypt ion key�>timestamp) {

// Key has exp i r ed

r eque s t enc ryp t i on key (t op i c) ;

r e turn f a l s e ;

}
i f (s t r l e n (encrypt ion key�>key) != KEY LENGTH) {

// I n c o r r e c t key l ength

r eque s t enc ryp t i on key (t op i c) ;

r e turn f a l s e ;

}
r e turn t rue ;

}

Listing 4.2: Key check function. The key struct is accessed from the hash table using the

topic. If it is not present, and isn’t currently waiting for response, a new key is requested

and the check fails. Similarly expiry time and key length are checked. If all checks pass

then a valid key is present.

Request Encryption Key. In the case where one of the key checks fails, a new en-

cryption key must be requested from the KMS. The request is composed of the client’s

credentials, the topic and QoS level. The same security header format is used, except

39

that the key ID field is replaced by the client ID. The other fields are encrypted with the

private key and stored in the payload. This request is sent to the encryption key request

topic, and the client waits for a response from the KMS.

Response Received. The client should always receive a response from the KMS,

whether the request is authorised or not. If no response is received after a certain amount

of time (network dependent), the request times out and the client sends another request.

If the request has not been approved, a response is received with an error code corre-

sponding to the reason for denial.

Decrypt AES-CCM. Upon receipt of response for an approved request, the message

must be decrypted using the private key. This is achieved, as with all communications

within the system, with AES-CCM encryption. This process should reveal the response,

containing the key itself, its ID and time (milliseconds) until expiry.

Integrity Check. The first eight bytes of the decrypted message contain the MAC,

which is used to make sure that the message is authentic and has not been tampered with

in transmission. The plaintext message MAC is calculated and compared with the MAC

received, and if they are equal then the message is accepted. If this check reveals that

the message has been tampered with, a new key is requested and the o↵ending message

is destroyed.

Calculate Expiry Time. An obstacle that occurs in numerous embedded and resource-

constrained device systems is clock synchronisation. The expiry time of the key on the

device should match the expiry time stored by the KMS. It is assumed that the device

does not have a synchronised clock. It does, however, have a kernel clock that is measured

in upticks - number of milliseconds since the device started running. One of the fields

within the response is the number of milliseconds until expiry. This should be added

on to the uptick value at that point to get the uptick value when the key expires. This

gives a good approximation to the expiry time stored in the KMS, however it does not

account for the time taken for the packet to reach the device. In order to achieve a closer

approximation, the KMS could measure the round-trip time to the device, halve it and

add that on to the expiry time it had stored. In this case, it is not critical to have exact

synchronisation between the two entities.

Populate Key Struct. Each time a new key is received, it is stored in a key struct

according to the topic it is assigned to. This is implemented as a hash table, with the

40

topic name as the key and key struct as the value. This process can either be creating a

new entry, or replacing the values in the previous one. The struct contains the key, ID

and time until expiry.

Message to Send. Once the key has been received, the system returns to the message

that is to be sent, and the key check now indicates that a valid key exists.

Create Nonce. A random 8-byte nonce is used as IV for CCM encryption. It is im-

portant that the same nonce and key combination are never used more than once, as this

leads to catastrophic failures and can reveal the plaintext in the case of an attack. For

this reason a good entropy source should be used to seed the random number generator

and ensure there is no repetition in nonce values.

Encrypt & Tag AES-CCM. With the nonce created and the key secured, the message

the publisher wants to send can be encrypted. Using CCM mode, the MAC is calculated,

and this is appended to the message before the whole sequence is encrypted.

Error Check. In the course of testing the encryption functionality, it was observed that

in some cases the entire message would not get encrypted. The encryption function would

truncate the original message, and a shorter encrypted message would be returned. Due to

the properties of CCM encryption, the plaintext and ciphertext should both be the same

length in successful encryption. A check is done once the message has been encrypted

to make sure this is the case, and the encrypted message has not been truncated. If it

has, a new nonce is created and encryption is repeated. A do-while loop ensures that the

encrypted message is not sent until it is the same length as the original message.

Construct Payload. Once the message has been successfully encrypted, the payload

can be constructed, with the security header, encrypted message and MAC. The security

header consists of the fragmentation o↵set, key ID and nonce. The key ID and nonce are

concatenated with the encrypted message and MAC, leaving the first byte of the security

header for the fragmentation o↵set.

Fragmentation. The length of the payload is calculated and compared with the MTU

of the system to identify how many fragments are needed. The message is then split up

accordingly, using the first byte of each as the fragmentation o↵set. The final fragment

sets the MSB of the o↵set to 1, indicating that no more fragments are to come.

41

unsigned char payload [PAYLOAD SIZE] ;

unsigned char f u l l msg [FRAG OFFSET SIZE + KEY ID SIZE +

NONCE SIZE + s i z e o f (encrypted msg)] ;

s n p r i n t f (fu l l msg , s i z e o f (f u l l msg) , ‘ ‘%c%c%s%s ’ ’ , keyid msb ,

key id l sb , nonce , encrypted msg) ;

i n t num fragments = s i z e o f (f u l l msg) / (PAYLOAD SIZE�2);

i f (s i z e o f (f u l l msg) % PAYLOAD SIZE != 0)

num fragments++;

f o r (c u r r f r a g = 1 ; c u r r f r a g <= num fragments ; c u r r f r a g++) {
char f r a gmen t o f f s e t = (char) c u r r f r a g ;

i f (c u r r f r a g == num fragments)

f r a gmen t o f f s e t |= 1UL << 7 ;

s n p r i n t f (payload , s i z e o f (payload) , ‘ ‘%c%s ’ ’ , f r a gmen t o f f s e t ,

f u l l msg + ((PAYLOAD SIZE�2)⇤(cu r r f r a g �1))) ;

publ i sh mqtt (payload , t op i c) ;

}

Listing 4.3: Payload construction and fragmentation implementation. The full message

is constructed from the encrypted message and header fields. This length determines the

number of fragments necessary. Each fragment concatenates the o↵set with the chunk of

message which fits in the packet, according to the permitted payload size. This is then

sent to the intended topic.

MQTT Send. Each fragment must be prepared as an MQTT packet to be sent to

the broker. The fragment is put into the payload of the MQTT packet, and header

information such as the topic name, QoS level and packet ID are added to the packet.

This is then sent using MQTT infrastructure provided by the Zephyr Operating System.

Due to congestion constraints with this MQTT implementation, a 500ms interval should

be given between the sending of MQTT packets. When all fragments have been sent, the

device can return to idle state to wait for another message to be sent.

42

4.5 IoT Service Module

The IoT service module provides support for resource-unconstrained entities within the

system. These entities are clients within the MQTT framework, providing the IoT appli-

cation processes. They generally provide some or all of the top four layers of the CISCO

reference model (Fig. 2.1) - data accumulation, data abstraction, application and col-

laboration and processes. Data can be gathered and accumulated from any or all IoT

devices in play, where it can be analysed and applied in a useful manner. The service

can also present an interface through which to actuate a process or action on a device.

This component is provided with a Python module that implements the same capabilities

as the device library (Section 4.4). However, the implementation requires less overhead

optimisation, due to the resource-unconstrained nature of the component. The decryption

process is outlined, in the case where a message is received from a subscribed topic.

Decryption Process

When the client receives a message from the broker, it must be able to decrypt it in order

to utilise the plaintext message appropriately. Fragmentation is handled so that the entire

message is received and reassembled before decryption is carried out on it. Messages can

be sent in one or several fragments, so for each fragment the MSB of the fragmentation

o↵set is checked to see if the packet contains the final fragment. Sequential packet IDs

indicate fragments that make up the same message, and di↵erentiate between fragments

from separate messages. When the first fragment of a message is received, the client

parses the packet to extract the various fields. The fragmentation o↵set identifies that

it is the first fragment, and therefore contains the security header. The nonce and MAC

are stored, as well as the encrypted message payload, to be handled upon receipt of all

fragments.

The key ID is obtained from the security header. It is stored as a binary value in

two bytes in the header, and therefore is first converted to an integer. This value is used

to check the key cache, which is a hash table with the key ID as the key and the key

object as the value. In the case where the client is in possession of the required key, it

is stored in the message object to be used once all fragments have been received. If not,

the key is requested from the KMS, as per the process defined for the IoT device. This

key request is performed asynchronously to the message fragment reception. With each

fragment received, the encrypted message is concatenated. When the final fragment is

obtained, a concurrent future method is used to decrypt the compiled message as soon as

the required key is returned. Upon successful decryption, the application can make use

of the plaintext method appropriately.

43

de f decrypt (encrypted msg , nonce , key) :

c i phe r = AES. new(key , AES.MODECCM, nonce)

decrypted = c iphe r . decrypt (encrypted msg)

mac = decrypted [: 8]

msg = decrypted [8 :]

t ry :

c iphe r . v e r i f y (mac)

p r i n t ”The message i s authent i c ”

except ValueError :

p r i n t ”Key i n c o r r e c t or message corrupted ”

return None

re turn msg

Listing 4.4: Decryption implementation. An 8-byte nonce and 16-byte key are used to

decrypt messages. The first 8 bytes of the message represent the MAC, which is used to

verify message integrity before the decrypted message is returned.

4.6 Summary

The design laid out in Chapter 3 has been implemented as an end-to-end IoT scheme,

providing the required capabilities and services for all components of an MQTT-based

IoT system. The broker requirements have been outlined, using a minimal-configuration

Mosquitto implementation. The Key Management Service is executed as an autonomous

resource for the system, running entirely over the MQTT protocol. It conforms to the

decoupled and asynchronous nature of an MQTT system, adapting the request-response

paradigm accordingly. Libraries equip the system components with the necessary re-

quirements of the scheme, presenting an interface over which the processes outlined in the

above sections can be carried out. The implementation has been constructed with the

dual aims of maximising security and minimising overhead to the fullest extent possible.

44

Chapter 5

Evaluation

This chapter details a high-level overview of the system design and implementation, in-

cluding experimental results of system performance, comparison with other security in-

frastructures, discussion and potential alternative solutions. The system is analysed under

two lenses, the suitability for the MQTT-based IoT environment and the overall secure-

ness of the system. A central focus of suitability for IoT is in minimising overhead -

including bandwidth, time-to-idle, memory and the general overhead associated with sys-

tem implementation. This is discussed in section 5.1. The security analysis of the scheme

is contained within section 5.2. Finally, section 5.3 comprises an overall discussion of the

approach, the reasoning behind design choices and an analysis of suitability.

5.1 Overhead

Minimising overhead on the IoT device was a fundamental objective in the design of the

scheme. Several factors contributed to the realisation of this objective. First of all, a wide

range of encryption techniques were analysed, and the most suitable algorithm was chosen

with regard to minimising bandwidth and processing on the device. The design involves

the smallest possible number of added messages to be sent. A light code footprint library

was used to incur reduced memory requirements. The majority of security mechanisms

exist externally to the device itself, only requiring the device to process the most crucial

steps. In general, the implementation of the scheme is as lightweight as possible, and

optimisations have been made to minimise overhead in all areas.

Bandwidth is minimised by ensuring all messages comprise as few bytes as possible.

The first step in this endeavour is the choice of encryption technique. AES-128 CCM

mode symmetric-key encryption was chosen. Symmetric-key encryption generally pro-

duces ciphertext that is the same length as the plaintext, without incurring any bloat.

45

This is in comparison to asymmetric-key techniques, which must increase the data size

to obscure the length of the plaintext. This length information could be used along with

the public key, to attempt potential plaintext sequences of such a length and compare

them with the ciphertext. This is not an issue with private-key encryption, making it

more e�cient regarding bandwidth (McKay et al., 2017). Padding is, however, sometimes

needed to ensure the length of the plaintext is as long as the block size of the symmetric

algorithm. This is not necessary with CCM mode encryption.

Nineteen added bytes are required for every packet that is sent with the proposed

scheme, compared to the same message with no security. These consist of the fragmenta-

tion o↵set (one byte), the key ID (two bytes), the nonce (eight bytes) and the MAC tag (8

bytes). Assuming an MTU of 127 bytes, this incurs a 15% overhead for a full packet. In

the case of fragmentation, the full security header is not included in subsequent packets

after the initial one, and only one extra byte for the fragmentation o↵set is required.

Comparing the bandwidth requirements to TLS, it can be assumed that the same

ciphersuite is used, incurring a similar number of bytes for each message. The comparison

is really in the key exchange policy, with TLS using a handshake for session establishment

and the proposed scheme using MQTT requests and responses. TLS sets up a session for

an initial message to be sent, and these sessions can be resumed with fewer requirements

for subsequent messages. Considering the publish/subscribe framework, a TLS session

must be established for each published message, and then the broker must establish a

separate session for each subscriber to receive the message.

Message Field Average Length (Bytes)

ClientHello 170
SessionID 32
ServerHello 75
Certificate 6000 (4⇥ 1500)
ClientKeyExchange 130
ChangeCipherSpec 1
Finished 12
TLS Record Header 5
TLS Handshake Header 4

Table 5.1: Average TLS handshake message sizes.

Table 5.1 outlines the average length of messages and message fields involved in the

handshake procedure of TLS. An initial handshake sends seven handshake messages, four

of those being record messages, and will incur approximately 6.5k bytes:

7⇥ 4 + 4⇥ 5 + 170 + 32 + 75 + 6000 + 130 + 2⇥ 1 + 2⇥ 12 = 6481

46

The overhead necessary to resume an existing TLS session is 332 bytes, using four hand-

shake messages, three being record messages:

4⇥ 4 + 3⇥ 5 + 170 + 32 + 75 + 2⇥ 1 + 2⇥ 12 = 332

The initial handshake process must occur at least once per device, and the session can

then be resumed at lesser cost for every message to be sent or received. This compares

to the key request process of the proposed scheme. A request must be sent to the KMS

when a new key for a topic is required, or if the old key expires. Expiration time for keys

is variable depending on the system and network requirements, but can be an extended

period of hours to days or weeks. The key request (both encryption and decryption) is

of variable length, as it contains the client ID, password and topic name that all have

variable lengths. It should not require fragmentation. Similarly, the response from the

KMS contains the 16-byte key, expiration time and key ID, which will fit within one

packet.

Parameter Value

Publisher 1
Subscriber 1
Topic 1
Expiry Time 4 hours
Message Every 10 minutes
Message Length 50 bytes
Request Length 60 bytes
Response Length 75 bytes
Experiment Length 1 day

Table 5.2: Overhead experiment parameters.

An experiment compares the overhead of the two systems, using parameters as out-

lined in table 5.2. This aims to model a simple IoT system, with one publisher publishing

to a topic that is subscribed to by one subscriber. IoT systems generally send small

messages (10 to 100 bytes) at regular intervals, which is reflected in this scenario. The

parameters chosen are average values that are likely to occur in a real-world implemen-

tation of such a system. This experiment aims to give a general comparison between the

two implementations, and it is noted that varying the parameters can create exponentially

more complex systems that will give considerably di↵erent results.

TLS will require two session initialisations, between publisher and broker and then

broker and subscriber. It will then require session resumption for each new message that

47

is sent and received. This amounts to 108,578 bytes overall:

6481 + 6481 + 332⇥ 2⇥ (60÷ 10)⇥ 24 = 108, 578

The proposed scheme will require an initial request and response for both the publisher

and subscriber, and each time the key expires this is repeated. This amounts to 1,620

bytes:

(60 + 75)⇥ 2⇥ (24÷ 4) = 1, 620

There is evidently a huge bandwidth overhead involved in using TLS in comparison to

the proposed scheme. In this common IoT scenario, the scheme incurs only 1.5% of the

number of bytes necessary for the TLS implementation.

Figure 5.1: This graph analyses the average time the system takes from
when a new message is to be sent, until it is encrypted, sent and the
device returns to idle state. This varies with message size. These mea-
surements assume the key is cached locally.

IoT devices aim to exist in idle state for as long as possible, and to return to this idle

state quickly after an event has been processed. This is crucial for reserving resources,

and should be a consideration in the system design by way of minimising processing time.

Fig. 5.1 presents the time taken for the device to return to idle state once a message of a

48

certain size is encrypted and sent. These measurements have been taken with the required

key stored in the device’s local cache. The graph exhibits a step-wise linear relationship,

with the time increasing relative to the size of the message to be sent. The message size

is the deciding factor in the time incrementation, as it relates to the number of blocks

to be processed by the encryption algorithm. Fragmentation occurs at the MTU size of

127 bytes, yet the graph shows no obvious jump in processing time at these points where

multiple messages are sent.

Figure 5.2: This graph analyses the average time the system takes from
when a new message is to be sent, until the key is requested and received,
the message is encrypted, sent and the device returns to idle state. This
varies with message size.

The graph in Fig. 5.1 assumes the required key is stored locally. Round-trip time

measurements have also been collected for the case where a key request must be made

to the KMS before a message is to be sent. This can be seen in Fig. 5.2. This portrays

an extremely similar step-wise linear relationship, though with an upward shift on the

time axis. This indicates that the request time is a constant (approximately 520ms),

which gets added on to the message processing time once the key has been retrieved. In

both graphs it can be seen that there is slightly more variation in the processing time for

larger messages. This is due to the encryption error that sometimes occurs - when the

49

full message is not encrypted and encryption must be repeated until the correctly-sized

ciphertext is produced. This is more likely to occur in larger messages, and therefore

a↵ects the average processing time for such messages.

The times taken for messages to be processed and sent by the scheme are negligible

for most real-world IoT applications. A 40ms latency in transmitting a full packet will

not negatively impact the operation of a system. In particular, for this configuration,

a 500ms delay must be implemented between any MQTT messages that are sent. This

is because after a short amount of time of consistent MQTT messages, the transmission

mechanism becomes flooded and ceases to operate. As a result of this, the throughput for

the scheme and for the system with no security implementation is extremely similar. For

the most part, the security processing can be done within the required delay timeframe.

In the occasional case where a new key is required, the delay will be slightly longer than

the required delay. This is in comparison to TLS, which must account for the round-trip

time of four handshake messages whenever a session is resumed for a new message to be

sent.

The general implementation overhead of the system is relatively low, particularly in

comparison with TLS. It is clear that in the resource-constrained environment of IoT,

TLS can be wholly unsuitable, requiring a considerable amount of extra bandwidth and

processing than is necessary for an IoT message that, relatively, is extremely small. The

proposed solution o↵ers a manageable security scheme, designed specifically for such an

environment. The KMS manages the bulk of the computation, allowing the IoT devices

to operate with minimal awareness of the security infrastructure in place.

5.2 Secureness

The fundamental purpose of the design is to provide a secure means of communication

between IoT devices and the system components, through the MQTT broker. It must

be ensured that the security is robust, and the service being provided by the scheme is

legitimate. By definition of a security system, it should protect its client against threats

and vulnerabilities. The end-user must trust the scheme to fully and reliably maintain

this purpose. Risks can be very high in the case of failure. For these reasons, a security

scheme such as this must undergo rigorous testing to ensure end-to-end secureness. This

section outlines a slightly more lightweight security evaluation, as this is a first iteration

of the scheme. Upon further development, more rigorous real-world penetration testing

can be carried out to identify any vulnerabilities that should be addressed. However, the

confidence in the system at this level of analysis is high.

Complexity is the downfall of a security system (Bellovin, 2016). An overly-complex

50

system can lead to the appearance of security flaws that are di�cult to identify and

analyse. When designing the scheme, simplicity was an essential objective - both in

terms of security and overhead minimisation. The core security components are the

encryption and MAC implementation, key caching and Key Management Service. Within

the KMS are security aspects such as authentication, authorisation, key exchange and

system monitoring. These all provide essential, yet simple, functionalities to the secure

and robust communication between IoT clients within the system. The components must

work autonomously and in tandem to provide the end-to-end security expected. The

failure of any one aspect can jeopardise the entire system. In order to analyse the security,

potential threats and attacks will be considered. This will reveal how well the system

defends against such an attack.

The first attack to consider is that of a compromised broker. IoT systems often

use an open, third-party broker to route messages between clients. With no security

implementation in place, an attacker can access such a broker, subscribe to a topic and

receive any published messages. It could also launch an attack on the broker with the aim

to access any messages presently stored within it. The proposed scheme adequately deals

with such an attack. Firstly, the scheme requires all devices to be authenticated by the

KMS and the broker, and any node whose ID and password is not on the whitelist will

not be permitted to subscribe to a topic. On top of this, any message that is stored in the

broker is encrypted, therefore a broker attack will not reveal any sensitive information.

The broker is a separate entity with no access to or information on the keys needed to

decrypt the messages.

Some common attacks to consider within TCP-based communications are eavesdrop-

ping attacks and Man in the Middle attacks (Tuna et al., 2017). An eavesdropping attack

is when packets are sni↵ed in transit, and the data within them is gathered. The pay-

load will be encrypted, and thus an eavesdropping attack will not reveal any sensitive

information. As outlined in Section 3.4, AES-128 is secure against attacks in which the

attacker has no access to the required key. A Man in the Middle attack similarly occurs

when packets are intercepted in transmission, and are modified before being forwarded

on to the broker or subscriber. This attack targets the integrity of the message, which is

secured with the Message Authentication Code (MAC) included within CCM encryption.

The recipient will perform an integrity check on the message, which will reveal whether

the message has been tampered with in any way.

IoT systems can often be vulnerable to Distributed Denial of Service (DDoS) botnet

attacks. A botnet harnesses a number of unsecured devices through implanted malware,

and uses them to launch an extensive DDoS attack (Jerkins, 2017). This entails using

the devices to send a large amount of requests, flooding a target system and rendering it

51

unusable. These devices are vulnerable because of their lack of security, but due to the

authentication and authorisation mechanisms within the scheme, only approved commu-

nication can occur and botnets cannot penetrate such a network. On the other hand, the

IoT system itself can be vulnerable to a DoS attack. The KMS performs passive tra�c

analysis on the overall system, identifying patterns and isolating any requests likely to

overload the system. The KMS can then blacklist such clients immediately, and alert the

system administrator to mitigate the damage.

In order to adequately evaluate the security of the scheme, it must be compared to

the security of a TLS implementation. The immediate advantage of the scheme over TLS

is the provision of end-to-end security, whereas TLS only provides security from broker to

client. TLS maintains an impenetrable channel between sender and receiver over which

encrypted messages can be sent. This scheme does not provide such a channel, relying

only on the encryption mechanisms for defense. The lack of private channel allows packets

to be intercepted, though as detailed above, no sensitive information will be revealed.

However, the header fields exist in plaintext, and an attacker can glean some information,

such as topic name, by accessing packets and interpreting the header information. An

attacker can gather information on the regular patterns of communication, such as timing,

regularity and topic, and use this to launch a more sinister attack. This cannot occur

when an established channel exists between entities, as in a TLS implementation.

Due to the fact that payload encryption exists on the application layer and TLS exists

below this layer, the proposed scheme can be utilised in tandem with TLS. This will

provide both secure channel and end-to-end security for an application. The scheme has

been designed with the perspective of an extremely resource-constrained IoT system. This

is not always the case in IoT, and many devices have enough compute power to support

protocols such as TLS. It is still important to design a system for e�ciency, and optimise

for processing and bandwidth constraints. IoT applications with fewer constraints will

still have use for such a system, and payload encryption in conjunction with TLS will

provide increased security.

5.3 Discussion

As outlined in Sections 5.1 and 5.2, the scheme successfully provides authenticated payload

encryption to a resource-constrained environment such as IoT. It a↵ords an alternative to

TLS for the MQTT framework, improving upon TLS in several respects. This is partic-

ularly important for real-world IoT applications that cannot support resource-intensive

security mechanisms. This leads to the deployment of insecure systems, due to the lack of

security options available. The scheme aims to be adaptable to a wide range of applica-

52

tions, providing capabilities through libraries for a straightforward implementation. It is

designed to be flexible in accommodating applications with a wide range of requirements,

capabilities and environments. The scheme is scalable, with no limit to the number of

components that can be supported. The only limit to scalability is in the initial deploy-

ment, in which a new device must be registered with the KMS. Once this step is complete,

the security scheme will work autonomously as required by the system.

Several overarching decisions were made upon the inception and continued develop-

ment of the scheme, in order to adequately provide a solution for the proposed problem.

The initial decision was to examine MQTT as an IoT protocol, and provide an applied

security solution to suit such a protocol and environment. The choice was made to focus

on MQTT over a number of other protocols, such as CoAP, AMQP, XMPP or MQTT-SN.

A symmetric-key implementation was selected, over TLS or asymmetric-key encryption.

The design was driven by the objective of providing a lightweight security implementation,

and design decisions were formed based on balancing security and usability.

MQTT is the most widely used and accepted application-layer protocol in practical

IoT applications. Its publish/subscribe architecture is suitable for many IoT scenarios,

though due to the fact that it runs over TCP/IP, it is not the most lightweight framework.

It has little to no security infrastructure, recommending TLS as a security layer, which is

generally too resource-intensive to be supported in IoT scenarios. MQTT-SN (MQTT for

Sensor Networks) was also considered. This is an adapted protocol that does not require

the TCP/IP stack, and optimises MQTT for low-powered networks (Zhao & Ge, 2013).

However, MQTT-SN is not well supported, and is not used extensively in IoT. The design

aims to improve the current state of IoT by providing a suitable security scheme for the

most widely used IoT protocol.

The decision was made to devise the entire system through the same protocol - MQTT.

This involves all components communicating through the broker, including the KMS. An-

other option that was considered was to use a di↵erent protocol, such as CoAP or HTTP,

for RESTful communications with the KMS for key exchange. This would essentially

provide the KMS functionalities as an entirely separate system to the already established

MQTT system. CoAP is a suitable protocol for such a scenario, due to its lightweight

request/response architecture. However, it was deemed that the added overhead involved

in supporting another protocol was unnecessary. As demonstrated, MQTT can be ad-

equately adapted to fit a request/response framework. Using one protocol presents the

added benefit of compliance and flexibility with the needs of the application. It also allows

straightforward system monitoring, and the ability to synchronise with the broker.

Some design decisions have been made that given more time and development, could

be altered and implemented in a more e�cient fashion. For example, as a result of the

53

constraints of the development system used, it was necessary to implement fragmentation

on the application layer. This is due to the fact that messages over the MTU length would

not send, and fragmentation was not realised on a lower layer. 6LoWPAN guarantees

fragmentation in order to adapt large IPv6 packets to size requirements of constrained

protocols (Wang & Mu, 2017). This was not enforced in the 6LoWPAN implementation

used, and therefore it was necessary to devise a fragmentation policy. Upon further

development, 6LoWPAN fragmentation should be utilised.

Another design decision that could be reconsidered or analysed further is the cache

update policy. The scheme currently updates the key cache only when necessary, i.e.

when a message is to be sent and it is found that an invalid key exists in the cache. A

more e�cient method could be enforced that will trigger an interrupt when the system

recognises that a key in the cache has become invalid, usually by expiring. Both im-

plementations have merit, and it may depend on the requirements of the application to

define the correct strategy to use. The current strategy allows the system to only request

keys that it needs, without making any unnecessary requests to the KMS. The alternative

strategy allows keys to be constantly up-to-date, and there will be no added delay in

messages that must wait for a key response before sending. The decision comes down to

prioritising low message latency or minimal key requests. It can also vary depending on

the number and variation of topics being used by the same device.

In order to improve upon TLS for resource-constrained environments, the chosen en-

cryption must minimise processing, memory requirements and added overhead. Symmetric-

key encryption has a relatively low computational overhead compared to asymmetric key

encryption, requires lower bandwidth and has no need for storing large keying materials

in memory. AES-128 CCM mode encryption was chosen due to its provision of encryp-

tion and message integrity, its extremely low bandwidth requirements, and its strength

of security. Hybrid approaches use symmetric techniques for encryption and asymmetric

techniques for key exchange. The design improves upon these approaches by o↵setting

the key management processing to a resource-unconstrained service. Overall this leads to

a secure, reliable low-overhead system.

5.4 Summary

The scheme has been evaluated through examining how secure of a system it is, as well

as how well it suits the IoT paradigm. These are the two pillars that the scheme has

been designed and built around from conception. All of the major design decisions have

been formulated based on these criteria. The overhead incurred by the system has been

analysed, and compared with the de-facto standard security protocol, TLS. This analysis

54

shows how significantly it improves upon TLS with regard to bandwidth, processing and

time-to-idle. In Section 5.2 the security of the scheme is evaluated, considering the system

components, potential security breaches and a TLS comparison. It was found that the

system is secure against many common attacks, as it adequately provides the CIA triad

- confidentiality, integrity and availability. Finally, design decisions were scrutinised to

assess their suitability and validity for the scheme.

55

Chapter 6

Conclusions & Future Work

6.1 Conclusions

An authenticated payload encryption scheme has been developed for use in MQTT-based

IoT systems. The area was chosen to focus on due to the exponential growth of the

IoT industry, and the lack of appropriate security solutions available for such resource-

constrained environments. The solution aims to provide a flexible, lightweight end-to-end

security scheme for the publish/subscribe architecture of MQTT. All essential security

facets have been provided for, resulting in a complete security architecture that can be

integrated seamlessly into a real-world IoT application. This compares to several solutions

that only focus on one aspect of security, such as encryption (Katsikeas et al., 2017) or

authentication (Moustaine & Laurent, 2012).

The design was heavily optimised to suit a resource-constrained environment, and

this lead to an e�cient system. A significant amount of research and experimentation

were carried out to find the ideal techniques and algorithms to use, in order to balance

security with usability. The purpose of the scheme is primarily to provide security, and

this was always at the forefront of decision-making. Any overhead optimisations that

could jeopardise the robust security of the scheme were eliminated. Security centres

around trust, and a security scheme must guarantee the trustworthiness and legitimacy

of its security implementation to its users. Nonetheless, a lightweight protocol was still

developed with significant improvements over TLS in bandwidth, average packet size,

memory, computation and time-to-idle. The scheme successfully fulfills its objectives and

provides a solution to the formulated problem.

56

6.2 Future Work

The scheme has been developed as a functional and usable system, as outlined in Chapter

4. Upon further development, the system could be optimised and tested more rigorously.

Each aspect of the scheme could be thoroughly analysed considering the most e�cient

use of resources, and alternative design decisions could be compared and tested to prove

or disprove their e↵ectiveness. In terms of security, penetration testing can be applied to

the system to identify any security vulnerabilities that should be dealt with and improved

upon. This would involve launching a range of simulated attacks on the system, in order

to evaluate its strength of security. Finally, the scheme could be applied to a real-world

IoT system, in order to evaluate its functional overhead and usability, and assess the

theoretical grounds it was built upon. As it stands, the scheme operates satisfactorily,

and with further testing and development, a more robust and durable system could be

produced.

57

Bibliography

A. Banks, R. G. (2014). Mqtt version 3.1.1. OASIS Standard.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Inter-

net of things: A survey on enabling technologies, protocols, and applications. volume 17

(pp. 2347–2376).

Alaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of things

security: A survey. Journal of Network and Computer Applications, 88, 10 – 28.

Almuhammadi, S. & Al-Hejri, I. (2017). A comparative analysis of aes common modes

of operation. In 2017 IEEE 30th Canadian Conference on Electrical and Computer

Engineering (CCECE) (pp. 1–4).

Ammar, M., Russello, G., & Crispo, B. (2018). Internet of things: A survey on the

security of iot frameworks. Journal of Information Security and Applications, 38, 8 –

27.

Bacon, J., Eyers, D., & Singh, J. (2009). Security in multi-domain event-based systems.

it - Information Technology, 51(5), 277.

Bellovin, S. M. (2016). Thinking Security: Stopping next Year’s Hackers. Addison-Wesley.

Chung, J. H. & Cho, T. H. (2016). Adaptive energy-e�cient ssl/tls method using fuzzy

logic for the mqtt-based internet of things. International Journal Of Engineering And

Computer Science, 5(12).

CISCO (2014). Cisco iot reference model white paper. http://cdn.iotwf.com/

resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf. Accessed:

2018-03-30.

Darroudi, S. M. & Gomez, C. (2017). Bluetooth low energy mesh networks: A survey.

Sensors (14248220), 17(7), 1 – 19.

Fortify, H. P. (2014). Hp internet of things research study. Hewlett Packard Enterprise.

58

Hoeppe, A. (2017). Predicts 2017: Industrie 4.0. Gartner.

Jan, M. A., Khan, F., Alam, M., & Usman, M. (2017). A payload-based mutual authen-

tication scheme for internet of things. Future Generation Computer Systems.

Jerkins, J. A. (2017). Motivating a market or regulatory solution to iot insecurity with

the mirai botnet code. In Computing and Communication Workshop and Conference

(CCWC), 2017 IEEE 7th Annual (pp. 1–5).: IEEE.

Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., & Alonso-Zarate, J. (2015). A

survey on application layer protocols for the internet of things. Transaction on IoT and

Cloud Computing, 3(1), 11–17.

Katsikeas, S., Fysarakis, K., & Miaoudakis, A. (2017). Lightweight & secure industrial

iot communications via the mq telemetry transport protocol. 2017 IEEE Symposium

on Computers and Communications (ISCC), Computers and Communications (ISCC),

2017 IEEE Symposium on, (pp. 1193).

Katz, J. (2014). Introduction to modern cryptography. Chapman & Hall/CRC.

Kong, J. H., Ang, L.-M., & Seng, K. P. (2015). A comprehensive survey of modern

symmetric cryptographic solutions for resource constrained environments. Journal of

Network and Computer Applications, 49, 15 – 50.

Kouicem, D. E., Bouabdallah, A., & Lakhlef, H. (2018). Internet of things security: A

top-down survey. Computer Networks.

McKay, K. A., Feldman, L., & Witte, G. A. (2017). Report on lightweight cryptography.

Mektoubi, A., Hassani, H. L., Belhadaoui, H., Rifi, M., & Zakari, A. (2016). New approach

for securing communication over mqtt protocol a comparaison between rsa and elliptic

curve. In Systems of Collaboration (SysCo), International Conference on (pp. 1–6).:

IEEE.

Morabito, R., Cozzolino, V., Ding, A. Y., Beijar, N., & Ott, J. (2018). Consolidate iot

edge computing with lightweight virtualization. IEEE Network, 32(1), 102–111.

Mosenia, A. & Jha, N. K. (2017). A comprehensive study of security of internet-of-things.

IEEE Transactions on Emerging Topics in Computing, 5(4), 586–602.

Moustaine, E. E. & Laurent, M. (2012). A lattice based authentication for low-cost

rfid. In 2012 IEEE International Conference on RFID-Technologies and Applications

(RFID-TA) (pp. 68–73).

59

Neisse, R., Steri, G., & Baldini, G. (2014). Enforcement of security policy rules for the

internet of things. In 2014 IEEE 10th International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob) (pp. 165–172).

Neisse, R., Steri, G., Fovino, I. N., & Baldini, G. (2015). Seckit: A model-based security

toolkit for the internet of things. Computers & Security, 54(Secure Information Reuse

and Integration & Availability, Reliability and Security 2014), 60 – 76.

Nguyen, K. T., Laurent, M., & Oualha, N. (2015). Survey on secure communication

protocols for the internet of things. Ad Hoc Networks, 32, 17 – 31. Internet of Things

security and privacy: design methods and optimization.

Onica, E., Felber, P., Mercier, H., & Riviere, E. (2016). Confidentiality-preserving pub-

lish/subscribe, a survey. ACM Computing Surveys, 49(2), 1–43.

Rizzardi, A., Sicari, S., Miorandi, D., & Coen-Porisini, A. (2016). Aups: An open source

authenticated publish/subscribe system for the internet of things. Information Systems,

62, 29 – 41.

Shin, S., Kobara, K., Chuang, C.-C., & Huang, W. (2016). A security framework for

mqtt. In 2016 IEEE Conference on Communications and Network Security (CNS) (pp.

432–436).

Sicari, S., Rizzardi, A., Grieco, L., & Coen-Porisini, A. (2015). Security, privacy and trust

in internet of things: The road ahead. Computer Networks, 76, 146 – 164.

Singh, M., Rajan, M. A., Shivraj, V. L., & Balamuralidhar, P. (2015). Secure mqtt for

internet of things (iot). In 2015 Fifth International Conference on Communication

Systems and Network Technologies (pp. 746–751).

Szalachowski, P., Ksiezopolski, B., & Kotulski, Z. (2010). Cmac, ccm and gcm/gmac:

Advanced modes of operation of symmetric block ciphers in wireless sensor networks.

Information Processing Letters, 110(7), 247 – 251.

T. Dierks, E. R. (2008). The transport layer security (tls) protocol, version 1.2. IETF

RFC 5246.

Tuna, G., Kogias, D. G., Gungor, V. C., Gezer, C., Takn, E., & Ayday, E. (2017). A

survey on information security threats and solutions for machine to machine (m2m)

communications. Journal of Parallel and Distributed Computing, 109, 142 – 154.

60

Unger, S., Pfei↵er, S., & Timmermann, D. (2012). Dethroning transport layer security

in the embedded world. In 2012 5th International Conference on New Technologies,

Mobility and Security (NTMS) (pp. 1–5).

Urien, P. (2017). Introducing tls/dtls secure access modules for iot frameworks: Con-

cepts and experiments. In 2017 IEEE Symposium on Computers and Communications

(ISCC) (pp. 220–227).

Wang, X. & Mu, Y. (2017). Communication security and privacy support in 6lowpan.

Journal of Information Security and Applications, 34, 108 – 119.

Yassein, M. B., Shatnawi, M. Q., Aljwarneh, S., & Al-Hatmi, R. (2017). Internet of

things: Survey and open issues of mqtt protocol. In 2017 International Conference on

Engineering MIS (ICEMIS) (pp. 1–6).

Z. Shelby, K. Hartke, C. B. (2014). The constrained application protocol (coap). Internet

Engineering Task Force (IETF).

Zhao, K. & Ge, L. (2013). A survey on the internet of things security. In Computational

Intelligence and Security (CIS), 2013 9th International Conference on (pp. 663–667).:

IEEE.

61

	Introduction
	Fonts, sizes, justification
	Headings of sections and subsections
	Subsection name style
	Length of the report

	Contents of the Introduction
	Contents of the background chapter
	The Conclusions chapter

	Figures, Tables and Referencing
	Figures
	Tables
	Equations
	Referencing published work

	LaTeX
	Evaluation
	Conclusion
	Appendix
	Appendix numbering

