*ﬁ \\y Trinity College Dublin
e Colaiste na Trionoide, Baile Atha Cliath
= The University of Dublin

School of Computer Science and Statistics

Authenticated Payload Encryption
Scheme for Internet of Things Systems
over the MQTT Protocol

Sorcha Nolan
13317836

May 17, 2018

A dissertation submitted in partial fulfilment
of the requirements for the degree of
MAT (Computer & Electronic Engineering)

http://www.scss.tcd.ie

Declaration

[, the undersigned, declare that the following dissertation, except where otherwise
stated, is entirely my own work; that it has not previously been submitted as an exercise

for a degree, either in Trinity College Dublin, or in any other University.

Sorcha Nolan

May 17, 2018

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Sorcha Nolan

May 17, 2018

Acknowledgments

I would like to thank a number of people who have made this dissertation possible. First
of all, T would like to sincerely thank my supervisor Dr. Stefan Weber for all of his
help, guidance and valued time given throughout the project. The constant support,
consultation and encouragement have been invaluable in the completion of the following
dissertation.

I am very grateful for the technical advice I have received from Dr. Jonathan Dukes,
along with his introduction to the Internet of Things, providing me with the strong
background necessary to complete this dissertation.

I would also like to include a special note of thanks to all those involved with the
Masters programme at Trinity College Dublin, in both the Engineering department and
Computer Science department. In particular, Dr Mike Brady, MAI coordinator in the
Department of Computer Science.

Finally, I would like to express my sincere gratitude to my family for their advice and
endless encouragement in my academic endeavours, without them this dissertation would

certainly not have been possible.

SORCHA NOLAN

University of Dublin, Trinity College
May 2018

v

Abstract

The Internet of Things (IoT) comprises resource-constrained devices connected to the
Internet, interacting with the real world within a wide range of applications. The recent
large-scale commercialisation of these low-powered devices has lead to significant secu-
rity concerns. Message Queue Telemetry Transport (MQTT) is the most widely used
application-layer protocol over IoT. A robust and lightweight security scheme is required
for use with this protocol, as the security aspect has been omitted from the protocol de-
sign. Transport Layer Security (TLS) is recommended in this scenario, though it is often
unsuitable due to its resource-intensive nature and lack of end-to-end security provision.
A scheme has been proposed using symmetric-key payload encryption, designed entirely
over the MQTT protocol. This solution requires minimal overhead on the IoT device,
offloading the bulk of the resource-intensive computation onto a central Key Management
Service. Overhead is minimised with regard to bandwidth, time-to-idle, memory and com-
putation, and improves upon TLS in all of these areas. The scheme successfully provides

secure and authenticated end-to-end communication between clients in the system.

Contents

Acknowledgments iv
Abstract \%
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Overview 2
1.3 Roadmap 3
Chapter 2 State of the Art 4
2.1 Internet of Things Protocols 4
2.1.1 Message Queue Telemetry Transport 7

2.1.2 Constrained Application Protocol 8

2.1.3 6LoWPAN 9

2.1.4 Bluetooth Low Energy 9

2.2 Security 9
2.2.1 Transport Layer Security 11

2.2.2 Payload Encryptiono 12

2.2.3 Symmetric-Key Encryption00 13

2.3 Closely-related Projectso 14
2.4 Problem Formulation L 17
Chapter 3 Design 19
3.1 OVerview 19
3.2 Logical Architecture 20
3.2.1 Publisher 21

vi

3.3
3.4
3.5
3.6
3.7
3.8

3.2.2 Subscriber
3.2.3 Broker
3.2.4 Key Management Service
Sequence of Events
Encryption
Authentication & Access Control
Key Cache
Data Architecture

SUmMmary

Chapter 4 Implementation

4.1
4.2
4.3
4.4
4.5
4.6

Deployment Architecture oo
MQTT Broker
Key Management Service
[oT Device Library
[oT Service Module

SUMMATY oo

Chapter 5 Evaluation

5.1
5.2
2.3
5.4

Overhead s,
SECUTCNESS . .« v o o o o e e
Discussion

SUmMmMAary

Chapter 6 Conclusions & Future Work

6.1 Conclusions
6.2 Future Work
Bibliography

Vil

30
30
31
32
35
43
44

45
45
20
52
o4

56
26
57

58

List of Tables

2.1 Comparing symmetric key modes of encryption. 14
5.1 Average TLS handshake message sizes. 46
5.2 Overhead experiment parameters. A7

viil

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

0.1
0.2

CISCO Reference Modelo 5
[oT Protocol Stack 6
Border Router Setup 7
The Architecture of MQTT 8
The Architecture of TLS 11
Logical Architecture 21
Sequence Diagram for Message Delivery 23
Security Relationships for Symmetric Key Encryption 25
MQTT Message Format 28
Deployment Architecture Diagram 31
Entity Relationship Diagram for the KMS 34
Entity Relationship Diagram for KMS Monitoring 35
Encryption and Key Request Process 38
Time-to-Idle vs. Message Size 48
Round-Trip Time vs. Message Size 49

1X

Nomenclature

6LBR 6LoWPAN Border Router

6LN 6LoWPAN Link Node

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
ABE Attribute-Based Encryption

ACL Access Control List

AES Advanced Encryption Standard

AMQP Advanced Message Queuing Protocol
API Application Programming Interface

AWS Amazon Web Services

BLE Bluetooth Low Energy

CA Certificate Authority

CBC-MAC Cipher Block-Chaining Message Authentication Code
CCM Counter Mode with CBC-MAC

CIA Confidentiality, Integrity & Availability
CoAP Constrained Application Protocol

DDoS Distributed Denial of Service

DES Data Encryption Standard

DTLS Datagram Transport Layer Security

DoS Denial of Service

ECDSA Elliptic Curve Digital Signature Algorithm
GCM Galois/Counter Mode

HMAC Hash-based Message Authentication Code
HTTP Hypertext Transfer Protocol

P Internet Protocol (IPv4/IPv6)

v Initialisation Vector

[oT Internet of Things

KMS Key Management Service

LLN Low-powered & Lossy Networks

LRU Least Recently Used

LSB Least Significant Bit

M2M Machine-to-Machine

MAC Message Authentication Code

MQTT Message Queue Telemetry Transport
MQTT-SN Message Queue Telemetry Transport

MSB Most Significant Bit

MTU Maximum Transmission Unit

NIST National Institute of Standards and Technology
OSI Open Systems Interconnection model
QoS Quality of Service

REST Representational State Transfer
RFID Radio-Frequency Identification

RSA RivestShamirAdleman cryptosystem
RTOS Real-Time Operating System

SDK Software Development Kit

SHA Secure Hash Algorithm

SQL Structured Query Language

SSL Secure Sockets Layer

TCP Transmission Control Protocol
TLRU Time-aware Least Recently Used
TLS Transport Layer Security

UDP User Datagram Protocol

XMPP Extensible Messaging and Presence Protocol

x1

Chapter 1
Introduction

The Internet of Things (IoT) is connecting physical objects to the Internet at an unprece-
dented rate - from smart homes to smart cities, the healthcare system to autonomous
vehicles. Gartner estimates that there will be 21 billion connected “things” by 2020
(Hoeppe, 2017). IoT has provided a platform to allow unprecedented development and
discovery within a wide range of applications. Along with this potential, however, are
the rapidly increasing requirements for the large-scale deployment and commercialisation
of IoT, resulting in major security concerns (Alaba et al., 2017). This is due to the fact
that implementing security is resource-intensive, and can be a difficult and expensive en-
deavour to apply to low-powered devices. It is therefore not always seen as a worthwhile
pursuit.

The majority of IoT devices and networks are constrained in resources, depending on
their application, design, location and topology. They can be constrained with regard
to battery power, memory, processing power, bandwidth and transfer unit. For this
reason, standard Internet transport protocols are not used for most IoT implementations.
Lightweight protocols or adapted versions of standard protocols are instead used, allowing
minimum processing and overhead on the IoT device. In order to keep these protocols as
lightweight as possible, security protocols are generally omitted, allowing the implementer
to decide the level of security necessary for their particular application (Nguyen et al.,
2015).

One of the most prevalent application-layer protocols over IoT is Message Queue
Telemetry Transport (MQTT). MQTT is a lightweight publish/subscribe messaging trans-
port protocol for machine-to-machine (M2M) and IoT contexts. This employs a central
broker, hosting topics that can be published and subscribed to by system clients. It is
concerned only with message transmission, and it is the implementer’s responsibility to

provide appropriate security features (A. Banks, 2014). This is commonly achieved by us-

ing Transport Layer Security (TLS). While TLS may be the most straightforward security
protocol to implement, it is not always the most appropriate one for an IoT application.

This chapter gives a brief introduction into the research area, context and contents of
the dissertation to follow. The motivation and relevancy of the research area is delineated
in Section 1.1. Section 1.2 gives an overview of the solution that has been proposed.
Finally Section 1.3 outlines the structure of the dissertation, introducing each chapter

and its respective contents.

1.1 Motivation

Security is a significant issue in resource-constrained IoT environments. The number
of commercial IoT systems deployed without adequate security mechanisms is growing
exponentially, leading to an abundance of vulnerabilities and insecurities. A study carried
out by HP Fortify (2014) states that 70% of IoT devices currently in market do not have
an adequate security implementation. The Mirai botnet attack (Jerkins, 2017) is a notable
example of ToT security failure, where thousands of insecure IoT devices were infected
by malware and controlled for use in a massive Distributed Denial of Service (DDoS)
attack. These insecurities have lead to a lack of trust in IoT in some spheres, somewhat
limiting confident growth in the industry. Security is difficult, particularly in a resource-
constrained environment. It is imperative that research in security keeps up with the

fast-paced ongoing developments in other aspects of IoT.

1.2 Overview

This dissertation presents a payload encryption scheme for use in MQTT-based IoT sys-
tems. The proposed scheme runs entirely over the MQTT protocol, to be integrated
seamlessly into an IoT application. The scheme aims to provide a flexible, robust and
thorough security architecture. Capabilities are provided for the clients in the system to
encrypt and decrypt messages using symmetric-key encryption for confidentiality, as well
as ensuring the integrity of the message through Message Authentication Codes (MACs).
These messages remain encrypted while being stored by the broker, ensuring end-to-end
security within the publish/subscribe framework. A central Key Management Service
(KMS) provides key exchange, key lifecycle management, authentication, access control
and monitoring services to the system. This service is unconstrained in resources and
handles any complex or extraneous processing, allowing only the essential computation

to occur on the IoT devices.

1.3 Roadmap

The structure of the dissertation is laid out as follows. Chapter 2 contains the State of
the Art, describing the background, existing work and research going into the area of
[oT security. This details IoT protocols, particularly MQTT, security implementations
and considerations and closely-related research. These are examined to formulate the
problem to be solved. Chapter 3 is the Design chapter, specifying how and why the
solution was devised in light of the problem formulation. An in-depth exposition of
the scheme implementation is presented in Chapter 4. This outlines the deployment
architecture, technologies used and components involved in the development of the system.
An evaluation of the system is carried out within Chapter 5, providing an analysis of
overhead, security and a general discussion of design decisions and scheme implementation.

Finally, conclusions and future work are considered within Chapter 6.

Chapter 2

State of the Art

The State of the Art describes the background, existing work and current research go-
ing into the area of IoT security. Section 2.1 begins with an analysis of IoT protocols
and protcols providing for a resource-constrained environment. This section focuses on
MQTT, as well as detailing other relevant protocols such CoAP, 6LoWPAN and Blue-
tooth Low Energy. Following this, Section 2.2 gives an in-depth review of security, in
general and within the scope of IoT. Within this section exists an assessment of various
security implementations, with a more granular focus on the most relevant implementa-
tions for the solution design. These include TLS, payload encryption and symmetric-key
encryption. Section 2.3 reviews current research into closely-related areas, providing a
critical view of this research, used to inform the subsequent design. These sections are all

used to consolidate a problem formulation, which is detailed in Section 2.4.

2.1 Internet of Things Protocols

The Internet of Things is a framework that allows physical objects to be connected to the
Internet, share information and coordinate decisions. Due to the heterogeneous and varied
nature of IoT, a suite of [oT protocols have been developed to satisfy the unique concerns
that arise. A flexible, multi-layered architecture is necessary to accommodate the needs
of billions of heterogeneous devices (Al-Fuqaha et al., 2015). Standard Internet protocols
have been designed over the years for a human-to-machine, resource-unconstrained envi-
ronment, with little concern for added communication overhead. On the other hand, the
[oT environment involves mainly M2M communication, with several small, low-powered
resource-constrained devices. Protocols have been developed to minimise processing on
the IoT device, and be able to integrate with standard Internet protocols to form an

Internet connection.

A universal IoT architecture has yet to be established, though several potential refer-
ence models have been proposed with varying levels of complexity (Mosenia & Jha, 2017).
A three-layer architecture (application, network and perception layers) and a five-layer,
middleware-based architecture have both been proposed. In 2014, CISCO developed a

seven-layer architecture that has the potential for standardisation across IoT (Fig. 2.1).

Collaboration & Processes

(Data Element Analysis & Transfermation

Connectivity

(Communication & Procassing Units) 1
!

Physical Devices & Controllers ' —— - Edgemw
- INSOrs, MICEs, Nes,
Intelligent Edge Nodes of all types

e (InvoNing People & Business Processes) Data at
Rest
o Application
(Reporting, Analytics, Control)
0 Data Abstraction
(Aggregation & Acoass) Data in
Data Accumulation Motion
(Storage)
o Edge (Fog) Computing

(The “Things” in loT)

Figure 2.1: CISCO Seven-Level Reference Model (CISCO, 2014).

The first level consists of the physical devices - such as sensors, actuators and RFID
tags. The next level is the communication layer, consisting of components and protocols
that enable transmission of information between devices and to the cloud. Level 3 en-
capsulates edge computing, enabling data to be processed close to or at the source. This
process reduces computational load and decreases latency (Morabito et al., 2018), and
is particularly useful in real-time applications. Level 4 is the data accumulation layer,
where network packets are filtered according to storage requirements and converted to
database tables. The data abstraction layer renders the data for more efficient process-
ing, using processes such as normalisation, consolidation and indexing. The application
layer is where the data is interpreted and analysed. The final layer represents the users
and business processes that make use of the data and system as a whole.

Several communication protocols have been developed or adapted to suit the IoT
paradigm, and serve the needs of layer 2 of the CISCO reference model. In order to ade-
quately serve the resource-constrained devices prevalent in IoT - compressed, lightweight
and efficient protocols are necessary. Protocols must be robust and self-healing to serve

M2M communication, often over low-powered and lossy networks (LLNs). The protocols

should support the transmission of short bursts of information with a small number of
bytes, before allowing the device to return to standby mode. Ideally, communication

should be connectionless, asynchronous and event-driven (Karagiannis et al., 2015).

loT Application

Application Layer MQTT/CoAP
Transport Layer TCP/UDP
Internet Layer IPv6/6LoWPAN

Bluetooth Low Energy/

Network/Link Layer |EEE 802.15.4

Figure 2.2: IoT Communication Protocol Stack.

Fig. 2.2 depicts the IoT communication protocol stack, identifying common protocols
at each layer that have been designed or adapted to fit the [oT model. The lower OSI layers
are provided by network infrastructure protocols such as Bluetooth Low Energy (BLE)
or IEEE 802.15.4. The Internet layer creates IPv6 packets from IoT data to transmit.
6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks) is a standard that
allows adaptation between constrained IoT protocols and IPv6. Several application-layer
[oT protocols exist, the most prevalent being MQTT and CoAP. MQTT runs over TCP
as the transport layer, and CoAP uses UDP. The IoT application interacts with the
application-layer messages to utilise and act upon the information transmitted.

A common IoT network configuration can be seen in Fig. 2.3. This consists of a
number of resource-constrained devices in an environment, communicating with an IoT
gateway that forwards packets to the cloud. This gateway can also have edge computing
capabilities, as in Fig. 2.1 level 3. The gateway can provide support on all levels of
the IoT protocol stack. Network standards such as BLE have a low transmission range

(approximately 100m) and a gateway is necessary to act as the central router for any BLE

loT Environment

6LN/
BLE -< MOTT Packet

Peripheral

\i

|

|

|

|

|

|

|

| 6LN/ 6LBR/ BLE
| BLE |MQTTPackel| central |«
|

|

|

|

|

|

|

|

|

MQTT Bridge " |nternet

Peripheral * Router

A

6LN/ *
BLE - MQTT Packet

Peripheral

Figure 2.3: Border router setup.

peripherals. 6LoWPAN also requires a border router (6LBR) that can convert 6LoWPAN
packets from link nodes (6L.Ns) to regular IPv6 packets. On the application layer, MQTT
can use the IoT gateway as a broker bridge, which forwards all packets to an identical

broker hosted in an accessible location such as on the cloud.

2.1.1 Message Queue Telemetry Transport

MQTT is the most widely used application-layer transport protocol over IoT. It is an
extremely lightweight broker-based publish/subscribe messaging protocol, layered on top
of TCP/IP, and often 6LoWPAN. It is designed for use over networks with low power
and bandwidth, high latency and variable availability (Karagiannis et al., 2015). These
aspects make MQTT an ideal protocol for use in IoT systems.

MQTT is made up of publishers, subscribers and a broker, as seen in Fig. 2.4. IoT
devices such as sensors can publish their data regularly to a particular topic hosted by
the MQTT broker. An IoT server can subscribe to this particular topic, allowing it
to receive this information and process it as required. This process can be reversed to
allow the server to invoke actuation on a device. This architecture allows asynchronous
communication between publishers and subscribers. They have no direct connection and
therefore do not need to be aware of the others’ existence, which is a huge advantage of

such a protocol (Ammar et al., 2018).

Broker

r-——"——————-=- |
| |
' '
| |
Publisher ——»| l«————{Subscriber
: :
| |
I . I
| Topic |
Publisher —>: :<—> Subscriber
' '
I I
| |
| |
Publisher —— 5 [«——Subscriber
I o I
| o |
| o |
L —_ .|

Figure 2.4: The architecture of MQTT.

The underlying transmission protocol, TCP/IP, aims to guarantee message delivery.
This can be built upon by MQTT’s quality of service (QoS) setting, which can be set
to deliver a message At Most Once, At Least Once or Ezactly Once (A. Banks, 2014).
However, guaranteed delivery does not ensure data integrity, privacy or authenticity of
the message. In order to ensure these considerations, a security layer must be imple-
mented on top of the TCP/IP layer. To begin with, TCP/IP incurs a significant amount
of transmission overhead compared with UDP. Transmission standards for low-powered
wireless networks tend to use a small Maximum Transmission Unit (MTU). For example,
IEEE 802.15.4 uses an MTU of 127 bytes, and the Bluetooth MTU can be as low as 27
bytes. This restricts the type and complexity of security protocols which can realistically

be integrated into IoT protocols.

2.1.2 Constrained Application Protocol

The Constrained Application Protocol (CoAP), developed by the IETF, is a RESTful
web transfer protocol based on HTTP for use in resource-constrained environments. It
provides a simpler and more lightweight HTTP implementation, communicating through
GET, POST, PUT and DELETE messages. CoAP is bound to UDP by default, making
it a suitable protocol for IoT scenarios due to UDP’s minimal and connectionless design
(Z. Shelby, 2014). It is designed for flexible communication with HTTP through a proxy.
CoAP is a secure protocol since it is built on top of datagram transport layer security

(DTLS) to guarantee integrity and confidentiality of exchanged messages (Al-Fuqaha

et al., 2015).

2.1.3 6LoWPAN

6LoWPAN denotes IPv6 over Low-Power Wireless Personal Area Networks, a standard
aiming to provide the Internet Protocol to low-powered devices with limited capabilities.
[Pv6 allows traffic to be routed across the Internet, providing unique IP addresses to
devices for identification. Communication across the Internet then occurs through the
transmission of IPv6 (and IPv4) packets, consisting of 320 bit headers and a maximum
payload size of 64KB. This is extremely unsuitable for the majority of IoT devices, that
are unable to support the resource-intensive nature of the protocol. IoT data rates are
much smaller, and most protocols will support an MTU of 127 bytes or smaller.

6LoWPAN adapts the IPv6 protocol to allow even the smallest of devices to commu-
nicate over the Internet. It implements an adaptation layer between the Network and
Data-Link Layers in order to provide the required adaptation capabilities. These include
header and payload compression, fragmentation and direct IP addressing for nodes. The
nodes communicate with a 6LoWPAN border router (6LBR) in order to convert 6LoW-
PAN packets to ordinary IPv6 packets, to be transmitted on the Internet (Wang & Mu,
2017).

2.1.4 Bluetooth Low Energy

Bluetooth Low energy (BLE) is a wireless personal area network technology that lever-
ages the classic Bluetooth framework for a resource-constrained environment. This allows
low-powered communications to occur between devices such as sensors, actuators and mo-
bile devices. BLE provides considerably reduced power consumption and cost compared
to classic Bluetooth, while maintaining a similar communication range of approximately
100m. It was originally designed using a star topology, with BLE peripherals communi-
cating with a central router, but further iterations have also provided support for mesh
topologies (Darroudi & Gomez, 2017).

2.2 Security

Security should be a major factor in the design and development of technical systems.
The purpose of security is to prevent losses, both accidental and malicious, and different
systems will have different security priorities. In order to identify these, it must be known

what is being protected and against whom. From there the weak points of the system

can be determined. The nature of technology means that things are constantly changing
and improving, and security must reflect that in terms of flexibility. Changes can be
constantly seen in performance, capability, cost and environment. However, flexibility
must be balanced with complexity, as an overly-complex system is fatal for security.
Contingency planning can lead to bloated systems that are difficult to maintain. This can
lead to security flaws appearing that are harder to identify and analyse (Bellovin, 2016).

There are a wide range of security aspects to consider in the design of a secure system.
The three most crucial considerations for information security are known as the CIA triad
- confidentiality, integrity and availability. Confidentiality determines a set of rules that
limits unauthorised access to the information, which can be seen as privacy. Encryption
is a common means of ensuring confidentiality. Integrity involves ensuring the legitimacy
of the data, by maintaining its consistency, accuracy, and trustworthiness over its entire
life cycle. Finally, availability guarantees reliable access to the information by autho-
rized users. The CIA triad addresses a large number of security concerns, though new
threats are always emerging (Mosenia & Jha, 2017). A system must also try to address
accountability, auditing, non-repudiation and privacy policies.

Implementing security in IoT incurs limitations that do not generally arise in conven-
tional Internet security. IoT comprises a wide range of smart devices, with different uses,
size, energy capacity and computation power. Transmission protocols are lightweight
with minimal overhead, before being integrated with standard Internet protocols. Se-
curity must be adapted to fit this paradigm, with each application demanding varied
requirements (Kouicem et al., 2018). No inherent security framework exists for IoT, and
conventional frameworks, such as TLS, are frequently unsuitable. Security is often not
well recognised in commercial IoT, due to this lack of framework and regulation. This
leads to a whole host of security concerns, and the undermining of trust in IoT systems
that are perceived as insecure.

In order to ensure secure IoT communication, vulnerabilities should be addressed
in terms of possible attacks that may occur. Common IoT intrusions are discussed by
Mosenia & Jha (2017). An eavesdropping attack occurs when unencrypted data is sniffed
over communication links. This can often be used to garner information in order to design
other tailored attacks. Side-channel attacks are serious and complex attacks against
encryption. A node may leak critical information under normal operation, for example
its EM signature, or the regularity and timing of message transmission. They are usually
non-invasive and therefore undetectable. Minimising leakage as much as possible will
mitigate against these kinds of attacks.

Injecting fraudulent packets into the system can provoke chaos for an insecure system.

Denial of Service (DoS) attacks can be used to jam transmission by bombarding the system

10

with unnecessary requests. It can also be done intermittently to lower the performance of
time-critical tasks. Malicious packets can be inserted along with normal communications,
existing packets can be manipulated in some way, or packets can be replicated repeatedly
to overload the system. Keeping track of state and previous packet information can help
to defend against these type of attacks. Similarly, attacks can be conducted by routing
manipulation - to spoof, redirect, misdirect or drop packets. This can occur through

routing loops, false error messages or malicious nodes.

2.2.1 Transport Layer Security

L 2 y L
Handshake _Change Alert
Cipher Spec
Protocol protocol
protocol

]]
Record Layer

Protocol

Record (=TLSPlaintext in the standard)

Content | yersion | length fragment
type

Figure 2.5: The architecture of TLS (Unger et al., 2012).

Transport Layer Security (TLS), also known as the Secure Socket Layer (SSL), is
the de-facto standard for establishing a secure communication channel between two ma-
chines. As seen in Fig. 2.5, there are two facets to the protocol - the first establishes a
connection between devices and negotiates parameters, and the second (Record Layer)
carries the payload data, ensuring message integrity and confidentiality (T. Dierks, 2008).
The handshake protocol that establishes a connection between devices uses asymmetric
(public-key) cryptography to secure the interaction. A session-specific shared key is de-
cided upon within this communication, which is then used to encrypt and decrypt the

data transmitted between the two sources (symmetric encryption). TLS lies between the

11

application layer (MQTT) and the transport layer (TCP/IP).

Due to the fact that TLS is a widespread and well-accepted existing protocol, new
technologies often adopt it as their security implementation rather than designing a new
protocol to suit the needs of the technology. In the case of resource-constrained IoT
devices, there are many drawbacks to using TLS. In order for authentication to occur
between devices, they must be able to handle asymmetric cryptography and X.509 certifi-
cates. These techniques require the devices to transmit a high amount of data and to run
complex algorithms. Different authentication mechanisms that might be more feasible are
not supported by TLS (Unger et al., 2012).

TLS incurs a significant amount of processing overhead when considering distributed
topologies and multihop scenarios. There is no option to encrypt particular parts of a
message in order for sensitive data to be protected while metadata remains accessible.
Therefore in order to route the packet correctly, each node must decrypt and then re-
encrypt it before passing it on (Unger et al., 2012). Another aspect to consider is that due
to TLS existing on a lower layer, the payload is decrypted before it reaches the application
layer. Encryption on an application level could prevent the caching of sensitive data in
plaintext and foster secure data storage. With regard to MQTT, this means that data
stored by the broker will be unencrypted, and anyone with access to the broker and topic

could retrieve the unencrypted data.

2.2.2 Payload Encryption

The publish /subscribe paradigm is useful in IoT scenarios due to its event-based nature,
decoupled communication, high throughput and scalability. However, these factors also
give rise to confidentiality concerns. Both messages and subscriptions must be kept pri-
vate, and the broker can be seen as a potential point of failure if it is compromised (Bacon
et al., 2009). The broker may also be a third-party system that should not have access to
sensitive information that passes through it. It must have access to routing information,
however, such as the topic name. Ensuring confidentiality in such a system is therefore a
compromise between the ability to accurately route publications and the risk of leaking
information (Onica et al., 2016). Due to the decoupled nature of communication, end-to-
end security cannot be ensured by using TLS. A secure channel can be established from
the publisher to broker, and broker to subscriber, but the data stored in the broker will
be unencrypted. The only way to adequately ensure end-to-end security in a publish/-
subscribe system is to implement some form of payload encryption - where sensitive data
is encrypted and routing information is left unencrypted.

Payload encryption can be implemented through asymmetric and symmetric tech-

12

niques. Asymmetric encryption uses two keys - a public key for encryption and private
key for decryption. This approach works best for a system with a small number of trusted
subscribers who have access to the private key, and several possibly untrusted publishers.
Asymmetric techniques, though more flexible, are generally more intensive with regard
to computation, memory and bandwidth than symmetric techniques. These are always
significant considerations for resource-constrained devices. Symmetric encryption uses
the same key for encryption and decryption. It is simpler to implement and the measure
of security is offloaded in a large part to the robustness of the key exchange mechanism
(Katz, 2014).

Payload encryption ensures end-to-end data confidentiality in a constrained environ-
ment such as [oT, particularly in cases where TLS cannot be supported. In order to
provide complete data transmission security, keys must be provisioned securely, with an
authentication and an access control policy. These mechanisms can be offloaded to a
central server that will transfer a significant amount of the processing away from the

constrained devices.

2.2.3 Symmetric-Key Encryption

Symmetric-key encryption is an appropriate choice for use in an IoT-based payload en-
cryption scheme, as long as sufficient key-exchange policies are enforced. There are three
facets to consider in deciding on the symmetric-key technique to use - the algorithm it-
self, the mode of encryption and the key size. There are several different algorithms to
choose from, for example AES, DES, 3DES, Blowfish, Camellia and ARCFOUR. These
algorithms have different properties and optimisations making them suitable for various
scenarios. Some of them, such as DES and ARCFOUR, have been rendered unusable due
to technology improvements and detection of vulnerabilities within them (Kong et al.,
2015). Each algorithm has permitted key sizes, and is implemented using one of the
modes of operation outlined in Table 2.1.

The most common modes of encryption are detailed in Table 2.1. These encryption
modes determine how each block is translated to ciphertext by the algorithm, and each
varies in complexity and overhead (Almuhammadi & Al-Hejri, 2017). The Initialisation
Vector (IV) is a string of bytes used to initialise some of the modes, and must be sent
alongside the message to be used for decryption. Modes that use padding require message
length to be a multiple of the block size, and padding is added to the end of messages to
ensure this. These factors both lead to larger message sizes and additional bandwidth.
A parallel architecture allows improved performance, and can generally be implemented

by stream ciphers. Some modes of operation offer not only encryption, but also a mes-

13

Name Cipher| IV Padding| Description Parallelism| MAC
(bytes)
Electronic Block None Yes Identical plaintext blocks | Yes No
Code Book encrypted into identical
(ECB) ciphertext.
Cipher Block 16 Yes Plaintext block first | No No
Block XORed with previous
Chaining ciphertext block.
(CBC)
Cipher Block 16 No Plaintext block is XORed | No No
Feedback with output of encryption.
(CFB)
Output Block 16 No Portion of encryption out- | No No
Feedback put is used as feedback for
(OFB) the shift-register.
Counter Stream | 8 No Counter and nonce gener- | Yes No
Mode ate key stream, which is
(CTR) XORed with plaintext to
produce ciphertext.
Counter Stream | Arbitrary| No Counter mode used for en- | No Yes
with CBC- length cryption with CBC-MAC
MAC for message integrity.
(CCM)
Galois/ Stream | Arbitrary| No High-speed counter mode | Yes Yes
Counter length encryption with GMAC
Mode for message integrity.
(GCM)

Table 2.1: Comparing symmetric key modes of encryption.

sage authentication code (MAC) for data integrity. This process is integrated within
the encryption process, making it more efficient than providing the two functionalities

separately.

2.3 Closely-related Projects

A significant amount of research is underway in the area of optimising security protocols
over loT networks and application protocols such as MQTT. With the present exponential
growth and commercialisation of IoT, security has become a focal area of research. New
protocols are being developed to suit the IoT framework, and standard techniques are
being adapted. The crucial component of research regards the resource-constrained nature
of IoT, and the aim to balance security with usability in such contexts (Nguyen et al.,
2015).

Several areas of research focus on providing an adequate security framework for the
MQTT protocol. MQTT presents its own challenges as a protocol, having a publish/sub-

scribe architecture and few inherent security mechanisms (Yassein et al., 2017). As TLS

14

is the recommended protocol for use over MQT'T, some research looks into adapting this
protocol for use in a resource-constrained environment. Other areas of research concen-
trate on using techniques such as payload encryption to provide lightweight end-to-end
security. This can be implemented using a wide range of approaches, using symmetric,
asymmetric or hybrid techniques.

A symmetric-based security framework is proposed by Shin et al. (2016), detailing an
adaptation of the Augmented Password-Only Authentication and Key Exchange (Aug-
PAKE) protocol for use over MQTT. The AugPAKE algorithm transmits authenticated
session keys between the client and broker. Data is then transmitted with a secure
symmetric-key encryption scheme using the established session key. The initial authen-
tication of clients is simplified compared to TLS and the overall transmission overhead
is reduced. However, this does not ensure end-to-end security as communication is only
secured between client and broker.

A secure MQTT implementation is proposed by Singh et al. (2015), using asymmetric-
key encryption. This uses lightweight attribute-based encryption (ABE) over elliptic
curves. Using ABE, the data is encrypted based on an access control policy, and only
approved clients can decrypt the data. This implementation does ensure end-to-end en-
cryption, as only valid subscribers can decrypt the data, and though the broker has access
privileges, it cannot decrypt it. An advantage of this approach is its support of broad-
cast encryption - where one encryption process is needed to deliver the message to all
subscribers. The proposed protocol is secure against several common attacks. However,
complex multiplicative inverse operations are necessary to implement ABE, incurring a
significant processing overhead.

Rizzardi et al. (2016) propose a key management and policy enforcement framework
for use in providing secure MQTT communications. The solution proposes an IoT mid-
dleware based on several Networked Smart Objects, using HT'TP to communicate with
the IoT devices. This enforcement framework requires devices to initially register with
it in order for secure encryption to be provided. The devices are granted credentials,
which can be used to authenticate themselves for future communications. The framework
accepts key requests for devices to encrypt and decrypt data, which are granted based
on authentication and the enforced policy. A similar system is proposed by Neisse et al.
(2015), implementing SecKit, a security policy enforcement model. It offers a framework
that can be applied to several IoT protocols, with an aim to decouple security from the
everyday running of the system. This framework has been applied to the MQTT pro-
tocol (Neisse et al., 2014), and is executed as a broker extension. SecKit implements a
context-based policy template that must be explicitly instantiated.

The solution proposed by Mektoubi et al. (2016) details a method to secure end-to-

15

end MQTT communications with a certification authority (CA) generating certificates
for both the client and topic. Asymmetric encryption techniques are used to implement
this. The RSA and Elliptic Curve (ECDSA) algorithms are analysed for performance,
noting that ECDSA uses smaller keys and RSA has a quicker execution time for data
encryption. It goes on to offer a hybrid approach of the two algorithms, using RSA for
data encryption and ECDSA for the digital signature. End-to-end encryption is provided,
however, it does not adequately outline the transmission overhead involved, indicating
that it may be comparable to the overhead incurred by TLS.

An asymmetric security protocol is proposed by Moustaine & Laurent (2012), focusing
on the issue of authentication. This paper is based on RFID technology, which is extremely
low-powered and concerned with operational overhead. It proposes authentication using
an optimised implementation of NTRU, one of the fastest public-key cryptosystems. This
implementation delegates the complex NTRU operations to a server, leaving the low-
powered nodes to process only the lightweight operations such as additions and circular
shifts. This system performs extremely well, with proven resistance to replay attacks
and Man-in-the-Middle attacks with greatly reduced overhead. Its implementation over
MQTT would mean that the broker must provide a dedicated server to process the NTRU
calculations. This offloading of heavy computation away from the low-powered IoT devices
should be at the forefront of design for an IoT system.

Several areas of research look into tailoring TLS to suit the [oT environment. It
should be noted that due to the fact that TLS does not exist on the application layer, it is
feasible for both TLS and payload encryption schemes to be used in tandem. Urien (2017)
suggests Secure Access Modules for IoT. These are tamper-resistant microcontrollers to
be added on either end of communication, implementing TLS/DTLS. These external
pieces of hardware deal with the security features that are required, without draining the
resources of the constrained devices. This allows a full TLS implementation to occur in
an IoT network. However, an added piece of hardware would increase the cost of a device,
which may not be feasible in many scenarios.

Another attempt at adapting TLS to an IoT context is proposed by Chung & Cho
(2016). This approach uses fuzzy logic to adapt the TLS method in order to provide
the most suitable and energy-efficient implementation. The system analyses the context,
based on parameters such as the message length, residual device power and required
security level in order to identify the most efficient ciphersuite to use. This solution
primarily deals with the energy limitation, but does not address other constraints on the
system, such as memory or bandwidth.

Katsikeas et al. (2017) analyse various AES encryption techniques over the MQTT

protocol, in order to identify the most efficient regarding round-trip time and memory

16

usage. Payload encryption was compared with link layer encryption, as well as comparing
encryption modes with and without an accompanying MAC. Link layer encryption was
found to have less of a performance impact due to the chip used, which has hardware
accelerated AES encryption capabilities. However, it has a disadvantage in that it provides
node-to-node encryption, rather than application-layer end-to-end encryption. AES-OCB,
the authenticated encryption technique, was found to be the most resource-intensive, due
to the complexity of the algorithm.

A payload encryption scheme is proposed by Jan et al. (2017) for use over the CoAP
protocol. This is a lightweight mutual authentication scheme, by way of a four-way
handshake mechanism. This is based on CoAP’s client-server interaction model, aiming
to improve upon DTLS, which is the most widely used security infrastructure in CoAP-
based IoT communication. It aims to integrate security features into CoAP, rather than
have them decoupled and existing as separate protocols. The authentication process
aims to be as lightweight as possible, only requiring a small number of request/response
interactions to exchange a session key and begin communication. Pre-shared secrets are
used to verify the identity of legitimate system entities. It shows significant improvements
over DTLS in handshake duration, memory consumption and average response time.

Due to the growing requirements of IoT, a robust, scalable and lightweight security
mechanism is required for MQTT, the most prevalent IoT application-layer protocol.
Though TLS may be the most straightforward security implementation, there are several
reasons why it is not suitable for resource-constrained devices that comprise loT. There
is a significant amount of research going into other possibilities. These solutions aim to
reduce transmission overhead on the security layer, reduce the necessary computation and

memory requirements for TLS implementation, or deal with various insecurities related
to TLS over MQTT.

2.4 Problem Formulation

Upon analysis of the background and research involved in this area, it is apparent that
security is a significant concern in IoT. The monumental growth and commercialisation
of IoT has lead to the deployment of several insecure systems. This is due to the fact
that implementing security is resource-intensive, and can be a difficult and expensive en-
deavour to apply to low-powered devices. It is therefore not always seen as a worthwhile
pursuit. A study by HP Fortify (2014) found that 70% of IoT devices contain vulnera-
bilities, including password security, encryption and general lack of granular user access
permissions. These insecure systems pose a threat, not just to their users, but to the

industry in general. IoT suffers from a loss of trust, and the perception of vulnerability

17

due to its security shortcomings (Sicari et al., 2015). Therefore, the development of an
appropriate solution to this problem is a necessary and worthwhile undertaking.

The problem to be addressed is how to apply a security scheme efficiently in an
extremely resource-constrained environment, using a publish/subscribe communication
framework. This encompasses a many-pronged problem. First of all, the design must
accommodate for low-powered devices with limited capabilities. Processing on the device-
end should be reserved for essential functionality, and this should be optimised for minimal
overhead. An IoT device aims to remain in idle state as much as possible to preserve re-
sources, and aims to transmit messages with minimal bandwidth. Secondly, the design
should take the MQTT architecture into consideration, providing end-to-end encryption
from publisher to subscriber. It should improve upon TLS with regard to resource con-
sumption and providing within-broker security. Finally, the scheme should be robust
in its security mechanisms, ensuring that confidentiality, integrity and availability are

maintained throughout.

18

Chapter 3
Design

This chapter gives an outline of how the problem formulation described in Section 2.4
has been translated into a solution. Section 3.1 gives an initial overview of the design,
outlining the high-level aims and purpose of the solution. The logical architecture of the
scheme is illustrated in Section 3.2, describing the system components, their role and
how they fit together. In Section 3.3, a sequence diagram is used to demonstrate the
inner processes involved when the scheme is in use. The most significant processes are
expounded within Sections 3.4, 3.5 and 3.6 - detailing the encryption, authentication and
access control and key caching designs respectively. These functions are fundamental to
the successful and efficient implementation of the scheme within an IoT system. Section
3.7 details the data architecture of the scheme, displaying the packet structure used and
defining the contents of the header and payload. Finally, the design is summarised in
Section 3.8.

3.1 Overview

A secure and efficient transmission architecture has been designed to serve a resource-
constrained environment over the MQTT protocol. This design aims to minimise the pro-
cessing, bandwidth and memory overhead involved in encryption on resource-constrained
devices, as well as minimising the number of necessary MQTT messages to be sent and
received by the device. The design provides confidentiality and integrity to IoT mes-
sages using symmetric-key payload encryption. Authentication, access control and key
management are provided through a Key Management Service (KMS). MQTT’s publish/-
subscribe architecture necessitates asynchronous communication between clients through
the MQTT broker. The design ensures end-to-end encryption, so that sensitive informa-

tion stored by the broker is encrypted and message data cannot be compromised through

19

a broker attack.

Several symmetric-key encryption algorithms were compared to identify the most suit-
able encryption for the IoT environment, with regard to processing power and message
overhead. It was determined that AES (Rijndael) should be used in counter mode with
CBC-MAC (CCM), using a 128-bit key. The payload of each message sent between clients
in the system is encrypted and decrypted using this algorithm. The MAC is then used
to assure message integrity, identifying if the packet has been tampered with in any way.
Header information is not encrypted, so that the packets can be routed accordingly with-
out the need to decrypt them at each node.

The KMS provides keys to publishers and subscribers after authentication, based on
a defined access control policy. All clients in the system must be initially registered in a
secure manner with the central KMS, wherein they are provided with a private key and
private topic that only they (and the KMS) have access to. They are also assigned a
client ID and password. When a client requests a key, either to encrypt or decrypt, they
are first authenticated by the KMS using these credentials. The requested key is then
encrypted by the KMS using the client’s private key, and sent to the private topic for the
client to receive. The client uses their private key to decrypt the requested key, which
can then be used to encrypt or decrypt their message. Each encryption key expires after
a certain amount of time, and the publisher must request a new key when this occurs.

The various design choices were made with the intention of providing a lightweight
security framework for use in resource-constrained IoT contexts, and improve upon the
use of TLS with MQTT, which is often unsuitable in these scenarios. The balance between
security and usability was at the forefront of the design. Optimisations have been made
to offload any resource-intensive processing away from the device and towards external
capabilities. The purpose of this system is to ensure secure and efficient transmission of
[oT messages over the MQTT application-layer protocol. It is noted that security concerns
exist on all layers, and message transmission security does not necessarily ensure full-stack

network security.

3.2 Logical Architecture

The logical architecture seen in Fig. 3.1 represents a high-level design of the system,
identifying the essential components involved and the dependencies between them. It
depicts a classic MQTT architecture with publishing and subscribing entities communi-
cating asynchronously through the central broker. In addition to this is the KMS, which
is essentially a publisher and subscriber providing a management service to the devices

involved in the system. As MQTT has a centralised architecture, each component has a

20

Key
Management
Service

A T

Key i | Key
Request ! IResponse

|
i

Encrypted Message

Publisher |« — — — — — Broker |e-------cccccoooioo- Subscriber

Encrypted Message

Figure 3.1: Logical Architecture.

direct dependency only with the broker.

3.2.1 Publisher

The publisher sends messages to topics on the broker to be forwarded on to the subscriber.
When a message is to be sent to a topic, it first checks the validity of its encryption key
for that topic in its key cache. If it does not exist, has expired, or is invalid due to
length or corruption, a request is made to the KMS to obtain a new key. The response is
first decrypted using the private key, then the key is used to encrypt the payload of the
message. The corresponding key ID is sent within the packet header in plaintext. If the
payload exceeds the MTU of the underlying protocol, the message will be fragmented and
sent in multiple packets. Depending on the Quality of Service (QoS) level of the MQTT
configuration, the publisher may receive acknowledgement from the broker upon receipt
of the packet.

3.2.2 Subscriber

The subscriber is an entity that subscribes to topics on the broker and is forwarded any
message that is received on these topics. When a packet has been received, it is parsed to
identify the various packet elements. If large messages have been fragmented and arrive
in multiple packets, the subscriber waits for all fragments before reassembling the full
message. The decryption key ID is extracted from the header and the subscriber checks

its key cache to see if it contains the corresponding key. If not, it must request this

21

key from the KMS. The decryption key response is received and is decrypted with the
private key. This received key is then used to decrypt the payload of the original message,
and message integrity is established using the MAC. The subscriber can then process the

plaintext message accordingly.

3.2.3 Broker

The broker is an impartial component that performs routing based on the MQTT pub-
lish /subscribe protocol. The broker can host any number of topics for the publishers and
subscribers to communicate through. It can implement an access control policy on these
topics, using a username/password whitelist. It also provides some defined topics for com-
munication between the devices and the KMS. These include topics for both requesting
an encryption key and requesting a decryption key. It also provides private topics, estab-
lishing a dedicated asynchronous channel between the KMS and each particular device

for key exchange.

3.2.4 Key Management Service

The KMS provides key management, authentication, monitoring and access control for
the system. As symmetric-key encryption is being used, the same key is required to
encrypt and decrypt the data. This service provides such functionality in a secure and
easy-to-manage way, while also providing other essential capabilities so that they do not
need to be performed on the device itself. Communicating over MQTT and existing in
parallel with the broker, it fits seamlessly with the MQTT paradigm and conforms to the
asynchronous nature of the system. The KMS monitors and analyses all traffic passing
through the system.

Authentication is established by means of a client ID and password for each involved
entity (publisher, subscriber or both), which must be checked and confirmed for every
request. Upon initial registration of the entity, the access policy is determined on a more
granular level. The KMS can restrict a device based on publishing and subscribing rights,
as well as on the particular topics they can access. Each request is reviewed based on
this access policy, and keys will only be provided to entities that are approved for their
requests.

The KMS subscribes to two key request topics - one for encryption keys and one for
decryption keys. Publishers request encryption keys to encrypt messages they wish to
send. Subscribers request decryption keys to retrieve the original key that was used to
encrypt the message they have received. These are all stored securely by the KMS once

they have been issued. When an entity has been authenticated, its private key is retrieved

22

and is used to encrypt the key to be sent. This encrypted message is then sent to the

device through its private topic.

3.3 Sequence of Events

Process message

Key
Publisher Management Subscriber
Service
Message to send | :
.—' |
Check | |
cache : :
| |
Encryption key request |
|
|
: Authenticate :
| |
| |
I) I
| Authorise |
| |
| |
Encryption key response |
|
Encrypt : :
message | |
| |
Send message
I >
: : Check
| | cache
| |
| - Decryption key request
I -%
| |
| Authenticate |
| |
| |
| |
I] I
| Authorise |
| |
: Decryption key response !
I LJ -
: : Decrypt
I I message
| |
| |
| |
| |
| |

Figure 3.2: This sequence diagram outlines the process involved when
a publisher wishes to send a message to a topic. This scenario assumes
neither publisher nor subscriber hold the requisite keys in their respec-
tive caches. The broker has been omitted from the diagram for clarity.

e Publisher wishes to send a message to a topic.

23

Publisher checks if the cached key for the topic is still valid. If so it can be used to

encrypt the message.
If the key has expired, an encryption key request is sent to the corresponding topic.

This request is forwarded to the KMS by the broker and decrypted using the pub-

lisher’s private key.
KMS authenticates the publisher.
KMS checks that the publisher has permission to publish to the requested topic.

KMS creates a new encryption key for the publisher and stores the relevant infor-

mation.

KMS uses the publisher’s private key to encrypt the new key data, and sends it
through their private topic.

Publisher receives this response and decrypts it to obtain the encryption key.
Publisher uses this encryption key to encrypt the message.

The packet is constructed with all relevant header information, and one or more

fragments are sent to the topic.

Subscriber receives these packets, reassembles them and extracts the header infor-

mation and encrypted message.

Subscriber checks its key cache using the key ID sent in the message header. If

present, it is used to decrypt the message.
If not, subscriber sends a decryption key request to the KMS, using the key ID.

KMS receives the request, authenticates then verifies the subscriber against the

access control policy.

The key ID is used to retrieve the required key, which is then encrypted with the

subscriber’s private key.

KMS sends the encrypted message through the subscriber’s private topic to the

subscriber.

Subscriber decrypts the response, and uses the obtained key to decrypt the original

message from the publisher.

24

3.4 Encryption

Confidentiality is ensured by the system using symmetric-key payload encryption, specif-
ically AES CCM mode encryption with a 128-bit key. AES is the Advanced Encryption
Standard, an algorithm established by the National Institute of Standards and Technol-
ogy (NIST) in 2001. It uses the Rijndael cipher, allowing key sizes of 128, 192 and 256
bits. This is by far the most widely used symmetric-key algorithm, and there is no known
attack that would allow someone without knowledge of the key to access AES-encrypted
data (McKay et al., 2017). Due to its broad use, it is supported by a wide range of

security packages. For these reasons, this was the algorithm chosen for use in the design.

Overhead

Serial

320 bits Parallel

Number of Rounds | Performance
255 1

Security

A

Figure 3.3: Relationships between the three security qualities to con-
sider for symmetric key encryption.

The implementation of the algorithm should be optimised by considering the three
vertices of the security relationship illustrated in Fig. 3.3. The AES key sizes of 128, 192
and 256 bits correspond to 10, 12 and 14 rounds respectively. As seen in Fig. 3.3, a smaller
key size and number of rounds relates to superior performance and overhead, yet detracts
from the level of security provided. These are all extremely important considerations in
the system design. The practical limit of breakability for symmetric key sizes is 80 bits
with current technology (Kong et al., 2015). As all AES keys are above this limit, they are

all unbreakable through a brute-force attack. Similarly, the extra rounds do not linearly

25

produce a more secure system, yet they make the encryption process 40% slower (Katz,
2014). For these reasons, it was concluded that AES-128 would be sufficient.

CCM mode proved to be the most suitable mode of encryption to use, for several
reasons. It is intended for use in a packet environment, which is ideal for IoT. This
mode combines the counter encryption mode with a CBC-MAC for message integrity.
Counter mode was found to be the most efficient and suitable encryption-only mode. This
mode transforms a block cipher into a stream cipher by encrypting each block using an
incrementing counter. Due to the fact that counter mode is not a block cipher, is does not
require padding to fill remaining bytes in the block. This reduces the number of bytes to be
sent, reducing the average packet overhead. A random 8-byte nonce (unique Initialisation
Vector (IV)) is used to initialise the counter to a unique value. This combination must
only be used once with the same key, and is incremented for each block that is encrypted.
The nonce is sent in plaintext along with the encrypted message in the packet. This
improves upon other modes of encryption that use a 16-byte IV, as it is only half the size.

The CBC-MAC uses cipher-block chaining to produce a MAC tag, which can be used
to ensure the message is authentic. This MAC adds 8 bytes to the message length, and
CCM mode calculates it on the plaintext before encrypting the whole message, including
the MAC. This is in comparison to using a separate CBC-MAC or HMAC function to
provide integrity, which would entail passing around another key and is less efficient
than CCM. Galois/Counter Mode (GCM) is another encryption/MAC hybrid technique,
though it is less commonly found and it is much more resource-intensive. Its expensive
operation can be accelerated using previously computed lookup tables, though this still
requires a significant amount of memory (Szalachowski et al., 2010).

An MTU is often set by an underlying protocol, limiting the maximum size packet that
can be sent by a device. When a message is being prepared to be sent, the entire length
of the message (headers and payload) is identified, and compared with the MTU. If the
length is larger than the MTU, the packet will fail to send and must be fragmented. In the
case of fragmented messages, only one security header is necessary for the entire message.
A fragmentation offset is stored in the first byte of the security header. The subscriber
will store all fragments that are received, until the fragmentation offset indicates that
it contains the final fragment. The first fragment contains the security header, and the

payloads of all other fragments are concatenated and decrypted accordingly.

3.5 Authentication & Access Control

Authentication and access control are policies enforced primarily by the KMS, with added

capabilities enforced by the broker. The perspective of the system is of a distributed IoT

26

system. This involves a known number of clients that are authorised to access the data,
and actuate some function on the system. Clients can be both publishers and subscribers
within the MQTT paradigm. There are also a number of topics relevant to the system,
with restrictions on entities that can publish or subscribe to these topics. The policies
are stored and configurable within the KMS, and encryption and decryption keys are
only entrusted to those entities that have been approved. Each key is associated with a
particular topic, and the KMS ensures that only authenticated and authorised clients for
that topic can access the key. It also ensures, through system monitoring, that the key is
only being used for approved operations.

Upon initial registration of an entity within the system, its individual access policy is
established. The client ID and hashed password are stored within the KMS as a trusted
party, and these are used to authenticate the client upon the receipt of a request before
any further processing is carried out. Along with this identification, the KMS stores
whether the entity has publishing rights, subscribing rights or both. Any topic used by
the system is stored by the KMS, and a granular restriction level can be set on particular
entities accessing particular topics. A hierarchy of access limitations can be enforced by
configuring the KMS to the needs of the system. Another layer of security can be enforced
by the broker itself, in that PUBLISH and SUBSCRIBE requests can be denied by it if

the entity is not on an approved whitelist for such a request.

3.6 Key Cache

An in-memory key cache is used for clients to store recently and regularly used keys for
quicker access, instead of issuing key requests for every message to be sent and received.
Two types of key cache are used, one for encryption keys and one for decryption keys.
These are implemented in slightly different ways, and can vary in caching policy. Both
key caches are created using synchronised hash tables. The encryption key cache stores
keys based on topic, so that each publisher uses one key per topic until it expires or is
otherwise invalid, after which a new key is requested for the topic when it is needed.
This uses a time aware least recently used (TLRU) cache replacement policy, in order to
remove keys for topics that are not used very often, being aware of their expiry time.
The decryption key cache stores keys based on the key ID. It uses a least recently
used (LRU) cache replacement policy. This differs as decryption keys do not technically
expire, as old messages encrypted by an expired encryption key must still be able to be
decrypted. However, these expired keys cease to be regularly used, and can be removed
from the key cache when newer keys are obtained. It is likely that the decryption key

cache will be significantly larger than the encryption key cache. This is because it is likely

27

for a client to publish to a small amount of topics, and to receive messages from several
different topics and several different clients. The system can define the maximum size of

the caches, depending on resources available to each client.

3.7 Data Architecture

The vast majority of packets sent between the components in the system are MQTT PUB-
LISH messages. These packets follow a defined structure, with a fixed header, variable
header and payload (Fig. 3.4). An additional security header is implemented at the start
of the payload in the design. This allows messages to communicate necessary security
information in plaintext, while having the sensitive data encrypted in the payload. One
of the fundamental aims of the system is to minimise the packet overhead and bandwidth,
in that a minimal number of packets should be sent, and each packet should contain as
few bytes as possible. For this reason the data architecture is optimised to its fullest as

part of the design.

Fixed Header (2 bytes)
Ul QoS |Re- .
Message Type E Level |tain Remaining Length
Variable Header
Topic Name Packet ID
Security Header (11 bytes)
Fragment

Offset Key ID ‘ Nonce
Encrypted Payload
MAC Message

Figure 3.4: Message format of MQTT PUBLISH packet used within the
scheme.

The fixed header is two bytes long. The first byte defines the packet type (PUBLISH
in this case) and flags identifying the QoS level, duplication and retain instructions. The
second byte records the remaining length of the packet. The variable header contains
the topic name and the packet identifier (only necessary when QoS is greater than zero).

The security header is 11 bytes long. The first byte represents the fragmentation offset.

28

The following two bytes contain the key ID of the key used to encrypt the payload. The
final 8 bytes are used to communicate the nonce, which must be used in the encryption
and decryption process. Finally the encrypted message, along with the encrypted 8-byte
MAC, is sent in the remaining bytes in the payload. In case of fragmentation, the first
packet contains the full security header, and all following fragmented packets will only

hold their fragmentation offset in the security header.

3.8 Summary

A high-level overview of the scheme design has been outlined in the above chapter, which
will be expanded upon and detailed within Chapter 4, Implementation. The design spec-
ifies how the system components communicate with one another, and the processes in-
volved in the typical operation of the system. It indicates the purpose of each component
and why they have been implemented in such a way. The core security functionalities are
outlined, detailing how the CIA triad is realised to produce a secure system. Confiden-
tiality and integrity are provided with the encryption and MAC techniques described in
Section 3.4. These are operations that occur on the device itself. The majority of the
availability functions are provided by the KMS, which equips the system with authentica-
tion, access control and key management. Availability is aided by the key cache (Section
3.6), allowing immediate encryption for regularly used keys and approved communication.

The design encompasses a secure, efficient communication mechanism for IoT systems.

29

Chapter 4
Implementation

This chapter outlines the actual work that has been carried out in implementing the
design laid out in Chapter 3. Section 4.1 presents a high level view of the implementation,
defining the architecture of how all system components have been deployed, and how they
interact with one another. Section 4.2 details the broker configuration used in order for
all components to communicate through it. Section 4.3 describes the implementation
of the Key Management Service, deployed as a resource within the MQTT framework.
Section 4.4 defines the C library that has been developed to provide capabilities to the
resource-constrained IoT devices. These capabilities have also been provided for resource-
unconstrained system components in the form of a Python module, outlined in Section
4.5. Finally, Section 4.6 summarises the end-to-end implementation and deployment of

the scheme.

4.1 Deployment Architecture

The scheme outlined in Chapter 3 has been deployed as an end-to-end IoT package, en-
compassing all necessary components to be easily integrated into an IoT-over-MQTT
application (Fig. 4.1). This scheme has been abstracted to library form, to provide se-
cure transmission functionalities to the various application components. The necessary
MQTT configuration has been outlined and identified, using Eclipse Mosquitto as mes-
sage broker. The Key Management Service (KMS) is deployed as an autonomous utility
providing services to the system components. A C library has been developed to provide
the capabilities required for the resource-constrained IoT devices. Finally, utilities have
been provided, in the form of a Python module, for resource-unconstrained components

participating in the IoT system.

30

loT Device(s) Key

: Management

o Service
Application|Libraryj

|
Module | Service

T
' Border
Application|Libraryl >
PP : ’ Router
; T
| .
T Module |Service
l |
Application|Libraryj .
I
1
/1_ ___________ j\
< Performance-Critical Transmission >
NTT T T T T T T T T 1

Figure 4.1: Deployment Architecture Diagram.

4.2 MQTT Broker

Mosquitto is a lightweight, open source implementation of an MQTT broker that is suit-
able for use on all types of devices!. It requires very little configuration, merely listening
on port 1883 for any MQTT packets to be dealt with accordingly. Topics do not have
to be previously configured on the broker to be published or subscribed to. Rather, if
the broker encounters a request for a previously unencountered topic, it will provision

resources for it and route any subsequent messages for the topic appropriately.

MQTT Bridge

The broker deployment, as seen in Fig. 4.1, is implemented using a border router in
the IoT device environment, forwarding MQTT packets to and from the central broker
hosted on the cloud (AWS). Bluetooth Low Energy is the network protocol used in this
[oT implementation, which has a range of approximately 100m. The border router, hosted
on a local Linux virtual machine, runs an identical Mosquitto broker that picks up the
MQTT packets over Bluetooth. An MQTT bridge is configured between the two brokers.
This essentially allows one of the brokers to act as a client to the other, publishing
and subscribing to all relevant topics. Some simple configuration is done on one of the
brokers’ mosquitto.conf files, identifying the address and port of the remote broker,

along with any topic specifications or remapping necessary. This essentially implements

Thttps://mosquitto.org/

31

MQTT packet forwarding.

Security

In terms of security, the broker is capable of implementing an authorisation policy. In
Mosquitto, settings can be changed in the mosquitto.conf file to enforce limitations on
client access. This is a desirable feature for most IoT applications, to ensure that only
authorised clients can connect to the system, and be able to publish or subscribe only to
their relevant topics. A password file can be stored in the broker’s conf file that stores ap-
proved clients. The MQTT CONNECT packet contains optional username and password
fields, which are checked against the password file before connection is approved. The
broker can also store an access control list (ACL) file, similarly implementing restrictions
on a more granular level, specifying approved topics, operations (publish, subscribe or
both) and QoS levels. This is based on the client ID that can be sent in the header of
MQTT packets.

These measures add a weak layer of security to the system in place. However, a secure
transmission channel does not exist between client and broker in this implementation,
and the MQTT header is transmitted in plaintext. For these reasons, packets could be
intercepted in transmission and the relevant authorisation criteria could be gleaned and
spoofed to gain access to the broker. The KMS provides a much more secure means of

ensuring authorisation and access control.

4.3 Key Management Service

The KMS is deployed as a central server communicating entirely over MQT'T, directly with
the cloud-based MQTT broker. It is responsible for ensuring secure key exchange, key life-
cycle management, client authorisation and access control. Though the communication
protocol used is MQTT instead of HI'TP, the service has been designed to emulate a
RESTful API in several ways. The KMS provides resource endpoints through the use of
topics. The entire scheme is constructed on an event-based architecture, where minimal
processing is done until an event triggers the appropriate response. This is reflected in the
stateless nature of the KMS, where each request is dealt with accordingly, before returning
to idle state. This design is adapted to fit the asynchronous, decoupled request-response
nature of MQTT systems.

32

Registration

A design decision that has been enforced on the scheme is that any client participating in
any way must first be registered in a secure manner with the KMS. This process should
be done offline by the system administrator, in a way that does not transmit any of the
sensitive information over the network. The client is assigned a client ID and password
that it can use to identify itself to the KMS (with the KMS storing the SHA-1 hashed
password). It is also assigned a private topic for direct communication from the KMS,
and a private key used to decrypt any responses received from the KMS. Both entities
store these four pieces of data, which are essential for ensuring secure communications
throughout the system. It is assumed for this implementation that all devices in play

have been successfully registered.

Requests

The basic request endpoints provided by the KMS are encryption and decryption key
requests. An encryption key is required by a publisher to publish a message, and a
decryption key is required by a subscriber to decrypt a message it has received. Requests
are filtered based on the topic they have arrived through. The client is first authorised and
approved for access regarding the particular request. In the case of an approved encryption
key request, a new key is created by the KMS. This is sent back to the publisher through
their private topic, along with the key’s ID and expiration time. These values are stored
by the KMS, along with the client ID of the requester. An approved decryption request
will include the ID of the key it wishes to obtain. If this is successfully retrieved by the
KMS, it is sent back to the subscriber through their private topic.

Encryption and Decryption

Each request is encrypted by the client using its private key for transmission. The client
ID is left unencrypted in the header of a request, which is used by the KMS to locate
that client’s private key. This is then used, along with the nonce sent in the header, to
decrypt the request. Similarly, the response is encrypted with the same key and a new
nonce, to be returned to the client through their private topic. The same encryption
technique, AES-128 with CCM Mode, is used throughout the scheme for encryption and
decryption. Since MQTT payloads are always binary, its not necessary to encode the
encrypted message, a raw byte array, to a textual representation such as base64. This
saves on additional bandwidth, as base64 encoding is more bloated, using 4/3 times as

many bytes.

33

Authorisation and Access Control

The KMS must verify that each request is valid with regard to the application’s access
policy. Authorisation is carried out by means of the client ID and password established
upon registration. The client ID is stored in the request header, and the password is
stored within the payload of the request that is encrypted. This implements a form of
two-factor authentication, in that the requester must have both the private key in order
to properly encrypt the packet, and the password itself. The password is not sent directly,
as this should only be known by the client. A cryptographic hash, SHA-1, is instead used,
and this is the value that is stored in the KMS to compare and authenticate the client.
Once the client has been authenticated, the rest of the request is analysed. Each
request must include the intended topic, and QoS level in the case of publishing. An
access control list, similar to the broker’s ACL, is stored by the KMS. Upon receipt of an
encryption key request, the KMS checks whether the client has publishing rights for the
specified topic and QoS level. If access is granted, the key issued is associated with those
particular criteria. When a decryption key request is received, the client is first checked
to make sure that they have subscribing rights to the topic in question. It is then ensured
that the key requested has been associated with the correct topic. This is to prevent
topic spoofing, where the publisher or subscriber requests a key for a topic that is not the

intended one, that perhaps they do not have access rights to.

aSSWOr rivate D

Hash Key

6 . N Access
et Client Qo8
opic 1 Control eve

Xxpiration
Jimestam
N
M 1 N
Key Execute Associate

Request N N 1
1 D
Authent® L H
Request N Associate TOpIC

(Approve Type

Time-

Figure 4.2: Entity Relationship Diagram for the KMS.

In order for these policies to be enforced, a relational MySQL database was imple-

mented to store the relevant persistent information, as seen in Fig. 4.2. Whenever a client

34

is registered onto the system, a row in the Client table is added. The Access Control
table stores all information on the rights and restrictions of each client. Any topics in
use are stored in the Topic table. Both the Access Control and Topic tables should
be synchronised with the broker’s ACL and topic list to ensure there is no mismatch.
All requests made to the KMS are stored, along with whether they have been authorised
and approved. Tracking of requests can help to identify potential security breaches and
trigger an alert in these cases. When an encryption key request leads to a new key being
created, it is stored in the Key table. Finally, a table is implemented that stores all clients

that have accessed each particular key, for encryption or decryption.

Monitoring

ncryptel
Client ID

®
)

1 .
1N Message N Topic
© EHCE

Figure 4.3: Entity Relationship Diagram for KMS Monitoring.

gﬂ

On

Along with the data represented in Fig. 4.2, the KMS also stores information on every
message passing through the system (Fig. 4.3). In order to do this, the KMS subscribes
to all topics supported by the broker. The actual payload of the message is not decrypted
or stored, but information such as the topic it was sent to, time it was sent and key ID
are stored. The key ID can be used to link the message to the client who sent it. These
messages are passively monitored in order for the KMS to be aware of the operation of the
system. Monitoring can identify any unusual system operation, such as a client suddenly
stopping its transmission or an influx of unexpected messages. In this way security attacks

such as DoS attacks can be identified, thwarted and alerted to as quickly as possible.

4.4 1IoT Device Library

The IoT device implementation has been deployed as a C library, providing secure com-

munication capabilities to a sample application running on a microcontroller board. Func-

35

tionalities of the system include MQTT communication, payload encryption of messages
and secure key exchange. The decision was made to develop such a system on a micro-
controller rather than a simulator (Cooja, Omnet++) or emulator (QEMU, Mininet) for
several reasons. Simulations are the most straightforward way to implement a system
such as this, however, they are likely to be unrealistic and not account for real-world
complications. Emulators will produce a more practical and realistic operation of an IoT
system. Due to the varied and often unpredictable nature and environment of [oT, it was
anticipated that these implementations would not adequately identify issues that may
arise. The aim of producing such a system was to determine the most suitable security
protocol for a constrained environment, and in order to do so the implementation should

reflect a real-life IoT system to the fullest extent possible.

Technologies

[oT device development has been carried out on a Nordic Semiconductor NRF52 Devel-
opment Kit?. This microcontroller integrates a low power ARM Cortex-M series micro-
processor with memory and peripherals into a single microcontroller package, including
a 2.4GHz radio designed for Bluetooth Low Energy communication. The Nordic Semi-
conductor nRF5 SDK is used on the microcontroller as the BLE “softdevice” for devel-
opment. SEGGER JLink software® has been used for flashing and debugging the device,
along with command line tools provided for the Nordic Semiconductor nRF5x range.
The GNU ARM Embedded Toolchain* provides compiler and linker functionalities to the
development system.

The operating system employed by the device is Zephyr®, a real-time operating system
(RTOS) designed for use on resource-constrained devices. Zephyr is an open source,
highly configurable RTOS that is optimized for small memory footprint devices with
security in mind. Functionality is provided for MQTT communication, with support for
BLE and 6LoWPAN. On top of this, a security library, mbed TLS®, is used to provide
cryptographic functionalities such as encryption and hashing. These systems are written
in the C programming language, and therefore the library and application developed is
also written in C. Finally, in order to debug and display system outputs from the board,

a serial port terminal application, CoolTerm”, is used.

Zhttp://infocenter.nordicsemi.com/index.jsp
3https://www.segger.com/downloads /jlink
“https://developer.arm.com/open-source/gnu-toolchain /gnu-rm
Shttps://www.zephyrproject.org/

Shttps://tls.mbed.org/

"http://freeware.the-meiers.org/

36

Application

An application was deployed to run on the microcontroller board, providing a means of
testing and analysing the functionalities developed. This application provides a regular
stream of messages to be encrypted and sent to the broker. The content, length, num-
ber and delay between messages can all be varied, in order to test the robustness and
performance of the system. It also subscribes to a particular topic, which is used as an
input endpoint. A user can publish any message to this topic, which the application will

receive, encrypt and send over MQTT.

static void handle_input_msg (char* msg)
if (starts_with(‘‘rand’’, msg))
msg = msg + 9;

{
{

int rand_length = atoi(msg);

charx rand_str;

rand_string (rand_str, rand_length);
encrypt_and_send (rand_str);

} else {

encrypt_and_send (msg);

}

Listing 4.1: Handler function for messages received on the input topic. User can input
a message of any length to be encrypted and sent. The user can also input the keyword

rand followed by a number to send a random string of the specified length.

Encryption and Key Request Process

Fig. 4.4 depicts the steps undertaken when an application requires a new message to be
published. Functionality is provided for the device to be both a publisher and subscriber
to topics. For the purpose of description, the encryption and publishing process will be
outlined for the IoT device, and message receipt from subscription and decryption process
will be outlined for the resource-unconstrained service (section 4.5). This is based on the
conventional perspective of IoT devices such as sensors publishing information about their
environment, which is then utilised by services to make sense of the data provided. It
is also noted that systems operate bi-directionally, and services can publish messages in

order to actuate some function on the IoT device.

37

e

| Message |
to Send
Request
2
] Create l«—Valid Invalid—s-| Encryption |
Nonce
Key
|
v Wait for
Encrypt & Response
Fail Tag ¥
AES-CCM
Response
Received
Fail
\
Decrypt
Pass AES-CCM
v
Idle Construct
Payload ntegrit
* Check
No
Y Pass
Fragment y
Yes—| Offset into
Calculate
Header i
Expiry
Time
\i
Prepare "
Send | MQTT Populate
Packet Key Struct

Figure 4.4: Encryption and Key Request Process

Message to Send. The aim of most IoT systems is for the application to lie in idle
state until some event (a timer, change in environment, received message etc) triggers a
response. The response usually requires some form of communication. When this arises,

the application will call a function from the library to send the message.

38

Check Key. The first step in the process is to verify whether the encryption key cur-
rently in use for the topic is valid. The first check is on whether the key exists. When a
device starts initially or restarts, it will not have any keys stored in the key cache. If one
does exist, the expiration time is checked to make sure it has not expired yet. Finally, it
is checked to make sure the key itself is valid, in that it is the correct length and format

for the encryption algorithm.

static bool check_key(charx topic) {
key_struct*x encryption_key;

int rc = hashtable_get (key_cache, topic, &encryption_key);

if (rc !=0) {
// Key has not been received yet
if (!requesting)

request_encryption_key (topic);

return false;

}

if (k_uptime_get() > encryption_key—>timestamp) {
// Key has expired
request_encryption_key (topic);
return false;

¥

if (strlen(encryption_key—key) != KEYLENGTH) ({
// Incorrect key length
request_encryption_key (topic);
return false;

}

return true;

}

Listing 4.2: Key check function. The key struct is accessed from the hash table using the
topic. If it is not present, and isn’t currently waiting for response, a new key is requested
and the check fails. Similarly expiry time and key length are checked. If all checks pass

then a valid key is present.

Request Encryption Key. In the case where one of the key checks fails, a new en-
cryption key must be requested from the KMS. The request is composed of the client’s

credentials, the topic and QoS level. The same security header format is used, except

39

that the key ID field is replaced by the client ID. The other fields are encrypted with the
private key and stored in the payload. This request is sent to the encryption key request

topic, and the client waits for a response from the KMS.

Response Received. The client should always receive a response from the KMS,
whether the request is authorised or not. If no response is received after a certain amount
of time (network dependent), the request times out and the client sends another request.
If the request has not been approved, a response is received with an error code corre-

sponding to the reason for denial.

Decrypt AES-CCM. Upon receipt of response for an approved request, the message
must be decrypted using the private key. This is achieved, as with all communications
within the system, with AES-CCM encryption. This process should reveal the response,

containing the key itself, its ID and time (milliseconds) until expiry.

Integrity Check. The first eight bytes of the decrypted message contain the MAC,
which is used to make sure that the message is authentic and has not been tampered with
in transmission. The plaintext message MAC is calculated and compared with the MAC
received, and if they are equal then the message is accepted. If this check reveals that
the message has been tampered with, a new key is requested and the offending message

is destroyed.

Calculate Expiry Time. An obstacle that occurs in numerous embedded and resource-
constrained device systems is clock synchronisation. The expiry time of the key on the
device should match the expiry time stored by the KMS. It is assumed that the device
does not have a synchronised clock. It does, however, have a kernel clock that is measured
in upticks - number of milliseconds since the device started running. One of the fields
within the response is the number of milliseconds until expiry. This should be added
on to the uptick value at that point to get the uptick value when the key expires. This
gives a good approximation to the expiry time stored in the KMS, however it does not
account for the time taken for the packet to reach the device. In order to achieve a closer
approximation, the KMS could measure the round-trip time to the device, halve it and
add that on to the expiry time it had stored. In this case, it is not critical to have exact

synchronisation between the two entities.

Populate Key Struct. FEach time a new key is received, it is stored in a key struct

according to the topic it is assigned to. This is implemented as a hash table, with the

40

topic name as the key and key struct as the value. This process can either be creating a
new entry, or replacing the values in the previous one. The struct contains the key, ID

and time until expiry.

Message to Send. Once the key has been received, the system returns to the message

that is to be sent, and the key check now indicates that a valid key exists.

Create Nonce. A random 8-byte nonce is used as IV for CCM encryption. It is im-
portant that the same nonce and key combination are never used more than once, as this
leads to catastrophic failures and can reveal the plaintext in the case of an attack. For
this reason a good entropy source should be used to seed the random number generator

and ensure there is no repetition in nonce values.

Encrypt & Tag AES-CCM. With the nonce created and the key secured, the message
the publisher wants to send can be encrypted. Using CCM mode, the MAC is calculated,

and this is appended to the message before the whole sequence is encrypted.

Error Check. In the course of testing the encryption functionality, it was observed that
in some cases the entire message would not get encrypted. The encryption function would
truncate the original message, and a shorter encrypted message would be returned. Due to
the properties of CCM encryption, the plaintext and ciphertext should both be the same
length in successful encryption. A check is done once the message has been encrypted
to make sure this is the case, and the encrypted message has not been truncated. If it
has, a new nonce is created and encryption is repeated. A do-while loop ensures that the

encrypted message is not sent until it is the same length as the original message.

Construct Payload. Once the message has been successfully encrypted, the payload
can be constructed, with the security header, encrypted message and MAC. The security
header consists of the fragmentation offset, key ID and nonce. The key ID and nonce are
concatenated with the encrypted message and MAC, leaving the first byte of the security

header for the fragmentation offset.

Fragmentation. The length of the payload is calculated and compared with the MTU
of the system to identify how many fragments are needed. The message is then split up
accordingly, using the first byte of each as the fragmentation offset. The final fragment

sets the MSB of the offset to 1, indicating that no more fragments are to come.

41

unsigned char payload [PAYLOADSIZE]|;

unsigned char full_msg [FRAG.OFFSET SIZE + KEY_ID_SIZE +
NONCESIZE + sizeof (encrypted-msg)];

snprintf(full_ msg, sizeof(full . msg), “‘%c%c%s%s’’, keyid_msb ,
keyid_lsb , nonce, encrypted_msg);

int num_fragments = sizeof (full_.msg) / (PAYLOADSIZE—2);
if (sizeof(full_msg) % PAYLOADSIZE != 0)

num_fragments+-;

for (curr_frag = 1; curr_frag <= num_fragments; curr_frag++) {
char fragment_offset = (char) curr_frag;
if (curr_frag = num_fragments)
fragment_offset |= 1UL << 7;
snprintf(payload, sizeof(payload), “%c%s’’, fragment_offset ,

full_msg + ((PAYLOADSIZE—2)x(curr_frag —1)));
publish_mqtt (payload , topic);

}

Listing 4.3: Payload construction and fragmentation implementation. The full message
is constructed from the encrypted message and header fields. This length determines the
number of fragments necessary. Each fragment concatenates the offset with the chunk of
message which fits in the packet, according to the permitted payload size. This is then
sent to the intended topic.

MQTT Send. Each fragment must be prepared as an MQTT packet to be sent to
the broker. The fragment is put into the payload of the MQTT packet, and header
information such as the topic name, QoS level and packet ID are added to the packet.
This is then sent using MQTT infrastructure provided by the Zephyr Operating System.
Due to congestion constraints with this MQTT implementation, a 500ms interval should
be given between the sending of MQTT packets. When all fragments have been sent, the

device can return to idle state to wait for another message to be sent.

42

4.5 IoT Service Module

The IoT service module provides support for resource-unconstrained entities within the
system. These entities are clients within the MQTT framework, providing the IoT appli-
cation processes. They generally provide some or all of the top four layers of the CISCO
reference model (Fig. 2.1) - data accumulation, data abstraction, application and col-
laboration and processes. Data can be gathered and accumulated from any or all IoT
devices in play, where it can be analysed and applied in a useful manner. The service
can also present an interface through which to actuate a process or action on a device.
This component is provided with a Python module that implements the same capabilities
as the device library (Section 4.4). However, the implementation requires less overhead
optimisation, due to the resource-unconstrained nature of the component. The decryption

process is outlined, in the case where a message is received from a subscribed topic.

Decryption Process

When the client receives a message from the broker, it must be able to decrypt it in order
to utilise the plaintext message appropriately. Fragmentation is handled so that the entire
message is received and reassembled before decryption is carried out on it. Messages can
be sent in one or several fragments, so for each fragment the MSB of the fragmentation
offset is checked to see if the packet contains the final fragment. Sequential packet 1Ds
indicate fragments that make up the same message, and differentiate between fragments
from separate messages. When the first fragment of a message is received, the client
parses the packet to extract the various fields. The fragmentation offset identifies that
it is the first fragment, and therefore contains the security header. The nonce and MAC
are stored, as well as the encrypted message payload, to be handled upon receipt of all
fragments.

The key ID is obtained from the security header. It is stored as a binary value in
two bytes in the header, and therefore is first converted to an integer. This value is used
to check the key cache, which is a hash table with the key ID as the key and the key
object as the value. In the case where the client is in possession of the required key, it
is stored in the message object to be used once all fragments have been received. If not,
the key is requested from the KMS, as per the process defined for the IoT device. This
key request is performed asynchronously to the message fragment reception. With each
fragment received, the encrypted message is concatenated. When the final fragment is
obtained, a concurrent future method is used to decrypt the compiled message as soon as
the required key is returned. Upon successful decryption, the application can make use

of the plaintext method appropriately.

43

def decrypt(encrypted_msg, nonce, key):
cipher = AES.new(key, AES.MODECCM, nonce)
decrypted = cipher.decrypt(encrypted_msg)
mac = decrypted [: 8]
msg = decrypted [8:]
try:
cipher. verify (mac)
print "The message is authentic”
except ValueError:
print "Key incorrect or message corrupted”
return None

return msg

Listing 4.4: Decryption implementation. An 8-byte nonce and 16-byte key are used to
decrypt messages. The first 8 bytes of the message represent the MAC, which is used to

verify message integrity before the decrypted message is returned.

4.6 Summary

The design laid out in Chapter 3 has been implemented as an end-to-end IoT scheme,
providing the required capabilities and services for all components of an MQTT-based
[oT system. The broker requirements have been outlined, using a minimal-configuration
Mosquitto implementation. The Key Management Service is executed as an autonomous
resource for the system, running entirely over the MQTT protocol. It conforms to the
decoupled and asynchronous nature of an MQTT system, adapting the request-response
paradigm accordingly. Libraries equip the system components with the necessary re-
quirements of the scheme, presenting an interface over which the processes outlined in the
above sections can be carried out. The implementation has been constructed with the

dual aims of maximising security and minimising overhead to the fullest extent possible.

44

Chapter 5
Evaluation

This chapter details a high-level overview of the system design and implementation, in-
cluding experimental results of system performance, comparison with other security in-
frastructures, discussion and potential alternative solutions. The system is analysed under
two lenses, the suitability for the MQTT-based IoT environment and the overall secure-
ness of the system. A central focus of suitability for IoT is in minimising overhead -
including bandwidth, time-to-idle, memory and the general overhead associated with sys-
tem implementation. This is discussed in section 5.1. The security analysis of the scheme
is contained within section 5.2. Finally, section 5.3 comprises an overall discussion of the

approach, the reasoning behind design choices and an analysis of suitability.

5.1 Overhead

Minimising overhead on the IoT device was a fundamental objective in the design of the
scheme. Several factors contributed to the realisation of this objective. First of all, a wide
range of encryption techniques were analysed, and the most suitable algorithm was chosen
with regard to minimising bandwidth and processing on the device. The design involves
the smallest possible number of added messages to be sent. A light code footprint library
was used to incur reduced memory requirements. The majority of security mechanisms
exist externally to the device itself, only requiring the device to process the most crucial
steps. In general, the implementation of the scheme is as lightweight as possible, and
optimisations have been made to minimise overhead in all areas.

Bandwidth is minimised by ensuring all messages comprise as few bytes as possible.
The first step in this endeavour is the choice of encryption technique. AES-128 CCM
mode symmetric-key encryption was chosen. Symmetric-key encryption generally pro-

duces ciphertext that is the same length as the plaintext, without incurring any bloat.

45

This is in comparison to asymmetric-key techniques, which must increase the data size
to obscure the length of the plaintext. This length information could be used along with
the public key, to attempt potential plaintext sequences of such a length and compare
them with the ciphertext. This is not an issue with private-key encryption, making it
more efficient regarding bandwidth (McKay et al., 2017). Padding is, however, sometimes
needed to ensure the length of the plaintext is as long as the block size of the symmetric
algorithm. This is not necessary with CCM mode encryption.

Nineteen added bytes are required for every packet that is sent with the proposed
scheme, compared to the same message with no security. These consist of the fragmenta-
tion offset (one byte), the key ID (two bytes), the nonce (eight bytes) and the MAC tag (8
bytes). Assuming an MTU of 127 bytes, this incurs a 15% overhead for a full packet. In
the case of fragmentation, the full security header is not included in subsequent packets
after the initial one, and only one extra byte for the fragmentation offset is required.

Comparing the bandwidth requirements to TLS, it can be assumed that the same
ciphersuite is used, incurring a similar number of bytes for each message. The comparison
is really in the key exchange policy, with TLS using a handshake for session establishment
and the proposed scheme using MQTT requests and responses. TLS sets up a session for
an initial message to be sent, and these sessions can be resumed with fewer requirements
for subsequent messages. Considering the publish/subscribe framework, a TLS session
must be established for each published message, and then the broker must establish a

separate session for each subscriber to receive the message.

Message Field Average Length (Bytes)
ClientHello 170

SessionID 32

ServerHello 75

Certificate 6000 (4 x 1500)
ClientKeyExchange 130

ChangeCipherSpec 1

Finished 12

TLS Record Header 5)

TLS Handshake Header 4

Table 5.1: Average TLS handshake message sizes.

Table 5.1 outlines the average length of messages and message fields involved in the
handshake procedure of TLS. An initial handshake sends seven handshake messages, four

of those being record messages, and will incur approximately 6.5k bytes:

TX44+4x5+170+ 32+ 75+ 6000 + 130 +2 x 1 + 2 x 12 = 6481

46

The overhead necessary to resume an existing TLS session is 332 bytes, using four hand-

shake messages, three being record messages:
4x4+3x5+170+32+75+2x1+2x12 =332

The initial handshake process must occur at least once per device, and the session can
then be resumed at lesser cost for every message to be sent or received. This compares
to the key request process of the proposed scheme. A request must be sent to the KMS
when a new key for a topic is required, or if the old key expires. Expiration time for keys
is variable depending on the system and network requirements, but can be an extended
period of hours to days or weeks. The key request (both encryption and decryption) is
of variable length, as it contains the client ID, password and topic name that all have
variable lengths. It should not require fragmentation. Similarly, the response from the

KMS contains the 16-byte key, expiration time and key ID, which will fit within one

packet.
Parameter Value
Publisher 1
Subscriber 1
Topic 1
Expiry Time 4 hours
Message Every 10 minutes
Message Length 50 bytes
Request Length 60 bytes
Response Length 75 bytes
Experiment Length 1 day

Table 5.2: Overhead experiment parameters.

An experiment compares the overhead of the two systems, using parameters as out-
lined in table 5.2. This aims to model a simple [oT system, with one publisher publishing
to a topic that is subscribed to by one subscriber. IoT systems generally send small
messages (10 to 100 bytes) at regular intervals, which is reflected in this scenario. The
parameters chosen are average values that are likely to occur in a real-world implemen-
tation of such a system. This experiment aims to give a general comparison between the
two implementations, and it is noted that varying the parameters can create exponentially
more complex systems that will give considerably different results.

TLS will require two session initialisations, between publisher and broker and then

broker and subscriber. It will then require session resumption for each new message that

47

is sent and received. This amounts to 108,578 bytes overall:
6481 4 6481 + 332 x 2 x (60 + 10) x 24 = 108,578

The proposed scheme will require an initial request and response for both the publisher
and subscriber, and each time the key expires this is repeated. This amounts to 1,620
bytes:

(60 4+75) x 2 x (24 +4) =1,620

There is evidently a huge bandwidth overhead involved in using TLS in comparison to
the proposed scheme. In this common IoT scenario, the scheme incurs only 1.5% of the

number of bytes necessary for the TLS implementation.

Time-to-Idle

Time-to-ldle (ms)

0 50 100 150 200 250 300 350
Message Size (Bytes)

Figure 5.1: This graph analyses the average time the system takes from
when a new message is to be sent, until it is encrypted, sent and the
device returns to idle state. This varies with message size. These mea-
surements assume the key is cached locally.

[oT devices aim to exist in idle state for as long as possible, and to return to this idle
state quickly after an event has been processed. This is crucial for reserving resources,
and should be a consideration in the system design by way of minimising processing time.

Fig. 5.1 presents the time taken for the device to return to idle state once a message of a

48

certain size is encrypted and sent. These measurements have been taken with the required
key stored in the device’s local cache. The graph exhibits a step-wise linear relationship,
with the time increasing relative to the size of the message to be sent. The message size
is the deciding factor in the time incrementation, as it relates to the number of blocks
to be processed by the encryption algorithm. Fragmentation occurs at the MTU size of
127 bytes, yet the graph shows no obvious jump in processing time at these points where

multiple messages are sent.

Round-Trip Time

Round-Trip Time (ms)

0 50 100 150 200
Message Size (Bytes)

N
v
(=]
w
[<]
(=]

350

Figure 5.2: This graph analyses the average time the system takes from
when a new message is to be sent, until the key is requested and received,
the message is encrypted, sent and the device returns to idle state. This
varies with message size.

The graph in Fig. 5.1 assumes the required key is stored locally. Round-trip time
measurements have also been collected for the case where a key request must be made
to the KMS before a message is to be sent. This can be seen in Fig. 5.2. This portrays
an extremely similar step-wise linear relationship, though with an upward shift on the
time axis. This indicates that the request time is a constant (approximately 520ms),
which gets added on to the message processing time once the key has been retrieved. In
both graphs it can be seen that there is slightly more variation in the processing time for

larger messages. This is due to the encryption error that sometimes occurs - when the

49

full message is not encrypted and encryption must be repeated until the correctly-sized
ciphertext is produced. This is more likely to occur in larger messages, and therefore
affects the average processing time for such messages.

The times taken for messages to be processed and sent by the scheme are negligible
for most real-world IoT applications. A 40ms latency in transmitting a full packet will
not negatively impact the operation of a system. In particular, for this configuration,
a H00ms delay must be implemented between any MQTT messages that are sent. This
is because after a short amount of time of consistent MQTT messages, the transmission
mechanism becomes flooded and ceases to operate. As a result of this, the throughput for
the scheme and for the system with no security implementation is extremely similar. For
the most part, the security processing can be done within the required delay timeframe.
In the occasional case where a new key is required, the delay will be slightly longer than
the required delay. This is in comparison to TLS, which must account for the round-trip
time of four handshake messages whenever a session is resumed for a new message to be
sent.

The general implementation overhead of the system is relatively low, particularly in
comparison with TLS. It is clear that in the resource-constrained environment of IoT,
TLS can be wholly unsuitable, requiring a considerable amount of extra bandwidth and
processing than is necessary for an IoT message that, relatively, is extremely small. The
proposed solution offers a manageable security scheme, designed specifically for such an
environment. The KMS manages the bulk of the computation, allowing the IoT devices

to operate with minimal awareness of the security infrastructure in place.

5.2 Secureness

The fundamental purpose of the design is to provide a secure means of communication
between IoT devices and the system components, through the MQTT broker. It must
be ensured that the security is robust, and the service being provided by the scheme is
legitimate. By definition of a security system, it should protect its client against threats
and vulnerabilities. The end-user must trust the scheme to fully and reliably maintain
this purpose. Risks can be very high in the case of failure. For these reasons, a security
scheme such as this must undergo rigorous testing to ensure end-to-end secureness. This
section outlines a slightly more lightweight security evaluation, as this is a first iteration
of the scheme. Upon further development, more rigorous real-world penetration testing
can be carried out to identify any vulnerabilities that should be addressed. However, the
confidence in the system at this level of analysis is high.

Complexity is the downfall of a security system (Bellovin, 2016). An overly-complex

50

system can lead to the appearance of security flaws that are difficult to identify and
analyse. When designing the scheme, simplicity was an essential objective - both in
terms of security and overhead minimisation. The core security components are the
encryption and MAC implementation, key caching and Key Management Service. Within
the KMS are security aspects such as authentication, authorisation, key exchange and
system monitoring. These all provide essential, yet simple, functionalities to the secure
and robust communication between IoT clients within the system. The components must
work autonomously and in tandem to provide the end-to-end security expected. The
failure of any one aspect can jeopardise the entire system. In order to analyse the security,
potential threats and attacks will be considered. This will reveal how well the system
defends against such an attack.

The first attack to consider is that of a compromised broker. IoT systems often
use an open, third-party broker to route messages between clients. With no security
implementation in place, an attacker can access such a broker, subscribe to a topic and
receive any published messages. It could also launch an attack on the broker with the aim
to access any messages presently stored within it. The proposed scheme adequately deals
with such an attack. Firstly, the scheme requires all devices to be authenticated by the
KMS and the broker, and any node whose ID and password is not on the whitelist will
not be permitted to subscribe to a topic. On top of this, any message that is stored in the
broker is encrypted, therefore a broker attack will not reveal any sensitive information.
The broker is a separate entity with no access to or information on the keys needed to
decrypt the messages.

Some common attacks to consider within TCP-based communications are eavesdrop-
ping attacks and Man in the Middle attacks (Tuna et al., 2017). An eavesdropping attack
is when packets are sniffed in transit, and the data within them is gathered. The pay-
load will be encrypted, and thus an eavesdropping attack will not reveal any sensitive
information. As outlined in Section 3.4, AES-128 is secure against attacks in which the
attacker has no access to the required key. A Man in the Middle attack similarly occurs
when packets are intercepted in transmission, and are modified before being forwarded
on to the broker or subscriber. This attack targets the integrity of the message, which is
secured with the Message Authentication Code (MAC) included within CCM encryption.
The recipient will perform an integrity check on the message, which will reveal whether
the message has been tampered with in any way.

IoT systems can often be vulnerable to Distributed Denial of Service (DDoS) botnet
attacks. A botnet harnesses a number of unsecured devices through implanted malware,
and uses them to launch an extensive DDoS attack (Jerkins, 2017). This entails using

the devices to send a large amount of requests, flooding a target system and rendering it

o1

unusable. These devices are vulnerable because of their lack of security, but due to the
authentication and authorisation mechanisms within the scheme, only approved commu-
nication can occur and botnets cannot penetrate such a network. On the other hand, the
[oT system itself can be vulnerable to a DoS attack. The KMS performs passive traffic
analysis on the overall system, identifying patterns and isolating any requests likely to
overload the system. The KMS can then blacklist such clients immediately, and alert the
system administrator to mitigate the damage.

In order to adequately evaluate the security of the scheme, it must be compared to
the security of a TLS implementation. The immediate advantage of the scheme over TLS
is the provision of end-to-end security, whereas TLS only provides security from broker to
client. TLS maintains an impenetrable channel between sender and receiver over which
encrypted messages can be sent. This scheme does not provide such a channel, relying
only on the encryption mechanisms for defense. The lack of private channel allows packets
to be intercepted, though as detailed above, no sensitive information will be revealed.
However, the header fields exist in plaintext, and an attacker can glean some information,
such as topic name, by accessing packets and interpreting the header information. An
attacker can gather information on the regular patterns of communication, such as timing,
regularity and topic, and use this to launch a more sinister attack. This cannot occur
when an established channel exists between entities, as in a TLS implementation.

Due to the fact that payload encryption exists on the application layer and TLS exists
below this layer, the proposed scheme can be utilised in tandem with TLS. This will
provide both secure channel and end-to-end security for an application. The scheme has
been designed with the perspective of an extremely resource-constrained [oT system. This
is not always the case in [oT, and many devices have enough compute power to support
protocols such as TLS. It is still important to design a system for efficiency, and optimise
for processing and bandwidth constraints. IoT applications with fewer constraints will
still have use for such a system, and payload encryption in conjunction with TLS will

provide increased security.

5.3 Discussion

As outlined in Sections 5.1 and 5.2, the scheme successfully provides authenticated payload
encryption to a resource-constrained environment such as IoT. It affords an alternative to
TLS for the MQTT framework, improving upon TLS in several respects. This is partic-
ularly important for real-world IoT applications that cannot support resource-intensive
security mechanisms. This leads to the deployment of insecure systems, due to the lack of

security options available. The scheme aims to be adaptable to a wide range of applica-

52

tions, providing capabilities through libraries for a straightforward implementation. It is
designed to be flexible in accommodating applications with a wide range of requirements,
capabilities and environments. The scheme is scalable, with no limit to the number of
components that can be supported. The only limit to scalability is in the initial deploy-
ment, in which a new device must be registered with the KMS. Once this step is complete,
the security scheme will work autonomously as required by the system.

Several overarching decisions were made upon the inception and continued develop-
ment of the scheme, in order to adequately provide a solution for the proposed problem.
The initial decision was to examine MQTT as an IoT protocol, and provide an applied
security solution to suit such a protocol and environment. The choice was made to focus
on MQTT over a number of other protocols, such as CoAP, AMQP, XMPP or MQTT-SN.
A symmetric-key implementation was selected, over TLS or asymmetric-key encryption.
The design was driven by the objective of providing a lightweight security implementation,
and design decisions were formed based on balancing security and usability.

MQTT is the most widely used and accepted application-layer protocol in practical
[oT applications. Its publish/subscribe architecture is suitable for many IoT scenarios,
though due to the fact that it runs over TCP/IP, it is not the most lightweight framework.
It has little to no security infrastructure, recommending TLS as a security layer, which is
generally too resource-intensive to be supported in IoT scenarios. MQTT-SN (MQTT for
Sensor Networks) was also considered. This is an adapted protocol that does not require
the TCP/IP stack, and optimises MQTT for low-powered networks (Zhao & Ge, 2013).
However, MQTT-SN is not well supported, and is not used extensively in IoT. The design
aims to improve the current state of [oT by providing a suitable security scheme for the
most widely used [oT protocol.

The decision was made to devise the entire system through the same protocol - MQTT.
This involves all components communicating through the broker, including the KMS. An-
other option that was considered was to use a different protocol, such as CoAP or HTTP,
for RESTful communications with the KMS for key exchange. This would essentially
provide the KMS functionalities as an entirely separate system to the already established
MQTT system. CoAP is a suitable protocol for such a scenario, due to its lightweight
request /response architecture. However, it was deemed that the added overhead involved
in supporting another protocol was unnecessary. As demonstrated, MQTT can be ad-
equately adapted to fit a request/response framework. Using one protocol presents the
added benefit of compliance and flexibility with the needs of the application. It also allows
straightforward system monitoring, and the ability to synchronise with the broker.

Some design decisions have been made that given more time and development, could

be altered and implemented in a more efficient fashion. For example, as a result of the

53

constraints of the development system used, it was necessary to implement fragmentation
on the application layer. This is due to the fact that messages over the MTU length would
not send, and fragmentation was not realised on a lower layer. 6LoWPAN guarantees
fragmentation in order to adapt large IPv6 packets to size requirements of constrained
protocols (Wang & Mu, 2017). This was not enforced in the 6LoWPAN implementation
used, and therefore it was necessary to devise a fragmentation policy. Upon further
development, 6LoWPAN fragmentation should be utilised.

Another design decision that could be reconsidered or analysed further is the cache
update policy. The scheme currently updates the key cache only when necessary, i.e.
when a message is to be sent and it is found that an invalid key exists in the cache. A
more efficient method could be enforced that will trigger an interrupt when the system
recognises that a key in the cache has become invalid, usually by expiring. Both im-
plementations have merit, and it may depend on the requirements of the application to
define the correct strategy to use. The current strategy allows the system to only request
keys that it needs, without making any unnecessary requests to the KMS. The alternative
strategy allows keys to be constantly up-to-date, and there will be no added delay in
messages that must wait for a key response before sending. The decision comes down to
prioritising low message latency or minimal key requests. It can also vary depending on
the number and variation of topics being used by the same device.

In order to improve upon TLS for resource-constrained environments, the chosen en-
cryption must minimise processing, memory requirements and added overhead. Symmetric-
key encryption has a relatively low computational overhead compared to asymmetric key
encryption, requires lower bandwidth and has no need for storing large keying materials
in memory. AES-128 CCM mode encryption was chosen due to its provision of encryp-
tion and message integrity, its extremely low bandwidth requirements, and its strength
of security. Hybrid approaches use symmetric techniques for encryption and asymmetric
techniques for key exchange. The design improves upon these approaches by offsetting
the key management processing to a resource-unconstrained service. Overall this leads to

a secure, reliable low-overhead system.

5.4 Summary

The scheme has been evaluated through examining how secure of a system it is, as well
as how well it suits the [oT paradigm. These are the two pillars that the scheme has
been designed and built around from conception. All of the major design decisions have
been formulated based on these criteria. The overhead incurred by the system has been

analysed, and compared with the de-facto standard security protocol, TLS. This analysis

o4

shows how significantly it improves upon TLS with regard to bandwidth, processing and
time-to-idle. In Section 5.2 the security of the scheme is evaluated, considering the system
components, potential security breaches and a TLS comparison. It was found that the
system is secure against many common attacks, as it adequately provides the CIA triad
- confidentiality, integrity and availability. Finally, design decisions were scrutinised to

assess their suitability and validity for the scheme.

95

Chapter 6

Conclusions & Future Work

6.1 Conclusions

An authenticated payload encryption scheme has been developed for use in MQTT-based
[oT systems. The area was chosen to focus on due to the exponential growth of the
[oT industry, and the lack of appropriate security solutions available for such resource-
constrained environments. The solution aims to provide a flexible, lightweight end-to-end
security scheme for the publish/subscribe architecture of MQTT. All essential security
facets have been provided for, resulting in a complete security architecture that can be
integrated seamlessly into a real-world IoT application. This compares to several solutions
that only focus on one aspect of security, such as encryption (Katsikeas et al., 2017) or
authentication (Moustaine & Laurent, 2012).

The design was heavily optimised to suit a resource-constrained environment, and
this lead to an efficient system. A significant amount of research and experimentation
were carried out to find the ideal techniques and algorithms to use, in order to balance
security with usability. The purpose of the scheme is primarily to provide security, and
this was always at the forefront of decision-making. Any overhead optimisations that
could jeopardise the robust security of the scheme were eliminated. Security centres
around trust, and a security scheme must guarantee the trustworthiness and legitimacy
of its security implementation to its users. Nonetheless, a lightweight protocol was still
developed with significant improvements over TLS in bandwidth, average packet size,
memory, computation and time-to-idle. The scheme successfully fulfills its objectives and

provides a solution to the formulated problem.

26

6.2 Future Work

The scheme has been developed as a functional and usable system, as outlined in Chapter
4. Upon further development, the system could be optimised and tested more rigorously.
Each aspect of the scheme could be thoroughly analysed considering the most efficient
use of resources, and alternative design decisions could be compared and tested to prove
or disprove their effectiveness. In terms of security, penetration testing can be applied to
the system to identify any security vulnerabilities that should be dealt with and improved
upon. This would involve launching a range of simulated attacks on the system, in order
to evaluate its strength of security. Finally, the scheme could be applied to a real-world
[oT system, in order to evaluate its functional overhead and usability, and assess the
theoretical grounds it was built upon. As it stands, the scheme operates satisfactorily,
and with further testing and development, a more robust and durable system could be

produced.

o7

Bibliography

A. Banks, R. G. (2014). Mqtt version 3.1.1. OASIS Standard.

Al-Fugaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Inter-
net of things: A survey on enabling technologies, protocols, and applications. volume 17
(pp. 2347-2376).

Alaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of things
security: A survey. Journal of Network and Computer Applications, 88, 10 — 28.

Almuhammadi, S. & Al-Hejri, I. (2017). A comparative analysis of aes common modes
of operation. In 2017 IEEE 30th Canadian Conference on Flectrical and Computer
Engineering (CCECE) (pp. 1-4).

Ammar, M., Russello, G., & Crispo, B. (2018). Internet of things: A survey on the

security of iot frameworks. Journal of Information Security and Applications, 38, 8 —
27.

Bacon, J., Eyers, D., & Singh, J. (2009). Security in multi-domain event-based systems.
it - Information Technology, 51(5), 277.

Bellovin, S. M. (2016). Thinking Security: Stopping next Year’s Hackers. Addison-Wesley.

Chung, J. H. & Cho, T. H. (2016). Adaptive energy-efficient ssl/tls method using fuzzy
logic for the mqtt-based internet of things. International Journal Of Engineering And
Computer Science, 5(12).

CISCO (2014). Cisco iot reference model white paper. http://cdn.iotwf.com/
resources/71/IoT_Reference_Model _White_Paper_June_4_2014.pdf. Accessed:
2018-03-30.

Darroudi, S. M. & Gomez, C. (2017). Bluetooth low energy mesh networks: A survey.
Sensors (14248220), 17(7), 1 — 19.

Fortify, H. P. (2014). Hp internet of things research study. Hewlett Packard Enterprise.

58

Hoeppe, A. (2017). Predicts 2017: Industrie 4.0. Gartner.

Jan, M. A., Khan, F., Alam, M., & Usman, M. (2017). A payload-based mutual authen-

tication scheme for internet of things. Future Generation Computer Systems.

Jerkins, J. A. (2017). Motivating a market or regulatory solution to iot insecurity with

the mirai botnet code. In Computing and Communication Workshop and Conference
(CCWC), 2017 IEEE Tth Annual (pp. 1-5).: IEEE.

Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F., & Alonso-Zarate, J. (2015). A
survey on application layer protocols for the internet of things. Transaction on loT and
Cloud Computing, 3(1), 11-17.

Katsikeas, S., Fysarakis, K., & Miaoudakis, A. (2017). Lightweight & secure industrial
iot communications via the mq telemetry transport protocol. 2017 IEEE Symposium
on Computers and Communications (ISCC), Computers and Communications (ISCC),
2017 IEEE Symposium on, (pp. 1193).

Katz, J. (2014). Introduction to modern cryptography. Chapman & Hall/CRC.

Kong, J. H., Ang, L.-M., & Seng, K. P. (2015). A comprehensive survey of modern
symmetric cryptographic solutions for resource constrained environments. Journal of

Network and Computer Applications, 49, 15 — 50.

Kouicem, D. E., Bouabdallah, A., & Lakhlef, H. (2018). Internet of things security: A

top-down survey. Computer Networks.
McKay, K. A., Feldman, L., & Witte, G. A. (2017). Report on lightweight cryptography.

Mektoubi, A., Hassani, H. L., Belhadaoui, H., Rifi, M., & Zakari, A. (2016). New approach
for securing communication over mqtt protocol a comparaison between rsa and elliptic

curve. In Systems of Collaboration (SysCo), International Conference on (pp. 1-6).:
IEEE.

Morabito, R., Cozzolino, V., Ding, A. Y., Beijar, N., & Ott, J. (2018). Consolidate iot
edge computing with lightweight virtualization. IEEE Network, 32(1), 102-111.

Mosenia, A. & Jha, N. K. (2017). A comprehensive study of security of internet-of-things.
IEEE Transactions on Emerging Topics in Computing, 5(4), 586-602.

Moustaine, E. E. & Laurent, M. (2012). A lattice based authentication for low-cost
rfid. In 2012 IEEE International Conference on RFID-Technologies and Applications
(RFID-TA) (pp. 68-73).

59

Neisse, R., Steri, G., & Baldini, G. (2014). Enforcement of security policy rules for the
internet of things. In 2014 IEEE 10th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob) (pp. 165-172).

Neisse, R., Steri, G., Fovino, I. N.; & Baldini, G. (2015). Seckit: A model-based security
toolkit for the internet of things. Computers € Security, 54(Secure Information Reuse
and Integration & Availability, Reliability and Security 2014), 60 — 76.

Nguyen, K. T., Laurent, M., & Oualha, N. (2015). Survey on secure communication
protocols for the internet of things. Ad Hoc Networks, 32, 17 — 31. Internet of Things

security and privacy: design methods and optimization.

Onica, E., Felber, P., Mercier, H., & Riviere, E. (2016). Confidentiality-preserving pub-
lish/subscribe, a survey. ACM Computing Surveys, 49(2), 1-43.

Rizzardi, A., Sicari, S., Miorandi, D., & Coen-Porisini, A. (2016). Aups: An open source
authenticated publish /subscribe system for the internet of things. Information Systems,
62, 29 — 41.

Shin, S., Kobara, K., Chuang, C.-C., & Huang, W. (2016). A security framework for
mqtt. In 2016 IEEE Conference on Communications and Network Security (CNS) (pp.
432-436).

Sicari, S., Rizzardi, A., Grieco, L., & Coen-Porisini, A. (2015). Security, privacy and trust
in internet of things: The road ahead. Computer Networks, 76, 146 — 164.

Singh, M., Rajan, M. A., Shivraj, V. L., & Balamuralidhar, P. (2015). Secure mqtt for
internet of things (iot). In 2015 Fifth International Conference on Communication
Systems and Network Technologies (pp. 746-751).

Szalachowski, P., Ksiezopolski, B., & Kotulski, Z. (2010). Cmac, ccm and gem/gmac:
Advanced modes of operation of symmetric block ciphers in wireless sensor networks.
Information Processing Letters, 110(7), 247 — 251.

T. Dierks, E. R. (2008). The transport layer security (tls) protocol, version 1.2. [ETF
RFC 526,

Tuna, G., Kogias, D. G., Gungor, V. C., Gezer, C., Takn, E., & Ayday, E. (2017). A
survey on information security threats and solutions for machine to machine (m2m)

communications. Journal of Parallel and Distributed Computing, 109, 142 — 154.

60

Unger, S., Pfeiffer, S., & Timmermann, D. (2012). Dethroning transport layer security
in the embedded world. In 2012 5th International Conference on New Technologies,
Mobility and Security (NTMS) (pp. 1-5).

Urien, P. (2017). Introducing tls/dtls secure access modules for iot frameworks: Con-

cepts and experiments. In 2017 IEEE Symposium on Computers and Communications

(ISCC) (pp. 220-227).

Wang, X. & Mu, Y. (2017). Communication security and privacy support in 6lowpan.
Journal of Information Security and Applications, 34, 108 — 119.

Yassein, M. B., Shatnawi, M. Q., Aljwarneh, S., & Al-Hatmi, R. (2017). Internet of
things: Survey and open issues of mqtt protocol. In 2017 International Conference on
Engineering MIS (ICEMIS) (pp. 1-6).

Z. Shelby, K. Hartke, C. B. (2014). The constrained application protocol (coap). Internet
Engineering Task Force (IETF).

Zhao, K. & Ge, L. (2013). A survey on the internet of things security. In Computational
Intelligence and Security (CIS), 2013 9th International Conference on (pp. 663-667).:
IEEE.

61

	Introduction
	Fonts, sizes, justification
	Headings of sections and subsections
	Subsection name style
	Length of the report

	Contents of the Introduction
	Contents of the background chapter
	The Conclusions chapter

	Figures, Tables and Referencing
	Figures
	Tables
	Equations
	Referencing published work

	LaTeX
	Evaluation
	Conclusion
	Appendix
	Appendix numbering

