*,% V4 Trinity College Dublin
o Colaiste na Trionoide, Baile Atha Cliath
The University of Dublin

School of Computer Science and Statistics

Deep Neural Network Algorithms on
Graphics Processors for Embedded
Systems

David Cronin
13319942

10 May 2018

A dissertation submitted in partial fulfilment
of the requirements for the degree of
Magister in Arte Ingeniaria at
The College of the Holy and Undivided
Trinity of Queen Elizabeth near Dublin
with the supervision of
Prof. David Gregg and Dr. Andrew Anderson

Submitted to the University of Dublin, Trinity College, May, 2018

http://www.scss.tcd.ie

Declaration

|, David Cronin, declare that the following dissertation, except where otherwise stated, is
entirely my own work; that it has not previously been submitted as an exercise for a degree,
either in Trinity College Dublin, or in any other University; and that the library may lend or
copy it or any part thereof on request.

| have read and | understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

| have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write', located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Abstract

Deep Neural Network Algorithms on Graphics Processors for Embedded Systems
by David Cronin

Deep neural networks are becoming an increasingly popular method for tackling a range of
problems, particularly those of recognition. A lot of focus is given to improving improving
their performance by utilising graphics processors to perform key computations. However
this focus is primarily on using computers with very high performance components. This
thesis tackles the idea of performing these tasks on low powered embedded devices, often
made with components that have comparatively very low performance. As such this thesis
describes the implementation of an algorithm that performs a key computation associated

with deep neural networks, specifically matrix multiplication.

The algorithm described can target graphics processors using OpenGL on a large range of
devices, scaling from small low powered embedded devices with ARM architectures and
integrated graphics processors to large high powered desktop workstations with Intel
architectures and discrete graphics processors. The implementation is also portable and
cross platform, supporting both macOS and Linux. This is achieved by repurposing OpenGL
functionality, originally intended for graphics processing, to perform more general purpose

computations.

This thesis demonstrates that it is possible to achieve improved execution times when
performing matrix multiplication by efficiently using using OpenGL to target the graphics
processor. This thesis also demonstrates as a proof on concept that this algorithm can
compile and run on a small low powered embedded device for more limited computations.
Further work is also described that could be done to achieve improved results. By being able
to perform the work of deep neural networks on these embedded devices a whole range of
new applications could become possible, as these devices would be more capable of

interpreting their environments using image and audio processing.

Acknowledgements

| would like to thank my project supervisors, David Gregg and Andrew Anderson, for their
advice and encouragement for the duration of this project. My thanks to Andrew in
particular for helping me to integrate my work into the triNNity library and for reliably
responding to my emails with helpful pointers and suggestions, especially when they were at

the weekend.

Contents

1

Introduction
1.1 Research Questions
1.2 Objectives o
1.3 Purpose of the Research,
1.4 Layout of thethesis
Background
2.1 Machine Learning
2.2 Artificial Neural Networks
2.3 Convolutional Neural Networks
2.3.1 Fully Connected Layer
2.3.2 Pooling Layer
2.3.3 Convolution Layer
24 GEMM
241 Dot Product
2.4.2 Matrix Multiplication o
2.43 Fully Connected Layer
2.44 Convolution Layer
245 Implementations
2.5 Graphical Processing Unit
251 Architecture
252 OpenGL
253 OpenGLES
Implementation
3.1 Setup
3.2 Transferring Datatothe GPU
3.3 Performing the Computation.
3.4 Retrieving Results from the GPU
3.5 Transpositions

I SR e

10
11
11
12
14
14
14
15
15
17
18
18
19
20

3.6 Shader Programmes
3.7 Error Checking
38 Final Steps
Evaluation
4.1 Benchmarking
411 Compilation
4.1.2 Validation and Results
4.1.3 GEMM Variations
4.1.4 Scenarios
42 Results
421 MacBook Air.
422 ASUS Tinkerboard
43 Discussion
4.4 FurtherWork

3.5.1 Matrix A and Matrix B
3.5.2 Matrix A and Matrix BT
3.5.3 Matrix AT and Matrix B
3.5.4 Matrix AT and Matrix BT

5 Conclusion

A1l Appendix

A1l.1 Source code developed for the implementation

37
38
38
39
39
40
41
41
43
44
46

48

54

List of Figures

2.1
2.2
2.3
24
25
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2
3.3
3.4
3.5

4.1

Rosenblatts Perceptron
Single Layer Perceptron Network
Multi-Layer Perceptron Network
An example of a Convolutional Neural Network
A diagram of an Input Layer and a Fully Connected Layer
An illustration of a Max Pooling Layer
An illustration of a Convolution Layer
Example kernels with values or weights for three different patterns
Example of a kernel applied to aninput
An illustration of Matrix Multiplication
A Fully Connected Layer implemented with Matrix Multiplication
The creation of a Patch Matrix
Patch Matrix and Kernel Matrix being multiplied to perform convolution

im2row and im2col Patch Matrices
Single Instruction Multiple Data Stream

Programmable Graphics Pipeline

How Transform Feedback fits into the Graphics Pipeline
Layout of Matrix A and B, and how B is arranged in texture memory

Layout of Matrix A and BT, and how BT is arranged in texture memory . . .
Layout of Matrix AT and B, and how B is arranged in texture memory

Layout of Matrix AT and BT, and how BT is arranged in texture memory

Benchmark Results for the GEMM implementation on a MacBook Air

vi

27
29
30
31

42

List of Tables

2.1

4.1
4.2
4.3
4.4
4.5
4.6

Truth Table for Logical AND Operation 9
The specifications of each convolution scenario tested 40
Technical Specifications for MacBook Air 41
Benchmarks results for a MacBook Air 41
OpenGL Profiler Results on a MacBook Air 42
Technical Specifications for an ASUS Tinkerboard 43
Benchmarks for an ASUS Tinkerboard 43

vii

List of Code Samples

3.1 Outline of GLFW Context and Window Creation 22
3.2 Outline of VBO Creation, Binding, and Loading 23
3.3 Outline of Texture Creation, Binding, and Loading 25
3.4 Outline of VBO Creation, Binding, and Loading 26
3.5 Outline of Drawing Procedure in OpenGL 26
3.6 Outline of Transform Feedback Procedure in OpenGL 28
3.7 Outline of a Vertex Shader. 34
Al.1 The GEMM function implemented using OpenGL 54
A1.2 Collection of shader programmes developed 62
A1.3 Some OpenGL, EGL, and GLFW helper functions developed 67

viii

Nomenclature

ab-ik
abt-ik
abt-ki
AlexNet

ANN
API
BLAS
C/C+t
CNN
CPU
DNN
EGL

Embedded System/Device

Execution Time
GEMM
GLEW
GLFW
GLSL
GPU
/O
im2col
im2row
Library
MCMK
OpenCL

OpenGL
OpenGL ES
SIMD
triNNity

triNNity-benchmarks

VBO

Matrices a and b are untransposed. Input order is image, kernel
Matrix b is transposed. Input order is image, kernel

Matrix b is transposed. Input order is kernel, image

A Convolutional Neural Network developed in 2012 by Alex
Krizhevsky

Artificial Neural Network

Application Programming Interface

Basic Linear Algebra Subprograms

A general-purpose programming languages

Convolutional Neural Network

Central Processing Unit

Deep Neural Network

Embedded Systems Graphics Library

A small constrained device designed for low power consumption
Number of elapsed CPU clock cycles

GEneral Matrix Multiplication

OpenGL Extension Wrangler

Graphics Library FrameWork

OpenGL Shading Language

Graphics Processing Unit

Input / Output stream

Arranging patches of an image as rows of a matrix

Arranging patches of an image as columns of a matrix

A collection of resources used by computer programmes
Multi-Channel Multi-Kernel convolution

Open Computing Language, an API for performing general
computations on the GPU

Open Graphics Library, an API for 2D and 3D graphics rendering
utilising the GPU to provide hardware acceleration

An adaptation of OpenGL for Embedded Systems

Single Instruction Multiple Data stream

A library containing various implementations of techniques for
computing neural networks

A library for benchmarking the performance of the
implementations in the triNNity library

Vertex Buffer Object

1 Introduction

1.1 Research Questions

Is it possible to utilise the GPU (Graphics Processing Unit) found on a range of low power
embedded devices to perform computations associated with DNNs (Deep Neural Networks)
using OpenGL? Is it additionally possible that by performing this computation on the GPU
with OpenGL that the time taken to perform this computation is less than an equivalent

implementation that only uses the CPU (Central Processing Unit)?

1.2 Objectives

e The aim of the research is to develop an efficient implementation of a key DNN layer.

The layer that was chosen was the convolution layer.

e The implementation should be written in the programming language C++, specifically

version 14.

e The implementation will compile and run on both macOS and Linux operating

systems.

e The implementation will perform at least some of the work of the convolution on the

GPU.

e The implementation will interface with the GPU using the libraries OpenGL and
OpenGL ES, which will be described later in this thesis.

e The implementation will be tested on multiple devices, ranging from a desktop or
laptop computer with an Intel CPU to a small low powered embedded device with an
ARM system on a chip. All devices must have a GPU with an OpenGL or OpenGL ES

driver.

e |deally the performance of the OpenGL implementation using the GPU should be

superior to the equivalent implementation that only utilises the CPU in terms of

execution time.

e This performance improvement would ideally be the case across the range of devices

described.

e These implementations will be integrated into the ‘triNNity' library developed by the

'software-tools-group’ (1).

1.3 Purpose of the Research

DNNs are becoming an increasingly popular method for tackling a range of problems,
particularly problems in the field of recognition. They have increased the accuracy of
prediction and recognition problems significantly, such as image classification or audio
recognition. Performing this sort of computation on an embedded system creates a whole
range of possibilities where small low powered devices can better interpret their environment.
In a scenario where many of these devices are connected to a network it opens the possibility
that rather than transmitting all recording input back to some main server for processing,
some of this processing could be performed on device at the edge of the network. This
would improve latency, which may be desirable if the devices purpose involves human
interaction, and arguable be more ethical, if the device is used in a sensitive context where
the data can remain on device rather than being transmitted to a server. This would also
reduce overall traffic on the network by only transmitting the results of processing rather
than all of the data recorded.

To illustrate these benefits take the example of virtual voice assistants, which are becoming
more and more popular. A recently published article by the Siri team at Apple describes how
the use of DNNs on the iPhone can be used to recognise an utterance of the trigger phrase
"Hey Siri" (2). This trigger phrase will then summon the virtual voice assistant, Siri, to
listen to the following sentence. This following sentence is then transmitted to a main server
to process the request. While it is infeasible to perform the entire request on device, the use
of DNNs on the device have enabled the voice assistant to be triggered hands free. If the
processing could not be performed on device then the feature would require the phone to
constantly stream the microphones input to a server to wait for the trigger phrase. Not only
would this have poor latency with a round trip to a server, but it would also consume a lot
of bandwidth on the network. Processing the input from so many microphones remotely
would likely be an impossible task to perform at scale, whereas offloading the simpler
constant trigger processing to device while handling the more complex infrequent requests
on the server would be more scalable. The ethics of such a feature would be questionable as
transmitting the microphone input constantly over the network, even when the device is not

being used, would likely be considered a violation of user privacy.

Another example of the use of DNNs on embedded devices again comes from a feature of
the iPhone. DNNs have been used for facial recognition on the iPhone for nearly two years
in the Photos App, while in November of 2017 the launch of Face-ID (3) allowed for the
device to authenticate users with the front facing camera apparatus and DNNs. Again a
feature of this description needs to perform the computation on device, since it will not
always be connected to a network and the response time of a network request can be too
poor. Meanwhile performing this type of processing with DNNs has yielded promising
results, enabling this sort of technology on embedded devices. As such there is clearly a
need for computing DNNs on embedded devices. Improvements in performance of these
DNNs in terms of execution time would enable more possibilities and more processing on

these devices.

There are challenges however. An excerpt taken from the brief for this project: "However,
DNNs require extraordinarily large amounts of computation to operate, which stretches the
limits of the computation capacity and memory of embedded devices... GPUs provide lots of
processing capacity, but require carefully written code to achieve good performance... The
designers of embedded systems with GPUs often discourage developers from using the GPUs
for general-purpose computation. As a result, many embedded systems with GPUs have
limited support for general-purpose GPU (or GPGPU) programming languages such as
OpenCL, or disable OpenCL entirely. However, many more embedded boards support
OpenGL, which provides GPGPU programming facilities, albeit with fewer features than
OpenCL" (4). Embedded boards with GPUs will generally always provide OpenGL support
to enable graphics processing, however support for OpenCL, which would be more suitable,
is more unreliable. By using OpenGL it is hoped that a wider range of devices could run the
developed implementation as there is more support for OpenGL on these types of devices.
Thus this choice will enable this implementation to target devices ranging from desktop
workstations to small embedded devices. To use OpenGL for general purpose computation
on an embedded system it is necessary to target devices with support for OpenGL ES
(OpenGL for Embedded Systems) version 3.0 and higher, which provides enough
functionality for the task (5). Using OpenGL to perform this type of work is a novel idea,
and very little to no research exists as to how this implementation should be approached.
Therefore there is very little discussion of existing implementations of convolutional layers
that target the GPU, as most of these use OpenCL which is not available. Rather a general
approach to convolution implementations is provided and the convolution implementation

described was developed from scratch for this thesis.

Therefore the goal of this project is to build a set of primitive functions in OpenGL to
implement a key DNN layer, convolution. An iterative approach was taken for the
development of this implementation, interfacing with the GPU through OpenGL and making
improvements guided by GPU profiling and the execution time of the algorithm. Different

approaches were taken throughout development on how the work was done on the GPU or
what aspects of the algorithm were performed on the GPU. The final implementation is
discussed in this thesis. This implementation, integrated into the
‘software-tools-group/triNNity’ repository (1) will be run by the triNNity-benchmarks suite
(6) to produce benchmarks of its performance compared with equivalent CPU
implementation on a range of devices. This will be the method of collecting results, which
will be be analysed to evaluate the implementations developed. With these benchmarks it
will also be possible to validate the accuracy of the implementations along with measuring

the time they take to complete.

1.4 Layout of the thesis

This thesis tackles the topic as follows.

The objectives, application and parameters of the problem have been established. Next the
background to the problem will be explored, with a description of how machine learning
works, building up form a basic component, perceptrons, to deep neural networks. This will
be accompanied by a description of how these networks are implemented and some

background information on GPU programming.

Following on from this will be an in depth breakdown of the implementation put forward by
this thesis. Detailing how it takes advantage of OpenGL functionality, originally intended for

graphics processing, and uses it for more general computation instead.

Lastly an evaluation of the implementation is laid out, detailing how the implementation is
tested, what the results of this testing were for a range of convolutions on different devices,
what the results mean, short comings of the implementation, and how the implementation

could be improved with further work.

There will then be a conclusion. The appendix will contain the full code developed for the

implementation for closer examination.

2 Background

This section will cover the important concepts and background informations needed to
understand the field and the algorithm implementation covered in this thesis. First will be an
overview of machine learning and some of its basic techniques, followed by a description of
neural networks and how they function. This will be wrapped up with an introduction to

how GPUs are designed, and what APIs will be developed on to utilise them.

2.1 Machine Learning

The aim of machine learning is to create computer systems that are able to perform a task
without being specifically designed for that task (7). A traditional computer system, or
expert system, uses a rule base and heuristics to process some input and produce an output.
These rule bases and heuristics need to be programmed and tailored for a specific task, and
thus cannot generally be reapplied to other tasks without some changes. While machine
learning systems still contain these rule bases and heuristics, they are not explicitly
programmed but are inferred, or 'learned’, from a training dataset of correct outputs for a
given set of inputs. As such these systems are essentially being programmed by the data
they are trained on, rather than explicitly by a human programmer. Where a traditional
system would handle a new edge case scenario by having a new rule being explicitly
programmed and added to its rule base, a machine learning system would handle a new edge
case by having an example of the edge case added to the training dataset with the correct
output. The machine learning system would need to be retrained to incorporate, or 'learn’,
this new information, but the human programmer would not be required to rewrite any rules
of the system, rather the system would rewrite its own rules. This would be a significant
advantage for certain problems since maintaining a large programmed rule base can become
unwieldy as more edge cases are added. These rules need to also be determined by the

programmer, which can be challenging and time consuming.

The following example illustrates this difference between a programmed system and a

trained system. Suppose it was desirable for a system to be built that would identify the

colour of cars in images. Two approaches could be taken. The first one where a rule based
system is developed that takes the image as an input, examines the pixel values of the
vehicle and using a heuristic with some hard coded colour ranges, outputs the colour of the
vehicle. The second approach would be to create a dataset of car images of different
colours, label each image with the correct colour, and train a machine learning system on
the dataset. Now when both systems are presented with new images of cars they are able to
correctly identify the colours of the cars. Suppose that in the development of both systems
it was forgotten to account for pink cars. To now account for it, the first system would need
a new rule added to it, or the existing colour ranges would need to be modified to include a
range for pink. A problem is presented here for explicitly programmed systems, it is difficult
to determine exactly where one colour transitions to another. In the second system, the
training dataset needs to be expanded to include images of pink cars and the system
retrained. The exact distinction between two colours is not of interest as the training will
determine this boundary based on the labelled training data. The difference between the two
systems is that the first requires careful maintenance of rules, whereas the second requires

careful maintenance of a training dataset.

Suppose now that it was desirable for both systems to be expanded to determine not only
colour, but also the brand of the car. This present serious challenge to the development of
the first system, since the programmer needs to develop rules that allow the system to
correctly identify brands based on the car badge. It would be challenging to come up with a
set of rules that would determine the car brand based on the size and shape of the badge,
and the complexity of the problem has grown significantly. To contrast, in the second system
the dataset needs to be modified to include examples of labelled cars from a range of brands.
How the brand is matched to the car is determined by the system in the training process. As
long as the training dataset is large enough to incorporate enough scenarios, the machine

learning system should adapt and be able to meet the new specifications of the task.

With this example the advantage of a machine learning system should be clear. Rather than
maintaining a system with a rule base for each task, the rules of which can be extremely
challenging to determine, the programmer maintains one system and has a training dataset
for each task, where the labels of the data should be relatively easy, although time
consuming, to determine. This machine learning system hides the complexity of the task
from the programmer by determining the rule base itself with training, and can be applied to

a range of problems without being redesigned or specifically programmed.

With only one system or code base, it can then be a focus for performance optimisation. By
optimising this one system the benefits are utilised for every task that the system handles.
Whereas with a rule based system only one task can be optimised at a time. Thus improving
a machine learning system provides significantly better returns than optimising one rule

based system. This is key to understand for the purpose of this thesis, as the goal is to

implement and improve a key component of machine learning systems, which is beneficial to

a range of tasks that machine learning systems are applied to.

2.2 Artificial Neural Networks

Up until this point the focus has been on the difference between a machine learning system
and a traditional rule based system. This section will discuss how a machine learning system
is implemented to illustrate how the system can 'learn’ as opposed to being task

specific.

Artificial neural networks (ANNs) are computer systems inspired by biological neural
networks in animals brain. They were an attempt to mimic how the brain works to create
computer programmes that can perform tasks similar to how the brain would and have since
been successfully developed for uses in fields such as computer vision and speech
recognition. ANNs are composed of nodes, that resemble a neuron cell, which receive an
input, perform a function on that input, and produce an output. A network can be
composed of a number of these nodes connected such that the output from one node can be

the input for another node. (8)

To examine what is meant by a node here it is appropriate to look at Rosenblatts perceptron

(9), see figure 2.1, which was an early algorithm developed to simulate a neuron.

X0

Xq Wo

1)

1)

1)

1)

1)

1)

: y
1)

1)

1)

1)

X, Wn

Figure 2.1: Rosenblatts Perceptron

The inputs to the perceptron are labelled xp through x, with x, being a constant or bias.
Each input has an associated weight, denoted wy through w,, which can be adjusted
depending on the task. z represents the sum of the inputs multiplied by their weights, as

shown in Equation (1).

2= 1)
i=0

® represents the activation function or linear threshold unit, which determines whether the

output is a 0 (-1), or a 1 depending on whether the value of z is negative or positive.

Perceptrons are simple yet capable. Each perceptron is a classifier. It allows for a single
linear decision boundary to be determined in a space. Thus with only one perceptron it is
possible to model a logical AND operation or a logical OR operation by adjusting the
weights correctly (9). Combining multiple perceptrons into a layer, as seen in figure 2.2,

allows for the creation of a multi-output classifier.

Inputs Input Layer Ouput Layer Quputs
SR VR R
f R
xn ’ @ (¢ L ym
—___ N/ \ y,

LT.U.

Figure 2.2: Single Layer Perceptron Network

The weights used for these perceptrons are the aspect that need to be adjusted or trained to
suit a specific task, such as a logical AND operation or a logical OR operation. Before
training these weights have some initial and are iteratively adjusted by inputting data from

the training set modifying them according to Equation (2).

wij = wij + n(y; — ¥j)xi (2)

where w;; is the current weight, n is the learning rate y; is the output y; is the expected

output, and x; is the input.

Training involves running over the data in the training set, probably multiple times, and
adjusting the weights until the network converges, that is all elements in the training set get
the correct output and the weights no longer need adjusting. To illustrate this example
suppose it is desirable to train a single perceptron to perform a logical AND operation. A
training set would be composed of the truth table, table 2.1. The training process would use

each row of the table as input, calculate the output, compare with the correct output, and if

R O~ Ol X
K
= = O O X
N
= O O O

Table 2.1: Truth Table for Logical AND Operation

they were not equal adjust the weights according to the previous formula. This would be
repeated until all inputs had the expected output, and thus the network had converged, or

until some maximum number of training iterations had occurred.

It is also possible to have multiple layers combines into a single network (9). The output
from one layer of perceptrons can become the input for another layer, as seen in figure 2.3.
A layer that is not connected directly to either the inputs or the outputs is a hidden layer. A
network that contains 2 or more hidden layers is generally considered to be a Deep Neural
Network (DNN). Now with one additional, hidden, layer it is possible to determine non-linear
decision boundaries. This allows a network to be trained to perform a logical XOR
operation, or any continuous mathematical model given enough perceptrons. With two
hidden layers it is possible to compute any decision boundary, and there is theoretically no

need to use more than two hidden layers, performance aside (10).

Hidden Layer

o

Inputs Input Layer Ouput Layer

O
(ﬁ

Ouputs
Y

Wi,j

Y1

QOO
&

PASVASY
>/ N\

X4 > pass through =§ &
N » ¢] >

Z
Z
pass through Z ;
K Y
—

LT.U. LT.U.

Figure 2.3: Multi-Layer Perceptron Network

The weights associated with the connections between neurons in a DNN are also adjusted
through a training process called backpropagation, which is a more advanced version of the

weight adjustment formula previously discussed.

2.3 Convolutional Neural Networks

This section will discuss what a Convolutional Neural Network is, and how several of its
different layers, based on perceptron layers, are implemented. Convolutional Neural
Networks (CNNs) or Convolutional DNNs were popularised by the success experienced in
2012 by Alex Krizhevsky in the development of AlexNet. By achieving good results when
classifying images in the ImageNet dataset, they showed that a "deep convolutional neural
network is capable of achieving record-breaking results on a highly challenging dataset using
purely supervised learning" (11). This created increased interest in using CNNs for tasks

such as image processing.

Input Convolution + RelU Pooling Convolution + RelU Pooling Fully Connected

Figure 2.4: An example of a Convolutional Neural Network!

CNNs are combinations of several types of layers. Examples of these different types of layers
include convolution layers, pooling layers, and fully connected layers (12). These layers
consist on perceptrons, as described before, however they differ in the ways they are
interconnected or the function that is performed on their inputs. Many different
arrangements, or architectures, exist for how these layers should be combined into a
network. An example of an architecture can be seen in figure 2.4. An image is used as input
for the network, where it is first passed through a convolution layer, followed by a pooling
layer, etc. Different architectures are more successful than others, and the previously
mentioned AlexNet is an example of one of the first successful architectures developed.
However the advantages and disadvantages of different architectures is not of interest to this
thesis. The core topic of this thesis is the implementation of specific algorithms used in
neural networks, and these algorithms are key implementation details of the different layers
mentioned. The layer that was chosen for implementation for this thesis was the convolution
layer. Therefore the remainder of this section will be a brief description of the fully
connected layer and the pooling layer, and then a more thorough description of the

convolution layer including a analogous description of what it is attempting to do.

'lmage from https://shafeentejani.github.io/2016-12-20/convolutional-neural-nets/

10

https://shafeentejani.github.io/2016-12-20/convolutional-neural-nets/

2.3.1 Fully Connected Layer

A fully connected layer is the same as what has already been described in the section 2.2
when discussing multi layer perceptrons. It is a layer where all outputs from the previous
layer are connected to every perceptron or neuron in the layer (12). Each connection has a
weight associated with it, and a sum of the inputs multiplied by the weights is calculated.
As such it is the same as the hidden layer described in the multi-layer perceptron network.

An example is shown in figure 2.5.

Input Layer Fully Connected Layer
Q
e —,

Figure 2.5: A diagram of an Input Layer and a Fully Connected Layer

2.3.2 Pooling Layer

A pooling layer is a layer where each neuron is connected to only a subset of the outputs
from the previous layer. There are no weights associated with these inputs. Instead the
objective of this layer is to downsize the number of outputs. As such the function performed
by the neuron is usually to compute the max, or the mean of its inputs (12). An example
can be seen in figure 2.6 where the inputs have been split into four sections and the max of
each section is computed. If the input to the layer were an image the effect might be to split
the image into squares and take the average or maximum pixel value of that square, thus

reducing the image size by a factor of the size of the squares.

11

Figure 2.6: An illustration of a Max Pooling Layer

2.3.3 Convolution Layer

A convolution layer is also a layer where each neuron is connected to only a subset of the
outputs from the previous layer. Unlike the pooling layer however, these subsets of inputs
overlap such that the same input will be handled by multiple neurons. This overlapping can
be seen in figure 2.7. Much like the fully connected layer, this layer also has weights
associated with each input. The inputs are multiplied by these weights and summed produce
the output (12). No activation function is performed to produce the output so the output is

not only a 0 or a 1, however an activation layer may follow for this purpose.

The weights that are applied to the overlapping subsections of the input are collectively
called the kernel. The kernel is convolved with an input matrix, say an image, such that the
centre of the kernel is aligned with each pixel in the image. The surrounding pixel values are
multiplied by the corresponding kernel weights and the results are summed. This is
performed for every pixel in the image (12). An example can be seen in figure 2.7 where a
three by three kernel is being applied to a matrix. To apply the kernel to every point in the
input, zero padding is added to the edge of the input such that the kernel can extend over
the edge of the input matrix. Notice that this allows the output to be the same size as the
input. Stride can also be applied so that the kernel is not applied to every point on the input

matrix but only to every second or third point.

The idea behind these kernels is that they allow for pattern recognition in the input.
Suppose that the kernels shown in figure 2.8 were convolved with an image. Parts of the
image that match the patterns in the kernel would have higher corresponding values in the
output. For example if there was an edge in an image, similar to that in the third kernel,
then the positive values on the left side and the negative values on the right side, when
applied to the an edge in the image, would result in a larger result when applied to that
edge. This would mean that the result of the third kernel being applied at that edge would
be greater than if it was applied further to the right. This results in an output that has
higher values corresponding to areas that matched the pattern in the kernel. This technique

12

Kernel 3x3

4) (

Zero Padding

Figure 2.7: An illustration of a Convolution Layer

can be used to detect a range of patterns as well as edges, such as corners, spots or any

variation of values in the kernel.

-0.8/ -0.7 | 0.6 1 1 |-0.8 1 1 -1
-0.7) 0.6 | 1 1 1 |-0.7 1 1 -1
06| 1 1 -0.7) -0.8 | -0.9 1 1 -1

Figure 2.8: Example kernels with values or weights for three different patterns

To illustrate how this works, figure 2.9 shows the results of a kernel with an edge pattern
being convolved with a small input matrix. Notice how the high values in the output
correspond to points of the input where the surrounding values had the same pattern as

those in the kernel used. This allows the pattern in the kernel to be detected in the

input.
Input Kernel Output
10| 10 | 2 1 1 -1 0| 36 | 24
10| 10 | 2 1 1 -1 0| 54 | 36
10| 10 | 2 1 1 -1 0| 36 | 24

Figure 2.9: Example of a kernel applied to an input. Note how the resulting values at the
edge are larger.

This technique is useful in image processing as it enables the detection of features in images,

which can then be used to classify the image. For example arrangements of certain patterns

may be useful for classifying letters, faces, or other objects.

13

2.4 GEMM

Up until this point the discussion has been focused on the abstract implementation of neural
networks in terms of the layout of neurons and what functions they perform. GEMM stands
for GEneral Matrix to Matrix Multiplication. It is a function that multiplies two matrices
together and returns the resulting matrix. This section will discuss some linear algebra used
in GEMM and how it is used in the implementation of two layers of a convolutional neural
network. Specifically these layers are the fully connected layer and the convolutional layer.
This section is based on a blog post "Why GEMM s at the heart of deep learning" by Pete
Warden (13).

2.4.1 Dot Product

The dot product is a mathematical operation used in linear algebra to multiply two vectors
and sum the result, as can be seen in Equation (3). It is the same calculation performed by
Rosenblatts perceptron as seen in Equation (1), and is useful for illustrating matrix
multiplication. It is also used as part of the GEMM implementation discussed later in this

thesis.
X:<X0 X1 X2> A:<ao a 82)

do
y:X.AT:<X0 X1 X2> a
as
y = ZXi.ai:X0.30+X1.31+X2.32 (3)

i=0

2.4.2 Matrix Multiplication

Matrix multiplication can be seen illustrated in figure 2.10 where two matrices, A and B, are
being multiplied to produce a matrix C. For the multiplication to be performed the number
of columns in matrix A must equal the number of rows in matrix B. For every row in matrix
A, the dot product is computed between this row and each column in matrix B. This is why
the resulting matrix has the same number of rows as the number of rows in matrix A, and

the same number of columns as the number of columns in matrix B.

14

m Matrix A k Matrix B m Output

Figure 2.10: An illustration of Matrix Multiplication

2.4.3 Fully Connected Layer

The fully connected layer is implemented by way of a matrix multiplication (13), as seen in
figure 2.11. The inputs to the layer are effectively a vector, or a 1 by k matrix where there
are k inputs. This can bet multiplied by a k by n matrix, where k is the number of weights
and n is the number of neurons. Thus the input is contained in the first matrix and the
weights are contained in the second matrix. The result is then a 1 by n matrix with the
output of each neuron. Remember each output the result of the dot product of the inputs

and the weights for that neuron.

n
m | “““““““““““““““ | X : = m . Output

ki Weights

Figure 2.11: A Fully Connected Layer implemented with Matrix Multiplication

2.4.4 Convolution Layer

A convolution is more difficult to perform with a matrix multiplication. Since a different
subsection of the inputs is used by each neuron and the same input can be used my multiple
neurons. This means that some processing is required to rearrange the input into a matrix
with a format suitable for matrix multiplication. A kernel is applied to a particular area or
patch of the input matrix. The inputs inside this patch are then used by a single neuron. To

arrange the inputs into an appropriate format, the input matrix is expanded into a patch

15

matrix (13), as seen in figure 2.12. A patch of the inputs, the same shape and size as the
kernel, is extracted from the input matrix for every point where a kernel would be applied
and becomes a row in the patch matrix. These patches will overlap, as described in section
2.3.3, as long as the stride is less than the kernel size so this patch matrix will be larger than
the original input matrix. However the increased size is considered a worth while trade off as
"the benefits from the very regular patterns of memory access outweigh the wasteful storage

costs" (13). Figure 2.13 shows how this patch matrix is multiplied with a kernel matrix to

Input Patch Matrix
Patch 1
Patch 1 | Patch 2 | Patch 3 Patch 2
Patch 3
im2row
s
Patch N
Patch N

Figure 2.12: The creation of a Patch Matrix

produce the output. This output takes the form of a matrix where each element in a column
is the results of a convolution for with that kernel at a certain point in the input. Each
column would then contain the result of convolving the input with a particular kernel. Thus
a column could be rearranged to have the same dimensions as the input, assuming no stride
was used and zero padding was applied. As multiple kernels are usually applied in a

convolution layer it is useful to be able to compute the results of that convolution layer in a

single function.

Input Patch Matrix Kernel Matrix
Paich 1 x 4
Patch 2
Patch 3
z|2R z
A i
gl ey b z
Patch N
v

Figure 2.13: Patch Matrix and Kernel Matrix being multiplied to perform convolution

The GEMM function is implemented in the BLAS (Basic Linear Algebra Subprograms)

16

library (13) as previously said it is used to implement fully connected and convolution layers.
The CPU version of AlexNet spends around 89% of its time in these layers, while the GPU
version spends 96% of its time processing these layers (13). Thus the GEMM function is
clearly a key component of neural network implementation and it a good target for

optimisation since it is used so heavily.

2.4.5 Implementations

As discussed GEMM can be used to implement a MCMK (Multi Channel Multi Kernel)
convolution. Multiple channels are handled by having the information for each channel
together for a single point and can used to represent the different colour channels in an

image for example. Multiple kernels are stacked as rows or columns in a kernel matrix.

The information presented as input needs to be rearranged for it to be processed as a matrix
multiplication. One technique has already been discussed, where patches of the input are
unrolled into rows of the patch matrix. Another implementation would involve the patches
becoming columns of the patch matrix. These methods are known as im2row and im2col

(13) and can be seen in figure 2.14

im2row Patch Matrix im2col Patch Matrix
Patch 1 4
Patch 2
Patch 3
|2 Py
5155 &
= [P | =
Patch N
A

Figure 2.14: im2row and im2col Patch Matrices

As stated before, these methods involve expansion of memory size as patches overlapping

result in values being repeated across multiple patches.

A more memory efficient approach is outlined in (?). Here the kn2row method is described
where the kernel is rearranged into rows such that there are k x k rows. This can then be
multiplied by an input matrix such that every kernel value is multiplied by every input value
without memory size increasing. Sections of the output can then be summed or the output
can have a post-pass shift add applied to get the result of the convolution. This could be
very beneficial for performing convolutions on embedded devices which are memory

constrained.

17

2.5 Graphical Processing Unit

A GPU, or graphical processing unit, is a component of modern computing devices that is
specialised for processing blocks of memory in order to accelerate the creation of images
intended for displaying to the user. GPUs are used in a range of devices from small
embedded devices to desktop workstation. This section will briefly outline their architecture
and why it is beneficial to the task of this thesis, and also the method used to implement an

algorithm on a GPU.

2.5.1 Architecture

A GPU is based on a SIMD (Single Instruction Multiple Data stream) architecture. This is a
form of parallelism where multiple processing units, or cores, are performing the same
instruction sequence on different blocks of memory at the same time (14, 15). This is

illustrated in figure 2.15.

Instruction Pool
(Shader Programme)

_//\.

—
Core €

|

— > Core [«
Multiple |\)
Data SR
— > Core [«

|

—LCOI'B <
|
A —

Figure 2.15: Single Instruction Multiple Data Stream

Data (Vertices)
Single Instruction

.

The instruction sequence being performed must be synchronised between the cores such that
the same instruction is being performed on all cores at the same time. If there is control
flow present in the instruction sequence causing some cores to jump over an instruction then
these cores will stall rather than move forward to their next instruction, thus ensuring that
all cores remain synchronised (15). While modern GPUs batch execution threads to
minimise stalling (15), control flow is still expensive. The number of cores present is
generally much higher than on a CPU since it is much simpler to manage more cores when

the instructions are the same, and the capabilities or instructions sets for these cores are

18

much simpler. With this architecture the ideal task for a GPU is one where a large number
of threads with the same instruction sequence is working on separate batches of data. This
allows the larger number of cores to be utilised on the GPU for a highly parallelised
algorithm (16). This is highly suitable for matrix multiplication which involves the same

instructions being performed on different data.

2.5.2 OpenGL

OpenGL, or Open Graphics Library, is a API, or application programming interface, for 2D
and 3D graphics rendering utilising the GPU to provide hardware acceleration (17). Wile
OpenCL (Open Computing Language) would provide more suitable functionality, since the
task is a computational one rather than a graphics one, OpenGL was chosen since it has
wider support amongst embedded devices that it is aimed to target (4). This section will
provide a brief introduction to how the OpenGL Graphics Pipeline works, while the
implementation section will discuss specific OpenGL concepts and functions that were
utilised for this thesis.

Transformed Triangle

Vertex e e
Stream Vertex | °™" [Triangle | °"" .
—> Rasterizer
Shader Assembly Q
R — R —

Fragment

Stream
Fragment | Ppixels Frame Output Screen
Shader Buffer
e 4 R —

A

Vertex Shader and Fragment Shader programmed with GLSL
Textures Textures available to both shaders
. @@/

Figure 2.16: Programmable Graphics Pipeline

The programmable graphics pipeline (18) can be seen in figure 2.16. The programmable
stages of the pipeline are the vertex and fragment shaders. For these stages a process using
OpenGL can compile and link shader programmes at runtime which will be loaded on the
GPU. These programmes will then be executed by cores on the GPU as needed (19). The
first stage of the pipeline is one of these shader stages, the vertex shader. It receives a
stream of vertices as input. These vertices would be those of some shape or object to be
drawn to the screen. The vertex shader would transform these vertices, perhaps rotating or
scaling them as instructed in the programmed compiled for the shader. These transformed
vertices would then be passed on to be formed into shapes, generally triangles, to form the
surfaces of an object. These triangles are then rasterized, meaning they are formed into a

grid of pixels that would represent them from a particular viewing angle. These pixels, or

19

fragments, are then passed to the fragment shader which would colour in the pixels
appropriately, often using texture or images that can mapped onto the object. These pixels

are then pushed into a frame buffer and finally drawn onto the screen.

2.5.3 OpenGL ES

OpenGL ES is a stripped down, or streamlined version of OpenGL that is specifically for
embedded systems (5). It has wide support on a range of embedded devices such mobile
phones, tablets, or low power development boards. It contains a subset of the features
available in the full OpenGL library for desktop sized devices, while also removing a lot of
legacy restrictions or constraints. Not all functions available in OpenGL are available in
OpenGL ES, either because they have not been added to the specification yet or they are no
longer relevant or suitable for a modern graphics API. As such is is important to ensure that

the functions utilised by this thesis are available to both versions of the OpenGL library.

20

3 Implementation

This sections will cover the details of how a GEMM (General Matrix Multiplication) function
was implemented for this thesis. This implementation utilising the GPU with OpenGL on a
desktop computer and OpenGL ES on an embedded device. The same implementation
supports both environments by using a macro definition at compile time to target either
OpenGL or OpenGL ES. As these two libraries have slight difference in capabilities and
functionality, this macro allows for slightly different code to be compiled in either case to

handle these differences. The implementation also supports both MacOS and Linux.

The GEMM function implemented accepts two pointers as input, which allow access to two
blocks of memory containing the two matrices, A and B, to be multiplied. One of these
matrices will be the input patch matrix and the other will be the kernel matrix, however
these details are not relevant to the function. The details of the convolution are abstracted
away from the implementation such that the function will just accept two matrices and
multiply them. Relevant details, such as the dimensions of the matrices and what
transposition the matrices are in, are also provided as parameters of the function. A pointer

is also provided to contain the output.

The function was integrated into the 'software-tools-group/triNNity’ repository [ref]| as a
handler for a call to a generic GEMM function. This library provides several functions that
perform 'im2row’ convolutions by creating a patch matrix and calling a GEMM function to
multiply the patch matrix with a kernel matrix. Thus forming the patch matrix was handled
by functionality in the repository, leaving this implementation to only handle matrix
multiplication. This allows the GEMM implementation described here to be interchanged

with an equivalent CPU based GEMM function to compare performance.

This section contains code samples to aid in explaining how the GEMM implementation
works. These code samples may differ from the actual implementation for clarity of
illustration, and are intended to aid in understanding the full unaltered version of the code

contained in the Appendix.

21

3.1 Setup

In order to call OpenGL function to perform computations on the GPU it is necessary to

first perform some initial setup.

Firstly the correct header files need to be included to provide function definitions, type
definitions, and other macros representing values that might be needed to pass to functions
for certain functionality. On platforms with OpenGL, this is handled by the GLEW (OpenGL
Extension Wrangler) library (20), which is a cross platform library that provides OpenGL
extensions, or function definitions, that are supported by the platform. GLEW does not
support OpenGL ES however and so for these situations the OpenGL ES version header
must be included specifically with appropriate macro defined to include the right subset of

function definitions.

It is also required that an OpenGL context is established for the process to use OpenGL. An
OpenGL context represents all of the OpenGL state and objects required for an instance
OpenGL to function, such as details of the display window. As such to make calls to the
OpenGL library it is first necessary to create an OpenGL context. As OpenGL is intended for
drawing pixels to a screen it is necessary for an OpenGL context to have access to a display
and a window. These are not necessary, nor desirable, for performing computations that do
not result in graphical outputs. In fact many embedded systems where the implementation
would be deployed may not be connected to a display. As such it is necessary to persuade
the OpenGL context that a display is present, even if it is absent. This issue can be resolved
by setting the appropriate environment variable in the process such that the DISPLAY
variable is not NULL. Since the implementation will never try to push anything to the screen
the lack of a connected display will not matter. It is also necessary to create a window in the

OpenGL context, but the window should be invisible or hidden.

To create the OpenGL context and define invisible windows two solutions were employed.
For platforms with OpenGL support the cross platform library GLFW (Graphics Library
FrameWork) (21) was used to create an OpenGL context with a hidden window. An

illustrative example of how this is achieved is provided in listing 3.1.

Listing 3.1: Outline of GLFW Context and Window Creation
glfwlnit ();
// indicate the window should be invisible
glfwWindowHint (GLFW _VISIBLE, 0);
// Create a window with a GL context
GLFWwindows* window = glfwCreateWindow (640, 480, NULL, NULL);
// Make the context of that window current
glfwMakeContextCurrent (window) ;

22

For platforms with OpenGL ES support, EGL (Embedded Systems Graphics Library) (22)
was used to created contexts and windows for making OpenGL ES calls. This library worked

well on a headless device (23), and was called similarly to GLFW.

Since two different libraries were used this meant that the at compile time the correct
libraries would need to be linked depending on whether it was targeting OpenGL or OpenGL
ES. The creation of contexts and windows was performed once initially. Thus this
initialisation process does not factor into the execution time of a GEMM function. This is
due to how in the operation of neural networks this function would likely be called a large
number of times. Thus the cost of initialisation, in terms of execution time, would be spread
out over every call to the function. Therefore the more GEMM calls that are made, the

smaller this initialisation process is relative to the overall execution time.

It is also necessary to perform some cleanup after the last GEMM call is made to terminate
GLFW or EGL and remove the OpenGL context for the process.

3.2 Transferring Data to the GPU

There are three techniques that were used to load data onto the GPU for computation.
These different techniques have an original purpose designed for graphics processing, and
have constraints and properties accordingly. These functions can be utilised for computation
by restructuring the task to work within these constraints and even take advantage of some

of their properties.

The first of these techniques is called a Vertex Buffer, or Vertex Buffer Object (VBO) (24).
This is a buffer off memory on the GPU that is used to store an array of vertices used for
drawing shapes or objects to the screen. For example if it was desirable to draw a triangle to
the screen then the Vertex Buffer would be loaded with three coordinates, each representing
a vertex of the triangle, in sequence. More complex shapes could be draw with more
coordinates, and 3D objects drawn using coordinates with three dimensions. These vertices
can be transformed using a Vertex Shader, outlined in the background to OpenGL (section
2.6.2). This implementation employs a Vertex Buffer to store the contents of the first
matrix, mat A, for access by the GPU. This allows the GPU to run over the contents of the
first matrix as if they were coordinates. This buffer needs to be generated and bound to the
current OpenGL context for drawing. The reason it needs to be bound is that a programme
may have multiple objects to draw and these can be stored in separate Vertex Buffers,
allowing different objects to be drawn separately. Thus binding is a mechanism for choosing
which Vertex Buffer to draw at a given time. An example of how a VBO is created, bound,
and filled with data is presented in 3.2

23

Listing 3.2: Outline of VBO Creation, Binding, and Loading

GLuint vbo;

glGenBuffers (1, &vbo);

glBindBuffer (GL_ARRAY_ BUFFER, vbo);

glBufferData (GL_ARRAY_ BUFFER, num of verticesxsizeof(float),
vertices to load, GL STATIC DRAW);

The second technique employed was using texture memory (25) to store the second matrix
on the GPU. Texture memory is generally a separate block of memory on the GPU that is
used to store images. These images can then be mapped onto the object by the Fragment
Shader by sampling colour of the pixel in an image, or texture, that corresponds to a point
on the object being drawn. Values in a texture can be accessed by their coordinates. This is
called mapping a texture onto an object, however is not needed in the scope of this thesis.
All that is required of textures is that they store a grid of values which can be accessed in
any sequence using a coordinate system. This implementation employs the use of textures
to load the second matrix onto the GPU. This means that between a Vertex buffer and
texture memory, both matrices can be loaded on the GPU to the fullest extent allowed by

the available memory. An example of how this may be done can be seen in listing 3.3

This is very useful for the task at hand since the matrices only need to be loaded onto the
GPU once. The first one can be iterated over while the corresponding values in the second
matrix can be randomly accessed in texture memory. If both matrices were stored in Vertex
Buffers then the matrices would require processing to shift their contents so that the values
in each buffer lined up. This buffer manipulation would be expensive and would also involve
breaking the computation on the GPU into smaller chunks to perform this processing to
reline up the data in the matrices. This would result in a lot of additional time spent not
only on processing but also stopping and starting the GPU, which involves synchronising all
of the threads on the GPU at the end of the calculation multiple times, another expensive
operation. It is more optimal to call the GPU to run over as many vertices as possible in one
draw call. This is what textures allow by providing random access to the contents of the
second matrix there is no need to line up the values of the two matrices, rather call
repeatedly run over the Vertex Buffer the required number of times in one call to the GPU

accessing the corresponding texture values.

Textures have particular implementation details with need to be accounted for, and these
differ between OpenGL and OpenGL ES. When the implementation targets OpenGL, it uses
a type of texture called GL_TEXTURE_RECTANGLE (26). For legacy reasons most texture
types, with the exception of GL_TEXTURE_RECTANGLE, require the dimensions of a texture
image to be a power of two. This is to allow for mipmapping of textures, a concept beyond

the scope of this thesis. This would put a limitation on the use of texture memory since

24

most matrices will not have a height and width of a power of two. While it would be
possible to pad the matrix with zeros to ensure it had appropriate dimensions this would be
potentially very inefficient use of memory since powers of two are not terribly common. For
example, a matrix 65 by 65 would need to be padded to become 128 by 128, nearly
quadrupling the memory needed. This is not really a feasible approach since GPUs usually
have a reasonably small amount of texture memory. However GL_TEXTURE_RECTANGLE is
available in OpenGL and does not have this limitation, allowing textures to have any size
permissible with memory constraints. It also has the benefit of not normalising the texture
coordinates between zero and one. This means that to coordinates of the texture are
accessed using integers ranging between zero and the height or width of the texture. For
this implementation this means one less step is required when accessing values in the

texture.

However GL_TEXTURE_RECTANGLE is not available in OpenGL ES (27). Since OpenGL ES in
newer and has shed some of the legacy of OpenGL, it is not necessary for any texture type
to have dimensions that are a power of two. This means that a different texture type can be
used for OpenGL ES without a significant increase in memory usage. However there are no
texture types available in OpenGL ES which support un-normalised coordinates, meaning
that accessing texture memory will involve additional work. Rather than maintain separate
code for OpenGL and OpenGL ES macros are used to generate the required code for which
is needed at compile time. One last relevant detail of the texture implementation is that it is
necessary to set a flag to ensure that when a texture is accessed using coordinates that the
returned value is the one nearest that coordinate rather than a linearly interpolated between

the nearest points, which may be more desirable in graphics processing.

Listing 3.3: Outline of Texture Creation, Binding, and Loading

GLuint tex;

glGenTextures (1, &tex);
glBindTexture(texture type, tex);
glTexParameteri(texture type, ..., GL NEAREST);
glTexImage2D (texture type, ..., width, height,

., texture data);

The third way that data can be made accessible for the GPU is by creating uniform variables
(28). These are variables that can set for the code running on the GPU to access. A way to
think of these is that the GPU is calling a function and these are global variables that are

immutable, but always available. They are limited to a small range of types and are used for
setting integers that are needed for computations on the GPU. An example of how they are

set can be seen in listing 3.4.

25

Listing 3.4: Outline of VBO Creation, Binding, and Loading

GLint location_on_ GPU = glGetUniformLocation("variable name");
glProgramUniformli (..., location of variable on_ GPU,

variable value);

3.3 Performing the Computation

Now that the two matrices have been loaded onto the GPU it is time to perform some work
on them. As described previously OpenGL would use the vertices contained in a Vertex
Buffer to draw objects to the screen. These could be the vertices of a triangle for example.
To draw the triangle, it is necessary to specify how the vertices are arranged in the Vertex
Buffer. For instance these vertices could be coordinates given in two, three, or four
dimensions. The vertices for the triangle being drawn would be passed through a Vertex
Shader, which would perform transformations on the vertices to scale or rotate the triangle.
The Vertex Shader can perform any work that can be programmed in GLSL (OpenGL
Shading Language) and this is where the multiplication will be performed. This will be
discussed more later in the chapter. Once the Vertex Shader has performed its computation

with a vertex it will pass the result to the next stage in the graphics pipeline.

Since the OpenGL is used for graphics processing it is built to handle vertices, or inputs, as
vectors of size 1, 2, 3, or 4. This means that the matrices need to be treated as chunks of
one of these sizes. This information is defined in a Vertex Attribute Array (24), which is
essentially meta data for the Vertex Buffer. How this size is determined and handled is
discussed in a later section. This results in the first matrix being split up into independent
chunks for processing on multiple GPU cores. These chunks are fed into the graphics
pipeline like vertices. Since the values of the first matrix are used multiple times, depending
on the dimensions of the second matrix, it is necessary to used 'instanced drawing’ (29).
This was originally intended for drawing multiple instances of the same object in a Vertex
Buffer. For example the Vertex Buffer may contain a tree, and the number of instances is
the number of trees to be drawn. Since matrix multiplication involves performing the dot
product between every row in the first matrix and every column in the second, the vertices
consist of every row of the first matrix while the instances can be used to represent each
column of the second matrix. An example of how this 'instanced drawing’ would be

performed can be seen in listing 3.5

26

Listing 3.5: Outline of Drawing Procedure in OpenGL
glEnableVertexAttribArray (input_values);

glVertexAttribPointer(input values, vector size, ...);
glDrawArraysinstanced (GL_POINTS, offset, number of vertices,

instances);

3.4 Retrieving Results from the GPU

Once the computation on the GPU is complete it is necessary to retrieve the results from
the GPU. OpenGL was originally intended for processing vertices and pushing the resulting
pixels to a screen. There is no stage of the graphics pipeline, shown in figure 2.16, that
involves pushing data back to the CPU as this is unnecessary for drawing to the screen and
expensive in terms of time spent transferring the data on a bus. For the purposes of
performing the computation of matrix multiplication however it is necessary to retrieve the

results at some stage in the pipeline.

Textures

Vertex
Stream Ve rtex Transformed Stream
Shader

Transfer to Main Memory (Transform
| Feedback

Figure 3.1: How Transform Feedback fits into the Graphics Pipeline

Transform Feedback is method of retrieving the result of the Vertex Shader and making
them accessible from the CPU by transferring them back to main memory (30, 31). An
illustration of how this fits into the graphics pipeline can be seen in figure 3.1. The original
purpose of this method was for processing vertices multiple times for particle effects in video
games. Since the rest of the pipeline is not need the following stages of the pipeline should
be discarded. How this Transform Feedback technique is employed can be seen in listing 3.6.
A buffer object must be created to represent where the results of the Vertex Shader are
stored and bound to the current context. This buffer will later allow these results to be
accessed from the CPU. glBeginTransformFeedback() will start pushing results of the Vertex

27

Shader to the buffer, while glEnd TransformFeedback() will ensure that the GPU is finished

and all of the results are in the buffer ready to be accessed.

Listing 3.6: Outline of Transform Feedback Procedure in OpenGL

// Setup buffer to store Vertex Shader output
glBindBuffer (GL_TRANSFORM FEEDBACK BUFFER, tbo);
glBufferData (..., tbo_ sizexsizeof(float), ...);
// Perform any other additional setup

glEnable (GL RASTERIZER DISCARD) ;
glBeginTransformFeedback (GL_POINTS) ;

// Perfrom drawing

glEndTransformFeedback () ;

// Results are now accessible in the buffer

3.5 Transpositions

The implementation can accept either matrix, or both, in a transposed state. This involves
the matrix being inverted such that the top left and bottom right corners of the matrix stay
the same, but the top right and bottom left are swapped. This means the top row of the
matrix becomes the first column of its transposed version. With two input matrix this means
there are four combinations of matrices that the implementation can work with. The four
combinations are outlined in the remainder of this section, along with how the second matrix

is arranged in texture memory, and how coordinates in the texture are determined.

Texture memory is block of memory on the GPU with a width and a height. When textures
are loaded into this memory they do no fill the memory sequentially but as the images
shape. For example, if an image was loaded into texture memory then rather than filling the
first block of bytes sufficient for storing the image the image would fill the upper left corner
of the block of texture memory. This meant that if an image being loaded was wider then
the block of texture memory it would fail to load, even if the image had a smaller height
then the height of the block and there was enough texture memory to store the image. The
image dimensions need to fit within the texture memory block size. This is not the most
efficient use of texture memory for the purposes of this implementation since it would
potentially require breaking up the second matrix even though it can theoretically fit.
Embedded devices would be particularly susceptible to this since texture memory is more
constrained there. To avoid this, matrices were loaded to completely fill the width of the
texture memory available, meaning that multiple rows, or part of a row, could be in the
same row of the texture. Since a texture needs to be square in dimensions some padding

was added to the second matrix to fill in the missing area if required.

28

3.5.1

Matrix A and Matrix B

With both matrices in their untransposed state, the rows of matrix A are multiplied by every

column, or instance, of matrix B, shown by dots in figure 3.2. Since a column of matrix B is

used, the values located in texture memory are spread out for a single column, also shown in

the figure. The formulas used to calculate where in texture memory the required value of

a_height

a_width b_width
£|:
=
Matrix A i Matrix B
| ®
£
Instances

a_width = b_height

Texture Memory

i b width

padding

Figure 3.2: Layout of Matrix A and B, and how B is arranged in texture memory

matrix B is can be found below. gl VertexID is the index of the vertex being processed, or

where in matrix A is being accessed. gl InstancelD is the index of the instance being

processed, or which column of matrix B to access.

x__coord = offset%texture _memory _width

y __coord = offset/texture _memory _width

29

offset = b_width(gl _VertexID%b__height) + (gl _InstancelD)

3.5.2 Matrix A and Matrix BT

The rows of matrix A are multiplied by every row, or instance, of matrix B, shown by dots in
figure 3.3. Since a row of matrix B is used, the values located in texture memory are grouped

together for a single row, also shown in the figure. The formulas used to calculate where in

a_width b_width

++

Matrix A Matrix BT

a_height
b_height
SEOUBISU|

a_width = b_width

b_width Texture Memory

padding
Figure 3.3: Layout of Matrix A and BT, and how BT is arranged in texture memory
texture memory the required value of matrix B is can be found below. gl VertexID is the

index of the vertex being processed, or where in matrix A is being accessed. gl InstancelD

is the index of the instance being processed, or which row of matrix B to access.

offset = b_ width(gl _InstancelD) + (gl _VertexID%b width) (4)
x_coord = offset%texture _memory _width (5)
y _coord = offset/texture _memory _width (6)

30

3.5.3 Matrix AT and Matrix B

In this case the columns of matrix A are multiplied by every column, or instance, of matrix
B, shown by dots in figure 3.4. It is worth noting that due to the way matrix A is grouped
into vectors for OpenGL, in cases with matrix A being transposed these vectors must be of
size one due to memory layout. This results is a GPU core only being able to access one

value for a give computation. The formulas used to calculate where in texture memory the

a_width b_width
E|l: E|:
= T =i _
EI Matrix A EI Matrix B
@l o
Instances

a_height = b_height

Texture Memory
b_width ’ .

padding
Figure 3.4: Layout of Matrix AT and B, and how B is arranged in texture memory
required value of matrix B is can be found below. gl VertexID is the index of the vertex

being processed, or where in matrix A is being accessed. gl InstancelD is the index of the

instance being processed, or which column of matrix B to access.

offset = b_ width(gl_ VertexID%b _height) + (gl _InstancelD) (7)
x_coord = offset%texture _memory _width (8)
y __coord = offset/texture _memory _width (9)

31

3.5.4 Matrix AT and Matrix BT

Finally the columns of matrix A are multiplied by every row, or instance, of matrix B, shown
by dots in figure 3.5. It is worth noting again that due to the way matrix A is grouped into
vectors for OpenGL, in cases with matrix A being transposed these vectors must be of size
one due to memory layout. This results is a GPU core only being able to access one value

for a give computation. The formulas used to calculate where in texture memory the

a_width b_width

BB B E BB E R R BB R R R B R E RS

Matrix AT Matrix BT

b_height
SEOUB]SU|

R R R SR EE IS I E IR IFEFEHIHFH BB B H B E

a_height = b_width

b_width Texture Memory

padding
Figure 3.5: Layout of Matrix AT and BT, and how BT is arranged in texture memory
required value of matrix B is can be found below. gl VertexID is the index of the vertex

being processed, or where in matrix A is being accessed. gl InstancelD is the index of the

instance being processed, or which column of matrix B to access.

offset = b_ width(gl InstancelD) + (gl _VertexID%b width) (10)
x_coord = offset%texture _memory _width (11)
y _coord = offset /texture _memory _width (12)

32

3.6 Shader Programmes

As discussed previously, the graphics pipeline contains two shader stages, the Vertex Shader
and the Fragment Shader. Both stages are programmable using GLSL (OpenGL Shading
Language), which is syntactically a C based language. The Vertex Shader receives a stream
of vertices as input and perform transformations on these to rotate, scale, or transpose them
as required. The Fragment Shader receives a stream of fragments, or pixels, and colours

them, either using colours supplied with the vertices or textures.

Since the implementation uses transform feedback to retrieve the results of the Vertex
Shader and discards the pipeline after this stage the Fragment Shader is not relevant to this
implementation. When targeting OpenGL the implementation can disregard the Fragment
Shader completely, however with OpenGL ES a Fragment Shader is required so a basic one
is provided in this case even though it will never actually be used. Different versions of GLSL
are available between OpenGL and OpenGL ES so slight changes need to be made to the

shader at compile time with macros to provide support for both.

The shader programme provided by the implementation runs on each of the cores available
on the GPU. The multiple cores run the shader programme in synchronization on different
vertices, thus the Single Instruction Multiple Data (SIMD) architecture of the GPU. The
shader programme needs to be compiled and linked to the OpenGL context at runtime. The

instructions would then be loaded onto the GPU to be executed during a draw call.

The code in listing 3.7 shows the outline of a shader programme. It is necessary to normalise
texture coordinates if the implementation is compiled for OpenGL ES, so macros are used,
slightly edited in the example for clarity, to provide code for normalising coordinates when
needed according to the formula in Equation 4, where x is the coordinate in the matrix from
0 to M, and M is the matrix size in that dimension. In cases where coordinates do not need

to be normalised the macro does not have an effect.

normalised x _coord = (2x + 1)/(2M) (13)

The size of the vector used for the shader, represented as vecN in the example, represents
how many vertices or values of matrix A are grouped together. This value could be 1, 2, 3,
or 4. It is chosen to be the largest value that divided evenly into a row or column being
multiplied of matrix A. This is so that the vector used lines up with the edges of the matrix

when it is broken into pieces.

33

Listing 3.7: Outline of a Vertex Shader

// the texture coordinates need to be normalised for OpenGL ES
#if defined (BENCHMARK OPENGLES)

#define NORMALISED X(x) float(2xx +1)/float(2xtex w)

#define NORMALISED Y(y) float(2xy +1)/float(2xtex h)

F#else

#define NORMALISED X(x) x

#define NORMALISED Y(y) vy

#endif

// calculate x and y coordinates as described previously
#define BX(j) ((offset+(j*mat b w))%tex w)
#define BY(k) ((offset+(kxmat b w))/tex w)

VERSION
SAMPLER
in vecN input values;
UNIFORMS_OUT
void main ()
{
// calculate offset in Texture Memory as described
previously
int offset = mat b wx((gl_ VertexID*N)%mat b h) +
gl InstancelD;
float tex0 = TEXTURE(tex, vec2(NORMALISED X(BX(0)),
NORMALISED Y(BY(0))))[0];
// repeat for each texture sample
vecN t = vec3(tex0, ...);
// multiply the values from matrix A and B

out value = dot(input_values, t);

i

When matrix B is not transposed it is necessary to sample the texture separate for each
value needed since the values in a column are spread out through texture memory. This can
be seen in figures 3.2 and 3.4. This is performed in the shader by the macros BX and BY,
which can access further into texture memory using the j and k parameters respectively.
When matrix B is transposed then the values needed are all in the same row of the matrix,
as seen in figures 3.3 and 3.5, and can be accessed in one texture sample since the values

are located together in memory.

34

3.7 Error Checking

The OpenGL GEMM function also implements the appropriate error checking to ensure
correct behaviour. For some OpenGL function, the error can be caught by checking the
return value. These functions will return a NULL pointer when they fail while others return
void and it is necessary to call glGetError() to determine if there was an error (32). This
could happen if an OpenGL function requires memory to be allocated on the GPU, and the
implementation is such the function either does not actually allocate the memory when it is
called, but rather later on in time, or it does not block on GPU 1/O before returning. These
errors are generated by OpenGL and placed on a list. glGetError() will then return the first
item on this, and as such is called in a loop to retrieve all errors. An example of a case that

would produce an OpenGL error would be if there was insufficient memory on the
GPU.

Another check that is performed is ensuring that there is enough texture memory on the
device to store the contents of the second matrix. It is possible to ascertain the amount of
texture memory available with OpenGL. All of texture memory can be utilised by the
implementation as described previously, thus if the size of the second matrix is greater than
the amount of texture memory on the device then the implementation will return an

error.

3.8 Final Steps

The results of the Vertex Shader are stored in the transform feedback buffer on the GPU.
This buffer is accessible by copying its contents to main memory, however transferring large
amounts of data to main memory from the GPUs memory is expensive. Rather than copy
the result the implementation takes advantage of a function gIMapBufferRange() to map
the contents of the buffer into the processes address space (33). This allows for reading and

writing to the buffer from the process running on CPU without an expensive copy being
performed between the GPU and the CPU.

Once the results are available to the CPU, some final work must be done to sum up sections
of the results to produce the final output. Since the rows of matrix A were broken up into
vectors of size N to be processed, this means that not all the addition has been performed.
The results are thus broken into row_length/N pieces. These are the pieces that need to be
summed to compute the final result. This summation is done in place, by the CPU, with two
for loops, the outer loop retrieves the value of the first chunk of each row, while the inner

loop adds the following row_length/N pieces to the first value.

35

The buffer now contains the final output matrix from the multiplication. This output is
finally added to, subtracted from, or replaces, the existing values in the memory buffer
passed to the function to contain the output. Any memory or buffers allocated are
deallocated. Any shader programmes and textures are destroyed. The function will then

return.

36

4 Evaluation

This section will outline the process of evaluation used for this thesis. First will be a
description of the methods used for compiling, running, and measuring the performance of
the implementation. This will be followed with an overview of the various algorithms used to
call the GEMM implementation. The algorithms would construct a patch matrix and a
kernel matrix to perform a convolution with a GEMM function. Depending on the algorithm
the matrices will have a different transposition or layouts to compare performance. These
algorithms will tested for a range of different sized convolutions that compose the AlexNet
neural network, which will also be specified. Following this the results of the evaluation, or
benchmarks, will be provided with for a number of devices of varying performance
capabilities, running different operating systems. A discussion of the results will follow to
summarise and interpret the findings. Finally a description of future work that could be done

to potentially improve the implementation is provided.

37

4.1 Benchmarking

The library "triNNity-benchmarks’, which is a companion library for testing the performance
of algorithms in the "triNNity’ library, was used for evaluating the performance of the
implementation. Using this library had two main advantages. First since the implementation
was being developed as part of the 'triNNity’ library, it would be be minimal effort to use its
companion benchmarking library. Secondly using an off the shelf benchmarking library,
rather than developing evaluation methods from scratch, provided all of the benchmarking
functionality upfront with a variety of convolution sizes and algorithms available for
comparison. This allowed for more time to be dedicated towards developing and improving

the implementation rather than developing benchmarking code.

4.1.1 Compilation

For benchmarking a GEMM implementation a definition is passed to the compiler to specify
what GEMM implementation to use. The two GEMM implementations used for evaluation
are GEMM_SIMPLE, a straightforward GEMM implementation that performs computations
entirely on the CPU, and GEMM_OPENGL, the GEMM implementation described in this thesis.
GEMM_SIMPLE is an equivalent CPU implementation that is used to provide a baseline

benchmark to compare with the benchmark of OpenGL implementation.

The scenarios used, which are the convolutions of various size, are specified at compile time.
Also specified is the selection of algorithms to benchmark, by means of definitions passed to
the compiler. For each scenario a different executable is created. This executable will
contain code to run each of the algorithms specified to compute the result of the convolution
for that scenario. All of these algorithms are run from main in the benchmark library.

Whether a particular algorithm is run depends on whether the definition is present.

The code for these algorithms is contained in a the "triNNity" library, which must be installed
on the device. The libraries or frameworks that are needed for compilation must also be
specified at compile time. Also specified is what compiler, and what compiler optimisations

are used for the benchmark.

All of this information is specified in a Makefile for the benchmark.

38

4.1.2 Validation and Results

The executable produced by the compiler can then be run on the device. The benchmark

serves two purposes.

The first purpose of the benchmark is to validate the results of a convolution. When the
benchmark runs an algorithm it will validate the results by printing the error in the result to
standard output. This difference between the expected result and the computed result. No

results provided were benchmarks of algorithms that produced incorrect results.

The second purpose of the benchmark is to measure the time taken to execute the
algorithm. This measurement is the number of CPU clock cycles elapsed between the
algorithm being called and returning the result. This is refereed to as the execution time of

the algorithm.

The benchmark for an algorithm will run a number of times. For this evaluation all
benchmarks were computed with 5 runs. This allows for an average execution time to be
established and hopefully mitigates variation, such as variation resulting from CPU load
changing due to other processes on the system. The first of these runs is discarded from the
results since the execution time of the first run is usually a significantly outlier in the results.
The algorithm will usually converge to a stable execution time over after the first or second

run.

4.1.3 GEMM Variations

The 'triNNity’ contains the following four variations of an im2row algorithm that calls a

GEMM function. These variants are refereed to by the following names.
e im2row-scan-ab-ik
e im2row-scan-abt-ik
e im2row-scan-abt-ki

The letters a and b in the third section of the name refer to the matrices a and b that the
algorithm creates. Whether there is a t following the letter signifies whether that matrix is
transposed. So for example the fourth name contains 'atbt’ signifying that both matrices are
transposed. The fourth section of the name signifies the order that the matrices are passed
to the GEMM function. So for ik’ the image patch matrix is matrix a and the kernel matrix
is matrix b, while for 'ki' the opposite is the case. For algorithms that use OpenGL, the

name is prepended with 'opengl’.

39

4.1.4 Scenarios

There were a range of images and kernels used for evaluating the implementation. These are
called 'scenarios’. The four scenarios used are specified in table 4.1, and are four scenarios
from the AlexNet convolution network. Another scenario labelled 'test’ is specified which is
a small scenario used to verify that the GEMM implementation is working on devices where

memory is too constrained for the current implementation.

Table 4.1: The specifications of each convolution scenario tested

Scenario | Kernels Channels Stride Image Width Image Height Kernel Size
test 1 1 1 4 4 3
2 256 96 1 27 27 5
3 384 256 1 13 13 3
4 384 384 1 13 13 3
5 256 384 1 13 13 3

The dimensions of the image patch matrix and kernel matrix can be calculated for each

scenario using the following formulas.

image _patch _matrix _width = channels (kernel _size?) (1)
image patch matrix _height = image _height x image _width (2)
kernel _matrix _width = kernels (3)

kernel _matrix _height = channels * (kernel _size?) (4)

Note that these are the dimensions for both matrices in their untransposed state. If a matrix
is transposed that the dimensions are swapped. Also note that the image patch matrix width

is equal to the kernel matrix height in their untransposed states.

40

4.2 Results

This section contains the relevant technical specifications of the devices used for evaluating

the implementation and the results produced from benchmarks.

4.2.1 MacBook Air

Development of the implementation was done on a MacBook Air, which provided the bulk

of the results for this thesis.

Table 4.2: Technical Specifications for MacBook Air (Early 2014) (34)

CPU 1.4 GHz Intel Core i5

Memory 4 GB 1600 MHz DDR3

GPU Intel HD Graphics 5000 1536 MB of VRAM
Operating System MacOS 10.13.4

OpenGL Support Version 4.1

OpenGL ES Support NA

Compiler used Apple LLVM version 9.1.0 (clang-902.0.39.1)
Run in 'headless’ mode | No

Table 4.3: Benchmarks results for a MacBook Air (10° CPU Cycles)

Scenario

Algorithm 2 3 4 5
im2row-scan-ab-ik 3.24 0.95 1.99 1.48
opengl-im2row-scan-ab-ik | 1.61 0.96 1.44 0.56

49.84% | 101.29% | 72.57% | 38.17%
im2row-scan-abt-ik 1.05 0.35 0.54 0.38
opengl-im2row-scan-abt-ik | 1.54 0.56 0.80 0.56

146.51% | 159.15% | 146.74% | 149.33%
im2row-scan-abt-ki 1.10 0.34 0.52 0.34
opengl-im2row-scan-abt-ki | 1.51 0.59 0.81 0.56

137.25% | 175.13% | 155.36% | 162.51%

In figure 4.1 the results in table 4.3 are shown in a bar chart. The algorithms are keyed by
colour, while the results for a particular scenario are grouped together from 'conv2' to

"convb’.

41

Execution Time (cycles)

Comparison of Execution Time for a range of ‘im2row’ Algorithms

3.5x10°
3x10°
2.5x10°

2x10° |

1.5x10° |
1x10°

5x10%

conv3

im2row-scan-ab-ik ®
opengl-im2row-scan-ab-ik ®

convs

im2row-scan-abt-ki O
opengl-im2row-scan-abt-ki ®

conv4

im2row-scan-abt-ik @
opengl-im2row-scan-abt-ik @

conv2

Figure 4.1: Benchmark Results for the GEMM implementation on a MacBook Air

Table 4.4 shows the results obtained by running the scenario 2 benchmark with Apples
OpenGL Profiler on the MacBook Air.

Table 4.4: OpenGL Profiler Results on a MacBook Air with times give in micro seconds

GL Function Calls | Total Time | Avg Time | % GL Time | % App Time
glEndTransformFeedback | 15 6009157 400610.48 | 83.17 21.72
glDeleteBuffers 30 866148 29867.18 | 11.99 3.13
glDrawArrayslnstanced 15 128042 8536.17 1.77 0.46
glBufferData 30 117602 3920.08 1.63 0.42
glCompileShader 15 49571 3304.78 0.69 0.18
glTexImage2D 15 24544 1636.28 0.34 0.09
glLinkProgram 15 7724 514.94 0.11 0.03
glBeginTransformFeedback | 15 4900 326.68 0.07 0.02

glFlush 15 4341 289.44 0.06 0.02

42

4.2.2 ASUS Tinkerboard

Once the implementation was developed it was then ported to support OpenGL ES. The
implementation was run on an ASUS Tinkerboard. The results for this device are only from
the initial stages due to the time constraints on this thesis. As such only the test scenario

was run successfully on the device.

Table 4.5: Technical Specifications for an ASUS Tinkerboard (35)

CPU 1.8GHz ARM Cortex-A17
Memory 2GB LPDDR3

GPU ARM Mali T764
Operating System Debian Linux 9

OpenGL Support NA

OpenGL ES Support 3.0

Compiler used g++ 6.3.0

Run in 'headless’ mode | Yes

Table 4.6: Benchmarks for an ASUS Tinkerboard

Algorithm test scenario
im2row-scan-ab-ik Success
opengl-im2row-scan-ab-ik | Success
im2row-scan-abt-ik Success
opengl-im2row-scan-abt-ik | Success
im2row-scan-abt-ki Success
opengl-im2row-scan-abt-ki | Success

43

4.3 Discussion

The results outlined in section 4.2 show significant promise for achieving the goals of the
thesis, while also emphasising the further work that would need to be done to fully achieve

those goals.

The primary results were achieved on the MacBook Air. These showed that the
implementation developed for this thesis with OpenGL achieved better performance than an
equivalent CPU implementation when both matrices are created in their untransposed
states. For this matrix arrangement, table 4.3 shows that the OpenGL version executed in
the worst case a roughly equivalent time to the CPU version, for scenario 3, and in the best
case at around 38% of the time of the CPU version, for scenario 5. These two algorithms,
'im2row-scan-ab-ik’ and 'opengl-im2row-scan-ab-ik’, were also the worst performing of the
algorithms tested. With neither matrix transposed the individual kernels were arranged in
column of the kernel matrix. As previously described, this meant that the contents of a
kernel are spread throughout memory rather than grouped. Having kernel values grouped
together would have significant advantages when reading from memory since the values
could be accessed together in one read from memory. However when the values are spread
out this would require multiple reads. The results would seem to indicate that texture
memory on the GPU has significantly better performance for this random accesses than
main memory. This advantage means that the OpenGL version of this algorithm has a

potential reduction in execution time of around 62%.

The remaining two algorithms have some clear similarities in their results. The CPU versions,
'im2row-scan-abt-ik’ and 'im2row-scan-abt-ki', had very close execution times across all
scenarios. This is explained by the fact that the difference between them is that the order of
the input matrices is swapped between them. As such for the first matrix A is the image
patch matrix, while in the second matrix A is the kernel matrix. This difference is slight, but
essentially shows that there is virtually no advantage to the matrices being in a particular
order. For example the kernel matrix is usually smaller, but there is no advantage to the
matrices being ordered by size. The same is true for the results for the OpenGL versions of
these algorithms, where there is very little difference when the order of the matrices change.
This comparison on the basis of matrix order would become more relevant for the OpenGL
version of the algorithm when run on more constrained devices however. Texture memory on
GPUs is very limited and on more constrained devices this is even more of an issue, to the
point where is may not be possible to fit an entire matrix in texture memory. In these
situations it would be necessary to break the matrix into smaller pieces that could fit into
texture memory to be processed separately. In cases like this there could be a performance

reduction from processing the matrix in multiple pieces, and the comparison of these two

44

algorithms would demonstrate the extent to which this performance reduction existed.

It is also worth noting that for the second two algorithms the CPU version outperform the
OpenGL version, with execution times around a third faster. With these versions of the
algorithm the kernel matrix is ordered in rows, meaning that the values for a particular
kernel are grouped. These versions of the algorithm therefore benefit from being able to
access values in sequence from the kernel matrix, and thus doing so in fewer reads from
memory. From this it can be gathered, with the superior performance of the CPU version,
that this advantage is greater realised on the CPU in this case. While texture memory is
superior for random accesses, main memory has better performance with sequential reads,
likely due to CPU caching. As such the fastest algorithms in the results are CPU based,
however for matrix transposition that require non-sequential reads from memory the GPU

version is superior.

Also provided in are the results of profiling the OpenGL code, in table 4.4. This gives a
rough idea of where the benchmark is spending time executing, or waiting on, OpenGL code.
Note that this benchmark ran all three algorithms calling the OpenGL GEMM function, and
all three algorithms calling the CPU GEMM function. As such the percentage of 'App Time'
spent in OpenGL code is compared against the total time to run the benchmark, including
CPU versions, setup of the benchmark, validating results, etc. Profiling results like these
were used throughout development to pinpoint where OpenGL was taking up a lot of time,
and to reduce this if possible. For example this profiling revealed that at one stage the
implementation was spending a lot of time copying memory from a buffer on the GPU to
main memory, which was then mitigated by using direct mapping of GPU memory to avoid
copying amounts of data. This resulted in around a ten-fold increase in performance in some
cases. It can be seen that the function 'glEndTransformFeedback’ is taking up the vast
majority of execution time spent in OpenGL. This is the function that blocks until the GPU
has finished drawing, or processing, vertices and the results are in the transform feedback
buffer. The next most significant amount of time was spent deleting OpenGL buffers, which
is a surprisingly large amount of time to spend on a clean up operation. Ways to reduce the

time spent on these functions is further discussed in the next section.

Preliminary results are also provided for running the benchmarks on an embedded device, in
this case the ASUS Tinkerboard. These results show that the implementation worked for the
small test scenario. This is a proof of concept, that the OpenGL implementation described
in this thesis does work on an embedded device. For larger scenarios the implementation
fails due to memory errors thrown by OpenGL. How these errors could be resolved is
discussed further in the next section as prospective future work, since due to time
constraints they could not be resolved for this thesis. However the proof of concept does
illustrate that performing this type of work on the GPU of an embedded device is possible,

while the results achieved on the MacBook Air demonstrate that improved performance can

45

be achieved with OpenGL. Thus this thesis describes an implementation that can, with
further development, scale from a low powered embedded device to a desktop class device,
while supporting two operating systems and two variations of OpenGL, to perform some of
the computation involved in neural networks with potentially a performance increase. Even if
the performance increase did not materialise with further development it may still be a
productive endeavour since offloading the work onto otherwise idle GPUs on headless devices

would free the CPU on those devices to perform other work.

4.4 Further Work

Memory errors
The first priority of any future development would be to resolve the memory errors
that the implementation encounters on the ASUS Tinkerboard or any other embedded
device. From work done up until this point it is likely that these errors result from
GPU amount of texture memory available being calculated incorrectly. Even when it is
calculated correctly it is necessary for the implementation to support breaking up the
input matrices into smaller pieces, or chunks, for processing. These smaller chunks

could then be loaded onto the GPU separately for processing or the workload could be
shared between the GPU and the CPU.

Evaluate on more devices
It would also be important to evaluate the implementations performance on a wider
range of devices in terms of computational power, ranging from more powerful
desktop machines with state of the art discrete GPUs, to other low powered devices.
Note it was attempted to run the implementation on a Raspberry Pi, however critical

OpenGL ES features were not supported.

Vector size

At present the implementation computes the best vector size to use for handling any
given matrix. This removes the need to process the matrix such that additional zeros
are stuffed into the matrix to line rows up on a boundary according to a fixed sized
vector. This avoids a lot of shifting data in memory to line up the rows on the
boundary. This could be improved further by generating shaders that could handle
multiple vectors simultaneously. These shaders could be generated with macros, and
would mean the GPU cores could do more work at once. This would also reduce the

amount of processing required by the CPU to sum results.

Asynchronous tasks
It may be feasible to perform some tasks of the implementation concurrently. For

example, as previously mentioned, when breaking matrices into smaller pieces it may

46

be a good idea to share the work between the CPU and the GPU, which would require
multiple threads on the CPU to perform the work and to wait for OpenGL to finish. It
would also be worth exploring whether some tasks, such as deleting OpenGL buffers
which took a not insignificant amount of time according to the profiling results, could
be performed in a separate thread while other processing was done on the GPU. The
other large amount of time spent in OpenGL is waiting for the results of transform
feedback. Rather than waiting for all the results to then perform the additional
processing described, it is possible to have another thread monitor how many results
have been attained and then batch this post processing to occur as results are ready

such that this work can be done while waiting for the rest of the results.

Experiment with other OpenGL functions
Another area that would be of interest would be exploring other OpenGL functionality
available. For example with more advanced features it is possible for the GPU to write
to images texture memory. This would remove the need for summing the results from
the GPU, as this would now be performed by adding the results to the existing valued
in the output 'image’ (36).

Bug fixing
As with most programming endeavours there are issues with the implementation where
it fails for certain scenarios for particular algorithms. These bugs would need to be

addressed.

47

5 Conclusion

This section will present the conclusions that this thesis draws from the results obtained in

attempting to complete the objectives of the research.

The first research question posed by this dissertation was "Is it possible to utilise the GPU
found on a range of low power embedded devices to perform computations associated with
DNNs using OpenGL?". This was achieved in principle, as shown in the results. The
implementation described in the thesis does perform computations associated with DNNs,
specifically matrix multiplication, using OpenGL to utilise the GPU. While only limited forms
of these computations were performed on low power embedded devices, this demonstrated a

proof of concept that this approach is feasible with further work.

The second research question was "Is it additionally possible that by performing this
computation on the GPU with OpenGL that the time taken to perform this computation is
less than an equivalent implementation that only uses the CPU?". This questions was also
answered by the results of the thesis, which showed that for one variant of the algorithms
tested, the OpenGL version was significantly faster, while for other variants the CPU version
is faster. However without testing on a wider variety of hardware a conclusion on how the
implementation performs is difficult to reach. The conclusion of this thesis is that, with the
further development discussed in the previous section, the performance of the OpenGL

version could be better established and improved further.

The objectives of this thesis were also broadly achieved. An implementation of a key DNN
layer, the convolution layer, was developed using C++ and using OpenGL to utilise the
GPU. It has cross platform support for both MacOS and Linux operating systems. The
implementations can function on desktop computers, by targeting the desktop version of
OpenGL, and low powered embedded devices, by targeting the version of OpenGL for
embedded systems. Thus the same implementation can scale from tiny low powered ARM
boards with integrated GPUs to desktop workstations with discrete GPUs. It also provides
support across a larger range of devices than other GPU based solutions which rely on
OpenCL, which is not available on many low powered devices. Objectives focused on the
performance of the implementation were partially achieved, while testing across a broad

range of devices was not. The implementation was also developed as part of the 'triNNity’

48

library.

The results of this thesis demonstrate the it is possible to use OpenGL to perform some of
the work associated with DNNs on GPUs of low power embedded devices. By enabling more
processing on these low power devices it could help reduce network traffic by allowing
devices to only transmit results, which would also reduce latency, while also arguably
improving user privacy. With further development, this could help enable a whole range of
new applications one low powered devices that are better able interpret their environment,

either through image or audio processing.

49

Bibliography

[1] Andrew Anderson. software-tools-group/trinnity repository.
https://gitlab.scss.tcd.ie/software-tools-group/triliNity, . [Online;
accessed 8-May-2018].

[2] Siri Team. Hey siri: An on-device dnn-powered voice trigger for apple's personal
assistant. https://machinelearning.apple.com/2017/10/01/hey-siri.html.
[Online; accessed 8-May-2018].

[3] Apple. Face id security.
https://images.apple.com/business/docs/FaceID_Security_Guide.pdf, .
[Online; accessed 8-May-2018].

[4] David Gregg. Final year projects. https://www.scss.tcd.ie/David.Gregg/fyp/.
[Online; accessed 8-May-2018].

[5] The Khronos Group. Khronos releases opengl es 3.0 specification. https://www.
khronos.org/news/press/khronos-releases-opengl-es-3.0-specification, .
[Online; accessed 8-May-2018].

[6] A Anderson. software-tools-group/trinnity-benchmarks repository.
https://gitlab.scss.tcd.ie/software-tools-group/triNNity-benchmarks, .
[Online; accessed 8-May-2018].

[7] Osvaldo Simeone. A brief introduction to machine learning for engineers. arXiv preprint
arXiv:1709.02840, 2017.

[8] John J Hopfield. Artificial neural networks. IEEE Circuits and Devices Magazine, 4(5):
3-10, 1988.

[9] Sanguthevar Rajasekaran and GA Vijayalakshmi Pai. Neural networks, fuzzy logic and
genetic algorithm: synthesis and applications (with cd). PHI Learning Pvt. Ltd., 2003.

[10] Jeff Heaton. Introduction to neural networks with Java. Heaton Research, Inc., 2008.

50

https://gitlab.scss.tcd.ie/software-tools-group/triNNity
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://images.apple.com/business/docs/FaceID_Security_Guide.pdf
https://www.scss.tcd.ie/David.Gregg/fyp/
https://www.khronos.org/news/press/khronos-releases-opengl-es-3.0-specification
https://www.khronos.org/news/press/khronos-releases-opengl-es-3.0-specification
https://gitlab.scss.tcd.ie/software-tools-group/triNNity-benchmarks

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

[23]

[24]

Alex Krizhevsky, llya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097-1105, 2012.

Andrej Karpathy. Convolutional neural networks for visual recognition.
http://cs231n.github.io/convolutional-networks/. [Online; accessed
8-May-2018].

Pete Warden. Why gemm is at the heart of deep learning. https://petewarden.
com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/. [Online;
accessed 8-May-2018].

Onur Mutlu. Computer architecture: Simd and gpus (part i).
https://www.ece.cmu.edu/ " ece740/£13/1ib/exe/fetch.php?media=

onur-740-falli3-module5.1.1-simd-and-gpus-partl.pdf, . [Online; accessed
8-May-2018].

Onur Mutlu. Computer architecture: Simd and gpus (part ii).
https://pdfs.semanticscholar.org/presentation/7abf/
a4c0fe25f942bf41467c7ebdcab6bfe2cdc? .pdf, . [Online; accessed 8-May-2018].

Jose M Dominguez, Alejandro JC Crespo, and Moncho Gémez-Gesteira. Optimization
strategies for parallel cpu and gpu implementations of a meshfree particle method.
arXiv preprint arXiv:1110.3711, 2011.

The Khronos Group. The opengl graphics system: Specification (version 4.0). .
[Online; accessed 8-May-2018|.

Microsoft. Graphics pipeline. [Online; accessed 8-May-2018].

Geoff Leach. Lecture: Graphics pipeline and animation. [Online; accessed 8-May-2018].
Glew. http://glew.sourceforge.net. [Online; accessed 8-May-2018].

Glfw. http://www.glfw.org. [Online; accessed 8-May-2018].

The Khronos Group. Egl. https://www.khronos.org/egl, . [Online; accessed
8-May-2018].

Matus Novak. Opengl es 2 rendering without an x server on raspberry pi using egl.
https://github.com/matusnovak/rpi-opengl-without-x. [Online; accessed
8-May-2018].

The Khronos Group. Vertex specification.
https://www.khronos.org/opengl/wiki/Vertex_Specification, . [Online;
accessed 8-May-2018].

51

http://cs231n.github.io/convolutional-networks/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.1.1-simd-and-gpus-part1.pdf
https://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.1.1-simd-and-gpus-part1.pdf
https://pdfs.semanticscholar.org/presentation/7a5f/a4c0fe25f942bf41467c7e5dca56bfe2cdc7.pdf
https://pdfs.semanticscholar.org/presentation/7a5f/a4c0fe25f942bf41467c7e5dca56bfe2cdc7.pdf
http://glew.sourceforge.net
http://www.glfw.org
https://www.khronos.org/egl
https://github.com/matusnovak/rpi-opengl-without-x
https://www.khronos.org/opengl/wiki/Vertex_Specification

[25] The Khronos Group. Texture specification.
https://www.khronos.org/opengl/wiki/Texture, . [Online; accessed
8-May-2018].

[26] The Khronos Group. Rectangle texture.

https://www.khronos.org/opengl/wiki/Rectangle_Texture, . [Online; accessed
8-May-2018].

[27] The Khronos Group. glteximage2d. https://www.khronos.org/registry/
OpenGL-Refpages/es3.0/html/glTexImage2D.xhtml, . [Online; accessed
8-May-2018].

[28] The Khronos Group. gluniform. https:
//www.khronos.org/registry/OpenGL-Refpages/gld/html/glUniform.xhtml, .
[Online; accessed 8-May-2018].

[29] The Khronos Group. gldrawarraysinstanced. https://www.khronos.org/registry/
OpenGL-Refpages/gl4d/html/glDrawArraysInstanced.xhtml, . [Online; accessed
8-May-2018].

[30] The Khronos Group. Transform feedback.
https://www.khronos.org/opengl/wiki/Transform_Feedback, . [Online;
accessed 8-May-2018].

[31] The Khronos Group. Transform feedback tutorial. https://open.gl/feedback, .
[Online; accessed 8-May-2018].

[32] The Khronos Group. Opengl error.
https://www.khronos.org/opengl/wiki/OpenGL_Error, . [Online; accessed
8-May-2018].

[33] The Khronos Group. glmapbufferrange. https://khronos.org/registry/
OpenGL-Refpages/es3.0/html/glMapBufferRange.xhtml, . [Online; accessed
8-May-2018].

[34] Apple. Macbook air technical specification.
https://support.apple.com/kb/sp70071locale=en_IE, . [Online; accessed
8-May-2018].

[35] ASUS. Tinkerboard technical specification. https:

//www.asus.com/ie/Single-Board-Computer/Tinker-Board/specifications/.

[Online; accessed 8-May-2018].

52

https://www.khronos.org/opengl/wiki/Texture
https://www.khronos.org/opengl/wiki/Rectangle_Texture
https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexImage2D.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexImage2D.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glUniform.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glUniform.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawArraysInstanced.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawArraysInstanced.xhtml
https://www.khronos.org/opengl/wiki/Transform_Feedback
https://open.gl/feedback
https://www.khronos.org/opengl/wiki/OpenGL_Error
https://khronos.org/registry/OpenGL-Refpages/es3.0/html/glMapBufferRange.xhtml
https://khronos.org/registry/OpenGL-Refpages/es3.0/html/glMapBufferRange.xhtml
https://support.apple.com/kb/sp700?locale=en_IE
https://www.asus.com/ie/Single-Board-Computer/Tinker-Board/specifications/
https://www.asus.com/ie/Single-Board-Computer/Tinker-Board/specifications/

[36] The Khronos Group. Image load store.
https://www.khronos.org/opengl/wiki/Image_Load_Store, . [Online; accessed
8-May-2018].

53

https://www.khronos.org/opengl/wiki/Image_Load_Store

Al Appendix

Al.1 Source code developed for the implementation

Listing A1.1: The GEMM function implemented using OpenGL

#if defined (TRINITY USE_ OPENGL GEMM)

template <gemm transpose t transp>

static TRINNITY INLINE void opengl gemm wrap(signed mat_a w,
signed mat_a_h, signed mat b w,
signed mat b _h,
const floatx _ restrict a,
const floatx _ restrict b,
gemm accumulate t accum,

floatx _ restrict c¢) {

// mat_ a w = mat_b_h
// mat_c w = mat_b w
// mat ¢ h = mat_a_h

GLuint shaderProgramlID;

// Vertices need to be of size 1, 2, 3, 4

// To avoid needing to zero stuff the matrix in the event

// that the matrix row doesn’'t divide evenly by

// a given vertix size, resolve to use the to the largest
vertix

// size that divides evenly, incl 1/

// Ratio should be 33:17:25:25 for 1:2:3:4

int chunk size = 0;

for(int i =4, i > -1, i—) {

54

if(mat_ a w% i = 0) {

chunk size = i;

break:

}
}
// assert(chunk size); // should be non—zero
int chunks per row = mat_a w/chunk size;
int tex components;
int tex internal format;
int tex format;
int instances;
int patches;
#if defined (BENCHMARK OPENGLES)
int texture type = GL_TEXTURE 2D;
#else
int texture type = GL TEXTURE RECTANGLE;
#endif
#if defined (CHECK GL ERRORS)

triNNity :: opengl:: glGetErrorString (" Before

#endif
switch (transp) {
case GEMM A B: {

switch (chunk size) {

case 1: {

shaderProgramID = triNNity ::
triNNity ::

} break;

case 2: {

shaderProgramID = triNNity ::
triNNity ::

} break;

case 3: {

shaderProgramID = triNNity:
triNNity ::

} break;
case 4: {

shaderProgramID = triNNity ::

55

opengl ::
opengl:

opengl ::
opengl :

copengl ::
opengl:

opengl ::

shader compilation™)

compileShaders(
:gemmA B vecl);

compileShaders(

:gemmA B vec2);

compileShaders(

:gemmA B vec3);

compileShaders (

}

triNNity :: opengl ::gemmA B vec4);

} break;
default: {

TRINNITY ERROR("Not implemented — Shouldn 't be

possible for this chunk size");

} break;

tex components = 1;

instances =

patches =

mat b w;

mat_a h;

} break;
case GEMM A BT: {
switch (chunk size) {

}

instances =

case 1: {

shaderProgramID = triNNity ::
triNNity ::
tex components = 1;
} break;
case 2: {
shaderProgramID = triNNity ::
triNNity ::
tex components = 2;
} break;
case 3: {
shaderProgramID = triNNity ::
triNNity ::
tex components = 3;
} break;
case 4: {
shaderProgramID = triNNity ::
triNNity ::
tex components = 4;
} break;
default: {

opengl ::

opengl ::gemmA BT vecl);

opengl ::

opengl::gemmA BT vec2);

opengl ::

opengl::gemmA BT vec3);

opengl ::

opengl::gemmA BT vecd);

compileShaders(

compileShaders (

compileShaders (

compileShaders (

TRINNITY ERROR("Not implemented — Shouldn't be

possible for this chunk size");

} break;
mat b h;

56

}

¥

patches = mat_a h;
break:

case GEMM_AT B: {

}

chunk size = 1;

chunks per row = mat_a h/chunk _size;

shaderProgramID = triNNity ::opengl:: compileShaders(
triNNity :: opengl ::gemmA B vecl);

tex components = 1;

instances = mat b w;

patches = mat_a w;

break ;

case GEMM AT BT: {

}

chunk size = 1;

chunks per row = mat_a h/chunk _size;

shaderProgramID = triNNity ::opengl::compileShaders(
triNNity :: opengl ::gemmA BT vecl);

tex components = 1;

instances = mat b h;

patches = mat _a w;

break;

default: {

}

TRINNITY ERROR("Not implemented");
break;

if (shaderProgramIlD = 0) {

}

TRINNITY ERROR("Shader compilation failed");

switch (tex components) {

case 1: {

}

tex internal format = GL R32F;
tex format = GL RED;
break

case 2: {

}

tex internal format = GL RG32F;
tex format = GL_RG;
break:

case 3: {

tex internal format = GL_ RGB32F;
tex format = GL_RGB;

57

} break;
case 4: {
tex internal format = GL_ RGBA32F;
tex format = GL_RGBA;
} break;
default: {
TRINNITY ERROR("Not implemented — this tex components size

shouldn 't be possible");
} break;

#if defined (CHECK GL_ERRORS)

triNNity :: opengl:: glGetErrorString (" After shader compilation");
#endif

// Create VAO

GLuint vao;
glGenVertexArrays (1, &vao);
glBindVertexArray(vao);

// Create input VBO and vertex format
GLuint vbo;
glGenBuffers (1, &vbo);

// Create transform feedback buffer
int tbo size = patchesxinstancesxchunks per row;
GLuint tbo;
glGenBuffers (1, &tbo);
glBindBuffer (GL_TRANSFORM FEEDBACK BUFFER, tbo);
glBufferData (GL_TRANSFORM FEEDBACK BUFFER,

tbo sizexsizeof(float), 0, GL STATIC READ);
glBindBufferBase (GL_TRANSFORM FEEDBACK BUFFER, 0, tbo);
#if defined (CHECK GL ERRORS)
triNNity :: opengl:: glGetErrorString (" After binding tbo");
#endif

// For Intel HD 5000 result is 16384, which should
// be 16384x16384 (2048+«8) on a MacBook Air

int max_texture size = 0;

58

int max_texture width = 0;
glGetlntegerv (GL_MAX TEXTURE SIZE, &max texture width);
max _texture width /=8;
max texture size = max_texture widthxmax texture width;
// check mat b fits in texture memory
// write code to chunk otherwise
bool needs chunks = false;
if (mat_b hxmat b w > max texture size) {

needs chunks = true; // handle this/!

TRINNITY ERROR("Not implemented — chunking");

return;

int mat b size = mat_ b wxmat b h/tex components;
int tex w = (mat_b_ size<max_texture width) 7 mat b size

max texture width;
int tex_h = mat_b_ size/tex w;
int remainder = (mat_b_ size%tex w)7tex w—(mat_ b size%tex w):0;
if (remainder) {
tex h++;

floatx b_copy = new float[mat b _ sizetremainder];
// need to do a memcpy as b is const restricted
memcpy(b_copy, b, mat b sizexsizeof(float));

GLint input_ values = glGetAttribLocation (shaderProgramID
"input values");
GLint shader _mat b w = glGetUniformLocation(shaderProgramiD ,
"mat b w'");
glProgramUniformli(shaderProgramID , shader mat b w, mat b w);
GLint shader mat b _h = glGetUniformLocation(shaderProgramID ,
"mat_ b _h");
glProgramUniformli(shaderProgramID , shader mat b h, mat b h);
GLint shader tex w = glGetUniformLocation(shaderProgramlD ,
"tex w'");
glProgramUniformli(shaderProgramID , shader tex w, tex w);
GLint shader tex h = glGetUniformLocation(shaderProgramiD
"tex h");

59

glProgramUniformli(shaderProgramID , shader tex h, tex h);
#if defined (CHECK GL ERRORS)

triNNity :: opengl:: glGetErrorString (" After setting uniforms");
#endif

// Create texture

GLuint tex;

glGenTextures (1, &tex);

glBindTexture(texture type, tex);

//GL NEAREST ensures actual kernal values are used,

// not linearly interpolated/weighted ones

glTexParameteri(texture type, GL TEXTURE MIN FILTER,
GL_NEAREST) ;

glTexParameteri(texture type, GL TEXTURE MAG FILTER,
GL NEAREST) ;

// load b into texture memory
#if defined (CHECK GL ERRORS)
triNNity :: opengl:: glGetErrorString ("Before binding texture");
#endif
glTexImage2D (texture type, 0, tex internal format, tex w,
tex h, 0, tex format, GL FLOAT, b);
delete[] b_copy;
#if defined (CHECK GL ERRORS)
triNNity :: opengl:: glGetErrorString (" After binding texture");
#endif

// Load a into VBO

glBindBuffer (GL_ARRAY_ BUFFER, vbo);

glBufferData (GL_ARRAY_ BUFFER, mat_a hxmat_a wxsizeof(float), a,
GL_STATIC_ DRAW);

#if defined (CHECK GL ERRORS)

triNNity :: opengl:: glGetErrorString (" After binding vbo");

#endif

glEnableVertexAttribArray (input_values);

glVertexAttribPointer(input values, chunk size, GL FLOAT,
GL FALSE, 0, NULL);

glEnable (GL RASTERIZER DISCARD) ;

60

// Perform feedback transform
glBeginTransformFeedback (GL POINTS) ;

// Instances allow mat a to be worked on repeatedly

glDrawArraysinstanced (GL_POINTS, 0, (tbo size/instances),
instances);

glEndTransformFeedback () ;

glDisable (GL_RASTERIZER DISCARD);
glFlush ();

#if defined (CHECK GL ERRORS)

triNNity :: opengl:: glGetErrorString ("After drawing");
#endif

// cleanup early to avoid GL OUT _OF MEMORY when mapping
feedback

glDeleteBuffers(1, &vbo);
glDeleteTextures (1, &tex);
glDeleteVertexArrays (1, &vao);
glDeleteProgram (shaderProgramlD);

GLfloat* feedback = reinterpret cast<GLfloat*>(glMapBufferRange
(GL_TRANSFORM FEEDBACK BUFFER, 0,
tbo sizexsizeof(GLfloat),
GL MAP_READ BIT | GL_MAP_WRITE BIT));

#if defined (CHECK GL ERRORS)

triNNity :: opengl:: glGetErrorString (" After mapping feedback");
#endif

if (feedback = NULL) {

TRINNITY _ERROR(" Transform feedback buffer is empty");
}

for(unsigned 1=0; | < patchesxinstances; |+=1) {
feedback|[l] = feedback[lxchunks per row];

for (unsigned k=1; k < chunks per row; k+=1) { // for each
chunk

feedback[l] += feedback[lxchunks per row + k];
}

61

for (unsigned i = 0; i < patches; i+=1) { // for each row of a
for(unsigned j = 0; j < instances; j+=1) { // for each column
of b

switch (accum) {
case GEMM ACCUMULATE: {
cl[ixinstances + j] += feedback[j*patches+i];

} break;

case GEMM_SUBTRACT ACCUMULATE: {
cl[ixinstances + j] —= feedback[jxpatches+i];

} break;

case GEMM_NO ACCUMULATE: {
cl[i*instances + j] = feedback[jxpatches+i];
} break;

glUnmapBuffer (GL_TRANSFORM FEEDBACK BUFFER) ;
glDeleteBuffers (1, &tbo);

}
#endif // #if defined (TRINITY USE OPENGL GEMM)

Listing A1.2: Collection of shader programmes developed

namespace triNNity {
namespace opengl {
// gl VertexID to get vertex index

#if defined (BENCHMARK OPENGLES)

#define NORMALISED X(x) "float(2x" x "+1)/float(2xtex w)"
#define NORMALISED Y(y) "float(2x" y "+1)/float(2xtex_h)"
#define VERSION "#version 310 es\n"

62

#define SAMPLER "uniform sampler2D tex;\n"
#define TEXTURE "texture"

F#else

#define NORMALISED X(x) x

#define NORMALISED Y(y) vy

#define VERSION "#version 400\n"

#define SAMPLER "uniform sampler2DRect tex;\n"
#define TEXTURE "texture"

#endif

#define UNIFORMS OUT "uniform int mat b w;\n \
uniform int mat_b _h;\n \
uniform int tex_w;\n \
uniform int tex h;\n \

out float out value;\n"

/] AB
#define BX(j) "((offset+(" #j "«xmat_b w))%tex w)"
#define BY(k) "((offset+(" #k "«mat b w))/tex w)"
static const charx gemmA B vecl =
VERSION
||\n||
SAMPLER
"in float input values;\n"
UNIFORMS _OUT
||\n||
"void main()\n
||{\n||
" int offset = mat_ b wx((gl_VertexIDx1)%mat b h) +

gl InstancelD;"

" float t = " TEXTURE "(tex, vec2(" NORMALISED X(BX(0)) "
,"" NORMALISED _Y(BY(0)) "))
[0]:\n"
" out value = input_valuesxt;\n"
I|}|l;
static const charx gemmA B vec2 =
VERSION
II\nII

63

SAMPLER
"in vec2 input_values;\n"
UNIFORMS_OUT
||\n||

"void main()\n"
||{\n||

t int offset =

gl InstancelD;"
1 float tex0 = " TEXTURE " (tex,

" float texl = " TEXTURE "(tex,

f vec2 t = vec2(tex0, texl);\n"
]

II}II;

out value = dot(input_values,

static const charx gemmA B vec3 =
VERSION

||\n||

SAMPLER

"in vec3 input_values;\n"
UNIFORMS _OUT
||\n||

"void main()\n"
Il{\nll

" int offset =

gl InstancelD;"

" float tex0 = " TEXTURE "(tex, vec2("
" float texl = " TEXTURE "(tex, vec2("
" float tex2 = " TEXTURE "(tex, vec2("

mat b wx((gl_ VertexID%2)%mat b h) +

vec2 (" NORMALISED X(BX(0))

" NORMALISED_Y(BY(0))
))[0];"

vec2 (" NORMALISED X(BX(1))

" NORMALISED_Y(BY(1))

))[o]:"

t)i\n"

mat b wx((gl VertexID*3)%mat b h) +

NORMALISED X(BX(0))
" NORMALISED Y(BY(0))
))[0];"

NORMALISED X(BX(1))
" NORMALISED Y(BY(1))
))[0];"

NORMALISED X(BX(2))
" NORMALISED Y(BY(2))

))[o];"

t vec3 t = vec3(tex0, texl, tex2);\n"

64

Il}ll;

out value = dot(input values, t);\n

static const charx gemmA B vecd =

VERSION

||\nl|

SAMPLER

"in vec4 input values;\n"
UNIFORMS_OUT

Il\nll

"void main()\n

Il{\nll

" int offset = mat_ b _wx((gl_VertexIDx4)%mat b h) +

gl InstancelD;"

" float tex0 = " TEXTURE "(tex,
t float texl = " TEXTURE " (tex,
" float tex2 = " TEXTURE " (tex,
" float tex3 = " TEXTURE " (tex,

II}II;

// A BT
#define BTX "(offset%tex w)"
#define BTY "(offset/tex w)"

static const charx gemmA BT vecl

VERSION
"\t
SAMPLER

"in float input_values;\n"
UNIFORMS_OUT

65

out value = dot(input values

vec2 ("

t)i\n"

NORMALISED X (BX(0))
NORMALISED Y (BY(0))
))[0];"

NORMALISED X (BX(1))
NORMALISED Y (BY (1))
))[0];"

NORMALISED X (BX(2))
NORMALISED Y (BY(2))
))[0];"

NORMALISED X (BX(3))
NORMALISED Y (BY(3))

))[o]:"

vecd t = vec4d(tex0, texl, tex2, tex3);\n"

Il\nll

"void main()\n"

||{\n||
" int offset = ((mat_b w/1)xgl InstancelD) +
(gl VertexID%(mat b w/1));"

" float t = " TEXTURE "(tex, vec2(" NORMALISED X(BTX) ",

" NORMALISED Y(BTY) "))
[0];\n"
" out value = input_valuesxt;\n"
I|}|l.
static const charx gemmA BT vec2 =

VERSION

Il\nll

SAMPLER

"in vec2 input_values;\n"

UNIFORMS_OUT

||\n||

"void main()\n"

||{\n||

" int offset = ((mat_b w/2)xgl InstancelD) +

(gl VertexID%(mat b w/2));"

vec2 t = vec2(" TEXTURE "(tex, vec2(" NORMALISED X(BTX) ",

" NORMALISED Y(BTY) ")

)"
" out value = dot(input_values, t);\n"
||}|l.
static const charx gemmA BT vec3 =
VERSION
||\n||
SAMPLER

"in vec3 input_ values;\n"

UNIFORMS_OUT

||\n||

"void main()\n"

Il{\nll

" int offset = ((mat_b_w/3)xgl_ InstancelD) +
(gl VertexID%(mat_ b w/3));"

66

)"
" out value = dot(input_ values, t);\n"
||}|l;
static const charx gemmA BT vecd =
VERSION
||\nl|
SAMPLER

"in vec4 input_ values;\n"

UNIFORMS_OUT

||\n||

"void main()\n"

||{\n||

" int offset = ((mat_b_w/4)xgl InstancelD) +

(gl VertexID%(mat b w/4));"

vecd t = vecd (" TEXTURE "(tex, vec2(" NORMALISED X(BTX)

" NORMALISED Y (BTY)

)"

II}II;

out value = dot(input values, t);\n"

static const charx dummy frag shader =
VERSION
"out int o value;\n"
"void main()\n"

Il{\nll

1 o_value = 0;\n"

II}II;

Listing A1.3: Some OpenGL, EGL, and GLFW helper functions developed
#if defined (BENCHMARK OPENGLES)

67

vec3 t = vec3(" TEXTURE "(tex, vec2(" NORMALISED X(BTX) ",
" NORMALISED Y(BTY)

II)

1l
'

II)

#include <EGL/egl . h>
#define GL GLEXT PROTOTYPES
#include <GLES3/gl31 .h>
Felse

#include <GL/glew .h>
#include <GLFW/glfw3 . h>
#endif

namespace triNNity {

namespace opengl {

#if defined (BENCHMARK OPENGLES)

static const EGLint configAttribs[] = {
EGL SURFACE TYPE, EGL PBUFFER _ BIT,
EGL BLUE_SIZE, 8,
EGL GREEN SIZE, 8,
EGL RED SIZE, 8,
EGL DEPTH SIZE, 8,

EGL RENDERABLE TYPE, EGL OPENGL ES2 BIT,
EGL_NONE

// Width and height of the desired framebuffer
static const EGLint pbufferAttribs[] = {
EGL_WIDTH, 800,
EGL HEIGHT, 600,

EGL NONE,

b

static const EGLint contextAttribs[] = {
EGL_CONTEXT_CLIENT _VERSION, 2,
EGL:NONE - -

b

static const charx eglGetErrorStr(){
switch (eglGetError()){
case EGL SUCCESS:

return "The last function succeeded without error.";

68

case EGL NOT INITIALIZED:
return "EGL is not initialized , or could not be initialized ,
for the specified EGL display connection.";
case EGL BAD ACCESS:
return "EGL cannot access a requested resource (for example
a context is bound in another thread).";
case EGL BAD_ ALLOC:
return "EGL failed to allocate resources for the requested
operation.";
case EGL BAD ATTRIBUTE:
return "An unrecognized attribute or attribute value was
passed in the attribute list.";
case EGL BAD CONTEXT:
return "An EGLContext argument does not name a valid EGL
rendering context.";
case EGL BAD _CONFIG:
return "An EGLConfig argument does not name a valid EGL
frame buffer configuration.";
case EGL BAD CURRENT SURFACE:
return "The current surface of the calling thread is a
window, pixel buffer or pixmap that is no longer
valid.";
case EGL BAD_ DISPLAY:
return "An EGLDisplay argument does not name a valid EGL
display connection.";
case EGL BAD SURFACE:
return "An EGLSurface argument does not name a valid surface
(window, pixel buffer or pixmap) configured for
GL rendering.";
case EGL BAD MATCH:
return "Arguments are inconsistent (for example, a
valid context requires buffers not supplied
by a valid surface).";
case EGL BAD PARAMETER:
return "One or more argument values are invalid.";
case EGL BAD NATIVE PIXMAP:
return "A NativePixmapType argument does not refer
to a valid native pixmap.";
case EGL BAD NATIVE WINDOW:

69

return "A NativeWindowType argument does not refer
to a valid native window.":
case EGL CONTEXT LOST:
return "A power management event has occurred. The
application must destroy all contexts and
reinitialise OpenGL ES state and objects to
continue rendering.";
default: break;

}

return "Unknown error!":

int initEGL(EGLDisplayx display , EGLSurfacex surface,
EGLContext* context) {

int major, minor;
int desiredWidth , desiredHeight;

GLint posLoc, colorLoc, result;

if ((«display = eglGetDisplay (EGL_DEFAULT DISPLAY))
— EGL_NO_DISPLAY)

fprintf(stderr, "Failed to get EGL display! Error: %s\n",
eglGetErrorStr);
return EXIT FAILURE;

if(egllnitialize (xdisplay , &major, &minor) = EGL FALSE)
{

fprintf(stderr, "Failed to get EGL version! Error: %s\n",
eglGetErrorStr);

eglTerminate(xdisplay);

return EXIT FAILURE;

printf("Initialized EGL version: %d.%d\n", major, minor);

EGLint numConfigs;
EGLConfig config;

70

if (leglChooseConfig(xdisplay , configAttribs , &config, 1,
&numConfigs))

fprintf(stderr, "Failed to get EGL config! Error: %s\n",
eglGetErrorStr);

eglTerminate(xdisplay);

return EXIT FAILURE;

xsurface = eglCreatePbufferSurface(xdisplay, config,
pbufferAttribs);
if (xsurface = EGL NO SURFACE){
fprintf(stderr, "Failed to create EGL surface! Error: %s\n",
eglGetErrorStr);
eglTerminate(xdisplay);
return EXIT FAILURE;

eglBindAPI(EGL OPENGL API);

xcontext = eglCreateContext(xdisplay, config, EGL NO CONTEXT,
contextAttribs);
if (xcontext = EGL NO_CONTEXT) {
fprintf(stderr, "Failed to create EGL context! Error: %s\n",
eglGetErrorStr);
eglDestroySurface(«xdisplay , *surface);
eglTerminate(xdisplay);
return EXIT FAILURE;

eglMakeCurrent(*xdisplay , *surface, xsurface, *xcontext);

// The desired width and height is defined inside of
pbufferAttribs

// Check top of this file for EGL WIDTH and EGL HEIGHT

desiredWidth = pbufferAttribs[1]; // 800

desiredHeight = pbufferAttribs[3]; // 600

// Set GL Viewport size, always needed!

71

glViewport (0, 0, desiredWidth, desiredHeight);

// Get GL Viewport size and test if it is correct.

// The following piece of code checks if the gl functions
// are working as intended!

GLint viewport[4];

glGetlntegerv (GL_VIEWPORT, viewport);

// viewport [2] and viewport[3] are viewport width and height

// respectively
printf ("GL Viewport size: %dx%d\n", viewport[2], viewport[3]);

// Test if the desired width and height match the one returned
// by glGetintegerv
if (desiredWidth!=viewport[2] || desiredHeight!=viewport[3])
{
fprintf(stderr, "Error! The glViewport/glGetlntegerv are not
working! EGL might be faulty!\n");

return O;

}

F#else
int initGLFW () {

// start GL context and O/S window using the GLFW helper
library
if ('glfwinit()) {
fprintf(stderr, "ERROR: could not start GLFW3\n");

return 1;

// for some reason GLFW_ FALSE was not in scope on pi?

glfwWindowHint (GLFW _VISIBLE, 0);

// the following four are macOS specific

// code from http://antongerdelan.net/opengl/hellotriangle.
html

glfwWindowHint (GLFW_CONTEXT VERSION MAJOR, 3);

glfwWindowHint (GLFW_CONTEXT VERSION MINOR, 2);

glfwWindowHint (GLFW_OPENGL FORWARD COMPAT, GL TRUE);

72

glfwWindowHint (GLFW_OPENGL PROFILE, GLFW OPENGL CORE PROFILE) ;
GLFWwindow* window = glfwCreateWindow (640, 480, "",6 NULL,
NULL) ;
if (!window) {
fprintf(stderr, "ERROR: couldn't open window with GLFW3\n");
glfwTerminate () ;
return 1;
}
glfwMakeContextCurrent (window) ;
return 0;

}
H#endif

// Shader Functions

GLuint addShader(GLuint shaderProgram, const charx shaderText,
GLenum shaderType)

{

// create a shader object
GLuint shaderObj = glCreateShader(shaderType);

if (shaderObj = 0) {
fprintf(stderr, "Error creating shader type %d\n",
shaderType);
return O;
}
// Bind the source code to the shader,
// this happens before compilation
glShaderSource(shaderObj, 1, &shaderText, NULL);
// compile the shader and check for errors
glCompileShader(shaderObj);
GLint success;
// check for shader related errors using glGetShaderiv

glGetShaderiv(shaderObj, GL COMPILE STATUS, &success);
if (!success) {

GLchar infolLog[1024];
glGetShaderinfoLog(shaderObj, 1024, NULL, infolLog);

fprintf(stderr, "Error compiling shader type %d: "%s’'\n",
shaderType, infolLog);

73

return 0;
}
// Attach the compiled shader object to the program object
glAttachShader(shaderProgram , shaderObj);
return shaderObj;

GLuint compileShaders(const charx shaderSrc)
{
//Start the process of setting up our shaders by creating
// a program [D
//Note: we will link all the shaders together into this ID
GLuint shaderProgramID = glCreateProgram();
if (shaderProgramID = 0) {
fprintf(stderr, "Error creating shader program\n");
return 0;

// Create two shader objects, one for the vertex, and one for
// the fragment shader
GLuint shaderObj = addShader(shaderProgramID , shaderSrc,
GL VERTEX SHADER);
if (shaderObj = 0) {
fprintf(stderr, "Error adding shader program\n");
return 0;

#if defined (BENCHMARK OPENGLES)
GLuint shaderObjFrag = addShader(shaderProgramlID ,
triNNity :: opengl::dummy frag shader,
GL FRAGMENT SHADER);
if(shaderObjFrag = 0) {
fprintf(stderr, "Error adding frag shader program\n");
return 0;

}
#endif

const Glcharx feedbackVaryings[] = { "out value" };
glTransformFeedbackVaryings(shaderProgramlD, 1,

74

feedbackVaryings ,
GL INTERLEAVED ATTRIBS);

GLint success = 0;
GlLchar errorLog[1024] = { 0 };

// After compiling all shader objects and attaching them
// to the program, we can finally link it
glLinkProgram (shaderProgramlD);
// check for program related errors using glGetProgramiv
glGetProgramiv(shaderProgramID , GL LINK STATUS, &success);
if (success = 0) {

glGetProgramlinfolLog(shaderProgramID , sizeof(errorLog),

NULL, errorLog);
fprintf(stderr, "Error linking shader program: '"%s’'\n",
errorLog);

return O;

glDeleteShader (shaderObj);

#if defined (BENCHMARK OPENGLES)
glDeleteShader(shaderObjFrag);
#endif

// Finally , use the linked shader program

// Note: this program will stay in effect for all draw calls
// until you replace it with

// another or explicitly disable its use

glUseProgram (shaderProgramlD);

return shaderProgramlD ;

void glGetErrorString (const charx description) {
int err = glGetError();
while(err = GL NO ERROR) {
switch(err) {
case GL INVALID ENUM: {
fprintf(stderr, "%s, GL INVALID ENUM\n", description);
} break;

75

case GL INVALID VALUE: {
fprintf(stderr, "%s, GL INVALID VALUE\n", description);
} break;
case GL INVALID OPERATION: {
fprintf(stderr, "%s, GL INVALID OPERATION\n",
description);
} break;
case GL_ OUT OF MEMORY: {
fprintf(stderr, "%s, GL OUT _OF MEMORY\n", description);

} break;
default: {

fprintf(stderr, "%s, Unknow error\n", description);
} break;

err = glGetError();

76

	Introduction
	Research Questions
	Objectives
	Purpose of the Research
	Layout of the thesis

	Background
	Machine Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	Fully Connected Layer
	Pooling Layer
	Convolution Layer

	GEMM
	Dot Product
	Matrix Multiplication
	Fully Connected Layer
	Convolution Layer
	Implementations

	Graphical Processing Unit
	Architecture
	OpenGL
	OpenGL ES

	Implementation
	Setup
	Transferring Data to the GPU
	Performing the Computation
	Retrieving Results from the GPU
	Transpositions
	Matrix A and Matrix B
	Matrix A and Matrix BT
	Matrix AT and Matrix B
	Matrix AT and Matrix BT

	Shader Programmes
	Error Checking
	Final Steps

	Evaluation
	Benchmarking
	Compilation
	Validation and Results
	GEMM Variations
	Scenarios

	Results
	MacBook Air
	ASUS Tinkerboard

	Discussion
	Further Work

	Conclusion
	Appendix
	Source code developed for the implementation

