

University of Dublin

TRINITY COLLEGE

Functional Programming:
An Untapped Tool for Linear Algebra?

Diarmuid McDonnell
M.A.I. Engineering

Supervisor: Dr. Hugh Gibbons

Submitted to the University of Dublin, Trinity College, May, 2018

I, Diarmuid McDonnell, declare that the following dissertation, except where otherwise

stated, is entirely my own work; that it has not previously been submitted as an exercise

for a degree, either in Trinity College Dublin, or in any other University; and that the

library may lend or copy it or any part thereof on request.

Signature: _____________________________ Date: __________________________

Summary

This research paper investigates whether or not functional programming would be a good

tool for solving linear algebra problems. This is carried out through building an application

in the functional programming language Haskell to solve Lights Out. The paper first

identifies key aspects of functional programming that may be of benefit when solving linear

algebra problems. Past research is discussed which shows how functional programming has

been used to benefit other areas of mathematics. Some mathematical software are also

identified which are typically used for solving these problems, along with linear algebra

functions that should be addressed in any proposed linear algebra toolkit. The Lights Out

game is discussed in order to establish its suitability as a linear algebra problem. The

equation for solving Lights Out is proven to be a matrix product, thus solving it using

functional programming will demonstrate its ability to solve linear algebra problems. The

main challenge is identified as executing a matrix inverse on a non-invertible matrix to

produce a pseudo inverse matrix.

An algorithm for executing the matrix inverse operation is designed and implemented in

Haskell which returns the desired result and allows for the solving of Lights Out. This paper

identifies the key characteristics of functional programming that benefit the application for

solving Lights Out and compares them to imperative languages. It is found that functional

programming is able to not only invert a matrix but find a pseudo inverse for a non-

invertible matrix, that it is capable of solving linear algebra problems. However, some

further research may be necessary in order to investigate a larger range of linear algebra

problems to determine just how capable a tool functional programming is.

Abstract

Functional Programming: An Untapped Tool for Linear Algebra? – Diarmuid McDonnell

This research proposes the idea that functional programming is a suitable tool for solving

linear algebra problems. The Lights Out game is used to explore this idea. This paper

shows how Lights Out is a non-trivial linear algebra problem suitable for testing the

capabilities of functional programming as a tool for computing linear algebra functions. An

application is built to solve Lights Out using the functional programming language Haskell.

The results presented in this paper show that functional programming is well suited for

solving linear algebra problems and could rival the use of imperative languages. Some

future work is also proposed to improve upon the work carried during this research.

Acknowledgements

I would like to thank my supervisor Dr. Hugh Gibbons for his help throughout the year. His

advice during our weekly meetings was extremely beneficial.

I would also like to thank my family and girlfriend for the support they’ve given me

throughout the entirety of my university career.

Table of Contents

1 Introduction .. 1

2 Background ... 3

2.1 Functional Programming .. 3

2.2 Linear Algebra .. 7

2.2.1 Common Linear Algebra Functions ... 9

2.2.2 Mathematical Software .. 11

2.3 Lights Out ... 12

2.3.1 Solving the Puzzle ... 13

2.3.2 Solving the Puzzle with the Optimal Solution ... 21

2.3.3 Working Example .. 24

3 Method ... 27

3.1 Performing Gauss-Jordan ... 28

3.2 Checking for Solvability .. 32

3.3 Calculating the Solution ... 33

3.4 Calculating the Optimal Solution ... 33

4 Result .. 35

4.1 Matrix Inverse .. 36

4.2 Checking for Solvability .. 36

4.3 Calculating the Optimal Solution ... 37

4.4 Unsolvable Configurations ... 38

5 Discussion ... 39

5.1 Advantages of Functional Programming .. 39

5.2 Future Works .. 41

6 Conclusion ... 44

7 Bibliography .. 46

A1. Appendix ... 48

Appendix A1.1 ... 48

Appendix A1.2 ... 48

Appendix A1.3 ... 48

Appendix A1.4 ... 48

Page | 1

1 Introduction

This project investigates whether or not functional programming is a good tool for solving

linear algebra problems. The electronic board game Lights Out will be used as a method of

demonstrating this.

 Figure 1.1

Throughout this paper the characteristics of functional programming are outlined that

could potentially make it a useful tool for anyone working on problems in linear algebra. As

well as that, some past research is discussed that hints at functional programming being a

capable tool solving linear algebra problems.

The background of linear algebra is also discussed, with some examples of common linear

algebra functions that a program to solve linear algebra problems would have to address.

There has also been research carried out in the field of linear algebra with regards to

improving the efficiency in computation when carrying out linear algebra operations. Some

of this research is discussed as it shows the ever-evolving state of linear algebra in

computing as well as the continued need for finding new and more efficient ways of

carrying out linear algebra operations. The mathematical software that is typically used to

Page | 2

perform these linear algebra operations are identified and discussed, as well as the

potential for these software to be built with a functional programming language in the back

end.

An overview of Lights Out is given. A lot of the information gathered for this research is

taken from Jamie Mulholland’s web page[1] and lecture 24 of his module “Permutation

Puzzles: A Mathematical Perspective”[2] as well as Jaap Scherpuis’ puzzle page[3]. Both

Mulholland and Scherpius heavily base their work on a paper by Anderson and Feil

(1998)[4]. In this overview, the rules and objective of the game is outlined. The maths

behind solving the puzzle is then discussed which demonstrates why Lights Out is a suitable

tool for demonstrating that functional programming can solve linear algebra problems. This

is done by showing how to get a solution for the puzzle and then optimising that solution

to take the least number of moves. A working example is walked through in order to further

explain the process of solving Lights Out and back up the theory discussed.

With all the background to the project addressed, the method by which Lights Out is solved

is outlined. This involves outlining the algorithms behind calculating the pseudo inverse of

the Lights Out matrix, checking whether or not a given configuration is solvable, and

calculating a solution for a given configuration. The method for calculating the optimal

solution of a given configuration is also addressed.

With the application built using the algorithms outlined in the method, the results of the

algorithms are identified and discussed. The advantages of functional programming for

solving linear algebra problems identified through the process of implementing the

Page | 3

application are compared to more typically used, imperative languages such as C and Java.

Some future work for improving the application are suggested.

2 Background

This project can be broken up into three parts:

1. Functional Programming

2. Linear Algebra

3. Lights Out

In this section the current start of the art for these three areas will be discussed. The areas

highlighted will be those that pertain to this project and help show why functional

programming has the potential to be a good tool for solving linear algebra problems.

2.1 Functional Programming
There are a number of characteristics that make a programming language a functional

programming language. Below are just some of those characteristics:

Declarative: Functional programming languages are declarative,

meaning that they describe what the program must do. An

imperative programming language on the other hand would

describe how a program would do something.

Pure Functions: Functions in functional programming languages are pure

functions. If a function is called with the same inputs, it will

always produce the same output. This is due to the fact that

Page | 4

functions in functional programming languages have no side

effects.

Referential Transparency: Once defined, a variable in a functional programming

language cannot be changed. This means that at any point,

a variable can be replaced with its actual value without

affecting the end result.

Higher Order Functions: Functional programming languages make use of higher

order functions. This means that a function can take another

function as an input, return a function as an output, or both.

Lazy Evaluation: Some functional programming language functions use lazy

or non-strict evaluation. This means that a function is only

executed once its result is required by another function. It

also allows some functions to be partially outputted even if

one of the values in the output cannot be evaluated. In this

case the functions output will include everything up to the

point of the failing evaluation.

Recursion: Recursion is used in most programming languages but is

much more prevalent in functional programming languages.

This is due to the fact that it is the main technique used in

iteration. This is done by defining a ‘base case’ that marks

the end point of the iteration.

Page | 5

Other Characteristics Other defining characteristics of functional programming

languages include the fact that there is no shared state,

mutable data or side effects in these languages.

There have been a number of arguments for why functional programming is beneficial in a

wide variety of areas. This shows that functional programming can be useful for many

different use cases and is worthy of being investigated for its use in solve linear algebra

problems. One example of this is Ball (1999)[5] who argued that functional programming is

very useful for avoiding inexecutable paths compared to imperative languages. More

specifically, functional programming allows programmers to avoid destructive updates and

unnecessary sequencing.

Another supporter of functional programming, Hughes (1995)[6], argued that functional

programming languages are very good at supporting software reuse. He wanted to

demonstrate this by highlighting how higher order functions allow the body of a loop to be

more easily implemented. This was carried out through a study of a pretty-printing library.

This study showed that formal specifications and the use of the algebraic properties of

higher order functions can be used to design and implement a library of common

programming idioms in the application.

There have even been some studies in the area of using functional programming for testing

software. Thompson (1993)[7] explored this idea by using Haskell to try and prove

functional programs correct. However, he found that some of the difficulties in this area

outweighed any benefits gained. There has been further research in the area since

however. Claessen and Hughes (2000)[8] discuss QuickCheck, a testing framework written

Page | 6

in Haskell for Haskell. This study discusses the fact that despite some pitfalls, the framework

works successfully over a large range of use cases.

There have also been a number of studies suggesting that functional programming is a

valuable tool in the field of mathematics. Page (2001)[9] states that although functional

programming still has some barriers it has yet to overcome (performance issues and

programmers resistance to the use of non-standard languages), it is a very effective

teaching tool. Page states that teaching the application of math logic and reasoning in the

software development process draws benefits from the use of functional programming. As

well as that, Doets (2012)[10] argues that Haskell is a marvellous demonstration tool for

logic and maths. Doets also states that Haskell can be viewed as an elegant implementation

of lambda calculus. These papers hint towards the idea that functional programming has its

place in the field of mathematics and could potentially benefit linear algebra.

This point is further strengthened by a number of studies which suggest that functional

programming would indeed be a good tool for Linear Algebra. Dolan (2013)[11] defined a

type-class for describing closed semerings in Haskell. In doing so, he also implemented a

few functions for manipulating matrices which show functional programming’s ability to

work on matrices. Eriksson and Jansson (2016)[12] further showed this by defining a block

based matrix in the functional programming language Agda. They verify that algorithms can

be implemented using the closure operation of a semi-ring by lifting algebraic structures to

matrices. Both of these papers show previous use of functional programming for solving

linear algebra problems. This suggests that the current research can indeed find that

functional programming is a good tool for solving linear algebra problems.

Page | 7

There has even been research to suggest that functional programming can challenge the

already established tools in the field of mathematics. Eaton (2006)[13] argues that because

Matlab and other popular matrix languages are dynamically typed, type errors are only

caught at runtime. Eaton states that by exposing object dimensions to the type system, a

much wider range of common errors can be detected at compile time. Using Haskell, Eaton

writes what he calls a “strongly typed linear algebra” prototype based on a Haskell library

by Alberto Ruiz[14]. This is a Haskell library that provides a fully functional interface for

linear algebra and other numerical algorithms. Eaton’s prototype is also uses techniques

from Kiselyov and Shan (2004)[15], a paper that uses widely implemented language

features such as the type-class system to solve configuration problems in Haskell. As well

as Eaton, Ghitza and Westerholt-Raum (2016)[16] have compared Haskell to tools

commonly used to solve linear algebra problems. They present an implementation of the

PLE decomposition of matrices over division rings and discovered that a relevant number

of cases performed faster than C-based implementations.

Looking at all of this past research certainly shows that the use functional programming as

a tool for solving problems in linear algebra should be researched further. The current

research aims to do this and provide some insight into how it can be done.

2.2 Linear Algebra
There are a number of constantly occurring developments in the field of linear algebra

regarding the use of computers for solving problem. Buttari, Langou, Kurzak and Dongarra

(2008)[17] addressed the fact that as computing power grows, linear algebra algorithms

have to be reformatted. In this paper, they present a new algorithm for QR factorisation

Page | 8

(the decomposition of a matrix into a product of an orthogonal and an upper triangular

matrix) to make use of this greater computing power. Another paper that shows the

continuous updating of computing algorithms in linear algebra is Quintana-Ortí, Quintana-

Ortí, van de Geijn, van Zee and Chan (2009)[18]. This research highlights that continued

performance improvements have come about due to growth in thread level parallelism.

They argue that it is not viable to evolve legacy libraries for dense and banded linear

algebra. This is because of the constraints imposed by the early design of the library. This

means that in some cases an upgrade in linear algebra algorithms may require starting from

scratch in order to get the best results in terms of performance.

It can even be shown that common matrices such as matrix multiplication and matrix

inversion can be updated in order to make them perform more efficiently. Quintana,

Quintana, Sun and van de Geijn (2000)[19] show this by presenting a new one-sweep

parallel algorithm for matrix inversion. A paper that puts forward a new algorithm for

matrix multiplication is Gunnels, Henry, van de Geijn (2001). The aim of this paper was to

employ maths to determine a locally optimal method for blocking matrices. The resulting

algorithm, combined with a highly optimised inner-kernel, produces a higher performing

matrix multiplication compared to that of algorithms using an automatically tuned kernels.

A later paper, Goto and van de Geijn (2008), present the basic principles that underline the

high performance of matrix multiplication. They present a simple but effective algorithm

for executing matrix multiplication. When implemented over a large range of architecture,

the algorithm met near-peak performance. These studies show that even the more

common matrix operations can be optimised. The current study is looking at optimising

Page | 9

some of these linear algebra operations by use of functional programming and these

studies show that it is a worthwhile endeavour.

2.2.1 Common Linear Algebra Functions

There are a number of common linear algebra functions. If a functional programme were

to fully support linear algebra, it would need to be able to execute these functions on any

viable input. Below are some of these equations, some of which will be addressed by the

application produced by the current study.

Dot Product: Also known as the scalar product, the dot product can be

performed on two vectors of equal length. The result is the

sum of the products of the corresponding entries in the

vector.

e.g (𝑣1, 𝑣2, 𝑣3) ⋅ (𝑢1, 𝑢2, 𝑢3) = 𝑣1𝑢1 + 𝑣2𝑢2 + 𝑣3𝑢3

Cross Product: Also known as vector product, the cross product is used to

find a vector perpendicular to two given vectors in 3D

space. The equation for cross product is

𝑎 × 𝑏 = ‖𝑎‖‖𝑏‖ sin 𝜃

Rank: The rank of a matrix A is determined by the row and

column ranks of that matrix. The row rank is the number of

linearly independent rows in A while the column matrix is

the number of linearly independent columns in A. The rank

of matrix A is the lowest of these two values.

Page | 10

Determinant: A determinant can only be calculated for a square matrix.

The equation for the determinant of a 2x2 square matrix is

[
𝑎 𝑏
𝑐 𝑑

] = 𝑎𝑑 − 𝑏𝑐

For square matrices larger than that the determinant is the

sum of each number in the first row multiplied by the

determinant of the square matrix of the remaining rows,

not including its column. Every second value of the sum is

negative.

Gaussian Elimination: This is an algorithm used in linear algebra to convert a

matrix to row echelon form using row operations. A matrix

is in row echelon form when every non-zero row has a

leading coefficient is to the right of the leading coefficient

of the row above it. The row operations used to reduce the

matrix to this form are:

• Swapping row positions

• Multiplying a row by a non-zero scalar

• Adding one row to a multiple of another

Gauss-Jordan Elimination: This is an algorithm that continues on from Gaussian

elimination. In this case, the goal is to convert the matrix

to reduced row echelon form. A matrix is in reduced row

Page | 11

echelon form if further to being in row echelon form, the

leading coefficients are all one, and all other values in a

column with a leading one are zero.

Matrix Inverse: The inverse of a given square matrix can be found if the

given matrix can be converted to reduced row echelon

form. In order to find the inverse of a square matrix, Gauss-

Jordan elimination is performed on it. Each operation

performed on the matrix is also performed on an identity

matrix of the same size. Once the original matrix has been

reduced to reduced row echelon form, the result of the

operations on the identity matrix is the inverse.

2.2.2 Mathematical Software

There are a number of mathematical software used to solve linear algebra problems. In

this section some of these software will be discussed, along with the programming

languages used to create them, and why functional programming could potentially do a

better job at solving linear algebra problems.

2.2.2.1 MATLAB

MATLAB, developed by MathWorks, is a proprietary programming language written

predominately in C, C++ and Java. It can be used for plotting functions and other data, and

also for manipulating matrices.

Page | 12

2.2.2.2 Mathematica

Mathematica is a software developed by Wolfram Research. It is written in C, C++ and Java,

but predominately Wolfram Language.

2.2.2.3 SageMath

SageMath is a computer algebra system initially created to provide an open source

alternative to other mathematical software such as MATLAB and Mathematica. It is written

in Python and Cython and covers many areas of mathematics including linear algebra.

These software make use of imperative languages to carry out their processes. The current

study looks at the possibility of using a declarative functional programming language in

place of these imperative languages to solve linear algebra problems that might need to be

solved by users of the above software.

2.3 Lights Out
In 1995, Tiger Electronics released a game called Lights Out. The game consists of a 5x5

board of light up buttons. Each game starts with a random configuration of lights turned on

and the objective of the game is to turn all the lights off. What makes the game difficult is

that when a light is pressed, the lights immediately above, below, left and right of the

pressed light as well as the pressed light itself, is toggled. People can come up with solutions

to this game, but it is difficult to do. What makes this game even more challenging is

attempting to solve an initial configuration in the minimum number of moves necessary.

An example of a lights out board is shown in figure 2.1.

Page | 13

 Figure 2.1

2.3.1 Solving the Puzzle

We can represent a Lights Out board using a 5x5 matrix. We can demonstrate the state of

lights, the buttons being pressed or the result of a button press. The below matrix

represents the above configuration of the board. 1 represents a lit light and 0 represents

an unlit light.























10000

10101

10001

10101

00001

The following two matrices represent a button being pressed and the result of that button

being pressed. For the matrix on the left, the * represents the action of pressing a particular

button. For the matrix on the right the 1 represents which lights on the board will change

state as a result of that button press. This matrix is known as a toggle matrix. This

demonstrates that if you press a single button twice the overall result of the board is

unchanged. In the below case we can see that light (2,2) is pressed. As a result, lights (1,2),

(2,1), (2,2), (2,3) and (3,2) are toggled. By combining a number of these actions, we can

Page | 14

create a button pattern in order to get our desired result. The result of that button pattern

will be the combination of the corresponding toggle matrices.























00000

00000

00000

000*0

00000

 +























00000

00000

00010

00111

00010

What this would look like on a board is shown below, where green represents the button

being pressed (figure 2.2), and red represents the lights that are toggled as a result of that

button press (figure 2.3).

Figure 2.2 Figure 2.3

The act of pressing a button is performing an addition operation on the configuration

matrix. Taking the above button press, this can be shown by adding the toggle matrix to a

configuration of entirely unlit lights, or an all zero matrix.























00000

00000

00000

000*0

00000

 =>























00000

00000

00000

00000

00000

 +























00000

00000

00010

00111

00010

 =























00000

00000

00010

00111

00010

Page | 15

By combining multiple button presses we can find the resulting toggle matrix by combining

the toggle matrices of each of those buttons. Below is an example of this. There are three

button presses on the left-hand side with the resulting toggle matrix on the right-hand side.























0000*

00000

00*00

000*0

00000























00011

00101

01100

00011

00010

In order to solve the puzzle, a button combination must be found that returns a toggle

matrix that matches the initial configuration of the lights out board. This is shown in the

below diagrams where the left-hand board (figure 2.4) represents the initial configuration

and the right-hand board (figure 2.5) represents the toggle matrix required to make the

board blank:

Figure 2.4 Figure 2.5

The resulting toggle matrix for each individual button press is known. In order to solve the

puzzle, a combination of these toggle matrices is required that, when added together,

matches the initial configuration as shown above. The buttons that are pressed to return

Page | 16

these toggle matrices are the buttons required to complete the game. Therefore, the

following equation can be used to solve Lights Out:

∑ 𝑥𝑖,𝑗𝑇𝑖,𝑗

1 ≤ 𝑖 ≤ 5
1 ≤ 𝑗 ≤5

= 𝐵

Where, xi,j is a button on the board, Ti,j is the toggle matrix corresponding to that button,

and B is the initial configuration matrix. The solution to the game is the xi,j’s required to

return Ti,j’s, that when combined, result in a matrix that matches B. If this equation is

expanded to show the individual elements of the summation, this can be seen more clearly.

𝑥1,1























00000

00000

00000

00001

00011

+ 𝑥1,2























00000

00000

00000

00010

00111

+ ⋯ + 𝑥5,5























11000

10000

00000

00000

00000

= B

The toggle matrices required to create a toggle matrix that matches the initial configuration

B should have a coefficient of one and the toggle matrices that are not used should have a

coefficient of zero. These coefficients are represented by the xi,j variable. Finding all of the

xi,j values provides the solution, where a one value for a button xi,j represents a button that

should be pressed, and a zero represents a button that should not be pressed.

Each member of the summation equation corresponds to a linear equation when

represented as vectors rather than matrices. For example, entry (2, 2) in the above equation

is:

𝑥1,2 + 𝑥2,1 + 𝑥2,2 + 𝑥2,3 + 𝑥3,2 = 𝑏2,2

Page | 17

These are the only toggle matrices that toggle the button (2, 2). We can represent each bi,j

with the vector representation of B.

𝑏 = (𝑏1,1, 𝑏1,2, 𝑏1,3, … , 𝑏5,4, 𝑏5,5)

The toggle matrices Ti,j can be written as toggle vectors ti,j. These toggle vectors can used

as columns in a 25x25 matrix A

𝐴 = [𝑡1,1|𝑡1,2| … |𝑡5,5]

This means that the above summation can be written as a matrix product

𝐴𝑥⃗ = 𝑏⃗⃗

Where 𝑥⃗ represents the coefficients of the toggle matrices in vector form. This vector

shows the buttons to press in order to solve the puzzle. To find 𝑥⃗, the matrix A will have to

be inverted.

This is where the problem becomes a linear algebra problem. In order to solve the above

equation we first convert the button press matrix for a single button press to a binary

matrix. This is shown below accompanied by its corresponding toggle matrix.























00000

00000

00000

00010

00000























00000

00000

00010

00111

00010

Page | 18

By computing the above two matrices for every button on the board and converting each

matrix into a vector of length 25, we can produce the two 25x25 matrices shown below.

The matrix on the right is made up of 25 columns, each of which represent a single button

being pressed on the Lights Out board. Each column of the matrix on the left represents the

toggle vector resulting from the button presses of the corresponding column on the right-

hand matrix. This shows us that the result of each button press is independent from all

other button presses. Therefore, no button needs be pressed more than once in order to

complete the game.





















































































1100010000000000000000000

1110001000000000000000000

0111000100000000000000000

0011100010000000000000000

0001100001000000000000000

1000011000100000000000000

0100011100010000000000000

0010001110001000000000000

0001000111000100000000000

0000100011000010000000000

0000010000110001000000000

0000001000111000100000000

0000000100011100010000000

0000000010001110001000000

0000000001000110000100000

0000000000100001100010000

0000000000010001110001000

0000000000001000111000100

0000000000000100011100010

0000000000000010001100001

0000000000000001000011000

0000000000000000100011100

0000000000000000010001110

0000000000000000001000111

0000000000000000000100011





















































































1000000000000000000000000

0100000000000000000000000

0010000000000000000000000

0001000000000000000000000

0000100000000000000000000

0000010000000000000000000

0000001000000000000000000

0000000100000000000000000

0000000010000000000000000

0000000001000000000000000

0000000000100000000000000

0000000000010000000000000

0000000000001000000000000

0000000000000100000000000

0000000000000010000000000

0000000000000001000000000

0000000000000000100000000

0000000000000000010000000

0000000000000000001000000

0000000000000000000100000

0000000000000000000010000

0000000000000000000001000

0000000000000000000000100

0000000000000000000000010

0000000000000000000000001

As it has been shown that we can use linear algebra to represent certain aspects of the

Lights Out game we can extend that further. We can use the equation 𝑟 = 𝑝⃗ + 𝐴𝑥⃗ to

represent a game of Lights Out. 𝑟 is the end vector, or the desired result. In the case of the

Lights Out game this is always a vector of all zeroes. 𝑝⃗ is the starting vector, or the initial

configuration on the Lights Out board. A represents the 25x25 matrix whose columns

Page | 19

represent the result of each button press. 𝑥⃗ represents the button pattern required to get

from 𝑝⃗ to 𝑟.

By rearranging this equation, it can be written as 𝐴𝑥⃗ = 𝑟 − 𝑝 = 𝑏⃗⃗ . 𝑏⃗⃗ is the difference

between the starting and ending configurations. The desired ending configuration (𝑟) is a

vector of all zeroes, therefore 𝑏⃗⃗ = −𝑝⃗ . As this problem is a binary arithmetic problem, if

you add a matrix to itself the result is a matrix of all zeroes. For this reason, −𝑝⃗ and 𝑝 are

the same (𝑝⃗ − 𝑝 = 0 and 𝑝 + 𝑝⃗ = 0). This is because if you apply a button pattern twice it

is the same as not applying it at all. Therefore 𝑏⃗⃗ = 𝑝⃗ which means 𝑏⃗⃗ is represents the initial

configuration of the Lights Out board. By finding the inverse of A (A-1) a solution to the game

can be found by multiplying 𝑏⃗⃗ by A-1. The reason this works is because A-1 shows us the

button pattern to turn off each of the first 23 lights individually. When we multiply A-1 by

the initial configuration we are essentially finding the button patterns to turn off each light

in the initial configuration and performing addition in modulo 2 (or the XOR operation) on

those patterns.

Unfortunately, when the Gaussian elimination is performed on the matrix A it is found that

the matrix cannot be inverted. However, by performing a Gauss-Jordan elimination on the

matrix alongside the 25x25 identity matrix we get the following result:

Page | 20





















































































0000000000000000000000000

0000000000000000000000000

1110000000000000000000000

0101000000000000000000000

1000100000000000000000000

1100010000000000000000000

0000001000000000000000000

1100000100000000000000000

0000000010000000000000000

1100000001000000000000000

0100000000100000000000000

0100000000010000000000000

0000000000001000000000000

0100000000000100000000000

0100000000000010000000000

1100000000000001000000000

0000000000000000100000000

1100000000000000010000000

0000000000000000001000000

1100000000000000000100000

1000000000000000000010000

0100000000000000000001000

1100000000000000000000100

0100000000000000000000010

1000000000000000000000001





















































































1010110101000001010110101

0111010101110111010101110

0001011011000101110001000

0011100000001110101011100

0001110101101100010011000

0010110101000001010110101

0010001110110010100100110

0000111011001011011010100

0010001110100111001001100

0010110101100010111000100

0000101011110011110010011

0000001000111000101000111

0001100100011011000110110

0011100010000000000000000

0001001111101001100010000

0010010110101010001100001

0011001001110010111000100

0010110101100000110100101

0001000111010001101101010

0000011000001001011010100

0001110100101010000110110

0011100010000000001000111

0001011111011000110111101

0000001000111000001011011

0000010000110001010001110

The result of the Gauss-Jordan elimination is a pseudo-inverse matrix which can be seen on

the left. An identity for a 23x23 matrix can be seen within the 25x25 matrix. This shows us

that the matrix has a rank of 23. The rank of an m x n matrix can be found by first finding

the row rank and the column rank for the matrix. Whichever rank is the lowest of these two

is the rank of the matrix. The row rank is the maximum number of linearly independent

rows in the matrix while, the column rank is the maximum number of linearly independent

columns in the matrix. In the case of the above matrix the row rank is 23 while the column

rank is 25. Therefore the rank of the matrix is 23.

In the context of the Lights Out game, this means that we can turn any of the first 23 lights

on or off by pressing the corresponding button pattern from the matrix on the right. It also

means that these 23 buttons can be used to complete the Lights Out game, regardless of

the state of the last 2. Therefore, if we reduce the initial configuration to a vector of length

23 (𝑏𝑟
⃗⃗ ⃗⃗) and reduce the matrix A to a 23x23 matrix (Ar), a solution to the puzzle (𝑥𝑟⃗⃗⃗⃗⃗) can be

Page | 21

found by multiplying the initial configuration 𝑏𝑟
⃗⃗ ⃗⃗ by Ar

-1. 𝑥𝑟⃗⃗⃗⃗⃗ can then be extended back to a

vector of length 25 by appending two zeroes to it.

As there are only 23 buttons required to solve the puzzle, there are 223 solvable

configurations. The total number of possible configurations is 225. This means that for a

random initial configuration there is a 1 in 4 chance of it being solvable.

2.3.2 Solving the Puzzle with the Optimal Solution

As well as showing how to find a solution to the Lights Out Game, the matrix also provides

other useful information. It can be seen that the two bottom lines of the matrix are entirely

0. This means that if the corresponding button patterns from the matrix on the right are

pressed, the board would be in the same configuration as before the button pattern was

started. These button patterns are known as the quiet patterns. They are:

(0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0)

(1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1)

There is a third quiet pattern which is calculated by combining the original two quiet

patterns using the XOR operation, or addition in modulo 2.

(1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1)

The reason this is also a quiet pattern is because if you apply the original two quiet patterns

to a given initial configuration the result on the board will be the same as the initial

configuration. Applying both of these quiet patterns is the same as applying the

combination of the two patterns which gives us our third quiet pattern.

Page | 22

These quiet patterns are shown in figures 2.6-2.8 below as they would be shown on a Lights

Out board.

Figure 2.6 Figure 2.7 Figure 2.8

By applying each of these quiet patterns to the pattern 𝑥⃗ calculated previously, four

patterns that solve the Lights Out game can be obtained. Of these four patterns, the one

that requires the least number of moves (i.e. has the least number of 1s in the vector) is the

solution to the original configuration with the least number of moves.

These quiet patterns can also be used to test whether an initial configuration is solvable. In

a symmetric game a light pattern is solvable if, and only if, the number of lights in common

with each quiet button pattern is even. This is because each button will affect an even

number of lights in a quiet pattern. Therefore, an even number of number of lights must be

switched on in each quiet pattern for an initial configuration to be solvable.

The quiet patterns can also show the highest number of moves possible for an optimised

solution. This is done by representing the quiet patterns as shown in the figure 2.9.

Page | 23

c b a b c

a d a d a

b b d b b

a d a d a

c b a b c

 Figure 2.9

The three quiet patterns are given by squares a and b, a and c, and b and c. The squares

marked with d are not part of any quiet pattern. As it is known that no button need be

pressed twice in order to solve a given configuration, wit can be said that the number of

moves required to solve a given configuration can be represented as:

𝐴 + 𝐵 + 𝐶 + 𝐷

A, B, C, and D represent the number of buttons pressed of the sets a, b, c, and d respectively.

The ranges for these variables are therefore:

0 ≤ 𝐴, 𝐵 ≤ 8

0 ≤ 𝐶 ≤ 4

0 ≤ 𝐷 ≤ 5

By applying the quiet pattern made up of a and b, and assuming that this provides an

optimal solution, the equation can now be written as:

(8 − 𝐴) + (8 − 𝐵) + 𝐶 + 𝐷

As it has been assumed that this is the optimal solution, the following statement can be

made:

Page | 24

(8 − 𝐴) + (8 − 𝐵) ≥ 𝐴 + 𝐵

𝐴 + 𝐵 ≤ 8

By repeating this process for the other two quiet patterns the following two statements can

also be made:

𝐴 + 𝐶 ≤ 6

𝐵 + 𝐶 ≤ 6

By maximising the original equation, the variables A,B, and C are 4, 4 and 2 respectively. As

D is not part pf a quiet pattern in the case of maximising the equation it is assumed that all

the buttons are pressed making 𝐷 = 5. This means that the result of the equation when all

the variables are maximised is 15. Therefore, the maximum amount of moves an optimised

solution can require is 15.

2.3.3 Working Example

In order to best illustrate the process of using the 𝐴𝑥⃗ = 𝑏⃗⃗ function to find the solution to

a Lights Out configuration, a working example will be outlined from beginning to end. Take

the following initial configuration shown in figure 2.10.

 Figure 2.10

Page | 25

This can be represented as a matrix where 1 represents a light that is lit and 0 represents a

light that is not:























10000

10101

10001

10101

00001

This configuration is represented as the matrix 𝑏⃗⃗ in the equation and is therefore converted

into a vector. This vector along with the inverse of matrix A calculated previously are

reduced down to a vector of length 23(𝑏𝑟
⃗⃗ ⃗⃗) and a 23x23 (A-1

r) matrix respectively. They are

the multiplied together to find the reduced solution















































































01011011000101110001000

11100000001110101011100

01110101101100010011000

10110101000001010110101

10001110110010100100110

00111011001011011010100

10001110100111001001100

10110101100010111000100

00101011110011110010011

00001000111000101000111

01100100011011000110110

11100010000000000000000

01001111101001100010000

10010110101010001100001

11001001110010111000100

10110101100000110100101

01000111010001101101010

00011000001001011010100

01110100101010000110110

11100010000000001000111

01011111011000110111101

00001000111000001011011

00010000110001010001110















































































0

0

0

1

0

1

0

1

1

0

0

0

1

1

0

1

0

1

0

0

0

0

1

Page | 26

The resulting vector when the above matrix and vector are multiplied is:

(0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0)

After appending two zeroes to this vector it can be converted back to a 5x5 matrix























00011

10100

00000

00101

11000

This provides us with one of the possible solutions to the game. In order to find the solution

that requires the least number of moves, the above solution is combined with each of the

quiet patterns by means of the XOR operation. This is done because we know the above

button pattern will turn all the lights of the initial configuration off and we know that

applying a quiet pattern will not affect the configuration of the board in any way. Therefore,

a combination of the two will result in all the lights of the initial configuration being turned

off. By combining the two button patterns for each of the quiet patterns, it is possible to

find a solution that requires less moves then the above matrix. When we carry out this

process we get the following solutions:























01101

00001

11011

10000

10110























10110

00001

00000

10000

01101























11000

10100

11011

00100

00011

Comparing these four button patterns and by counting the number of moves (number of

1s) required to complete the game, it can be seen that the original matrix and the central

Page | 27

matrix above both only require 8 moves to solve the puzzle. Either of these button patterns

can be outputted as a solution to the game.

By converting these matrices into button patterns, the following two patterns (figures 2.11

and 2.12) are found to be the solutions with the least number of moves.

Figure 2.11 Figure 2.12

3 Method

A Haskell console application was created in order to show that Functional Programming is

a good tool for solving these types of Linear Algebra problems. In order to do this the goal

of the program was to solve Lights Out, taking in any configuration, checking whether or

not it is solvable, and if it was, returning the solution that requires the least number of

moves to complete the game. The process for carrying this out can be split up into four

parts:

1. Performing Gauss-Jordan

2. Checking for Solvability

3. Calculating the Solution

4. Calculating the Optimal Solution

Page | 28

3.1 Performing Gauss-Jordan
The pseudo inverse matrix is calculated by performing a Gauss-Jordan elimination on the

Lights Out matrix. This can be broken up into two sections, converting the matrix to row

echelon form and converting the matrix to reduced row echelon form. A number of

algorithms for carrying this out were attempted. One of these algorithms involved

converting the matrix to row echelon form using a rowEchelon function and then rotating

the outputted matrix 180 degrees and calling the rowEchelon function a second time with

the new matrix as the input. The outputted matrix would then be in reduced row echelon

form. This method was successful at finding the inverse of a matrix but was unsuccessful at

finding the pseudo inverse of matrix.

Therefore a new method for performing Gauss-Jordan was devised.

When executing this function the Lights Out Matrix and the 25x25 identity matrix are

inputted as a tuple in the first (left-hand matrix) and second (right-hand matrix) positions

respectively. The outputted tuple should then have the identity (or pseudo identity) as the

first item of the tuple, and the inverted matrix as the second position of the tuple.

In order to convert the matrix to row echelon form the following code snippet was

implemented:

rowEchelon :: (Matrix, Matrix) -> (Matrix, Matrix)

rowEchelon ([], _) = ([], [])

rowEchelon (_, []) = ([], [])

rowEchelon (m1, m2) = ([head newM1] ++ newM1Tail, [head newM2] ++ newM2Tail)

 where (newM1Tail, newM2Tail) = rowEchelon (removeFirstColumn $ tail newM1, tail

newM2)

 (newM1, newM2) = xorWithFirstRow (rowStartWithOne (m1, m2))

Page | 29

This function is a recursive function. It first checks to see if the first row of the left-hand

matrix begins with a one. If this is not the case, then that row is moved to the bottom of

the matrix and the next row is checked. This is repeated until a row beginning with a one is

found. This row is then added (in modulo 2) to all the other rows that also begin with one.

All operations that are performed on the left-hand matrix are performed on the

corresponding rows of the right-hand matrix.

The function is then recursively called, with the input being a tuple of the left-hand matrix

with the first row and first column removed, and the right-hand matrix with the first row

removed. The result of this function call is added to the first rows of both matrices

calculated in this instance of the function call. The recursive call is ended once all the rows

have been calculated.

As this use case requires a pseudo inverted matrix, the end points that would normally be

reached will not be reached. The desired result has two all zero rows. for this reason, the

function that finds a row with a leading row and puts it at the top of the matrix, also ensures

that there is a row that starts with one present. If not, then the matrix is returned as is. This

ensures that the pseudo row echelon form can be calculated in the case of non-invertible

matrices.

In order to convert the matrix to reduced row echelon form the following code snippet was

implemented:

Page | 30

reducedRowEchelon :: (Matrix, Matrix) -> (Matrix, Matrix)

reducedRowEchelon ([], _) = ([], [])

reducedRowEchelon (_, []) = ([], [])

reducedRowEchelon (m1, m2) = if numAllZeroRowsEqualsNumColumns m1 == True || matrixIsEmpty

m1 then (m1, m2) else (addColumnToMatrixLeft m1Column1 m1Part3, m2Part3)

 where (m1Part3, m2Part3) = reducedRowEchelon (m1LessColumn1, m2Rejoin)

 m1Column1 = getFirstColumn m1Part2

 m1LessColumn1 = removeFirstColumn m1Rejoin

 m1Rejoin = m1Part2 ++ m1Part1Bottom

 m2Rejoin = m2Part2 ++ m2Part1Bottom

 (m1Part2, m2Part2) = xorWithLastRow (m1Part1Top, m2Part1Top)

 (m1Part1Top, m2Part1Top) = getRowUpToLastLeadingOne (m1, m2)

 (m1Part1Bottom, m2Part1Bottom) = getRowAfterLastLeadingOne (m1, m2)

This function is also a recursive function, and takes in a tuple as an input where the first

item is the left-hand matrix and the second is the right-hand matrix. This function finds the

last row that begins with a one in the left-hand matrix and adds it to all the other rows that

also begin with a one. Any operation on left-hand matrix is performed on the corresponding

rows of the right-hand matrix. The function then recursively calls itself with the input being

the left-hand matrix with the first column removed, and the newly calculated right-hand

matrix as the elements of the tuple. The result of the function is a tuple of the left-hand

matrix returned from the recursive call added to the previously removed first column, and

the resulting right-hand matrix from the recursive call.

The end point of the recursive call occurs when the left-hand matrix is empty. However, as

this use case requires the calculation of pseudo inverse matrices, there is another check

done in order to ensure the desired result. When the function is called, it initially checks if

the number rows in the left-hand matrix that are entirely zeros is the same as the number

Page | 31

of columns remaining. If this is the case, the inputted tuple is outputted as the result of the

function. This acts as an end point for the cases in which the matrix is not invertible.

Now that both the row echelon form and the reduced echelon form functions have been

implemented, the matrix inverse function can be implemented. The following code snippet

shows how this was carried out:

The first step is to get the matrix in row echelon form using the previously implemented

rowEchelon function. Once this is done zeroes must be added to the left-hand matrix before

the first leading one as they were removed in the process of calculating the row echelon

form. The reducedRowEchelon function can then be called. The outputted right-hand

matrix should be the inverted (pseudo inverted) matrix.

This is enough for matrices that are fully invertible, however the use case for solving Lights

Out requires a few more steps. The calculated pseudo inverse at this point does not have

two columns of all zeroes to the right of the 23x23 matrix. In order to rectify this, without

affecting the pseudo identity in the left-hand matrix, the bottom row is added to all rows

matrixInverse :: (Matrix, Matrix) -> (Matrix, Matrix)

matrixInverse ([], _) = ([], [])

matrixInverse (_, []) = ([], [])

matrixInverse (m1, m2) = (m1Step3, m2Step5)

 where m2Step5 = xorMatrixRowsWithVectorsWithSecondLastOne (last (init m2Step4)) (init

(init m2Step4)) ++ [last (init m2Step4)] ++ [last m2Step4]

 m2Step4 = xorMatrixRowsWithVectorsWithLastOne (last m2Step3) (init m2Step3) ++

[last m2Step3]

 (m1Step3, m2Step3) = reducedRowEchelon (m1Step2, m2Step1)

 m1Step2 = addZeroesToMatrix m1Step1 (length m1)

 (m1Step1, m2Step1) = rowEchelon (m1, m2)

Page | 32

ending in a one. The second to last row is then added to all rows whose second to last

number is a one. This returns the desired matrix.

3.2 Checking for Solvability
Now that the pseudo inverse of the Lights Out matrix has been calculated, the quiet

patterns can be obtained. These can then be used to test if a given configuration is solvable

or not.

The below code snippet shows the function used to acquire the two quiet patterns from

the inverted Lights Out matrix:

getQuietPatterns :: (Vector, Vector)

getQuietPatterns = (last (init aInverse), last aInverse)

 where (pseudoIdentity, aInverse) = matrixInverse (lightsOutMatrix, identity 25)

This function calls the matrixInverse function to calculate the inverse matrix. It takes the

two bottom rows of the right-hand matrix and returns them both in a tuple.

This function is used in the below code snippet to detect if a given configuration is solvable:

solvable :: Vector -> Bool

solvable initialConfig = if dot1 == 0 && dot2 == 0 then True else False

 where dot1 = dotProduct initialConfig qp1

 dot2 = dotProduct initialConfig qp2

 (qp1, qp2) = getQuietPatterns

Dot product is performed twice, once for each quiet pattern. The dot product is carried out

on the initial configuration and one of the quiet patterns. If the result of both of these

operations is zero, then the configuration is solvable.

Page | 33

3.3 Calculating the Solution
In order to calculate the solution, the following code snippet is used:

solve :: Matrix -> Maybe Matrix

solve m = if solvable v == False

 then Nothing

 else Just (vectorToMatrix $ getLeastMovesSolution $ solutionsAndMoveCount $

createSolutionsList $ appendTwoZeroes $ multiplyByVector (reduceMatrixTo23 aInverse)

(reduceVectorTo23 v))

 where (pseudoIdentity, aInverse) = matrixInverse (lightsOutMatrix, identity 25)

 v = matrixToVector m

The function first converts the matrix to a vector and tests whether or not it is solvable. If

it is not solvable, the function returns ‘Nothing’. If it is solvable the vector is reduced to a

vector of length 23 and multiplied with the inverse matrix function calculated by the matrix

inverse function. This matrix is reduced from a 25x25 matrix to a 23x23. The result of this

multiplication then has two zeros appended to it. This gives a solution to the inputted

configuration in vector form. The function then continues to find the optimal solution which

is described below. The result is then converted back to a matrix and returned.

3.4 Calculating the Optimal Solution
Now that a solution has been found, the quiet patterns can be used to find the optimal

solution. Looking at the code snippet in the previous section, a number of functions were

used to find the optimal solution. These functions are:

• createSolutionsList

• solutionsAndMoveCount

• getLeastMovesSolution

The code snippet below shows the implementation of the createSolutionsList function:

Page | 34

createSolutionsList :: Vector -> [Vector]

createSolutionsList v = [v, (v `xorVectors` qp1), (v `xorVectors` qp2), (v `xorVectors`

qp3)]

 where (qp1, qp2) = getQuietPatterns

 qp3 = qp1 `xorVectors` qp2

This function creates a list of four solutions. This is done by taking the previously calculated

solution as an input, and adding each of the three quiet patterns to it. These three patterns

are then added to a list along with the original solution and returned.

The code snippet below shows the implementation of the solutionsAndMoveCount

function:

solutionsAndMoveCount :: [Vector] -> [(Vector, Int)]

solutionsAndMoveCount [] = []

solutionsAndMoveCount (v:vs) = (v, countMoves v) : solutionsAndMoveCount vs

This function takes in a list of solutions and calculates the moves required to solve each of

them. This is done by calling the countMoves function which counts the number of ones in

each solution vector. A list of tuples is then created where the first element is a solution

and the second element is the number of moves required to complete that solution. This

list is then returned as the result of the function.

The code snippet below shows the implementation of the getLeastMovesSolution function:

getLeastMovesSolution :: [(Vector, Int)] -> Vector

getLeastMovesSolution list = fst $ head $ sortBy (compare `on` snd) list

This function takes in a list the previously calculated list of tuples. It then returns the

solution that has the least number of moves associated with it. If the least number of moves

is associated with more than one solution, the first solution in the list with that number of

moves will be returned.

Page | 35

4 Result

Using the functions described in the method section, the program is now able to solve Lights

Out. To show this we take the solvable configuration shown in figure 4.1.

 Figure 4.1

This configuration is passed as an input to the ‘solve’ function as shown below

The result if this operation is

This equates to using the button pattern shown in figure 4.2 to solve the initial

configuration.

 Figure 4.2

Page | 36

This pattern requires 8 moves to solve the puzzle. If the results of each of the functions

described in the method section is investigated for this use case, it can be seen how this

result was reached.

4.1 Matrix Inverse
When finding solutions to the classic 5x5 Lights Out game, the solution to this function is

always the same. This is because the same Lights Out matrix is used as the input.

The out put of this function is shown below:

This output is the two matrices expected from this equation. The reduced row echelon

matrix in the first element of the tuple and the inverted matrix in the second element of

the tuple. The inverted matrix can be reduced to a 23x23 matrix in order to solve Lights

Out.

4.2 Checking for Solvability
In order to check if this configuration is solvable, it is inputted into the ‘solvable’ function

as shown:

In this case it returns ‘True’, but in the case of an unsolvable function it would return false.

Page | 37

4.3 Calculating the Optimal Solution
In order to show that the solution returned by the ‘solve’ function is indeed the most

optimal, it can be passed into the ‘createSolutionsList’ function in order to see all 4 potential

optimal solutions. The solution is passed in as a vector as shown:

This returns the following output:

These equate to the following four solutions shown in figures 4.3-4.6.

Figure 4.3 Figure 4.4

Page | 38

Figure 4.5 Figure 4.6

When these four button patterns are all applied to the initial configuration they all solve

the puzzle. When these four solutions are compared it can be seen that the solution

originally returned by the ‘solve’ function is indeed the most optimal solution. This solution

only requires 8 moves to solve the puzzle whereas the other three require 16, 12 and 12

moves respectively.

4.4 Unsolvable Configurations
In the case of an unsolvable configuration (such as the one shown in figure 4.7), the

‘solvable’ function will return false and the ‘solve’ function will return ‘Nothing’

 Figure 4.7

The outputs of the ‘solvable’ and ‘solve’ function for the above configuration are:

Page | 39

5 Discussion

From the results drawn from this research, there are a few things to discuss. This discussion

encompasses both the advantages that functional programming brings to solving linear

algebra problems, and where to next take this research.

5.1 Advantages of Functional Programming
During the implementation of the Lights Out solver application a number of advantages

brought by using a functional programming language was noted. Most of these advantages

are as a result of the characteristics of functional programming discussed in Chapter 2.

Much like functional programming functions, linear algebra functions (and most

mathematic functions) are pure functions. The same input will always result in the same

output. This shows the benefits of functional programming for solving linear algebra

problems as they both have this characteristic. A similar point can be made about the

functional programming having referential transparency. At any point in a linear algebra

equation or a functional programming function, a variable can be replaced by its actual

value without affecting the final result.

Another advantage that functional programming provides is the manner in which it handles

lists. In this project, vectors were represented by a list of integers, and matrices were

represented by a list of vectors (or a list of lists of integers). This method of representing

vectors and matrices allowed for the use of recursion to handle the end points of different

vector and matrix operations. One example of using Haskell’s list methods in this way would

Page | 40

be when the zipWith function is used to add each element of two vectors together in the

xorVectors function (Appendix A1.1). Another example that uses recursion would be the

checkForAllLeadingZeroes function (Appendix A1.2). This function checks the first vector of

a matrix for a leading zero and then calls itself with the rest of the matrix as an input. The

recursive calling ends once the input matrix is empty, with ‘True’ as the return value. The

AND operation is performed on all the returned values of the function, giving the desired

result of ‘True’ if the matrix contains vectors that all start with zero and ‘False’ otherwise.

One of the limitations of this, however, is that on some occasions the entire list will need

to be iterated through even if the desired case is found on the first iteration. If this were

the case in an imperative language, the result would be returned as soon as the desired

case was found.

The use of higher order functions also provides an advantage to using functional

programming when solving problems in linear algebra. This allows for the use of mapping

functions which help to implement elegant solutions to problems. One example of this is

the removeFirstColumn function (Appendix A1.3) which takes in a matrix and returns the

matrix with the first column removed. This is done by mapping the tail function onto each

row of the matrix. The ability to pass the tail function as an argument of a function provides

a very elegant implementation of the function.

Possibly one of the biggest advantages functional programming provides is lazy evaluation.

The use of sortBy in the getLeastMovesSolution function (Addressed in chapter 3) is a good

example of this in this project. As only the list is sorted based on the first element, only the

Page | 41

elements that will appear before the first element of the function need to be evaluated,

thus reducing the overall computation time of the program.

It can be seen from the above example that functional programming offers many

advantages to solving linear algebra problems that traditional, imperative languages do not.

Although these languages do offer their own advantages, it is fair to say that there is a case

to be made for the use of functional programming.

5.2 Future Works
If this project were to be taken further there are a number of next steps that could be taken.

One of the first things to do would be to refactor the code for efficiency. Due to the time

limits associated with the current research, the code may not have been implemented in

order to produce the best performance. Each function can be looked at to ensure that the

algorithm is being carried out in the least amount of operations. As well as that, the

memoization library[20] could be used in order to save the result of some repeated

functions. For example, the matrixInverse function is called a number of times with the

same inputs. This result could be cached using this library in order to reduce overall

computation time. Some functions are implemented specifically to solve the classic Lights

Out, such as the reduceMatrixTo23 function (Appendix A1.4). These functions could be

generalised to work for other use cases, in this case changing the function reduceMatrix

and adding a parameter that dictates to what size it is reduced to.

Another valuable addition to this project would be a front end. An application much like

that found on Jaap’s puzzle page[3] would allow for a better demonstration of the

application built during this project. Jaap’s application is a Lights Out game built using

Page | 42

JavaScript. A similar application could be built using Haskell where the calculations for the

optimal solution can be made using the functions implemented in this project.

As seen in the background research underpinning this project, there are a number of widely

used operations in the field of Linear Algebra, many of which are not used in the solving of

Lights Out. Two examples are would be cross product and determinant. A more generalised

library can be built that also implements these functions as well as those covered in this

project. Storage mapping functionality could also be added to this library in order to make

it easier to retrieve or edit individual values in a vector or matrix. It should also be noted

that the functionality required for solving Lights Out requires operations to be carried out

in modulo 2. This means that for a more generalised library the functions implemented in

this project will need to be refactored to handle modulo 10 operations. The code could also

be refactored to use better naming convention as well has being well documented in order

for the library to be more user friendly for anyone who wishes to import it into their

projects.

The application built during this project could also be updated to include solutions to

different variations of Lights Out. There are a number of variations of Lights Out that are

addressed in Jaap’s page[3] as well as in David Joyner’s book[21]. These include a version

of the game that has three states instead of just on and off. Another version has the direct

diagonal neighbours of a button toggle when a button is pressed rather than direct vertical

and horizontal neighbours. As well as that, the board can be changed to be a different size

rather than the classic 5x5 board. In most of these cases, excluding the three state game,

the game is solved by changing the A matrix used in the 𝐴𝑥⃗ = 𝑏⃗⃗ equation. The new matrix

Page | 43

should math the rules of the new variation, for each button the corresponding column of

that matrix should be the toggle vector for that button. This project had planned on

implementing functionality to solve a variation of Lights Out whereby the board was

boundless. This means that if a button on the left most side of the board is pressed, the

button on the right most side on the same column is toggled as shown in figures 5.1 and

5.2 below.

Figure 5.1 Figure 5.2

Unfortunately given the time constraints, this functionality was not implemented.

However, some first steps were made in doing so. The matrixInverse function was executed

using the following matrix.

Page | 44





















































































1100110000000000000010000

1110001000000000000001000

0111000100000000000000100

0011100010000000000000010

1001100001000000000000001

1000011001100000000000000

0100011100010000000000000

0010001110001000000000000

0001000111000100000000000

0000110011000010000000000

0000010000110011000000000

0000001000111000100000000

0000000100011100010000000

0000000010001110001000000

0000000001100110000100000

0000000000100001100110000

0000000000010001110001000

0000000000001000111000100

0000000000000100011100010

0000000000000011001100001

1000000000000001000011001

0100000000000000100011100

0010000000000000010001110

0001000000000000001000111

0000100000000000000110011

Each column of this matrix is the vector representation of the lights that will toggle as a

result of each button press, just as in the classic version of Lights Out. The result of the

function was promising as it had the desired number if all zero rows. Further research is

required in order to fully solve this variation of Lights Out. This will involve ensuring the

resulting pseudo inverse is indeed correct, identifying the quiet patterns, establishing a

solvability check for a given configuration, solving a configuration and finding the optimal

solution for that configuration.

6 Conclusion

The course of this project appears to have substantiated that functional programming

certainly has its place when it comes to solving linear algebra problems. This project has

shown that functional programming can be used to solve the Lights Out puzzle. In doing

Page | 45

this, the program needed to be able to carry out a Gauss-Jordan operation in order to invert

a matrix. Not only that, but the program needed to handle the case where a matrix was not

invertible, and a pseudo inverse needed to be found. The research carried out by the author

has shown that this was indeed within the capabilities of a function programming language,

more specifically Haskell. In doing this, it has also been shown that functional programming

is capable of solving linear algebra problems and can provide advantages over imperative

languages such as C or Java. It could even be a good platform for building mathematical

software such as MATLAB, Mathematica and SageMath, which makes functional

programming a viable area for further exploration.

Page | 46

7 Bibliography

[1] J. Mulholland. (2016). Math 302: Lights Out. Available:
http://www.sfu.ca/~jtmulhol/math302/puzzles-lo.html [Accessed: 09 Nov 2017]

[2] J. Mulholland, "Permutation Puzzles: A Mathematical Perspective," Simon Fraser
University, 2016.

[3] J. Scherphuis. (2014). Jaap's Puzzle Page: Lights Out. Available:
https://www.jaapsch.net/puzzles/lights.htm [Accessed: 06 May 3018]

[4] M. Anderson and T. Feil, "Turning lights out with linear algebra," Mathematics
Magazine, vol. 71, no. 4, pp. 300-303, 1998.

[5] T. Ball, "Paths between imperative and functional programming," SIGPLAN Notices,
vol. 34, no. 2, pp. 21-5, 02/ 1999.

[6] J. Hughes, "The Design of a Pretty-printing Library," presented at the Advanced
Functional Programming, First International Spring School on Advanced Functional
Programming Techniques-Tutorial Text, 1995.

[7] S. Thompson, "Formulating Haskell [functional programming language]," in
Proceedings of the 1992 Glasgow Workshop on Functional Programming, 6-8 July
1992, Berlin, Germany, 1993, pp. 258-68: Springer-Verlag.

[8] K. Claessen and J. Hughes, "QuickCheck: a lightweight tool for random testing of
Haskell programs," presented at the Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming, 2000.

[9] R. Page, "Functional programming, and where you can put it," SIGPLAN Notices, vol.
36, no. 9, pp. 19-24, 2001.

[10] H. Doets, "The Haskell road to logic, maths and programming," Texts in Computing,
2012.

[11] S. Dolan, "Fun with semirings: A functional pearl on the abuse of linear algebra," in
2013 18th ACM SIGPLAN International Conference on Functional Programming, ICFP
2013, September 25, 2013 - September 27, 2013, Boston, MA, United states, 2013,
pp. 101-109: Association for Computing Machinery.

[12] A. S. Eriksson and P. Jansson, "An agda formalisation of the transitive closure of block
matrices (extended abstract)," presented at the Proceedings of the 1st International
Workshop on Type-Driven Development, Nara, Japan, 2016.

[13] F. Eaton, "Statically typed linear algebra in haskell," in Haskell'06 - ACM SIGPLAN 2006
Haskell Workshop, September 17, 2006 - September 17, 2006, Protland, OR, United
states, 2006, vol. 2006, pp. 120-121: Association for Computing Machinery.

[14] A. Ruiz. (2018). hmatrix-gsl: Numerical computation. Available:
https://hackage.haskell.org/package/hmatrix-gsl [Accessed: 04 May 2018]

[15] O. Kiselyov and C.-c. Shan, "Functional pearl: implicit configurations--or, type classes
reflect the values of types," in Proceedings of the 2004 ACM SIGPLAN workshop on
Haskell, 2004, pp. 33-44: ACM.

[16] A. Ghitza and M. Westerholt-Raum, "HLinear: Exact Dense Linear Algebra in Haskell
[arXiv]," arXiv, p. 12 pp., 05/09 2016.

http://www.sfu.ca/~jtmulhol/math302/puzzles-lo.html
https://www.jaapsch.net/puzzles/lights.htm
https://hackage.haskell.org/package/hmatrix-gsl

Page | 47

[17] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, "Parallel tiled QR factorization for
multicore architectures," Concurr. Comput. : Pract. Exper., vol. 20, no. 13, pp. 1573-
1590, 2008.

[18] G. Quintana-Ort et al., "Programming matrix algorithms-by-blocks for thread-level
parallelism," ACM Trans. Math. Softw., vol. 36, no. 3, pp. 1-26, 2009.

[19] E. S. Quintana, G. Quintana, X. Sun, and R. v. Geijn, "A Note On Parallel Matrix
Inversion," SIAM J. Sci. Comput., vol. 22, no. 5, pp. 1762-1771, 2000.

[20] A. Bromage. (2014). Memoization. Available: https://wiki.haskell.org/Memoization
[Accessed: 08 May 2018]

[21] D. Joyner, Adventures in group theory: Rubik's Cube, Merlin's machine, and other
mathematical toys. Springer, 2008.

https://wiki.haskell.org/Memoization

Page | 48

A1. Appendix

Appendix A1.1
xorVectors :: Vector -> Vector -> Vector

xorVectors v1 v2 = zipWith xor v1 v2

Appendix A1.2
checkForAllLeadingZeroes :: Matrix -> Bool

checkForAllLeadingZeroes [] = True

checkForAllLeadingZeroes (m:ms) = hasLeadingZero && checkForAllLeadingZeroes ms

 where hasLeadingZero = if head m == 0 then True else False

Appendix A1.3
removeFirstColumn :: Matrix-> Matrix

removeFirstColumn [] = []

removeFirstColumn m = map tail m

Appendix A1.4
reduceMatrixTo23 :: Matrix -> Matrix

reduceMatrixTo23 m = map reduceVectorTo23 newM

 where newM = take 23 m

