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Summary 

This research paper investigates whether or not functional programming would be a good 

tool for solving linear algebra problems. This is carried out through building an application 

in the functional programming language Haskell to solve Lights Out. The paper first 

identifies key aspects of functional programming that may be of benefit when solving linear 

algebra problems. Past research is discussed which shows how functional programming has 

been used to benefit other areas of mathematics. Some mathematical software are also 

identified which are typically used for solving these problems, along with linear algebra 

functions that should be addressed in any proposed linear algebra toolkit. The Lights Out 

game is discussed in order to establish its suitability as a linear algebra problem. The 

equation for solving Lights Out is proven to be a matrix product, thus solving it using 

functional programming will demonstrate its ability to solve linear algebra problems. The 

main challenge is identified as executing a matrix inverse on a non-invertible matrix to 

produce a pseudo inverse matrix. 

An algorithm for executing the matrix inverse operation is designed and implemented in 

Haskell which returns the desired result and allows for the solving of Lights Out. This paper 

identifies the key characteristics of functional programming that benefit the application for 

solving Lights Out and compares them to imperative languages. It is found that functional 

programming is able to not only invert a matrix but find a pseudo inverse for a non-

invertible matrix, that it is capable of solving linear algebra problems. However, some 



further research may be necessary in order to investigate a larger range of linear algebra 

problems to determine just how capable a tool functional programming is. 

  



Abstract 

Functional Programming: An Untapped Tool for Linear Algebra? – Diarmuid McDonnell 

This research proposes the idea that functional programming is a suitable tool for solving 

linear algebra problems. The Lights Out game is used to explore this idea. This paper 

shows how Lights Out is a non-trivial linear algebra problem suitable for testing the 

capabilities of functional programming as a tool for computing linear algebra functions. An 

application is built to solve Lights Out using the functional programming language Haskell. 

The results presented in this paper show that functional programming is well suited for 

solving linear algebra problems and could rival the use of imperative languages. Some 

future work is also proposed to improve upon the work carried during this research.
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1 Introduction 

This project investigates whether or not functional programming is a good tool for solving 

linear algebra problems. The electronic board game Lights Out will be used as a method of 

demonstrating this.  

 
            Figure 1.1 

Throughout this paper the characteristics of functional programming are outlined that 

could potentially make it a useful tool for anyone working on problems in linear algebra. As 

well as that, some past research is discussed that hints at functional programming being a 

capable tool solving linear algebra problems. 

The background of linear algebra is also discussed, with some examples of common linear 

algebra functions that a program to solve linear algebra problems would have to address. 

There has also been research carried out in the field of linear algebra with regards to 

improving the efficiency in computation when carrying out linear algebra operations. Some 

of this research is discussed as it shows the ever-evolving state of linear algebra in 

computing as well as the continued need for finding new and more efficient ways of 

carrying out linear algebra operations. The mathematical software that is typically used to 
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perform these linear algebra operations are identified and discussed, as well as the 

potential for these software to be built with a functional programming language in the back 

end. 

An overview of Lights Out is given. A lot of the information gathered for this research is 

taken from Jamie Mulholland’s web page[1] and lecture 24 of his module “Permutation 

Puzzles: A Mathematical Perspective”[2] as well as  Jaap Scherpuis’ puzzle page[3]. Both 

Mulholland and Scherpius heavily base their work on a paper by Anderson and Feil 

(1998)[4]. In this overview, the rules and objective of the game is outlined. The maths 

behind solving the puzzle is then discussed which demonstrates why Lights Out is a suitable 

tool for demonstrating that functional programming can solve linear algebra problems. This 

is done by showing how to get a solution for the puzzle and then optimising that solution 

to take the least number of moves. A working example is walked through in order to further 

explain the process of solving Lights Out and back up the theory discussed. 

With all the background to the project addressed, the method by which Lights Out is solved 

is outlined. This involves outlining the algorithms behind calculating the pseudo inverse of 

the Lights Out matrix, checking whether or not a given configuration is solvable, and 

calculating a solution for a given configuration. The method for calculating the optimal 

solution of a given configuration is also addressed. 

With the application built using the algorithms outlined in the method, the results of the 

algorithms are identified and discussed. The advantages of functional programming for 

solving linear algebra problems identified through the process of implementing the 
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application are compared to more typically used, imperative languages such as C and Java. 

Some future work for improving the application are suggested. 

2 Background 

This project can be broken up into three parts: 

1. Functional Programming 

2. Linear Algebra 

3. Lights Out 

In this section the current start of the art for these three areas will be discussed. The areas 

highlighted will be those that pertain to this project and help show why functional 

programming has the potential to be a good tool for solving linear algebra problems. 

2.1 Functional Programming 
There are a number of characteristics that make a programming language a functional 

programming language. Below are just some of those characteristics: 

Declarative: Functional programming languages are declarative, 

meaning that they describe what the program must do. An 

imperative programming language on the other hand would 

describe how a program would do something. 

Pure Functions: Functions in functional programming languages are pure 

functions. If a function is called with the same inputs, it will 

always produce the same output. This is due to the fact that 
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functions in functional programming languages have no side 

effects. 

Referential Transparency: Once defined, a variable in a functional programming 

language cannot be changed. This means that at any point, 

a variable can be replaced with its actual value without 

affecting the end result. 

Higher Order Functions: Functional programming languages make use of higher 

order functions. This means that a function can take another 

function as an input, return a function as an output, or both. 

Lazy Evaluation: Some functional programming language functions use lazy 

or non-strict evaluation. This means that a function is only 

executed once its result is required by another function. It 

also allows some functions to be partially outputted even if 

one of the values in the output cannot be evaluated. In this 

case the functions output will include everything up to the 

point of the failing evaluation. 

Recursion: Recursion is used in most programming languages but is 

much more prevalent in functional programming languages. 

This is due to the fact that it is the main technique used in 

iteration. This is done by defining a ‘base case’ that marks 

the end point of the iteration. 
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Other Characteristics Other defining characteristics of functional programming 

languages include the fact that there is no shared state, 

mutable data or side effects in these languages. 

There have been a number of arguments for why functional programming is beneficial in a 

wide variety of areas. This shows that functional programming can be useful for many 

different use cases and is worthy of being investigated for its use in solve linear algebra 

problems. One example of this is Ball (1999)[5] who argued that functional programming is 

very useful for avoiding inexecutable paths compared to imperative languages. More 

specifically, functional programming allows programmers to avoid destructive updates and 

unnecessary sequencing. 

Another supporter of functional programming, Hughes (1995)[6], argued that functional 

programming languages are very good at supporting software reuse. He wanted to 

demonstrate this by highlighting how higher order functions allow the body of a loop to be 

more easily implemented. This was carried out through a study of a pretty-printing library. 

This study showed that formal specifications and the use of the algebraic properties of 

higher order functions can be used to design and implement a library of common 

programming idioms in the application. 

There have even been some studies in the area of using functional programming for testing 

software. Thompson (1993)[7] explored this idea by using Haskell to try and prove 

functional programs correct. However, he found that some of the difficulties in this area 

outweighed any benefits gained. There has been further research in the area since 

however. Claessen and Hughes (2000)[8] discuss QuickCheck, a testing framework written 
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in Haskell for Haskell. This study discusses the fact that despite some pitfalls, the framework 

works successfully over a large range of use cases. 

There have also been a number of studies suggesting that functional programming is a 

valuable tool in the field of mathematics. Page (2001)[9] states that although functional 

programming still has some barriers it has yet to overcome (performance issues and 

programmers resistance to the use of non-standard languages), it is a very effective 

teaching tool. Page states that teaching the application of math logic and reasoning in the 

software development process draws benefits from the use of functional programming. As 

well as that, Doets (2012)[10] argues that Haskell is a marvellous demonstration tool for 

logic and maths. Doets also states that Haskell can be viewed as an elegant implementation 

of lambda calculus. These papers hint towards the idea that functional programming has its 

place in the field of mathematics and could potentially benefit linear algebra. 

This point is further strengthened by a number of studies which suggest that functional 

programming would indeed be a good tool for Linear Algebra. Dolan (2013)[11] defined a 

type-class for describing closed semerings in Haskell. In doing so, he also implemented a 

few functions for manipulating matrices which show functional programming’s ability to 

work on matrices. Eriksson and Jansson (2016)[12] further showed this by defining a block 

based matrix in the functional programming language Agda. They verify that algorithms can 

be implemented using the closure operation of a semi-ring by lifting algebraic structures to 

matrices. Both of these papers show previous use of functional programming for solving 

linear algebra problems. This suggests that the current research can indeed find that 

functional programming is a good tool for solving linear algebra problems. 
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There has even been research to suggest that functional programming can challenge the 

already established tools in the field of mathematics. Eaton (2006)[13] argues that because 

Matlab and other popular matrix languages are dynamically typed, type errors are only 

caught at runtime. Eaton states that by exposing object dimensions to the type system, a 

much wider range of common errors can be detected at compile time. Using Haskell, Eaton 

writes what he calls a “strongly typed linear algebra” prototype based on a Haskell library 

by Alberto Ruiz[14]. This is a Haskell library that provides a fully functional interface for 

linear algebra and other numerical algorithms. Eaton’s prototype is also uses techniques 

from Kiselyov and Shan (2004)[15], a paper that uses widely implemented language 

features such as the type-class system to solve configuration problems in Haskell. As well 

as Eaton, Ghitza and Westerholt-Raum (2016)[16] have compared Haskell to tools 

commonly used to solve linear algebra problems. They present an implementation of the 

PLE decomposition of matrices over division rings and discovered that a relevant number 

of cases performed faster than C-based implementations. 

Looking at all of this past research certainly shows that the use functional programming as 

a tool for solving problems in linear algebra should be researched further. The current 

research aims to do this and provide some insight into how it can be done. 

2.2 Linear Algebra 
There are a number of constantly occurring developments in the field of linear algebra 

regarding the use of computers for solving problem. Buttari, Langou, Kurzak and Dongarra 

(2008)[17] addressed the fact that as computing power grows, linear algebra algorithms 

have to  be reformatted. In this paper, they present a new algorithm for QR factorisation 
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(the decomposition of a matrix into a product of an orthogonal and an upper triangular 

matrix) to make use of this greater computing power. Another paper that shows the 

continuous updating of computing algorithms in linear algebra is Quintana-Ortí, Quintana-

Ortí, van de Geijn, van Zee and Chan (2009)[18]. This research highlights that continued 

performance improvements have come about due to growth in thread level parallelism. 

They argue that it is not viable to evolve legacy libraries for dense and banded linear 

algebra. This is because of the constraints imposed by the early design of the library. This 

means that in some cases an upgrade in linear algebra algorithms may require starting from 

scratch in order to get the best results in terms of performance. 

It can even be shown that common matrices such as matrix multiplication and matrix 

inversion can be updated in order to make them perform more efficiently. Quintana, 

Quintana, Sun and van de Geijn (2000)[19] show this by presenting a new one-sweep 

parallel algorithm for matrix inversion. A paper that puts forward a new algorithm for 

matrix multiplication is Gunnels, Henry, van de Geijn (2001). The aim of this paper was to 

employ maths to determine a locally optimal method for blocking matrices. The resulting 

algorithm, combined with a highly optimised inner-kernel, produces a higher performing 

matrix multiplication compared to that of algorithms using an automatically tuned kernels. 

A later paper, Goto and van de Geijn (2008), present the basic principles that underline the 

high performance of matrix multiplication. They present a simple but effective algorithm 

for executing matrix multiplication. When implemented over a large range of architecture, 

the algorithm met near-peak performance. These studies show that even the more 

common matrix operations can be optimised. The current study is looking at optimising 
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some of these linear algebra operations by use of functional programming and these 

studies show that it is a worthwhile endeavour. 

2.2.1 Common Linear Algebra Functions 

There are a number of common linear algebra functions. If a functional programme were 

to fully support linear algebra, it would need to be able to execute these functions on any 

viable input. Below are some of these equations, some of which will be addressed by the 

application produced by the current study. 

Dot Product: Also known as the scalar product, the dot product can be 

performed on two vectors of equal length. The result is the 

sum of the products of the corresponding entries in the 

vector. 

e.g (𝑣1, 𝑣2, 𝑣3) ⋅ (𝑢1, 𝑢2, 𝑢3) = 𝑣1𝑢1 + 𝑣2𝑢2 + 𝑣3𝑢3 

Cross Product: Also known as vector product, the cross product is used to 

find a vector perpendicular to two given vectors in 3D 

space. The equation for cross product is 

𝑎 × 𝑏 =  ‖𝑎‖‖𝑏‖ sin 𝜃 

Rank: The rank of a matrix A is determined by the row and 

column ranks of that matrix. The row rank is the number of 

linearly independent rows in A while the column matrix is 

the number of linearly independent columns in A. The rank 

of matrix A is the lowest of these two values. 
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Determinant: A determinant can only be calculated for a square matrix. 

The equation for the determinant of a 2x2 square matrix is 

[
𝑎 𝑏
𝑐 𝑑

] = 𝑎𝑑 − 𝑏𝑐 

For square matrices larger than that the determinant is the 

sum of each number in the first row multiplied by the 

determinant of the square matrix of the remaining rows, 

not including its column. Every second value of the sum is 

negative. 

Gaussian Elimination: This is an algorithm used in linear algebra to convert a 

matrix to row echelon form using row operations. A matrix 

is in row echelon form when every non-zero row has a 

leading coefficient is to the right of the leading coefficient 

of the row above it. The row operations used to reduce the 

matrix to this form are: 

• Swapping row positions 

• Multiplying a row by a non-zero scalar 

• Adding one row to a multiple of another 

Gauss-Jordan Elimination: This is an algorithm that continues on from Gaussian 

elimination. In this case, the goal is to convert the matrix 

to reduced row echelon form. A matrix is in reduced row 
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echelon form if further to being in row echelon form, the 

leading coefficients are all one, and all other values in a 

column with a leading one are zero. 

Matrix Inverse: The inverse of a given square matrix can be found if the 

given matrix can be converted to reduced row echelon 

form. In order to find the inverse of a square matrix, Gauss-

Jordan elimination is performed on it. Each operation 

performed on the matrix is also performed on an identity 

matrix of the same size. Once the original matrix has been 

reduced to reduced row echelon form, the result of the 

operations on the identity matrix is the inverse. 

 

2.2.2 Mathematical Software 

There are a number of mathematical software used to solve linear algebra problems. In 

this section some of these software will be discussed, along with the programming 

languages used to create them, and why functional programming could potentially do a 

better job at solving linear algebra problems. 

2.2.2.1 MATLAB 

MATLAB, developed by MathWorks, is a proprietary programming language written 

predominately in C, C++ and Java. It can be used for plotting functions and other data, and 

also for manipulating matrices. 
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2.2.2.2 Mathematica 

Mathematica is a software developed by Wolfram Research. It is written in C, C++ and Java, 

but predominately Wolfram Language. 

2.2.2.3 SageMath 

SageMath is a computer algebra system initially created to provide an open source 

alternative to other mathematical software such as MATLAB and Mathematica. It is written 

in Python and Cython and covers many areas of mathematics including linear algebra. 

These software make use of imperative languages to carry out their processes. The current 

study looks at the possibility of using a declarative functional programming language in 

place of these imperative languages to solve linear algebra problems that might need to be 

solved by users of the above software. 

2.3 Lights Out 
In 1995, Tiger Electronics released a game called Lights Out. The game consists of a 5x5 

board of light up buttons. Each game starts with a random configuration of lights turned on 

and the objective of the game is to turn all the lights off. What makes the game difficult is 

that when a light is pressed, the lights immediately above, below, left and right of the 

pressed light as well as the pressed light itself, is toggled. People can come up with solutions 

to this game, but it is difficult to do. What makes this game even more challenging is 

attempting to solve an initial configuration in the minimum number of moves necessary. 

An example of a lights out board is shown in figure 2.1. 
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     Figure 2.1 

2.3.1 Solving the Puzzle 

We can represent a Lights Out board using a 5x5 matrix. We can demonstrate the state of 

lights, the buttons being pressed or the result of a button press. The below matrix 

represents the above configuration of the board. 1 represents a lit light and 0 represents 

an unlit light. 























10000

10101

10001

10101

00001

 

The following two matrices represent a button being pressed and the result of that button 

being pressed. For the matrix on the left, the * represents the action of pressing a particular 

button. For the matrix on the right the 1 represents which lights on the board will change 

state as a result of that button press. This matrix is known as a toggle matrix. This 

demonstrates that if you press a single button twice the overall result of the board is 

unchanged. In the below case we can see that light (2,2) is pressed. As a result, lights (1,2), 

(2,1), (2,2), (2,3) and (3,2) are toggled. By combining a number of these actions, we can 
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create a button pattern in order to get our desired result. The result of that button pattern 

will be the combination of the corresponding toggle matrices. 























00000

00000

00000

000*0

00000

 +























00000

00000

00010

00111

00010

 

What this would look like on a board is shown below, where green represents the button 

being pressed (figure 2.2), and red represents the lights that are toggled as a result of that 

button press (figure 2.3). 

     

     

     

     

     

 

     

     

     

     

     

 

Figure 2.2 Figure 2.3 

The act of pressing a button is performing an addition operation on the configuration 

matrix. Taking the above button press, this can be shown by adding the toggle matrix to a 

configuration of entirely unlit lights, or an all zero matrix. 























00000

00000

00000

000*0

00000

 =>























00000

00000

00000

00000

00000

 + 























00000

00000

00010

00111

00010

 = 























00000

00000

00010

00111

00010
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By combining multiple button presses we can find the resulting toggle matrix by combining 

the toggle matrices of each of those buttons. Below is an example of this. There are three 

button presses on the left-hand side with the resulting toggle matrix on the right-hand side. 























0000*

00000

00*00

000*0

00000

 























00011

00101

01100

00011

00010

 

In order to solve the puzzle, a button combination must be found that returns a toggle 

matrix that matches the initial configuration of the lights out board. This is shown in the 

below diagrams where the left-hand board (figure 2.4) represents the initial configuration 

and the right-hand board (figure 2.5) represents the toggle matrix required to make the 

board blank: 

     

     

     

     

     

 

     

     

     

     

     

 

Figure 2.4 Figure 2.5 

The resulting toggle matrix for each individual button press is known. In order to solve the 

puzzle, a combination of these toggle matrices is required that, when added together, 

matches the initial configuration as shown above. The buttons that are pressed to return 
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these toggle matrices are the buttons required to complete the game. Therefore, the 

following equation can be used to solve Lights Out: 

∑ 𝑥𝑖,𝑗𝑇𝑖,𝑗

1 ≤ 𝑖 ≤ 5
1 ≤ 𝑗 ≤5 

= 𝐵 

Where, xi,j is a button on the board, Ti,j is the toggle matrix corresponding to that button, 

and B is the initial configuration matrix. The solution to the game is the xi,j’s required to 

return Ti,j’s, that when combined, result in a matrix that matches B. If this equation is 

expanded to show the individual elements of the summation, this can be seen more clearly. 

𝑥1,1























00000

00000

00000

00001

00011

+ 𝑥1,2























00000

00000

00000

00010

00111

+ ⋯ + 𝑥5,5























11000

10000

00000

00000

00000

= B 

The toggle matrices required to create a toggle matrix that matches the initial configuration 

B should have a coefficient of one and the toggle matrices that are not used should have a 

coefficient of zero. These coefficients are represented by the xi,j variable. Finding all of the 

xi,j values provides the solution, where a one value for a button xi,j represents a button that 

should be pressed, and a zero represents a button that should not be pressed. 

Each member of the summation equation corresponds to a linear equation when 

represented as vectors rather than matrices. For example, entry (2, 2) in the above equation 

is: 

𝑥1,2 + 𝑥2,1 + 𝑥2,2 + 𝑥2,3 + 𝑥3,2 = 𝑏2,2 
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These are the only toggle matrices that toggle the button (2, 2). We can represent each bi,j 

with the vector representation of B. 

𝑏 = (𝑏1,1,  𝑏1,2,  𝑏1,3, … , 𝑏5,4, 𝑏5,5) 

 

The toggle matrices Ti,j can be written as toggle vectors ti,j. These toggle vectors can used 

as columns in a 25x25 matrix A 

𝐴 = [𝑡1,1|𝑡1,2| … |𝑡5,5] 

This means that the above summation can be written as a matrix product 

𝐴𝑥⃗ =  𝑏⃗⃗ 

Where 𝑥⃗  represents the coefficients of the toggle matrices in vector form. This vector 

shows the buttons to press in order to solve the puzzle. To find 𝑥⃗, the matrix A will have to 

be inverted. 

This is where the problem becomes a linear algebra problem. In order to solve the above 

equation we first convert the button press matrix for a single button press to a binary 

matrix. This is shown below accompanied by its corresponding toggle matrix. 























00000

00000

00000

00010

00000

 























00000

00000

00010

00111

00010
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By computing the above two matrices for every button on the board and converting each 

matrix into a vector of length 25, we can produce the two 25x25 matrices shown below. 

The matrix on the right is made up of 25 columns, each of which represent a single button 

being pressed on the Lights Out board. Each column of the matrix on the left represents the 

toggle vector resulting from the button presses of the corresponding column on the right-

hand matrix. This shows us that the result of each button press is independent from all 

other button presses. Therefore, no button needs be pressed more than once in order to 

complete the game. 




















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



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




























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



1100010000000000000000000

1110001000000000000000000

0111000100000000000000000

0011100010000000000000000

0001100001000000000000000

1000011000100000000000000

0100011100010000000000000

0010001110001000000000000

0001000111000100000000000

0000100011000010000000000

0000010000110001000000000

0000001000111000100000000

0000000100011100010000000

0000000010001110001000000

0000000001000110000100000

0000000000100001100010000

0000000000010001110001000

0000000000001000111000100

0000000000000100011100010

0000000000000010001100001

0000000000000001000011000

0000000000000000100011100

0000000000000000010001110

0000000000000000001000111

0000000000000000000100011
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






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



1000000000000000000000000

0100000000000000000000000

0010000000000000000000000

0001000000000000000000000

0000100000000000000000000

0000010000000000000000000

0000001000000000000000000

0000000100000000000000000

0000000010000000000000000

0000000001000000000000000

0000000000100000000000000

0000000000010000000000000

0000000000001000000000000

0000000000000100000000000

0000000000000010000000000

0000000000000001000000000

0000000000000000100000000

0000000000000000010000000

0000000000000000001000000

0000000000000000000100000

0000000000000000000010000

0000000000000000000001000

0000000000000000000000100

0000000000000000000000010

0000000000000000000000001

 

As it has been shown that we can use linear algebra to represent certain aspects of the 

Lights Out game we can extend that further. We can use the equation 𝑟 = 𝑝⃗ + 𝐴𝑥⃗  to 

represent a game of Lights Out. 𝑟 is the end vector, or the desired result. In the case of the 

Lights Out game this is always a vector of all zeroes. 𝑝⃗ is the starting vector, or the initial 

configuration on the Lights Out board. A represents the 25x25 matrix whose columns 
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represent the result of each button press. 𝑥⃗ represents the button pattern required to get 

from 𝑝⃗ to 𝑟. 

By rearranging this equation, it can be written as 𝐴𝑥⃗ = 𝑟 − 𝑝 = 𝑏⃗⃗ . 𝑏⃗⃗  is the difference 

between the starting and ending configurations. The desired ending configuration (𝑟) is a 

vector of all zeroes, therefore 𝑏⃗⃗ = −𝑝⃗ . As this problem is a binary arithmetic problem, if 

you add a matrix to itself the result is a matrix of all zeroes. For this reason, −𝑝⃗ and 𝑝 are 

the same (𝑝⃗ − 𝑝 = 0 and 𝑝 + 𝑝⃗ = 0). This is because if you apply a button pattern twice it 

is the same as not applying it at all. Therefore 𝑏⃗⃗ = 𝑝⃗ which means 𝑏⃗⃗ is represents the initial 

configuration of the Lights Out board. By finding the inverse of A (A-1) a solution to the game 

can be found by multiplying 𝑏⃗⃗ by A-1. The reason this works is because A-1 shows us the 

button pattern to turn off each of the first 23 lights individually. When we multiply A-1 by 

the initial configuration we are essentially finding the button patterns to turn off each light 

in the initial configuration and performing addition in modulo 2 (or the XOR operation) on 

those patterns. 

Unfortunately, when the Gaussian elimination is performed on the matrix A it is found that 

the matrix cannot be inverted. However, by performing a Gauss-Jordan elimination on the 

matrix alongside the 25x25 identity matrix we get the following result: 
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







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
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

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


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






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



















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

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
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
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






0000000000000000000000000

0000000000000000000000000

1110000000000000000000000

0101000000000000000000000

1000100000000000000000000

1100010000000000000000000

0000001000000000000000000

1100000100000000000000000

0000000010000000000000000

1100000001000000000000000

0100000000100000000000000

0100000000010000000000000

0000000000001000000000000

0100000000000100000000000

0100000000000010000000000

1100000000000001000000000

0000000000000000100000000

1100000000000000010000000

0000000000000000001000000

1100000000000000000100000

1000000000000000000010000

0100000000000000000001000

1100000000000000000000100

0100000000000000000000010

1000000000000000000000001
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


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
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



1010110101000001010110101

0111010101110111010101110

0001011011000101110001000

0011100000001110101011100

0001110101101100010011000

0010110101000001010110101

0010001110110010100100110

0000111011001011011010100

0010001110100111001001100

0010110101100010111000100

0000101011110011110010011

0000001000111000101000111

0001100100011011000110110

0011100010000000000000000

0001001111101001100010000

0010010110101010001100001

0011001001110010111000100

0010110101100000110100101

0001000111010001101101010

0000011000001001011010100

0001110100101010000110110

0011100010000000001000111

0001011111011000110111101

0000001000111000001011011

0000010000110001010001110

 

The result of the Gauss-Jordan elimination is a pseudo-inverse matrix which can be seen on 

the left. An identity for a 23x23 matrix can be seen within the 25x25 matrix. This shows us 

that the matrix has a rank of 23. The rank of an m x n matrix can be found by first finding 

the row rank and the column rank for the matrix. Whichever rank is the lowest of these two 

is the rank of the matrix. The row rank is the maximum number of linearly independent 

rows in the matrix while, the column rank is the maximum number of linearly independent 

columns in the matrix. In the case of the above matrix the row rank is 23 while the column 

rank is 25. Therefore the rank of the matrix is 23. 

In the context of the Lights Out game, this means that we can turn any of the first 23 lights 

on or off by pressing the corresponding button pattern from the matrix on the right. It also 

means that these 23 buttons can be used to complete the Lights Out game, regardless of 

the state of the last 2. Therefore, if we reduce the initial configuration to a vector of length 

23 (𝑏𝑟
⃗⃗ ⃗⃗ ) and reduce the matrix A to a 23x23 matrix (Ar), a solution to the puzzle (𝑥𝑟⃗⃗⃗⃗⃗) can be 
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found by multiplying the initial configuration 𝑏𝑟
⃗⃗ ⃗⃗  by Ar

-1. 𝑥𝑟⃗⃗⃗⃗⃗ can then be extended back to a 

vector of length 25 by appending two zeroes to it. 

As there are only 23 buttons required to solve the puzzle, there are 223 solvable 

configurations. The total number of possible configurations is 225. This means that for a 

random initial configuration there is a 1 in 4 chance of it being solvable. 

2.3.2 Solving the Puzzle with the Optimal Solution 

As well as showing how to find a solution to the Lights Out Game, the matrix also provides 

other useful information. It can be seen that the two bottom lines of the matrix are entirely 

0. This means that if the corresponding button patterns from the matrix on the right are 

pressed, the board would be in the same configuration as before the button pattern was 

started. These button patterns are known as the quiet patterns. They are: 

(0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0) 

(1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1) 

There is a third quiet pattern which is calculated by combining the original two quiet 

patterns using the XOR operation, or addition in modulo 2. 

(1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1) 

The reason this is also a quiet pattern is because if you apply the original two quiet patterns 

to a given initial configuration the result on the board will be the same as the initial 

configuration. Applying both of these quiet patterns is the same as applying the 

combination of the two patterns which gives us our third quiet pattern. 
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These quiet patterns are shown in figures 2.6-2.8 below as they would be shown on a Lights 

Out board. 

     

     

     

     

     

 

     

     

     

     

     

 

     

     

     

     

     

 

Figure 2.6 Figure 2.7 Figure 2.8 

By applying each of these quiet patterns to the pattern 𝑥⃗  calculated previously, four 

patterns that solve the Lights Out game can be obtained. Of these four patterns, the one 

that requires the least number of moves (i.e. has the least number of 1s in the vector) is the 

solution to the original configuration with the least number of moves. 

These quiet patterns can also be used to test whether an initial configuration is solvable. In 

a symmetric game a light pattern is solvable if, and only if, the number of lights in common 

with each quiet button pattern is even. This is because each button will affect an even 

number of lights in a quiet pattern. Therefore, an even number of number of lights must be 

switched on in each quiet pattern for an initial configuration to be solvable. 

The quiet patterns can also show the highest number of moves possible for an optimised 

solution. This is done by representing the quiet patterns as shown in the figure 2.9. 
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c b a b c 

a d a d a 

b b d b b 

a d a d a 

c b a b c 

         Figure 2.9 

The three quiet patterns are given by squares a and b, a and c, and b and c. The squares 

marked with d are not part of any quiet pattern. As it is known that no button need be 

pressed twice in order to solve a given configuration, wit can be said that the number of 

moves required to solve a given configuration can be represented as: 

𝐴 + 𝐵 + 𝐶 + 𝐷 

A, B, C, and D represent the number of buttons pressed of the sets a, b, c, and d respectively. 

The ranges for these variables are therefore: 

0 ≤ 𝐴, 𝐵 ≤ 8 

0 ≤ 𝐶 ≤ 4 

0 ≤ 𝐷 ≤ 5 

By applying the quiet pattern made up of a and b, and assuming that this provides an 

optimal solution, the equation can now be written as: 

(8 − 𝐴) + (8 − 𝐵) + 𝐶 + 𝐷 

As it has been assumed that this is the optimal solution, the following statement can be 

made: 
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(8 − 𝐴) + (8 − 𝐵) ≥ 𝐴 + 𝐵 

𝐴 + 𝐵 ≤ 8 

By repeating this process for the other two quiet patterns the following two statements can 

also be made: 

𝐴 + 𝐶 ≤ 6 

𝐵 + 𝐶 ≤ 6 

By maximising the original equation, the variables A,B, and C are 4, 4 and 2 respectively. As 

D is not part pf a quiet pattern in the case of maximising the equation it is assumed that all 

the buttons are pressed making 𝐷 = 5. This means that the result of the equation when all 

the variables are maximised is 15. Therefore, the maximum amount of moves an optimised 

solution can require is 15. 

2.3.3 Working Example 

In order to best illustrate the process of using the 𝐴𝑥⃗ =  𝑏⃗⃗ function to find the solution to 

a Lights Out configuration, a working example will be outlined from beginning to end. Take 

the following initial configuration shown in figure 2.10. 

     

     

     

     

     

         Figure 2.10 
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This can be represented as a matrix where 1 represents a light that is lit and 0 represents a 

light that is not: 























10000

10101

10001

10101

00001

 

This configuration is represented as the matrix 𝑏⃗⃗ in the equation and is therefore converted 

into a vector. This vector along with the inverse of matrix A calculated previously are 

reduced down to a vector of length 23(𝑏𝑟
⃗⃗ ⃗⃗ ) and a 23x23 (A-1

r) matrix respectively. They are 

the multiplied together to find the reduced solution 
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



01011011000101110001000

11100000001110101011100

01110101101100010011000

10110101000001010110101

10001110110010100100110

00111011001011011010100

10001110100111001001100

10110101100010111000100

00101011110011110010011

00001000111000101000111

01100100011011000110110

11100010000000000000000

01001111101001100010000

10010110101010001100001

11001001110010111000100

10110101100000110100101

01000111010001101101010

00011000001001011010100

01110100101010000110110

11100010000000001000111

01011111011000110111101

00001000111000001011011

00010000110001010001110

    















































































0

0

0

1

0

1

0

1

1

0

0

0

1

1

0

1

0

1

0

0

0

0

1
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The resulting vector when the above matrix and vector are multiplied is: 

(0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0) 

After appending two zeroes to this vector it can be converted back to a 5x5 matrix 























00011

10100

00000

00101

11000

 

This provides us with one of the possible solutions to the game. In order to find the solution 

that requires the least number of moves, the above solution is combined with each of the 

quiet patterns by means of the XOR operation. This is done because we know the above 

button pattern will turn all the lights of the initial configuration off and we know that 

applying a quiet pattern will not affect the configuration of the board in any way. Therefore, 

a combination of the two will result in all the lights of the initial configuration being turned 

off. By combining the two button patterns for each of the quiet patterns, it is possible to 

find a solution that requires less moves then the above matrix. When we carry out this 

process we get the following solutions: 













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








01101

00001

11011

10000

10110
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



10110

00001

00000

10000

01101

 


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
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









11000

10100

11011

00100

00011

 

Comparing these four button patterns and by counting the number of moves (number of 

1s) required to complete the game, it can be seen that the original matrix and the central 
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matrix above both only require 8 moves to solve the puzzle. Either of these button patterns 

can be outputted as a solution to the game. 

By converting these matrices into button patterns, the following two patterns (figures 2.11 

and 2.12) are found to be the solutions with the least number of moves. 

     

     

     

     

     

 

     

     

     

     

     

 

Figure 2.11 Figure 2.12 

3 Method 

A Haskell console application was created in order to show that Functional Programming is 

a good tool for solving these types of Linear Algebra problems. In order to do this the goal 

of the program was to solve Lights Out, taking in any configuration, checking whether or 

not it is solvable, and if it was, returning the solution that requires the least number of 

moves to complete the game. The process for carrying this out can be split up into four 

parts: 

1. Performing Gauss-Jordan 

2. Checking for Solvability 

3. Calculating the Solution 

4. Calculating the Optimal Solution 
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3.1 Performing Gauss-Jordan 
The pseudo inverse matrix is calculated by performing a Gauss-Jordan elimination on the 

Lights Out matrix. This can be broken up into two sections, converting the matrix to row 

echelon form and converting the matrix to reduced row echelon form. A number of 

algorithms for carrying this out were attempted. One of these algorithms involved 

converting the matrix to row echelon form using a rowEchelon function and then rotating 

the outputted matrix 180 degrees and calling the rowEchelon function a second time with 

the new matrix as the input. The outputted matrix would then be in reduced row echelon 

form. This method was successful at finding the inverse of a matrix but was unsuccessful at 

finding the pseudo inverse of matrix. 

Therefore a new method for performing Gauss-Jordan was devised. 

When executing this function the Lights Out Matrix and the 25x25 identity matrix are 

inputted as a tuple in the first (left-hand matrix) and second (right-hand matrix) positions 

respectively. The outputted tuple should then have the identity (or pseudo identity) as the 

first item of the tuple, and the inverted matrix as the second position of the tuple. 

In order to convert the matrix to row echelon form the following code snippet was 

implemented: 

rowEchelon :: (Matrix, Matrix) -> (Matrix, Matrix) 

rowEchelon ([], _) = ([], []) 

rowEchelon (_, []) = ([], []) 

rowEchelon (m1, m2) = ([head newM1] ++ newM1Tail, [head newM2] ++ newM2Tail) 

    where   (newM1Tail, newM2Tail) = rowEchelon (removeFirstColumn $ tail newM1, tail 

newM2) 

            (newM1, newM2) = xorWithFirstRow (rowStartWithOne (m1, m2)) 
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This function is a recursive function. It first checks to see if the first row of the left-hand 

matrix begins with a one. If this is not the case, then that row is moved to the bottom of 

the matrix and the next row is checked. This is repeated until a row beginning with a one is 

found. This row is then added (in modulo 2) to all the other rows that also begin with one. 

All operations that are performed on the left-hand matrix are performed on the 

corresponding rows of the right-hand matrix. 

The function is then recursively called, with the input being a tuple of the left-hand matrix 

with the first row and first column removed, and the right-hand matrix with the first row 

removed. The result of this function call is added to the first rows of both matrices 

calculated in this instance of the function call. The recursive call is ended once all the rows 

have been calculated. 

As this use case requires a pseudo inverted matrix, the end points that would normally be 

reached will not be reached. The desired result has two all zero rows. for this reason, the 

function that finds a row with a leading row and puts it at the top of the matrix, also ensures 

that there is a row that starts with one present. If not, then the matrix is returned as is. This 

ensures that the pseudo row echelon form can be calculated in the case of non-invertible 

matrices. 

In order to convert the matrix to reduced row echelon form the following code snippet was 

implemented: 
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reducedRowEchelon :: (Matrix, Matrix) -> (Matrix, Matrix) 

reducedRowEchelon ([], _) = ([], []) 

reducedRowEchelon (_, []) = ([], []) 

reducedRowEchelon (m1, m2) = if numAllZeroRowsEqualsNumColumns m1 == True || matrixIsEmpty 

m1 then (m1, m2) else (addColumnToMatrixLeft m1Column1 m1Part3, m2Part3) 

    where   (m1Part3, m2Part3) = reducedRowEchelon (m1LessColumn1, m2Rejoin) 

            m1Column1 = getFirstColumn m1Part2 

            m1LessColumn1 = removeFirstColumn m1Rejoin 

            m1Rejoin = m1Part2 ++ m1Part1Bottom 

            m2Rejoin = m2Part2 ++ m2Part1Bottom 

            (m1Part2, m2Part2) = xorWithLastRow (m1Part1Top, m2Part1Top) 

            (m1Part1Top, m2Part1Top) = getRowUpToLastLeadingOne (m1, m2) 

            (m1Part1Bottom, m2Part1Bottom) = getRowAfterLastLeadingOne (m1, m2) 

This function is also a recursive function, and takes in a tuple as an input where the first 

item is the left-hand matrix and the second is the right-hand matrix. This function finds the 

last row that begins with a one in the left-hand matrix and adds it to all the other rows that 

also begin with a one. Any operation on left-hand matrix is performed on the corresponding 

rows of the right-hand matrix. The function then recursively calls itself with the input being 

the left-hand matrix with the first column removed, and the newly calculated right-hand 

matrix as the elements of the tuple. The result of the function is a tuple of the left-hand 

matrix returned from the recursive call added to the previously removed first column, and 

the resulting right-hand matrix from the recursive call. 

The end point of the recursive call occurs when the left-hand matrix is empty. However, as 

this use case requires the calculation of pseudo inverse matrices, there is another check 

done in order to ensure the desired result. When the function is called, it initially checks if 

the number rows in the left-hand matrix that are entirely zeros is the same as the number 
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of columns remaining. If this is the case, the inputted tuple is outputted as the result of the 

function. This acts as an end point for the cases in which the matrix is not invertible. 

Now that both the row echelon form and the reduced echelon form functions have been 

implemented, the matrix inverse function can be implemented. The following code snippet 

shows how this was carried out: 

The first step is to get the matrix in row echelon form using the previously implemented 

rowEchelon function. Once this is done zeroes must be added to the left-hand matrix before 

the first leading one as they were removed in the process of calculating the row echelon 

form. The reducedRowEchelon function can then be called. The outputted right-hand 

matrix should be the inverted (pseudo inverted) matrix. 

This is enough for matrices that are fully invertible, however the use case for solving Lights 

Out requires a few more steps. The calculated pseudo inverse at this point does not have 

two columns of all zeroes to the right of the 23x23 matrix. In order to rectify this, without 

affecting the pseudo identity in the left-hand matrix, the bottom row is added to all rows 

matrixInverse :: (Matrix, Matrix) -> (Matrix, Matrix) 

matrixInverse ([], _) = ([], []) 

matrixInverse (_, []) = ([], []) 

matrixInverse (m1, m2) = (m1Step3, m2Step5) 

    where   m2Step5 = xorMatrixRowsWithVectorsWithSecondLastOne (last (init m2Step4)) (init 

(init m2Step4)) ++ [last (init m2Step4)] ++ [last m2Step4] 

            m2Step4 = xorMatrixRowsWithVectorsWithLastOne (last m2Step3) (init m2Step3) ++ 

[last m2Step3] 

            (m1Step3, m2Step3) = reducedRowEchelon (m1Step2, m2Step1) 

            m1Step2 = addZeroesToMatrix m1Step1 (length m1) 

            (m1Step1, m2Step1) = rowEchelon (m1, m2) 
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ending in a one. The second to last row is then added to all rows whose second to last 

number is a one. This returns the desired matrix. 

3.2 Checking for Solvability 
Now that the pseudo inverse of the Lights Out matrix has been calculated, the quiet 

patterns can be obtained. These can then be used to test if a given configuration is solvable 

or not. 

The below code snippet shows the function used to acquire the two quiet patterns from 

the inverted Lights Out matrix: 

getQuietPatterns :: (Vector, Vector) 

getQuietPatterns = (last (init aInverse), last aInverse) 

    where (pseudoIdentity, aInverse) = matrixInverse (lightsOutMatrix, identity 25) 

This function calls the matrixInverse function to calculate the inverse matrix. It takes the 

two bottom rows of the right-hand matrix and returns them both in a tuple. 

This function is used in the below code snippet to detect if a given configuration is solvable: 

solvable :: Vector -> Bool 

solvable initialConfig = if dot1 == 0 && dot2 == 0 then True else False 

    where   dot1 = dotProduct initialConfig qp1 

            dot2 = dotProduct initialConfig qp2 

            (qp1, qp2) = getQuietPatterns 

Dot product is performed twice, once for each quiet pattern. The dot product is carried out 

on the initial configuration and one of the quiet patterns. If the result of both of these 

operations is zero, then the configuration is solvable. 
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3.3 Calculating the Solution 
In order to calculate the solution, the following code snippet is used: 

solve :: Matrix -> Maybe Matrix 

solve m = if solvable v == False 

    then Nothing 

    else Just (vectorToMatrix $ getLeastMovesSolution $ solutionsAndMoveCount $ 

createSolutionsList $ appendTwoZeroes $ multiplyByVector (reduceMatrixTo23 aInverse) 

(reduceVectorTo23 v)) 

    where   (pseudoIdentity, aInverse) = matrixInverse (lightsOutMatrix, identity 25) 

            v = matrixToVector m 

The function first converts the matrix to a vector and tests whether or not it is solvable. If 

it is not solvable, the function returns ‘Nothing’. If it is solvable the vector is reduced to a 

vector of length 23 and multiplied with the inverse matrix function calculated by the matrix 

inverse function. This matrix is reduced from a 25x25 matrix to a 23x23. The result of this 

multiplication then has two zeros appended to it. This gives a solution to the inputted 

configuration in vector form. The function then continues to find the optimal solution which 

is described below. The result is then converted back to a matrix and returned. 

3.4 Calculating the Optimal Solution 
Now that a solution has been found, the quiet patterns can be used to find the optimal 

solution. Looking at the code snippet in the previous section, a number of functions were 

used to find the optimal solution. These functions are: 

• createSolutionsList 

• solutionsAndMoveCount 

• getLeastMovesSolution 

The code snippet below shows the implementation of the createSolutionsList function: 
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createSolutionsList :: Vector -> [Vector] 

createSolutionsList v = [v, (v `xorVectors` qp1), (v `xorVectors` qp2), (v `xorVectors` 

qp3)] 

    where   (qp1, qp2) = getQuietPatterns 

            qp3 = qp1 `xorVectors` qp2 

This function creates a list of four solutions. This is done by taking the previously calculated 

solution as an input, and adding each of the three quiet patterns to it. These three patterns 

are then added to a list along with the original solution and returned.  

The code snippet below shows the implementation of the solutionsAndMoveCount 

function: 

solutionsAndMoveCount :: [Vector] -> [(Vector, Int)] 

solutionsAndMoveCount [] = [] 

solutionsAndMoveCount (v:vs) = (v, countMoves v) : solutionsAndMoveCount vs 

This function takes in a list of solutions and calculates the moves required to solve each of 

them. This is done by calling the countMoves function which counts the number of ones in 

each solution vector. A list of tuples is then created where the first element is a solution 

and the second element is the number of moves required to complete that solution. This 

list is then returned as the result of the function.  

The code snippet below shows the implementation of the getLeastMovesSolution function: 

getLeastMovesSolution :: [(Vector, Int)] -> Vector 

getLeastMovesSolution list =  fst $ head $ sortBy (compare `on` snd) list 

This function takes in a list the previously calculated list of tuples. It then returns the 

solution that has the least number of moves associated with it. If the least number of moves 

is associated with more than one solution, the first solution in the list with that number of 

moves will be returned. 
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4 Result 

Using the functions described in the method section, the program is now able to solve Lights 

Out. To show this we take the solvable configuration shown in figure 4.1. 

     

     

     

     

     

         Figure 4.1 

This configuration is passed as an input to the ‘solve’ function as shown below 

 

The result if this operation is 

 

This equates to using the button pattern shown in figure 4.2 to solve the initial 

configuration. 

     

     

     

     

     

         Figure 4.2 
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This pattern requires 8 moves to solve the puzzle. If the results of each of the functions 

described in the method section is investigated for this use case, it can be seen how this 

result was reached. 

4.1 Matrix Inverse 
When finding solutions to the classic 5x5 Lights Out game, the solution to this function is 

always the same. This is because the same Lights Out matrix is used as the input. 

The out put of this function is shown below: 

 

This output is the two matrices expected from this equation. The reduced row echelon 

matrix in the first element of the tuple and the inverted matrix in the second element of 

the tuple. The inverted matrix can be reduced to a 23x23 matrix in order to solve Lights 

Out. 

4.2 Checking for Solvability 
In order to check if this configuration is solvable, it is inputted into the ‘solvable’ function 

as shown: 

 

In this case it returns ‘True’, but in the case of an unsolvable function it would return false. 
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4.3 Calculating the Optimal Solution 
In order to show that the solution returned by the ‘solve’ function is indeed the most 

optimal, it can be passed into the ‘createSolutionsList’ function in order to see all 4 potential 

optimal solutions. The solution is passed in as a vector as shown: 

 

This returns the following output: 

 

These equate to the following four solutions shown in figures 4.3-4.6. 

     

     

     

     

     

 

     

     

     

     

     

 

Figure 4.3 Figure 4.4 
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Figure 4.5 Figure 4.6 

When these four button patterns are all applied to the initial configuration they all solve 

the puzzle. When these four solutions are compared it can be seen that the solution 

originally returned by the ‘solve’ function is indeed the most optimal solution. This solution 

only requires 8 moves to solve the puzzle whereas the other three require 16, 12 and 12 

moves respectively. 

4.4 Unsolvable Configurations 
In the case of an unsolvable configuration (such as the one shown in figure 4.7), the 

‘solvable’ function will return false and the ‘solve’ function will return ‘Nothing’ 

     

     

     

     

     

         Figure 4.7 

The outputs of the ‘solvable’ and ‘solve’ function for the above configuration are: 
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5 Discussion 

From the results drawn from this research, there are a few things to discuss. This discussion 

encompasses both the advantages that functional programming brings to solving linear 

algebra problems, and where to next take this research. 

5.1 Advantages of Functional Programming 
During the implementation of the Lights Out solver application a number of advantages 

brought by using a functional programming language was noted. Most of these advantages 

are as a result of the characteristics of functional programming discussed in Chapter 2. 

Much like functional programming functions, linear algebra functions (and most 

mathematic functions) are pure functions. The same input will always result in the same 

output. This shows the benefits of functional programming for solving linear algebra 

problems as they both have this characteristic. A similar point can be made about the 

functional programming having referential transparency. At any point in a linear algebra 

equation or a functional programming function, a variable can be replaced by its actual 

value without affecting the final result. 

Another advantage that functional programming provides is the manner in which it handles 

lists. In this project, vectors were represented by a list of integers, and matrices were 

represented by a list of vectors (or a list of lists of integers). This method of representing 

vectors and matrices allowed for the use of recursion to handle the end points of different 

vector and matrix operations. One example of using Haskell’s list methods in this way would 
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be when the zipWith function is used to add each element of two vectors together in the 

xorVectors function (Appendix A1.1). Another example that uses recursion would be the 

checkForAllLeadingZeroes function (Appendix A1.2). This function checks the first vector of 

a matrix for a leading zero and then calls itself with the rest of the matrix as an input. The 

recursive calling ends once the input matrix is empty, with ‘True’ as the return value. The 

AND operation is performed on all the returned values of the function, giving the desired 

result of ‘True’ if the matrix contains vectors that all start with zero and ‘False’ otherwise. 

One of the limitations of this, however, is that on some occasions the entire list will need 

to be iterated through even if the desired case is found on the first iteration. If this were 

the case in an imperative language, the result would be returned as soon as the desired 

case was found. 

The use of higher order functions also provides an advantage to using functional 

programming when solving problems in linear algebra. This allows for the use of mapping 

functions which help to implement elegant solutions to problems. One example of this is 

the removeFirstColumn function (Appendix A1.3) which takes in a matrix and returns the 

matrix with the first column removed. This is done by mapping the tail function onto each 

row of the matrix. The ability to pass the tail function as an argument of a function provides 

a very elegant implementation of the function. 

Possibly one of the biggest advantages functional programming provides is lazy evaluation. 

The use of sortBy in the getLeastMovesSolution function (Addressed in chapter 3) is a good 

example of this in this project. As only the list is sorted based on the first element, only the 
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elements that will appear before the first element of the function need to be evaluated, 

thus reducing the overall computation time of the program. 

It can be seen from the above example that functional programming offers many 

advantages to solving linear algebra problems that traditional, imperative languages do not. 

Although these languages do offer their own advantages, it is fair to say that there is a case 

to be made for the use of functional programming. 

5.2 Future Works 
If this project were to be taken further there are a number of next steps that could be taken. 

One of the first things to do would be to refactor the code for efficiency. Due to the time 

limits associated with the current research, the code may not have been implemented in 

order to produce the best performance. Each function can be looked at to ensure that the 

algorithm is being carried out in the least amount of operations. As well as that, the 

memoization library[20] could be used in order to save the result of some repeated 

functions. For example, the matrixInverse function is called a number of times with the 

same inputs. This result could be cached using this library in order to reduce overall 

computation time. Some functions are implemented specifically to solve the classic Lights 

Out, such as the reduceMatrixTo23 function (Appendix A1.4). These functions could be 

generalised to work for other use cases, in this case changing the function reduceMatrix 

and adding a parameter that dictates to what size it is reduced to. 

Another valuable addition to this project would be a front end. An application much like 

that found on Jaap’s puzzle page[3] would allow for a better demonstration of the 

application built during this project. Jaap’s application is a Lights Out game built using 
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JavaScript. A similar application could be built using Haskell where the calculations for the 

optimal solution can be made using the functions implemented in this project. 

As seen in the background research underpinning this project, there are a number of widely 

used operations in the field of Linear Algebra, many of which are not used in the solving of 

Lights Out. Two examples are would be cross product and determinant. A more generalised 

library can be built that also implements these functions as well as those covered in this 

project. Storage mapping functionality could also be added to this library in order to make 

it easier to retrieve or edit individual values in a vector or matrix. It should also be noted 

that the functionality required for solving Lights Out requires operations to be carried out 

in modulo 2. This means that for a more generalised library the functions implemented in 

this project will need to be refactored to handle modulo 10 operations. The code could also 

be refactored to use better naming convention as well has being well documented in order 

for the library to be more user friendly for anyone who wishes to import it into their 

projects. 

The application built during this project could also be updated to include solutions to 

different variations of Lights Out. There are a number of variations of Lights Out that are 

addressed in Jaap’s page[3] as well as in David Joyner’s book[21]. These include a version 

of the game that has three states instead of just on and off. Another version has the direct 

diagonal neighbours of a button toggle when a button is pressed rather than direct vertical 

and horizontal neighbours. As well as that, the board can be changed to be a different size 

rather than the classic 5x5 board. In most of these cases, excluding the three state game, 

the game is solved by changing the A matrix used in the 𝐴𝑥⃗ =  𝑏⃗⃗ equation. The new matrix 
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should math the rules of the new variation, for each button the corresponding column of 

that matrix should be the toggle vector for that button. This project had planned on 

implementing functionality to solve a variation of Lights Out whereby the board was 

boundless. This means that if a button on the left most side of the board is pressed, the 

button on the right most side on the same column is toggled as shown in figures 5.1 and 

5.2 below. 

     

     

     

     

     

 

     

     

     

     

     

 

Figure 5.1 Figure 5.2 

Unfortunately given the time constraints, this functionality was not implemented. 

However, some first steps were made in doing so. The matrixInverse function was executed 

using the following matrix. 
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1100110000000000000010000

1110001000000000000001000

0111000100000000000000100

0011100010000000000000010

1001100001000000000000001

1000011001100000000000000

0100011100010000000000000

0010001110001000000000000

0001000111000100000000000

0000110011000010000000000

0000010000110011000000000

0000001000111000100000000

0000000100011100010000000

0000000010001110001000000

0000000001100110000100000

0000000000100001100110000

0000000000010001110001000

0000000000001000111000100

0000000000000100011100010

0000000000000011001100001

1000000000000001000011001

0100000000000000100011100

0010000000000000010001110

0001000000000000001000111

0000100000000000000110011

 

Each column of this matrix is the vector representation of the lights that will toggle as a 

result of each button press, just as in the classic version of Lights Out. The result of the 

function was promising as it had the desired number if all zero rows. Further research is 

required in order to fully solve this variation of Lights Out. This will involve ensuring the 

resulting pseudo inverse is indeed correct, identifying the quiet patterns, establishing a 

solvability check for a given configuration, solving a configuration and finding the optimal 

solution for that configuration. 

6 Conclusion 

The course of this project appears to have substantiated that functional programming 

certainly has its place when it comes to solving linear algebra problems. This project has 

shown that functional programming can be used to solve the Lights Out puzzle. In doing 
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this, the program needed to be able to carry out a Gauss-Jordan operation in order to invert 

a matrix. Not only that, but the program needed to handle the case where a matrix was not 

invertible, and a pseudo inverse needed to be found. The research carried out by the author 

has shown that this was indeed within the capabilities of a function programming language, 

more specifically Haskell. In doing this, it has also been shown that functional programming 

is capable of solving linear algebra problems and can provide advantages over imperative 

languages such as C or Java. It could even be a good platform for building mathematical 

software such as MATLAB, Mathematica and SageMath, which makes functional 

programming a viable area for further exploration. 
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A1. Appendix 

Appendix A1.1 
xorVectors :: Vector -> Vector -> Vector 

xorVectors v1 v2 = zipWith xor v1 v2 

Appendix A1.2 
checkForAllLeadingZeroes :: Matrix -> Bool 

checkForAllLeadingZeroes [] = True 

checkForAllLeadingZeroes (m:ms) = hasLeadingZero && checkForAllLeadingZeroes ms 

    where hasLeadingZero = if head m == 0 then True else False 

Appendix A1.3 
removeFirstColumn :: Matrix-> Matrix 

removeFirstColumn [] = [] 

removeFirstColumn m = map tail m 

Appendix A1.4 
reduceMatrixTo23 :: Matrix -> Matrix 

reduceMatrixTo23 m = map reduceVectorTo23 newM 

    where newM = take 23 m 

 


