(VA Trinity College Dublin
=Rl Colaiste na Triondide, Baile Atha Cliath
The University of Dublin

Efficient Wireless Incremental Updates
to Resource-Constrained Devices

Colin McDonagh

M.A.l. (Computer Engineering)

Supervisor: Jonathan Dukes

Submitted to the University of Dublin, Trinity College, May, 2018

DECLARATION

| hereby declare that this project is entirely my own work and that it has not been
submitted as an exercise for a degree either in Trinity College Dublin, or in any other

University; and that the library may lend or copy it or any part thereof on request

Colin Mfamaﬁa 1/5/18

Name Date

Summary

Wirelessly updating resource-constrained devices - like nodes within a Wireless Sensor
Network - is necessary to fix on-board firmware bugs and alter program functionality.
Primarily due to RF transceiver usage, updating may consume significant energy
resources of a device. However, this cost may be minimized by intelligently reducing
update sizes, like through only sending a patch containing bytewise differences between

current on-device firmware and new firmware; i.e. an incremental update.

Research shows that compressed incremental updates reduce energy usage
significantly; especially those which use the diff algorithm BSDiff. In this thesis, a
prototype implementation using said algorithm is carried out to encounter, document
and overcome challenges of incrementally updating particularly memory limited

resource-constrained devices.

Some problems encountered in incrementally updating a memory-constrained device
consist of determining how to patch firmware without reducing the maximum allowed
patch size, dealing with flash write minimum erasure units, and page alignment. The
corresponding solutions synthesized to counter these challenges consist of patching
firmware in-place over old firmware, using parts of the received patch to store otherwise
overwritten and lost old firmware needed for the patching process, and altering the

structure of patch files.

IT

Altogether, these solutions allow for an incremental implementation that requires no
additional memory other than that which stores old firmware and the received patch.
Furthermore, due to transmitting smaller updates, and the negligible patch size increase
due to reformatting, the incremental mechanism should tend to result in significant

energy savings.

I

Acknowledgements

| would to thank Jonathan who proactively gave of his time throughout the year;
especially during the trickiest stages of development. The constant support encouraged

me to remain consistent in my development efforts and writing.

| would also like to thank Jeremy Jones for agreeing to act as second reader, and for
providing his feedback on project work after the demonstration which helped to guide

last efforts.

v

Table of Contents

1. Introduction 1
1.1, ResSearCh FOCUS ... e, 1

1.2, BackgroUnd ... e 1

1.3. Personal Motivation ... 6

1.4, Thesis StrUCtUre ... e 6

2. Related Work 9
2.0, Ceria .o s 9

2.2. Non-Transparent Updatesccooiiiiiiiiii e, 10

2.3. Incremental Updates ... 12
3. Design 16
3.1, Overwriting Problem ... 17

3.2. BSDIff PatChingcoiii 21

3.3. Flash Memory Restrictions ..o, 24

3.4, ProCess OVEIVIEWceiuiiuiitii et 28

4. Implementation 33
4.1, Regular DFU ... 34

4.2. Nrfutil Alterations ..., 35

4.3. Receive Incremental Updatescoooiiiiiiii i 37

4.4, BSDIiff Aferationsccooiiiii e, 38
4.5. Bootloader BSDIiff Porto 40

5. Results 44
51. Experimental Setup ..., 44

B 2. DAla i e 46

6. Conclusions & Future Work 49
B.1. CONCIUSIONS ...t 49

6.2, FUtUre WOrK ... 50
6.2.1. DECOMPIESSION ...uiiiiiti et 50

6.2.2. RODUSINESS ... 52

6.2.3. EffiCienCy ..o 53

7. Citations 54

List of Figures

1. ChapterinfographiC ... 7
2. Limited flash memory availablecoi i 18
3. Overwriting patch problem ... 19
4. BSDiff patch format ... 22
5. Firmware size is same as data block Sizecooiiiiiii 23
6. Saving SPlit PAgE ISSUEc.eiiii i 24
7. Newdata block format 25
8. Losing unused bytes due to page alignment ..., 26
9. Page-aligned data block solutiono 27
10. Patch structure compariSONooiiiiiii e 28
11. Formingapage of patCh ..., 29
12. Saving a page of old firmwareo 30
13. Final flash state after storing patched pagecccooiiiiii . 31
14. Patch located just above old firmware ... 42
15. Patch located above new firmware 43
LS PR B T=Tote 0 4] o] == T] o] o P 51

VI

List of Tables

1. BliNKY VEISION SIZES ...t e 45
2. Compressed patCh SIZESoiiii i 45
3. Update application times (MS)coeiiiiiii e, 46
4. Transmission tIMES (MS) . .o.viniii i e 46
5. Compressed reformatted patch size percentage differences 47

VII

List of Acronyms

WSN: Wireless Sensor Network
BLE: Bluetooth Low Energy
OTA: Over-the-Air

OOM: Out of Memory

RF: Radio Frequency

SDK: Software Development Kit
VM: Virtual Machine

IP: Internet Protocol

RAM: Random Access Memory

VIII

1 Introduction

i

“The journey of a thousand miles begins with one step.’

—Lao Tzu

1.1 Research Focus

This thesis aims to encounter, document and overcome challenges in designing and
implementing incremental, diff-based update mechanisms for resource-constrained
devices with limited energy supplies and memory. Furthermore, particular emphasis is
given to the documenting of an implementation of such an incremental process in the
context of both limited RAM, and just as importantly, if not more so, limited persistent

storage. This decision is made primarily on the basis of the novelty of such research.

1.2 Background

Resource-constrained devices, including nodes within a Wireless Sensor Network
(WSN), may be deployed to locations that are relatively or even extremely hard to
access physically, depending on what their purpose is. For example, consider smart
building lighting systems which only light rooms that are occupied. Here, motion sensing
devices that sense people are often embedded within partition walls, especially in the

context of a family home, thus making them difficult to access. Another example is use

of discrete location aware devices which are camouflaged and attached to sparsely
located trees in the Amazon rainforest to prevent illegal harvesting [1]. Considering that
the Amazon rainforest is larger than the USA, these devices are not going to be easily

reachable; if at all.

The first and most obvious challenge posed by remotely or awkwardly located
resource-constrained devices is the gradual depletion of energy resources. As the
devices are hard to maintain physically, renewing energy resources, through inserting
new batteries into the device, for example, is also going to be an arduous task.
Therefore, if energy resources may not be renewed easily, there is an increased

importance placed on using less energy to maximize device longevity.

Tangential to the above, while these devices are deployed, bugs in device behavior may
be encountered, whether they’re implementation related, design related, or even
security related. However, regardless of their nature, even the smallest bug could

compromise firmware drastically, especially in the context of mission critical software.

Furthermore, new versions of firmware may also be written which include program
parameter reconfiguration or new feature designs. However, regardless of the specific
reasons for writing new firmware, it's apparent that redeploying these changes to
devices situated in hard-to-access locations, like devices embedded under floors,

through a physical connection, including USB, may be unrealistic, inefficient and costly.

Therefore, the second challenge in deploying resource-constrained devices is how to

redeploy new changes efficiently without the need to physically connect to devices.

Primarily, Over-The-Air (OTA) wireless transmission protocols can be used as a
solution. OTA protocols, including Bluetooth Low Energy (BLE), that allow for
communication within a large range are especially useful. As updates may then be
transmitted to resource-constrained devices wirelessly, the need to tear down
infrastructure, or perform any other arduous tasks to access devices, is removed.
Despite this, given the limited range of such protocols, the solution in itself doesn’t
provide a means of accessing remotely located devices. However, IP addressable
gateway devices, commonly connected to an AC line, may be used to forward firmware
updates sent from a developer’s host device to resource-constrained devices within the
proximity of the gateway, thus also removing the need to be on-premise to carry out

updates.

In introducing the use of wireless communication into the process however, arguably the
greatest concern is the energy consumption of updates [2]. On unconstrained devices,
like PCs laptops, this isn’t a major concern: rather, the time to complete an update is
more important. Although reprogramming duration is important to constrained-devices
as well, because they may not be able to function normally during this period, the
reasons for prioritising energy-use minimisation primarily constitute the fact that there

are numerous potentially high-energy demand stages, relative devices’ resources, in an

OTA update. These include: wirelessly receiving the updates, processing them, and
writing the new firmware to persistent flash storage. Even though updates may not
occur often, it's important that they do not deplete a considerable amount of resources.
Furthermore, before an update is even triggered, it's important to know if a device has
the energy required to complete the process. Therefore, the energy consumption of

updates must be considered, and potentially optimized.

As to related research, it’s clear that two of the primary contributors to energy
consumption during an update are the use RF transceivers and erasures of flash
memory [3, 4]. Fortunately, certain measures may be taken to reduce both of their
usages. Beyond protocol related configuration, like using an optimal transmission rate,
constrained-device RF transceiver usage may be reduced through reducing update
sizes. Furthermore, since the client must also respond to the host with a success
message for every update packet it receives, on the basis that guaranteed delivery is of
vital importance [5], reducing update sizes also reduces the number of transmissions to

the host, thus reducing energy consumption further.

Concerning flash memory erasures, this is also intrinsically related to update sizes, as
the larger the new received firmware is, the more flash that must be erased and
rewritten. Therefore, seemingly, decreasing update sizes is the primary means of

minimizing update process energy consumption. However, reducing firmware sizes is

not a viable option, as it’s restrictive, and wouldn’t necessarily result in large savings in

any case. Therefore, alternative means of reducing update sizes should be sought after.

Compression is one option to reduce the size of updates. In theory, as CPU active time
consumes approximately one tenth of the energy required by a RF transceiver on a
typical device [6] compression should be a suitable means of reducing energy
consumption. However, depending on the compressibility of an update, compression
could also increase energy consumption [3], especially in the case of monolithic

updates, which renders compression unhelpful for the time being.

Tangential to the above however, it’s interesting to note that a firmware update may not
necessarily contain large amounts of changes compared to firmware currently executing
on a device, which means that sending whole new firmware images may be rather
inefficient or wasteful, especially in the case of minor bug fixes or parameter
reconfiguration. Therefore, one solution to reducing update sizes is to send only parts of

new firmware that have been changed in comparison to a previous version.

Using a change-based approach, updates could then constitute whole functions which
have been partly altered, new modules of firmware, or even a line-by-line difference
between executable versions such as would be generated by the Unix diff command;

the last known as an incremental update.

Given these methods may reduce the size of the updates significantly, the focus is then
on how to build such systems which allow change-based updates to be applied in the
context of limited RAM and persistent storage, which will be of particular interest to
embedded vendors. With specific interest given to incremental approaches, this thesis
then sets out to do just so: to encounter, document and overcome challenges in

designing diff-based update mechanisms for energy and memory constrained devices.

1.3 Personal Motivation

The reason for carrying out such research is to provide a sufficient dissertation for a MAI

degree, specifically in computer engineering, at Trinity College, Dublin.

1.4 Thesis Structure

This thesis is composed of 6 chapters, 5 excluding the Introduction. Figure 1 displays
an infographic of the chapters, which includes a question each chapter poses, and

suggests an order in which they which may be read.

Introduction

what is thesis about?

y

Related Work

what is the existing literature?

A

Design

how is it proposed that resource-constrained
devices be incrementally updated?

Y

Implementation

what is the design prototype?

Y

Results

how effective is the design?

A 4

Conclusions & Future Work

what is the outcome of the thesis, and how may it be
expanded on?

Figure 1: Chapter infographic.

A brief description of the contents of each chapter is as follows:
e Related Work: relevant literature reviews for this thesis constitute work that’s
been carried out on update designs, including papers on unconstrained device

and non-incremental mechanisms, but focuses on incremental research.

Design: Outlines specific challenges in designing a resource-constrained
incremental update mechanism, especially with regards to memory-constraints,
and illustrates how they are overcome within this thesis.

Implementation: Describes a working prototype of the update design, and the
work carried out in doing so with respect to each significant part of the
implementation process.

Results: Details the appropriate findings from numerous update experiments.
Conclusions & Future Work: Defines the overall outcomes of the project and
describes a number of areas of work which would be beneficial to the

implementation.

2 Related Work

“People think that computer science is the art of geniuses but the actual reality is the opposite,
just many people doing things that build on eachother, like a wall of mini stones..”

— Donald Knuth

2.1 Criteria

The approach taken to reviewing material was a top-down approach: first reading
literature related to high-level update approaches indiscriminate of the type of device
being updated, and then focusing on change-based update mechanisms, mostly in the

context of updating resource-constrained devices.

Different sources of relevant literature reviewed are included on the basis that they
either:
1. Contribute to conceptualizing different software update mechanisms.
2. Enable a comparison between transparent and platform dependent update
mechanisms.
3. lllustrate an incremental mechanism or detail a binary patching algorithm used in

same.

2.2 Non-Transparent Updates

The most widely discussed means of updating in the context of unconstrained devices
is by far dynamic updating: that is, updating a program without stopping its operation.
Dynamic updates may take place in distributed systems [7] or cloud computing clusters,
however, their use in updating single programs is of more interest: especially with
respect to updating operating systems [8] or otherwise componentized software [9]. To
perform a dynamic update, it's necessary that at some stage, each part of the software
is available to be rewritten, and thus, the greatest challenge is in identifying points at

which modules may be updated.

However, since dynamically updating specifically relates to minimizing program
downtime, solving the aforementioned update point problem in the context of
resource-constrained devices is not necessarily a priority. However, using
componentised firmware systems, that form the basis for dynamic updates [10], is of
interest, as modular updates may reduce update sizes significantly through sending
only the software modules that have changed between two versions of firmware.
Especially in the case of transmitting minor bug fixes, these systems perform very
efficiently, as such updates should only affect a small number of components, if not just

one [11].

10

Furthermore, as components may be loaded onto separate parts of memory on a
device, modular firmware may also help reduce the amount of update flash writes: since
only firmware components changed need to be erased and rewritten. The presence of
‘slop spaces’, or unused memory, placed between components also helps reduce any

necessary component reallocation due to increases in component sizes.

Example resource-constrained targeted modular systems include VM-like systems like
Dynamic TinyOS [11], which use a bytecode interpreter, like Maté, to disseminate VM
application code instead of whole firmware versions [12]. OS-like systems may support
modular updating as well, including Contiki [13], however, this may pertain to updating
parts of the operating system more so than application firmware run within the context

of the OS.

Despite the energy savings in using modular updates, there are also two distinct
disadvantages to using componentized firmware. Firstly, if updates are poorly managed,
changes may span across numerous modules. The implications of such are each
module would need to be re-sent: effectively carrying out regular a monolithic update. To
solve this problem, developing could take place on only a small numbers of modules,

however, updates may necessarily involve varied parts of a program.

Secondly, and more importantly, in order to update firmware modularly, the firmware

itself must be written in a component-like manner. Another way of saying this is the

11

firmware is not transparent to the update system: an arbitrary program executable on a
constrained-device not componentized in the manner required by the device’s modular
management middleware will not be executable. Apart from the added design
complexity introduced by requiring firmware to ‘wire’ together the different software
components, the update system will also be very much platform-dependent. Therefore,
this may be the strongest argument for the optimization of naive update mechanisms as

opposed to non-transparent approaches: platform independency.

2.3 Incremental Updates

As opposed to sending components which have changed between two firmware
versions, as takes place in a modular update, incremental updates send the bytewise
difference between two firmware images. This requires using a binary delta generation
library, somewhat like the Unix diff command, to represent these changes. When the
delta-composed update is received by the device, it is then used so as to patch the

intended firmware together from the old firmware already stored on the device.

The benefits to using an incremental or progressive approach to updating
resource-constrained devices as defined above include:
e High efficiency, especially with regards to bug fixes and parameter

reconfiguration.

12

e Patches have a highly compressible structure, so compression will be unlikely to
not result in energy savings [3].

e The relative ease of developing platform-independent transparent firmware.

In terms of binary delta libraries, some update designs include altered versions of
common algorithms, including edit script [14], which extends an algorithm like UNIX diff
to allow rewriting parts of single firmware instructions through a repair opcode. Other
approaches include using an optimized versions of algorithms, like Rsync [15].
However, depending on the degree of optimization, the underlying algorithm used may
still have a limiting effect. For example, in Zephyr’s optimized RDiff [16], block-level
granularity is still used to determine transparent firmware changes, making for difficult
management of cases where whole blocks must be sent when even one byte within

each is changed [3]. Therefore, the base-algorithm used is important.

VCDiff and BSDiff, two other algorithms, have been shown to outperform traditional
delta libraries in terms of generated patch file sizes, memory footprint and
resource-constrained device processing requirements [3]. Furthermore, these results

are supported by another set [4] in the case of the latter algorithm.

In particular, BSDiff is a novel algorithm [17], insofar as it doesn’t use a “COPY”
instruction to represent blocks of unaltered bytes in two firmware versions, but instead

uses an "ADD" instruction to record extended blocks of unaltered bytes which could

13

contain approximate matches, where at least 50% of the bytes must match in the

extended regions.

One of the primary reasons that this method performs so well is because of the nature
of changes to executables. In regions of firmware not directly affected by a modification,
changes are sparse and modified addresses are likely only to change in their least
significant one or two bytes [17]. Consequently, small changes are likely to be
considered part of approximate matches. Therefore, as unaltered bytes will correspond
to long sequences of zeros, and approximate matches will contain a bytewise difference
in which at least half of the bytes are zero, the patch structure is extremely
compressible. Especially when used with a Lempel Ziv form of compression, the
algorithm has been shown to result in significant reductions in energy usage across

various firmware change test cases [3].

Alas, as of the above, there has been, seemingly, a considerable amount of research
carried out on the energy efficiency of incremental mechanisms and their delta
generation algorithms. However, there are still numerous challenges to using an
incremental approach in a resource-constrained context. Primarily, these constitute
implementing incremental designs in highly memory-constrained environments. As
opposed to with monolithic or componentized systems, incremental updates need to
build the intended firmware from the old firmware, requiring a buffer of RAM to do so. If

there isn’t enough RAM to wholly patch the new firmware together, then

14

persistent-storage must be used instead. Furthermore, complications around maximum

update sizes and overwriting needed parts of old firmware also ensue.

With respect to the aforementioned problems, there is an apparent lack of clear
solutions provided through incremental update research papers. Furthermore, this is
seemingly an area in which research would be somewhat novel, and beneficial, and

therefore is the focus of this thesis.

15

3 Design

“There is no subject so old that something new cannot be said about it.”

— Fyodor Dostoevsky

The primary methodology behind this research is the implementation of a working
prototype to thoroughly encounter, document and overcome challenges in implementing
a process of applying incremental updates to resource-constrained devices. Prototyping
- one of the primary ways in which CS research is carried out - validates the feasibility of
a design solution, and involves a gradual refinement of initial design ideas to produce
more thorough and correct solutions, as well as a performance evaluation after the

implementation has been finished [18].

In the context of this thesis, these initial design decisions include choosing to build on
top of existing firmware which allows for carrying out regular monolithic updates,
extending the software appropriately, and using BSDiff as the binary delta algorithm on
account of its novelty and performance within resource-constrained devices; as outlined
in Related Work. Furthermore, in order to better focus on design elements directly
related to the patching process, the decompression of updates on resource-constrained

devices is not considered.

16

Despite these initial decisions, other design is made in response to encountering
first-hand the challenges in developing for a highly memory-constrained device, such as
the issue of reduced maximum update sizes explored in section 3.1. To address one
particular idea, some background into BSDiff patch files is necessary, and so is
discussed in section 3.2. Furthermore, the restrictions inherent in the use of flash
persistent-storage are discussed in section 3.3 to address possible reformatting of the

patch file structure. Finally, an overview of the incremental process is given in 3.4.

3.1 Overwriting Problem

The first step to the incremental process is to generate a patch file for a device’s
firmware on a PC and transmit the patch update to the resource-constrained device

wirelessly.

Once the board receives the update, it begins to patch the new firmware together. As
the RAM available may be limited, patching may have to take place on a page-by-page
basis. The page of new firmware then needs to be written back into persistent storage,

but a conceptual problem quickly arises: where does this page get written to?

If each page of new firmware is written to a new location within memory, not overwriting
any old firmware, then this restricts the maximum update size significantly. This is

because, if a set amount of persistent-memory is allocated to the update process, then

17

this combined allocation will have to accommodate for the old firmware, the patch, and

the new firmware simultaneously. This is displayed in Figure 2.

h A
Overwriting
otherwise used
New Patched memory
Firmware
Y
4

\4

»

L)

Patch

Max Available
Memory

Old Firmware

Figure 2: Limited flash memory available.

As update sizes increase, and patch sizes accordingly, the maximum update size is also
further reduced. Therefore, this is not a desirable solution for highly
memory-constrained devices, as the implication may be that realistically sized patches

cannot be used.

Another idea is to write the new pages of firmware into where the old firmware is stored;

applying the patch in place. However, this could jeopardize the patching process, since

18

the new firmware is potentially constructed from parts of old firmware, which would be

erased hence. The is illustrated in Figure 3.

Bank 1 Patch

Page !‘ RAM buffer
Alignment

Patched Firmware

<
N

N -
R

one
page

Old Firmware

Bank 0

Patched Firmware

Figure 3: Overwriting patch problem. Page alignment padding may be used to write the patch

starting from a new page boundary.

Regardless of the binary delta algorithm used in the process, once it consists of
“INSERT” and “COPY”instructions, or an "ADD" instruction in the case of BSDiff, the
above scenario is always a possible outcome, as one only must consider a simple case
in which the first new firmware page consists entirely of “INSERT” bytes and the second
new firmware page depends on the first page of old firmware, which has just been

overwritten and lost.

19

One may also propose the firmware be patched in a non-sequential manner, such that
new firmware page writes do not overwrite any parts of the old firmware which are
needed to patch a future part of the new firmware. However, this could lead to Out of
Memory (OOM) faults:
1. Flash memory, discussed at a later point in this chapter, dictates that the size of
each of these non-sequential new firmware writes must be one page long.
2. It can’t be guaranteed that at least one contiguous page of old firmware isn’t
used to patch new firmware.
3. Therefore, potentially subsets of pages of old firmware would need to be
buffered in RAM during the process: this could be pages of RAM. Given, that one

page may be all the available RAM, this approach is not appealing.

Therefore, simply overwriting old firmware with pages of new firmware, without first

saving the appropriate old firmware pages, is not an acceptable solution.

In terms of places to save these old firmware pages, the final idea is to overwrite parts
of the patch which have already been used to generate new firmware. However, to
determine if this could potentially work, the makeup of patch files in BSDiff needs to be

investigated.

20

3.2 BSDiff Patching

As mentioned previously in Related Work, BSDiff uses an "ADD" instruction and an
"INSERT" instruction to represent differences between firmware. Use of “ADD”
instructions is the novel aspect of the algorithm, and encodes blocks of new firmware as
references to blocks of old firmware with bytewise differences which need to be added
to the old blocks: for instance, exactly matching regions have a bytewise difference of

Zero.

Considering only this behaviour, the “ADD” instruction wouldn’t seem to offer any
advantage over using a “COPY” instruction. However, the benefit to using “ADD”
instructions is regions of approximately matching bytes before and/or after exactly
matching regions may be represented by a bytewise difference. To better define the
exact behaviour of the algorithm, the main steps to generating patches are:

1. Index the old file based on a suffix sorting algorithm [19].

2. Using this index, find regions that match exactly between the two firmware
versions.

3. Generate a pairwise disjoint set of extended matches by considering the
similarity of bytes before and after exact matches [17]. If the extended bytes
match in greater than 50% of the cases, the exact matches are extended, and
the difference between the old bytes and the new bytes within these extended

matches are recorded as ‘ADD’ instructions.

21

4. Any bytes that are not covered by these extended matches are then covered by

‘INSERT’ instructions.

As approximate matches will consist of long sequences of zeros for exactly matching
subregions, and the extended regions will be represented by zeros in at least 50% of
the bytes, patch files are highly compressible; more so than copy and insert style

algorithms.

Accordingly, a patch file’s content primarily consists of a “Diff Block” containing “ADD”
instruction bytewise differences, and an “Extra Block” containing “INSERT” instruction

bytes. This is illustrated in Figure 4.

Extra block

Diff block

Control block

Header

Figure 4. BSDiff patch format. The control block consists of commands to generate the new

firmware from the diff block and control block, whereas the header contains pointers into the file.

22

As the size of the diff block is the same as the size of old firmware being added to, the
patch’s main content, the diff block and extra block, together equal the size of the new
firmware. The implication of this analysis in the context of writing new firmware
page-by-page is important, as it is: for each page of new firmware patched using the
patch file and old firmware, there is always an equivalent page of used patch content

which may be overwritten. This is illustrated in figure 5.

A
Extrablock
Same size
as new
firmware
Diffblock
Y

Control block

Header

Figure 5. Firmware size is same as data block size.

Despite the above proof however, on the basis that the page of new firmware may have
been formed from part of both the diff block and the extra block, will the non-contiguous
nature of the free page affect its usefulness as a means of storing old firmware? Or can

the page of old firmware be saved in part to both the diff block and extra block?

To answer these questions, the constraints of flash-memory usage must be first

considered.

23

3.3 Flash Memory Restrictions

Considering the question posed in the previous section: before part of an old firmware
page may be written in flash, it first must be erased. Furthermore, flash doesn’t allow for
the erasure of individual bytes: instead, a whole unit, which constitute a page, must be
erased all at once. Therefore, it is impossible to save old firmware back into a patch file
- one part within the diff block; the other within the extra block - without erasing parts of
the patch which will be used to generate future pages of new firmware. This is illustrated

in Figure 6.

Extra Block
unused
byteslost . .|
in erasure \i S e
One
used extra Page Unit
bytes
4
Diff Block
"""""" TRRE R R A
unused
bytes lost - ; ; i
in erasure One
Page Unit
used diff I
bytes v

Figure 6: Saving split page issue.

24

However, as BSDiff stores bytewise additions and new “INSERT” bytes into these two
separate blocks not as a mandatory step in the patch generation, but as a means of
slightly increasing the compressibility of the patch, these two blocks may be merged.
The alternative structure then consists of diff bytes and extra bytes ordered in the
manner which they are used to form new firmware, which will now be referred to as the

“‘Data block”. This is illustrated in Figure 7.

Original Data Block New Data Block
Extra bytes
Extrablock
Y Diff bytes
Ditfblock S
Diff bytes

Figure 7: New data block format.

The above is therefore a solution to the previous non-contiguous nature in which patch

content bytes were ordered. However, one other issue is of relevance.

Considering that the control block is made up of a variable number of control
instructions, the offset of the data block within the patch file will likely not be one page.
Furthermore, considering that the patch is likely to be stored starting from a new page

boundary, this means the data block will also not be page aligned.

25

The above is a problem as each free page of patch will then traverse a page boundary,
meaning that to write to overwrite this free page, one page on either side of the
boundary will first need to be erased; losing unused parts of the data block and control

block. This is illustrated in Figure 8.

Exira bytes

/I"/"/'"/"'/"?"/""
el L. T
Need to erase unused

bytes within same

aligned page of used
datablock

N T

Control Block

Page of used
data block

Aligned

| Header | Page

Figure 8: Losing unused bytes due to page alignment.

The solution to this problem is simple: move the header and control block to the top of
the patch, such that the data block is at the start of the patch; which is page aligned.

This is illustrated in Figure 9.

26

Header

Control block

Extra bytes
Aligned
Page Unit Exiayies
Diff bytes

Overwrite occurs
after new
firmware is
patched

Page of
used
datablock

Figure 9: Page-aligned data block solution.

This rearrangement of the patch works even though the last overwrite in saving old

firmware may erase a variable amount of the control block and even header; if the size

of new firmware is not a multiplicative factor of page size. This is because the control

block and header are no longer needed by the time they may be overwritten, since the

last page patched firmware is stored in RAM; waiting to be written to flash.

Furthermore, it's necessary to keep the header at the top, and not the control block, as

the control block is of variable size, and determining the header’s offset would therefore

be impossible.

With these modifications, the new patch structure looks like the following in comparison

to the original patch, illustrated in Figure 10.

27

Original Patch Format New Patch Format

Header
Extrablock
Control block

A

Diffblock Extraibyies

—>
Diff bytes
Control block vt datablock
Extra bytes
Header :

Diff bytes v

Figure 10: Patch structure comparison.

Seemingly, the incremental update process may now take place.

3.4 Process Overview

As the primary challenges to developing an incremental update mechanism within a
resource-constrained environment have now been seemingly overcome, the update

process may be illustrated from start to finish.

The first step to applying the received patch is to build a page of new firmware in RAM

according to BSDiff's patching process. This is illustrated in Figure 11.

28

Al 14— Header
BANK 1 \ Control
block
One Extra bytes
page
__________ ¥ Diff bytes
RAM buffer
Page_—7 /// // // | |
alignment x
Extra bytes |
Diff bytes + Original bytes
BANK 0
Original bytes
Y

Figure 11: Forming a page of patch. The orange color within the RAM buffer illustrates the
resulting new firmware is formed from adding the yellow old firmware bytes and red bytewise

difference bytes together.

As the maximum amount of RAM may be limited to one page, on the basis that it makes
sense to have a buffer size equivalent to the flash erasure size, part of one “ADD” or
‘INSERT” instruction may have to be split into multiple parts, on account of accumulated
instruction bytes not aligning to a page boundary. This is shown in Figure 11 where the

extra bytes segment is cut in two by the dashed line.

In any case, once the new page has been formed in memory, it's time to save the first

page of old firmware bytes into the first page of the patch data block which has already

29

been used to form the new page in RAM. Once this is done, the new firmware page

may then be written back into the first page of the old firmware. This is illustrated in

Figure 12.
L | A
""""""" BANK 1
...... Extra bytes
' Diff b
iff bytes ¥
/// // // —
A 3
| Extra bytes |
1
Diff bytes + Original bytes
BANK 0 e -
N 2
Original bytes | | .
. 4

Figure 12: Saving a page of old firmware. The numbers ‘1’ and ‘2’ refer to the order in which the

operations are carried out.

Figure 13 represents the state of memory having written the first page of new firmware.

30

BANK 1

Original Bytes

v RAM buffer

I ————

Original Bytes + Diff Bytes

BANK 0

| Extra Bytes | g:;veFirmware

Original Bytes + Diff Bytes

Figure 13: Final flash state after storing patched page.

To complete the whole patching process, this cycle of forming pages of patch in RAM,
saving old firmware, and writing the new page back into the old firmware may need to
take place repeatedly. Specifically, the amount of times it will take place is:

sizeOf (new firmware)/sizeOf (page) + sizeOf(new firmware)%sizeOf(page)

Furthermore, when patching together new pages of firmware after the first has been
written to flash, the patching process may then refer to old firmware bytes within either
the patch or the old firmware bank, depending on whether they have relocated to the

patch.

31

In the last cycle, the size of the new firmware to be written will likely not be a whole
page, since it’s unlikely that the size of the new firmware is a multiplicative factor of a
page size. Therefore, part of memory not representing the new firmware will simply be

left erased; functioning as page alignment in essence.

This concludes the design of the incremental update mechanism proposed in the thesis,

and makes way for discussion on a prototype implementation.

32

4 |Implementation

Z

“Action is eloquence.’

— William Shakespeare

This chapter details the implementation of the design proposed earlier in this thesis, and
therein discusses the main body of work carried out in the project, and the development
challenges faced in creating the incremental design prototype. Much more detail of the
actual update process not included in the Design, or previous chapters, is included in

the Implementation.

Furthermore, each section relates to a significant and specific part of the
implementation. For each section, a list of development steps are given, as well as a
short discussion on the challenges faced, located under an unnumbered heading

“Challenges”.

Section 4.1 first details the necessary steps to carrying out monolithic updates using
bootloader firmware, supplied by the NRF5 SDK, and nrfutil: a command line tool for

both creating monolithic update packages and transmitting them wirelessly over BLE.

Following on from this, the alterations to nrfutil to allow for creating and sending patch

update packages are given in section 4.2, which include recompilation of serialization

33

libraries to support updated metadata, known as an init packet, sent prior to firmware

content.

The extensions to the bootloader firmware to receive incremental updates are
discussed in section 4.3, and the steps required to reimplement BSDiff according to the

design proposed are given in section 4.4.

Finally, the appropriate measures taken to port altered BSDiff to the bootloader are
listed comprehensively in section 4.5. This section also contains a discussion on how
overlapping of the new patched firmware and the patch itself is avoided despite the two

being located directly above and below each other respectively.

4.1 Regular DFU

As the strategy taken to implement incremental methods consisted of working from
firmware that supports monolithic updates, the first step was to carry out a regular
monolithic update. Having configured a local copy of NRF5, and built nrfutil from source,
the main steps required are to:
1. Flash the bootloader onto the device using nrfjprog; a command line tool for
interfacing with Nordic Semiconductor development kits.
2. Flash a software defined BLE stack, also supplied by NRF5, in a similar manner

as step 1.

34

3. Generate update packages using nrfutil. This requires supplying the tool with a
firmware image, and private key used to verify the update within the bootloader.

4. Transmit an update. Firstly, this requires the board enter bootloader mode, thus
exiting out of currently running firmware, and is done through holding down two
on-board buttons while resetting the device. Secondly, another board with BLE

support is then used to transmit the monolithic package.

Challenges

The main challenge faced in this section was dealing with errors raised from a BLE

python package in nrfutil, and were mysteriously solved through cleaning up versions of

Python and using a virtual environment.

4.2 Nrfutil Alterations

The following changes to nrfutil were necessary to support both generating and
transmitting incremental patch packages:
1. Add a command line options for specifying a patch to be used instead of a
firmware image.
2. The init packet must allow for including patch related metadata. These include
specifying that the update is incremental and not monolithic, and the patch size

included in the update.

35

3. Internally, code which handles conversion from a “.hex” executable format to
“.bin” format, as well as padding these binaries to 4 byte divisible sizes, must be
bypassed. The manifest file, which specifies the contents of an update package,

may then be updated to include the patch file instead of firmware image.

Furthermore, generated code for the serialization of the init packet, created using
Protobuf, must be recompiled using a command line tool, protoc, which may be

provided by brew.

Challenges

In terms of development challenges, one was adding patch cases throughout the
medium-sized nrfutil source, as the code is written in a relatively non-generic manner
which makes reference to “firmware” or “binary” within variable names as much as

possible.

Furthermore, if a board didn’t have the correct softdevice flashed onto it, an error
related to BLE packet transmission would be raised. These sorts of behaviour tended to
be figured out through some amount of reasoning and debugging via PDB; which was

very useful.

36

4.3 Receive Incremental Updates

The changes required to receive an incremental update, without yet being able to patch
it, include the following:

e Adding a case for incremental updates within init packet prevalidation checks,
before the main firmware content is sent, to make sure that the init packet
contains a patch size value.

e Compiling Protobuf serialisation based on nrfutil’'s new serialization: a tool is

supplied by NRF5 for generating the necessary C and header files.

Challenges
Stepping through code on the bootloader is impossible due to BLE timeouts which
interrupt and exit the board from bootloader mode. Despite this, debug messages may

be used.

Furthermore, in the case of init packet serialization issues, the external Protobuf
generated code had to be debugged. Before realizing that error messages set in
Protobuf had been discluded in NRF5 SDK config to optimize compilation, this

debugging was arduous.

37

4.4 BSDiff Alterations

The next significant part to the implementation consists of altering BSDiff according to
the Design chapter. The changes to the patch generation are:
e Merging the diff block and extra block into one data block, such that they are
ordered according to their position in new firmware.

e Relocating the header and control block to the top of the patch.

The changes to the patch application are:

1. Alter the program pointers which locate the header and control block, and use
one pointer into the data block instead of two separate pointers for the diff block
and extra block.

2. Apply patches on a page-by-page basis. This requires allocating a page sized
buffer of memory, and breaking up command instructions into multiple
instructions if the whole instruction leads to buffer overflow. For example, there
may be only 10 bytes left in the current page buffer, but the next “INSERT”
instruction is to insert 12 bytes. Therefore, the instruction is broken up so that the
first 10 bytes are inserted into the buffer, the contents of the buffer are written,
and the last 2 bytes are inserted at the start of the page buffer.

3. Save old firmware into the patch and write the new patched firmware back into

the same position in memory as the old firmware; as per the design. Must make

38

sure that old firmware is read from the correct location; depending on whether it's

stored in the overwritten patch, is in its original location, or partly both.

Furthermore, no padding of patches to fit a 4-byte / 32-bit size is required, although
flash writes must be 4-byte aligned. The reasons for this are twofold:

e NRF5 SDK compiled firmware is padded to a 4-byte divisible size.

e The data block is the same size as the firmware; control statements are 24 bytes

long, and the header is 32: all of which are 4-byte divisible.

Challenges

The first challenge in implementing the altered BSDiff was design related, and involved
misinterpreting how the algorithm worked. The misconception was that areas of old
firmware used in “ADD” instructions would be referred to sequentially, such that, for
example, after the second page of old firmware had been used to form the new

firmware, the first page of old firmware would no longer be needed.

Secondly, whenever there were differences between the patched new firmware and the
actual new firmware used to create the patch, the reasons for the differences could be
hard to determine. Use of LLDB to debug BSDiff was helpful, especially when setting
various conditional breakpoints, but sometimes comparing the contents of the patched
firmware to the original new firmware was necessary. In making these changes again, it

would have been best to add a small testing framework.

39

4.5 Bootloader BSDiff Port

The final part of the implementation is to port the altered BSDiff patching to the
bootloader, which constituted the following:

e Add altered BSDiff as an external library.

Call the patching function with the necessary pointers into the start of the old

firmware and the start of the patch.

e Before writing new patched firmware, or saving old bytes, erase the necessary
pages.

e Enable NRF5’s flash module, which provides a version of malloc, to allow the
allocation of a page of RAM. Furthermore, the size of the maximum allocatable
contiguous block of memory had to be enabled within the SDK’s memory
manager module.

e Change numerous types used locally within BSDiff that aren’t natively supported

by NRF5, like “off_t” types to “int64_t” types. Furthermore, some thinking around

implicit type casts was necessary, due to, for example, BSDiff using single byte

“‘uchar” pointer addressing and NRF5 using “uint32_t" addressing.

Challenges

The challenges in porting BSDiff mainly consisted of determining the reasons for flash

errors and memory allocation errors, increasing the default module log levels to

40

determine what error codes were returned, whose definitions could be grepped within

the SDK.

Furthermore, determining the addresses of banks of memory which store the patch and
the current firmware was more difficult than suspected as they were dynamically

allocated in software depending on the size of firmware.

Patch-Firmware Collision

Although the Design specifies the patch be located above the old firmware in memory,
the location of these two banks of memory is arbitrary. However, if they are located
below and above each other respectfully, then to make sure the patch and the new

patched firmware don’t overlap with each other, two cases need to be considered.

The first of these is when new firmware is smaller than the current firmware on the

device. Therefore, it won’t overlap with old firmware if the patch is located directly above

the old binary. This is illustrated in Figure 14.

41

A

New binary

size

BANK 1

A

Old binary| =

size

07777 et

BANK 0

EEEEEEEEEENEER (—Page

boundary

Page
size

Figure 14. Patch located just above old firmware. The patch is situated on the next page

boundary after the old firmware.

In the second case, the new firmware is greater in size than the old firmware, meaning

that if the patch is situated directly above the old firmware, then it may be partly

overwritten by the new firmware. Therefore, the patch should be located at an offset

greater than the size of the new firmware from the start of the old firmware, illustrated in

Figure 15.

42

Patch size

Old binary

size

BANK 1

A

BANK 0

A
New
binary size
Y
Page
alignment
Y
A
New
binary size
Y

Figure 15: Patch located above new firmware.

43

5 Results

i

“It is the mark of a truly intelligent person to be moved by statistics.’

— George Bernard Shaw

5.1 Experimental Setup

The experiments carried out consist of transmitting and applying incremental updates
according to the manner outlined in the Design and Implementation chapters to a Nordic
Semiconductor nrf52832 development kit. The board is flashed with both the altered
bootloader firmware outlined in the Implementation chapter, and a software defined BLE

stack known as the s730 softdevice in the NRF5 SDK.

The test cases used are based on “Blinky” application firmware supplied in NRF5 SDK

version 14.2.0.

The Blinky application uses an infinite while loop with an inner for loop to loop through
each LED on the board and turn it on; wait for an arbitrary period; and turn it off. The
manner in which the firmware is altered in each version corresponds to the following:
1. v1is the same as the original SDK supplied version.
2. v2 removes the outer infinite while loop and instead replicates the inner for loop

once, such that there are two for loops.

44

3. v3is the same as the original but uses a variable to set the initial waiting duration

and increments same after each iteration of the outer while loop.

The size of each version is given in Table 1.

Blinky version Size (bytes)

v1 2476
v2 2920
v3 3264

Table 1: Blinky version sizes.

Patches are then generated to go from version n to n+1; shown in Table 2. They and
are compressed with FastLZ, as suggested by [3], which was chosen from a selection of
other compression libraries tested on BSDiff which included huffman and 1z77

compression.

Patch Size (bytes)
v2 237
v3 427

Table 2: Compressed patch sizes.

45

5.2 Data

In comparison to monolithic update mechanisms which use compression, the only
supplementary stage to incremental updates is the intermediate patching of new
firmware pages. The extra CPU time incurred by this patching - directly corresponding
to additional energy consumption - for the three Blinky test cases can be seen in Table

3, which also includes time taken to apply the corresponding monolithic updates.

Monolithic Patch
v2 70.4 122.0
v3 76.8 135.4

Table 3: Update application times (ms).

Despite apparent large percentage differences between the time taken to apply an
update incrementally and monolithically, it's important to see the actual average
difference is 51ms. In comparison, due to high compressibility of patches displayed in
Table 2, patching saves 640ms off the average of transmission times relative to

compressed whole images - shown in Table 4.

Monolithic Patch
v2 1260.1 618.4
v3 1275 636.7

Table 4: Transmission times (ms)

46

Therefore, given that RF transceiver active-time typically requires 10 times the amount

of energy than CPU active-time [6], the energy expense due to patching is negligible.

Quantifiably, various test cases - spanning from the addition of new applications to
application upgrades - used to evaluate FastLZ compressed BSDiff in [3] show energy
saving which are at least 30% using monolithic updates. Although patch reformatting
used in this thesis to accommodate highly memory-constrained devices may affect
update sizes, it's clear that an average of less than 0.5% for the test cases, shown in

Table 5, is also negligible, and thus: practically identical energy savings would be

expected.
Patch Size Increase
v2 0.84%
v3 0%
Table 5: Compressed reformatted patch size percentage differences.
Discussion

In terms of explaining these small increases in patch sizes: they are due to merging of
the diff block and extra block into one data block. The primary way that BSDiff allows for
such high compression is long consecutive sequences of zeros that correspond to exact

matching regions between two versions. Although no single exact match is split through

47

the redesign, two matches which were located contiguously may be separated and
resituated in different parts of the data block. Theoretically, this could result in even
longer sequence of zeros. However, in practice, it seems it may increase the

compressed size; by a negligible amount.

48

7/ Conclusions & Future work

“The possession of knowledge does not kill the sense of wonder and mystery. There is always
more mystery..”

— Anais Nin

7.1 Conclusions

One primary conclusion of this thesis is incrementally updating highly
memory-and-resource-constrained devices is possible through the update mechanism
outlined in the Design chapter. Furthermore, due to energy saved in transmitting smaller
updates, and the negligible patch size increase due to reformatting, the incremental

mechanism should tend to result in significant energy savings.
Interestingly, the incremental mechanism requires no extra flash other than that required

to receive the patch, and a small amount of RAM to buffer a page of patched firmware.

This ensures that the maximum update size remains as large as possible.

49

7.2 Future Work

7.2.1 Decompression

BSDiff requires patches be compressed to result in file size savings. Without
compression, patches are actually larger than the new firmware to be patched together,
since the patch file is the same size as the original firmware image plus the size of the
control statements and header. Despite this, decompression is still only an intermediate
step in the update process, and would be relatively easy to implement from a

conceptual point of view.

One means of carrying out decompression would be to receive the compressed patch at
the top of a bank the same size as the decompressed patch, produce decompressed
patch on a page-by-page basis in RAM, and write the patch pages in an ascending

manner starting from the bottom of the bank. This is illustrated in Figure 16.

50

compressed patch

,,, RAM Buffer

BANK 1 decompressed page

Figure 16: Decompression. ‘1’ represents the inflation of compressed patch to produce one

page of decompressed patch. ‘2’ represents the writing of a decompressed page to flash.

This process continues until the whole patch has been decompressed and written back
into persistent storage. This means the last page of decompressed patch, or the final

pages of decompressed patch, will overwrite the compressed patch.

In order for this to work, the size of the decompressed patch would need to be known
beforehand such that the size of the bank may be set accordingly. One way of achieving

this would be including the decompressed size within update metadata.

To assess which library would be best to use, considerations of memory footprint,
processing requirements and compression ratios of numerous libraries would need to
tested. However, this has seemingly been carried out to a great extent in [3, 4],

concluding that FastLZ or 1z77 is best to use along with BSDiff.

51

7.2.2 Robustness

There is a greater amount of security in update processes that are robust and reliable.
Robustness hasn’t been focused on to a great extent in this thesis, and therefore, there

are two ways in which it could be increased significantly and relatively easily.

The first of these means would be saving a small amount of state regarding the
patching process, such that, if a device was to run out of energy or be unplugged, that it
could resume patching once it was powered back on. However, one issue with the
current design is if a device ran out of energy after erasing a page of used patch in
preparation to save an old firmware page, then the patched firmware page in RAM

about to overwrite the original old firmware page would not be reclaimable.

Therefore, one solution is to preserve a page of flash storage - available to the update
process - to intermediately store the patched firmware page in RAM before erasing the
used patch page. Despite this, the maximum update size is consequently reduced. In
any case, the state needed for this process would correspond to a pointer into the last
page of patched firmware successfully written into its final location over the old

firmware.

The second means of increasing robustness could be verifying that updates are meant

to be applied to the version of firmware on a board. This can be done by including what

52

version of firmware is expected on the board in update metadata. The bootloader may
then compare the firmware version on the board with this incoming version before

receiving the update.

7.2.3 Efficiency

There are many ways in which the design could be made more efficient in terms of
reducing energy consumption and reducing the number of flash write cycles; as flash

memory may only support a limited number of write cycles at any given address.

Firstly, when patching new firmware, if a page matches the corresponding page of
current firmware, then the new page shouldn’t be written. This could be detected
relatively easily by determining that there are no new bytes in a patched page and that
the sum of diff bytes for the page is also zero. Furthermore, this detection could be
carried out whilst patching firmware or in the patch generation if the functionality of

control statements is extended to include skipping page writes.

In terms of flash longevity, one simple means of increasing such would be to make use
of a circular writing system; much like a circular buffer. This would ensure that all the
flash available is written to approximately an equal amount of times, thus increasing the
lifetime of the device. However, such a circular system would also necessitate keeping

state for where firmware is stored, and hence is slightly complex.

53

Lastly, reversing updates, when required, could be done more efficiently than sending a
reverse patch through using the old firmware saved during patching processes.
Furthermore, as some of the original firmware may be not have been overwritten by the
new patched firmware, and is situated just before where the patch was received, the
process would simply constitute copying over the old firmware, saved in the patch file,

back to its original position.

54

Citations

1. “Gemalto and Cargo Tracck team up for a Successful Sting Operation®,

https://www.gemalto.com/m2m/customer-cases/iot-protects-rainforest, [Accessed

8 May 2018]

2. S.Brown, C. J. S. (2006). "Updating Software in Wireless Sensor Networks: A

Survey."

3. Stolikj, M. C., P.J.L.; Lukkien, J.J. (2012). "Efficient reprogramming of sensor

networks using incremental updates and data compression."

4. Mei-Ling Chiang, T.-L. L. (2011). "Two-Stage Diff: An Efficient Dynamic

SoftwareUpdate Mechanism for Wireless Sensor Networks ".

5. S.Brown*, C. J. S. "AN ENERGY BENCHMARK FOR SOFTWARE UPDATES

ON WIRELESS SENSOR NODES."

6. Milosh Stolikj, P. J. L. C., and Johan J. Lukkien "Efficient reprogramming of

wireless sensor networks using incremental updates."

7. LaManna, V. P. (2012). "Local dynamic update for component-based distributed

systems."

8. Chen Rong. C. H.-b., Zhang Feng-zhe, Zang Bin-yu (2007). "Dynamic update of

operating systems."

9. Xiaohui Xu, L. H., Dejun Wang (2007). "Supporting dynamic updates of

componentized service."

10.Gregersen, A. R. (2011). "Implications of modular systems on dynamic updating."

55

https://www.gemalto.com/m2m/customer-cases/iot-protects-rainforest

11. Wagaas Munawar, M. H. A., Olaf Landsiedel, Klaus Wehrle (2010). "Dynamic

TinyOS: Modular and Transparent Incremental Code-Updates for Sensor

Networks."

12.Culler, P. L. a. D. "Maté: A Tiny Virtual Machine for Sensor Networks ".

13.George Oikonomou, . P. (2011). "Experiences from Porting the Contiki Operating

System to a Popular Hardware Platform.”

14.Niels Reijers, K. L. (2003). "Efficient Code Distribution in Wireless Sensor

Networks."

15.Jaein JEONG . D. C. (2009). "Incremental Network Programming for Wireless

Sensors."

16.Rajesh Krishna Panta, Saurabh Bagchi and Samuel P. Midkiff (2009). “Zephyr:

Efficient Incremental Reprogramming of Sensor Nodes using Function Call

Indirections and Difference Computation.”

17.“BSDiff”, http://www.daemonology.net/papers/bsdiff.pdf, [Accessed 8 May 2018]

18.Alsanussi, M. A. M. a. R. A. (2017). "Review of Methods Used in Computer

Science Research."

19.SADAKANE. N. J. L. A. K. (1999). "FASTER SUFFIX SORTING."

56

http://www.daemonology.net/papers/bsdiff.pdf

