
Floating Buses: Optimizing bus routes

and passenger allocations based on

real-time collaboration.

By

Conor McKenna

Dissertation

Presented to

Trinity College, The University of Dublin

In fulfillment

Of the requirements

For the Degree of

Master of Science in Computer Science

Trinity College, The University of Dublin

Declaration

I hereby declare that this project is entirely my own work and that it has not been

submitted as an exercise for a degree at this or any other university. I agree to deposit

this thesis in the University’s open access institutional repository or allow the Library

to do so on my behalf, subject to Irish Copyright Legislation and Trinity College

Library conditions of use and acknowledgement.

_______________________________________ ____________________

Name Date

1

Abstract

Floating Buses: Optimizing bus routes and passenger allocations based

on real-time collaboration.

By Conor McKenna
Master of Computer Science

Trinity College Dublin

Supervisor: Siobhán Clarke

With the current implementation of our public transportation systems, people are forced to

adhere to strict timetables and fixed routes on their journeys, and are negatively impacted by

the growing issue of vehicles reaching overcapacity, either having to stand or be refused

entry completely. Conversely, buses have to make needless journeys to allow for the

possibility of demand, with no way of knowing whether the trip is worthwhile or not until

completion. This has a harmful effect on the environment, with wasted trips leading to

harmful emissions being released for no reason. A better solution would be a more dynamic

system that caters to passengers needs as they arise. This system wouldn’t need to adhere to

strict timetables and routes, but instead run when and where the need arises. It would be able

to assure admission for each user who signs up for it, while also being able to guarantee that

there are passengers available before setting off, cutting out needless journeys completely,

reducing wasteful journeys that are harmful to the environment. This better system would

allow more communication between passengers and drivers to create a more suitable

transportation system for modern life. With modern technology keeping commuters

connected 24/7, there is no need for people to still have to rely on outdated, inflexible modes

of transportation.

The current state of the art is currently lacking an implementation and justification

for a public transportation system with dynamically changing destinations based on live user

input. There exist various proposals and prototypes of dynamic bus routing systems with

dynamic stops, but few have publicly shown justifiable results for their implementations.

Thomas Kearns et al. at the Illinois Institute of Technology (IIT) put forward a prototype

solution of a dynamic bus routing system for the city of Chicago, proposing a system that

created localised pickup and destination locations for groups of users based on an analysis of

demographic data. This is a clever solution to bus routing, but doesn’t account for stochastic

demand, as user requirements can change daily. Electronics giant Philips proposed a system

2

using existing infrastructure, such as street lights, as dynamically allocated bus stops, but

didn’t properly implement their system out of expectations that a robust IT architecture

overhaul would be needed to bring the system to fruition. Other current public transportation

routes only with fixed locations between its start and end points, and studies into the area of

improving bus flow look at changing the route taken between these static in between points.

Existing approaches to vehicle routing exist mainly in the domain of transporting packages to

fixed locations, and existing ride-sharing applications focus purely on individual requests

rather than servicing a larger community. Furthermore, existing bus route allocation methods

only look at fixed routes and timetables, and seating allocation techniques don’t take

dynamically changing capacity into account.

This study proposes a practical solution for a dynamic public transportation system,

known as a floating bus. This floating bus system takes advantage of dynamic input via user

requests from an Android application, to create floating bus stops and plot dynamic routes

that cater to their assigned passengers needs. Requests are posted to the web application

backend, sending the users email with their pickup coordinates, their destinations coordinates

and the required number of seats for their journey. The system accepts requests and assigns

them either to existing waypoints, which are aggregations of pick-up and drop-off

coordinates from all requests received, or creates new ones to cater for them if they fall out

of range of the existing ones. These are then used to create a route, which is then assigned to

a free vehicle, or an existing route attached to a vehicle may be updated if one of its

waypoints is updated to allow for a new request that lies within its aggregation radius. These

waypoints are updated to be positioned at the nearest segment of real road network to

function as position of the floating bus stops. Feedback and information is provided using

Google Maps and Google Directions APIs, painting the ideal routes onto a Google Maps

image, as well as displaying concentration of requests via a heatmap on top of the map.

The results show that a floating bus system has the potential to be a viable solution

to creating a better city transportation system. Simulations were run against the system using

mock data with different pickup and drop down locations and varying passenger amounts.

This involved issuing multiple requests to the system at different locations across Dublin city

for multiple vehicles to handle, where results showed that vehicles were assigned the most

efficient routes based on their direction and capacity at each waypoint. The vehicles were

then simulated to follow the set routes realistically, with passenger allocation changing at

each floating bus stop. The metrics recorded from these simulations were time and distance,

3

as well as the distance from a passengers desired pickup and drop off locations to their

assigned pickup and drop off locations. passenger convenience. Using the distance travelled

metric combined with average pollution output over time the environmental impact of the

floating bus routes is also calculated. These are then compared with fixed route alternatives

to show an improvement in delivering passengers to capacity while reducing the impact on

the environment.

4

Summary

This project implements a dynamic bus routing system known as a Floating Bus,

defined by its ability to generate Floating bus stops that are routed to dynamically.

Floating bus stops are generated via user requests for their pickup and drop off

destinations, giving the ability to be able to gauge demand for the service and

reducing unnecessarily wasted journeys due to little demand or excessive demand

(ie: when the bus is full). By knowing the locations to best serve user demand in

advance, the floating bus service is able to improve on the public transportation

service that serves every stop along its route in anticipation of demand.

To reduce the number of stoppages along the floating bus routes, user pickup

and drop off locations are merged into communal floating bus stops, which are

reflected in their request object after storing to a local database. These floating stops

are then related to road network data gathered via Google APIs such as Directions

and Distance Matrix. These help provide the ideal route for a floating bus vehicle and

return usable road network data.

Results of the system show cases where a floating bus approach is a more

efficient choice than a traditional static bus route, but also shows the pitfalls of poor

vehicle and request allocation.

5

Acknowledgements

I would like to thank my academic supervisor Prof. Siobhán Clarke and Fatemeh

Golpayegani for their support and assistance over the course of this project. Their

advice was always helpful and pointed my work in the right direction.

I would like to thank my employers at VisibleThread for their support and ability to

accommodate my studies while I was working with them part time.

Finally, I’d like to thank my family for their support and patience throughout the

year.

6

Contents

Declaration 1

Summary 5

Acknowledgements 6

Contents 7

Chapter 1 - Introduction 9
1.1 Research Question 9
1.2 Background and Motivation 9
1.3 Project Overview 11

Chapter 2 - Background 12
2.1 State of the Art 12

2.1.1 Related Research 12
2.1.2 Vehicle Routing Problem 15
2.1.3 Ridesharing 16
2.1.4 Seat Allocation 16
2.1.5 Bus Allocation 17

2.2 Technologies 17
2.2.1 RESTful Web Services 17
2.2.2 Android Studio 20

2.3 Google APIs 21
2.3.1 Google Directions API 21
2.3.2 Google Distance Matrix API 21
2.3.3 Google Maps JavaScript API 21

2.4 Databases 22
2.4.1 PostgreSQL 22
2.4.2 Firebase 22

Chapter 3 - Implementation 23
3.1 Backend Components 24

3.1.1 Vehicles 24
3.1.2 Routes 24
3.1.3 Road Segments 25
3.1.4 Requests 26
3.1.5 Waypoints 27
3.1.6 Users 28

3.2 Bus Allocation 29

7

3.3 Routing 33
3.3.1 Floating Bus Stops 34
3.3.2 Plotting The Route 39
3.3.3 Obtaining Route Information 42

3.4 Backend System 46
3.4.1 Controllers 46
3.4.2 Scheduled Components 47
3.4.9 Simulations 48

3.5 Android Application 51
3.5.1 Activities 51
3.5.2 Functionality 55

3.5.2.1 Firebase 55
3.5.2.2 Submitting a Request 56
3.5.2.3 Standby Activities 58
3.5.2.4 Driver Activity 59

Chapter 4 - Evaluation 60
4.1 Implementation Testing 60
4.2 Test Cases 61

4.2.1 Test Data Collection 61
4.2.2 Measuring Passenger Quality of Life 66
4.2.3 Routing Changes Based on Demand 72
4.2.4 Number of Floating Bus Stops 78

Chapter 5 - Conclusions 84
5.1 Findings 84
5.2 Implementation Issues 84
5.3 Future Work 86

Appendix A 88
User Interface: Control Panel 88
User Interface: Android Client 91

Appendix B 95
Sample Dublin Bus Route Data XML 95

Route 757 Towards - Dublin Airport 95
Sample Dublin Bus Route Data Formatted CSV 100

Route 757 Towards - Dublin Airport 100

Appendix C 102
Full Routing and Merging Process Illustrated 102

Bibliography 107

8

Chapter 1 - Introduction

1.1 Research Question

This project seeks to answer the question, is it practical to create a smarter bus

system than the current public transportation system with dynamic bus stops by

taking advantage of modern connected smart devices? This project implements a

system that dynamically adapts bus routes as new requests come into the system by

dynamically creating and merging bus stop points.

1.2 Background and Motivation

As technology evolves and cities get smarter, we are faced with the ever growing

issue of old systems being made redundant, often for very good reason.

Technological advances that have yet to be incorporated into existing infrastructure

make systems feel even more rigid and unsuitable for modern life anymore. A system

we still have in place that continues to become more and more out of date is our main

method of public transportation, namely the city bus service.

The inner city bus service is quickly becoming a relic of an age before our

world of constantly connected devices and the convenience they bring. The public

bus service follows strict routes and adheres to strict timetables exactly, and other

than being occasionally late it follows these imposed rules exactly, regardless of

consumer needs or demands. For example, a bus at full capacity will continue its

route to completion, even if it would make more sense to deviate from the set route

to reduce capacity sooner, which inconveniences passengers both on and off the bus.

A bus will start and complete a route in the dead of night, even though there may be

no passengers at all anywhere along the route, wasting a journey completely, causing

needless harm to the environment, as well as wasting time and money making the

trip. The current public bus system that has become an an inconvenience more than a

convenience in many ways, having a negative impact on congestion, the economy,

and the environment.

9

There are many reasons to pursue a better bus system than the one we have

now. For example, traffic and losses caused by it. In 2007, congestion induced

economic losses in Dublin which accounted for 4.1% of GDP (Gross Domestic

Profits)[1]. On top of that, it is predicted that time lost due to aggravated traffic

congestion in Dublin will rise to €2 billion by the year 2033[2].

As Dublin grows as a Smart city, so too does its smart infrastructure. With

regards to public transportation, RTPI (Real Time Passenger Information) has been

implemented into public transportation since 2008[3], which assists in letting

potential passengers plan their routes according to the real time information about the

public bus service. This technological advance in the domain of public transportation

does not do enough in improving the system overall. Passengers still cannot

guarantee space on their journeys, and may be left standing in the cold once the bus

has reached maximum capacity, having to wait for another free one. They have no

influence over the route the bus should take, and may have to walk a considerable

distance either side of their journey to make it to their desired destination.

This project presents a dynamic routing system as an alternative to the

traditional bus system, dubbed the floating bus. The name comes from the ability to

create dynamic routes by creating floating, pop up bus stops that are navigated to by

a servicing vehicle. These floating bus stops aren’t based off of historical or

demographic data, but live, real-time input from users via an Android application,

and are related to real road network locations for stop locations. The floating bus

system gives more control to the public on how a public transportation service is run.

Utilizing the ever connected nature of modern smart devices, users can use the

floating bus system to cater to their needs, within reason. The floating bus system

enables users to create floating bus stops which dictate routes, allows them to reserve

a seat, and receive accurate real time information and notifications of bus arrival to

their assigned floating bus stop, in a way that suits them.

1.3 Project Overview

This dissertation compares and details existing research in fields relevant to the

floating bus system in Chapter 2. The full implementation of the system is detailed in

10

Chapter 3, where the individual components of the system are broken down and

explained before their use in the system is elaborated on. The results and evaluations

of the various simulations and tests are shown in Chapter 4. Chapter 5 discusses how

the floating bus system can be developed and iterated on in future, and how it could

be utilized in a practical way in modern smart cities.

11

Chapter 2 - Background

This section gives an insight into the various fields of research studied before

embarking on this project. It details the main findings of key papers and their

approaches and findings, before comparing them to my own needs in this project.

Various technologies are covered based on their suitability for the floating bus

system.

After detailing some of the findings that are built upon in the floating bus

system, a description of the theoretical background to the application is provided,

giving further detail and insight into the reasoning behind the project.

Finally, some background details to the different technologies and sensors

used in this study is given for context into why they necessary in the implementation

of the floating bus system.

2.1 State of the Art

The main issue with the current state of the art is that while proposals and prototypes

of a dynamic bus service have been put forward, there is very little evidence that

suggests whether a dynamic bus service would be more efficient or not over the

traditional public bus transportation system.

2.1.1 Related Research

One particular relevant existing study found relating to dynamic bus routing is a

prototype system put forward by Thomas Kearns et. al of Illinois Institute of

Technology (IIT). They demonstrated a public bus routing system that navigated to

dynamically generated locations based on demographic data.[13]

12

Example diagram from Thomas Kearns, Jordan Kanter and students Adam
Weissert, Haidong Fei, and Li Gong (IIT 2013-2014) [13]

While Thomas Kearns et al. put forward an interesting prototype, there is little

explanation about a practical implementation. From researching their work, there is

little to be found as to why this dynamic approach is a practical solution, or to what

problem they see it as an answer to. Their research project was a chosen finalist for

the Louis Vuitton SPARK Award in 2014, and hence is worth researching the

practical applications and benefits to the system. A video showing the prototype in

action is available on the website “softsentience”[13].

Another notable related existing piece of work is the paper “A Real-Time

Scheduling Method for a Variable-Route Bus in a Community” by Yan Fang et

al.[14] This paper seeks to improve the efficiency of the bus system with regards to

saving costs of running buses with a low level of customer demand. They propose a

real-time scheduling method for assigning requests to variable routes. The paper

looks at implementing a two-phase quick response approach and local optimization

method to trade off computation time and solution quality for the routes. This paper

13

shows quick response time and helps bridge the gap between static and dynamic

routing, however the findings only consider one vehicle routing problem, rather than

the multiple vehicle routing problem, leaving room for more research to be done in

dynamic routing across a fleet of vehicles.

Electronics giant Philips is also researching the concept of redesigning how

bus systems work with dynamically created stops, using existing infrastructure as bus

stop markers[15]. The motivation for Philips to try and overhaul the bus system is to

make a more flexible system, and to avoid experiences where passengers on near

empty buses have to sit through the entirety of the route even when it’s completely

inefficient to service the route in full. Users submit their pickup and destination

requests to the system via their smartphone, where they are allocated to a communal

bus stop with other users looking to go to the same destination.

Infographic of Philips' radical redesign - Stephen Dowling - BBC Future[16]

The main issue with Philips’ proposal is the notion that implementing such a

dynamic bus routing system would require a highly robust, overhauled IT

14

architecture, and focuses too much on generating its stops at existing infrastructure to

use as markers. A better solution could rely on road networks alone combined with

constant communication with the passenger’s smart device to signal pickups,

meaning the only infrastructure to be relied upon is the road network itself.

Little information is publicly available about Dynamic Bus Systems studied

so far, particularly with regards their implementation, so it’s necessary to look at

what other fields contribute to a dynamic bus routing system to better understand just

how it should be implemented so that it can be found and discussed how it differs

from the traditional bus system. A brief overview of a number of research areas of

note when designing a public transport routing system with multiple vehicles and

stochastic demand are as follows:

● Vehicle Routing Problem (VRP) and variants

● Ride Sharing

● Bus Allocation

● Seat Allocation

2.1.2 Vehicle Routing Problem

The Vehicle Routing Problem (VRP), first introduced by G. Dantzig and J.

Ramser[4], is a generalization of the Travelling Salesman Problem (TSP). The VRP

is defined as an undirected network, represented as a graph where

G = (V, E)

where

● V is vertex set {v 0 , v 1 , v 2 , …, , v n }

● E is edge set {(v i , v j) : i ≠ j, v i , v j ∈ V }

A depot is located at vertex v 0 and acts as the starting destination for the vehicle and

as the destination or source of deliverables (goods, etc.). The remaining vertices

correspond to customer locations which involve goods being collected or distributed

to. Journeys are given a travel cost matrix D , where D = {d(v i , v j)} is defined on E .

Each vehicle in a fleet also has a homogenous load capacity Q , where each customer

location v i requires a load size q i to be collected or delivered en route.

15

2.1.3 Ridesharing

Ridesharing is a model in which people share a ride, rather than generate a ride[11].

The concept of traditional ridesharing is defined by the Association for Commuter

Transportation (ACT)[12] as pooling people from a common origin to a common

destination. Ridesharing requires at a minimum two people involved, one driver and

one or many passengers, each with their own individual start and end locations,

within reason. The motivations for ridesharing are based on[14]:

● Emissions

● Fossil fuel use

● Efficiency

● Economic costs

Robert Geisberger et. al put forward a study into “Fast Detour Computation for Ride

Sharing” as a way of showing that ride sharing services can be substantially

improved using innovative route planning algorithms[14]. They generalize static

algorithms for many-to-many routing approaches into a dynamic setting and develop

additional pruning strategies. Their take on dynamic routing and allocation becomes

relevant when assigning riders to floating buses.

2.1.4 Seat Allocation

The study of Seat allocation looks at ensuring capacity for transit vehicles is met as

often as possible, and is neither exceeded or incomplete. This is done so to cater for

as many passengers as possible per journey without needing to refuse any, or have

any wasted space during journeys. It looks at optimizing journeys made by the

number of people making it at once.

Yu Jiang et al. have a relevant study to the floating bus system in

“Reliability‐Based Transit Assignment for Congested Stochastic Transit Networks”,

which looks at risk-aversive stochastic transit assignment, where travel time, capacity

and effects of congestion are all stochastic variables[15].

16

2.1.5 Bus Allocation

The area of Bus Allocation looks into efficient assignment of buses to different bus

routes. This field of study seeks to minimize the number of wasted journeys per route

due to overlapping buses and bus routes, and seeks to find the best way to manage a

fleet of bus vehicles.

“The allocation of buses in heavily utilized networks with overlapping routes” by

Anthony F. Han et. al looks at operating buses with overlapping routes and running at

or close to capacity. A formulation of the problem is put forward which recognizes

passenger route choice behavior, and seeks to minimize a function of passenger wait

time and bus crowding with regards to the number of buses available with adequate

capacity on each route to carry all passengers who would select it[16].

2.2 Technologies

Before embarking on creating the floating bus system, the appropriate nature of the

application needed to be decided. Given the constantly connected nature of the

floating bus service, it was decided early on to implement it as a RESTful web

service application.

2.2.1 RESTful Web Services

RESTful web services are built to work best on the web. They are built using the

Representational State Transfer (REST) architecture, where data and functionality are

considered resources and are accessed using Uniform Resource Identifiers (URIs),

also seen as links on the web.[17]

The following principles of RESTful applications make it highly scalable and

modifiable, and thus ideal for the floating bus application:

● Resource identification through URI:

○ Since resources are identified by URIs, different features and

functionality of the floating bus system can be defined through

different URI paths, and called upon when needed.

● Uniform Interface:

17

○ RESTful services utilize HTTP requests to communicate with clients.

This allows for easy cross platform communication with the backend

system, making it as easy for Android applications to communicate

with the system as web browsers.

● Self-descriptive messages:

○ Content can be passed to and from the RESTful system in a variety of

formats, including HTML, XML, JSON and more. This makes the

transfer of information to and from the backend system much simpler,

by the use of JSON objects.

● Stateful interactions through hyperlinks:

○ Every interaction with a resource is stateless, and therefore request

messages are self-contained. Functionality of the backend system is

tied to these hyperlinks, and is only executed when these hyperlinks

are used.

Spring is an application framework built on Java used for implementing RESTful

services. It uses the Model View Controller (MVC) architecture to allow for straight

forward web service implementation.

The MVC design pattern is made up of three components:

● Model

○ Represents the data and implements the logic for the application’s

data domain. Independent of controller and view.

● View

○ Displays the model data and communicates user actions to the

controller. The View components are used to display the application's

user interface (UI).

● Controller

○ Provides the model data to the view and processes actions on the back

end of the application. Ultimately decides the view rendered to the UI.

18

MVC Design Pattern. Image provided by Microsoft: ASP.NET MVC Overview [9]

Communications between the Spring backend system and the Android

application in this project are conducted using Apache’s HTTPClient in the Android

app. This allows the application to make necessary POST and GET HTTP Requests

to the backend system to submit and retrieve information. JSON Objects are also sent

between the two systems with needed information parsed on receiving on both sides.

Apache HTTPClient is a library that allows handling of HTTP requests. It has

since been deprecated in current Android versions in lieu of various other libraries

(eg: OkHttp), but is still usable and useful in this project. HTTP POST method

requests send data to a server, with the data stored in the request body of the HTTP

request[19]. The GET method is used to request data from a specified resource.

JavaScript Object Notation (JSON) is a widely used format for exchanging

data between a client and a server[20]. JSON is a text based format, and is easily

convertible to and from Javascript objects. It can also be easily parsed in Java.

The floating bus system was written as a RESTful web service due to the

ability to use multiple different endpoints for executing different functions of the

system. For example, adding a new request to the system is a simple matter of

posting data to an “/addRequest” endpoint in JSON format. Once received, the

functionality at this endpoint parses the JSON into a request object format and stores

it to the database. This is explained later on, but is a good example of why the

program was written this way, since it will be able to handle multiple different

connections to devices at once like this.

19

2.2.2 Android Studio

Android is a widely used smartphone operating system developed by Google.

Android applications are written in Java and are deployed as APK files to be installed

on multiple different types of Android devices. Android studio is a tool suite

provided by Google that allows applications to be developed for the Android

platform.

Android was chosen for this project as a way of providing prospective users

of the floating bus system a straightforward means of submitting their travel requests,

and an efficient way of collecting their source locations automatically. Being built on

Java and using Gradle as a dependency manager made it easy to add different

dependencies as needed, such as Google Maps dependencies.

Android Studio Environment - Layout XML Editing

20

2.3 Google APIs

2.3.1 Google Directions API

The framework relied upon in this project is Google’s Directions API. The API

returns most efficient routes when calculating routes based on real road data,

prioritizing travel time above all. Other factors prioritized are distance and number of

turns required to reach the final destination. Google Directions allows for multiple

origins and destinations along a route, allowing for deeper customization of the

overall route to be calculated.[21]

2.3.2 Google Distance Matrix API

The Distance Matrix API is a service that provides travel distance, time and traffic

information for a matrix of origins and destinations.[22] This is used in the floating

bus system to determine various aspects about the route, which are particularly

necessary when it comes to running simulations.

2.3.3 Google Maps JavaScript API

Google Maps JavaScript API is used for displaying map data on the front end

system. Different visualisation libraries can be added to the map, and the JavaScript

API can also provide directions itself based on origin and destinations provided.[23]

In the floating bus implementation, the route followed is calculated by the Google

Directions API on the backend of the system, and is drawn on the front end by the

JavaScript API. One pitfall of the approach taken is that the ideal route is actually

calculated twice like this, once on the backend for vehicle routing, storing and

simulation purposes, and again on the frontend for display purposes. This means

there can be a slight disconnect at times between the displayed route on the HTML

control panel page (detailed later on), and with what the vehicle sees. This is verified

via breadcrumbing the vehicle’s trail to ensure they directions results match.

21

2.4 Databases

2.4.1 PostgreSQL

Postgres is an open source object-relational database management system. It presents

a variety of different data types and integrity rules, and has the ability to be extended

to include more (eg: PostGIS a spatial database extender for PostgreSQL[18]).

PostgreSQL is easily integratable with Spring via Spring JPA.

2.4.2 Firebase

Firebase is Google’s mobile application development platform, and is integrated into

the floating bus android application for authentication purposes. Users register

through Firebase with an email and password, which is stored in Firebase’s records.

More about Firebase’s implementation and functionality are discussed later on.

22

Chapter 3 - Implementation

This section details how the floating bus system was implemented and how it

functions. Each of part of the system is discussed and explained in detail to

understand the role each individual part plays in the overall system. The logic and

reasoning behind design choices is also outlined. Here is a high level look at the

floating bus system at a whole:

To be able to build an application that relies on routing techniques so heavily, it’s

crucial to first break down the individual components that make up routes and

vehicles into manageable entities. First, the concept of a route has to be defined as

something for the vehicle to be able to follow.

23

3.1 Backend Components

To be able to discuss the functionality of the backend and routing process

appropriately, the various entities that make up the system must first be outlined to

understand their purpose when it comes to plotting the floating bus routes. Different

actors and their relationships are defined to better understand how the various parts

work together in the application.

3.1.1 Vehicles

Vehicles act as the most important actors in the floating bus system, since without

them there isn’t anything available to service the requests as they come in. Vehicles

are unique entities set up by users who declare their intention to use the system as

drivers. The components that define a vehicle in full are as follows:

● Active

○ Is this vehicle currently in service or not. A vehicle that is currently

inactive rightfully will not be assigned any incoming requests.

● Capacity and Max Capacity

○ Each vehicle has an upper seating limit for the number of passengers

it can accommodate, ie: its max capacity. It’s capacity refers to its

current capacity, which is used in calculating whether the vehicle can

take another request on board based on its remaining available space.

● Current Latitude and Longitude

○ The vehicle’s current world space coordinates. These are updated

frequently via the corresponding driver’s Android application, or are

manipulated via running simulations.

3.1.2 Routes

Routes are where all the information about a vehicle’s path are stored. Route objects

are made up of the following:

● Vehicle ID

○ A reference to the vehicle assigned to this route.

24

● Encoded Polyline

○ This is where the path of the route itself is stored as an encoded string.

The process of populating this field is done by feeding a start point, an

endpoint, and all destination points in between to Google’s Directions

API, which returns the path in encoded string format.

● Distance

○ The distance in meters from the start to the end of the route in terms

of road networks, rather than euclidean distance between points.

● Time to complete

○ The duration of a journey along the route expressed in seconds.

● Traffic

○ The duration of the journey along the route taking traffic congestion

into account. These results are based on current and historical traffic

data, also expressed in seconds. The traffic models recorded are:

■ Best guess: Most realistic estimate

■ Optimistic: Returns lighter traffic estimates

■ Pessimistic: Returns heavy traffic estimates

3.1.3 Road Segments

Road segments are the individual pieces of a decoded polyline of a route. Each road

segment is made up of two points in coordinate space, a start and an end point. While

a route also has a start and and end point, they also include all the individual start and

end points required to link the two (ie: road segments). Road segments are the lowest

level of the makeup of a route and consist of the following:

● Route ID

○ The relevant route the segment belongs to.

● Order In Route

○ The order of the road segments to be followed when executing

the route.

● Start Latitude and Longitude, End Latitude and Longitude

○ The coordinate points for the line the road segment is

comprised of.

25

● Visited

○ A boolean parameter to state whether the vehicle has left this

road segment before. Most important when running

simulations with overlapping lines (ie: U-Turns, crossroads,

etc.). This is explained in detail later on.

3.1.4 Requests

The motivation for the floating bus was to be able to cater to varying requests that are

received by the system in real-time and to be able to adapt accordingly. With this in

mind, it was important to create uniquely identifiable requests made per user to be

able to manage them and allocate them correctly. Request objects are made up of the

following:

● User Email

○ Each user can have one active request at any given time. The email

used to sign up for the client application is used as an identifier in this

case.

● User ID

○ Relates the request object to the relevant user.

● Destination Latitude and Longitude

○ Each request made by the user includes an end point in world space,

whose coordinates are used in plotting new waypoints or merging

with pre-existing ones.

● Source Latitude and Longitude

○ When the user submits their request, they are also submitting their

current world space coordinates to be used in gauging their

appropriate pickup waypoint.

● Amount

○ The number of passengers this request is intended for. Necessary for

ensuring the most appropriate vehicle for them is chosen.

● Completed

○ An indicator that the user’s destination has been met and that their

request is no longer relevant to the routing process.

26

● Pickup and Dropoff Waypoint ID

○ Relates the start and end points of the request to their relevant

waypoint objects.

3.1.5 Waypoints

The floating bus system defines points on the route as waypoints, including the end

point. In other words, the floating bus system can place more waypoints along a route

to develop and influence the directions taken in between the start and end points. The

start point isn’t treated as a waypoint, but is simply defined by the vehicle’s starting

coordinates.

Waypoint objects are a custom built data type that signify destinations along a

route. Waypoints cater for request pickups and drop-offs, in that there are always two

waypoints created for each request. The waypoint object is made up of more than just

a coordinate in world space, and includes the following aspects:

● Route ID:

○ What route object it belongs to. Route objects are separate entities

stored in a separate table.

○ Waypoints have a many to one relationship with route objects, while

route objects have a one to one relationship with vehicles.

● Latitude, Longitude

○ World space coordinates. When waypoint objects are created first,

they are created for each individual request. When compiling the route

object in full, waypoints are combined together into a single waypoint

if they fall within a set radius of each other. Their coordinate values

consist of an average of the waypoints merged.

● Order In Route

○ It is important for the waypoints to be approached in a sensible order

for the routing system to make sense. For example, say a drop-off

waypoint was closer in world space than the pickup waypoint for the

same request. It is imperative to the functionality of the floating bus

that it treats these two waypoints differently, and approaches them in

27

the correct order so it has the passenger first to be able to drop them

off.

● Completed

○ A true/false value to signify if this waypoint is still factored into route

calculations. As a vehicle comes into range of a waypoint, it is marked

as completed.

Though two waypoints are created for each request, they are often merged with other

existing waypoints from other requests into one new waypoint. Many requests can

have the same waypoints representing their respective pickup and drop off

waypoints.

3.1.6 Users

The floating bus application consists of two types of users, one managed by Firebase,

Google’s online platform used for registering users, and one managed locally by the

backend system. Firebase handles authentication and secure use of the application,

while the backend system stores information about the user, such as their email, role

and location data. The local user object is made up of the following:

● Email

○ The user’s unique email.

● User Role

○ The user’s role in the floating bus system. Available roles can be self

defined from the client application, and can be either ‘Passenger’ or

‘Driver’.

● Current Latitude and Longitude

○ The user’s current world space coordinates.

○ The privacy implications of storing user location data are discussed

further on.

The user role plays a big part in how the system tracks vehicles and requests.

The main functionality involved is tracking users with the ‘Driver’ role, since their

world space coordinates are then used to represent their vehicle’s position. After a

user registers with the android application, they have the ability to change their role

from the default ‘Passenger’ to ‘Driver’, where they also specify the vehicle’s

28

capacity. This allows users to sign up as drivers for the floating bus route themselves,

similar to Uber’s ability to become a driver. This feature however would be unwise to

maintain in practical applications of the floating bus outside of this research project

due to health and safety, and legal implications.

3.2 Bus Allocation

Once a request is received, a pair of waypoints are generated for the request, namely

a pickup waypoint and a drop off waypoint. This is done to be able to compare the

request source and destination with pre-existing waypoints in the system for each

active vehicle.

The system first gathers a list from the database of all active vehicles. An

active vehicle is one that is currently “on-duty” and available to cater for incoming

requests. A vehicle is set to inactive manually once the driver decides to finish their

services. Completing a route does not end the vehicle’s activity status, meaning the

vehicle is still available for new requests even after catering to all of the requests it

had already been assigned.

The process of choosing the most appropriate bus involves looking at a

number of aspects of each vehicle, including:

● Their current world space coordinates

● Their predefined waypoints on their assigned route

● Their capacity throughout

When allocating a new request to an available vehicle, there are a number of different

aspects of the system that need to be taken into account to have it running as

efficiently as possible.

● Reducing the distance needed to be travelled to accommodate the request.

○ To achieve this, a request needs to be able to align to the nearest, most

convenient waypoints in pre-existing routes, or with a nearby free

vehicle. This is done to save one vehicle needing to travel great

distances alone to meet all demands by itself, preferring that the load

is shared out as much as possible with the other vehicles in the

system. If the new request waypoints already align with a vehicle’s

29

pre-existing waypoints however, without disrupting the route’s

capacity allowances, then it will be allocated there. In short, distance

travelled is minimized by utilizing multiple vehicles. This can be seen

illustrated below where

○ A, B = Active Vehicles
○ P1,P2 = Separate pickup request waypoints
○ D1,D2 = Corresponding drop off waypoints

30

Undesired situation
 Total Distance Travelled: (x+y+z+w)

Desired situation
 Total Distance Travelled: (x+y) + (z+w)
Where
 z = (B -> P2) < z = (D1 -> P2)

31

The main issue identified with assigning new requests to a vehicle is the

notion of pushing out a request, or rather, invalidating either the new or an existing

one due to unpredicted changes to the vehicle’s capacity. The issue is illustrated

below:

● Vehicle of max capacity 10.
● ‘A’ is a pre-existing request for the vehicle, from A1 to A2 for 8 people.
● ‘B’ is a new request, positioned closer to the vehicle, from B1 to B2, for 10

people.
● Who is serviced by this vehicle? How should both requests be

accomodated?

To avoid this, when looking for the appropriate vehicle to assign to a request,

the pickup and drop off waypoints for the request are generated and compared with

the pre-existing routes of each vehicle. The closest pre-existing waypoints are then

looked at and the nearest ones to the new request’s pickup and drop off are chosen as

the most ideal waypoints for this vehicle. The relevant drop off waypoint must

always be equal or after the pickup waypoint’s order in the route. This is because

waypoints can appear in a route multiple times for different reasons, hence the

capacity can vary for the same waypoint. The waypoints are also checked for their

capacity allowance to make sure the incoming requests are eligible for this vehicle

and won’t exceed its maximum seating limit.

Once all of the vehicles with pre-existing routes are reviewed and the pickup

and drop off waypoints of the most suitable vehicle have been identified, the system

then looks at the vehicle without any predefined routes. These vehicle may have just

entered the system or have completed their routes so far and are idle and waiting for

new requests to be allocated to them. Since the aim is to get as many vehicles in the

system covering as many requests to keep overall distance travelled low, the free

vehicles are inspected for their proximity to the request pickup waypoint. If one of

32

the free vehicles is better suited to adhere to this new request, it will be chosen as the

most ideal candidate.

3.3 Routing

A route along a road network in it’s most basic form is made up of a series of road

segments, each with their own start and end points indicating when one segment ends

33

and another begins. Overall, a route itself has a start and an end point, and contains a

sequence of road segments to be followed to move between the two points.

It’s important to note before explaining how the system sets the order of the

waypoints in the route, that this does not claim to be the most efficient system

available for routing a fleet of vehicles with multiple mid route destinations, but it is

a logical routing system. The routing demonstrated is a practical implementation of

what happens with a routing system that adheres to real time, stochastic requests

where the waypoints have different roles (ie: pickup/drop off). Another reason is

because road distance between floating bus stops is not factored when plotting the

route, as the euclidean distance of these stops from each other is used instead.

Limitations encountered while designing the system are discussed further on, such as

encountering rate limits on Google’s Distance Matrix and Directions APIs.

After the most appropriate vehicle for the new request is found, the route is

rebuilt using the new request on top of the old ones. In other words, the route is

recalculated from all of the requests that have been assigned to this vehicle. This is

done due to the way that waypoints are merged in the floating bus system, since new

requests influence the position of a waypoint.

3.3.1 Floating Bus Stops

In the current system of public transportation, vehicles are assigned multiple stops

along their fixed route. These stops have been carefully chosen and planned in

advance by the government to be built in locations that best accommodate the

passengers intending to avail of the service. These bus stops are always in the same

place, and people become familiar with them by using them daily. These bus stops

are also intended to cater to multiple passengers. However, they are not always the

most convenient solution for passengers, and can be in awkward places, or some

distance away from where they are.

The floating bus system presents a flexible bus stop option in the way the

waypoints are used. Since the floating bus system targets multiple different requests

at once, it would be far too inefficient to stop for each individual request. A better

solution is to create new waypoint objects that are an amalgamation of multiple pick

up and drop off requests, cutting down the need to repeatedly stop the journey for a

34

series of nearby points. The reasoning behind the need to merge waypoints is

illustrated below:

-Without Merging Request Waypoints

As previously stated, when a new request is added to the system, a pair of waypoints

are generated, one for pickup and one for drop off. From the above, we can see that

the floating bus servicing these requests has to make three stops in quick succession.

The bus also has to redirect itself between each of the points multiple times to

accommodate each of them. This leads to increased overall journey time due to

additional stoppages, and increases the distance travelled due to the bus taking every

turn along the way to meet the requests.

35

-Merging Request Waypoints

Here is the current approach employed by the floating bus system, where the

waypoints created are merged into one within a certain radius. We can see that

instead of making three unnecessary stops, the floating bus now only has to make

one. This hugely cuts down on time spent accommodating each request in an area

individually, especially as the number of request waypoints grows. The bus route is

also set according to this merged waypoint, instead of the three individuals, cutting

down on travel distance in the overall route. The steps to merge waypoints into one

floating bus stop look like this:

36

First request comes in, no
need to merge.

Second request comes in,
merged waypoint set to
average of latitude and

longitude coordinates of
the two points.

Third request comes in,
merged waypoint set to
average of latitude and

longitude coordinates of
the three points.

Since floating bus stops are generated based off user demand, routes can be plot with

this in mind and can reduce unnecessary wasteful detour on its journey, similar to

how a static bus may have no demand but it still needs to service each stop in

anticipation of demand. The overall benefit to knowing the demand for these floating

bus stops in advance is illustrated below:

37

To merge the waypoints, the system identifies one to start at, and then using the

Euclidean distance formula to detect if any other waypoints fall within the set radius

of the system. The merge radius is set to 0.008983d/2, which represents half of a

kilometer. The value 0.008983d representing one kilometer as a double is calculated

using 1 degree of latitude of a line of longitude, which is represented as

360/40,075km (the circumference of the earth). The merge radius number is changed

when emulating static bus routes in the system, which will be discussed in the

simulations section.

Once the waypoints are merged together, the requests that they affect need to

be updated to reflect their new pickup and drop off waypoints, since their previous

ones no longer exist and will not be catered for. To do this, each request allocated to

the vehicle for pickup, or that is onboard and awaiting drop off, is iterated through

and their previous waypoints are gotten and compared to the new ones. Based on the

euclidean distance of the nearest of the merged waypoints for the request’s pickup or

drop off are then assigned to the request.

Waypoints generated as request is
received.

Request updated to recognize newly
merged waypoints as its pickup and
drop off locations.

38

3.3.2 Plotting The Route

Now that we have the all of the destination waypoints for the route merged or

created, the running order of the waypoints needs to be set in a logical and efficient

manner. This means that the system needs to be able to differentiate between the

different roles played by each waypoint for each request.

First, the system needs to ensure that the vehicle either has passengers or can

get them first, before considering any waypoints used for drop offs. To do this, two

lists of waypoints are created, allPickupWPs and allDropoffWPs. The lists are

compiled as follows:

● The lists are compiled based on the requests allocated to the vehicle, their

assigned waypoints in particular. As previously stated, each request has two

waypoints, a pickup and a drop off waypoint, and both are assigned to each

request after the merging process.

● The system first looks at all of the uncompleted requests tied to the vehicle.

The requests are checked for their isPickedUp boolean parameter, which if

true means that the requests are currently being serviced by the vehicle. This

means that their pickup waypoints no longer apply when routing, and their

drop off waypoints are a valid option for the next floating bus stop to be

made. If they are not picked up, then their pick up waypoints are still valid

39

and their drop off waypoints are ignored for now. Each list is populated based

on the relevance of each request’s pickup or drop off waypoints.

● Once each list has been compiled, we amalgamate them into one list,

allPossibleChoices, since we now have a set of valid waypoints that the bus

can service appropriately. Before beginning the routing procedure for all of

the waypoints, the first waypoint needs to be chosen from the list of possible

choices, based on its proximity to the floating bus vehicle and it’s adherence

to the vehicle capacity limits (ie: going to a pickup request won’t exceed the

max seating limit). Since the route is calculated fresh with each new request

assigned, the first waypoint also represents the “next” waypoint for a vehicle

that’s already in transit. The steps involved in choosing the first waypoint in

the route is as follows:

○ The possible waypoints list is iterated through and the total capacity

change at each is calculated from the requests tied to each. This means

that for each waypoint, the requests that have this particular waypoint

as a pickup waypoint and the requests that have it as a drop off

waypoint are used in calculating the net capacity change.

○ Next, the Euclidean distance from the vehicle’s current position to the

waypoint is calculated. This is done rather than using Google’s

Distance Matrix API we make a request for the road network distance

between the vehicle’s current position and the current waypoints

coordinate position. This is due to a number of reasons:

■ Distance calculations can take a longer time to complete.
■ To avoid meeting the Distance Matrix API rate limit too

quickly. For example, if one vehicle had five potential
waypoints to compare road distances, that would be 5/2,500
requests alone. Then say the number of vehicles doing the
same increases, and the request is made of the API each time a
floating bus request is received, the limit would be very
quickly reached and the system would be rendered inoperable
without API access.

○ If the distance to the waypoint is shorter than the previously accepted
closest waypoint, the new waypoint is used instead as the leading
candidate. Once the overall closest waypoint has been found and set

40

as the first waypoint in the route, it is removed from the list of
remaining possible waypoint choices.

○ Before deciding on the next waypoint in the running order of the
route, the system checks if the first waypoint chosen acts as a pickup
waypoint. It does this by checking with all the requests for the vehicle
for their assigned pickup waypoint. Since multiple different requests
can have the same pickup but different drop off waypoints, their drop
off waypoints are added to the possible choices list as new potential
candidates to appear next in the running order. This process is
repeated for each pickup waypoint that is added to the route, so that
no request’s drop off stop appears before the user has been collected.

○ The remainder of the route is calculated based on capacity and
Euclidean distance from the previous waypoint accepted into the
route. This is done repeatedly until the allPossibleChoices list is
empty (ie: all the waypoints in the route have been catered for).

○ As a side effect from adding each request’s drop off waypoint as their

pickup is added to the route, there are multiple duplicate waypoints in
the route. Hence the route is then cleaned up of all duplicates found,
and the requests are then updated to reflect their waypoints in terms of
the cleaned up list.

○ For the final step in calculating the route, the Waypoint, Request,
Route and Vehicle objects are saved to the database. A new route
object is created and related to the current vehicle. The waypoints

41

capacity value is updated to reflect the expected capacity at each stop
based on the pickups and drop offs they cater for. The waypoints are
then also related to the route and vehicle objects before being stored to
the database. The requests are stored too after assigning them their
waypoint IDs (since the waypoint objects themselves aren’t stored,
their IDs are used as a foreign key to relate to the requests table) and
assigned vehicle ID. Finally, the vehicle is assigned it’s newly created
route’s ID.

3.3.3 Obtaining Route Information

After obtaining the ideal running order of the floating bus stops for the most

appropriate vehicle, the system needs to obtain route information about how to

service these stops in terms of actual road network data. The information gathered

and stored about the route is the road network graph between the vehicle’s current

position as the origin, it’s final destination floating stop and all floating bus stops in

between. More information about this path is also stored, such as the distance it takes

from start to finish, the predicted travel time and travel times with different traffic

estimates. All of this information is obtained by communicating with two main

Google APIs, the Directions API and the Distance Matrix API. Another key part of

this step is collecting road segments as objects to store in the database, to relate with

the corresponding waypoints created.

To be able to use Google’s APIs, a unique API key is needed. This is

generated by signing up for a Google developer account and selecting the requested

APIs for use. Google Maps APIs share the same API key, so only one needs to be

generated. Before being able to utilize any of these API services in the backend

system, a GeoApiContext object is created, which contains the API key.

The APIs are accessed like so:

1. From the previously described routing step, we gather the waypoints created

in the order they were set. Using their generated latitude and longitude values,

a new list of Google’s LatLng objects were created. These will be used for the

list of destinations along the route that represent the generated floating bus

stops.

42

2. A departure time is set to current date time, since the route information

needed is based on the current conditions of the overall route. This affects the

results returned for directions and traffic data, as this is based on historical

data as well as current.

3. The Distance Matrix API is then queried for route traffic information. A new

DistanceMatrixAPIRequest object is created with the context object

previously created. A response DistanceMatrix object with the route details is

returned for each request made. A request takes the following parameters:

○ Origin(s): Position of one or more starting locations. Can be an array

of Strings, Google LatLngs or Google Place objects. The vehicle’s

current position LatLng is used as the origin for the route calculations.

○ Destination(s): Desired location(s) to be passed in the overall route.

Can also be an array of Strings, Google LatLngs or Google Place

objects. The floating bus stops are used as an array of LatLngs for

route calculations.

○ Travel Mode: Specifies the mode of transportation to be routed. The

different modes include: Driving, Transit, Walking, Bicycling. The

vehicle default is set to Driving mode, but can be specified as Transit

when creating a vehicle via a JSON file. Unfortunately Transit mode

doesn’t provide routing information with bus corridors included,

hence standard Driving mode is used as default.

○ Transit Modes: Provides additional routing specifications for more

than one type of routing if Travel mode is set to Transit. Transit

Modes include Bus, Rail, Subway, Train and Tram.

○ Traffic Model: Specifies the route’s congestion when calculating route

time for a vehicle in Driving Travel mode. Results returned are based

off of historical conditions and live traffic conditions. The three

options available are: Best Guess (best estimate of travel time),

Pessimistic (heavy traffic conditions, normally exceeding actual travel

time) and Optimistic (lightest traffic conditions, normally shorter than

the actual travel time).

43

○ Transit Routing Preference: An additional parameter for Transit

vehicles. Specified to “Fewer Transfers” for the floating bus system.

○ Departure Time: Specifies when the route is intended to be taken. This

becomes particularly important to have when calculating traffic time

to gather live traffic results.

4. A unique DistanceMatrixAPIRequest is made for each of the three traffic

modes at the same time to gather full route data. A

DistanceMatrixAPIRequest object returns route information in a rows, which

are arrays of DistanceMatrixResponseRow objects corresponding to each

origin. Rows contain elements, which contain the information needed such as

duration, distance and duration in traffic for each origin/destination pair. To

get the total route information, the elements in each row are iterated through

and compiled into a single value for each matrix for the overall route. In the

end, we have total distance, duration and duration in traffic for the overall

route. The traffic recordings are stored separately in three different variables,

and stored to depending on the relevant Traffic model.

5. After getting the route’s numerical details, the system needs get a plot of the

route in a way that can be stored. To do this, Google Directions API is now

queried using the same origin and floating bus stops as were used in the

Distance Matrix calculations. A DirectionsResult object is returned from a

query to the API, which takes the following parameters:

○ Origin: A single starting location from which to calculate directions.

The origin can be specified as a String, Google LatLng or Google

Place object. Since the floating bus system works off of

latitude/longitude values, the vehicle’s current position is converted to

a LatLng and is used as the starting origin for the calculated

directions.

○ Waypoints: An array of mid route LatLngs that alter the way the

directions of the route are returned. The floating bus stops are used

here to best specify the ideal route to be returned to accommodate

them.

44

○ Destination: The final stopping position on the route. The last floating

bus stop in the route is used as the final destination for the current

route.

6. The Directions API returns a DirectionsResult with an array of routes of type

DirectionsRoute. Since we only have one origin and destination per request,

our only route is stored at index zero. The DirectionsRoute object returns a

graph line of the route as an encoded polyline made up of all the LatLng

coordinates on the route for each section of the road.

7. Now that the system has collected the information about the route, it now

stores the route as an entity in the database. Any previous routes tied to this

vehicle are overwritten with the new route object. A Route object consists of

the following:

○ Encoded Polyline (String)

○ Distance Metres (long)

○ Time to Complete (long)

○ Traffic Time Best Guess/Optimistic/Pessimistic (long)

8. Next, the database is populated with all of the road segments that make up the

route from the directions received from the Directions API. To do this, the

encoded polyline is decoded into a list of LatLng values that represent each

road segment’s start point. By using each LatLng as a start point, we can use

the following LatLng as its end point to build a road segment object. This is

done for every LatLng in the route to get a full representation of the optimal

route of the road network returned from the Directions API in its most basic

form.

9. As a final step, the waypoints that were used to plot the route are related to

the road segments that make up the route. This is done to relate pickup

locations to their points on the route that best fit as a place for them to act as a

floating bus stop. For example, if a request is made from the center of a large

park, the floating bus stop will be mapped to the nearest road segment to

where the request was made from. The road segment is broken up into three

different points of contact to be compared with for their distance to the

floating bus waypoint, namely its start coordinates, midpoint coordinates and

45

its end coordinates. This is done for each road segment until the closest point

out of the road network is found. Once found, the floating bus stop’s position

is updated to the midpoint coordinates of the relevant road segment. The

waypoints are saved to the database.

3.4 Backend System

This section gives a technical overview of how the above was implemented in

context of the tools and design architecture used. A Java application built using

Spring’s web application framework, Spring Boot, is used to manage the floating bus

system. A local PostgreSQL database is

3.4.1 Controllers

As stated above, the Controller in the MVC model is used to process logic, render

views and add to the model. In the floating bus system there exist multiple different

controllers, each serving a specific function. These are as follows:

● Route Controller

○ The core functionality of the floating bus routing and passenger

assignment is carried out.

● Registration Controller

○ Aside from user registration and authentication being handled by

Firebase, a copy of each user is registered and stored in the backend

system. These endpoints are reached at the same time as the user is

registered in Firebase.

● Vehicle Controller

○ New vehicles are added to the system and world space, specifying

their current coordinates and maximum capacity.

● Simulation Controller

○ Extrapolates vehicles along their defined polyline routes and emulates

the operations carried out on each vehicle as they pass waypoints and

complete their routes.

● Front End Controller

46

○ Renders HTML views required to view simulations and vehicle

progress. Adds required data from the backend to the model for use in

Thymeleaf’s template system.

● Ajax Controller

○ Used to control backend operations and behaviour from the front end

view. Enables non-disruptive use over the floating bus control panel.

3.4.2 Scheduled Components

There are a number of scheduled components running in the background of the

floating bus system that perform a number of important functions for both practical

use with the system and for testing/simulation purposes. These scheduled

components run specified functions on a loop with a fixed delay once the application

is started.

The scheduled components in the floating bus system play an important role

when it comes to both running simulations and monitoring vehicle progress. The

various scheduled components in the system are the following:

● Vehicle Monitor

○ This component is used to track vehicle progress along a route, in

particular paying attention to whether waypoints and requests along

the route have been completed by their road segment. The functions

performed are as follows:

○ WaypointBehaviour: Finds all requests by vehicle and checks

against their pickup and drop off waypoints to see if their

corresponding road segments have been completed. Once true, the

request is set to picked up or completed as appropriate, and the

vehicle’s capacity is altered to reflect the request’s pickup or drop off

amount.

○ MonitorRouteCompletion: Checks vehicle’s position on the route

polyline by its individual road segments. If the vehicle is found on the

segment, it sets the segment’s visited parameter to true and saves it

back to the database.

47

○ The Vehicle Monitor only operates on active vehicles in the system, so

dormant vehicles aren’t factored into these functions.

● Simulation Controller

○ The simulation controller has two ways of running simulations, either

on all vehicles at once, or one at a time. This is where the

functionality for extrapolating test vehicles along a route is kept. The

simulation functionality is nearly identical for simulating all at once

and simulating one at a time, the main different being how one iterates

through every vehicle and route. The way the simulations are run is

discussed later on.

3.4.9 Simulations

The Simulation Controller is a scheduled component that is set to run every one

thousand milliseconds (ie: every second). Simulations can be triggered to run from

the front end control panel, and can be run on all vehicles simultaneously or on a per

vehicle basis. The steps involved are as follows for per vehicle simulations:

1. The specified vehicle is obtained via the id provided. Its current coordinates

are used to create a LatLng object representing its position in world space.

2. The vehicle’s associated route id is used to pull the route object from the

database, containing the necessary information needed to run the simulation,

for instance:

○ EncodedPolyline : String

○ DistanceMetres : long

○ TimeToComplete: long

The base simulation speed is then calculated using the DistanceMetres and

TimeToComplete, which is stored in seconds, in the Distance Speed Time

Formula:

D = S*T

where:

● D = Distance Travelled (metres)

● S = Speed (metres/second)

● T = Time (seconds)

48

For the purposes of calculating the simulation speed, the formula is used as so:

S = D / T

Giving the vehicle’s average speed for the route.

3. The encoded polyline stored in the route is decoded from a string into a list of

LatLng objects. This is done via Google Maps Model library. Once decoded,

we pass the list of LatLngs, the vehicle’s position, the average speed and the

floating bus route object into the extrapolate function.

4. The extrapolate function does exactly what we expect, and that is to

extrapolate the vehicle’s position along the given polyline (ie: road network,

not as the bird flies). The steps taken to extrapolate along the line are as

follows:

○ First check if the vehicle is on the line at all. If not, move it to the start

of the route.

■ Note: This is an acceptable measure to take in running

simulations, since we expect it to follow the route exactly. In

real life, it can’t always be expected for a vehicle to follow a

set route exactly, but as long as they reach the road segments

that contain the route’s set waypoints the route can still be

completed.

○ Next check is aimed towards the meeting the end of the route, by

checking if the vehicle is within a specified radius the position is

progressed to the end of the route. This is done to ensure route

waypoint completion.

○ Next part is the actual extrapolation of the vehicle’s position along the

line. This is done by segmenting the route’s list of LatLngs into road

segments based on the LatLngs that represent the start and end points

of each segment. A segment, separate to the road segments object, is

created as a list of two LatLngs, the start and end LatLngs.

○ To begin the extrapolation, the system first finds the starting segment.

It does this by checking what segment path that the vehicle is

currently positioned on using the PolyUtil isLocationOnPath()

function. Once found, the foundStart boolean is set to true and the

49

system knows where to extrapolate from. As part of this step, the road

segments proceeding the start are set to visited as a precaution for any

missed waypoints in previous road segments (an issue that arises

when the simulation speed is turned up). The current distance is

calculated using the vehicle’s position on the segment to the segment’s

end, and if it’s greater than the specified distance to extrapolate (in

this instance, the average speed) we simply extrapolate the vehicle

forward by the specified distance, since it still contains the vehicle

after moving it. If the current distance is less than the distance

specified, this segment has been completed and is set to visited.

■ Note: the calculated average speed is used as the distance

parameter as it is calculated as a metres per second value, and

this scheduled component is run every one thousand

milliseconds (ie: every second).

○ If the current distance is less than the distance, it is added to actual

distance, and the current distance is re-calculated using the next

segment’s start and end points. If the new current distance plus the

actual distance together is greater than the specified distance, we

extrapolate from the new segment’s start point by the distance minus

the actual distance (ie: the last segment’s remainder). This is

illustrated below:

50

5. The SphericalUtil class is used to calculate the heading and subsequent

location of the vehicle along the line, which is returned as the extrapolated

LatLng position.

NB: SphericalUtil and PolyUtil classes are provided by Google’s Android Map Utils.

3.5 Android Application

One of the main differences of the floating bus system compared to traditional public

bus systems is its ability to take dynamic requests at any time and to be able to plot

its route accordingly. This feature is only made possible thanks to the ever connected

nature of modern smart devices, such as Android smartphones. To be able to generate

the requests that influence the floating buses, an Android application was

implemented, making it easy for users to be able interact with the floating bus

system.

3.5.1 Activities

Android application development consists of defining and managing activities where

app functionality is stored. An activity represents a single screen of the user interface,

hence multiple activities are defined for multiple different screens. The overall flow

of the application looks like this:

51

The various activities are as follows:

● Login Activity

○ This is the first screen presented to the user on the first time the

application is opened. The user enters their pre-registered email

address and password, and the app connects with Firebase to verify

their credentials. Upon successful validation, the user is passed onto

the next activity, Main Activity.

○ If a user has logged into the application before, they are immediately

passed to either the Main Activity or Driver Activity of the

application. This is determined by checking the SharedPreferences

and existing Firebase instance of the application before rendering the

layout xml for the login activity.

■ SharedPreferences is a way of storing user data locally to be

stored, modified and accessed in the application later.

52

■ To be able to re access this activity’s page (ie: not be

immediately ushered on to the next activity), the application

data can be cleared in the Android system settings.

○ If the user hasn’t signed up to the application before, they are able to

follow a link through to the Signup Activity to register an account to

use the application.

● Signup Activity

○ New users to the application can register to use the application using a

valid email and password. Basic rules are enforced to ensure forms are

filled out correctly, but for the purposes of this study are very lenient.

For practical use, tighter password rules and a valid email regex

checker should be added.

○ Once the basic rules are met, the email and password are sent to

Firebase’s authentication service.

○ A local copy of user details is locally stored in the backend system.

This is done by running a special command from the backend system

itself, though future implementations should add the user from the

Android application at the same time as Firebase registration.

● Profile Activity

○ This is the screen that allows users to specify their role in the floating

bus system. The screen is presented as a profile page, where users can

see their email address, role and max capacity of their vehicle if set to

‘Driver’.

■ To be able to access the max capacity field, the user must

declare their role as ‘Driver’.

○ Depending on the user’s chosen role, they will be redirected to either

“Main Activity” or “Driver Activity”. A post will be made to the

backend system signalling the user’s updated role and makes changes

accordingly (ie: creates a vehicle and assigns the ‘Driver’ user to it, or

sets the vehicle to inactive and removes it from the system. A user can

only change back to ‘Passenger’ once their route no longer has any

active requests tied to it.)

53

● Main Activity

○ This is the activity that ‘Passenger’ role users are directed to after

login. This screen shows the user’s current latitude and longitude

coordinates on a Google maps viewer, and allows them to use a

Google Place Picker to set a request destination. An input is also

provided for inputting the amount of passengers this request requires.

■ Google Place Picker is a simple way of choosing a location

from Google maps using an address in plain English (for

example, “Trinity College, Dublin”). The place picker object

returns with the required LatLng coordinate data required for

the request’s destination, while making it easier for the user to

set a destination without worrying about the LatLng of their

desired destination.

○ In the background of this activity, the user location is collected and

used to display their position on the map. In addition to this, their

current LatLng position is used when making the request to the

backend as the start LatLng coordinates.

■ Android requires that permissions are requested of the user

before using their location data.

● Driver Activity

○ This activity is exclusive to users that have assigned themselves to the

‘Driver’ role. Users are shown a polyline of their assigned route on a

map, with waypoint markers along the way.

○ In the background of this activity, the user’s location data is posted to

the backend system, where it is used for the user’s assigned vehicle

position. Information is also fetched from the backend about the

vehicle’s route so that new routes or waypoints are reflected to the

driver.

● Waiting Activity

○ This activity is exclusive to users with the ‘Passenger’ role that have

submitted a request for a ride. Users are shown a map with their

assigned vehicle’s polyline route, along with different markers that

54

indicate the vehicle’s position, their pickup waypoint location, and

their current location.

○ HTTP Get requests are run in the background of this activity, fetching

information about the user’s assigned vehicle and pickup waypoint

and refreshing their positions on the map as they/if they update. The

vehicle’s polyline is also refreshed if it changes. The request’s picked

up status is also checked.

● Travelling Activity

○ This activity occurs one the request has been picked up by the vehicle.

The user is displayed a map fragment with their assigned vehicle’s

path and current position constantly refreshing. The request’s

completed status is also monitored in this activity.

● Completed Activity

○ This is the final screen in the request flow, which is shown once the

request is completed and the user is at their desired destination. The

user’s generated fare is displayed, and the user can now return to the

Main Activity if they wish to place another request.

3.5.2 Functionality

This section describes the main functionality of the Android application including

how it communicates with the different services at play in this system, including the

floating bus system itself. The Android application requires constant internet access

to function correctly, and is the epitome of the ever connected technology that the

floating bus system takes advantage of.

3.5.2.1 Firebase

Firebase is Google’s mobile and web application development platform. It provides a

wide range of services for app development, including authentication, database and

analytics services.

Firebase is used in the floating bus Android application for user

authentication, for both login and registration. The Firebase SDK is integrated into

55

the app project, and provides an email and password authentication service. The SDK

handles communications between the application and the Firebase online service.

3.5.2.2 Submitting a Request

Communication with the backend system involves using HTTP requests to pass

information between the two systems. Data is passed to and forth using JSON data

format. A good example of sending data from the Android app to the backend system

can be seen when making a request for a ride.

When a user logins into the application successfully for the first time, and any

time they are set to ‘Passenger’, they are presented with the Main Activity screen

where they are able to make pickup requests. The body of a request is made up of the

following:

● User Email

● Current Coordinates

● Destination Coordinates

● Passenger Amount

To allow for ease of use when picking a destination to travel to, a PlacePicker widget

is used. The PlacePicker is part of the Places SDK for Android, and provides a UI

dialog with an interactive map and list of nearby locations. Users can type their

destination into the search bar to find the exact location they’re looking for. Once

56

confirmed, a PlacePicker object is created with the LatLng coordinates needed when

making the request. This tool saves the user from having to input difficult to

remember coordinate data, while still allowing the application itself to receive that

data. The PlacePicker widget is seen below:

After confirming the destination location of their request, the user is returned to the

Main Activity view to fill out the final field, the “Amount” field, representing the

number of passengers that will accompany them on this request. This is important for

checking against the capacity of the floating buses available.

Once the request is ready to be sent, the user taps the submit button. On the

backend of the application, a JSON object is made for the request to be sent to the

floating bus system backend. The request object resembles the following sample

JSON object:

{
 "amount" : "1" ,

 "sourceLat" : "53.3352318" ,
 "sourceLong" : "-6.228456899999969" ,

 "destLat" : "53.33505290000001" ,
 "destLong" : "-6.255541900000026" ,

 "address" : "Aviva Stadium, Lansdowne Rd, Dublin 4" ,

 "email" : "test@test.com"
}

In the above, the ‘sourceLat’ and ‘sourceLong’ values are taken from the user’s

current world space coordinates, and the ‘destLat’ and ‘destLong’ values are

obtained from the PlacePicker object. While the ‘address’ is also obtained from the

PlacePicker and sent with the request, it isn’t used when creating waypoints on the

backend, but is stored to the database. The reason for this is discussed in the future

work section of this report.

57

Once the request has been successfully received, the backend system returns a

response 200 OK to signify no errors occurred when accepting the request. The user

is then redirected to the Waiting Activity.

While on the Waiting Activity screen, there is constant communication

between the application and the backend system. The application performs GET

requests to the floating bus system so to get updated information about the user’s

assigned vehicle and pickup waypoint. The user’s location is re-obtained and

displayed on the map so to monitor their progress as they move closer to their

assigned waypoint.

To manage requests made to the backend server, a set of “helper” classes

were made for POST and GET requests, with an additional helper class for

vehicle/request specific information.

3.5.2.3 Standby Activities

Once a request has been made, the user is ushered onto a new Waiting Activity

screen where the application polls the backend system to monitor the request’s

picked up status. Users may cancel their request at this point, leading to the vehicle’s

route being recalculated.

After being picked up by the vehicle, the user is brought to the Travelling

activity where the application once again polls the backend system for route

information and request completed status.

Once the request has been marked as completed, the user is brought to the

Completed Activity page where they are shown their fare for their journey. This is

calculated using the euclidean distance between their pickup and drop off waypoints

rather than their road network distance due to the highly variable nature of the

floating bus routes. The user may now proceed to make new requests to the system if

needs be.

58

3.5.2.4 Driver Activity

A unique feature of the floating bus system implementation is the ability for users to

sign up as Drivers to follow routes and service customers. This activity updates and

shows the vehicle’s calculated route and stops along its route to be serviced. The

vehicle’s position is tracked using the user’s geolocation.

59

Chapter 4 - Evaluation

In this section the practicality of the floating bus system is shown and discussed. The

practicality of the system is largely based off of how it compares to existing systems

in the public transport domain. This means that the floating bus system will be

compared with the public bus service, based off of Dublin Bus routes and stop

locations. The evaluation of the floating bus system’s practicality is based off the

following metrics:

● Distance Travelled

● Distance from start point and distance to desired destination

○ This is a metric used for gauging passenger convenience, and looks at

the distance users have to travel to get to their allocated floating bus

stop waypoint versus the corresponding static bus stop.

● Time to complete

○ Including time taken with different traffic estimates

● Emissions

○ Based on average CO2 emissions per kilometer travelled.

4.1 Implementation Testing
The functionality of the floating bus system was tested rigorously with

multiple different scenarios to see how the system performed as expected under

certain circumstances. The implementation of the system was tested using the control

panel interface, which allowed for the creation of new vehicles and requests.

Simulations are also run from this view, with emulated pickups and drop offs,

allowing for a full understanding of how the floating bus works in a practical setting.

Vehicle movement was “breadcrumbed” to verify the integrity of the route.

60

Control Panel Interface

4.2 Test Cases
To be able to properly evaluate the floating bus functionality, it was important to run
all manner of test situations. The results gathered were highly dependent on the route
and number of requests assigned to each vehicle, and could be better or worse than
their traditional counterparts.

The first set of test cases look at situations where the floating bus is a more
viable solution to the static bus route in terms of economic and environmental
reasons. These test cases compare how a set of requests can be handled by fewer
floating buses than multiple static bus routes. The static buses are based off of real
Dublin bus routes manually input based on route information from the official Dublin
bus website.

4.2.1 Test Data Collection
The floating bus system is evaluated by comparing various use cases for certain

requests against their static route alternatives. This means that the Dublin bus route

information had to be gotten and compared with how a floating bus would operate

under the same user demands.

Since the static bus option doesn’t adhere to user input, the default routes are

compared with floating versions. To be able to do this, it was important to get actual

Dublin bus route information for stops and the running order they run in. To do this,

61

the Dublin bus route information needed to be extracted from the Dublin bus website

itself. The steps taken to acquire the route info for a sample Dublin bus route are as

follows:

1. Open Dublin Bus route viewer:

2. Open Chrome developer tools and open the Network tab.

3. Select XHR files to show and refresh the route viewer window. This will

reload the window prompting the XML file with the route information to be

resent and accessed.

62

4. Select all from the Response tab and save to an XML file.

From inspection of the route information, it can be seen that the stop information is

already in the correct running order according to the corresponding timetable’s stop

order. Once the route data has been saved to an XML file, it then needs to be parsed

into a format usable by the floating bus test system. To do this, a function was written

that takes the XML file and parses the information into a usable CSV format. A

JSON file for the bus route vehicle is also created at the first stop in the route. These

files are then be moved to the test folder. To be able to parse more routes, the above

is repeated and the XML files are moved into the bus routes folder to be parsed for

use.

To best represent the static bus route alternatives, waypoint merging is turned

down to 1/10th of a kilometre, so that only overlapping waypoints at each static bus

stop are merged into one. Also due to Google’s limitations on the number of route

waypoints allowed, the routes are incomplete, but are enough to show solid results in

cases. The routes were then inspected manually to ensure that the returned directions

weren’t completely unrealistic to a real bus route. This is because Google Directions

63

doesn’t allow for bus lanes in Driving vehicle’s directions, hence it was necessary to

make sure that the floating bus and static buses were being compared as fairly as

possible. Below is an example of a realistic route (as compared with the Dublin Bus

route viewer), and a totally unrealistic route (that is rejected for testing).

Acceptable, follows same shape and pattern as stated.

Unacceptable, ignoring bus lanes leads to additional loop due to meeting one way
roads along a normal driving route.

64

With the limitations on the number of waypoints allowed, we end up using route data
with only a small section of the overall route like so:

Id S Lat S Lng D Lat D Lng

S
Addres
s

D
Addres
s Amount email

1
53.418

164
-6.2770

27
53.413

193
-6.2653

36 6235 327 1
Route 13 Towards -
Grange Castle.csv_2

2
53.413

193
-6.2653

36
53.401

122
-6.2669

43 327 6016 1
Route 13 Towards -
Grange Castle.csv_3

3
53.401

122
-6.2669

43
53.402

647
-6.2733

42 6016 6017 1
Route 13 Towards -
Grange Castle.csv_4

... ...

17
53.380

416
-6.2656

49
53.377

693
-6.2596

49 39 116 1

Route 13 Towards -
Grange
Castle.csv_18

18
53.377

693
-6.2596

49
53.377

366
-6.2575

26 116 117 1

Route 13 Towards -
Grange
Castle.csv_19

*Note: See Appendix B for Route 757’s formatted and unformatted data. S(ource)
Address and D(estination) Address are labelled as bus stop numbers for static routes.

To be able to test against the floating bus system fairly, we create a new floating bus
vehicle and demonstrate the ways in which it would perform better than the static bus
route, and where it would perform worse.

65

4.2.2 Measuring Passenger Quality of Life
The first test is checking proximity of the stop location to the request’s actual starting
and ending locations. This represents how a passenger may have to walk some
distance before getting embarking on their route, or to reach their goal. The test data
for this case is created using request coordinates in close proximity to those of the
Dublin bus stops. For the above test, the following floating bus requests were used:

Id S Lat S Lng D Lat D Lng

S
Addres
s

D
Addres
s Amount email

1
53.429

16
-6.3010

42
53.402

31
-6.2636
2

Sandy
Hill

Northw
oord
Busine
ss
Campu
s 1

Route 13 Towards -
Grange Castle.csv_2
Floating1

2
53.402

31
-6.2636
2

53.399
593

-6.2678
76

Northw
oord
Busine
ss
Campu
s

Balcurri
s Park 1

Route 13 Towards -
Grange Castle.csv_2
Floating2

3
53.399

593
-6.2678

76
53.400

815
-6.2703

23
Balcurri
s Park

St
Joseph'
s
Junior
School 1

Route 13 Towards -
Grange Castle.csv_2
Floating3

... ...

17
53.379

162
-6.2621

08
53.378

842
-6.2619

47

Anders
ons
Food
Hall &
Cafe

The
Rise
Pharm
acy 1

Route 13 Towards -
Grange Castle.csv_2
Floating17

18
53.378

842
-6.2619

47
53.377

034
-6.2573

32

The
Rise
Pharm
acy

Compu
ter
Ambula
nce 1

Route 13 Towards -
Grange Castle.csv_2
Floating18

66

To be able to compare this with the static bus implementation, the following columns
were added to the initial data set:
Start Lat Start Lng End Lat End Lng Start Address End Address

53.42916 -6.301042 53.40231 -6.26362 SandyHill
Northwoord Business
Campus

53.40231 -6.26362 53.399593 -6.267876
Northwoord
Business Campus Balcurris Park

53.399593 -6.267876 53.400815 -6.270323 Balcurris Park
St Joseph's Junior
School

... ...

53.379162 -6.262108 53.378842 -6.261947
Andersons Food
Hall & Cafe The Rise Pharmacy

53.378842 -6.261947 53.377034 -6.257332 The Rise Pharmacy Computer Ambulance

The start and end coordinates are then compared with the source and destination (ie:
slat, slng) coordinates respectively. The start and end coordinates are used in place of
the source and destination coordinates for the floating bus route when making
requests, and are updated to reflect each of the resulting waypoint’s final coordinates
before measuring the distance between them.

The end routes look like this for the static option and floating bus
implementation respectively:

Dublin Bus Route 13 (Sub section) Floating Bus Route

The route info for each is as follows:

67

id
distance_
metres

time_to_c
omplete

traffic_tim
e_best_gu
ess

traffic_tim
e_optimist
ic

traffic_tim
e_pessimi
stic vehicle_id

8912898 68511 9045 6804 6516 7829 9142274

9142272 74185 10206 10650 8375 15843 9371648

Where:
● Vehicle ID: 9142274 is Dublin Bus Route 13
● Vehicle ID: 9371648 is Floating Bus

The results can be compared using the following bar charts:

68

Measuring passenger convenience was done by comparing the distance from a
request’s source coordinate location and requested destination coordinate location
with where each request’s pickup and drop off waypoint finalized after merging and
being related to the relevant road segment. The results for each type of bus are as
follows for the above:

69

Static Bus Floating Bus

Distance between
Start and Pickup

Distance between
Destination and Drop
off

Distance between
Start and Pickup

Distance between
Destination and Drop
off

0.02641272877 0.01101745638 0.0002596150997 0.00003605551275

0.01101745638 0.001791181175 0.00003605551275 0.0006079884867

0.001791181175 0.003531371547 0.0006079884867 0.0002659116395

0.003531371547 0.003519961648 0.0002659116395 0.0002662273465

0.003519961648 0.004630753934 0.0002662273465 0.0001339888055

0.004630753934 0.003227327842 0.0001339888055 0.0001272635062

0.003227327842 0.005285692859 0.0001272635062 0.0007544328996

0.005285692859 0.002692096766 0.0007544328996 0.0007975688058

0.002692096766 0.001612904213 0.0007975688058 0.0004722139346

0.001612904213 0.0008709087208 0.0004722139346 0.0004920254058

0.0008709087208 0.001385144397 0.0004920254058 0.0005783165223

0.001385144397 0.001555394805 0.0005783165223 0.001757960466

0.001555394805 0.0009502720663 0.001757960466 0.0007060028329

0.0009502720663 0.0008161648118 0.0007060028329 0.00123618971

0.0008161648118 0.002550077842 0.00123618971 0.000463876061

0.002550077842 0.003756487322 0.000463876061 0.0002921951403

0.003756487322 0.002569242106 0.0002921951403 0.00008045495634

0.002569242106 0.0003845256818 0.00008045495634 0.0007611734362

Since each request in the static implementation has no flexible pickup option, the
distance from a start point to the nearest fixed bus stop is used. The floating bus stops
generate closer to source and destination coordinates and hence cut down the
distance value required by the user to travel when embarking and disembarking on
the floating bus service. Comparing the results on the same scale gives us these
charts:

70

Floating Bus

Static Bus

At a glance, it’s easy to see that the floating bus is a much more convenient option
for people who prefer a service that goes door to door. There is a trade off when it
comes to the vehicle’s overall distance travelled and time taken to complete the route,
so users may be inconvenienced by longer journey times. However, these results
show good potential in the floating bus service for applications such as school bus
services, or for catering to passengers with disabilities that find it easier to be picked
up closer to their requested locations.

71

4.2.3 Routing Changes Based on Demand
This test case shows how the floating bus can be both more efficient and less

efficient than a static bus route depending on user demands. To show this, the same

route as above was used with various requests removed or added to show how the

floating bus efficiency can change between journeys.

First we compare a journey where we have lower demand for the route. The

set of requests are as follows:

Id S Lat S Lng D Lat D Lng S Address D Address Amount

1 53.413157 -6.267256 53.40231 -6.26362
Silloge Park
Golf Club

Northwoord
Business
Campus 1

2 53.40231 -6.26362 53.399593
-6.26787

6

Northwoord
Business
Campus

Balcurris
Park 1

3 53.390477 -6.265004 53.387826
-6.26409

3
Ballymun
Library

Our Lady of
Victories
Church,
Glasnevin 1

4 53.387826 -6.264093 53.385712
-6.26560

9

Our Lady of
Victories
Church,
Glasnevin Eurospar 1

5 53.385712 -6.265609 53.381855
-6.26802

1 Eurospar

North Dublin
National
School
Project 1

6 53.381855 -6.268021 53.379162
-6.26210

8

North Dublin
National
School
Project

Andersons
Food Hall &
Cafe 1

7 53.379162 -6.262108 53.378842
-6.26194

7

Andersons
Food Hall &
Cafe

The Rise
Pharmacy 1

8 53.378842 -6.261947 53.377034
-6.25733

2
The Rise
Pharmacy

Computer
Ambulance 1

72

Floating Bus Route Static Bus Equivalent Route

Here we can see that by knowing the demand in advance, the floating bus can follow

a more optimal route than its static bus equivalent. Being able to make decisions like

these when it comes to plotting routes can cut down on wasteful portions of trips, as

can be seen above. The route information returned for the above is:

id
distance_
metres

time_to_c
omplete

traffic_time_be
st_guess

traffic_time_o
ptimistic

traffic_time_
pessimistic vehicle_id

8912898 68511 9045 6804 6516 7829 9142274

9207808 42185 5901 5905 4891 9520 9437184

Where:
● Vehicle ID: 9142274 is Dublin Bus Route 13
● Vehicle ID: 9437184 is Floating Bus

The results can be compared using the following bar charts:

73

74

Here we can see a marked improvement in the overall route needed to be taken when

demand for the bus service is lower in all areas but time to complete with pessimistic

traffic. Some segments of the road network taken by the floating bus are likely

affected worse by heavy traffic conditions.

The floating bus doesn’t always create more efficient routes by itself

however, depending on a higher concentration of stops and at further distances from

the related static bus route the service performs worse over all. An example of a less

efficient floating bus can be seen below:

75

Floating Bus Route Static Bus Equivalent Route

The results for the above routes are as follows:

id
distance_
metres

time_to_
complet
e

traffic_time_
best_guess

traffic_time
_optimistic

traffic_time_
pessimistic vehicle_id

8912898 68511 9045 6804 6516 7829 9142274

9371648 81927 11191 11517 9345 17204 9601024

Where:
● Vehicle ID: 9142274 is Dublin Bus Route 13
● Vehicle ID: 9601024 is Floating Bus

The results can be compared using the following bar charts:

76

77

Here we can see the floating bus is taking a lot more time and going to greater
distances to service the high volume of requests that are further away. This is
something that could be solved by allocating these requests to another vehicle if
possible.

4.2.4 Number of Floating Bus Stops

In this section it is evaluated whether it is more efficient to have a single or multiple

floating buses servicing the same requests. This is done by comparing how multiple

static buses would service these requests all originating from a mutual pickup point

to multiple separate destinations.

Trinity College Dublin was used as the starting location, and various stops

were chosen around it. Individual requests were assigned as the static routes, and all

of the requests together were assigned for the floating buses. The routes compared

are as follows:

78

Individual Request #1 Individual Request #2

Individual Request #3 Individual Request #4

Individual Request #5

79

Compared with:

For ⅘ requests

For 5/5 requests

80

The route info obtained for the above is as follows:

id
distance
m time bestguess optimistic pessimistic vehicleid

9371657 21748 4585 5829 3932 8732 9601033
Floating
bus 5

9371656 16830 3484 4677 3037 6763 9601032
Floating
bus 4

9371655 4848 1034 1389 870 1902 9601031 Individ #1

9371654 4790 1020 1439 885 1984 9601030 Individ #2

9371653 3356 746 1006 668 1461 9601029 Individ #3

9371652 4103 795 953 662 1414 9601028 Individ #4

9371651 4575 951 1178 769 1472 9601027 Individ #5

The route information is combined for the individual buses to compare with the

floating buses that service the same requests:

Total
Distance Total Time bestguess optimistic pessimistic

Total
emmissions
(g)

Floating
Bus (5
requests) 21748 4585 5829 3932 8732 2577.138

Floating
Bus (4
requests) 16830 3484 4677 3037 6763 1994.355

Individuals
Combined
(5 Vehicles) 21672 4546 5965 3854 8233 2568.132

Individuals
Combined
(4 Vehicles) 17097 3595 4787 3085 6761 2025.9945

81

82

From the above data, we can see there is a point when using one floating bus to

service multiple requests becomes more inefficient than having multiple vehicle’s

servicing one request each. The distance travelled overall becomes more than the

cumulative distance of each of the individuals. Using this knowledge, we can see that

it is definitely within our interests to keep as many vehicles moving along the route

and to not leave nearby suitable vehicle idle for new requests.

83

Chapter 5 - Conclusions

5.1 Findings

From the evaluations of the system, we can see that a dynamic bus routing system

has the potential to be a practical solution to improving the aspects we set out to

prove. Being able to shorten distance from source and destination locations to their

relevant floating bus stops increases the passenger’s quality of life by

accommodating their requests closer to their sources. We can see that with proper

management of the buses the system can cut down on unnecessary distances spent on

routes without capacity, but also that an abundance of requests can lead to inefficient

routing overall when compared with similar static routes. Finally, it can be seen that

there is a turning point where having a single vehicle operating for all requests

becomes more inefficient than having multiple vehicles servicing the same requests,

meaning that by adding additional floating buses, we can still reduce the overall

number of vehicle on the road and still create a more efficient means of servicing the

requests received.

5.2 Implementation Issues

The biggest obstacle to implementing the floating bus system was working with

Google’s API services, with particular issues encountered with regards to hitting

query limits. The standard usage limits for both the APIs used in this project are as

follows:

Directions API

● 2,500 free directions requests per day.

○ This becomes an increasingly apparent issue as more floating buses

are added to the system, and as more requests are made to them,

causing their routes to be recalculated each time.

84

● Up to 23 waypoints allowed in each request, including the origin and final

destination.

○ This limit required that floating buses had to deny any additional

requests that would exceed this limit for their route. The merging of

waypoints in this project helped avoid this issue often, but it is still a

concern for vehicles with larger capacity that accomodate a large

number of unmerged waypoints.

● 50 requests per second.

○ While this limitation wasn’t encountered during the course of this

project, it could become problematic when a large number of floating

buses need to make directions requests at the same time.

Distance Matrix API

● 2,500 free elements per day.

○ In the Distance Matrix API, an element is defined as the number of

origins multiplied by the number of destinations in a request. For

example, a floating bus with its current location as the origin with 5

floating bus stops is five elements.

○ This becomes an issue quickly as traffic data is collected for each

routing request, specifically because to collect the three different

categories of traffic data, a separate request has to be made for each

traffic model to get their results. Taking the above example into

account, one route calculation with five elements becomes fifteen

elements after all traffic calculations are completed.

● Maximum of 25 origins or 25 destinations per request.

○ Similar to the Directions API, however the distance matrix uses

origin/destination pairs, meaning for every sub section of the overall

route between destinations, the previous destination is used as an

origin (ie: A to B, B to C, where B is destination then origin point).

This is alleviated in the same way as Directions thanks to the merging

process and upper destination limits.

● 100 elements per request and 100 elements per second.

85

○ This limit wasn’t encountered, and is unlikely to occur thanks to the

measures taken in preventing the destination limit exceeding the

previous limit’s amount. Since there is only ever one origin in a

floating bus route request, the number of elements per request is equal

to the number of destinations.

Maps JavaScript API

● 25,000 map loads per 24 hours.

○ The map load limit is a negligible concern for the floating bus system,

since the only use of it is in the control panel HTML page.

5.3 Future Work

There is a huge amount of scope for future work in the area of Dynamic Bus

Routing. Now that we have numerical figures that can be used to represent how well

the floating bus system works compared to the traditional public bus service, we can

start to identify areas that could improve the overall system and have a baseline with

which to compare modifications to the overall system with.

Future work projects that I see being highly beneficial to the area in a

practical sense are:

● Integrating existing public architecture into generation of floating bus stops.

○ While the floating bus right now works similarly to a taxi service in

that it can stop on any road segment it needs to, there are legal issues

with the creation of bus stops that need to be accounted for. Gardaí

and Council approval is needed before new traditional bus stops can

be implemented, and the same requirement could be required for

floating buses if implemented.

● Improved Routing

○ Routing could certainly be improved by implementing bus lanes and

removing the various Google API limitations when plotting routes.

86

Routing could also be improved by using road network distance over

using Euclidean distance between waypoints.

87

Appendix A

User Interface: Control Panel

Control Panel: Overview

Control Panel: Submitting a new request

88

Control Panel: Creating a new Vehicle

Control Panel: Viewing a Vehicle’s Route

89

Control Panel - Vehicle Mid Simulation w/ breadcrumbing

90

User Interface: Android Client

Main Activity Place Picker Widget

91

Driving Activity Travelling Activity

92

Travelling Activity Completed Activity

93

Profile Activity

94

Appendix B

Sample Dublin Bus Route Data XML

Route 757 Towards - Dublin Airport

<? xml version= "1.0" encoding= "utf-8" standalone= "yes" ?>
<gmap>
 <config>
 <size>
 <width> 500 </width>
 <height> 500 </height>
 </size>
 <center>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.33378 </lat>
 <lng> -6.263919 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 1074 </stopnumber>
 <address> Charlotte Way </address>
 <location> Camden Court Hotel </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 </center>
 <zoom> 12 </zoom>
 </config>
 <data>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.33378 </lat>
 <lng> -6.263919 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 1074 </stopnumber>
 <address> Charlotte Way </address>
 <location> Camden Court Hotel </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>

95

 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.335893 </lat>
 <lng> -6.25752 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 6074 </stopnumber>
 <address> Earlsfort Tce </address>
 <location> Leeson Street </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.338513 </lat>
 <lng> -6.255004 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 748 </stopnumber>
 <address> Merrion Row </address>
 <location> Huguenot Cemetery </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.340067 </lat>
 <lng> -6.25192 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 2905 </stopnumber>
 <address> Merrion Sq West </address>
 <location> Natural History Museum </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.341417 </lat>
 <lng> -6.251671 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 494 </stopnumber>
 <address> Clare Street </address>
 <location> Lincoln Place </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>

96

 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.343586 </lat>
 <lng> -6.249726 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 495 </stopnumber>
 <address> Westland Row </address>
 <location> Pearse Station </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.345022 </lat>
 <lng> -6.254255 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 7588 </stopnumber>
 <address> Pearse Street </address>
 <location> Tara Street </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.349758 </lat>
 <lng> -6.252437 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 4717 </stopnumber>
 <address> Amiens Street </address>
 <location> Bus Aras </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.348064 </lat>
 <lng> -6.247145 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 2499 </stopnumber>
 <address> Custom House Quay </address>
 <location> Jurys Hotel </location>

97

 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.34779 </lat>
 <lng> -6.242869 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 7216 </stopnumber>
 <address> North Wall Quay </address>
 <location> Guild Street </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.347373 </lat>
 <lng> -6.236342 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 2501 </stopnumber>
 <address> North Wall Quay </address>
 <location> New Wapping Street </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.346855 </lat>
 <lng> -6.228846 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 7623 </stopnumber>
 <address> East Wall Rd </address>
 <location> 3 Arena </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.426784 </lat>
 <lng> -6.240497 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 7401 </stopnumber>

98

 <address> Dublin Airport </address>
 <location> Terminal 2 </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 <poi>
 <city> dublin </city>
 <country> Republic of Ireland </country>
 <gpoint>
 <lat> 53.428116 </lat>
 <lng> -6.244116 </lng>
 </gpoint>
 <icon> /Global/Icons/image.png </icon>
 <stopnumber> 3665 </stopnumber>
 <address> Dublin Airport </address>
 <location> Terminal 1 </location>
 <iconshadow> /Global/Icons/shadow.png </iconshadow>
 </poi>
 </data>
</gmap>

99

Sample Dublin Bus Route Data Formatted CSV

Route 757 Towards - Dublin Airport

Id S Lat S Lng D Lat D Lng
S
Address

D
Address Amount email

1 53.33378 -6.263919 53.33378 -6.263919 1074 1074 1

Route
757
Towards
- Dublin
Airport.c
sv_1

2 53.33378 -6.263919 53.335893 -6.25752 1074 6074 1

Route
757
Towards
- Dublin
Airport.c
sv_2

3 53.335893 -6.25752 53.338513 -6.255004 6074 748 1

Route
757
Towards
- Dublin
Airport.c
sv_3

4 53.338513 -6.255004 53.340067 -6.25192 748 2905 1

Route
757
Towards
- Dublin
Airport.c
sv_4

5 53.340067 -6.25192 53.341417 -6.251671 2905 494 1

Route
757
Towards
- Dublin
Airport.c
sv_5

6 53.341417 -6.251671 53.343586 -6.249726 494 495 1

Route
757
Towards
- Dublin
Airport.c
sv_6

100

7 53.343586 -6.249726 53.345022 -6.254255 495 7588 1

Route
757
Towards
- Dublin
Airport.c
sv_7

8 53.345022 -6.254255 53.349758 -6.252437 7588 4717 1

Route
757
Towards
- Dublin
Airport.c
sv_8

9 53.349758 -6.252437 53.348064 -6.247145 4717 2499 1

Route
757
Towards
- Dublin
Airport.c
sv_9

10 53.348064 -6.247145 53.34779 -6.242869 2499 7216 1

Route
757
Towards
- Dublin
Airport.c
sv_10

11 53.34779 -6.242869 53.347373 -6.236342 7216 2501 1

Route
757
Towards
- Dublin
Airport.c
sv_11

12 53.347373 -6.236342 53.346855 -6.228846 2501 7623 1

Route
757
Towards
- Dublin
Airport.c
sv_12

13 53.346855 -6.228846 53.426784 -6.240497 7623 7401 1

Route
757
Towards
- Dublin
Airport.c
sv_13

14 53.426784 -6.240497 53.428116 -6.244116 7401 3665 1

Route
757
Towards
- Dublin
Airport.c
sv_14

101

Appendix C

Full Routing and Merging Process Illustrated

102

103

104

105

106

Bibliography

[1] Prof. Siobhán Clarke “Trinity Smart and Sustainable Cities Research Centre”,

Trinity College Dublin - https://goo.gl/JXJwfz (Accessed 14th May 2018)

[2] Sarah Burns “Time lost in Dublin traffic costs economy €350m per year”,

The Irish Times, Sat, Apr 29, 2017, 11:46

[3] Real Time Passenger Information -

http://smartdublin.ie/smartstories/real-time-passenger-information/ ,

04/08/2017 (Accessed 14th May 2018)

[4] "The Vehicle Routing Problem with Simultaneous ... - ScienceDirect.com."

https://www.sciencedirect.com/science/article/pii/S1877705811024805/pdf?

md5=c55979137e9970cf839d2c4fd51971aa&pid=1-s2.0-S187770581102480

5-main.pdf&_valck=1 (Last accessed 3 Feb. 2018)

[5] Dynamic Bus Routing - Thomas Kearns, Jordan Kanter and students Adam

Weissert, Haidong Fei, and Li Gong as part of the Urban Data Model

Prototype Studio at IIT in 2013-2014 -

https://softsentience.wordpress.com/2016/04/30/dynamic-bus-routing/ (Last

Accessed 23rd May 2018)

[6] Fang Y., Hu X., Wu L., Miao Y. (2010) A Real-Time Scheduling Method for

a Variable-Route Bus in a Community. In: Phillips-Wren G., Jain L.C.,

Nakamatsu K., Howlett R.J. (eds) Advances in Intelligent Decision

Technologies. Smart Innovation, Systems and Technologies, vol 4. Springer,

Berlin, Heidelberg

[7] “Radically rethinking the bus system” by Stephen Dowling 28 March 2013

BBC Future -

http://www.bbc.com/future/story/20130327-new-bus-stop-for-flexible-travel

(Last Accessed 23rd May 2018)

[8] “Infographic: A smarter future for bus travel” by Stephen Dowling 28 March

2013 BBC Future -

http://www.bbc.com/future/story/20130327-building-bus-stops-via-smartpho

ne (Last Accessed 23rd May 2018)

107

https://goo.gl/JXJwfz
http://smartdublin.ie/smartstories/real-time-passenger-information/
https://www.sciencedirect.com/science/article/pii/S1877705811024805/pdf?md5=c55979137e9970cf839d2c4fd51971aa&pid=1-s2.0-S1877705811024805-main.pdf&_valck=1
https://www.sciencedirect.com/science/article/pii/S1877705811024805/pdf?md5=c55979137e9970cf839d2c4fd51971aa&pid=1-s2.0-S1877705811024805-main.pdf&_valck=1
https://www.sciencedirect.com/science/article/pii/S1877705811024805/pdf?md5=c55979137e9970cf839d2c4fd51971aa&pid=1-s2.0-S1877705811024805-main.pdf&_valck=1
https://softsentience.wordpress.com/2016/04/30/dynamic-bus-routing/
http://www.bbc.com/future/story/20130327-new-bus-stop-for-flexible-travel
http://www.bbc.com/future/story/20130327-building-bus-stops-via-smartphone
http://www.bbc.com/future/story/20130327-building-bus-stops-via-smartphone

[9] ASP.NET MVC Overview - Microsoft Docs

https://docs.microsoft.com/en-us/previous-versions/aspnet/web-frameworks/d

d381412(v=vs.108) (Last Accessed 24th May)

[10] PostGIS - Spatial and Geographic objects for PostgreSQL -

https://postgis.net (Last Accessed 24th May)

[11] ACT Issues Policy Guidance Regarding the Definition of Ridesharing -

http://actweb.org/wp-content/uploads/2014/12/ACT_PolicyStatement_Definit

ion_of_Ridesharing_for_State_and_Local_Ordinances.pdf (Last accessed

24th May 2018)

[12] “Defining “Ridesharing:” A Guide for Reporters, Legislators, and

Regulators -

http://actweb.org/wp-content/uploads/2014/11/Ridesharing-Definition-Releas

e_091714v2.pdf (Last accessed 24th May 2018)

[13] Introduction to Ridesharing: Overview of definitions and setting the stage

-

http://actweb.org/wp-content/uploads/2014/12/ACT_Powerpoint_Ridesharing

_Shaheen.pdf (Last accessed 24th May 2018)

[14] “Fast Detour Computation for Ride Sharing” - Robert Geisberger, Dennis

Luxen, Sabine Neubauer, Peter Sanders, and Lars Volker - Karlsruhe Institute

of Technology, 76128 Karlsruhe, Germany

[15] “Reliability‐Based Transit Assignment for Congested Stochastic Transit

Networks” - by W. Y. Szeto, Muthu Solayappan, Yu Jiang

[16] “The allocation of buses in heavily utilized networks with overlapping

routes” - by Anthony F. Han, Nigel H.M. Wilson

[17] “What Are RESTful Web Services?” - Oracle -

“ https://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html (Last accessed 24th

May 2018)

[18] “Spring Framework Documentation” -

https://docs.spring.io/spring/docs/current/spring-framework-reference/index.h

tml (Last accessed 24th May 2018)

108

https://docs.microsoft.com/en-us/previous-versions/aspnet/web-frameworks/dd381412(v=vs.108)
https://docs.microsoft.com/en-us/previous-versions/aspnet/web-frameworks/dd381412(v=vs.108)
https://postgis.net/
http://actweb.org/wp-content/uploads/2014/12/ACT_PolicyStatement_Definition_of_Ridesharing_for_State_and_Local_Ordinances.pdf
http://actweb.org/wp-content/uploads/2014/12/ACT_PolicyStatement_Definition_of_Ridesharing_for_State_and_Local_Ordinances.pdf
http://actweb.org/wp-content/uploads/2014/11/Ridesharing-Definition-Release_091714v2.pdf
http://actweb.org/wp-content/uploads/2014/11/Ridesharing-Definition-Release_091714v2.pdf
http://actweb.org/wp-content/uploads/2014/12/ACT_Powerpoint_Ridesharing_Shaheen.pdf
http://actweb.org/wp-content/uploads/2014/12/ACT_Powerpoint_Ridesharing_Shaheen.pdf
https://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/index.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/index.html

[19] “w3schools.com HTTP Request Methods” -

https://www.w3schools.com/tags/ref_httpmethods.asp (Last accessed 24th

May 2018)

[20] “w3schools.com JSON - Introduction” -

https://www.w3schools.com/js/js_json_intro.asp (Last accessed 24th May

2018)

[21] “Google Maps Platform Directions API” -

https://developers.google.com/maps/documentation/directions/intro (Last

accessed 24th May 2018)

[22] “Google Maps Platform Distance Matrix API” -

https://developers.google.com/maps/documentation/distance-matrix/intro

(Last accessed 24th May 2018)

[23] “Google Maps Platform Maps JavaScript API” -

https://developers.google.com/maps/documentation/javascript/tutorial (Last

accessed 24th May 2018)

109

https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/js/js_json_intro.asp
https://developers.google.com/maps/documentation/directions/intro
https://developers.google.com/maps/documentation/distance-matrix/intro
https://developers.google.com/maps/documentation/javascript/tutorial

