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Summary	
The	Internet	of	Things	is	emerging	as	the	next	wave	of	the	Internet.	Although	the	Internet	

has	always	been	made	up	of	things,	nowadays	almost	any	object	with	sensing,	actuating	or	

computational	capabilities	can	be	connected	to	the	Internet.	However,	the	Internet	of	

Things	is	more	than	just	connecting	mass	amounts	devices	to	the	Internet.	A	promising	

feature	of	the	devices	used	in	an	Internet	of	Things	network,	is	their	ability	to	cooperate	

with	one	another	to	perform	a	task	and	improve	their	performance.	In	this	dissertation	we	

design	policies	that	allow	these	devices	to	successfully	cooperate	to	exchange	resources	

such	as	energy	or	wireless	bandwidth	with	one	another	to	complete	tasks.	

	

In	this	dissertation	we	adapt	the	Max-Weight	Scheduling	policy	to	determine	how	nodes	

should	cooperate.	The	Max-Weight	policy	has	a	number	of	benefits	that	make	it	desirable	

as	a	scheduling	policy.	The	first	is	that	it	is	a	distributed	algorithm	so	it	does	not	require	

the	need	for	a	centralised	node	to	organise	coordination.	The	second	is	that	it	does	not	

require	a	priori	knowledge	about	the	production	and	request	rates	of	nodes	to	determine	

who	should	be	served.	It	is	also	throughput	optimal	in	that	it	has	the	ability	to	stabilise	a	

queueing	network	whenever	possible.	Stability	in	a	resource	sharing	network	is	crucial	as	it	

guarantees	that	nodes	are	not	starved	of	the	resources	that	they	require	in	order	to	

sustain	existence.		

	

We	then	build	on	top	of	the	Max-Weight	policy	and	extend	to	the	case	where	there	are	a	

number	of	different	types	of	resources	that	nodes	can	exchange	among	one	another.	Each	

producer	can	do	some	planning	and	decide	how	to	use	the	resources	available	to	them	

best	serve	the	consumers	with	the	largest	demands.	For	example,	if	we	consider	a	sensor	

that	is	used	to	measure	air	quality	in	an	urban	environment,	the	sensor	can	decide	how	

much	energy	it	should	use	to	either	record	measurements	or	to	help	other	nodes	by	

exchanging	measurements	with	them.	

	

After	investigating	the	Max-Weight	policy	in	a	number	of	different	topologies	we	found	a	

Ring	or	a	fully	connected	Mesh	network	to	be	the	most	stable.	However,	we	also	found	

that	the	Max-Weight	policy	also	causes	a	lot	of	resources	to	be	wasted	when	deployed	in	

highly	dense	Mesh	networks.	To	avoid	the	number	of	resources	wasted,	the	Average-

Weight	policy	is	presented.	As	the	Average-Weight	policy	wastes	far	less	resources	than	
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the	Max-Weight	policy	it	results	in	much	lower	queue	sizes.	Smaller	queue	sizes	mean	that	

requests	spend	less	time	in	a	network	waiting	to	be	serviced.	Most	importantly	the	

Average-Weight	policy	retains	the	three	properties	that	the	Max-Weight	policy	offers.	It	is	

distributed,	it	does	not	require	any	a	priori	knowledge	about	nodes	and	so	far	it	has	been	

able	to	stabilise	any	network	which	the	Max-Weight	policy	stabilised.		

	

Production	scheduling	also	proved	to	be	very	key	in	terms	of	ensuring	stability	in	networks	

that	exchange	more	than	one	resource.	Whereas	self-interested	nodes	that	deploy	a	

production	policy	that	only	reflects	their	own	needs	or	a	policy	that	results	in	nodes	only	

producing	low-cost	plans	were	shown	to	lead	to	the	demise	of	the	network	in	which	they	

are	a	part	of.		

	

To	conclude,	we	found	both	the	Max-Weight	and	the	Average-Weight	policies	to	be	two	

different	ways	to	ensure	stability	in	networks	that	exchange	resources.	However,	the	

Average-Weight	policy	wastes	far	less	resources	than	the	Max-Weight	policy.	Producers	

scheduling	the	production	of	resources	is	also	a	key	factor	in	ensuring	network	stability.	
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Abstract	
Algorithms	for	Task	Sharing	in	the	Internet	of	Things	

By	Daniel	Connaughton	

Supervisor:	Dr.	Georgios	Iosifidis	

Master	in	Computer	Science	(MCS),	2018	

	

The	Internet	of	Things,	(IoT),	can	be	viewed	as	a	network	of	IoT	devices	embedded	in	

physical	objects	that	we	use	every	day.	An	IoT	device	is	any	device	that	has	any	sensing,	

actuating	and/or	computational	capabilities.	A	promising	feature	of	IoT	devices	is	their	

ability	to	cooperate	with	one	another	by	exchanging	resources	to	improve	their	

performance.	

	

In	this	dissertation,	we	will	design	and	analyse	policies	that	enable	IoT	devices	to	exchange	

resources.	Developing	resource	exchange	policies	in	IoT	networks	is	a	challenging	and	very	

important	problem.	To	tackle	this	problem,	we	will	leverage	the	celebrated	Max-Weight	

algorithm	which	was	initially	devised	(in	1993)	for	optimizing	packet	routing	in	multi-hop	

data	networks	and	since	then	has	been	applied	to	a	number	of	problems	in	a	variety	of	

areas	including	communication	networks,	computing	systems,	transportation	networks,	

economics,	and	so	on.	

	

We	will	adapt	this	algorithm	to	the	IoT	resource	sharing	context	for	deciding	how	each	

producer	allocates	their	resources	to	different	consumers.	Furthermore,	we	will	consider	

the	increasingly	relevant	scenario	where	there	are	a	number	of	different	resource	types	

that	nodes	exchange	and	producers	can	schedule	the	production	of	their	resources	to	

generate	different	types	of	resources	to	best	serve	the	neediest	consumers.	We	will	study	

what	the	necessary	conditions	for	these	devices	to	successfully	collaborative	and	achieve	a	

sustainable	network	are.	

	

The	Max-Weight	policy	when	deployed	in	different	network	topologies	will	be	evaluated	

and	based	on	results	new	task	sharing	algorithms	will	be	designed.	Different	production	

policies	will	also	be	analysed	and	their	advantages	and	disadvantages	will	be	presented.	
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1 Introduction	

	

1.1 Introduction	

This	dissertation	is	about	designing	task	sharing	algorithms	for	Internet	of	Things	(IoT)	

networks.	Tasking	sharing	can	be	thought	of	as	dividing	a	large	problem	into	smaller	tasks	

so	that	it	can	be	solved	more	optimally	and	efficiently	[1].	Task	sharing	in	an	IoT	network	

involves	coordinating	a	number	of	IoT	devices	so	they	can	cooperate	with	one	another	by	

exchanging	different	resources	to	complete	tasks.	

	

1.2 What	are	Internet	of	Things	Networks?	

The	expansion	of	embedded	systems	has	led	to	the	development	of	the	IoT	[2].	The	IoT	

can	then	be	viewed	as	a	network	of	many	different	IoT	devices	that	collect	and	exchange	

information	among	one	another	with	an	aim	to	extend	the	availability	of	the	Internet	to	

anyplace	at	any	time	[3].	IoT	networks	are	expected	to	have	a	profound	impact	on	both	its	

users	and	their	environment.	Mainly	due	to	the	wide	range	of	areas	that	IoT	applications	

are	expected	to	be	present	in	and	the	substantial	number	of	IoT	devices	that	are	expected	

to	be	a	part	of	the	IoT.	An	IoT	device	is	any	device	that	has	any	sensing,	actuating	and/or	

computational	capabilities.	These	devices	are	then	equipped	with	identifiers	and	wireless	

connectivity	so	that	they	can	exchange	information	automatically	between	each	other	in	

real	time	[3].	Examples	of	IoT	applications	can	be	found	in	manufacturing,	transportation,	

smart	cities	and	telecommunications	[4].	

An	example	of	an	IoT	application	can	be	found	in	a	smart	home.	A	smart	home	

consists	of	many	IoT	sensors	and	actuators	including	light,	temperature	and	motion	

sensors.	A	smart	home	also	has	a	computational	unit.	The	computational	unit	is	used	to	

reason	about	recordings	made	by	the	different	sensors	and	make	changes	to	the	

environment	to	adapt	to	these	recordings.	For	example,	the	opening	of	a	window	in	a	

room	when	the	temperature	sensors	record	a	reading	above	some	predefined	threshold.	

IoT	devices	offer	several	benefits	when	deployed	in	a	smart	home	including	reducing	the	

amount	of	energy	that	is	wasted,	reducing	the	monetary	costs	of	running	a	home	and	

reducing	the	risks	of	exposure	to	harmful	air	pollutants	[5].		

IoT	is	expected	to	have	a	huge	impact	in	any	area	that	deals	with	energy	

management.	In	[6],	an	example	of	how	IoT	technologies	are	being	used	in	the	National	
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Grid	in	the	U.K.	to	provide	a	healthy	maintainable	electrical	network	is	presented.	The	

authors	of	[5]	list	some	of	the	benefits	of	using	IoT	applications	for	electronic	vehicle	

charging	such	as	the	reliability,	resiliency,	adaptability,	and	energy	efficiency.	But	such	

benefits	seem	to	be	a	recurring	theme	provided	by	IoT	devices	in	most	IoT	applications.	

More	examples	of	IoT	devices	include	smart	phones,	autonomous	vehicles,	traffic	light	

systems,	robotics	in	manufacturing	and	the	devices	that	have	always	been	a	part	of	the	

internet.	

A	promising	feature	of	devices	used	in	IoT	applications	is	their	ability	to	cooperate	

with	one	another	to	perform	a	task	by	exchanging	resources,	such	as	wireless	bandwidth	

or	processing	power,	to	improve	their	performance	by	consuming	less	power	or	

decreasing	the	execution	time	of	a	task.	There	are	two	ways	in	which	devices	can	

cooperate.	In	the	first	scenario,	a	device	executes	a	task	on	behalf	of	another	device	that	

the	second	device	cannot	execute	itself	but	it	requires	its	output.	In	the	second	scenario,	

one	device	exchanges	some	of	its	own	resources	with	another	device	so	that	the	second	

device	may	perform	a	task.	

	

1.3 What	are	Challenges	for	Internet	of	Things	Networks?	

There	are	a	number	of	different	challenges	for	IoT	devices	and	networks.	A	lot	of	IoT	

devices	are	often	low	powered	battery-operated	devices	with	limited	computational	

capabilities	and	as	a	result	it	is	a	requirement	for	them	to	consumer	as	little	power	as	

possible	[7].	Another	important	challenge	is,	due	to	the	wide	range	of	IoT	applications	

available	and	the	different	types	of	sensors	and	devices	that	are	used	in	different	

applications,	IoT	networks	can	become	quite	diverse.	Also,	because	IoT	networks	can	have	

nodes	dynamically	joining	and	leaving	networks	at	any	time,	task	sharing	in	IoT	networks	is	

not	a	straightforward	problem.	As	a	result	of	these	challenges,	there	is	need	of	dynamic	

policies	that	can	be	followed	in	order	for	devices	to	successfully	collaborate	to	exchange	

resources	over	a	long	period	of	time.	

	

1.4 Research	Aims	

The	aim	of	this	dissertation	is	to	study	the	policies	from	“Dynamic	Policies	for	Cooperative	

Networked	Systems”	[8].	The	policies	will	then	be	used	to	design	and	analyse	new	

algorithms	that	enable	task	sharing	among	nodes	in	IoT	networks.	The	policies	will	be	

implemented	and	simulated	on	a	number	of	different	networks	using	Python	and	iGraph	

(which	is	an	open	source	software	package	used	for	network	analysis).		
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There	are	two	aspects	of	the	paper	mentioned	above	presented	in	this	dissertation.	

The	first	is	the	Max-Weight	policy	which	was	initially	devised	(in	1993)	for	optimizing	

packet	routing	in	multi-hop	data	networks	[9].	Since	then	has	been	applied	in	a	variety	of	

problems	in	communication	networks,	computing	systems,	transportation	networks,	

economics,	and	so	on.	There	are	a	number	of	benefits	that	the	Max-Weight	policy	offers	as	

a	scheduling	policy.	The	Max-Weight	policy	is	throughput	optimal	which	means	it	will	

stabilise	a	queueing	network	whenever	possible	[10].	The	Max-Weight	policy	does	not	

require	any	a	priori	information	about	the	demand	or	resource	generation	rates	about	

nodes	when	determining	who	to	serve.	The	Max-Weight	policy	is	also	a	distributed	

algorithm	as	it	does	not	require	a	central	node	to	organise	coordination	[8].	Under	the	

Max-Weight	policy	each	producer	of	resources	simply	selects	the	consumer	with	the	

highest	number	of	demands	that	it	is	connected	to.	The	Max-Weight	policy	will	be	adapted	

to	the	context	of	IoT	resource	sharing	where	producers	of	resources	decide	which	

consumers	they	should	allocate	their	resources	to.	

Different	network	topologies	such	as	Mesh,	Ring	and	Star	will	be	considered.	How	

the	Max-Weight	policy	is	affected	by	different	topologies	will	be	evaluated.	The	best	and	

worst	performing	topologies	in	terms	of	network	stability	will	be	further	evaluated.	

Different	network	properties	and	characteristics	such	as	assortativity	mixing	and	node	

degree	will	also	be	assessed	and	their	impact	will	be	discussed.	

The	second	aspect	is	the	increasingly	relevant	scenario	of	when	there	are	a	number	

of	resources	that	nodes	exchange.	Producers	can	schedule	the	production	of	the	resources	

available	to	them	into	different	types	of	resources	to	best	serve	the	consumers	with	the	

highest	requests.	Producers	can	put	more	effort	into	generating	one	type	of	resource	at	

the	expense	of	reducing	the	amount	of	effort	put	into	generating	other	types	of	resources	

in	an	attempt	to	best	serve	the	consumers	in	the	network	with	the	highest	demands.	One	

way	to	think	of	production	planning	is	to	imagine	in	a	smart	home	a	solar	panel	produces	

solar	renewable	energy.	The	renewable	energy	can	then	be	converted	into	electricity	or	

into	hot	water	depending	on	the	needs	of	the	smart	home	[11].	A	number	of	different	

production	scheduling	algorithms	will	be	compared	and	contrasted	to	view	the	benefits	of	

using	production	scheduling.	More	details	about	this	paper	and	these	policies	will	be	

discussed	further	in	the	next	chapter.		
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1.5 Methodology	

A	number	of	different	types	of	networks	will	be	modelled	using	Python	and	iGraph.	Each	

different	network	will	be	measured	based	on	evaluation	criteria	which	includes	the	

conditions	for	sustainability	[8]	and	the	strong	stability	requirement	for	queues	[12].	

Stability	is	an	important	metric	in	the	context	of	resource	sharing	as	if	a	network	is	stable	it	

means	that	nodes	are	not	starved	of	the	resources	they	require	to	sustain	their	existence	

over	a	period	of	time.	Both	the	best	and	worst	performing	topologies	will	be	studied	to	see	

what	makes	them	more	or	less	suited	than	others	for	the	Max-Weight	policy.	The	

advantages	of	using	the	Max-Weight	policy	over	other	node	selection	algorithms	will	be	

discussed.	Based	on	results	new	task	sharing	algorithms	will	be	designed	and	their	

advantages	and	disadvantages	over	using	the	Max-Weight	policy	will	be	discussed.	Then	

the	benefits	of	producers	scheduling	the	production	of	their	resources	over	other	

production	algorithms	will	be	compared.	Finally,	both	the	policies	for	selecting	nodes	and	

for	production	scheduling	will	be	applied	to	hypothetical	but	real-life	network	examples.		

	

1.6 Contribution	

A	number	of	contributions	will	be	made	by	this	dissertation	including,	

• Showing	that	the	most	stable	topologies	for	the	Max-Weight	policy	are	a	fully	

connected	Mesh	network	and	a	Ring	topology.	

• Showing	how	the	Max-Weight	policy	can	cause	resources	to	be	wasted	in	certain	

situations.	

• Designing	a	new	task	sharing	algorithm	to	avoid	wasting	resources.	

• Showing	how	production	scheduling	can	increase	network	stability	when	the	

number	of	types	of	resources	in	the	network	is	more	than	one.	

• Describing	the	impact	that	graph	properties	such	as	assortative	mixing	have	on	

network	stability.	

• Applying	the	Max-Weight	policy	and	production	planning	to	a	social	network	graph	

and	a	power	grid	graphs.	

	

1.7 Outline	

The	rest	of	this	dissertation	is	organized	as	follows.	In	the	State	of	the	Art	chapter	a	

background	of	the	Internet	of	Things	and	how	it	is	expected	to	impact	different	areas	is	

discussed.	Then	a	detailed	description	of	the	“Dynamic	Policies	for	Cooperative	Networked	
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Systems”	paper,	which	is	used	as	the	system	model	for	this	dissertation,	is	provided.	In	

chapter	three,	how	different	topologies	impact	the	Max-Weight	policy	and	other	node	

selection	algorithms	will	be	presented.	Based	on	results	a	new	task	sharing	algorithm	will	

be	designed.	In	the	fourth	chapter	the	idea	of	producers	scheduling	the	production	of	their	

resources	will	be	presented.	Then	the	advantages	and	disadvantages	of	production	

scheduling	and	other	production	scheduling	algorithms	will	be	discussed.	In	chapter	five	

different	graph	properties	and	their	effect	on	network	stability	will	be	examined.	Finally,	in	

chapter	six	a	number	of	examples	of	using	the	Max-Weight	policy	and	production	

scheduling	will	be	presented.	
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2 State	of	the	Art	

2.1 The	Internet	of	Things	

The	Internet	of	Things	can	be	viewed	as	a	network	of	computing	devices	embedded	in	

physical	objects	that	we	use	every	day.	These	devices	can	be	any	internet	enabled	device	

that	has	any	form	of	sensing,	actuating	and/or	computational	capabilities	which	enables	

them	to	connect	to	and	communicate	with	one	another	in	real-time	to	perform	a	wide	

range	of	tasks	[3].	Such	devices	can	range	from	a	smart	phone,	to	robotics	used	in	

manufacturing,	to	the	high-performance	computers	that	have	always	been	a	part	of	the	

Internet	[2].	It	is	estimated	that	the	IoT	could	be	composed	of	nearly	thirty	billion	devices	

by	2020	[6].	By	2025,	IoT	devices	may	even	include	food	packaging	and	furniture	which	

further	highlights	the	vast	number	of	devices	that	are	expected	to	be	connected	to	the	IoT	

[13].	

	 IoT	applications	have	the	ability	to	automate	everyday	functions	by	placing	a	small	

computer	inside	of	an	object	so	that	it	can	receive	and	exchange	information	and	

resources	in	real-time	which	is	one	of	the	key	aspects	driving	this	new	technology	

revolution	[7],	[3].	An	example	of	an	IoT	application	can	be	found	in	oil	and	gas	exploration	

where	sensors	on	an	oil	pipeline	monitor	changes	in	pressure.	When	the	sensors	register	a	

pressure	change	above	some	threshold	the	pumps	shut	down	in	real	time	to	avoid	any	

disaster	[4].	Another	example	can	be	found	in	smart	cities,	where	smart	meters	are	used	

to	measure	electricity	usage	in	a	smart	home	in	real-time.	The	data	is	collected	and	sent	

back	to	the	provider	where	supply	levels	are	adjusted	appropriately	so	that	resources	are	

not	wasted	[14].	Further	examples	of	IoT	applications	can	be	found	in	Figure	2.1	on	the	

following	page.	

	

2.2 Related	Work	

As	the	Internet	of	Things	is	a	relatively	new	paradigm	there	are	no	standards	on	how	task	

sharing	should	be	implemented	in	IoT	networks.	Instead	the	algorithms	described	in	this	

dissertation	are	based	on	the	policies	from	[8]	which	use	elements	of	Graph	Theory	and	

Queueing	Theory	to	approach	task	sharing.	The	policies	are	further	described	in	the	

following	sections.	
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Figure	2.1	-	IoT	Applications.	

Examples	of	the	different	areas	that	IoT	applications	are	expected	to	have	an	impact	in	[13].	

	

2.2.1 Dynamic	Policies	for	Cooperative	Networks	

The	proposed	policies	are	not	directly	aimed	at	IoT,	they	are	instead	aimed	at	Economic	

Entities	(EE)	which	can	be	any	individual	or	organisation	that	makes	requests	for	resources	

in	order	to	sustain	its	existence.	Each	EE	makes	requests	for	resources	but	can	also	

generate	resources	to	satisfy	those	requests.	Therefore,	each	EE	has	two	roles.	It	acts	as	

both	a	producer	and	a	consumer	of	resources.	For	example,	consider	an	IoT	sensor	that	is	

based	on	an	energy	harvesting	mechanism	such	as	a	solar	panel.	The	solar	panel	generates	

electricity	but	it	also	might	consumer	some	energy	in	the	process	and	in	other	operations.	

An	EE	is	self-sustainable	if	the	rate	at	which	it	produces	resources	is	greater	than	

the	rate	at	which	it	makes	requests	for	resources.	If	the	rate	that	resource	requests	are	

generated	exceeds	the	rate	which	an	entity	can	generate	resources	to	satisfy	those	

requests	for	a	given	resource	type	then	that	entity	may	become	unsustainable.	However,	if	

there	is	a	group	or	a	network	of	entities	connected	to	one	another,	then	it	is	possible	that	

although	some	entities	may	not	be	sustainable	on	their	own	for	each	type	of	resource,	it	

may	exchange	resources	with	other	entities	in	the	network	and	help	cover	its	own	lack	of	

that	resource.	If	an	exchange	policy	exists	such	that	all	entities	in	the	network	become	

sustainable	then	that	network	is	also	sustainable.	
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2.2.2 Resource	Sharing	and	the	Max-Weight	Policy	

The	authors	first	cover	the	case	where	there	is	only	one	type	of	resource,	!,	that	entities	

exchange.	The	entities	are	connected	in	a	directed	graph	"	 = 	 (&, ℇ)	meaning	all	nodes	

are	connected	to	each	other	by	the	set	of	edges	ℇ	which	are	not	necessarily	bidirectional.	

As	already	mentioned,	each	entity	in	the	network	has	two	roles,	it	is	both	a	producer	and	a	

consumer.	Therefore,	there	are	* = 1, … , &- 	producers	who	can	serve	consumer	.	and	

there	are	. = 1, … , &/ 	consumers	who	can	receive	resources	from	producer	*	in	the	

network.	We	assume	a	time	slotted	operation	where	a	time	slot	could	be	a	minute	an	hour	

or	a	day	depending	on	the	environment.	At	the	start	of	each	time	slot	each	producer	*	in	

the	network	produces	0 ≤ 2/ ≤ 2345	units	of	resources.	Where	2345	is	the	max	

production	rate	of	the	network.	At	the	start	of	each	time	slot	each	each	consumer	.	

generates	0 ≤ 6- ≤ 6345	requests	for	resources.	Where	6345	is	the	max	arrival	rate	of	

the	network.	At	the	end	of	each	time	slot	7	a	consumer	has	8-(7)	pending	requests.		

During	each	time	slot	7	a	consumer	can	be	served	by	many	producers	but	a	

producer	may	only	serve	one	consumer.	The	control	action	of	this	system	is	to	decide	

which	producers	serve	each	consumer	during	each	time	slot.	Let	9/-(7)	be	a	&	:	&	binary	

matrix	where	each	entry	(*, .)	denotes	whether	producer	*	is	serving	consumer	.	during	

time	slot	7.	Each	entry	(*, .)	can	only	be	equal	to	1	if	 *, . ∈ 	ℇ.	Note	that	 ., . ∈ ℇ	as	each	

entity	can	serve	its	own	requests.	

Each	producer	*	uses	the	Max-Weight	policy	to	choose	which	consumer	.	it	will	

serve	in	each	time	slot	7.	To	select	which	consumer	.	to	serve,	each	producer	*	simply	

observes	the	pending	requests	8-(7)	for	every	consumer	it	is	connected	to	and	then	

assigns	its	resources	to	the	consumer	with	the	largest	demands.	Each	consumer	.	then	

updates	its	pending	requests	8-.	First	it	subtracts	the	total	number	of	resources	it	has	

received	<-(7)	from	each	producer	in	the	current	time	slot	7	from	its	pending	requests	

8-(7 − 1)	in	the	previous	time	slot.	Where	<-(7) = 	 9/-/∈>? (7)2/(7).	Then	it	adds	the	

number	of	new	resource	requests	6-(7)	it	has	generated	in	that	time	slot	to	its	number	of	

pending	requests	to	get	its	updated	number	of	pending	requests	8-(7)	for	that	time	slot	7.	

Pseudocode	of	the	Max-Weight	serving	policy	is	provided	in	Figure	2.2	on	the	following	

page.	
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Figure	2.2	-	The	Max-Weight	Scheduling	Policy.	

	

2.2.3 Production	Planning	

The	authors	then	build	on	top	of	the	Max-Weight	policy	and	extend	to	the	case	where	

there	is	a	number	of	different	resource	types	that	entities	exchange	among	one	another.	

Each	consumer	.	now	generates	6-@(7)	requests	for	resource	A	during	each	time	slot	7.	

Each	producer	*	is	now	allowed	to	do	some	planning	to	decide	how	to	best	split	its	

available	resources	to	produce	different	resource	types.	For	example,	if	producer	*	had	

two	units	of	resource	available	it	could	producer	either	two	units	of	resource	type	A	or	two	

units	of	resource	type	B	or	one	unit	of	each.	Producers	can	increase	the	production	of	a	

certain	resource	type	by	putting	more	effort	into	producing	that	type	of	resource	at	the	

expense	of	reducing	its	efforts	spent	producing	other	types	of	resources.	The	production	

choices	of	a	producer	*	are	represented	by	the	set	of	different	possible	production	plans	

B/.	Under	each	plan	C	a	producer	produces	2/@
D (7)	units	of	resource	A	during	time	slot	7.	

Again,	each	consumer	.	is	allowed	to	be	served	by	multiple	producers.	However,	each	

producer	*	is	now	allowed	to	serve	more	than	one	consumer	as	long	as	it	only	serves	at	

most	one	consumer	for	each	resource	A.	As	before	each	producer	*	chooses	the	consumer	

.	with	the	largest	pending	requests	8-@(7)	to	serve	for	each	resource	type	in	each	time	slot	

7.	After	each	producer	*	chooses	which	consumers	to	serve	for	each	resource	type	A,	it	

then	selects	the	production	plan	C	that	will	best	serve	those	consumers.	Finally,	each	

consumer	.	updates	its	pending	requests	8-@ 	for	each	resource	type	A	in	a	similar	fashion	

as	before.	
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2.3 Abstraction	

The	polices	and	system	described	in	the	previous	two	sections	will	be	used	to	model	IoT	

networks	and	devices.	Each	node	can	be	thought	of	as	an	IoT	device.	Each	IoT	device	can	

either	generate	or	produce	some	form	of	a	resource	such	as	energy	or	wireless	bandwidth	

depending	on	the	device.	The	production	and	arrival	rates	of	devices	will	be	simulated	

using	random	number	generators.	Each	edge	in	the	network	graphs	represents	a	one-hop	

neighbour	for	an	IoT	device	that	it	can	exchange	its	resources	with.		
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3 Network	Topologies	

3.1 Introduction	

Nodes	in	a	network	graph,	may	only	exchange	resources	between	one	another	if	they	are	

connected.	Two	nodes	in	a	graph	"	are	connected	if	there	is	an	edge	between	them.	The	

edges	of	a	network	define	the	topology	of	that	network.	In	the	following	chapter	the	

performance	of	the	Max-Weight	policy	when	deployed	in	different	network	topologies	will	

be	discussed.	Mainly,	this	chapter	will	look	at	how	network	stability	is	affected	when	the	

Max-Weight	policy	is	used	in	different	topologies.	Network	stability	will	be	measured	using	

the	strong	stability	requirement	(Equation	3.1)	[8].	The	strong	stability	requirement	states	

that	a	queue	is	strongly	stable	if	it	does	not	grow	to	infinity	over	time.	A	network	is	

strongly	stable	if	all	individual	queues	in	that	network	are	also	strongly	stable	[3].	Or	in	

other	words	a	network	is	stable	if	the	number	of	pending	requests	that	each	consumer	has	

should	not	continually	grow	to	infinity	over.	When	more	nodes	connect	to	one	another	the	

number	of	pending	requests	that	each	node	has	should	not	continually	grow	to	infinity	

over	time.	Also	the	average	number	of	pending	requests	for	the	entire	network	should	

also	not	continually	grow	to	infinity	over	time	as	average	vertex	degree	of	that	network	is	

increased.	
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Equation	3.1	-	The	Strong	Stability	Requirement	for	Demands.	

	

The	main	topology	that	will	be	studied	in	this	chapter	is	a	Mesh	topology	but	Ring	and	Star	

topologies	will	also	be	discussed.	Different	Mesh	networks	will	be	evaluated	ranging	from	

sparse	networks	with	little	or	no	edges	to	fully	connected	ones.	The	Mesh	networks	will	be	

simulated	using	geometric	random	graphs,	(GRG).	One	way	of	increasing	or	decreasing	the	

number	of	edges	between	nodes	in	a	GRG	is	by	changing	the	radius	X	of	the	GRG.	As	the	

radius	X	of	a	graph	increases	more	edges	are	added	to	the	graph	and	more	nodes	become	

connected	to	each	other.	

	 To	test	this	a	number	of	different	Mesh	networks	were	initialised	using	the	

geometric	random	graph	function	in	the	iGraph	package.	GRG	are	similar	to	Mesh	

networks	where	nodes	connect	to	as	many	nodes	nearby	as	possible.	Each	graph	was	then	
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passed	as	a	parameter,	a	graph	radius	which	determined	the	edges	of	the	graph.	When	the	

radius	X = 0,	each	node	is	only	connected	to	itself	and	cannot	exchange	resources	with	

other	nodes.	As	the	radius	increases	more	nodes	become	connected	until	eventually	the	

network	graph	becomes	fully	connected.	A	fully	connected	network	is	a	network	where	all	

nodes	are	directly	connected	to	each	other	[15].	It	isn’t	till	the	radius	X ≥ 0.25	that	every	

node	in	the	network	becomes	connected	to	at	least	one	other	node	and	every	node	can	

start	to	make	use	of	the	Max-Weight	policy.	

	

3.2 Mesh	Network	Graphs	

The	first	case	studied	was	when	there	was	only	one	type	of	resource	A ∈ !	that	nodes	in	a	

network	exchange	among	one	another.	To	keep	the	results	obtained	from	each	simulation	

based	only	on	the	effects	of	different	topologies,	every	network	was	initialised	with	arrival	

rate	6- ≤ 1	and	production	rate	2/ ≤ 1.	Meaning	each	consumer	.	generates	0 − 1	

resource	requests	and	each	producer	*	generates	0 − 1	unit	of	resource	during	each	time	

slot.	In	general,	when	both	the	arrival	rate	and	production	rate	are	increased	the	number	

of	pending	requests	also	increases,	but	the	networks	do	not	necessarily	become	unstable.	

The	only	variables	altered	between	simulations	were	the	graph	radius	X	and	the	number	of	

nodes	&	in	the	network.	In	each	simulation	of	the	Max-Weight	policy	the	number	of	time	

slots	7 = 1000.		

Each	different	radius	was	tested	on	fifty	different	networks	to	calculate	the	

average	for	each	different	radius.	It	appeared	as	though	that	after	fifty	simulations	of	each	

radius	the	queues	were	beginning	to	converge	for	these	particular	simulations.	However,	

when	the	number	of	resource	types	increased	or	the	number	of	nodes	in	each	network	

were	increased	and	other	variables	were	tested	the	number	of	simulations	for	each	

different	network	was	greatly	increased	to	gain	more	accurate	results.	Networks	were	

mainly	initialised	with	either	twenty	or	fifty	nodes.	Other	networks	sizes	both	smaller	and	

larger	were	tested.	For	each	of	those	network	sizes	a	range	of	graph	radii	between	0 − 2	

was	tested.	

When	the	graph	radius	X = 0,	each	node	is	only	connected	to	itself.	That	means	

each	node	can	only	serve	its	own	requests	and	it	cannot	make	use	of	the	Max-Weight	

policy.	As	expected	the	number	of	pending	requests	grows	to	infinity.	Although	some	

nodes	have	little	or	no	pending	requests	at	all,	there	are	a	lot	of	nodes	with	a	high	number	

of	pending	requests.	The	nodes	with	the	high	number	of	pending	requests	also	have	

unstable	queues	and	as	a	result	the	network	also	becomes	unstable,	as	can	be	seen	in	
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Figure	3.1	below.	When	the	radius	X = 0	the	average	number	of	pending	requests	in	each	

network	is	higher	than	when	the	radius	X > 0	for	almost	all	network	sizes	tested	when	the	

number	of	resource	types	! = 1.	The	queues	are	most	unstable	when	the	radius	X = 0.	As	

in	they	grow	to	infinity	almost	straightaway.	

	

	
Figure	3.1	-	Unstable	Sparse	Mesh	Network.	

	

As	the	radius	increases	more	nodes	become	connected	and	can	make	use	of	the	Max-

Weight	policy	to	exchange	resources	with	each	other.	As	a	result	of	this	the	queues	start	to	

stabilise.	When	the	radius	X = 2	the	network	becomes	full	connected	and	the	queues	

become	stable.	However,	a	fully	connected	network	did	not	necessarily	lead	to	a	decrease	

in	queue	size	which	was	original	expected.	When	the	number	of	nodes	was	equal	to	

twenty,	a	fully	connected	network	had	a	higher	average	number	of	pending	requests	than	

a	network	with	twenty	nodes	and	radius	X = 0.25	(which	is	about	an	average	vertex	

degree	of	four	for	that	particle	network	size)	on	average.	However,	although	the	queue	

size	for	the	network	graph	with	radius	X = 0.25	was	smaller,	it	was	not	stable.	When	the	

number	of	nodes	increased	to	fifty,	the	network	graph	with	radius	X = 0.25	also	had	a	

lower	average	number	of	pending	requests	than	a	fully	connected	graph,	but	it	was	not	

stable.	When	the	number	of	nodes	increased	to	100	the	results	were	similar.	

It	is	also	worth	noting	that	when	the	number	of	nodes	in	a	network	increases	the	

queues	become	more	stable.	This	is	mainly	due	to	the	number	of	nodes	a	nodes	is	
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connected	to	increasing.	Although,	the	increase	in	nodes	did	lead	to	an	increase	in	the	

average	number	of	pending	requests	in	a	fully	connected	network.	In	a	network	graph	with	

a	radius	X = 0.25	there	was	also	an	increase	in	queue	size	but	only	slightly.	The	increase	in	

nodes	in	a	network	with	radius	X = 0.25	did	also	improve	the	stability	but	only	slightly	as	it	

was	still	effected	by	the	nodes	with	a	low	number	of	neighbours.	It	is	important	to	note	

that	a	lower	queue	size	does	not	necessarily	lead	to	a	more	stable	network.	Maybe	it	is	

more	important	to	note	that	an	increase	in	queue	size	does	not	necessarily	lead	to	an	

unstable	network.	

	

3.3 Wasting	Resources	

When	the	number	of	resource	types	A > 1	the	results	are	almost	identical.	As	the	radius	

increases	the	average	number	of	pending	requests	also	increases	but	the	queues	also	

become	more	stable.	The	increase	in	the	queue	size	when	the	radius	is	increased	is	

believed	to	be	due	to	less	nodes	in	a	network	being	served	as	a	result	of	the	increase.	For	

example,	in	a	fully	connected	network	when	each	producer	*	selects	a	consumer	.	to	serve,	

every	producer	*	sees	the	same	set	of	consumers	&/ 	and	as	a	result	sees	the	same	

consumer	.	with	the	highest	number	of	pending	requests	8-.	This	means	that	in	a	fully	

connected	network	only	one	consumer	will	be	served	in	each	time	slot.	Whereas	in	

networks	that	have	a	lower	average	vertex	degree	more	consumers	are	served	which	

allows	resources	to	be	more	evenly	distributed	throughout	the	network.	As	a	result	of	

more	consumers	being	served	in	each	time	slot	the	queue	size	decreases.	But	as	already	

mentioned	a	decrease	in	queue	size	does	not	necessarily	mean	a	more	sustainable	

network.		

In	the	fully	connected	network,	a	number	of	resources	are	wasted	because	of	the	

fact	that	only	one	consumer	is	served	in	each	time	slot.	It	is	not	only	in	fully	connected	

Mesh	networks	that	resources	are	wasted.	As	the	number	of	edges	increases	in	a	Mesh	

network,	or	in	other	words	that	Mesh	network	becomes	more	dense,	more	and	more	

resources	are	wasted.	Most	resources	wasted	in	the	simulations	occurs	in	the	first	few	

time	slots	when	each	consumer	might	only	have	a	relatively	low	number	of	requests.	

Resources	are	wasted	in	the	networks	with	a	low	graph	radius	too	but	the	number	of	

resources	wasted	in	the	fully	connected	network	is	far	greater.	For	example,	imagine	a	

fully	connected	network	with	twenty	nodes	and	each	consumer	.	has	an	arrival	rate	6- ≤

1	and	each	producer	*	has	a	production	rate	2/ ≤ 1.	In	the	first	time	slot	the	max	number	

of	pending	requests	8- = 1.	There	might	be	a	number	of	nodes	with	pending	requests	
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8- = 1.	However	if	all	twenty	producers,	each	have	one	resource	unit	to	give	to	a	

consumer,	selects	the	same	consumer	.	to	serve	then	there	will	be	19	resources	wasted.	

This	trend	can	continue	for	the	first	few	time	slots	which	causes	a	lot	of	resources	to	be	

wasted	until	the	number	of	pending	requests	at	each	consumer	increases	and	then	less	

resources	are	wasted.	In	this	example	the	number	of	resources	types	! = 1.	But	if	the	

number	of	resources	! = 2,	then	are	is	a	chance	that	this	situation	can	occur	for	each	

resource	in	the	network.	So	instead	of	having	19	resources	wasted	there	would	be	38.	If	

we	increase	!	then	even	more	resources	could	be	wasted.	In	Figure	3.2	below	the	total	

number	of	resources	wasted	can	be	seen	for	two	different	graph	radius.	On	the	left	the	

graph	radius	X = 0.25	and	on	the	right	the	graph	radius	X = 2.	

	 	

	
Figure	3.2	-	Wasted	Resources	in	Mesh	Networks.	

	

Although	both	the	fully	connected	and	sparse	networks	waste	resources,	because	the	fully	

connected	network	wastes	so	many	resources	when	the	number	of	pending	requests	in	

the	network	are	relatively	low	it	causes	the	number	of	pending	requests	to	be	much	higher	

than	the	networks	with	a	low	graph	radius	such	as	X = 0.25.	It	can	be	seen	in	the	graphs	in	

the	Figure	3.2	above	that	both	the	networks	continue	to	waste	resources	at	a	similar	rate.	

Because	the	sparse	networks	have	more	consumers	being	served	in	each	time	slot	it	allows	

the	resources	to	be	more	distributed	which	results	in	less	of	a	chance	of	resources	being	

wasted.	The	fully	connected	networks	are	more	stable	than	the	sparse	networks	though.	

This	is	because	in	a	sparse	network,	which	results	in	nodes	having	a	low	number	of	

neighbours,	the	consumers	with	the	largest	requests	might	not	be	connected	to	enough	

producers	to	receive	enough	resources	to	keep	it	from	becoming	unstable.		

When	the	number	of	nodes	increases	it	has	a	huge	impact	on	the	queue	size.	In	a	way	

it	is	expected	as	more	consumers	are	now	generating	more	requests.	But	there	should	also	

be	more	producers	serving	those	requests	which	should	keep	the	queue	sizes	the	same	
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regardless	of	the	network	size.	When	the	number	of	resource	types	! = 1	there	is	also	an	

increase	in	the	queue	size	as	the	number	of	nodes	increased	but	not	nearly	as	large	as	

when	!	is	increased	to	two.	When	the	number	of	nodes	increases	from	twenty	to	fifty	the	

queue	size	almost	doubles	for	a	network	with	a	radius	of	0.25.	But	the	queue	size	

increases	even	further	when	the	network	becomes	fully	connected.	This	is	due	to	even	

more	resources	being	wasted	when	the	number	of	nodes	increases.	It	has	already	been	

shown	that	the	Max-Weight	policy	wastes	a	lot	of	resources	when	the	number	of	pending	

requests	in	a	network	is	low	for	dense	Mesh	networks.	The	increase	in	the	number	of	

nodes	also	leads	to	an	increase	in	wasted	resources	which	leads	to	the	increase	in	queue	

size.	For	example,	when	there	was	twenty	nodes	in	a	fully	connected	network	there	were	

19	resources	wasted	in	the	first	time	slot	but	if	there	are	now	fifty	nodes	there	could	

potentially	be	49	wasted	resources.	However	the	increase	in	queue	size	did	not	lead	to	any	

instabilities.	In	fact,	as	the	number	of	nodes	increases,	although	the	queue	size	increases,	

the	queues	actually	become	more	stable	which	was	also	the	case	when	there	was	only	one	

type	of	resource	that	nodes	exchange.	

	

3.4 Ring	and	Star	Topologies	

So	far	most	of	the	networks	used	have	been	generated	using	GRG	which	results	in	network	

graphs	that	are	similar	to	Mesh	networks	as	already	mentioned.	The	Max-Weight	policy	

was	also	tested	in	Ring	and	Star	network	topologies.	The	Ring	topology	performed	better	

than	any	of	the	other	networks	tested	in	terms	of	queue	size.	The	queues	were	also	stable.	

The	Star	topology	had	a	lower	queue	size	than	any	of	the	Mesh	networks	tested	but	not	as	

low	as	the	Ring	topology.	The	queues	for	the	Star	topology	were	also	not	stable.	

In	the	Star	topology	nodes	can	only	be	served	either	by	themselves	or	by	the	

centre	node.	If	the	network	size	is	large	then	the	probability	of	a	node	on	the	outside	

being	served	by	the	centre	node	becomes	quite	low.	If	there	are	a	few	nodes	on	the	

outside	that	are	not	sustainable	on	their	own	then	this	will	eventually	lead	to	an	unstable	

network.	For	the	Ring	topology,	each	node	can	be	served	by	itself,	one	node	to	its	left	and	

one	node	to	its	right.	This	increases	the	chances	of	more	nodes	being	served	which	helps	

the	nodes	with	the	highest	number	of	requests	to	receive	more	resources	from	other	

nodes	which	improves	network	stability.		

On	the	following	page,	In	Figure	3.3	the	average	number	of	pending	requests	for	a	

fully	connected	Mesh	network	and	in	Figure	3.4	a	Ring	topology	can	be	seen.	Both	

topologies	had	twenty	nodes.	The	Ring	topology	results	show	that	it	is	possible	to	have	a	
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network	that	has	a	low	number	of	average	pending	requests	but	also	stable	queues.	The	

decrease	in	queue	size	when	using	a	Ring	topology	is	due	to	only	a	small	number	of	

resources	being	wasted.	The	Ring	topology	wasted	less	resources	then	any	of	the	Mesh	

networks	on	average.	A	Ring	topology	with	twenty	nodes	wasted	an	average	of	about	six	

resources	per	node	after	1000	time	slots.	A	fully	connected	Mesh	network	with	the	same	

number	of	nodes	wasted	about	24	resources	per	node	after	1000	timeslots.	

	

	
Figure	3.3	-	Queues	for	a	Fully	Connected	Mesh	Network.	

	
Figure	3.4	-	Queues	for	a	Ring	Network.	
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3.5 Random	Node	Selection	

To	compare	the	performance	of	the	Max-Weight	policy	against	another	node	selection	

algorithm,	it	was	tested	against	random	node	selection	and	the	results	of	the	two	policies	

were	compared.	In	random	node	selection	a	producer	*	selects	a	consumer	.	that	it	is	

connected	to	without	any	regard	for	that	consumers	pending	requests	or	the	pending	

requests	of	any	other	consumer	in	its	network.	At	first	it	was	thought	that	random	node	

selection	would	cause	each	network	tested	to	become	unstable	due	to	fact	that	producers	

might	just	keep	selecting	nodes	with	low	or	little	pending	requests.	If	this	happens	it	will	

cause	resources	to	be	wasted.	It	will	also	mean	that	there	is	a	chance	that	the	consumers	

with	the	highest	number	of	pending	requests	do	not	get	served.	If	the	consumers	with	the	

highest	number	of	pending	requests	do	not	get	served	their	queues	will	continue	to	grow.	

This	will	cause	the	consumers	with	the	largest	demands	and	their	queues	to	become	

unstable	which	in	turn	will	cause	the	network	to	become	unstable.	

	 However,	this	did	not	happen.	On	average	the	number	of	pending	requests	in	

networks	that	use	random	node	selection	was	lower	than	those	that	use	the	Max-Weight	

policy.	In	fact,	the	average	number	of	pending	requests	in	the	networks	that	use	random	

node	selection	is	much	lower	than	when	using	the	Max-Weight	policy	as	the	number	of	

nodes	&	increases	or	both	the	arrival	rate	6- 	and	the	production	rate	2/ 	are	increased.	

However,	the	queues	in	the	networks	using	random	node	selection	are	not	stable.	This	is	

most	likely	due	to	the	fact	that	in	random	node	selection	there	is	a	possibility	that	

resources	are	wasted	when	a	producer	chooses	to	serve	a	consumer	with	a	low	number	of	

pending	requests	or	consumers	with	the	largest	number	of	pending	requests	do	not	get	

served	at	all.		

	

3.5.1 Random	Node	Selection	Wasting	Resources	

When	plotting	the	number	of	resources	wasted	in	each	individual	timeslot	by	both	

policies,	there	are	some	spikes	in	the	wasted	resources	graph	for	random	node	selection	

which	is	an	indication	of	producers	choosing	to	serve	consumers	with	little	or	no	requests.	

The	spikes	are	only	small	and	they	do	not	occur	that	often	but,	the	Max-Weight	policy	

graphs	do	not	contain	such	spikes.	There	are	some	small	spikes	in	the	Max-Weight	graphs	

but	they	are	towards	that	start	of	the	simulations	where	it	has	already	been	shown	in	

previous	sections	how	resources	are	wasted	by	the	Max-Weight	policy.	When	plotting	the	

accumulated	wasted	resources,	as	can	be	seen	in	Figure	3.5	on	the	following	page,	it	can	
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be	seen	that	random	node	selection	wastes	less	resources.	If	we	use	the	slope	of	the	two	

curves	as	an	indication	of	the	rate	at	which	resources	are	wasted,	both	policies	waste	

resources	at	approximately	the	same	rate.	However,	the	Max-Weight	policy	wastes	a	lot	

more	resources	in	the	when	network	queue	sizes	are	relatively	as	already	mentioned	in	

previous	sections.	

	

	
Figure	3.5	-	Accumulated	Wasted	Resources.	Max-Weight	vs	Random	Node.	

	

3.5.2 Random	Node	Selection	and	Ring	and	Star	Topologies	

When	testing	random	node	selection	on	special	topologies	such	as	Ring	and	Star,	the	Star	

topology	performed	worse	than	it	did	when	using	the	Max-Weight	policy.	It	also	

performed	worse	than	the	Mesh	networks	generated	using	GRG	that	used	random	node	

selection.	When	using	a	Star	topology	and	random	node	selection,	the	queues	became	

unstable	almost	straightaway.	This	is	due	to	the	consumers	on	the	outside	who	have	a	high	

number	of	pending	requests	not	receiving	enough	resources.	It	is	also	due	to	the	centre	

node	receiving	more	resources	than	it	needs.	The	Ring	topology	actually	performed	just	as	

good	as	the	Mesh	networks	in	terms	of	queue	size	and	stability.	However,	it	performed	

worse	than	a	Ring	topology	using	the	Max-Weight	policy	in	terms	of	stability	and	queue	

size.	Again,	a	Ring	topology	shows	it	is	possible	to	have	a	low	queue	size	while	keeping	the	

queues	stable.	
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3.5.3 Random	Node	Selection	Summary	

Random	node	selection	can	cause	resources	to	be	wasted	if	nodes	with	little	or	no	pending	

requests	are	allocated	more	resources	than	they	need	and	it	can	also	cause	networks	to	

become	unstable	if	nodes	with	high	a	number	of	pending	requests	do	not	receive	enough	

resources.	However,	if	does	show	the	number	of	pending	requests	in	a	network	can	be	

reduced	if	more	nodes	are	served	in	each	time	slot.	If	only	nodes	with	a	number	of	

pending	requests	above	some	threshold	are	served	it	could	reduce	queue	size	while	

remaining	stable.	
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3.6 The	Average-Weight	Policy	

3.6.1 Introduction	

In	the	previous	sections,	it	was	shown	that	the	Max-Weight	policy	caused	a	lot	of	

resources	to	be	wasted	in	the	first	few	time	slots	or	when	the	queues	are	very	low.	Then	it	

was	then	shown	that	randomly	choosing	a	consumer	to	serve	can	decrease	the	number	of	

resources	wasted	by	increasing	the	number	of	nodes	served	in	each	time	slot	but	it	can	

also	cause	resources	to	be	wasted	in	the	long	run.	To	try	and	increase	the	number	of	

consumers	served	in	each	time	slot	without	wasting	resources	and	keeping	the	network	

stable,	a	few	different	approaches	were	taken.		

The	first	approached	involved	defining	a	max	number	of	producers	that	a	

consumer	could	be	served	by	in	each	time	slot.	To	find	an	appropriate	value	to	set	the	max	

number	of	producers	that	could	serve	a	consumer	in	each	time	slot	the	average	vertex	

degree	of	the	best	performing	network	topologies	from	the	Max-Weight	policy	simulations	

were	first	tested.	The	best	performing	network	for	the	Max-Weight	policy	in	terms	of	

queue	size	was	a	Ring	topology	with	an	average	vertex	degree	deg ` = 	3.	The	second	

best	performing	network	was	a	Star	topology	also	with	an	average	vertex	degree	deg ` =

	3.	The	third	best	performing	network	was	a	Mesh	topology	generated	using	a	GRG	with	

radius	X =	0.25	and	average	vertex	degree	deg ` = 	3.	As	a	result	of	each	consumer	only	

being	able	to	be	served	be	a	maximum	number	of	three	producers	in	each	time	slot	the	

average	number	of	pending	requests	decreased	while	the	queues	remained	stable.	

However,	it	relied	on	changing	the	Max-Weight	policy	to	a	sequential	process	where	

producers	selected	a	consumer	to	serve	one	after	the	other.	This	takes	away	from	the	

distributed	nature	that	the	Max-Weight	policy	offers	which	makes	this	version	undesirable.	

It	did	however,	highlight	once	again	how	the	average	number	of	pending	requests	can	be	

reduced	if	more	consumers	are	served	without	wasting	resources	and	guaranteeing	that	

the	consumers	with	the	largest	demands	are	served.	

The	second	approach	involved	choosing	a	consumer	based	on	its	number	of	

pending	requests	and	its	number	of	neighbours.	For	example,	two	consumers	might	have	

the	same	number	of	pending	requests	but	one	consumer	might	be	connected	to	a	higher	

number	of	producers	so	the	consumer	with	the	lower	number	of	neighbours	should	be	

selected	as	it	has	a	lower	probability	of	being	served.	The	third	approach	involved	

choosing	a	consumer	based	on	its	number	of	pending	requests	and	based	on	the	number	

of	producers	that	served	that	consumer	in	the	previous	time	slot.	For	example,	two	
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consumers	might	have	the	same	number	of	pending	requests	but	one	consumer	might	

have	been	served	by	a	higher	number	of	producers	in	the	previous	time	slot	and	it	is	likely	

that	consumer	is	in	a	good	position	and	will	receive	more	resources	than	the	consumer	

who	was	served	by	less	producers	in	the	previous	time	slot.		

However,	both	of	these	approaches	run	into	the	same	problem	as	the	original	

version	of	the	Max-Weight	policy.	If	we	have	a	fully	connected	network,	each	producer	

sees	the	same	set	of	consumers	and	will	select	the	same	consumer	with	the	highest	

number	of	pending	requests.	So	for	the	first	approach	because	the	network	is	fully	

connected	each	consumer	has	the	same	number	of	neighbours	so	that	won’t	help	a	

producer	select	which	consumer	to	serve.	In	the	second	approach	if	the	network	is	fully	

connected	and	there	are	two	consumers	with	the	largest	demands,	and	one	was	served	

less	than	the	other	in	the	previous	time	slot,	then	each	producer	will	select	the	consumer	

who	was	served	less	and	again	only	one	consumer	will	be	served	and	there	is	a	chance	

resources	will	be	wasted.		

	

3.6.2 The	Average-Weight	Policy	Design	

Another	way	to	increase	the	number	of	consumers	served	and	decrease	the	number	of	

resources	wasted	is,	if	a	producer	finds	the	set	of	consumers	that	have	a	number	of	

pending	requests	above	some	threshold	and	then	randomly	chooses	a	consumer	to	serve	

from	that	set.	For	example,	if	a	producer	calculates	the	average	number	of	pending	

requests	for	every	consumer	in	the	network	and	then	selects	any	consumer	with	a	number	

of	pending	requests	greater	than	the	average	that	it	is	connected	to.	The	way	in	which	a	

producer	chooses	a	consumer	to	serve	is	the	only	change	that	needs	to	be	made	from	the	

initial	algorithm	presented	in	The	State	of	Art	chapter.	The	way	in	which	each	consumer	

updates	its	pending	request	and	informs	its	neighbours	about	its	demands	at	the	end	of	a	

timeslot	remains	the	same.	

	

3.6.3 Implementation	

First,	a	producer	*	finds	the	set	of	consumers	&/ 	that	it	is	connected	to,	b =

.	 	cd7efXA. gfccdg7dh ., * 	∀	. ∈ &/}.	Then	for	each	resource	type	A ∈ !,	a	producer	*	

calculates	the	average	number	of	pending	requests	k`dXkld-∈>m8-@ 	in	the	network.	Then	

a	producer	*	uses	this	as	a	threshold	to	find	the	set	of	consumers	that	have	a	greater	

number	of	pending	requests	than	the	threshold,	9 = 	 :	 	85@ ≥ 	 k`dXkld-∈>m8-@}.	Then	a	

producer	*	finds	the	intersection	of	its	connected	consumers	b	and	the	consumers	with	
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the	highest	number	of	pending	requests	9.	Finally,	a	producer	*	randomly	chooses	a	

consumer	.	from	the	intersection	of	the	two	sets,	. = Xkchfn(b ∩ 9).		

	

	
Figure	3.6	-	The	Average-Weight	Policy.	

	

If	either	of	the	sets	are	empty,	(the	connected	consumers	or	the	consumers	with	a	number	

of	pending	requests	greater	than	the	threshold),	for	any	producer	*,	that	producer	will	just	

service	its	own	pending	requests.	This	only	occurs	in	networks	where	there	are	nodes	with	

very	few	or	no	neighbours.	

This	approach	can	be	built	on	further	if	it	is	assumed	the	number	of	pending	requests	

follows	a	normal	distribution.	When	plotting	a	histogram	of	the	number	of	pending	

requests	in	a	network	that	is	using	the	Max-Weight	policy	it	can	be	seen	that	the	number	

of	pending	requests	does	closely	follow	a	normal	distribution.	If	each	producer	*	also	

calculates	the	standard	deviation	p	of	the	pending	requests	8-@ 	and	then	only	chooses	the	

set	of	consumers	that	have	a	number	of	pending	requests	≥ k`dXkld-∈>m8-@ + 2p	where	

k`dXkld-∈>m8-@ + 2p	is	the	new	threshold,	it	will	only	select	consumers	with	the	highest	

number	of	pending	requests	in	the	network.	But	if	a	producer	uses	this	threshold	then	less	

consumers	will	be	served	in	each	time	slot	and	resources	will	be	wasted.	If	the	threshold	is	

changed	to	7ℎXdKℎfsh = 	85@ ≥ k`dXkld-∈>m8-@ + p	then	more	consumers	will	be	

served	and	less	resources	will	be	wasted.	In	fact	if	the	threshold	is	changed	to	85@ ≥

k`dXkld-∈>m8-@ − p	or	even	85@ ≥ k`dXkld-∈>m8-@ − 2p	then	even	more	consumers	will	
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be	served	and	less	resources	wasted.	If	the	7ℎXdKℎfsh = 	8-@ ≥ k`dXkld-∈>m8-@ − 3p	

then	the	policy	is	essentially	the	same	as	random	node	selection.	

There	is	basically	a	trade-off	between	wasting	less	resources	and	guaranteeing	that	

the	consumers	with	the	highest	requests	are	served	in	each	time	slot.	Choosing	the	

average	number	of	pending	as	the	threshold	wasted	the	least	amount	of	resources	while	

still	ensuring	stability	instead	of	calculating	the	standard	deviation.	

	

3.6.4 Evaluation	

To	evaluate	the	Average-Weight	policy,	it	was	tested	exactly	how	the	Max-Weight	policy	

was	tested	in	this	dissertation.	The	Average-Weight	policy	was	tested	in	a	Ring,	a	Star	and	

a	range	of	Mesh	topologies.	Similar	to	the	Max-Weight	policy,	as	the	Mesh	networks	

moved	from	very	sparse	to	fully	connected	the	networks	became	more	stable.	However,	

the	queues	for	the	networks	using	the	Average-Weight	policy	were	much	lower	than	when	

using	the	Max-Weight	policy	as	the	Mesh	networks	became	more	dense.	For	the	sparse	

Mesh	networks	both	policies	performed	similar	both	in	terms	of	stability	and	queue	size.	

The	Average-Weight	policy	cut	the	queue	sizes	by	more	than	half	as	can	be	seen	if	we	

compare	Figure	3.3	on	page	26	with	Figure	3.7	on	the	following	page	for	a	fully	connected	

Mesh	network.	Most	importantly	the	queues	were	still	stable.	

The	Max-Weight	and	Average-Weight	policy	performed	similar	in	terms	of	both	

queue	size	and	stability	for	a	Ring	topology.	However,	the	Max-Weight	policy	performed	

better	in	terms	of	queue	size	than	the	Average-Weight	policy	for	a	Star	topology.	The	Star	

topologies	tested	using	the	Average-Weight	policy	also	became	very	unstable	a	lot	quicker	

than	the	Star	topologies	that	used	the	Max-Weight	policy.		

	

3.6.5 Conclusions	

The	Average-Weight	policy	allows	for	more	consumers	to	be	served	by	producers	in	each	

time	slot	compared	to	the	Max-Weight	policy	in	the	dense	Mesh	networks.	Instead	of	

selecting	the	consumer	with	the	largest	pending	requests,	it	selects	a	consumer	with	a	

number	of	pending	requests	greater	than	or	equal	to	the	average	number	of	pending	

requests	in	a	network.	As	more	consumers	are	served	in	each	time	slot	there	is	lower	

probability	of	resources	being	wasted	than	when	only	one	consumer	is	served.	As	less	

resources	are	wasted	more	requests	can	be	serviced	in	each	time	slot.	As	more	requests	

are	serviced	the	queues	sizes	decrease.	As	the	queue	sizes	decrease	requests	spend	less	
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time	in	the	network	waiting	to	be	service	which	could	potentially	speed	up	the	time	taken	

to	execute	a	task.	

	 The	Average-Weight	policy	can	be	implemented	as	a	distributed	algorithm	which	is	

one	of	the	reasons	the	Max-Weight	policy	was	chosen	in	the	first	place.	The	Average-

Weight	policy	does	not	require	any	information	about	a	nodes	production	and	generation	

rates	when	selecting	who	should	be	served	in	each	time	slot	just	like	the	Max-Weight	

policy.	The	Average-Weight	policy	has	also	been	able	to	stabilise	every	network	that	the	

Max-Weight	policy	has	also	been	able	to	stabilise	which	is	probably	the	most	important	

point.	

	

	
Figure	3.7	-	Average	Weight	Policy	on	a	Fully	Connected	Mesh	Network.	
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4 Production	Planning	

4.1 Introduction	

When	the	number	of	resource	types	!	that	nodes	exchange	among	one	another	increases	

to	more	than	one,	each	producer	*	is	allowed	to	do	some	planning	to	decide	how	to	

generate	resources	to	best	serve	the	neediest	consumers.	Each	producer	*	has	a	set	of	

different	possible	production	plans	B/ 	it	can	choose	from	during	each	time	slot.	Under	each	

production	plan	C ∈ B/,	a	producer	*	produces	2/@
D 	units	of	resource	A ∈ !.	A	producer	can	

increase	the	production	of	one	resource	type	by	putting	more	time	and	effort	into	the	

production	that	resource,	at	the	expense	of	decreasing	the	production	of	other	resource	

types.	[8].	One	way	to	think	of	production	planning	is	to	imagine	that	a	producer	has	ten	

units	of	energy.	The	producer	then	has	to	decide	how	to	use	this	energy	to	execute	

different	tasks.	For	example,	if	we	consider	a	sensor	that	is	used	to	measure	air	quality	in	

an	urban	environment,	the	sensor	can	decide	how	much	energy	it	should	use	to	either	

record	measurements	for	itself	or	to	help	other	nodes	by	exchanging	measurements	with	

them.	In	this	chapter,	the	benefits	of	producers	scheduling	the	production	of	their	

resources	will	be	presented.	The	drawbacks	of	producers	choosing	not	to	use	production	

scheduling	will	also	be	presented	as	a	comparison.	

	

4.2 Production	Rates	

In	this	dissertation,	the	production	rate	and	arrival	rate	of	a	network	have	assumed	to	be	

within	the	same	range.	As	in	if	the	max	arrival	rate	of	a	network	is	6345 = 10	and	

consumers	can	generate	0 − 10	requests	for	a	resource	then	the	max	production	rate	of	

that	network	should	also	be	2345 = 10	so	that	producers	can	also	generate	0 − 10	

resources	to	service	those	requests.	Of	course,	different	producers	and	consumers	can	

have	different	arrival	rates	and	production	rates	in	different	time	slots	due	to	different	

constraints.	Also,	different	devices	can	generate	different	types	of	resources.	For	example,	

a	high-performance	computer	should	be	able	to	execute	more	tasks	in	the	same	amount	

of	time	as	a	smart	phone.	

If	the	arrival	rate	of	the	network	is	greater	than	the	production	rate	of	that	network,	

then	the	average	number	of	resource	requests	will	be	greater	than	the	average	number	of	

resources	generated	in	the	entire	network.	This	will	soon	cause	the	network	to	be	

overwhelmed	with	more	requests	then	it	can	handle	and	the	network	will	eventually	
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become	unstable.	If	the	arrival	rate	is	less	than	the	production	rate,	then	the	average	

number	of	resource	requests	will	be	less	than	the	average	number	of	resources	generated	

in	the	entire	network.	Which	is	of	course	good	because	it	will	lead	to	a	sustainable	

environment	but	it	is	probably	not	a	realistic	assumption	for	most	networks.	The	effect	of	

having	a	higher,	a	lower	and	an	arrival	rate	equal	to	the	production	rate	can	be	seen	in	

Figure	4.1	on	the	following	page.	The	production	rate	of	the	networks	used	in	these	

simulations	was	set	to	2/ ≤ 2,	the	number	of	nodes	& = 20	and	number	of	resource	types	

! = 2.	

When	the	arrival	rate	is	greater	than	the	production	rate,	the	network	becomes	

unstable	almost	straight	away.	This	is	because	the	number	of	resources	generated	is	

greater	than	the	number	of	resource	requests	0.0%	of	the	time	on	average.	Which	if	we	

consider	the	conditions	for	sustainability	(Equation	4.1),	which	states	that	the	conditions	

for	sustainability	can	be	shown	if	the	total	number	of	resource	requests	is	less	than	or	

equal	to	the	total	number	of	resources	generated	[8],	then	the	network	cannot	be	stable	

when	the	arrival	rate	is	greater	than	the	production	rate.		

	

k-
-	∈	>m

≤ 	 t/
/	∈	>?

	

Equation	4.1	-	The	Conditions	for	Sustainability	

	

When	the	production	rate	is	greater	than	the	arrival	rate,	it	appears	as	though	the	queues	

will	never	grow	to	infinity.	This	is	because	the	number	of	resources	generated	is	greater	

than	the	number	of	resource	requests	99.9%	of	the	time.	The	network	can	become	

unstable	even	if	the	number	of	resources	generated	is	greater	than	the	number	of	

resource	requests	in	certain	situations.	One	way	it	can	happen	is	if	the	neediest	nodes	in	a	

network	do	not	receive	enough	resources,	due	to	different	network	topologies	or	a	poor	

node	selection	algorithm,	and	their	queues	continuously	grow.		

When	the	arrival	rate	is	equal	to	the	production	rate,	the	number	of	resources	

generated	is	actually	greater	than	the	number	of	resource	requests	just	over	50%	of	the	

time	on	average.	The	big	spike	in	the	first	few	time	slots	is	due	to	the	Max-Weight	policy	

wasting	resources	which	was	explained	in	Chapter	3.	After	the	first	few	time	slots	the	

queues	start	to	become	more	and	more	stable.	Each	different	scenario	was	simulated	on	

fifty	different	networks	to	get	an	average	which	causes	the	graphs	to	look	smooth.	
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Figure	4.1	-	Arrival	Rate	vs	Production	Rate.	

	

4.3 Production	Plans	

The	number	of	plans	that	a	producer	can	generate	is	related	to	its	production	rate.	In	

other	words,	when	the	production	rate	increases,	each	producer	should	be	able	to	

generate	more	plans.	Each	plan	represents	a	different	way	that	a	producer	can	use	the	

resources	it	has	to	serve	the	consumers	with	the	largest	demands.	For	example,	imagine	in	

a	smart	home	a	solar	panel	has	converted	the	sun’s	energy	into	renewable	energy.	

Imagine	that	the	solar	panel	is	a	producer	with	a	production	rate	2/ ≤ 2	and	it	produces	

two	units	of	renewable	energy.	These	two	units	can	be	converted	into	either	two	units	of	

electricity	(solar	photovoltaics)	or	two	units	of	hot	water	(solar	thermal)	or	one	unit	of	

each	[11].	However,	if	the	production	rate	of	the	producer	was	2/ ≤ 1,	the	producer	can	

only	generate	one	unit	of	either	resource	type.	As	the	production	rate	increases	so	does	

the	number	of	plans	that	a	producer	can	generate.	In	Table	4.1	on	the	following	page,	

different	ways	that	a	producer	could	split	their	resources	based	on	their	production	rate	

can	be	seen.	As	the	number	of	resource	types	increases	the	number	of	plans	also	

increases.	
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Production	Rate	 Number	of	Plans		 Plans		

1	 2	 [0,1],	[1,0]	

2	 3	 [0,2],	[1,1],	[2,0]	

3	 4	 [0,3],	[1,2],	[2,1],	[3,0]	

Table	4.1	-	Production	Rate	vs	Production	Plans	

	

4.4 Impact	of	Plans	

To	simulate	the	production	capabilities	of	different	producers	at	various	times,	the	total	

number	of	production	plans	that	a	producer	could	generate	was	varied	for	producers	

between	time	slots.	In	other	words,	to	represent	producers	not	being	able	to	produce	

certain	resource	types	at	different	times,	due	to	other	commitments	outside	of	the	

exchange	scheme	or	due	to	device	constraints,	the	number	of	plans	a	producer	could	

generate	was	different	for	a	producer	in	different	time	slots.	

Each	producer	was	able	to	generate	between	one	and	some	maximum	number	of	

plans.	The	maximum	number	of	plans	depended	on	the	production	rate	of	that	producer.	

If	there	are	producers	in	a	network	that	do	not	generate	any	plans	at	all	it	can	cause	the	

network	to	become	unstable	very	quickly	but	this	will	be	discussed	more	later.	When	a	

producer	is	able	to	generate	more	plans,	the	producer	increases	the	chances	of	generating	

a	plan	that	will	best	serve	the	consumers	it	has	chosen	to	serve	increases.	

	

4.5 Scheduled	Production	Planning	

When	a	producer	generates	more	than	one	plan	it	is	able	to	do	some	planning	to	select	

the	plan	that	will	best	serve	the	consumers	it	has	chosen	to	serve.	To	select	the	plan	that	

will	best	serve	the	consumers	that	a	producer	has	chosen	to	serve,	a	producer	simply	

loops	through	each	of	the	plans	it	can	generate	and	chooses	the	plan	that	will	cause	the	

most	requests	to	be	served.	

To	calculate	which	plan	will	cause	the	most	requests	to	be	served,	a	producer	starts	

with	the	first	plan	it	can	produce.	The	producer	then	multiplies	the	value	of	each	resource	

type	in	that	plan	by	the	value	of	the	corresponding	resource	type	of	the	consumer	it	has	

chosen	to	serve.	Next	the	producer	sums	up	all	the	totals	for	each	resource	type	to	

calculate	the	total	value	for	that	plan.	Then	it	repeats	this	process	for	each	plan	it	can	

generate.	Finally,	it	chooses	the	plan	that	has	the	highest	total	and	uses	that	plan	to	serve	

the	consumers	with	the	highest	requests.	Pseudocode	of	this	function	can	be	found	in	
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Figure	1.2	below.	A	walk	through	of	how	the	function	is	implemented	can	be	found	in	

Table	4.2	below.	Plans	are	the	set	of	production	plans	a	producer	can	generate.	Requests	

are	the	requests	of	the	consumers	that	a	producer	has	chosen	to	serve.	

	

	
Figure	4.2	-	Selecting	a	Production	Plan	-	Function.	

	

Plans	 [2,0]	 [1,1]	 [0,2]	

Requests	 [3,1]	

Subtotals	 [2*3,0*1]	=	[6,0]	 [1*3,1*1]	=	[3,1]	 [0*3,2*1]	=	[0,2]	

Total	 6	 4	 2	

Table	4.2	-	Selecting	a	Production	Plan	–	Walkthrough	

The	select_production_plan	function,	takes	the	production	plans	that	a	producer	has	

generated	and	a	list	of	tuples	containing	the	consumers	it	has	chosen	to	serve.	Each	tuple	

contains	the	index	of	the	consumer	in	the	network	it	has	chosen	to	serve	and	the	value	of	

its	highest	request.	In	the	first	position	of	neediest_consumers	list	the	consumer	with	the	

highest	requests	for	resource	type	A = 1	is	stored.	In	the	second	position	the	consumer	

with	the	highest	requests	for	resource	type	A = 2	is	stored	and	so	on	up	to	resource	type	

A = !.	On	line	three,	plan_totals	are	a	list	used	to	store	a	total	for	each	plan.	The	total	for	

all	plans	is	calculated	lines	4-9.	The	total	for	each	individual	plan	is	calculated	lines	6-7.	The	

plan	with	the	highest	total	is	the	plan	that	will	best	serve	the	consumers	a	producer	has	

chosen	to	serve.	
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4.6 Selfish	Production	

So	far	it	has	been	assumed	that	each	producer	will	cooperate	fairly	and	try	its	best	to	

produce	plans	that	will	be	of	benefit	to	the	consumers	it	has	chosen	to	serve.	However,	if	a	

producer	is	to	act	selfishly	and	only	produce	plans	that	benefit	themselves	in	some	way	it	

can	cause	the	network	to	become	unstable	over	time.	In	this	dissertation,	there	is	no	way	

to	incentivise	producers	to	cooperate	fairly	by	inflicting	some	sort	of	cost	on	producers	

who	do	not	cooperate.	Instead	the	damage	that	a	producer	can	cause	to	its	network	by	

acting	selfishly	is	presented.	

In	selfish	production	planning	each	producer	only	generates	plans	that	only	

represent	their	own	needs	and	uses	these	to	serve	the	consumers	it	has	agreed	to	serve.	

To	simulate	nodes	that	act	selfishly,	two	different	production	scheduling	algorithms	were	

used.	The	first	is	the	production	scheduling	algorithm	described	in	the	previous	section.	

The	second	is	a	selfish	production	algorithm	where	producers	select	plans	based	on	their	

own	requests.	The	selfish	production	function	is	identical	to	the	one	described	in	the	

previous	section	expect	that	a	producer	passes	the	production	plans	it	has	generated	and	

its	own	pending	requests	to	choose	a	plan.	Both	the	Max-Weight	policy	and	Average-

Weight	policy	were	tested.	First	the	percentage	of	nodes	in	each	network	that	choose	the	

selfish	production	algorithm	in	each	time	slot	was	set	to	25%	and	then	increased	to	50%,	

then	75%	and	then	finally	100%.	As	the	percentage	of	selfish	nodes	in	the	network	

increased,	the	networks	went	from	stable	to	unstable.	However,	the	queue	sizes	when	

using	selfish	production	scheduling	were	also	slightly	lower	than	the	queue	sizes	when	

using	scheduled	production,	which	was	not	expected.	

The	decrease	in	queue	sizes	are	due	to	the	fact	that	selfish	production	can	cause	

less	resources	to	be	wasted	and	as	previously	shown	wasting	resources	can	lead	to	an	

increase	in	queue	size.	For	example,	when	using	the	Max-Weight	policy	in	a	full	connected	

Mesh	network	each	producer	selects	the	same	consumer	to	serve	as	previously	shown.	If	

each	producer	uses	production	scheduling	to	serve	a	consumer,	each	plan	generated	by	

every	different	producer	will	be	similar	to	each	other	in	an	attempt	to	serve	the	demands	

of	the	consumer	it	has	selected	as	best	as	it	can.	For	example,	if	each	producer	selects	

consumer	.	and	consumer	.	has	10	requests	for	resource	type	A = 1,	each	producer	will	

try	and	generate	a	plan	that	can	service	as	many	of	those	10	requests	as	possible.	If	there	

are	10	nodes	in	the	network	and	they	are	able	to	generate	10	resources	for	resource	type	

A = 1,	then	90	resources	will	be	wasted.	However,	if	there	are	a	few	selfish	nodes	they	

may	generate	resources	for	resource	type	A = 2,	but	still	choose	to	serve	consumer	.	then	
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less	resources	maybe	wasted	if	consumer	.	has	requests	for	resource	type	A = 2	aswell.	

This	only	really	occurs	in	the	first	couple	of	time	slots,	as	can	be	seen	in	Figure	4.3	on	page	

43.	After	this	selfish	production,	actual	wastes	resources	at	a	higher	rate.		

Even	though	a	producer	might	be	using	selfish	production,	due	to	the	fact	that	the	

Max-Weight	policy	and	the	Average-Weight	policy	chooses	the	consumers	with	the	highest	

requests,	these	consumers	will	still	get	served	which	causes	the	networks	to	remain	stable.	

Also,	sometimes	a	consumer	that	a	producer	has	chosen	to	serve	might	have	similar	needs	

to	itself.	This	means	that	a	consumer	might	receive	resources	similar	to	its	needs.	At	times,	

a	producer	using	selfish	production	will	choose	a	plan	that	doesn’t	reflect	the	needs	of	the	

consumer	it	has	chosen	to	serve	which	causes	resources	to	be	wasted	which	can	lead	to	

instabilities.	However,	in	general	as	long	as	the	nodes	with	the	highest	requests	are	chosen	

and	receive	some	resources	for	the	correct	resource	type	that	it	is	in	need	of,	it	will	stop	

them	from	becoming	unstable.	But	in	the	long	run,	nodes	choosing	selfish	plans	in	the	

network	can	cause	the	network	to	become	unstable.		

	

4.7 Random	Production	

Another	way	that	producers	can	act	selfishly	and	can	cause	the	network	to	become	

unstable	is	by	choosing	random	production.	In	random	production	producers	just	choose	

any	plan	without	any	concern	for	the	needs	of	the	consumers	with	the	highest	requests	or	

themselves.	One	way	of	thinking	of	random	production	is	that	producers	choose	a	plan	

that	would	require	minimal	cost	for	them	to	produce.	As	with	the	selfish	production,	two	

production	algorithms	were	used.	The	first	was	the	scheduled	production	planning	

algorithm	described	previously.	The	second	was	a	random	production	function.	To	

simulate	random	production,	a	producer	just	selected	a	random	plan	from	the	set	of	plans	

it	generated	and	used	that	to	serve	the	consumer	it	has	chosen	to	serve.	Again,	both	the	

Max-Weight	policy	and	the	Average-Weight	policy	were	tested.	Again,	the	percentage	of	

nodes	that	used	random	production	selection	was	set	to	25%,	then	50%,	then	75%	and	

finally	100%.		

For	both	the	Max-Weight	policy	and	Average-Weight	policy,	as	the	percentage	of	

nodes	using	random	production	scheduling	increased	the	networks	became	unstable	

almost	straight	away.	For	both	policies	when	the	percentage	of	nodes	using	random	

production	scheduling	was	greater	than	50%	the	networks	became	completely	unstable	

almost	straight	away.		
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When	using	the	Max-Weight	policy	and	the	Average-Weight	policy	there	is	a	chance	

that	the	consumer	that	a	producer	chooses	to	serve	is	the	same	node.	So,	when	using	

selfish	production,	if	a	producer	chooses	a	consumer	to	serve	that	happens	to	be	itself,	it	

chooses	a	suitable	production	plan.	However,	in	random	production	planning	due	to	the	

fact	that	the	plan	chosen	is	not	based	on	the	needs	of	a	consumer,	the	number	of	

resources	wasted	is	very	high.	Even	if	the	nodes	with	the	highest	requests	are	served,	

there	is	a	good	chance	that	the	plan	selected	will	not	reflect	their	needs	most	of	the	time.	

This	causes	the	number	of	requests	at	the	consumers	with	the	highest	demands	to	

continue	to	grow	which	can	lead	to	the	whole	network	becoming	unstable.	Random	

production	planning	can	cause	the	network	to	become	unstable	very	quickly	compared	to	

selfish	production	and	scheduled	production	planning.	

	

4.8 Free-Riding	Nodes	

As	mentioned	previously,	the	more	plans	that	a	producer	generates	helps	the	network	to	

become	more	stable.	It	is	acceptable	that	in	some	time	slots	there	might	be	some	

producers	that	do	not	contribute	any	resources.	However,	if	there	are	a	number	of	

producers	who	do	not	contribute	any	resources	and	they’re	only	a	part	of	the	network	to	

receive	resources	then	the	network	will	become	unstable	very	quickly.	In	this	dissertation,	

there	is	no	way	to	inflict	a	cost	on	producers	who	do	not	contribute	any	resources	so	

instead	the	effects	of	producers	who	do	not	contribute	any	resources	is	presented.		

To	simulate	free-riding	nodes,	a	percentage	of	nodes	in	each	network	did	not	do	

any	resource	generation	or	try	to	serve	any	consumers.	Even	when	the	percentage	of	free-

riding	nodes	in	each	time	slot	was	set	to	as	little	as	5%	the	networks	became	unstable	very	

quickly.		

	

In	Figure	4.3	on	the	following	page,	an	example	of	scheduled	production,	selfish	

production	(50%	selfish	nodes),	random	production	(50%	random	nodes)	and	free-riding	

(2%)	nodes	can	be	seen	for	various	arrival	rates.	Each	scheduling	algorithm	was	simulated	

on	fifty	different	networks	with	twenty	nodes.	Each	network	used	a	fully	connected	Mesh	

topology.	Each	simulation	used	the	Max-Weight	policy	to	select	which	nodes	to	serve.	
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Figure	4.3	-	Production	Scheduling	Algorithms.	

	

4.9 Conclusions	

In	this	chapter,	the	basic	idea	of	producers	scheduling	the	production	of	their	resources	to	

help	achieve	a	sustainable	network	was	discussed.	Then	a	simple	function	to	select	a	plan	

that	will	best	serve	the	consumers	that	a	producer	has	chosen	to	serve	was	presented.	

Finally,	the	disadvantages	of	not	using	production	scheduling	were	shown.	Selfish	

production	did	decrease	the	queue	sizes	but	in	the	long	run	it	could	lead	to	a	network	

becoming	unstable.	If	there	are	nodes	in	a	network	that	use	random	production	

scheduling	it	will	lead	to	instabilities.	Even	a	small	number	of	free-riding	nodes	in	a	

network	will	also	cause	the	network	to	become	unstable.	

An	outline	of	how	both	the	Max-Weight	or	Average-Weight	policy	and	production	

scheduling	work	together	can	be	found	in	Figure	4.4	below.	The	

get_max_pending_requests()	function	can	be	either	the	Max-Weight	or	the	Average-
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Weight	policy.	The	Max-Weight	pseudocode	can	be	found	in	Chapter	2	and	the	Average-

Weight	pseudocode	can	be	found	in	Chapter	3.	More	details	about	how		

	

	
Figure	4.4	-	Node	Selection	and	Production	Scheduling	
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5 Graph	Properties	

5.1 Introduction	

In	this	dissertation	a	number	of	graph	properties	and	graph	characteristics	were	studied	to	

see	if	they	had	an	effect	on	network	stability.	The	main	property	studied	was	assortativity	

as	described	below.	Some	other	properties	studied	included	density.	Density	is	closely	

related	to	the	impact	that	increasing	the	radius	of	the	GRG,	used	to	simulate	Mesh	

networks,	had	as	was	shown	in	Chapter	3.	When	the	radius	of	the	GRG	increases,	the	

number	of	edges	increases	and	the	density	also	increases.	In	Chapter	3	it	was	shown	that	

an	increase	in	edges	helped	increase	stability,	which	implies	that	networks	that	have	a	high	

density	are	more	stable	than	networks	with	low	density.	However,	a	Ring	topology	has	a	

relatively	low	density	score	but	it	is	also	stable,	so	low	density	does	not	necessarily	lead	to	

any	instabilities.	

	

5.2 Assortative	Mixing	

Assortative	mixing	is	a	term	used	to	describe	selective	linking	among	nodes	according	to	a	

certain	characteristic	[16].	Such	node	characteristics	include	the	degree	of	a	node,	where	

degree	indicates	the	number	of	edges	connected	to	a	node	in	an	undirected	network.	In	a	

directed	network	a	node	has	an	in-degree	and	out-degree	characteristics.	If	nodes	in	a	

network	of	the	same	degree	tend	to	be	connected	to	one	another	then	the	network	is	said	

to	be	assortative.	For	example,	if	nodes	of	high	degree	connect	with	other	nodes	of	high	

degree	rather	than	connecting	with	nodes	of	low	degree.	However,	if	nodes	of	low	degree	

tend	to	connect	with	nodes	of	high	degree	and	nodes	of	high	degree	connect	with	nodes	

of	low	degree	then	the	network	is	disassortative.	

The	iGraph	package	contains	functions	to	calculate	the	assortativity	coefficient	of	a	

network.	The	assortativity	coefficient	measures	the	correlation	between	node	

characteristics	in	a	network.	The	iGraph	function	kKKfX7k7.`.7u()	uses	the	Pearson	

correlation	coefficient	to	calculate	the	assortative	coefficient	in	undirected	graphs,	which	

have	mainly	been	used.	The	kKKfX7k7.`.7u()	function	returns	a	value	between	-1	and	1	

known	as	the	X	score.	When	X = 0,	then	the	network	is	neither	assortative	nor	

disassortative.	Positive	values	of	X	indicate	assortative	mixing	whereas	negative	values	of	X	

indicate	disassortative	mixing	[17].	



	

	45	

The	kKKfX7k7.`.7u()	function	can	measure	the	assortativity	coefficient	for	any	

node	characteristic.	In	this	dissertation,	node	degree	is	used	to	see	if	assortative	or	

disassortative	networks	perform	better	for	the	Max-Weight	policy.	To	calculate	the	

assortativity	coefficient	for	the	node	degree	of	a	network,	the	node	degree	of	every	node	

in	the	network	is	passed	as	an	argument	to	kKKfX7k7.`.7u()	function.	

The	GRG,	or	Mesh	networks,	that	have	been	used	in	the	simulations	in	this	

dissertation	so	for,	all	have	X	scores	between	0-1.	The	sparse	Mesh	networks	actually	have	

an	X	score	closer	to	1	than	the	ones	that	have	a	high	number	of	edges	between	nodes.	As	

the	average	node	degree	of	a	Mesh	networks	gets	higher,	the	X	score	gets	closer	to	0.	A	

fully	connected	Mesh	network	does	not	have	an	X	score	as	every	node	has	the	same	

degree.	For	the	Mesh	networks	in	this	dissertation,	X	scores	close	to	1	have	actually	lead	to	

unstable	networks.	For	a	Ring	topology,	it	also	does	not	actually	have	an	X	score	as	every	

node	has	the	same	degree.	A	Star	topology	is	an	example	of	a	disassortative	network	with	

perfect	disassortative	mixing	and	with	X	score	equal	to	-1.	

To	further	test	assortative	mixing	and	whether	it	correlated	with	stability,	two	very	

similar	networks	in	terms	of	size,	density	and	degree	distribution	but	very	dissimilar	

assortative	X	scores	were	tested.	Both	networks	had	fifteen	nodes	and	a	density	value	of	

0.171.	The	assortative	network	had	an	X	score	equal	to	0.171	and	the	disassortative	

network	had	an	X	score	equal	to	-0.744.	Both	networks	were	tested	using	the	Average-

Weight	policy.	Both	networks	performed	similar	in	terms	of	queue	size	and	stability.	Both	

networks	had	unstable	queues	as	can	be	seen	in	Figure	5.1	on	the	following	page	along	

with	their	respective	topologies.	Both	networks	only	contained	fifteen	nodes	and	in	

previous	sections	it	was	shown	that	an	increase	in	the	number	of	nodes	helped	to	stabilise	

the	queues	so	the	low	number	of	nodes	in	these	two	networks	could	be	the	reason	for	

them	being	slightly	unstable	and	not	their	X	scores.	Also,	the	assortative	network	wastes	

slightly	more	resources	on	average	per	node.	In	the	graphs	of	the	two	topologies,	a	thick	

edge	indicates	a	consumer	being	served	by	a	producer,	the	vertex	label	and	colour	

indicates	the	number	of	pending	requests.	The	darker	the	shade	of	blue	means	more	

requests.	
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Figure	5.1	-	Assortative	vs	Disassortative	Networks.		

The	r	score	of	an	assortative	network	(top	left)	and	a	disassortative	network	(top	right).	The	average	number	of	

pending	requests	of	the	assortative	network	(bottom-left)	and	the	disassortative	network	(bottom	right).	

As	already	mentioned,	most	of	the	Mesh	networks	used	in	the	simulations	in	this	

dissertation	have	had	an	X	score	between	0-1	making	them	assortative	networks	as	

opposed	to	disassortative.	Generating	disassortative	networks	was	actually	quite	difficult	

and	required	edges	to	be	hardcoded	most	of	the	time.	A	Star	topology	is	one	way	of	

generating	disassortative	networks.	But	as	already	seen	in	previous	sections	Star	

topologies	do	not	always	lead	to	stable	networks.	To	improve	on	a	Star	topology	a	small	

number	of	high	degree	nodes	can	be	placed	at	the	centre	of	a	large	number	of	low	degree	

nodes.	The	high	degree	nodes	in	the	middle	would	be	connected	to	every	low	degree	node	

on	the	outside.	The	low	degree	nodes	on	the	outside	would	only	be	connected	to	the	few	

nodes	at	the	centre.	Generating	a	network	this	way	results	in	a	perfect	disassortative	score	

(X	KgfXd = 	−1.0).	The	number	of	high	degree	nodes	in	the	middle	also	had	an	effect	on	

stability.	If	just	under	half	of	the	nodes	in	the	network	where	placed	in	the	centre	to	serve	

the	low	degree	nodes	on	the	outside,	the	network	became	stable.	Placing	a	few	nodes	in	

r =	0.171 r	=	-0.744

Assortative Disassortative
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the	centre,	as	can	be	seen	in	Figure	5.2	below,	as	opposed	to	just	one,	like	a	Star	topology,	

resulted	in	a	stable	network.	

	

	
Figure	5.2	-	Perfect	Disassortative	Mixing.	

5.3 Conclusions	

In	general,	the	assortative	and	disassortative	networks	performed	very	similar,	which	

implies	that	there	may	not	be	a	link	between	assortative	mixing	and	stability	or	

disassortative	mixing	and	stability.	But	this	is	only	based	on	the	networks	mentioned	

above.	However,	the	best	performing	networks	in	terms	of	stability	seen	so	far	have	been	

a	fully	connected	Mesh	network	and	a	Ring	network.	Both	of	these	networks	do	not	have	

an	X	score	because	every	node	in	these	networks	have	the	same	degree.	This	could	imply	

that	networks	that	do	not	display	either	assortative	nor	disassortative	mixing	are	the	most	

stable.	The	best	performing	assortative	or	disassortative	network	in	terms	of	stability	was	

the	Star	like	disassortative	network	with	a	number	of	high	degree	nodes	in	the	centre	

serving	the	requests	of	low	degree	nodes	on	the	outside.	If	there	was	a	way	to	strategically	

place	the	most	resource	nodes	in	the	centre	to	serve	the	nodes	that	generate	the	most	

requests	on	the	outside,	that	could	lead	to	sustainable	environment.	
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6 Example	Applications	

6.1 Introduction	

In	this	chapter,	two	hypothetical	examples	of	applications	using	the	Max-Weight	policy	

and	production	scheduling	are	provided.	The	two	applications	are	based	on	two	different	

networks	generated	using	from	two	different	datasets.	The	two	datasets	are	basically	just	

two	files	(one	GraphML	file	and	one	text	file),	with	a	collection	of	vertices	and	edges.	A	

network	was	then	generated	for	each	of	the	datasets.	The	Max-Weight	policy	was	tested	

on	both	networks.	The	datasets	did	not	provide	any	information	about	the	arrival	rate	or	

production	rate	of	the	networks.	Instead	the	arrival	rates	and	production	rates	were	

generated	using	random	number	generators	just	like	in	every	other	simulation	seen	

throughout	this	dissertation.	

	

6.2 Power	Grid	

The	first	dataset	is	an	undirected	network	representing	the	topology	of	the	Western	States	

Power	Grid	of	the	United	States	[18].	Which	is	the	electrical	power	grid	for	the	western	

states	in	the	United	States.	Each	vertex	is	either	a	generator,	a	transformer	or	a	substation	

and	each	edge	represents	a	power	supply	line.	This	dataset	was	chosen	as	a	number	of	

examples	used	to	describe	different	aspects	of	this	dissertation	have	revolved	around	

smart	cities,	smart	grids	and	renewable	energy.	The	full	dataset	contains	over	4900	

vertices,	but	only	a	number	of	small	subgraphs	were	tested.		

As	an	example,	imagine	that	the	network	is	a	smart	grid	and	each	vertex	

represents	a	smart	home.	The	resource	that	the	smart	homes	exchange	between	one	

another	is	excess	electricity	generated	from	renewable	sources.	Each	house	exchanges	its	

excess	electricity	to	their	neighbours	that	they	are	connected	to	so	that	electricity	is	not	

wasted	or	that	houses	that	have	high	demands	have	enough	supply.	In	Figure	6.1	on	the	

following	page,	it	can	been	seen	that	the	disconnected	nodes	in	the	network	have	the	

highest	demands	for	electricity.	The	number	displayed	on	each	vertex	and	their	colour	

represents	their	demands,	i.e.	a	darker	shade	of	blue	represents	a	higher	number	of	

demands.	A	thick	edge	represents	an	exchange	of	resources.	Although,	some	of	the	

disconnected	nodes	have	a	low	number	of	requests,	the	disconnected	nodes	with	a	high	

number	of	demands	are	being	starved	of	resources.	This	will	cause	the	network	to	become	

unstable	over	time.	The	disconnected	nodes	would	cause	the	network	to	become	unstable	
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regardless	of	the	node	selection	policy	used,	i.e.	the	Max-Weight	policy	or	the	Average-

Weight	policy.	The	nodes	who	are	connected	to	even	a	small	number	of	other	nodes	have	

a	much	lower	number	of	requests.	In	Figure	6.2	on	the	following	page,	a	much	larger	

subgraph	is	generated	with	around	280	nodes.	This	graph	does	not	contain	any	

disconnected	nodes	and	its	queues	were	more	stable.	However,	there	are	a	number	of	

nodes	with	only	a	one	or	two	neighbours	and	some	of	these	nodes	have	a	high	number	of	

requests.	This	would	eventually	cause	the	network	to	become	unstable	over	time.	

Whereas	the	majority	of	nodes	with	a	few	neighbours	have	a	low	number	of	requests	

which	implies	that	there	individual	queues	are	stable.	

	

	
Figure	6.1	-	Western	States	Power	Grid	of	the	United	States.	Subgraph	1.	
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Figure	6.2	-	Western	States	Power	Grid	of	the	United	States.	Subgraph	2.	

	

6.3 Favour	Exchanging	

The	second	dataset	is	an	undirected	network	containing	an	anonymized	list	of	people	who	

are	friends	on	Facebook	[2].	It	is	essential	a	list	of	numbers	and	edges.	Each	vertex	

represents	a	Facebook	profile	and	each	edge	represents	two	profiles	who	are	friends	with	

each	other.	The	full	dataset	contains	over	4000	vertices	but	only	a	small	number	of	

vertices	were	used	to	generate	some	small	subgraphs.	In	Figure	6.3	on	the	following	page,	

the	nodes	with	the	highest	number	of	requests	are	the	nodes	with	a	relatively	low	number	

of	neighbours.	Although	there	are	some	nodes	with	a	low	number	of	neighbours	and	a	low	

number	of	requests,	there	are	no	nodes	with	a	high	number	of	neighbours	and	a	high	

number	of	requests.	In	this	application,	members	of	the	social	community	could	exchange	

different	favours	with	another.	For	example,	in	a	network	of	college	students,	students	
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exchange	lessons	with	one	another	in	different	subjects	measured	by	some	unit	of	time.	

The	disconnected	nodes	with	little	or	no	requests,	in	the	graph	below,	would	be	smartest	

students	in	their	course	who	do	not	need	any	help.	Whereas	the	nodes	with	the	highest	

number	of	requests	are	the	students	who	are	struggling	most	and	who	need	help.	The	

students	with	the	highest	requests	also	have	a	low	number	of	neighbours.	In	this	example,	

the	number	of	requests	could	be	hours	of	study	needed	and	different	resource	types	could	

be	different	subjects.		

	 Again,	the	disconnected	nodes	and	the	nodes	with	low	degree	would	cause	the	

network	to	become	unstable.	Both	the	Max-Weight	policy	and	the	Average-Weight	policy	

would	perform	similar	due	to	the	disconnected	and	low	degree	nodes	causing	the	queues	

to	become	unstable.	

	

	
Figure	6.3	-	Social	Network	Graph.	
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7 Conclusions	

7.1 Findings	

In	this	dissertation	the	Max-Weight	policy	was	presented	as	a	way	for	IoT	devices	to	

cooperate	and	exchange	resources.	The	Max-Weight	policy	was	analysed	in	different	

network	topologies.	We	found	that	the	best	performing	network	topologies	in	terms	of	

stability	for	the	Max-Weight	policy	to	be	deployed	in	are	a	fully	connected	Mesh	topology	

and	a	Ring	topology.	However,	we	found	that	a	network	arranged	in	a	Ring	topology	has	a	

much	lower	queue	size	compared	to	a	network	that	is	organized	in	a	Mesh	topology.	For	

example,	a	fully	connected	Mesh	network	has	a	queue	size	almost	twice	as	big	as	a	

network	with	a	Ring	topology	structure.	The	Mesh	network	queues	were	much	bigger	due	

to	the	fact	that	the	Max-Weight	policy	causes	resources	to	be	wasted	as	Mesh	networks	

become	more	dense.	As	the	number	of	edges	increase	in	a	Mesh	network	less	and	less	

nodes	are	served.	For	example,	in	a	fully	connected	Mesh	network,	each	producer	sees	the	

same	set	of	consumers	which	means	each	producer	will	serve	the	same	consumer	with	the	

highest	demands.	This	means	that	only	one	consumer	will	be	served	in	each	time	slot	

which	can	lead	to	resources	being	wasted	if	the	aggregated	total	of	resources	a	consumer	

receives	is	greater	than	its	number	of	demands	.	Wasting	resources	leads	to	an	increase	in	

queue	size.	The	Max-Weight	policy	did	cause	resources	to	be	wasted	in	a	Ring	topology	

network	structure	but	far	less	compared	to	most	Mesh	networks.	

As	a	solution	to	avoiding	wasting	resources,	the	Average-Weight	policy	was	

introduced.	The	Average-Weight	policy	reduced	the	amount	of	resources	wasted	by	

increasing	the	number	of	consumers	served	in	each	time	slot.	Reducing	the	number	of	

resources	wasted	in	each	time	slot	also	led	to	a	decrease	in	the	average	number	of	

pending	requests	at	the	end	of	each	time	slot.	It	is	important	to	note	that	a	decrease	in	

queue	size	does	not	necessarily	lead	to	a	more	stable	network	though,	as	was	shown	by	

random	node	selection	which	had	the	lowest	of	queue	sizes	but	it	did	not	lead	to	stability.	

As	the	Average-Weight	policy	leads	to	much	lower	queue	sizes,	it	means	that	requests	

spend	less	time	waiting	to	be	serviced	and	as	a	result	more	jobs	could	potentially	be	

executed	in	roughly	the	same	time	as	a	network	that	deploys	the	Max-Weight	policy.	

However,	the	Max-Weight	policy	performed	similar	to	the	Average-Weight	policy	in	a	

network	with	a	Ring	topology	in	terms	of	both	stability	and	queue	size.	A	Ring	topology	

already	ensures	that	each	producer	cannot	serve	the	same	consumer	due	to	its	structure.	
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The	Average-Weight	policy	actual	caused	a	network	with	a	Star	topology	to	become	very	

unstable.	However,	the	Max-Weight	policy	did	not	stabilise	networks	with	a	Star	topology	

either	so	maybe	Star	topologies	should	be	avoid	when	we	want	to	guarantee	stability.	

The	Max-Weight	was	chosen	to	tackle	the	resource	sharing	problem	in	IoT	as	it	had	

three	properties	that	make	it	advantageous.	It	is	distributed,	it	does	not	require	a	priori	

knowledge	about	nodes	production	and	demand	generation	rates	and	it	is	throughput	

optimal	in	that	it	stabilises	a	system	whenever	possible.	The	Average-Weight	policy	is	also	

distributed	and	does	not	require	a	prior	knowledge	about	nodes	and	so	far	it	has	been	able	

to	stabilise	every	system	that	the	Max-Weight	policy	stabilises.	

We	then	built	on	top	of	our	node	selection	algorithms	and	extended	to	the	case	

where	there	is	more	than	one	type	of	resource	that	nodes	exchange.	Each	producer	is	now	

allowed	to	do	some	planning	to	decide	how	best	to	uses	it	resources	to	best	serve	the	

consumers	with	the	largest	requests.	Although	production	scheduling	may	increase	a	

nodes	work	load	it	was	shown	that	production	scheduling	is	needed	to	ensure	stability.	

Whereas	when	there	are	a	number	of	nodes	in	a	network	who	act	selfishly,	either	by	only	

producing	plans	that	reflect	their	own	needs	or	are	low	cost	for	them	to	produce	it	can	

also	cause	their	network	to	become	unstable	very	quickly.	

We	also	studied	assortative	and	disassortative	mixing	based	on	node	degree	and	the	

impact	it	has	on	network	stability.	Some	dissassortative	networks	performed	very	well	in	

terms	of	stability.	Whereas	most	networks	that	had	an	assortative	score	were	unstable.	

However,	a	Ring	topology	and	a	fully	connected	Mesh	network	are	examples	of	networks	

that	are	neither	assortative	nor	disassortative	but	are	stable	which	implies	assortative	

mixing	may	not	be	linked	with	stability.	

Finally,	both	the	Max-Weight	policy	and	production	scheduling	were	applied	to	two	

hypothetically	applications	using	two	different	subgraphs	of	two	actual	network	

topologies.	Network	stability	was	not	achievable	in	either	network	due	to	disconnected	

nodes	and	nodes	with	a	low	number	of	neighbours	who	were	not	sustainability	on	their	

own.	Whereas,	in	both	networks,	the	nodes	with	a	high	number	of	neighbours	were	able	

to	use	the	Max-Weight	policy	to	exchange	resources	and	ensure	stability	for	themselves.	

	

7.2 Future	Work	

As	this	dissertation	is	mostly	theoretically	based,	the	next	steps	would	be	to	apply	that	

theory	to	some	actual	IoT	network	data.	Although	in	Chapter	6,	both	the	Max-Weight	

policy	and	production	scheduling	were	applied	to	actual	network	graphs,	the	arrival	rates	
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of	each	consumer	and	the	production	rates	of	each	producer	were	both	simulated	using	

random	number	generators.	Ideally,	we	would	like	to	learn	more	about	the	production	

rate	and	the	arrival	rate	of	different	IoT	networks	and	the	devices	used	in	those	networks	

and	then	apply	the	Max-Weight	policy	to	see	if	the	results	presented	in	this	dissertation	

will	hold.		

Further	investigations	into	what	length	of	time	one	time	slot	is	equivalent	to	in	

different	applications	could	also	be	done.	For	example,	the	results	of	most	simulations	that	

have	been	presented	in	this	dissertations	were	run	for	around	one	thousand	time	slots,	

but	one	thousand	time	slots	could	be	a	very	long	or	a	very	short	time	for	different	

applications.	Although	the	maximum	number	of	time	slots	were	increased	up	to	ten	

thousand	and	the	networks	remained	stable,	it	is	still	hard	to	tell	if	that	is	long	enough.	In	

general	all	network	parameters	could	be	tested	further	to	see	how	they	impact	both	

policies	but	it	would	be	better	to	learn	more	about	IoT	network	parameters	first	so	that	

the	tests	are	meaningful	and	have	some	direction.	

In	the	production	planning	chapter,	there	is	no	way	to	stop	nodes	from	only	

receiving	resources	and	not	contributing	back	to	the	network.	Ideally	we	would	like	to	

build	on	top	of	the	policies	presented	in	this	dissertation	by	adding	some	functionality	to	

incentivise	nodes	to	both	produce	and	consume	resources	as	best	as	they	can.	Again,	more	

work	could	be	done	on	production	scheduling	if	we	understood	more	about	the	

production	rates	of	different	producers	in	IoT	networks.	

	

7.3 Conclusions	

As	the	number	of	devices	connected	to	the	Internet	continues	to	grow	there	will	be	more	

opportunities	for	IoT	devices	to	cooperate	with	one	another	to	complete	tasks.	This	will	

also	increase	the	need	for	policies	that	can	allow	devices	to	successfully	collaborate	with	

one	another	overtime.	Both	the	Max-Weight	policy	and	the	Average-Weight	policy	could	

prove	to	be	two	very	usable	policies	as	a	way	of	sharing	resources	between	IoT	devices	to	

complete	tasks	while	ensuring	stability.	Much	work	is	still	do	be	done	in	terms	of	learning	

about	the	production	and	arrival	rates	of	different	IoT	devices	as	it	has	unfortunately	not	

in	the	scope	of	this	dissertation.	When	the	number	of	resource	types	increases	to	more	

than	one,	producers	can	cooperate	with	one	another	even	further	by	scheduling	the	

production	of	their	resources.	Production	scheduling	ensures	that	resources	are	not	

wasted	and	that	each	consumer	receives	resources	that	they	need	most.		
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