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Summary 
There is currently a huge amount of interest in bringing smart augmented reality applications 

to mobile devices. Mobile devices however, have limited resources and this means they cannot 

run certain computationally expensive computer vision techniques in a sufficiently fast manner. 

Taking the use case of object detection, the current state of the art object detection models utilise 

deep learning techniques to make accurate predictions. Deep learning incurs high processing 

and memory loads which results in long response time and a large amount of battery drain in 

mobile devices with limited resources. One solution to this problem is to offload these deep 

learning computations to the cloud. Offloading to a more powerful backend server provides the 

mobile application with increased processing power and reduces battery consumption but is 

subject to network impairments. 

 

In this dissertation, the use of a reduced deep-learning model run locally on a mobile device is 

compared to offloading the computation to a much larger, more accurate deep learning model 

for object detection on the cloud. The impact of varying networking conditions on the 

performance of computational offloading to the cloud are also investigated and any impairments 

due to poor networking conditions or due to limited resources on the mobile device are masked 

through local processing. 

 

This is completed through the development of a mobile cloud computing framework which 

supports mobile object detection through deep learning. The framework was developed as an 

Android application while the backend server is modelled as a RESTful API. The mobile 

application chooses between running deep learning computations locally with a reduced deep 

learning model and offloading these computations to the RESTful API where detection 

calculations are performed and results returned. Impairments due to the limited resources of the 

mobile device or due to poor networking conditions are masked through the use of tracking and 

an offloading decision model which decides whether it is more favourable to perform the 

detection locally or offload to the cloud. 
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The evaluation of this framework shows a large increase in frame rate and accuracy and a 

decrease in energy consumption when offloading. It was also shown that it is vitally important 

for the application to be contextually aware when making decisions on whether to offload or 

not. It was found that there are trade-offs between energy consumption, accuracy and speed 

when making this decision. Parameters such as bandwidth, network latency, image size and 

deep learning model size were shown to have a large impact on this decision of whether it is 

more favourable to perform detections locally or offload to the cloud. 
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1 Introduction 

1.1 Motivation 
There is currently a huge amount of interest in bringing smart augmented reality (AR) 

applications to mobile devices. AR is very much in its infancy in terms of being a widely 

adopted technology, however it provides many great benefits and possibilities that could make 

improvements to every-day life. There is an abundance of research into augmented reality but 

it has only garnered mainstream attention in recent years due to a number of popular mobile 

applications such as Pokémon Go [1] and the Ikea furniture app [2] which allows users to place 

furniture in their home before buying. 

 

One of the main reasons as to why augmented reality has not yet become a wide spread 

technology on every mobile device is that mobile devices have limited resources. This means 

they cannot run certain computationally expensive computer vision techniques in a sufficiently 

fast way. In this research, the focus is on the use case of bringing object detection through deep 

learning to mobile augmented reality applications. There are many uses for deep learning in 

augmented reality applications, a simple one being tagging people or objects in a scene and 

overlaying information about that person or object on the screen. Facial recognition can be 

utilised for authentication systems [3] using deep learning techniques. Object detection can also 

be used to assist visually impaired people in navigation [4]. 

 

Any lag in a mobile application can significantly affect user experience in a negative way and 

for use cases such as guiding the visually impaired it is vital that they receive real time results. 

Deep learning incurs high processing and memory loads which result in long response time and 

a large amount of battery drain in mobile devices with limited resources. One solution to this 

problem is to offload these deep learning computations to the cloud. There has been much 

research done into the benefits of offloading computationally expensive processes from mobile 

devices to the cloud [5]. Mobile cloud computing provides the mobile device with unlimited 

data storage and processing power and removes the obstacles that implanting deep learning 
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locally on the mobile device provide. However, there are disadvantages to computational 

offloading to the cloud such as latency due to network impairments. 

 

In this dissertation, the use of a reduced deep-learning model run locally on a mobile device is 

compared to offloading the computation to a much larger, more accurate deep learning model 

for object detection on the cloud. The impact of varying networking conditions on the 

performance of computational offloading to the cloud is also investigated and impairments are 

masked through local processing. This is completed through the development of a mobile cloud 

computing framework to support mobile object detection through deep learning.  

 

1.2 Research Objectives 
The main research objective for this dissertation is to develop a framework for investigating 

deep learning through computational offloading to the cloud. A mobile application is to be 

developed in which object detection is implemented, and results overlaid on the screen, through 

both the use of local processing and through offloading input to a more powerful backend 

server. This application must provide the user with the ability to switch between these two use 

cases for the purposes of testing. Both of these methods are to be experimented with and 

performance metrics gathered such as accuracy, latency and energy consumption. 

 

Another objective is to investigate the various state of the art object detection systems and to 

examine the accuracy/speed trade-off in order to choose the appropriate system for creating a 

real-time application. As speed is vitally important in this real-time application, the fastest, 

while still maintaining decent accuracy is to be chosen. 

 

Research into computational offloading and also preliminary testing of the impairments caused 

by varying networking conditions is to be completed in order to create a simple decision-making 

model, which decides whether to offload to the cloud or not based on gathered metrics such as 

the energy consumed by the application and the current network bandwidth and latency. 

Methods that reduce the effects of latency in the system due to the constrained resources in the 
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mobile device or due to network impairments when offloading are also to be investigated and 

implemented. 

 

Should these objectives be achieved, an extended objective is to use the information obtained 

from the results gathered from experimenting with this framework to create an intelligent 

offloading decision model. This decision model should take into account energy consumption, 

accuracy and speed to make a decision on whether it is more favourable to complete the deep 

learning computations locally or to offload them to the cloud. 

 

1.3 Dissertation Overview 
The structure of this dissertation is as follows, section 2 provides background information on 

the topics discussed in this dissertation. Section 3 provides an overview of the state of the art in 

object detection, tracking and also related works in mobile cloud computing. Section 3 gives a 

detailed description of the design of the proposed framework and explains the reasoning behind 

these design decisions. Section 4 contains a detailed description of how this design was 

implemented and explains the reasoning behind technologies used. Section 5 presents the 

testing that was completed and gives an interpretation of results. In section 6 conclusions are 

made and future works are recommended. 
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2 Background 
This chapter gives a brief overview of the background of the topics covered in this dissertation, 

providing any essential information needed to understand the research decisions made. These 

topics include: augmented reality, mobile cloud computing, deep learning and object detection. 

 

2.1 Augmented Reality 
Augmented reality (AR) is described in [6] as being the “real-time mixing of computer 

generated content with live-video display”. AR was developed from research into virtual reality 

and involves an interaction with a virtual world while also having a degree of interdependence 

with the real world. While virtual reality fully immerses the user into a virtual/computer 

generated world, augmented reality combines the real world with a virtual world by overlaying 

virtual inforamtion on top of the existing natural environment. This allows users an improved 

natural world where virtual information can assist them in their everyday life. AR is defined in 

[7] as being a subset of mixed reality in that it exists somewhere between a fully virtual 

environment and the real environment, this concept is demonstrated in Figure 1. 

 

 
Figure 1 - Reality-Virtuality Continuum [7]. 

 

The concept of augmented reality originated in 1968 when Ivan Sutherland invented the first 

head-mounted display system [8]. This system used computer generated graphics to show users 

simple wireframe drawings. The design of this system is shown in Figure 2. Following this 

invention, it took 45 years before augmented reality through a head-mounted display was 
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brought to public consciousness through the release of Google Glass in 2013 [9]. More recently 

Microsoft released the Hololens [10], which is a much more powerful device than Google Glass. 

 

 
Figure 2 - Design of the first head-mounted display device [8]. 

 

The term augmented reality was first coined in 1990 in a study by two researchers for Boeing 

[11]. Augmented reality was only considered in a research setting until the release of ARToolkit 

in 1999 [12] which is an open source SDK for developing AR applications. The release of 

ARToolkit along with the increased processing power and better camera quality in mobile 

devices led to a huge amount of AR applications to be released to the public in previous years. 

 

 
Figure 3 - Flowchart of a simple AR system [13]. 
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A simple augmented reality system as demonstrated in [13], Figure 3, consists of a camera, a 

CPU and a display. This simple augmented reality system augments computer generated objects 

on top of a marker image. The system takes an image of the environment and detects a marker 

image using a tracking module which calculates the location and orientation of the camera based 

on this image. A rendering module uses the location and orientation of the camera in relation 

to the marker image to then render a virtual object on top of this image and display the results 

on the screen. This is the most common type of augmented reality application and is widely 

used in entertainment and gaming, such as the game AR Defender, shown in Figure 4. Tracking 

a marker image is not that computationally expensive and can be run on most smartphones. 

However, this use case is constrained in what it can achieve and adding deep learning to this 

tracking system opens a wide range of possibilities for new innovative augmented reality 

applications. Using object detection, the AR system knows both the location and the type of an 

object in the scene and can render virtual objects or information based on this.  

 

 
Figure 4 - Mobile AR game, AR Defender which uses marker images for tracking [13]. 

 

2.2 Mobile Cloud Computing 
Cloud computing has grown increasingly popular in recent years and infrastructure as a service 

(IaaS) such as Amazon EC2 [14] , platform as a service (PaaS) such as Heroku [15] and 

software as a service (SaaS) such as Salesforce [16] have become standard in enterprise 

computing. Cloud computing provides computing, storage and applications over the internet. 

The cloud refers to infrastructures in datacentres that support the business’s needs, generally in 
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the form of data storage and remotely hosted applications. These infrastructures greatly benefit 

companies in that they reduce costs by eliminating the need for physical hardware, which allows 

companies to outsource data and computations on demand [17]. 

 

Applications on mobile devices are becoming increasingly complex and they have a higher 

demand on resources. Advances in smartphone hardware and battery life has not kept up with 

the advances and the higher demands of applications over the years. Mobile devices are 

constrained by low processing power, limited memory and limited battery [18]. Therefore many 

applications and processes such as deep learning are still unsuitable for mobile devices. 

 

Computation offloading is a technique utilized in mobile applications in which expensive 

computations are transferred from the mobile device to a more powerful cloud or server. 

Computational offloading to the cloud can reduce energy consumption, increase speed and 

allow a mobile device to run certain applications that are unable to run due to insufficient 

resources. Mobile cloud computing is defined in [19] as “an integration of cloud computing 

technology with mobile devices to make the mobile devices resource-full in terms of 

computational power, memory, storage, energy, and context awareness”.  

 

2.2.1 Architecture 

The general architecture of mobile cloud computing is described in [5] and is shown in Figure 

5. Mobile devices are connected to cloud services either through a mobile network or via Wi-

Fi using access points. When connected through a mobile network, the devices connect to the 

cloud through a base station or a satellite link. When connecting via an access point, the mobile 

device connects through Wi-Fi which is connected to the internet service provider which 

provides internet connectivity and access to cloud services to the device. Wi-Fi connections 

provide low latency and consume less energy when compared to a connection through a 3G 

mobile network connection [20]. Therefore when utilizing mobile cloud computing a Wi-Fi 

connection is preferred [19]. 
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Figure 5 - Mobile cloud computing architecture. 

 

2.2.2 Benefits 

The many advantages of adding mobile cloud computing to mobile applications are listed in 

[5]: 

• The first advantage is the extension of battery lifetime. This is a huge concern for mobile 

devices. Using computation offloading, the large computations which take a long 

execution time result in a large amount of power consumption. [21] produced research 

which evaluates offloading techniques through several experiments. They demonstrated 

that computation offloading can save energy significantly and showed a 45% decrease 

in energy consumption when offloading large matrix calculations. 

• Another benefit of mobile cloud computing is the improvement of data storage capacity. 

Storage capacity is another constraint for mobile devices. Mobile cloud computing 

allows users to store large amounts of data in the cloud through wireless networks. 

Cloud data storage provides cost savings, recovery for lost files and accessibility i.e. 

files can be accessed from anywhere with an internet connection.  

• Mobile cloud computing gives mobile devices access to unlimited processing power. 

Computationally expensive processes may add a huge amount of latency to an 
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application while also draining battery power. [20] showed a large increase in speed 

when they used offloaded calculations for making optimal moves in a chess game. 

 

2.2.3 Issues 

There are many challenges that we are faced with when implementing mobile cloud computing 

applications. Below three issues are listed that can affect a MCC system: 

• Network impairments can cause many issues with mobile cloud computing systems. 

Service availability is a large issue on mobile devices and the mobile user may not be 

able to connect to cloud services due to traffic congestion, network failures or due to a 

lack of signal. A low bandwidth connection is much more likely in mobile networks as 

the radio resource is scarce compared to wired networks [5]. This can severely slow the 

speed of requests resulting in added latency to the mobile application. [22]  shows the 

effects of bandwidth on speed when offloading deep learning computations to the cloud. 

In the case of dynamic network environments, it is important for the mobile application 

to keep track of changes in service availability and bandwidth. 

• Another issue is the cost of offloading, offloading may not always be the most effective 

way of saving energy. Sometimes the actual cost of offloading can exceed the cost of 

the computation being offloaded. [23] provide a solution in which a program is 

partitioned based on an estimation of energy consumption. This partitioning is based on 

the trade-off between the offloading and computation costs. The cost of offloading 

decision-making models also needs to be considered as this can add an additional strain 

on resources. 

• Security is a large concern in any form of cloud computing. [24] provides an extensive 

review of the challenges caused by security issues in mobile cloud computing. These 

security concerns include secure communication, data integrity, privacy, data 

availability, data access control, mobile application security and the distribution of data 

over a distributed infrastructure.  
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2.2.4 Offloading Decision Making 

A mobile cloud application goes through a number of steps before offloading to the cloud. In 

general the network connectivity is first checked, noting available resources in the process. 

Then whether offloading is favourable or not is decided upon depending on the users objective 

which could include goals such as saving energy or increasing speed. If offloading is the 

favourable option then the computation is offloaded to the cloud and the application waits for 

results. If unfavourable, the application will perform the computation locally [19]. 

 

In a dynamic environment, context awareness is vitally important when implementing a mobile 

cloud computing architecture. This refers to the mobile devices understanding of the parameters 

that affects the decision in computation offloading. If parameters such as the network speed or 

the available resources on the device change, it is vitally important that the device can 

automatically adapt when making a decision. The parameters which affect the offloading 

decision are shown in Figure 6.  

 

 
Figure 6 - Parameters affecting offloading decision [25]. 
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2.3 Deep Learning & Object Detection 

2.3.1 Object Detection 

Object detection is a computer vision technique in which not only is every object in an image 

classified but localization is also used to locate the object and return a value for a bounding box 

around it. Deep learning has greatly advanced the performance of visual recognition systems in 

recent years. The popularity of deep learning has increased dramatically recently according to 

[26], due to a number of reasons such as: “the dramatically increased chip processing abilities 

(e.g. GPU units), the significantly lowered cost of computing hardware, and the considerable 

advances in the machine learning algorithms.” Deep learning in the form of convolutional 

neural networks have proven to be extremely successful in previous years in the various visual 

recognition challenge competitions such as Imagenet [27] and Pascal VOC [28]. 

 

In general, object detection models are evaluated using the mean average precision (mAP). 

Precision is a measure of how relevant the returned results are and is calculated as the 

percentage of true positives in the results. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 +,-.	/012+3.1
+,-.	/01+23.145671.	/012+3.1

	  ( 1 ) 

 

Recall is a measure of the truly relevant results that the system retrieves and is calculated as the 

percentage of correct results retrieved. 

 

𝑟𝑒𝑐𝑎𝑙𝑙 = 	 +,-.	/012+23.1
+,-.	/012+23.145671.	:.;6+23.1

									( 2 ) 

 

Average precision is a common metric that summarizes a precision recall curve which plots 

precision as a function of recall. Average precision is explained in [29] as being equal to taking 

the area under the curve and is defined as the precision averaged across all values of recall 

between 0 and 1. 

 



 12 

𝑝(𝑟)𝑑𝑟?
@ 									( 3 ) 

 

This value can be approximated by summing over the precisions at every possible threshold 

value which defines what the system will accept to be an object, multiplied by the change in 

recall. 

 

𝑃(𝑘)Δ𝑟(𝑘)D
EF? 									( 4 ) 

 

𝑁 is the total number of images, 𝑃(𝑘) is the precision at a cut-off of 𝑘-images and Δ𝑟(𝑘) is the 

change in recall that happened between cut-off 𝑘-1 and cut-off 𝑘. 

 

2.3.2 Convolutional Neural Networks 

Artificial neural networks, as shown in Figure 7, are described in [30] as consisting of a number 

of connected processors called neurons which each produce a sequence of real-valued 

activations. Activations are functions that define the output of a neuron given an input or set of 

inputs. Input neurons are activated by perceiving the environment and generally take input in 

the form of a multidimensional vector. A simple neural network contains three layers: an input 

layer, a hidden layer and an output layer, each of which transforms the aggregate activation of 

the network. Neurons in the hidden layers are activated through a weighted connection with 

other active neurons. Learning involves deriving weights which make a neural network perform 

a certain action, such as detecting an object. Deep learning also involves deriving weights to 

make the neural network perform a certain action however it involves computations across 

many hidden layers as opposed to just one. 
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Figure 7 – A simple three layered neural network, comprised of an input layer, a hidden layer and an output layer [31]. 

 

Convolutional neural networks (CNN) are similar to standard neural networks (NN), in that 

they have layers made up of neurons with learnable weight and biases and all other functionality 

for neural networks still apply. The main difference between a CNN and a NN is that CNNs are 

tailored specifically for pattern recognition within images. This allows CNNs to make more 

suitable networks for tasks involving the processing of an image by encoding image-specific 

features into the architecture. These image specific features allow for a large reduction in the 

parameters required to set up the model [32]. 

 

The number of pixels in an image is determined by three parameters: height, width and number 

of colour channels. In regular images, there are 3 colour channels: red, green and blue. If a 

standard neural network is dealing an image of size 300x300 that means if a neuron in the first 

hidden layer is fully connected to each neuron in the input layer that means the neuron in the 

hidden layer has 300x300x3 = 270,000 weights. There would almost always be multiple 

neurons in the hidden layers and this would lead to the neural network becoming overly 

complex and would introduce overfitting. 

 

There are two main differences between a convolutional neural network and a standard neural 

network. The first being that the neurons are modelled as a 3-dimensional array in a CNN with 
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the dimensions being, height, width and depth. Depth refers to the number of colour channels, 

so for coloured images this value would generally be 3. This reduces the number of neurons in 

the input layer by a huge amount. The second main difference is that not every neuron in a 

hidden layer is connected to every neuron in the layer before and only connect to a small region 

of the previous layer. This leads to a reduction in computational complexity and reduces number 

of parameters.  

 

As demonstrated in Figure 8, there are three main types of layers in convolutional neural 

networks: Convolutional Layer, Pooling Layer, Fully-Connected Layer. 

 

 
Figure 8 - Architecture of a convolutional neural network. 

 

The convolutional layer is responsible for extracting features from an image, a feature is 

detected by a hidden neuron and is a pattern in the input that causes that neuron to activate. This 

could be anything such as an edge, a corner or a shape. When a feature is detected by a CNN it 

is reported in a feature map which is outputted from the layer. These feature maps are then used 

in the following convolutional layers to then extract more complex features eventually leading 

to the detection of an object. The convolutional layer works by determining an output of neurons 

which are connected to local regions of the input by applying a series of dot product calculations 

between weights in that layer and the input. Weights in the convolutional layers are often 

referred to as the kernels/filters. These weights are trained to learn certain features in an image.  

 

Pooling layers are commonly placed between two convolutional layers. Its function is to 

progressively reduce the number of parameters and computation in the network, and thus 

control overfitting. The pooling layer reduces the complexity of the model by down sampling 
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along the spatial dimensionality of the given input [32]. Max-pooling is the method most used 

in CNNs. Max-pooling is achieved by applying a max filter to subregions of the input. For each 

of the regions that the filter is applied to the max value is added to a new output matrix. An 

example representation of this calculation is provided in Figure 9. 

 

 
Figure 9 - Representation of max pooling calculation. 

 

The fully connected layer, as the name suggest contains neurons that connect to every neuron 

in the previous layer. This layer produces discrete probabilities for each class, for example in 

object detection these classes could be things like a person, a dog, etc. The max probability will 

then be chosen as the resulting output. 

 

Concolutional Neural Networks are extremely powerful but very resource heavy. For example 

take a filtering a large image of size 227x227 with 64 kernals, this will result in three activation 

vectors of size 227x227x64, which roughly calculates to 10 million activations or a huge 70mb 

of memory per usage [32]. Only recently, with the increased processing power of computers, 

has it been possible to achieve real-time object detection with a high accuracy using 

convolutional neural networks. Processing power in mobile devices however is still constrained 

and real-time detection is not yet a possibility. 
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3 State of The Art 
This chapter describes the current state of the art in object detection and tracking and provides 

an overview of some related works in the field of mobile object detection through computation 

offloading. These related works are a subsample of the research that was completed, taking the 

research that was most relevant to what was investigated in this dissertation. 

3.1 Object Detection 

3.1.1 YOLO 

In the past object detection systems such as R-CNN [33], were performed in a 2-step process. 

First, region proposal methods are used and what could be tens of thousands of proposals for 

bounding boxes were made around what the system believed could potentially be objects. The 

second stage of the process involved an image classifier classifying the image inside these 

bounding box proposals to assess whether the object was of a particular type. This process is 

extremely accurate however it is not a very efficient solution. These networks are slow and hard 

to optimize because each individual component must be trained separately.  

 

You Only Look Once (YOLO) [34] is an object detection network that achieves real-time 

detection by reframing object detection as a single regression problem and uses only one neural 

network for both bounding box proposals and object recognition. YOLO works by dividing the 

input image into an S x S grid. Each of these grid cells acts as a classifier and is responsible for 

generating bounding boxes and confidence scores for potential objects. A grid cell is 

responsible for detecting an object if the centre of that object lies in that grid cell. This process 

is demonstrated in Figure 10. 
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Figure 10 - The YOLO model (different colours in class probability map refer to resulting class predicted by the CNN) [34]. 

 

While it is common for CNNs to be structured like in Section 2.3.2, It is also possible to have 

multiple convolutional layers stacked in a row, this allows for more complex features of the 

input vector to be selected. It is also beneficial to split large convolutional layers into smaller 

sized layers as this reduces the amount of computational complexity within each layer [32]. 

YOLO like many other of the state of the art object detection systems employ these strategies 

in its own custom network structure, which is displayed in Figure 11. 

 

 
Figure 11 - The YOLO detection network [34]. 
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YOLO achieves a mean average precision of 63.4 at a speed of 45 frames per second (FPS) 

when tested on the Pascal VOC detection challenge dataset [28]. In comparison, the state of the 

art model at the time Faster-RCNN VGG16 had a much higher mAP of 73.2 however that only 

ran at 7 frames per second. YOLO also provides a faster version, Tiny YOLO, that runs at 207 

frames per second with a mAP of 57.1. This faster version uses a neural network with fewer 

convolutional layers (9 instead of 24). This makes it viable to run this version on a mobile 

device. The use of fewer convolutional layers makes the model much faster but also much less 

accurate. 

 

In 2017 a new version of YOLO was released [35]. This version pooled a number of past works 

along with the authors own novel ideas to improve YOLO’s performance. YOLO v2 boasts a 

state of the art performance of 78.6 mAP on the Pascal VOC detection dataset while running at 

40 frames per second. A lower resolution version of YOLO v2 runs at 67 fps with a mAP 76.8. 

A comparison of different object detection systems provided in [35] is shown in Table 1. 
 

 
Table 1 - A comparison of detection frameworks on Pascal VOC 2007+2012. The various versions of YOLO are based on the 

input image size, the actual model is the same for each [35]. 
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3.2 Tracking 
The need for detecting corners, image features or interest points in tracking objects from frame 

to frame is described in [36]. The use of these features makes it much easier to track objects 

due to a reduction of the amount of points to be tracked and also because these features are 

complex and provide values which allow them to be tracked. 

 

3.2.1 FAST 

FAST (Features from accelerated segment test) [37] is a corner detector that is both simple and 

very fast. FAST works by taking a circle of points around the pixel being processed. This pixel 

is determined to be a corner if there is an adjoining path of at least 9 pixels around the pixel 

with a brightness value either brighter or darker than the brightness of the current pixel being 

examined. Non-maxima suppression is used to ensure not more than one response is returned 

for each corner. Non-maxima suppression is a process whereby, if neighbouring pixels are both 

detected as corners, the pixel which has the biggest difference in pixel brightness with its 

surrounding pixels is chosen as being the most likely to be a corner and the neighbouring pixels 

are supressed. According to [36]  this detector is 5-10 times faster than Harris [38] and 50 times 

faster than the much more complex feature detector, SIFT [39]. 

 

3.2.2 Feature Based Optical Flow 

Optical flow is a technique used when tracking objects, whereby, an apparent motion direction 

and magnitude is calculated for every point in an image. An example of optical flow is 

demonstrated in Figure 12, in which an object moves and the arrows represent the optical flow 

calculations which characterize the movement of the object. Optical flow can also be calculated 

for only feature points within the image. This involves much less computations and is much 

faster than calculating for every pixel in the image. Following the calculation of bounding boxes 

in object detection it is possible to then calculate feature points within these bounding boxes 

and then calculate the optical flow for each of these feature points in each frames following this 

detection. 
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Figure 12 - Detection of the optical flow in 3 temporally-consecutive images, showing the movement of an example shape." 

http://tcr.amegroups.com/article/view/3200/html 

 

Lucas-Kanade [40] proposed an algorithm for computing optical flow which is faster than other 

traditional techniques. The Lucas-Kanade algorithm aims to associate a movement vector (u,v) 

to every feature in the image by comparing two consecutive images. It uses the intensity 

gradient of an image to detect the motion between two intensity images. Optical flow is 

estimated by minimizing the sum of squared error between the two images. A simple description 

of the technique employed by this algorithm is given in [41].  

 

3.3 Mobile Cloud Computing 

3.3.1 Glimpse 

Glimpse [42] is a continuous real-time object recognition system for mobile devices. Glimpse 

tackles the problems caused by latency from offloading detection to a server. When offloading 

to a server, it can take a large amount of time for the results to be returned. During this time, 

the detection will be old and the bounding box provided will be in the wrong location. Glimpse 

employs local tracking and an active cache in order to tackle this problem. An active cache 

stores all frames during the time it takes for the detection results to return from the server. A 

subsampling of these cached frames is chosen with which to track features from frame to frame. 
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When the detection results return from the server the bounding boxes catch up to the current 

frame using the tracking of the active cache and subsequent frames are then tracked in real-

time. Glimpse also reduces bandwidth consumption by not sending every frame to the server. 

It chooses when to offload to the server in three ways, it first checks the tracking performance 

and when it is about to fail it offloads. Second, it detects any changes in the scene and offloads 

if there is a significant amount of change. Finally, if the scene is changing a significant amount, 

it avoids offloading too many frames by keeping track of the number of frames being offloaded 

currently. Glimpse achieved impressive results and the research completed in this dissertation 

compliments this work by using many of these techniques in the final framework solution. 

Glimpse however does not use deep learning in its object detection and can only detect faces 

and road signs. We thought it would be interesting and greatly beneficial to take these 

techniques and test them using the current state of the art object detection systems. 

 

3.3.2 A Computational Offloading Framework for Object Detection in 

Mobile Devices 

[43] propose a computational offloading framework for object detection in mobile devices. This 

framework consists of three parts: a monitoring engine, an offloading engine and a 

communication engine. The monitoring engine monitors the overall performance of the 

application through collecting a number of metrics such as: processing time, memory usage, 

battery consumption and the required data to complete a detection. This framework then uses 

these gathered metrics in the offloading engine to make a decision on whether to offload or not. 

The decision model proposed in [23] is used to make this decision. This decision model has a 

focus on saving energy and calculates the minimum bandwidth required to make offloading to 

the cloud the correct decision. The communication engine then offloads images to the server 

for detection. This framework shows a response time speedup that could reach five times for 

small images and 1.5 times for larger images. Energy saving ranges between 50% to 80%. 

While these are good results, this framework does not attempt to mask any of the impairments 

caused by a large amount of latency. 
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3.3.3 Delivering Deep Learning to Mobile Devices via Offloading 

[22] conducted a preliminary research into the viability of a framework that uses current 

networking conditions and back end server loads to intelligently determine an offloading 

strategy. Similar to my research they created a mobile application which runs Tiny YOLO while 

using YOLO v2. In a cloud server. Changes in the system parameters of video resolution, deep 

learning model size and offloading decision where tested against the object detection accuracy, 

battery consumption and latency. The impact of varying network conditions was also tested and 

conclusions were made. These tests provided invaluable knowledge before planning research 

and it was possible to use the results of this investigation in the design of the offloading 

framework. 
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4 Design 
This chapter describes the design of the proposed framework, which is shown in Figure 13. The 

system is described in two parts. The first part describes a mobile application which combines 

tracking, object detection and a decision-making system to achieve optimal speed, accuracy and 

energy usage. The second part describes a cloud platform which provides a fast and accurate 

object detection service and also provides context on networking conditions. The overall design 

and reasons for these design decisions are also discussed. 

 

 
Figure 13 - Architecture of proposed framework. 

 

4.1 Problem Setup 
The real-time requirement of this framework imposes a hard deadline for generating an overlay 

of the object detection results for each frame. The handset has a number of options for 

generating the overlay for a given frame: 

• Send all or part of the frame to a deep learning server in the cloud which then returns 

bounding boxes and tags. Communication is over a wireless link which may suffer from 

variable delay (due to changes in contention/bandwidth allocation, retries due to packet 

loss, queueing and so on). 
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• Process all or part of the frame using a simplified deep learning algorithm executed on 

the mobile handset. This avoids the need to communicate over the wireless link but 

comes at the cost of (i) a lower accuracy overlay (due to the use of a reduced deep 

learning model with fewer layers) and (ii) increased drain on the mobile handset battery. 

• For objects already tagged in a previous frame the mobile handset can use tracking to 

update the bounding box in the next frame. This relies on their being relatively small 

changes in the image of the object between frames, and so the quality of the estimated 

bounding box tends to degrade over time (e.g. due to changes in the size and orientation 

of an object making it hard to track). This avoids the need to communicate with the 

cloud and also incurs minimal battery drain. 

 

Since a frame may contain several objects, a combination of these three analysis approaches 

may be employed e.g. the handset may choose to use tracking to update the overlay for 

objects recently tagged using the cloud, use the cloud to generate an overlay for stale objects 

and for new parts of the frame (due to camera motion the field of view can change from frame 

to frame) and fall back to local processing if the cloud is too slow to reply (due to fluctuations 

in the wireless link delay). The task for the handset is to select which combination to use (and 

the associated partitioning of the frame between these analytic tools so as to meet frame 

deadlines while maximising the accuracy of the overlay and respecting battery constraints. 

 

4.2 Mobile Application 

4.2.1 Tracking Decision 

The framework is designed so that there are two decisions to be made before passing an image 

into a CNN for object detection or before offloading it to the server. The first decision is whether 

tracking detected objects from previous frames can be relied upon. Techniques implemented in 

Glimpse [42] as described in Section 3.3.1, were implemented in the proposed solution. This 

decision is based on two things: 

1. The amount of change in the scene between two consecutive frames. 

2. Tracking failure due to a change in the size, angle or appearance of the objects. 
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The amount of change in the scene is calculated using a frame differencing function. This 

lightweight function calculates any movement or change between two consecutive frames by 

first converting the frames to greyscale and then calculating the absolute difference, 𝑑2,I 𝑥, 𝑦 , 

between pixel values of the current frame, 𝑓E 𝑖, 𝑗 , and the previous frame, 𝑏 𝑖, 𝑘 .  

 

𝑑2,I 𝑥, 𝑦 = 𝑓E 𝑖, 𝑗 − 𝑏 𝑖, 𝑘 									( 5 ) 

 

The overall difference is then calculated with the formula below. This overall difference is 

divided by the max amount of change that could potentially be in the scene (width x height), to 

calculate a percentage change in the scene. Computing the frame difference is linear to the size 

of the image and takes only a few milliseconds on the mobile device. If the calculated 

percentage is above a certain threshold, the object detection is either completed locally or 

offloaded, if not, only tracking is executed on previously detected objects. 

 

𝑑2,I = 	 𝑑2,I 𝑥, 𝑦 , 𝑑2,I ≥ 0R,S 									( 6 ) 

 

Based on experiments performed in [22] and recreated in this dissertation, where the effects of 

the changes in image resolution on the latency in the system were tested, a solution was formed 

based on only offloading the parts of the frame that have a significant amount of change. As 

you can see in Figure 14, the latency increases with the image size for both offloading and local 

processing when utilizing the YOLO model.   
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Figure 14 - Chart plotting the effect of frame resolution on latency. 

 

This process, as demonstrated in, Figure 15, involves first splitting the image into 4 sections 

and calculating the frame difference, as described above, in each of these 4 sections. If the 

results for only one section exceeds a specified threshold then that section is cropped and is 

either offloaded or passed into the local object detection model. When the results are returned 

for this section of the image, the pixel location of the returned bounding boxes are then mapped 

back to the original pixel values of the full frame. 
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Figure 15 - Cropping scene based on amount of change in parts of the frame. 

 

4.2.2 Offloading Decision 

As explained in Section 2.2.4 it is important for the application to be contextually aware of all 

of the conditions that affect the offloading decision. Therefore, one of the main requirements 

when designing the framework was the collection of any data that could affect the cost of 

offloading in order to make intelligent decisions. Firstly, metrics with regards to the current 

networking conditions were gathered, these include the current network type, the link speed, 

the latency, the bandwidth and signal levels. Metrics with regards to the context of the system 
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include, the battery usage, time taken to perform local processing, the current CPU usage and 

the current memory usage. 

 

A simple offloading decision model was created based on experimentation and the gathered 

metrics. This offloading decision model was created to test the framework with a view of 

creating a much more intelligent model in future work which utilises all of the metrics gathered. 

The offloading decision was implemented as a series of conditions based on the gathered 

metrics. The framework has 2 states, local and offloading. The current state of the application 

is decided based on this series of conditions which include: 

• If network is unavailable, if there is low signal or if the network type is worse than 3G 

then the application is run in local processing state. Based on research anything below 

3G such as 2G or EDGE meant that it was costlier to offload than to perform the 

processing locally. 

• If bandwidth drops below a certain level the resolution is decreased. If the bandwidth 

drops further meaning its less expensive to run locally then state is changed to local. 

• If a request returns an error or times out then the application falls back on local 

processing. 

 

This offloading decision model can be easily swapped with another decision model in future 

work which can utilise the metrics gathered. 

 

4.2.3 Object Detection 

As mobile devices have constrained resources, deep learning models which are configured to 

use limited processing and memory are preferred. The application allows for the easy input of 

various different object detection models. These models come in the form of pre-trained neural 

networks and can be loaded in from memory. The object detection model that was chosen for 

the mobile device was Tiny YOLO. This model was chosen because, as described in Section 

3.1.1, it uses a smaller number of convolutional layers resulting in it using less processing and 

memory than YOLO and results in it being much faster. However, this comes with a trade-off 

with accuracy. 
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The object detection is designed to run on a background thread. This allows a smooth output of 

the camera feed on screen. Whenever a detection is completed the results are either passed into 

the tracker or drawn on screen. 

 

4.2.4 Tracking 

 

 

Figure 16 - Stale frame due to latency of object detection. 

 

Tracking was implemented to combat the decrease in accuracy due to latency in the system. As 

we can see in Figure 16, when a frame is grabbed from the camera and is assessed by the object 

detection system, by the time the results are returned the person has moved and these results 

are now stale. The calculated bounding box is then placed in the wrong location leading to a 

decrease in accuracy. 

 

As described in Section 3.2 object tracking is completed in two steps: 

1. A suitable feature detection algorithm detects salient features in the image, that will then 

be tracked from frame to frame. For the purposes of this project, FAST feature detection 

was used as speed is vitally important. 

2. The optical flow is then computed using the Lucas-Kanade algorithm, which is used as 

it is faster than other traditional techniques. 
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This tracking is run on every frame on a background thread so as not to add additional latency 

to the system. The tracker stores the optical flow keypoints of every frame at a timestamp so 

when a detection is completed the path of the features within the returned bounding box are 

followed and the tracker walks the position forward along the collected keypoint deltas. This 

results in the bounding boxes being placed in the correct location of the current frame. 

 

4.2.5 Offloading 

Both streaming the camera feed to the backend server using Real-time Transfer Protocol (RTP) 

over the User Datagram Protocol (UDP) and simply sending one frame at a time over Hypertext 

Transfer Protocol (HTTP) over the Transmission Control Protocol (TCP) were assessed when 

designing the offloading functionality.  

 

RTP is a network protocol which focuses on delivering audio and video over IP networks [44]. 

RTP is used extensively in communication and entertainment systems. RTP utilises UDP 

instead of TCP as it relies on timeliness and the speed of streaming video/audio. RTP is 

insensitive to packet loss and does not require the reliability of TCP. UDP has less overhead for 

headers so one packet can carry more data, thus using the network bandwidth more efficiently. 

HTTP in general runs over a TCP connection. TCP is much more reliable than UDP as each 

packet sent from client to server is acknowledged and if there are lost packets the client will 

then retry sending these packets [45]. This means that in general there is no packet loss, but this 

acknowledgment leads to the connection being slowed down. In UDP streaming there is no 

acknowledgement and is therefore much faster. UDP does not care for packet loss, what matters 

most is on-time delivery of content. 

 

[46] provide a comparison between TCP and RTP for video streaming. The two protocols were 

compared with regards to data integrity and transmission delay. It was found that TCP was more 

reliable when it comes to data integrity, as is the nature of the protocol, there is no loss when 

transferring packets and data integrity was 100%. RTP was between 97% and 99% however 

and this had little effect on playback quality. When testing the transmission delay there was a 
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large difference between the two protocols. TCP added between 500ms to 620ms in 

transmission delay whereas RTP was between 20ms and 70ms. Therefore, this shows that RTP 

can effectively reduce the transmission delay and improve efficiency. 

 

Although it was found that for streaming media RTP is generally faster and more widely used, 

in the final solution the images were offloaded to the server using HTTP. This was due to a 

number of reasons, the first being HTTP is widely interoperable and has countless 

implementations that could be used both server and client side. Whereas, the implementation 

of RTP varies and is difficult to incorporate into an application. Having done research it was 

found that there is a lack of libraries for implementing RTP effectively and it was decided that 

a HTTP offloading strategy would be acceptable for the initial testing of the proposed 

framework. This allowed time to be spent on other more important aspects of the research. RTP 

is to be investigated further and to be incorporated in the design of the framework in future 

work as it should provide a speed up to the offloading process. 

 

The overall processing flow of the application is shown in Figure 17. 

 

 
Figure 17 - Processing flow of proposed application. 
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4.3 Backend Server 
The backend server handles a number of tasks including object detection, providing network 

context to the mobile application and also processing results received from the device when in 

test mode. This backend server is in the form of a multithreaded RESTful API and the endpoints 

are shown in Figure 18 below. The main use case for this server is the object detection endpoint. 

This endpoint listens for input in the form of a multi-part image and returns the results of object 

detection on this image. Each image is processed sequentially. This object detection is 

completed using pre-trained neural networks. The Pre-trained convolutional neural networks 

are only loaded once upon the server starting and are then utilised for object detection.  

 

YOLO v2 as described in Section was utilized as the object detection system server side. As 

time is of the utmost importance in our application, YOLO was chosen for the task. Another 

reason why YOLO is a good candidate for the proposed framework is that it can dynamically 

change its network model based on the resolution of the inputted image and this allows for more 

control. The computation time of the network scales directly with the input resolution.  

 

Further information on the specifics of this RESTful API and how it was implemented are given 

in Section 5.2. 

 

 
Figure 18 - Overview of RESTful API. 
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5 Implementation 
This chapter describes the implementation of the mobile cloud computing framework. Section 

5.1 describes the development of an Android application while section 5.2 describes the 

development of the backend server as a RESTful API. 

5.1 Android Application 

5.1.1 Camera & Settings 

The proposed front-end solution was created as an Android application and written in a 

combination of Java and C++. An example android application [47], created by Tensorflow was 

utilised as a base for the development of the proposed framework. This example application 

provides object detection and tracking functionality.  

 

On start-up, the app launches a menu with two options, the first being an option for settings and 

second for launching the application. This menu is shown in Figure 19. The settings menu, 

shown in Figure 20, uses the Android SharedPreference1 interface to access and modify 

preference data. This creates a single instance of the SharedPreference class and these 

preferences can be accessed from anywhere in the application. Various parameters are set using 

this settings menu such as, the resolution of the camera, whether to enable tracking, whether to 

enable test mode and whether to enable offloading. 

                                                
1 https://developer.android.com/guide/topics/ui/settings  
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Figure 19 - Main menu of android application. 

 

 
Figure 20 - Settings menu of android application. 

When these preferences are set by the user and the user clicks the “launch application” button 

a new camera activity is launched which then starts a fragment. An activity in an android 

application represents a single screen, while a fragment represents a sub section or process 

within this activity. The fragment initializes the camera and then initializes the object detection 

interface using the predefined settings from preferences. This camera fragment then feeds a 

stream of images from the camera into the object detection interface.  

 

5.1.2 Tracking 

Each of these images are processed and then tracking is run on the current frame. Tracking is 

run on a background thread so it does not slow down the application. The feature points in that 

frame and the optical flow between the detected feature points of the current frame and the 

previous frame are calculated using C++. Android provides a Native Development Kit (NDK)2 

which are a set of tools that allow the use of C and C++ with Android. This C++ code is wrapped 

in a Java class which can initialize and call functions and classes from the C++ tracker code 

using the Java Native Interface (JNI)3 framework. The resulting optical flow keypoints from 

                                                
2 https://developer.android.com/ndk/guides/  
3 https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html  
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the tracker are stored in a list with the current timestamp attached. Following this, if the 

application is in debug mode, these feature points are drawn on screen as shown in Figure 21. 

 

 
Figure 21 - Tracked feature points being drawn on screen in debug mode of android application as small multi-coloured 

rectangles. 

 

5.1.3 Tracking Decision 

The object detection and decision-making processes take place on a separate thread from the 

camera and the tracking. Once the current frame is received from the camera and processed, 

that frame and the previous frame are passed into the tracking decision interface. In this 

interface, firstly the change in the scene is calculated as described in Section 4.2.1. The amount 

of change in the scene was originally computed using Java however this was returning results 

of around 300ms which is not acceptable for the real-time requirements of the application. Upon 

rewriting this code in C++, the speed dropped down to around 8ms. If the overall percentage 

exceeds a threshold then the decision to perform object detection is made. This value, based on 

experimentation was set at a value of 10%. If only one section of the frame contains a significant 

amount of difference then that section is cropped and passed into the object detection interface. 
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Some basic pseudocode giving an overview of the object detection flow is given below in Figure 

22. So as to keep this pseudocode simple and easy to understand the cropping of the frame is 

not included.  
 

initializeThread(){ 
 
    Boolean sceneChange = trackingDecision.makeDecision(currentFrame, previousFrame); 
 
    OffloadingMode offloadingMode = offloadingDecision.makeDecision(networkContext, systemContext); 

 

    frameResolution = offloadingDecision.getOptimalResolution(networkContext, systemContext); 

    detector.setInput(frameResolution); 
 
    if(offloadingMode == OffloadingMode.HTTP && sceneChange == True){ 
        List<DetectionResults> results = offloadToServer(currentFrame); 
    } 
    else if(offloadingMode == OffloadingMode.LOCAL && sceneChange == True){ 
        List<DetectionResults> results = tensorflowObjectDetection(currentFrame); 
    } 
 
    tracker.trackResults(results, currentFrame, currentTimestamp); 
 
    drawResults(); 
 
} 

Figure 22 - Pseudocode of object detection flow in mobile application. 

 

5.1.4 Offloading Decision 

Before passing a cropped frame, or the entire frame into the object detection model, first a 

decision had to be made on whether to offload or not. This decision is based on a number of 

metrics gathered by the system. The system context including the local processing time, current 

battery level, current CPU usage and current memory usage are collected using Android 

developer tools. The current networking conditions such as the link speed, current network type 
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and signal strength are gathered through both the use of Android developer tools and through 

querying the backend server. Originally another thread was used to calculate the bandwidth and 

latency of the network in the background. This was completed by both uploading and 

downloading a file from the backend server and calculating the bandwidth based on the file size 

and length of time taken to upload/download the file. This however, proved to be a poor way 

of calculating bandwidth as it uses up the available bandwidth and may affect the offloading 

process. A much simpler technique was implemented in the final solution whereby, the time 

taken to perform the object detection server side is returned with the results. This time can then 

be subtracted from the time taken for the results to be returned in order to calculate the 

bandwidth after every offload. Should the networking conditions be poor however and the 

device chooses not to offload, the original solution for calculating bandwidth can be used until 

networking conditions improve and we begin offloading again. 

 

This decision model is created in the form of an interface allowing, the easy substitution of 

different models into the code for testing different decision models in future work. As described 

in Section 4.2.2, currently a very basic decision model is implemented in which a series of 

conditions are checked such as the current network context to decide on whether to offload or 

not. The state of the system is controlled using an enum value, either “OFFLOADING” or 

“LOCAL”. The results of this decision model simply change this enum value based on the 

conditions.  

 

5.1.5 Object Detection 

5.1.5.1 Tensorflow 

Tensorflow [48] is an open source library with a focus on expressing and implementing machine 

learning algorithms. This library was used to implement the deep learning object detection 

models on the android application. [49] carried out an extensive study of the various popular 

deep learning toolkits. These frameworks were assessed in 5 categories: modelling capability, 

interfaces, model deployment, performance and architecture. It was found that Tensorflow was 

either ranked the best or the second best in each of these categories. Based on this review 
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Tensorflow was chosen for this project as well as other reasons such as the fact that Tensorflow 

is an extremely popular and widely used framework and there is an abundance of tutorials and 

documentation to assist me if there were any issues. 

 

Tensorflow models machine learning algorithms as dataflow graphs. These graphs contain a set 

of nodes called operations and each of these nodes represent a unit of computation. These units 

of computation can range from being a simple addition operation to being a multivariate 

equation. The input to these graphs comes in the form of a tensor. A tensor is a multi-

dimensional array of values. Each operation takes a tensor as input and outputs a tensor. The 

reason why it is called Tensorflow is that tensors flow from operation to operation based on the 

graph model. 

 

5.1.5.2 Implementation 

When the object detection is being performed locally, before being passed into the Tensorflow 

API the images have to be further processed. This processing involves, resizing the image and 

then creating an input tensor from the RGB values of that image. A bitmap image, which is the 

image data type used in Android, cannot be processed by Tensorflow as an input. This bitmap 

image must be converted into an input tensor. A tensor is a multi-dimensional array of values 

and is used by Tensorflow to pass data between its different operations. These values consist of 

the red, green and blue values for each pixel in an image. The format of a tensor is shown in 

Figure 23 below.  

 

 
Figure 23 - Input tensor format [50]. 



 39 

The pre-trained weights and a config file for the YOLO pre-trained neural network are 

downloaded from [51] and these weights and config file are then converted into a Tensorflow 

graph using the Darflow4 tool. These graphs are then transferred onto the mobile device and 

read in from storage upon initializing the Tensorflow object detection API. Like the tracking 

implementation, the Tensorflow API core is written in C++ and utilized by a Java class through 

the JNI. The flow of object detection using Tensorflow is shown in Figure 24 below. The tensor 

which represents the current frame is simply passed into the Tensorflow API, this API will pass 

this tensor through the pre-trained neural network, in the form of a graph, and the results are 

returned as a tensor. The results are then extracted from this tensor and converted into a Java 

object for further use. These results include, the bounding box location of detected objects along 

with the predicted class for that object and a confidence score. 

 

 
Figure 24 - Diagram of object detection flow using Tensorflow [50]. 

 

5.1.6 Offloading 

The offloading is completed using OkHttp5, which is a HTTP and HTTP 2 client for android 

and Java applications. The bitmap image is compressed, converted into a byte array and then 

                                                
4 https://github.com/thtrieu/darkflow  
5 http://square.github.io/okhttp/  
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sent as a HTTP Post request to the server. The application then waits for the results to be 

returned. When the results arrive, in json form, they are converted into a Java object using the 

Jackson6 json deserialiser. 

 

5.1.7 Results 

Upon the detections being calculated through either offloading or locally, the results which are 

below a user defined confidence level are then filtered out and they are passed into the tracker. 

As described in Section 4.2.4 the tracker, traces forward the movement of the feature points 

contained within the bounding box in the results and calculates where the bounding box should 

be in the current frame. This alleviates the effects of the latency of the object detection. Once 

the results have been processed by the tracker the bounding box, confidence level and class, as 

shown in Figure 25, are drawn on screen. This whole process is then repeated for the next frame.  

 

 
Figure 25 - Screenshot from mobile application displaying detection results. 

 

                                                
6 https://github.com/FasterXML/jackson-docs  
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5.2 Backend Server 
Darknet7 is an open source custom neural network framework written in C8 and CUDA9. This 

framework provides an interface for running the various versions of YOLO. Flask was the 

framework chosen to implement the backend server. Flask is a micro-framework written in 

Python. Flask was chosen as it provides simplicity and it is lightweight. Flask keeps its core 

simple which allows freedom to choose additional libraries for things such as data storage. Each 

of the endpoints that were implemented and are described in Table 2. 

 

Endpoint Type Parameters Description 

detect POST  Performs object detection on received image and returns 

formatted results. 

test_upload POST  Used for testing download bandwidth by accepting the 

upload of a file and returning a response. The total time 

taken for the response to be returned is utilised by the 

mobile application to calculate upload bandwidth. 

test_download GET  Used for testing download bandwidth by returning an 

image to be downloaded by the mobile device. The 

mobile device can calculate bandwidth by timing this 

transaction. 

results POST  Takes results received from mobile application and 

writes them to json file for testing. 

Table 2 - Description of RESTful API endpoints. 

 

In order to run the YOLO detection model, the pre-trained weights and config file must be 

downloaded from [51]. In the python program, upon initialising the Flask server, the pre-trained 

neural network is initialised by Darknet using this config and weights file. 

                                                
7 https://github.com/pjreddie/darknet  
8 https://www.tutorialspoint.com/cprogramming/index.htm  
9 https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html  
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When the “detect” endpoint receives an image in the form of an array of bytes, this image must 

be converted into a numpy10 array before being passed into the Darknet API for object detection. 

The results are returned with bounding box location, class of object and a confidence score. The 

bounding box location is returned in a different format than is needed on the android application 

so before sending back the results, the bounding box must be converted to match that of the 

front-end application. Darknet returns the bounding box with the location of the centre pixel of 

the bounding box and also the width and the height of the bounding box. The android 

application needs the location of the top left corner of the bounding box and the bottom right 

corner of the bounding box in order to be able to draw these bounding boxes on screen. 

Therefore, before sending the results back the bounding box location is converted to match that 

of the implementation on the android application.  An example of a result returned from the 

API which demonstrates the formatting is shown in Figure 26 below. 

 

[   

   {   

      "bottomright":{   

         "x":216.10812, 

         "y":294.69772 

      }, 

      "confidence":0.8868352, 

      "label":"bottle", 

      "topleft":{   

         "x":144.8456, 

         "y":64.85053 

      }, 

      "bottomRight":{   

         "x":216.10812, 

         "y":294.69772 

      } 

   } 

] 

Figure 26 - Example of object detection endpoint response. 

                                                
10 https://docs.scipy.org/doc/  
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6 Evaluation 
This chapter describes the experiments that were performed on all three problem domains which 

have been implemented in the android application: 

• Processing each frame using a simplified deep learning algorithm on the mobile handset. 

• Sending every frame to the cloud. 

• The proposed framework solutions to mask impairments. 

 

These experiments were performed to test three performance metrics: energy consumption, 

latency and the accuracy of the detection. Each of these experiments were also be performed at 

various different networking conditions. This was achieved using the Linux tc traffic control 

tool11 at the server side to induce impairments in the network. A comprehensive analysis is 

provided and conclusions are made based off of these results. The performance of the proposed 

framework solutions to masking impairments are discussed and also an analysis of the different 

factors that should be taken into consideration when building a more intelligent decision-

making model in future work is also provided. 

 

6.1  Evaluation Metrics 

6.1.1 Latency 

Latency in this system refers to the total time to do a detection on one frame of video and to 

draw this detection on screen. When run locally, this is the time it takes to execute the reduced 

deep learning model. When offloading to the server this is the total time it takes to retrieve a 

frame of the video stream, transfer it to the server, apply the deep learning model to the frame 

and return the resulting detection. The speed of each separate part of the application is also 

recorded and analysed. 

                                                
11 http://lartc.org/manpages/tc.txt  
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6.1.2 Energy Consumption 

Energy consumption is gathered using Android developer tools. It is taken as a percentage 

decrease while running the application in its various form for a period of 30 minutes.  

 

6.1.3 Accuracy 

For the purposes of obtaining a measurement of accuracy for the object detection on the device 

the guidelines of The Pascal Visual Object Classes Challenge [28] are followed. In this 

challenge, the accuracy of object detection models are evaluated using the mean average 

precision which is briefly explained in Section 2.3.1. This Pascal VOC challenge determined 

that the precision-recall curve is the best way of characterising a classifier. Rather than 

comparing curves when evaluating classifiers, it is much more useful and simpler to compare a 

single value. [28] uses 11-point interpolated average precision and defines it as “the mean 

precision at a set of eleven equally spaced recall levels [0.0.0.1,…,1]”. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 ?
??
	 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑟),∈{@,@.?,…,?} 		         ( 7 ) 

 

The precision at each recall level r is interpolated by taking the maximum precision measured 

for a method for which the corresponding recall exceeds r:  

 

𝑃𝑖𝑛𝑡𝑒𝑟𝑝 𝑟 = 	max
r.r≥r

𝑝( r)̃         ( 8 ) 

 

where p(r)̃ is the measured precision at recall r.̃ 

 

In order for a detection to be classified as being correct, the class has to match that of the ground 

truth and also the bounding boxes must overlap by over 50% using the formula 
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𝑎0 	= 	
6,.6(ab∩	ade)
6,.6(ab∪	ade)

									( 9 ) 

 

where 𝑎0 is the area of overlap, 𝐵/ is the predicted bounding box and 𝐵;+ is the ground truth 

bounding box. Multiple detections of the same object are considered false detections. 

 

6.2 Experimental Setup 
In order to experiment with, and comprehensively test the application, new functionality had to 

be added to the mobile application to replace the camera feed with ground truth videos. This 

proved difficult however as reading frames from the video files could not be completed in real 

time and thus would affect the results. Instead, the application had to be taken apart and the 

multithreading removed and placed in a new activity. This new activity would read in a frame 

from the video file one at a time do the tracking and then a delay on the object detection was 

simulated by offsetting the detection by a number of frames from the current frame being 

processed. The results of these tests are sent to the flask server to be evaluated against the 

ground truth data. Upon receiving this data, the server appends the results to a text file in json 

form. Ground truth data was produced using the Darknet framework. A new python program 

was created in which a video file is opened using and a frame is isolated using OpenCV12. 

YOLO v2 object detection is then applied to each frame and the results are written to a text file 

in json format as shown in section 3.2.2. [52] is a simple utility tool that was used to evaluate 

the mean average precision between the results from my system and the ground truth images. 

This tool follows the guidelines and formulas as set out in [28]. This tool had to be adapted to 

read in text files and convert the json data to the correct format the tool needed. The mobile 

application was deployed on a mid-range mobile device, the Leeco LeMax213. The backend 

server is equipped with a NVIDIA GTX 1080 GPU with 8GB of RAM. 

 

                                                
12 https://opencv.org/  
13 https://www.gsmarena.com/leeco_le_max_2-8051.php  
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6.3  Results 

6.3.1 Local Processing 

 

 
Figure 27 - The change in latency caused by changes in the frame resolution in local processing. 

 

A number of evaluations were performed running the object detection solely on the mobile 

device using the simplified deep learning models. This was used as a baseline for further 

evaluation. Firstly, the latency is recorded at different image resolutions. As demonstrated in 

Figure 27, the average time when performing the object detection increases with frame 

resolution when using the Tiny YOLO model locally. This is because, as stated in Section 4.2.3, 

YOLO can change dynamically with image size and so speed is related to frame resolution. The 

larger the image the more processing that must be completed. The lowest possible latency when 

running Tiny YOLO locally is 88ms at a frame resolution of 96 x 96 which is a very small 

image size. This is equivalent to 11.36 frames per second which is far from the real-time 

requirement of 30 frames per second. 
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Figure 28 - The effect of frame resolution on battery on battery consumption in local processing. 

 

Next the energy consumption is tested at varying frame resolutions, Figure 28. The smaller the 

resolution, the less battery consumed. At a standard image size of 416 x 416 the battery 

consumed after 30 minutes was 20%. This would mean the battery of the mobile device would 

be completely drained in the space of 2.5 hours. Energy consumption is of huge concern to 

users and having the battery drained in 2.5 hours would not be acceptable. As a comparison, we 

a video was played on the mobile device for the same space of time and this reduced the battery 

by 6%. These results show similarly to the latency calculations that energy consumption 

increases with frame resolution. Again, similar to latency this is due to the increased processing 

needed to detect objects in images of a larger size. 

 

These tests on the Tiny YOLO model run on the mobile device show that the current frame 

resolution can be utilised when creating an offloading decision model. The predicted time taken 

for local processing must be evaluated with frame resolution in mind. When creating an 

algorithm to save energy, once again the frame resolution must be taken into account. There is 

however, a trade-off between energy consumption, latency and accuracy. According to [35], a 

decrease in image resolution can result in a significant reduction in accuracy. Choosing a 

smaller frame resolution may decrease the latency and the energy consumption but comes at a 

cost of accuracy. 
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6.3.2 Offloading 

 

 
Figure 29 - The latency of the object detection calculation due to changes in the frame resolution. Offloading is set at 5Mbps 

and optimal conditions refers to an unrestricted connection with a private network.  

 

The latency caused by a change in image size was recorded by setting the bandwidth at a fixed 

value of 5Mbps and then calculating the latency for each object detection calculation. As can 

be seen from Figure 29, the latency increases with an increase in image size. Both the time 

taken to transfer the image to the server and the time taken on the server to run the object 

detection on the image is increased. With an increased frame resolution, there is more data to 

be transferred and therefore the latency increases. As was discussed in the previous section the 

time taken for YOLO to perform object detection increases with image size and this is the case 

using the larger model server side as well as the small model in local processing. The time to 

perform the object detection server side is shown in Figure 30. Taking a standard image size of 

416 x 416 the object detection only runs at 16.7fps server side. While the GPU that is used in 

testing this application is high-end and very powerful, according to [35] the researchers who 

created YOLO use a much more powerful GPU and achieve 67fps at the same resolution. This 

needs to be taken into account when assessing these results.  
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Figure 30 - The inference time of object detection using the more powerful version of YOLO on the backend server. 

 

 
Figure 31 - The effect that changes in frame resolution have on the amount of battery consumed by the application after 30 

minutes. 

 

The effect of frame resolution on battery consumption when offloading was examined and 

plotted against the experiments on local processing in Figure 31. For this experiment, the 

bandwidth was set at 5Mbs for each calculation. As can be seen from this chart the battery 

consumption is still quite high, however it is much better than performing the deep learning 
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computations locally. Taking for example a standard image size of 416 x 416, offloading, results 

in a 45% decrease in battery consumption over the course of 30 minutes. However, according 

to [22], an increased bandwidth means an increase in battery consumption for the application. 

This is due to the fact that an increased bandwidth means more data is being transferred to the 

server and more energy is consumed due to the cost of transferring the data. Therefore, both the 

bandwidth and the frame resolution need to be taken into account when assessing energy 

consumption in an offloading decision model. 

 

 
Figure 32 - The effect of various bandwidth speeds on the latency of object detection in the mobile application. 

 

 

The latency caused by varying bandwidth was tested by setting the bandwidth to a fixed value 

using the Linux tc traffic control tool. A number of frames were offloaded to the server and the 

time taken for the object detection results to be returned was recorded and a running average is 

calculated. In Figure 32, we plot the affect that varying bandwidth has on an image of resolution 

352 x 352. The results show that an increase in the bandwidth can dramatically decrease the 

latency caused by offloading. Taking for example a moderate bandwidth of 10Mbps can give a 

35.4% decrease in latency. However, when networking conditions are poor and we only have a 

bandwidth of 0.5Mbps, this falls much lower than local processing and makes the application 

practically unusable as the responsiveness is decreased so dramatically.  
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Figure 33 - The effect of network latency on the frame rate of the application. 

 

The frame rate of the application was tested under varying network latencies which were added 

to the network through the use of the tc traffic control tool. The image size was set as 352 x 352 

for this experiment. As you can see in Figure 33, as expected there is an inversely proportional 

relationship between latency and the frame rate of the application. This added network latency 

can be caused by a number of reasons such as traffic congestion and queuing due to server load. 

 

Based on these results a simple offloading model can be formed using the latency and 

bandwidth. Both should be considered in the future when making a more intelligent model but 

as an example, based on the results in Figure 32, a condition could be set where the application 

switches to local processing when the bandwidth is below 3Mbps. Using the results shown in 

Figure 33, another condition could be set where the application switches to local processing 

when the network latency increases to 400ms. There is a trade-off however of these conditions 

with both accuracy and energy consumption. As discussed above and shown in Figure 31, 

switching to local processing causes a huge increase in energy consumption. There is also a 

large decrease in accuracy when switching to local processing. The accuracy of the Tiny YOLO 

model run locally vs the larger YOLO v2 model run at server side is given in [35]. As discussed 

previously the model run on the mobile device consists of 9 convolutional layers in its network 
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architecture while the larger model server side has 24 convolutional layers. This leads to a 

34.5% increase in accuracy as YOLO v2 produces a mAP of 76.4 when tested on the Pascal 

VOC dataset [53] and Tiny YOLO produces a mAP of 57.1 when run on the same dataset.  

 

Resource and time constraints did not allow for the server to be hosted on a public IP and be 

tested in real world conditions. This could be included in future work. 

 

6.3.3 Proposed Framework 

6.3.3.1 Tracking 

 

 
Figure 34 - The accuracy of object detection run locally on the mobile device with varying amounts of delay. The accuracy of 

using just the object detection model is plotted against using both the object detection model and tracking. 

 

The time taken on average to compute the optical flow between frames as shown in Table 3, 

was 20ms. Upon updating the optical flow the currently tracked items are calculated in new 

positions based on this calculation and the number of tracked items can vary the time taken to 

perform this tracking functionality. This accuracy of tracking was recorded as the mean average 

precision and was tested against multiple ground truth videos containing a moderate amount of 

movement. Varying amounts of delay were simulated using the test environment described in 
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Section 6.2 and the resulting accuracy measurements are shown in Figure 34. On average, 

excluding the outlier of the accuracy at a 1 second delay which gives a 400% increase, the 

accuracy is increased by 81% when combining the object detection with the tracking algorithm. 

Even when there is no delay the accuracy is increased by 71%, this is due to the tracker keeping 

track of objects when, in new frames the detection model misses previously detected objects.  

The data shows an increase in accuracy at the 800ms mark, this is unexpected and may be due 

the variation in the ground truth data and limited test data. This is to be investigated further in 

future work. 

 

 
Table 3 - The latency of various features in the proposed framework. 

 

6.3.3.2 Tracking Decision 

The tracking decision adds around 8ms to the application every time it is called. It does 

however, reduce the latency between frames to around 30ms which is roughly the time taken to 

make this decision, draw results and perform tracking between the two frames. Both camera 

movement and new objects in the frame successfully cause the application to perform object 

detection. The frame differencing function picks up on very small amounts of movement 

between frames and this can be adjusted for by changing the threshold. It was observed that a 

threshold of around 10% change in the scene worked well. One solution to the fact that this 

function is very sensitive would be taking a running average of the difference of a number of 

preceding frames to give a more accurate depiction of the amount of change in the scene. This 

method will be further examined and implemented in future work. Another solution which 

could be explored in future work and could make this calculation more accurate is to utilise the 

mobile devices accelerometer and gyroscope sensors to calculate the movement of the camera. 
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The cropping of one section of the frame reduces the image size by quarter when it is passed 

into the object detection model and therefore, reduces the latency. Take for example an image 

of size 416 reducing the image size to 208 x 208 can decrease latency from 718ms to 194ms 

locally and therefore increase frame rate from 1.39fps to 5.05fps. This technique however only 

works when the camera is static as movement of the camera causes the frame differencing 

function to pick up movement in each of section of the frame.  

 

6.3.3.3 Offloading Decision 

The offloading decision works well with minimal effect on the overall speed requirements and 

succeeds in changing between local processing and offloading and also changing the image 

resolution based on the provided network context. As mentioned before in Section 4.2.2, this 

decision model only focuses on speed however and was simply used to test the mechanism for 

swapping between local and offloading and for changing frame resolution based on the network 

context. 

 

6.3.4 Discussion 

Based on these results it is clear to see the major improvements in speed, accuracy and energy 

consumption by offloading the deep learning calculations to the cloud. It is clear that the most 

important aspect of a mobile cloud computing solution is the offloading decision model. It is 

vitally important for the application to be contextually aware of networking conditions as they 

have a huge impact on results. The trade-off between speed, accuracy and energy consumption 

must be considered when forming an offloading decision model. These results also show some 

of the different parameters which need to be considered when creating a decision-making 

model. These parameters include, bandwidth, network type, image size and network latency.  

 

Overall the proposed framework and solutions to masking these impairments worked well. The 

tracking works extremely well, masking the decrease in accuracy for objects. The tracking 

decision works very well and reduces the latency to around 30ms per frame when only tracking 
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is used. The frame differencing algorithm works well but could be made more accurate in future 

work by recording a running average of the difference between a number of preceding frames. 

In terms of latency the offloading decision model works well and caps the amount of latency 

that can be introduced based on the user’s preferences by reducing the frame resolution and 

falling back on local processing when networking conditions are poor. A very basic model was 

created due to time constraints. The decision model can be improved considerably in future 

work by taking into account additional parameters collected by the framework and also the 

results as detailed above.  
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7 Conclusions 

7.1 Summary 
This dissertation evaluated the implementation of a framework for running object detection 

through deep learning on resource constrained mobile devices. This was completed through the 

implementation of an android application and a backend RESTful API. The mobile application 

can be used to choose between running deep learning computations locally with a reduced deep 

learning model or offloading these computations to the cloud. The parameters that affect the 

speed and accuracy of the detections and the energy consumption produced by the application 

were tested. In local processing, it was found that the size of the image can increase latency, 

increase energy consumption and lower accuracy. When offloading, the parameters that were 

tested were the effect of bandwidth, network latency and image size on the energy consumption 

and latency in the mobile device. It was shown that increased bandwidth and decreased network 

latency causes decreased latency between each detection and therefore increases the frame rate. 

However, there is a trade-off between latency and energy consumption as increased bandwidth 

and decreased latency causes more energy to be consumed. All of these parameters and trade-

offs need to be considered when creating a model which decides upon whether to offload or 

perform the deep learning computations locally. A number of solutions were proposed to tackle 

the effects of network impairments and the resource constraints of local processing. These 

include tracking and an offloading decision model. The tracking worked extremely well and 

boasted an increase of 81% on accuracy and relying on this tracking when there are no new 

objects in the scene allow for real-time results. The offloading decision model works as 

intended. However, it is quite basic and will be improved in future work. 

 

In terms of the objectives set at the beginning of this dissertation, the goal of creating a 

framework for investigating deep learning through computational offloading was achieved to a 

high level. This was then extended to tackle the goal of masking the affect that either networking 

conditions or the restricted resources of the mobile device have on both accuracy and latency. 

This goal again was satisfied with the use of tracking however there are some improvements to 

be made which are discussed in Section 6.3.3, and this objective can be further investigated in 
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future work. The framework facilitated the objective of extensively testing the effects of 

networking conditions on offloading. This objective was achieved to a reasonably high level. 

However, this testing could be extended in future work testing a much larger range of 

parameters which could affect networking conditions. The final objective that was set at the 

beginning of this dissertation was to form an intelligent offloading decision model based on 

these results. This objective was not completely achieved due to time constraints. A very simple 

decision model based solely on tackling latency was proposed. However, this model was simply 

used to test the framework and is very basic. The results detailed in this research however, will 

form the basis to allow this problem to be tackled in future work. 

 

The hope is that frameworks such as the one proposed in this dissertation will enable real-time 

augmented reality systems that can utilize deep learning techniques to make them capable of 

much more intelligent applications. Resources on mobile devices are getting better, however 

they will at least for the foreseeable future be constrained due to weight, size and cost of 

resources such as memory, battery and processors [54]. This fact coupled with the fact that 

network connectivity is constantly improving and with the release of 5G mobile networks in 

the coming years [55] means that mobile cloud computing will become an even more viable 

solution to this problem. 

 

7.2 Future Work 
There are a number of improvements that could be made to this framework and further research 

that can be completed based on the results of this dissertation.  

 

The testing interface could be improved upon in future work by converting the testing 

application which calculates the mean average precision of the results into a RESTful API. 

When the mobile application is in test mode the results could be sent to the API and both the 

accuracy could be calculated and the logs could be stored. This would make testing much easier 

and would improve the efficiency of the current system. Having to take the log files, extract the 

results needed, transfer them to a computer to then run the python program is quite time 
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consuming. Having results available on the device instantly following the testing would make 

the application much more user friendly when completing further research. 

 

For the reasons described in Section 4.2.5, RTP could be utilized to stream the camera feed on 

the mobile device to the server. This was not implemented due to time and resource constraints. 

However, it could potentially improve the frame rate of the proposed framework. This does 

however come with added issues due to loss and a decrease in the image quality when 

offloading to the server. Some other potential solutions which could potentially speed up the 

framework should also be examined such as utilising the mobile device’s GPU and the use of 

parallel processing between the mobile device and the server. 

 

More extensive testing is to be completed in future work to evaluate the framework under a 

wider variety of networking scenarios. The evaluation completed during the course of this 

research was restricted to a private network focusing on the use case of only one device 

connected to the server. This can be further extended by simulating scenarios such as packet 

loss, server load and traffic congestion. The framework is also to be evaluated under real-world 

scenarios, testing different networks outside of the computer lab. 

 

A new offloading decision model is to be created based on the research results. This decision 

model should take the users requirements when it comes to accuracy, energy consumption and 

latency and use them to make an optimal offloading strategy. This offloading decision model 

could potentially be created using machine learning techniques with the gathered metrics in the 

system to create a predictive model to achieve the optimal offloading strategy. 
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