
Analyzing Networks with Multiple Links and

Attribute Information using Stochastic Block

Model

Anubhav Jain, B.Tech

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Data Science)

Supervisor: Dr. Arthur White

August 2018



Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Anubhav Jain

August 29, 2018



Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Anubhav Jain

August 29, 2018



Acknowledgments

I would like to thank my supervisor, Dr. Arthur White for his continuous support,

guidance and patience. Without his support and motivation, this dissertation would

not have been possible.

I would also like to thank my parents for continuously motivating me and helping

me to proof read the dissertation.

Lastly, I would like express my gratitude towards my flatmates and Data Science

batchmates for all the learnings and a delightful journey of my Masters.

Anubhav Jain

University of Dublin, Trinity College

August 2018

iii
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Identifying clusters based on observed patterns or attributes and analyzing the inter-
action of actors within and outside these clusters allows to uncover hidden informa-
tion about a network. Stochastic Block Model(SBM) is a generative model and one
of the benchmark models for community detection. In this dissertation, Variational
Expectation-Maximization algorithm approach of SBM is used to estimate the model
parameters and Integrated Complete Data Likelihood(ICL) is used to compute optimal
number of communities in the network. In real world, nodes are connected to other
nodes with a string of multiple relationships, where each relationship defines its influ-
ence and meaning within a network. The SBM is used to fit all the links separately
treating each link as a individual network. The resultant set of clusters and model
parameters from the set of fitted models specific to each link are compared against
each other and the node attributes to identify the connection between cluster forma-
tion, actor attributes and link type. This process is applied to Lawyer Lazega Dataset
which is a network of lawyers working in a law firm connected to each other by multi-
ple links- Friends, Advice and Work. The results show that there exists a relationship
between the clusters formed across different link types; with many clusters behaving
and containing same node attributes as of the clusters belonging to other link type.
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Chapter 1

Introduction and Background

Study

1.1 Introduction

Humans are meant to be naturally social, who look out for different mediums to connect

and form a network. The network could be a social interaction, personal/professional

relationship or people bonding just for a common interest. With the advent of social

networks and other different ways to connect virtually, people from all round the world

are connected directly or indirectly converging them into a network; these networks

can be used to find communities, behaviour patterns and knowledge discovery.

In recent years, the area of Network analysis has gained immense popularity among

Data Scientists, Researchers and Statisticians. Many active and interesting researches

are being carried out in this area. Community Detection is one of the fundamental

and critical problems in Network Analysis. Many algorithms and methodologies have

been proposed for identifying communities within the network. This dissertation will

focus on Stochastic Block Model which is one of the most popular and widely used

clustering or community detection model. This model will be used to identify and

study the clusters of a network containing multiple types of links among the nodes.

Simultaneous and comparative analysis is performed on these networks containing same

set of nodes with different relationships. Identified clusters from these networks with

multiple links are compared against each other and with node attributes to analyze,
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if some kind of connection exists between them. This study is useful to check the

existence of clusters that contain nodes with similar characteristics irrespective of the

link type connecting them and also to analyze the interaction between/within the

clusters formed by multiple networks.

The paper is organized as follows: Chapter 1 introduces the concepts of Network

Analysis, Community Detection and a brief overview graph theory along with node

and edge properties. Followed by dataset analysis and description and limitation of

Erdos Renyi Model. Chapter 2 states the literature review and the advancements

of Stochastic Block Model. Chapter 3 explains the concepts behind the SBM model

and Variational Expectation-Maximization(EM) Algorithm. Model inference is stated

in Chapter 4 and application of the model on the datasets are given in Chapter 5.

Followed by cluster comparison and analysis in Chapter 6. Lastly, theoretical concepts

of Mixed Membership Model as a further extension to SBM are stated in Chapter 7.

1.2 Analysis of Networks

Network analysis means study and visualization of structures using methodologies and

techniques of graph and network theory. It involves visualization and conceptualization

of structures in terms of connected nodes or actors that are linked or tied together by

some common entity or relationship. But questions like: Why do we need to represent

the structure as a network or graph? How do we represent the structure as network?

Characteristics and properties of networks? Steps to study and get meaningful insight

from a network? All these question, their answers and their undergoing research make

network theory, a very interesting and intriguing topic with wide area of applications

and usages.

Facebook friends, Linkedin Professional, twitter followers-follows, protein enzymes,

boss-employee and many other networks can give diverse amount of information and

trends if analyzed, cleaned and visualized correctly. Network analysis has wide and

varied applications in areas like Biology, Crime investigation, Intelligence and Military,

Customer identification, targeting, friendship, kinship, work-partner, leader-follower,

disease flow, root cause analysis etc. With the advent of self driven cars and connected

cars, network analysis can also be used for faster route estimation, accident prevention,

vehicle breakdown, vehicle tracking and theft prevention.
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1.3 Community Detection

A community or a group represents a set of actors/nodes that may share common

interests, skills, goals or a central attribute/characteristics that connects all of them. A

network may or may not contain meaningful communities as some nodes relationship

can be random and arbitrary. Link from one node to another may be directed or

undirected. Example of directed network is twitter followers, i.e if one individual

follows another individual, it doesn’t mean the reverse is true. Facebook friends/

Linkedin Professional network is an example of undirected network which implies a

two way behaviour. The general notion to establish and define communities within a

network is that, nodes belonging to same community are densely connected and nodes

belonging to different communities are sparsely connected. An node can belong to

multiple groups or communities resulting in overlapping networks.

In few cases, the attributes and properties of the network are not revealed when

viewed as a whole or average. Communities that make up a network can reveal missing

data and other aspects of the network.

1.3.1 Assortative versus Disassortative Mixing

Assortative Mixing refers to the networks where similar nodes connect to each other

i.e. higher degree actors connect to other higher degree nodes and lower degree actors

connect with lower degree nodes. Higher degree actors form the core of the network

while the lower degree actors lie on the boundary of the network.

Figure 1.1: Assortative Mixing [Hao and Li 2011]
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Disassortative Mixing refers to the networks where dissimilar nodes are connected

to each other i.e higher degree nodes are connected to lower degree nodes. These type

of network usually have a set of central actors or leaders that influence the whole

network.

Figure 1.2: Disassortative Mixing [Hao and Li 2011]

1.4 Graph and Network Theory

This section lays down the basic foundation for the whole dissertation. Basic defini-

tions, notations and terminologies of graph theory will be discussed here.

1.4.1 Basic Notations and Definitions

We are surrounded by networks, this can be defined as the relationship that combines

different entities into groups or communities that can form a meaningful combined

entity; giving trends, insights and the behavior of the group, individuals belonging to

that group along with the intra and inter group interaction.

Network: Networks can be defined as collection of interacting entities.

Graph: Mathematical representation of a network can be termed as a graph.

A graph is represented as:

G = {V,E} , where
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• V: {1, ...., n} are the set of nodes/ entities or actors in a network

• E: {e1, ...., ep : ek = (ik, jk) ∈ (V, V )} are the set of edges or links that connect

the nodes

(a) Undirected Edge (b) Directed Edge
(c) Weighted Edge

Figure 1.3: Type of Edges in a Network

• Order: It is the number of vertices in a network; Nv = |V |

• Size: It is the number of edges in a network; Ne = |E|

• Path: A path in a graph can be defined as a flow across a sequence of vertices

that allow us to traverse from vertex to other. In a directed graph; we are only

permitted to traverse in particular direction across the edge.

• Cycle: A closed path with all different edges.

1.4.2 Properties of Nodes in a network

This section explains the important attributes and characteristics of nodes that deter-

mine and influence the various specifications of a network. These properties will be

further used for Network Analysis and Goodness of Fit Comparison.

• Degree Centrality: This can be defined as the most basic node attribute which

involves computation of degree for each node present in the network. Degree of

a node as discussed in the previous section is the measure of number of edges/

links corresponding to that node in an undirected graph. In a directed graph it

is a combination of in-degree and out-degree links to/from a node.

Significance: It describes and helps to visualize all the one hops in a network.

It depicts the most influential and popular nodes in the network, where most

of the information flow takes place. Nodes with the highest degree are popular

5



and are centrally attracted in the network. Degree centrality can also highlight

whether the network is uniformly, centrally or randomly distributed.

Figure 1.4: Degree Centrality in a network: size of vertex proportional to degree

• Closeness Centrality: It defines the closeness of a node with other nodes in

the network. It is computed as reciprocal of sum of all the shortest paths from

the node to all other nodes in the network. The node with maximum number of

shortest path will have the maximum closeness to the other nodes.

Significance: This property identifies the fastest nodes that influence the whole

network i.e. in shortest amount of time they can connect to maximum number

of nodes. The nodes with high closeness centrality are good broadcasters for

out-degree links or good listeners for all in-degree links.

Figure 1.5: Closeness Centrality
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• Betweenness Centrality: This centrality measure can be defined as the number

of times a node occurs between the shortest path of any pair of nodes within the

network.

Significance: This property of node signifies flow of information within the

network. The nodes with high betweenness centrality acts as a bridge for the

information flow in the network.

Figure 1.6: Betweenness Centrality

• Eigen Vector Centrality: It is an extension to degree centrality measure which

considers only degree of a node as a sole centrality measure score without any

considerations to type of nodes the actor is connected to. Eigen Vector Centrality

assigns a high score to a node if it is connected to a another highly connected

node. Thus, the score of a node not only depends upon the degree of a node

but also depends on the degree of nodes that the node is connected to. Power

iteration method is used to calculate Eigen vectors for the node.

Significance: It gives a better overview of the network and the influence measure

of an node on the whole network rather than only being restricted to neighbours.

Figure 1.7: Eigen Vector Centrality
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1.4.3 Properties of Edge or Relationships in a network

• Reciprocity: If ActorA has an link to ActorB, then what is tendency that ActorB

will have an link to ActorA

• Popularity: Nodes with higher degree tend to be popular than other lower

degree nodes and have a higher tendency of new connection. For example in

LinkedIn, people who have large connections are more likely to make new con-

nections.

• Transitivity: If ActorA has a link with ActorB and ActorB has a link with

ActorC ; then what is tendency that ActorA will have a link with ActorC . For

example in case of Facebook there is a high probability making a connection with

friends of your friend.

(a) Reciprocity (b) Popularity
(c) Transitivity

Figure 1.8: Properties of edges -Reciprocity, Popularity, Transitivity

• Clique: It is a small knit of close friends who are relatively isolated from rest of

the world. Any actor pair from the clique group will have an edge between them.

Figure 1.9: Clique: Actors marked in red form Clique

• Star: It represents a central node with many nodes connected to it forming a

structure similar to a star.

8



Figure 1.10: Star Formation

• Geodesic Distance: The shortest path between the two nodes is called the

Geodesic Distance.

• Diameter: It is defined as the maximum value of all the shortest paths in the

network. It depicts the speed of spread of information across the network.

Figure 1.11: Diameter - marked in red

• Triangle Count: It is the number of triangle formations in the network. This

property signifies the cycle of information. A triangle is formed if NodeA is

connected toNodeB, NodeB is connected toNodeC and lastlyNodeC is connected

to Node A.

(a) Triangle from Node A to Node C (b) Triangle Count

Figure 1.12: Triangle Formations in a network
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1.5 Dataset Description

This section describes the datasets being used in this dissertation. Each dataset is

subjected to exploratory Data Analysis and processing to gain information about prop-

erties of the network before fitting the model.

1.5.1 Zachary Karate Club dataset

Karate Club Dataset is one of the most popular dataset for network implementation,

visualization, clustering model trial and validation. This dataset was formed by Wayne

Zachary in 1977 by accumulating data from the University Karate Club. The dataset

is majorly divided into two groups following a conflict and split between two lead-

ers/teachers. One faction of the dataset is headed by the teacher Mr. John A and

the other faction is headed by Mr. Hi. [Zachary 1977]. This dataset has an attribute

Faction which divides the nodes of this network into two groups. The dataset has 34

node and 78 undirected edges. Karate Club Dataset has been packaged and ready too

be used in Igraph package of R [Csardi 2015].

Figure 1.13: Network Visualization for Zachary Karate Club dataset

Karate Network Sumnmary Statistics

Karate Dataset is an example of Disassortative mixing dataset with Assortative De-

gree of -0.47(negative value indicates low assortativity), where nodes with different

attributes connect with each other. Popular actors(Faction Leaders) are connected to

unpopular actors and Faction leaders themselves don’t interact with each other. This

10



is a two-point influential dataset where whole influence of the network rests upon two

actors(Mr. A and Mr. H). The dataset has an average path length of 2.4 and diameter

of 13. Transitivity score in the network is 25% and the size of the largest clique is 5.

(a) Degree Centrality (b) Circle Target Plot for Degree
Centrality

(c) Betweeness Centrality (d) Circle Target Plot for Betwee-
ness Centrality

(e) Closeness Centrality (f) Circle Target Plot for Closeness
Centrality

(g) Eigen Vector Centrality (h) Circle Target Plot for Eigen Cen-
trality

Figure 1.14: Centrality Measures for Zachary Karate Club Network
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All the plots in Figure 1.14 represents the centrality measures of the Karate Dataset.

Colored circles represent the Faction Leader(Mr. H and Mr. A). Figure 1.14 (a)

depicts the degree of actor by increasing the size of vertex with increase in degree of

the vertex. All the target plots depict high centrality measures for the actors in the

middle of the circle. Every plot shows that faction leaders exhibit a very high value of

all the centrality measures with the highest score and centrally located in all the target

plots.

1.5.2 Lawyers Lazega Dataset

This dataset has been accumulated from Northeastern US corporate Law Firm in

New England from the year 1988-1991. The dataset is a combination of 71 nodes

with different attributes and characteristics. The number of nodes of the dataset are

connected to each other by three relationship types- Friendship, Advice, Work. With

the same set of nodes, this dataset is a combination of three different networks that

forms the core basis of analysis and study in the upcoming chapters of this dissertation.

The dataset is appropriate for studying hierarchical working of a law firm and how

different relationship affect the actors in the network. The dataset has been divided

into following relationship networks:

• Friendship Network: The links in this network include all actors that socialize

and are friends outside work. It does not include link between actors who are

just-friends(on a friendly term only). This is a directed network.

• Advice Network: This network includes all the links between the actors who

seek advice from other lawyers in the past year when the survey was conducted.

This is also a directed network.

• Work Network: This network includes all the links where an actor has worked

with another actor in atleast one case, has been assigned same case, used or read

each others work. The work network is an undirected network, imply if lawyer 1

works with lawyer 2, it can be stated that lawyer 2 also works with lawyer 1.

There are 8 actor attributes in the dataset:
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• Seniority: This attribute defines the seniority level of the lawyer working in

the firm where 1 being the highest seniority level and 71 being the lowest.

• Status: 1- partner(36/71 actors) and 2- associate(35/71 actors)

Partners are the shareholder, operators and joint owners of the firm.

Associates are employees in the firm that may become partner in the future.

• Gender: 1- Man(53/71 actors) and 2- Woman(18/71 actors)

• Office: 1- Boston(48/71 actors); 2- Hartford(19/71 actors); 3- Providence(4/71

actors)

• Years in firm: Mean working year in the firm is 10.5

• Age: Mean age of lawyers is 42

• Practice: 1- Litigation(41/71 actors) and 2- Corporate(31/71 actors)

Litigation lawyers work with client to resolve any dispute or charges.

Corporate practice lawyers are involved in corporate dealings. They are a part of

acquisitions, mergers, corporate tax and other ventures. They represent corporate

to other organizations and government institutes.

• Law School: 1- Havard/Yale(15/71 actors), 2- ucon(28/71 actors) and 3- oth-

ers(28/71 actors)

Friendship Lawyer Network Summary Statistics

Figure 1.15 shows all the centrality measure for the Friendship Network in the Lawyer

Dataset. All actors in the centre of the plots have dense connection, thus all the

plots have higher score for actors lying in the centre. There are two actors that have

centrality measure as they are connected to any other actor in the network. The target

plot for degree centrality Figure 1.15(b) shows that very few actors are in the middle

of the target i.e. only few actors have high degree score and most of the actors have

middle order degree score. The Betweenness centrality target plot Figure 1.15(d) shows

that most of the actors are concentrated in the centre or middle which indicates most

of the actors have high or average betweenness score. The Eigen Vector Centrality
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target plot Figure 1.15(f) is dispersed and distributed across all target indication range

of different values assigned to the actors.

(a) Degree Centrality (b) Circle Target Plot for Degree Centrality

(c) Betweeness Centrality (d) Circle Target Plot for Betweeness Central-
ity

(e) Eigen Vector Centrality (f) Circle Target Plot for Eigen Vector Cen-
trality

Figure 1.15: Centrality Measures for Lawyers Lazega Datasets

From Table 1.1: Advice network has the maximum number of edges. Advice and

Friendship Network have high score Transitivity which makes sense if Actor A take

advice from Actor B and Actor B takes advice from Actor C, there are high chances

that Actor A will take advise from Actor C. Symmetric property of Work network is
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Friendship Advice Work
Number of Edges 575 892 756
Transitivity 0.44 0.47 0.30
Reciprocity 0.61 0.39 1
Average Path Length 2.5 2.4 2.1
Diameter 7 6 4
Assortativity 0.079 0.04 -0.17

Table 1.1: Network Summary Statistics for Friendship, Advice and Work Lawyers
Network

validated by reciprocity of 1. Friends network has maximum average path length and

diameter. Friendship network has positive value assortativity indicating lawyers make

friends who are similar to them, whereas negative value of assortativity for the Work

Network indicates it is a disassortative network with actors of different characteristics

are working with each other and there are few actor that greatly influence the work

network.

1.6 Erdös Renyi Model

This model is one of the simplest and basic probabilistic model where the presence and

absence of edges are independent and identically distributed (i.i.d).

The edges in Erdös Renyi Model are formed with probability p ∈ 0, 1 and is independent

of every edge. Let Yij follow Bernoulli Distribution, indicate the presence of edge

between actori and actorj, such that

Yij =

{
1 with probability p

0 with probability 1 - p

Number of edges E = E[
∑
Yij] = N(N−1)p

2

This model poorly fits the real world data as links or edges in the networks of real

world are not independent of each other which violates the i.i.d constraint of Erdös
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Renyi model. Some nodes in the network are more connected than other nodes of the

network, the degree attribute along with other network characteristics are ignored by

this model. The distribution of real world data is far from the Poisson Distribution

which is the distribution followed by this model for the formation of edges.[Daudin

et al. 2008]

Figure 1.16 shows the degree plot for Karate dataset containing 34 actors and 78 edges.

The line with ”+” denotes the predicted value from Erdos Renyi Model and the line

with ”o” denotes the observed karate dataset values. It is evident from the degree plot

that the Erdös Renyi Model poorly fits the data. The observed and predicted lines are

not overlapping and the model is overestimating in some cases while underestimating

other points.

Figure 1.16: Karate Network- Observed vs Predicted(Erdos Renyi)[Salter-Townshend
et al. 2012]

16



Chapter 2

Literature Review

Stochastic Block Model acts as a benchmark model for all the clustering and community

identification models. The SBM model lays down the foundation for studying and

analysis of communities within the data. There has been many advancements and

ongoing research in the field of Social Network Analysis and Community Detection.

The Stochastic Block Model is a vital part of the ongoing research, with many variants

and adaptations applied to the basic model to improve the performance and optimally

fit the data.

The General Stochastic Block model with Bayesian approach was proposed by

[Daudin et al. 2008] to overcome the limitation of Erdos Renyi Model. Model pa-

rameters and selected number of classes are estimated given degree distribution and

clustering coefficients. The paper states and studies the limitations of Erdos Renyi

model’s ability to map real world networks. It has been observed that the degree from

Erdos Renyi models are far from Poisson Distribution and it assigns actors to unknown

groups.

The paper of Abbe, Bandeira, Hall [Abbe et al. 2014] have focused on increasing

the efficiency of the clustering algorithm and community recovery from existing bounds

by identifying a threshold for the exact recovery. Threshold identified close to com-

munities has been successfully recovered with semi-definite programming relaxation on

the Maximum Likelihood.

General Stochastic Block Model assumes that the actor belongs to only one group

but in real life situation, people may belong to multiple groups in the same network.
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This variant of Stocchastic Block Model was proposed by [Airoldi et al. 2008] to ac-

commodate Multi-Group membership for each actor called The Mixed Membership

Stochastic Block Model. The paper proposed that each actor is assigned its own

mixing parameter τ , denoting their tendency to belong to the assumed groups and two

membership indicator vector Z1 and Z2 denoting the interaction between the sender

and receiver. The paper also presented a variational inference algorithm for posterior

inference approximation.

In most of the networks, the formation of communities and groups are not influenced

by the density of links but also by the actor attributes in the network. Actor attributes

are not taken into consideration in the generalized Stochastic Block Model. The variant

Mixed Membership of Experts Stochastic Block Model proposed by [White and

Murphy 2016] is an extension of Mixed Membership Stochastic Block Model to allow

the influence of actor attributes into the model as a function of covariate data. In the

proposed model the actor related attributes are incorporated in τ (Individual Mixing

parameter) to prior distribution.

Degree Corrected Stochastic Block Model presented by [Gao et al. 2016] fo-

cuses on the limitation of SBM to map real world data, by considering nodes in the same

community have same degree distribution and are interchangeable with each other;

whereas in the real world dataset it is shown that actors belonging to same community

can have different degree distribution. This heterogeneity of degrees among the actors

is resolved by using the popularity of each actor as a set of degree corrected parameters

θi = θ1, ..., θn with the updated link distribution Yij = Yji
ind∼ Bernoulli(θiθjBz(i)z(j)).

The paper defines SBM as a special case of Degree Corrected SBM with zero degree

corrections.

[Barbillon et al. 2015] proposed Multiplex Stochastic Block Model variant that can

fit a Multi-Relationship Network data like the Lazage Lawyer Dataset with Friendship,

Advice and Work Type between the actors. The adjacency matrix in this case is

defined as an combination of Multiple Networks Y 1..K
ij = Y 1, .., Y K where Y i is the

individual adjacency matrix of the ith network and K is the number for relationship

types. Binomial edge Distribution of General Stochastic Block Model is replaced by

Multinomial Edge Distribution in case of Multiplex SBM.
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Chapter 3

Stochastic Block Model

Stochastic Block Model is a generative model for random graphs. The word ”Stochas-

tic” means statistical analysis and estimation of random distribution that may be

difficult and practically impossible to estimate precisely. Stochastic Block Model is a

community detection and cluster identification model which serves as a good bench-

mark to identify underlying groups within the network. In this chapter, we will study

about this model, its concepts and notations and investigate implementation of the

model.

3.1 Generative Model vs Discriminative Model

Generative Models tries to capture the underlying and hidden data generating mech-

anism of the give network dataset. These type of models lay their basis on estimations

and parameters that map the distribution of the model. Once the data generation pro-

cess of the dataset is captured, it can be used to simulate and synthesize demo datasets

that would be similar in properties and attribute of the original dataset. Group distri-

bution plays a very vital role in generative model. Naive Bayes Classifier is an example

for this model.

Discriminative Models on the other hand lays its foundation on the data itself

and not on its distribution or generation process. These type of models are heavily

dependent on the amount of data, number of attributes and the quality of data like
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number of missing variables, errors, noise. Logistic Regression is an example of this

model.

Stochastic Block Model is a generative model, thus it tries to estimate the scheme

behind the data generation process.

3.2 Specifications of Model

We consider a set of actors a1, a2, a3, ......, aN(where N is the total number of actors in

the network) and edges or links e1, e2, e3, ......, eE(where E is the total number edges

present in the network). For this dissertation we consider unweighted edges i.e. all

edges are considered as same and binary where 1 signifies the presence of edge and 0

signifies the absence of edge and E signifies the total number of 1’s or edges present in

the network. Adjacency matrix for the dataset is represented as Y which is a matrix

of dimensions NxN and it represents the presence and absence of edges as 0’s and 1’s

between each actors in the network.

Yij =

{
1 indicates the presence of link between actors ai and aj

0 indicates the absence of link between actors ai and aj

Example of Adjacency Matrix Y of dimension 3x3, considering a network of 3 actors

is given below:

Yij =


a1 a2 a3

a1 0 1 1

a2 0 0 1

a3 1 1 0


All the diagonals are 0 in the above adjacency matrix, this indicates absence of self

loops on actors. Actor 1 in the first row has edge with actor 2 and actor 3, actor 2 has

single edge with actor 3; and actors 3 has edges with both the actors.

For the purpose of the dissertation, we would be only considering networks with no

self loops, thus the diagonal elements of the adjacency matrix would be zero.
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3.2.1 Stochastic Block Model Notations and Symbols

Following are the notations and symbols along with their meaning that are used while

defining the Stochastic Block Model:

• N: Total number of actors/nodes in the network

• E: Total number of edges in the network

• G: Number of Latent Groups underlying the data or number of clusters in the

network data

• Yij: Network represented as Adjacency Matrix of dimensions NxN

Yij =

{
1 indicates the presence of link between actors ai and aj

0 indicates the absence of link between actors ai and aj

• π : Interaction Matrix of dimension GxG. It depicts the interaction or presence of

edges between the actors present in the same group and different groups. In other

words, this matrix specifies the probability of interaction within the groups(intra-

group) and outside the group(inter-group)

πgh- represents the probability of existence of link between actor belonging to

Group g and actor belonging to group h. For undirected networks πgh = πhg

πgh = P(Yij| i in group g and j in group h)∀i, j

πgh =


g1 g2 g3

g1 g11 g12 g13

g2 g21 g22 g23

g3 g31 g32 g33


g11, g22, g22 represents the probability of connection within the groups 1, 2 and 3

respectively, higher probability signifies dense connection between the members

of the groups; whereas other matrix elements indicates the probability of connec-

tion between members of two different groups like g12 denotes the probability of

connection between members from group 1 and group 2.
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• α : Class membership prior probability of dimension 1xG, it depicts the prior

probability of actors belonging to group/class g

G∑
g=1

αg = 1

• Z: Group Membership Indicator of dimension NxG, the symbol Z depicts the

group to which actor belongs.

Z =
{
Zig
}g=1,2,...,G

i=1,2,...,N
=

{
1 if actor ai belongs to group g

0 otherwise 0

Figure 3.1: Parameters flowchart for SBM

In Stochastic Block Model, the group prior probability α and group membership

indicator Z are the latent or hidden variables which would be estimated using the

model.
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3.2.2 Data Generative Process of Stochastic Block Model

The following figure depicts the data generative process of Stochastic Block Model as

stated by [Snijders and Nowicki 1997:

• for i in 1 to N {
Zi ∼Multinomial(α)

}

• for i,j in 1 to N {
Yij|Zig = 1, Zjh = 1 ∼ Binomial(πgh)

}

Figure 3.2: SBM Data Generative Process

3.3 Expectation-Maximization(EM) Algorithm

Stochastic Block Model consists of latent variables and parameters α and π. Expectation-

Maximization Algorithm tries to estimate the Maximum Likelihood using the model

parameter following a series of iterations. EM algorithm uses the iterative and random

assignment approach to estimate probabilistic divisions/clusters in the data. EM al-

gorithm approach is very similar to that of K-means where the algorithm starts with

random placement of cluster centres, then assigning each data point to their respective

initial cluster, then again cluster centres are updated, followed by cluster reassignment

for each node in the network till the time there is no change in cluster centre. This

algorithm tries to capture the estimation of Maximum Likelihood as the precise value

of Maximum Likelihood cannot be evaluated due to some missing data or incomplete

information.

3.3.1 What is the significance of the Maximum Likelihood and

Log Likelihood?

The aim of Maximum Likelihood is to estimate an optimal fit for the distribution

of data. Parameter of the model are estimated in order to maximize the likelihood

23



of matching the data generation process of the network. Probability and estimation

equations tend to become more complex and solving these complex equations is com-

putational expensive and time consuming. Equations can be made simpler using the

properties of Logarithmic function . The product to sum rule of log functions and easy

differentiation of log terms makes the calculation easy and comprehensible. Logarith-

mic function is a monotonic increasing function which means that if the value inside

the logarithmic function increases, the log value also increases, and this property is

extremely useful while calculating the Maximum Log Likelihood as maximization

of logarithm function also maximizes the original probability function.

3.3.2 Expectation Maximization Algorithm

The EM Algorithm involves two steps in a iterative manner: the first step is the E-

Step (Expectation Step) where the current parameters of the model and adjacency

matrix(observed network data) are used to find expected value of latent variables of the

model; the second step is the M-Step (Maximization Step) where the likelihood

function is maximized to estimate the model parameters of the model and latent vari-

ables/ missing data are assumed to be equal to the current iteration estimate.[Gupta

and Chen 2011]

Let θ = {θ1, θ2, ...., θk} be unknown parameters that needs to be estimated and calcu-

lated to optimize the random vector Y with distribution dependent on the values of θ.

The values of θ needs to be estimated in such a way that Conditional Probability of Y

given unknown parameter θ is maximized; which in turn is called maximum likelihood

estimation. The goal is to calculate the Maximum Log Likelihood due to the ben-

efits of using the logarithmic function over the normal Probability function as stated

in the previous section. This can be represented by the following equation:

Lθ = ln P (Y |θ)

Strictly increasing property of Logarithmic function, will maximize the both Lθ and

P (y|θ). Being an iterative algorithm, it will try to maximize the function Lθ at each

iteration. Consider Lθi and Lθi+1
log likelihood function at ith and i + 1th iteration

respectively with θi and θi+1 as the current of estimate of parameter θ. Thus to
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maximize the likelihood function:

Lθi+1
> Lθi

Putting Lθ = ln P (Y |θ) in the above equation, it is equivalent to:

ln P (Y |θi+1) > lnP (Y |θi)

Therfore, we have:

Lθi+1
− Lθi = ln P (Y |θi+1)− ln P (Y |θi)

Introducing the hidden/latent variable Z with the realization of z in the above equation

to make θ likelihood tractable,

Lθi+1
− Lθi = ln

∑
z

P (Y |θi+1, z)P (z|θi+1)− ln P (Y |θi)

Figure 3.3: Illustrative Working of EM Algorithm
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Algorithm:

1. E(Expectation)-Step: In this step we compute the function F (θ, θi) where θi

is the parameter estimate of θ for the iteration i

F (θ, θ i) = Expθ i [Lθ|x]

Here Expθ i [Lθ|x] is expected value of log likelihood function over the given θ

2. M(Maximization)-Step: In this step value of θ i+1 is estimated by maximizing

the function F (θ i, θ i−1) with respect to value of θ i so that,

F (θ i+1, θ i) ≥ F (θ i, θ i−1)

3. Repeat Step 1 and 2: E-Step and M-Step are iterated to get the updated value

of model parameters and log likelihood estimates until the model is converged

or the difference between the values of log likelihood in subsequent iterations is

sufficiently very small.

Lθi+1
− Lθi → is very small

Figure 3.4: EM-Algorithm Flowchart
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3.3.3 Advantages and Limitations of EM Algorithm

Advantages:

• Likelihood will increase at every iteration.

• The algorithm is guaranteed to converge at local optima.

• One of the popular and easy to use approach.

Some limitations of EM Algorithm:

• The algorithm may converge to local maxima rather than converging on global

maxima.

• Due to large number of iterations involving high computation, the speed of the

algorithm can be very slow.

• The algorithm works well on small dataset with less percentage of missing data

and low dimensionality.

3.4 Log Likelihood for the Complete Data

The dataset by itself is incomplete, there are some latent or missing variables that

define and influence the distribution of data and formation of groups within the net-

work. Complete Data Log Likelihood as stated by [Daudin et al. 2008], considers Y as

the adjacency matrix or the set of edges in the network
{
Yij
}
i,j=1,2,...,N

and Z as the

membership indicator with
{
Zig
}g=1,2,...,G

i=1,2,...,N
,

logL(Y |Z) =
N∑
i=1

G∑
g=1

Zig log αg +
1

2

N∑
i 6=j

G∑
g,h=1

Zig Zjh log(π
Yij
gh (1− πgh)1−Yij)

Possible values of the latent variable Z can be used to find the summation of complete

data likelihood which will give the values of likelihood of the given data defined by Y.
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3.5 Variational EM Algorithm

The major limitation of the generalized EM is that it makes an assumption of condi-

tional independence of network edges/links on the latent variables. The edges between

actori and actorj Yij is marginally dependent and conditionally independent on Zig i.e.

the groups membership indicator of the actori. This assumption works well for smaller

networks with less amount or vertices and edges but for larger networks, this makes

the computation of complete data likelihood intractable. The dependency structure

tends to become too complicated on integrating.

Pr(Z|Y ) is not computable as Zigs are not independent

Thus, Conditional Distribution P (Z|Y ) and Likelihood of the given data L(Y) is in-

tractable; some other approach is needed to make the computation tractable.

In variational approach of EM Algorithm, Mean Field Approximation is used to

ensure that the Group Membership Indicators Z are independent to each other given

the observed data Y such that Zi ⊥ Zj for i 6= j.

Lower Bound of Log Likelihood Log L(Y) = J(RY ) = log L(Y )−KL[RY (Z), P r(Z|Y )]

where KL is Kullback-Leibler divergence defined as,

KL[RY (Z), P r(Z|Y )] =
∑
z∈Z

RY (Z) log
RY (Z)

P (Z|Y )

Kullback-Leibler Divergence is also known as Relative entropy which is a difference

between two reference probability distribution.

Kullback-Leibler =

{
1 distributions are different, first distribution approaches 0

0 distributions are similar, in above case RY (Z) = P (Z|Y )

The Lower Bound equation can be rewritten as,

J(RY ) =
∑
z∈Z

RY (Z) log P (Z|Y )−
∑
z∈Z

RY (Z) log RY (Z)
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Chapter 4

Model Inference

In this chapter, architecture, logic and code implementation of Stochastic Block Model

will be discussed followed by a flowchart for fitting the dataset. Lastly model parame-

ters will be evaluated and the methodology involved to study and analyze the goodness

of fit will be explained.

4.1 Implementing SBM using Variational EM Al-

gorithm

This section will depict the implementation details of Variational EM algorithm ex-

plained in the last chapter.

Symbol Description
Z Group Membership Indicator
α Prior Group Probability
π Group Interaction Matrix
Y Adjacency Matrix
τ E[Z] Expected value or approximation of Z

Table 4.1: Recap of SBM Symbols and Notations
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Figure 4.1: SBM Implementation Flowchart

4.1.1 Network Data Preparation, Pre-processing And Analyis

Pre-Processing

There may be some cases that the data in original form cannot be used for fitting the

SBM model. The models expects the data in adjacency matrix format of Dimension

NxN where N being the total number of actors:

• SBM expects the links to be in binary format i.e. 1 for presence and 0 for absence.

If the network contains weighted links it should be converted to binary.

• SBM model cannot handle missing data, thus missing data should be handled or

imputed before supply the values to the model.

• There are other variations of Stochastic Block Model that can handle actor and

link attributes but the generalized SBM model does not support such attributes.
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Exploratory Network Data Analysis

The network data should be subjected to analysis and visualization before fitting the

SBM model. This will be beneficial and helpful to get an overview and gist of the

data, important attributes, most influential nodes, most connected nodes, disconnected

nodes and many other properties and characteristics that underly the data. Following

properties are used and explored under this step, the basic notion and concepts behind

these properties are discussed in Chapter 1:

• Degree Distribution

• Centrality Measures like degree centrality betweeness centrality, eigen vector cen-

trality

• Network Graph Measure

• Geodesic distance measure

4.1.2 Groups Estimation Using Integrated Complete Data Like-

lihood

One of the most important assumptions and requirements for Stochastic Block Model

is the number of Groups G that divide and cluster the data. The SBM model function

requires number of latent groups as an input argument. But now the question arises,

how do we estimate and choose the number of groups that will optimally fit the data.

One way would be iterating the SBM function with different number of groups, keep-

ing the input dataset same and then checking the optimal group size by evaluating

goodness of fit for each group sizes. This process is time consuming, computational

expensive and redundant as we are evaluating goodness of fit for all groups tested.

Form many mixture models, BIC (Bayesian Information Criterion) is used as

a model selection metrics where higher value of BIC indicate better fit. Complexity of

the model or number of parameters in the model is penalized by BIC.

BIC(G) = log L(Y )− VG
2
log N
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where G is number of Groups, L(Y) is Likelihood of given data Y, N is number of actor

and VG number of parameters for the G Groups

There are limitations of using BIC in Gaussian mixture models as BIC assumes con-

sistent and fixed number of components and works well for true distribution but this

property of BIC may not scale well for grouping and clustering algorithms as it tends to

overfit in majority of cases.[Nishii 1988]. And calculation of BIC involves computation

of Data Likelihood for the given data which is intractable. Thus, [Baudry et al. 2010]

proposed Integrated Complete Data Likelihood(ICL) as a appropriate model se-

lection metric for clustering algorithms. ICL is equal to BIC but penalized by mean

entropy.

ICL(G) = log L(Y, Ẑ|G, θ̂G)− VG
2
log N

where Ẑ is MAP estimate

computes Integrated Log Likelihood of the Complete Data which is tractable rather

than computing likelihood of the given data. ICL favours better separated clusters

which effectively means fewer groups are selected by ICL than BIC.

4.1.3 Principal Component Analysis using Spectral Cluster-

ing

Complex networks and dataset contain large number of variables and unnecessary infor-

mation that have little or no influence on our target variable. Principal Component

Analysis or PCA is a technique to retain the information and influence of vital

variables in a dataset with large amount of variables but at the same time reducing

the dimensionality i.e reducing from a large set of unnecessary variable/ dimensions

to a set of important and vital variables. The goal of PCA technique is to transform

the data from a large set of correlated variables to a set of Principal components

(small set of vital uncorrelated variables). Principal components have decreasing order

of variance with first principal component representing maximum variability in the

data at that time, followed by second principal component representing the maximum
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variability of the remaining data.

Spectral Clustering is used for Principal Component Analysis and initialization

of SBM. This is a simple and widely used technique for exploratory data analysis and

act as a perfect kickstarter to further algorithms. Spectral Clustering works with goal

of divide and conquer. It places similar data points into same clusters and tries to

maximize the dissimilarity between different clusters. Thus, at the end we have all the

similar points in same cluster and dissimilar points in different cluster or group.

Spectral Clustering is used to estimate initial value of τ (expected value of Group

Membership Indicator Z), that is further used to estimate the model parameters α

and π. Thus, using this techniques, other model parameters and dependencies need

not be assumed or randomly initialized, they can extracted from just a initial τ value

estimate.

Algorithm:

1. Given an adjacency matrix Y as an input, we find the Eigen Vectors of the this

matrix.

Eigen Vectors play a important role in Machine Learning, Computer Vision and

Principal Component Analysis. Linear transformation has no effect on the direc-

tion of eigen vectors. Linear Transformations can be expressed in terms of eigen

vectors which gives scaling directions and eigen values which signifies the scaling

factors.

Figure 4.2: Eigen Vector and Eigen Values

Here, Y is NxN matrix, ~v is Nx1 vector and λ is scalar quantity

Figure 4.2 equation can be rewritten as,

(Y − λ.I)v = 0
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2. Step 1 will give a matrix of Eigen vectors of dimension NxN: Y1, Y2, ..., YN . Step

2 involves selecting eigen vectors corresponding to the group size G such that the

final selected Eigen Vectors are Y1, Y2, ..., YG.

3. Run K-Means Clustering Algorithm on the selected Eigen Vectors Y1, Y2, ..., YG

data points with clusters size as G. K-Means Algorithm will assign all the nodes

in the dataset to their respective clusters.

4. Estimate τ from the resultant cluster:

τig =

{
0.8 if actor ai belongs to group g
0.2
G−1 otherwise

Thus, the resultant τ matrix will have the elements containing group membership

probability of 0.8 if the actor belongs to that group.

4.2 Estimation and Updates of Model Parameter

using Variational EM Algorithm

This section will describe the evaluation approach and formulas used for various quan-

tities and parameters that build up the SBM model. All the formulas and expressions

given below need to be computed for the algorithm:

4.2.1 E-Step (τ Update)

In E-Step the updated value of τ is computed on the basis of current estimate of model

parameters α and π.

τ̂ig = αg

N∏
i 6=j

G∏
g,h

(π̂
Yij
gh (1− π̂gh)1−Yij)τ̂jh

τ values need to normalized before using further:

τ̂ig =
τ̂ig∑G
h τ̂ih
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4.2.2 M-Step (α and π Update)

In this step values of α and π are computed on the basis of current estimate of τ and

adjacency matrix Y.

α̂g =
1

N

∑
i

τ̂ig

π̂gh =

∑
i 6=j τ̂ig τ̂jhYij∑
i 6=j τ̂ig τ̂jh

4.2.3 Complete Data Log Likelihood Computation

logL(Y |Z) =
N∑
i=1

G∑
g=1

Zig log αg +
1

2

N∑
i 6=j

G∑
g,h=1

Zig Zjh log(π
Yij
gh (1− πgh)1−Yij)

4.2.4 Variation Lower Bound Computation

Variational Lower Bound is a check to test convergence of algorithm. With each itera-

tion of the algorithm the value variational lower bound should increase. Maximization

of lower bound maximizes the marginal probability. When the difference between the

approximate distribution and true posterior distribution is minimum, it signifies that

the lower bound has attained log probability.

J(τ, π, α) =
∑
ig

τig logαg +
∑
i<j,g,h

τigτjhπ
Yij
gh (1− πgh)1−Yij −

∑
i,g

τiglog(τig)

4.2.5 Integrated Complete Data Likelihood Computation

ICL is used to compare models fitted with different group numbers and find the optimal
number of groups that best fit and describe the network communities. ICL is calculated
by subtracting the penalty term from the likelihood. ICL penalty is a function of group
number.

vICL(G) =
∑
i,g

Ẑig logα̂g +
∑

i<j,g,h

ẐigẐjhπ̂
Yij

gh (1− π̂gh)1−Yij − 1

2

(
G(G+ 1)

2
log

N(N − 1)

2
+

(G− 1)log(N)

)
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4.3 Stopping Criteria for the model

Stochastic Block Model is an computational intensive algorithm, so iterating though

the algorithm without any condition would be an overkill. Thus, a stopping criteria or

condition is required to indicate that the model has finished publishing and fitting the

data. Following are the two stopping criterion used in the SBM implementation:

• Limiting the maximum number of iteration depending on the size of the network

dataset. The algorithm will stop when iteration count is equal to the allowed

maximum iteration count.

• The Stochastic Block model EM algorithm is said to converge if there is no signif-

icant rise in Variational Lower Bound for two successive iterations i.e. difference

between the two successive Variational Lower Bound is sufficiently small and

tending to zero.

4.4 Goodness of Fit

Generative property of SBM is used to evaluate the model fit. The fitted model is

used to simulate test networks that should map the data generative process of the

original dataset. These set of simulated graphs are then compared against the network

properties and statistics of the original dataset. The model is said to optimally fit the

data if the network properties of the simulated graphs match the properties of original

network. Network statistics used to evaluate goodness of fit in this paper are: Degree

Centrality, Betweenness Centrality, Eigen Vector Centrality, Triangle count.
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Chapter 5

Application of Stochastic Block

Model to Datasets

This chapter presents the fitting process of Stochastic Block Model to Zachary karate

club dataset and Lazega Lawyer Dataset. Lastly, it will discuss the goodness of the

fit and present a detailed analysis of Stochastic Block Model output and study the

identified clusters with respect to the network data.

5.1 Application to Zachary Karate Club Dataset

The Karate dataset has 34 actors and 78 edges.

5.1.1 Estimating number of Groups

Groups are estimated by running the ICL algorithm from 1 to 10 groups with 100

iterations of SBM model. Figure 5.1 shows a plot between group iterations from 2

to 10 and their corresponding ICL values. Higher the ICL value, better is the fitting

capability of SBM model for that particular group. The figure shows a sharp peak at

Group Size 4, which suggests that the Karate data is optimally divided into 4 groups.

ICL increases from Cluster Sizes 2 to 3 with maximum at Group Size 4 and then falls

continuously till the 10 group model. Decrease in ICL for larger groups is an indicator

of higher penalties for higher order groups.
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Figure 5.1: ICL Vs Groups size for Karate Network

Stochastic Block Model is fitted with 4 groups in the Karate dataset.

5.1.2 Test of Convergence

Figure 5.2: Variational Lower Bound Vs Iteration for Karate Dataset

Figure 5.2 shows that the SBM model with 4 groups converges at the 8th iteration with

Variation Lower Bound values becoming static after the iteration. The SBM algorithm

reached its stopping criteria at the 14th iteration with sufficiently small change in

variational lower bound in successive iterations.
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5.1.3 Network Visualization and Model Parameters Analysis

Figure 5.3: Network Visualization of Karate Dataset (4 groups)

Figure 5.3 show 4 clusters in Karate dataset color encoded according to their cluster

membership.

Alpha
Group Membership

Group 1 Group 2 Group 3 Group 4
0.482 0.369 0.088 0.058

Table 5.1: Prior Group Membership parameter α for Karate Dataset

Comparing Figure 5.3 and Table 5.1 Group Membership α, it can be seen that Karate

Network consist of two big groups on the boundary and two small groups in the centre

of the network. The faction leaders Mr. A and Mr. H are part of two different smaller

groups. As, it is already known that the faction leader have high degree centrality,

it can be inferred that each small group will have high interaction with one of the

big groups. Small Group color coded as yellow with Faction leader Mr. A have high

interaction big group encoded in orange and similarly the other small group containing

Mr. H interacts with blue coded big group.

Table 5.2 and Figure 5.3 shows the value of interaction matrix, indicating high

interaction of Group 1(big group - orange) with Group 4 which contains their Faction

Leader and similarly Group 2(big group - blue) with Group 3 which also contains
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Pi
Group Interaction

Matrix
Group 1 Group 2 Group 3 Group 4

Group 1 0.074 0.000 0.160 0.739
Group 2 0.000 0.113 0.530 0.069
Group 3 0.160 0.530 0.667 0.166
Group 4 0.739 0.069 0.166 0.500

Table 5.2: Group Interaction Matrix π for Karate Dataset

their Faction Leader Mr. H. Smaller groups with Faction Leader have high intra-group

interaction.

5.1.4 Model Evaluation and Goodness of Fit

(a) Geodesic Distance Com-
parison

(b) Number of Triangles
Comparison

(c) Degree Comparison

Figure 5.4: Goodness of Fit for Karate Network Dataset

Figure 5.4 plots convey that the simulated networks from SBM model are not able to

map the Geodesic Distance of the original dataset depicted by red line on the plots.

None of the Geodesic points for the original dataset lie inside the boxes in Figure 5.4

(a), whereas the model has mapped the generative process node degrees and triangle

formation from the original dataset. Figure 5.4 (b) and (c) show that the majority red

line points lie in the boxplot range for Degree and Triangle Plot. Thus, the model is

able to simulate with approximately same degree and triangle but different shortest

path.
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5.2 Application to Lazega Lawyer Network Dataset

Lazega Lawyer Dataset consists of 71 actors spanning across 3 type of networks with

different link types(Friendship, Network, Advice). The dissertation is implemented by

keeping the Lawyer Friendship Network Dataset as a basis for training and fitting other

network link types. The aim of this methodology is to bring the Friendship network,

Work Network and Advice Network on the same level and lay down a basis for better

comparison and contrast study. As the number and density of edges in three types

of network differ from each other, we may estimate and compute different groups or

cluster sizes from SBM model for each network type leading to a convoluted comparison

process.

5.2.1 Estimation number of Groups for Friendship Lazega Dataset

To estimate the optimal number groups contained the dataset, Integrated Complete

Data Likelihood function is executed for group size ranging from 1 to 10 along with 10

iteration of SBM algorithm for each group value.

Figure 5.5: ICL Vs Groups size for Lazega Friendship Network

Figure 5.5 shows a plot between group iterations from 2 to 10 and their correspond-
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ing ICL values. Higher the ICL value, better is the fitting capability of SBM model for

that particular group. The figure shows a sharp peak at Group Size 4, which suggests

that the friendship data is optimally divided into 4 groups. ICL increases from Cluster

Sizes 2 to 3 with maximum at Group Size 4 and then falls continuously till the 10

group model.

As the maximum ICL value is achieved at 4 clusters, the Stochastic Block Model

is fitted to the dataset assuming 4 groups within the network.

5.2.2 Test of convergence

As discussed in previous chapters, the maximum iteration limit and successive vari-

ational lower bound differences govern the convergence and stopping criteria of the

Variational EM Algorithm model. The Lazega Lawyer Network is tested for conver-

gence with 10 maximum iteration limit and assuming number groups/clusters in the

network as 4.

Figure 5.6: Variational Lower Bound Vs Iteration for Lazega Friendship Network

Figure 5.6 depicts the the values of model Variational Lower Bound with respect to

the iterations. It is clearly visible that the model fails to converge under 10 maximum

iterations and stopping criteria is reached before convergence. From the above graph it
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can be inferred that the Variation Lower Bound increases exponentially till 4th iteration

and then it stabilizes showing an approximate horizontal level change till 10th iteration.

But the difference between any two successive iteration is not sufficiently small to

trigger the stopping criteria and convergence.

Though the model has not converged under maximum iteration limit, but still

we can consider partial convergence as the Variational Lower Bound change after 6th

iteration is almost the same and difference is minimal.

5.2.3 Network Visualization and Model Parameter Analysis

Figure 5.7 shows the visualization of Lazega Friendship Network with actors color

encoded with respect to the clusters they belong.

Figure 5.7: Network Visualization for Lazega Friendship Network

Actors in orange colored group are in the centre of the network with dense connections;

whereas the actors belonging to green colored cluster are on boundary of the graph

with low inter-connectivity. The network is distributed type of network with no central

actor in any of the clusters.
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Alpha
Group Membership

Group 1 Group 2 Group 3 Group 4
0.326 0.175 0.354 0.146

Table 5.3: Prior Group Membership parameter α for Friendship Network

Table 5.3 shows the Group Membership Probability of the network. It can be seen that

there are two dominant groups with more than 30% probability of an actor belonging

to that group and two smaller groups with similar probabilities. On comparing the

group membership probability α table with the Network visualized in the figure 5.7,

two dominant groups are color coded in green and orange colors and two similar groups

have blue and yellow color.

Pi
Group Interaction

Matrix
Group 1 Group 2 Group 3 Group 4

Group 1 0.371 0.058 0.075 0.027
Group 2 0.094 0.462 0.093 0.086
Group 3 0.041 0.053 0.032 0.021
Group 4 0.095 0.094 0.048 0.548

Table 5.4: Membership Interaction parameter π for Friendship Network

Table 5.4 shows the value of parameter π(Group Interaction Matrix) for the network.

The green colored diagonal elements show the interaction within the groups and rest

other elements in the table show interaction between the marked groups. Interaction

of each group would be examined by studying the Table 5.4 row-wise:

• Group 1 Interactions: Group 1 has dense interactions within the group(Group

1-Group 1: 0.371) which suggests that the lawyers belonging to this group are

friends with each other and rest of the elements in the Group 1 row have very

low probability which indicates low friendship outside the group. Thus, Group 1

lawyers are friends with each other and are not friendly outside the group.

• Group 2 Interactions: Group 2 members also have a high within group friend-

ship (Group 2-Group 2: 0.462) and low friendship probability outside the group.

• Group 3 Interactions: All the elements in Group 3 row exhibit very low

probability which indicates absence of links or friendship among the members of
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Group 3 and even outside the group 3. This suggests that the group 3 members

are aloof in the network and are not friendly in the network.

• Group 4 Interactions: Similar to Group 1 and Group 2; group 4 members are

good friends with each other and exhibit low friendship outside the group.

5.2.4 Model Evaluation and Goodness of Fit

Variational EM Algorithm for the Stochastic Block Model has been fitted to all the

three links of Lazega Lawyer Network. Friendship Network forms a basis for other two

link networks i.e. estimated number of groups for the Advice and Work networks were

same as computed for the Friendship Network by ICL algorithm evaluation. So the

number of groups are assumed as 4 for all the three networks.

Goodness of fit for the model will be evaluated on the basis of network statistics and

methodologies discussed in Chapter-3 Goodness of Fit Section. The network summary

statistics would be compared against the actual network data and the simulated data.

This section will describe the Goodness of fit for all the Lazega Lawyer Network types:

Lawyer Friendship Network

Figure 5.8 shows that the model optimally fits the Friendship Network Data. The gray

colored box plots represent the spread of the data simulated from the model and the

red line describes actual network data statistics.

Figure 5.8(a) shows Geodesic comparison with simulated data boxeplots represent-

ing the actual data trends and following the red line pattern; though it can be seen

at Geodesic Distance ”1” the model underestimates the distance and overestimates at

Geodesic Distance ”3”; rest all the points lie inside the box representing a good fit.

Figure 5.8(b) represents the comparison of Triangle formations in the network between

the simulated networks and actual network. The triangle formation statistics of the

simulated network does not exactly map the actual data(red line) trends with only

some points of the line falling into the box plots. The model is not able to predict

the higher order triangle formation trend as the triangle count predicted by the model

simulations after ”28” degree are all zero.
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(a) Geodesic Distance Comparison (b) Number of Triangles Comparison

(c) Degree(All) Comparison (d) Betweeness Centrality Comparison

Figure 5.8: Goodness of Fit for Lazega Friendship Network Dataset

Figure 5.8(c) shows the in-degree comparisons, with the simulation approximately map-

ping the actual data trend. But the model underestimates and overestimates at various

in-degree levels with only few points fitting between the upper and lower boxplot quar-

tile.

Figure 5.8(d) describes the out-degree plot comparison with simulated model network

poorly fitting and underestimating higher out-degree links of actual network and some

points for the actors that have low out-degree links are between the upper-lower quartile

of the boxplot. This means that the model is predicting low out-degree links correctly

as compared to higher out-degree links.

Thus, the simulated networks from the model is able to map and follow some of the

network summary statistics of the actual data but it can be further optimized to include

other network attributes and improve the performance.
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Lawyer Advice Network

Figure 5.9 shows the comparison of actual network data and simulated network data

from the model fitted on Lazega Advice Network Dataset. Figure 5.9(a) describes

a will fitted Geodesic Distance plot with actual data point residing inside the boxplot

at Geodesic distance ”3”. Simulated and actual network have zero count corresponding

Geodesic of ”4” and higher. Figure 5.9(b) depicts that our network is not optimally

fitting the triangle count plot as the actual data triangle count is very low as compared

to simulated boxplot which overestimates the count. The in-degree(Figure 5.9 c) and

out-degree(Figure 5.9 d) plot shows an average fit of actual data with some points lying

inside the boxes and most of the points lying outside the boxplot.

(a) Geodesic Distance Comparison (b) Number of Triangles Comparison

(c) Degree(All) Comparison (d) Betweeness Centrality Comparison

Figure 5.9: Goodness of Fit for Lazega Advice Network Dataset
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Lawyer Work Network

Figure 5.10 shows the Goodness of Fit for the Lazega Lawyer Work Network. Figure

5.10(a) shows that the model accurately simulates the Geodesic distance of the network

and follows the trend of the actual data for the Geodesic Distance ”1”, ”3”, ”4” and

”5”; whereas it overestimates and underestimates for Geodesic Distance ”2” and ”6”

respectively. Triangle Plot of simulated graphs fits the data very well with majority

of points lying either near or inside the boxplot. Lazega Lawyer work network is

a symmetrical network i.e. it has undirected edges(if Actori works with Actorj, it

implies Actorj also works with Actori), so the out-degree and in-degree plots for the

Work network will be the same. Both the plots optimally fit the network.

(a) Geodesic Distance Comparison (b) Number of Triangles Comparison

(c) Degree(All) Comparison (d) Betweeness Centrality Comparison

Figure 5.10: Goodness of Fit for Lazega Work Network Dataset
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Chapter 6

Multiple Links Analysis and

Comparison

This chapter presents the comparison approach for Multiple-Relationship Network(Friendship

- Advice - Work) by comparing the clusters identified by fitting Stochastic Block Model

separately on each network with different links. The comparison study is performed

by assuming 4 number of clusters in each relationship graph. Even though all the net-

works have fixed number of clusters, still clusters need to be processed for comparison

as clusters can be misplaced or dislocated from their position i.e. in one network first

cluster can be the third cluster in other network. Thus, directly superimposing and

comparing the clusters from the link networks would give wrong and misguided results.

So, we need to be sure that the cluster indices in one network should approximately

match the cluster indices of the other network.

The R package e1071[Meyer et al. 2017] is used to match clusters across the net-

works. The function matchClasses of this package tries different permutations and

combinations to find similarity in a two way contingency table, mapping clusters from

two different networks. This function iterates through all the mappings in the two

groups to find the maximum possible matched pairs. Two way Contingency Table is a

cross validation classification table that shows the count for each possible combination

factor level. In the case of cluster analysis of two networks, it would be a 4x4 matrix

assuming 4 number of groups, depicting maximum number of common actors matching

in clusters of the two networks.
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Contingency Table =



F1 F2 F3 F4

W1 c11 c12 c13 c14

W2 c11 c12 c13 c14

W3 c11 c12 c13 c14

W4 c11 c12 c13 c14


Columns in the above matrix represent four cluster in Friends network and rows rep-

resent four clusters from the Work Network. Element c11 represents the maximum

number of common actors in cluster 1 for both the networks, similarly c12 represents

the common actors in cluster 1 of Work Network and cluster 2 of Friends Network. All

the elements in above matrix represents total number of actors common in all possible

cluster pair combinations from the two network. The sum of the diagonal elements of

the matrix needs to be maximized to ensure that the clusters of two networks have max-

imum possible number of matching actors in corresponding clusters. MatchClasses

function of e1071 package in R tries maximize the diagonal elements of the matrix.

The cluster indices of Friendship Network are kept as the basis for matching cluster

indices of Work and Advice Network.

Z friend
Group 4 Group 3 Group 2 Group 1

Group 1 4 1 2 9
Group 2 1 13 1 5
Group 3 1 5 5 1

Z
Advice

Group 4 4 6 3 10

Table 6.1: Matched Clusters Cross Tabulation for Friend and Advice Lawyer Network

Z friend
Group 2 Group 4 Group 1 Group 3

Group 1 8 0 10 7
Group 2 0 10 3 4
Group 3 0 0 6 2

Z
Work

Group 4 3 0 6 12

Table 6.2: Matched Clusters Cross Tabulation for Friend and Work Lawyer Network
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Table 6.1 and 6.2 show the clusters matched and reordered to accommodate maximum

matching of groups across the networks. The green colored marked cells are the diagnal

elements with maximum sum that is achieved by computing MatchClasses function.

The group indices are reordered to match the results obtained in above tables and

subjected to further comparison.

6.1 Adjusted Rand Index Calculation

Similarity of Clusters between the networks can evaluated using a statistical measure

called Rand Index. It is calculated as the number of node pairs that belong to same

group or different groups in both the networks. The value of Rand Index is between

0(no similarity) and 1(perfect similarity).

Rand Index =
Index− Expected Index

Max Index− Expected Index
Adjusted Rand Index is the corrected for chance version of Rand Index. Rand

Index may give higher result in case of some random datasets and the value may not

be constant all the time. This problem is resolved by using Adjusted Rand Index.

Adjusted Rand Index
Friend-Work Friend-Advice Work-Advice

11.6% 8.7% 6.5%

Table 6.3: Adjusted Rand Index for Network Cluster Comparison

Table 6.3 shows that the clusters of Lawyer Friends Network and Lawyer Work

Network have the highest percentage of Adjusted Rand Index than other network

pairs. Thus the clusters of Work-Friend Network are more similar to each other. This

can indicate that the lawyers in the firm tend to be friendly with the people they work

with. Low value of Adjusted Rand Index in case of cluster matching for Work-Advice

network may indicate that lawyers don’t tend to take advice from the people they work

with; this can contradict a popular notion ”People usually take advice within their

work-group”. The cluster mismatch in Work-Advice network may also convey that the

Work Network clusters contain lawyers belonging to only one particular seniority level.
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For example: a group or cluster of all Junior level lawyer working with each other may

take advice from other group containing all senior lawyers.

6.2 Comparison Plots for clusters of Friend-Advice-

Work Network

This section will draw a comparison in terms of visualizations and plots between the

clusters identified by fitting Stochastic Block Model separately for Friendship, Ad-

vice and Work networks. Network statistics, clusters and parameters evaluated from

Stochastic Block Model would be plotted with the actors attributes(1.5.2) to draw a

proper comparison. Characteristics of Lawyers in the network like seniority, status, age,

practice, gender and others are grouped together with the respective cluster partitions

to get an insight of their divisions and proportions within each cluster.

6.2.1 Network Cluster Visualization and SBM parameters Com-

parison

(a) Friendship Network (b) Advice Network (c) Work Network

Figure 6.1: Network Visualizations for Lawyers Lazaga Dataset(Friendship, Advice,
Work) color encode by cluster

Figure 6.1 plot shows that the Work Network clusters are widely separated and distin-

guishable, whereas the clusters in other two networks are dispersed together.
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[
Number of Edges : 575

] [
Number of Edges : 892

] [
Number of Edges : 756

]
friend advice work

Table 6.4: Number of Edges for the Friends, Advice, Work networks

Table 6.4 shows that the Advice relationship type network is a more dense network

as compared to other two networks as it has the highest number of edges with same

number of actors.

[
0.326 0.175 0.354 0.146

] [
0.338 0.167 0.279 0.216

] [
0.244 0.293 0.349 0.114

]
αfriend αadvice αwork

Table 6.5: SBM parameter α values for the Friends, Advice, Work networks

The group membership probability parameter α is presented in Table 6.5. In the

friends and advice network, Group1 has the highest probability indicating that maxi-

mum number of actors lie in Group1 cluster in both the networks. αfriend shows that

two big groups(Group1 - 0.326, Group3 - 0.354) and two small groups(Group2 - 0.175,

Group4 - 0.146) of approximately of same size underly the data; whereas in αadvice and

αwork networks, there are one large group, two mid sized groups and one small group.


0.371 0.058 0.075 0.027
0.094 0.462 0.093 0.086
0.041 0.053 0.032 0.021
0.095 0.094 0.048 0.548




0.155 0.037 0.136 0.263
0.270 0.424 0.121 0.221
0.066 0.001 0.097 0.095
0.328 0.041 0.305 0.453




0.475 0.034 0.043 0.131
0.034 0.104 0.031 0.415
0.043 0.031 0.264 0.235
0.131 0.415 0.235 0.624


πfriend πadvice πwork

Table 6.6: SBM parameter π values for the Friends, Advice, Work networks

Table 6.6 depicts the value of parameter π (Group Interaction Matrix) computed from

the Stochastic Block Model for all the network types. Cluster 3 in πfriend and πadvice

(3rd row in both the matrices) have very low probabilities of interaction within and

outside the groups indicating the actors beloging to cluster 3 neither exhibit a friendly

behaviour nor they take advice from other lawyers within or outside their clusters.

High probability values across the diagonal in πfriend and πadvice indicates that all the

clusters except cluster 3 are friends with other actors within the same group and also

seek advice from the members belonging to their own group. The group interaction
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matrix of Work Link Network(πwork) is symmetrical as seen in the Table 6.6 where

πworkij = πworkji . The links are undirected for the work network.

π Friend Advice Work
Group 1 has friends within the

group and less friends
outside the group

Take advice form
Group 3 and within
the group

Work within the
group

Group 2 has friends within the
group and less friends
outside the group

Take advice within the
group and from Group
1

Work majorly with
group 4

Group 3 no friendship within
and outside the group

No advice taken
within and outside
the group

Work within the
group and with the
memebers of Group 4

Group 4 has friends within the
group and less friends
outside the group

Take major advice
within the group and
from Group 1 and 3

Work Majorly with
the people in the same
group and also with
Group 2 members

Table 6.7: Group Interactions within and outside the group for the Lawyer Dataset

Thus, members of Group 1 work, take advice, be friends with the member of their

own group. Group 2 members make friends and take advice within their own group

but majorly work with Group 4 members. Group 3 is an isolated group with fewer

links between the members in terms of friendship and advice network. They work

within the same group or with the members of Group 4. Similar to Group 1, members

of Group 4 have dense connections within the group for advice, work and friendship.

6.2.2 Clusters comparison with Actor Attributes

Comparing Cluster with respect to Seniority

Figure 6.2(given below) shows the box plots for all the relationship types in the Lawyer

Network Dataset against the Seniority of a lawyer(1 being the highest and 71 being

the lowest) on Y-axis and the assigned cluster on the X-axis. The plot for Advice

and Friend network shows that members of Cluster 2 are younger and have have low

seniority level in the firm because their box plot is concentrated towards low seniority

range of the graph. Cluster 3 in all the relationship networks has wide spread of

members across all seniority levels. Cluster 1 and Cluster 4 group members usually
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have high seniority level across all the link types Referring to Group Interaction Table

6.6, it can be inferred that the low seniority members of Cluster 2 seeks advice and

works with high Seniority Clusters(Group 1 and Group 4).

(a) Friendship Network (b) Advice Network (c) Work Network

Figure 6.2: Box Plot Seniority vs Clusters for Friends, Advice, Work Network

Comparing Cluster with respect to Age

Figure 6.3 shows the Violin Plot overlapping the box plots of Age versus the assigned

Cluster Index. Comparing Figure 6.2 and Figure 6.3, low seniority of Cluster 2 can be

accounted to their young age group(Green Box Plot in Friends and Advice network).

Similar to the Seniority Box Plot, Cluster 3 in Age box plot also has a wide spread

of actors across several age groups i.e. older and younger actors are part of CLuster

3. For the Advice network, it can be seen from the box plot(Figure 6.3 b) and πadvice

matix in Table 6.6 that in general, members of Cluster 3 are elder, and they usually

don’t take advice from other groups but other group members consult Cluster 3 for

advice. Figure 6.3 (c) shows that most of the actors in Cluster 4 are above 45 years of

age and have high Seniority Levels.

(a) A subfigure (b) A subfigure (c) A subfigure

Figure 6.3: Violin Plot Comparison Age vs Clusters for Friends, Advice, Work Network
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Comparing Cluster with respect to Status

(a) A subfigure (b) A subfigure (c) A subfigure

Figure 6.4: Bar Plot Comparison Status vs Assigned Clusters for Friends, Advice,
Work Network

Figure 6.4 compares the division of Partners and Associate across the clusters of

different link networks. Members of Group 2 cluster are young and junior members

who are all associates as implied by the full yellow bar for Group 2 in Friendship and

Advice network; and 70:30 ratio of Associate to Partner in Work Network. Bar plot for

Group 1 and Group 4 in Friendship, Work and Advice network indicate that most of

the actors in these groups are Partners, which aligns and validates their high Seniority

Status. Referring back π matrtix in Table 6.6, Associates Group 2 look for advice from

senior Partner members in Group 1 and Group 4 and they usually work with Partners

in Group 4.

Comparing Cluster with respect to Status and Years

Figure 6.5 represents the analysis of cluster division with respect to Status and Year

attribute of the dataset. In all the three sub-figures it is a clear distinction between the

number of years, a partner has worked in the firm and the number of years, an associate

has worked in the company. Huge margin in their plots indicate that Associates are

the new joinees and Partner lawyers have been the part of firm from a very long

time. All the box plots for Associate Status lawyers are small and concise indicating

good agreement with respect to number of years in the company; whereas for Partner

lawyers, the box plots are spread across a huge span of Years indicating that the lawyer

with Partner Status have spent different amount of time in the firm.
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(a) Friendship (b) Advice (c) Work

Figure 6.5: Box Plot Comparison for Status vs Years vs Assigned Clusters for Friends,
Advice, Work Network

Comparing Cluster with respect to Practice

(a) Friendship (b) Advice (c) Work

Figure 6.6: Bar Plot Comparison for Practice vs Assigned Clusters for Friends, Advice,
Work Network

Figure 6.6 suggests that clusters from Multiple Links Network does not seem to be

similar and does not satisfy each other when plotted against Law Practice(Litigation or

Corporate). Cluster 1 and Cluster 3 in Friends and Advice network have approximately

equal number of Litigation and Corporate Lawyers. Cluster 3 in work network contains

all Litigation lawyers. Figure 6.4 (a) and (b) show that Cluster 2 has only Associate

Lawyers, thus comparing it with Figure 6.6 (a) and (b), it can be said most of the

Associates in Group 2 practice litigation.
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Comparing Cluster with respect to Years and Practice

There was a clear distinction between the Seniority/Years of Partner and Associate

lawyers in the plot of Seniority versus Lawyer Status but in case of Practice versus

Years plot, there is no such distinction i.e. anyone in the firm whether old or new can

practice Litigation and Corporate. In Friends and Advice Network Cluster Litigation

Lawyers are high in experience. Cluster 3 box plot is spanning across a range of years

for both Litigation and Corporate in all the network types.

(a) Friendship (b) Advice (c) Work

Figure 6.7: Box Plot Comparison for Practice vs Years vs Assigned Clusters for Friends,
Advice, Work Network
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Chapter 7

Further Extension - Mixed

Membership Stochastic Block

Model

The main limitation of Stochastic Block Model is that it limits the actor to belong

to only one group whereas in real life networks, actors may belong to multiple groups

at once. The Mixed Membership Stochastic Block Model(MMSBM) is an extension

to Stochastic Block Model, providing further flexibility and allowing actors to become

part of multiple groups. Each actor in the model is associated with Membership Prob-

ability Vector.

The MMSBM is described and implemented as defined by [Airoldi et al., 2008]:

The model considers a graph G = N, Y where N is the total number of actors and

Y is a binary valued adjacency matrix. The graph can be directed or undirected. The

network is assumed to be divided in K factions or latent groups. Each node in the

group has a vector ~πi where, ~πig denotes the probability with which actori belongs to

group g. Thus, each actor in the network can belong to multiple groups with different

propensity. Group Membership Indicator for each actor ~zi→j denotes the membership

link from actori to actorj and ~zj→i denote the membership link from actorj to actori.
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Data Generative Process for MMSBM:

• for i in 1 to N {
~πi ∼ Dirichlet(~α)

}

• for i,j in 1 to N {
Membership Indicator (Sender) ~Zi→j ∼Multinomial(~πi)

Membership Indicator (Receiver) ~Zj→i ∼Multinomial(~πj)

Yij ∼ Bernoulli(~ZT
i→j B

~Zj→i)

}
where symbol B parameterizes the distribution

The group membership for each node is context dependent i.e. the group membership

will change if neighbors of the actor are changed. Thus, the group membership is highly

influenced by the actors surrounding the node.

Paramter Estimation for Variational EM MMSBM:

• E-Step: Expected value Group Membersip Indicator ~Zi→j and ~Zj→i

φ̂i→j,g ∝ e
E[log πig ]

∏
(B

Yij
gh (1− b1−Yijgh ))φj→i,h

φ̂j→i,h ∝ e
E[log πjh]

∏
(B

Yij
gh (1− b1−Yijgh ))φi→j,g

• M-Step: Estimated value of B(Distribution Parameter) and ρ(Sparsity Param-

eter)

B̂gh =

∑
ij Yijφi→j,gφj→i,h

(1− ρ)
∑

ij φi→j,gφj→i,h

ρ̂ =

∑
ij(1− Yij)

∑
gh φi→j,gφj→i,h∑

ij

∑
gh φi→j,gφj→i,h
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Chapter 8

Conclusion

This dissertation presents and investigates the network having Multiple Relationships

among the same set of actors using Stochastic Block Model. It describes the motivation

for this study and the importance of network analysis and community detection followed

by a brief comparison between Assortative and Disassortative Mixing. Basic concepts

about Graph Theory and properties of networks are discussed. Exploratory Data

Analysis on the Karate Dataset revealed that the faction leader and nodes directly

linked to them have higher score degree, closeness and betweenness. Karate Dataset

is a disassortative network with popular faction leaders interacting with less popular

members. Work network has the lowest assortativity score than Friendship and Advice,

whereas the average path length of the Friendship networks is the maximum.

Theoretical concepts of Stochastic Block Model are explained with model specifi-

cations and data generative process. For this project Variational EM Algorithm SBM

is implemented and two datasets (Karate, Lawyer Dataset) have been fitted into the

model. The Lazega Lawyer Dataset, being a multiple link dataset, has been fitted by

considering each relationship as a separate network. Integrated Complete Data Likeli-

hood is used to estimate the optimal number of groups and the number of groups with

highest value of ICL is chosen.

The model fitted for Karate dataset reached its maximum ICL value at 4 number

of clusters which divides the network into 2 big and 2 small groups. The faction leader

Mr. A and Mr. H belong to the small sized group. Simulated graphs from the model

correctly map the degree and triangle count but fail to map Geodesic property of the
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original network.

The resultant optimal number of groups computed by evaluating ICL for the Friend-

ship Network, is used as the number of groups for the other two networks. The clusters

from fitting all the three networks separately are reordered, aligned and matched for

comparison. Goodness of fit evaluation for the networks reveal that the model is not

able to capture all the key aspects of the generative process as some of the plots wrongly

estimate the networks summary statistics.

Comparison study between the clusters reveal that a connection exists between

these networks of varying links. First cluster in any of the networks, usually interact

with the members within the group, whether the link is for friendship, advice or work.

Group 1 and Group 4 contain high number of senior members of the firm. There are

also some cases where the cluster mappings across the links does not make any sense

and no information can be extracted out.

8.1 Future Work

For the future scope for this dissertation, it may be interesting to compare and contrast,

approach of fitting the multiple links separately in a model versus using a Multiplex

Stochastic Block Model[Barbillon et al. 2015] to fit all the links in one model. It can

be used to analyze the differences in clusters and their interactions. To include ac-

tor attributes and to allow members to be part of multiple groups, Multiplex Mixed

Membership of Experts Model[White and Murphy 2016] can be implemented to see

the influence of multiple links with actor attributes. For the purpose of this disser-

tation, two other datasets(Colorado Springs Project 90[Morris and Rothenberg 2011],

Yelp Dataset[17]) were prepossessed to be used as input to the model, but due to

time constraints we were limited to use only Karate and Lawyer Dataset. It may be

an interesting research to identify cluster and communities in HIV Transmission Net-

work Metastudy Project(Colorado Springs Project 90) combined with actor attributes.

Moreover, the computational processing and performance of SBM can be improved

and enhanced for faster processing by using scaling algorithms and parallel process-

ing[Bianfang et al. 2014].

62



Bibliography

[1] Dapeng Hao and Chuanxing Li. The dichotomy in degree correlation of biological

networks. PLOS ONE, 6(12):1–13, 12 2011. doi: 10.1371/journal.pone.0028322.

URL https://doi.org/10.1371/journal.pone.0028322.

[2] M. Salter-Townshend, A. White, I. Gollini, and T. B. Murphy. Review of sta-

tistical network analysis: models, algorithms, and software. Statistical Anal-

ysis and Data Mining: The ASA Data Science Journal, 5(4):243–264, 2012.

doi: 10.1002/sam.11146. URL https://onlinelibrary.wiley.com/doi/abs/

10.1002/sam.11146.

[3] W.W. Zachary. An information flow model for conflict and fission in small groups.

Journal of Anthropological Research, 33:452–473, 1977.

[4] Gabor Csardi. igraphdata: A Collection of Network Data Sets for the ’igraph’

Package, 2015. URL https://CRAN.R-project.org/package=igraphdata. R

package version 1.0.1.

[5] J. J. Daudin, F. Picard, and S. Robin. A mixture model for random graphs. Statis-

tics and Computing, 18(2):173–183, June 2008. ISSN 0960-3174. doi: 10.1007/

s11222-007-9046-7. URL http://dx.doi.org/10.1007/s11222-007-9046-7.

[6] Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact recovery in the

stochastic block model. CoRR, abs/1405.3267, 2014. URL http://arxiv.org/

abs/1405.3267.

[7] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed

membership stochastic blockmodels. J. Mach. Learn. Res., 9:1981–2014, June

63

https://doi.org/10.1371/journal.pone.0028322
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11146
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11146
https://CRAN.R-project.org/package=igraphdata
http://dx.doi.org/10.1007/s11222-007-9046-7
http://arxiv.org/abs/1405.3267
http://arxiv.org/abs/1405.3267


2008. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1390681.

1442798.

[8] Arthur White and Thomas Brendan Murphy. Mixed-membership of experts

stochastic blockmodel. Network Science, 4(1):4880, 2016. doi: 10.1017/nws.2015.

29.

[9] C. Gao, Z. Ma, A. Y. Zhang, and H. H. Zhou. Community Detection in Degree-

Corrected Block Models. ArXiv e-prints, July 2016.

[10] P. Barbillon, S. Donnet, E. Lazega, and A. Bar-Hen. Stochastic Block Models for

Multiplex networks: an application to networks of researchers. ArXiv e-prints,

January 2015.

[11] Tom A.b. Snijders and Krzysztof Nowicki. Estimation and prediction for stochastic

blockmodels for graphs with latent block structure. Journal of Classification, 14

(1):75100, Jan 1997. doi: 10.1007/s003579900004.

[12] Maya R. Gupta and Yihua Chen. Theory and use of the em algorithm. Found.

Trends Signal Process., 4(3):223–296, March 2011. ISSN 1932-8346. doi: 10.1561/

2000000034. URL http://dx.doi.org/10.1561/2000000034.

[13] R Nishii. Maximum likelihood principle and model selection when the true model

is unspecified. Journal of Multivariate Analysis, 27(2):392 – 403, 1988. ISSN

0047-259X. doi: https://doi.org/10.1016/0047-259X(88)90137-6. URL http://

www.sciencedirect.com/science/article/pii/0047259X88901376.

[14] Jean-Patrick Baudry, Adrian E. Raftery, Gilles Celeux, Kenneth Lo, and Raphael

Gottardo. Combining Mixture Components for Clustering. Journal of Computa-

tional and Graphical Statistics, 19:332–353, 2010. URL https://hal.inria.fr/

inria-00321090.

[15] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and

Friedrich Leisch. e1071: Misc Functions of the Department of Statistics, Prob-

ability Theory Group (Formerly: E1071), TU Wien, 2017. URL https://CRAN.

R-project.org/package=e1071. R package version 1.6-8.

64

http://dl.acm.org/citation.cfm?id=1390681.1442798
http://dl.acm.org/citation.cfm?id=1390681.1442798
http://dx.doi.org/10.1561/2000000034
http://www.sciencedirect.com/science/article/pii/0047259X88901376
http://www.sciencedirect.com/science/article/pii/0047259X88901376
https://hal.inria.fr/inria-00321090
https://hal.inria.fr/inria-00321090
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071


[16] Martina Morris and Richard Rothenberg. Hiv transmission network metastudy

project: An archive of data from eight network studies, 1988–2001, 2011.

[17] Yelp Dataset, 2013. URL https://www.yelp.com/dataset_challenge/.

[18] Chai Bianfang, Jian Yu, Cai-Yan Jia, and Jing-Hong Wang. Fast algorithm on

stochastic block model for exploring general communities. 24:2699–2709, 11 2014.

65

https://www.yelp.com/dataset_challenge/

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction and Background Study
	Introduction
	Analysis of Networks
	Community Detection
	Assortative versus Disassortative Mixing

	Graph and Network Theory
	Basic Notations and Definitions
	Properties of Nodes in a network
	Properties of Edge or Relationships in a network

	Dataset Description
	Zachary Karate Club dataset
	Lawyers Lazega Dataset

	Erdös Renyi Model

	Chapter Literature Review
	Chapter Stochastic Block Model
	Generative Model vs Discriminative Model
	Specifications of Model
	Stochastic Block Model Notations and Symbols
	Data Generative Process of Stochastic Block Model

	Expectation-Maximization(EM) Algorithm
	What is the significance of the Maximum Likelihood and Log Likelihood?
	Expectation Maximization Algorithm
	Advantages and Limitations of EM Algorithm

	Log Likelihood for the Complete Data
	Variational EM Algorithm

	Chapter Model Inference
	Implementing SBM using Variational EM Algorithm
	Network Data Preparation, Pre-processing And Analyis
	Groups Estimation Using Integrated Complete Data Likelihood
	Principal Component Analysis using Spectral Clustering

	Estimation and Updates of Model Parameter using Variational EM Algorithm
	E-Step ( Update)
	M-Step ( and  Update)
	Complete Data Log Likelihood Computation
	Variation Lower Bound Computation
	Integrated Complete Data Likelihood Computation

	Stopping Criteria for the model
	Goodness of Fit

	Chapter Application of Stochastic Block Model to Datasets
	Application to Zachary Karate Club Dataset
	Estimating number of Groups
	Test of Convergence
	Network Visualization and Model Parameters Analysis
	Model Evaluation and Goodness of Fit

	Application to Lazega Lawyer Network Dataset
	Estimation number of Groups for Friendship Lazega Dataset
	Test of convergence
	Network Visualization and Model Parameter Analysis
	Model Evaluation and Goodness of Fit


	Chapter Multiple Links Analysis and Comparison
	Adjusted Rand Index Calculation
	Comparison Plots for clusters of Friend-Advice-Work Network
	Network Cluster Visualization and SBM parameters Comparison
	Clusters comparison with Actor Attributes


	Chapter Further Extension - Mixed Membership Stochastic Block Model
	Chapter Conclusion
	Future Work


