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Bike Sharing Systems(BSSs) have become one of the cheapest and easiest mode of
transport recently. The benefits of them are huge. It does not cause pollution, hence
nature friendly and it has got health benefits also for individuals. There are several
BSSs worldwide. Dublin bikes is a bike sharing system in Dublin. It has around 100
stations in Dublin. Dublin bikes plays a very important role in the daily commute of
people in Dublin.

As the BSSs get more popular, the proper functioning of the such a bike sharing
system is important. The availability of the bikes at each of the stations and the bike
stands availability to drop-off the bikes are main concern during the rush hours. Group-
targeted strategies are not only an efficient way to resolve the issue but also reduces
the cost of the execution of the solution. To implement group-targeted strategies,
clustering of each of the stations based on their behavior could help. The stations
that behave in a similar way could be clustered together as a single cluster and the
operations for such stations can be planned together. This plan of operation is less
time consuming as well. This also enhance the customer satisfaction that the company
can provide to the customers. This is the main motivation of the project.

The idea here is to collect the Dublin bikes data periodically for a period of four
weeks. The approach is to apply Bayesian nonparametric (BNP) mixture models to the
data to cluster the stations. Applying BNP model is a novel idea in clustering the BSS



stations. Dirichlet Process Mixture model of Gaussian (DPM-G) is the BNP model
proposed in the study for clustering the stations. The data is smoothed using Fourier
Basis. A meaningful interpretation of the resulted cluster is also conducted. Analysis
of weekday and weekend are also conducted separately. A simulation experiment is
also carried out to evaluate the performance of the model. R software is used for
implementation and Python is used for data collection.

v
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Chapter 1

Introduction

In recent times, the popularity of Bike Sharing Systems (BSS) is increasing. The
growth in the BSSs is getting rapid. They provide a form of shared transportation[1].
They provide short-term bicycle rentals for the urban areas[2]. One of the main aim
of BSSs is to increase the use cycles which is a sustainable transportation. They are
the cheapest and pollution free mode of transportation. It also eliminates all the issues
that can arise though motor vehicles like energy consumption etc. It reduces the traffic
congestions[3]. It is also very convenient way of transportation for the people. Because
people do not have to wait like in the bus stop for the bus to reach or wait for cab till the
hired car comes. The monetary expense in using these systems are very less compared
to other mode of transportation. Also cycling is a cardio-exercise which is also helpful
for the people to stay in good health. If you could exercise while one commute to work
or education, then it is plus point. As the benefits of the BSSs increases, the people
who rely on shared bikes are increasing.

There are several BSSs worldwide. They provide the smart bikes with smart cards
[2] installed that help to get the real time information on the availability of bikes. As
BSSs getting popular, analyzing these information, the socio-economic behavior of a
region can be studied. This is another reason why BSSs are getting more attention
these days. This information can also be utilized for identifying the issues that BSSs
face and suggest the solution for the issues. This study focuses on how group targeted
strategies can be implemented. Clustering the stations based on the similar behavior
is one of the method to implement those strategies.

1
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One of the famous BSS system in Ireland is Dublin Bikes1. It is a public bicycle
rental scheme in Dublin. It has more than 100 stations and it is still growing. Dublin
Bikes data is used in this study.

1.1 Motivation

As BSSs are getting popular, they should focus on more user satisfaction with more
availability of bikes and proper availability of the stations. When the usage increases,
there could arise the issues of bikes unavailability of bikes at the stations which are
busy. The bike sharing stations should also provide enough empty stands for the bikes
to be dropped off after the use. Unavailability of empty stands is also another reason
that BSSs face. A proper balance between the availability of bikes and the empty
stands should be maintained for the proper functioning of the system.

By obtaining the trend of each stations on the available number of bikes compared
to the total capacity of the stations, the behavior of each station can be identified. The
behavior of the stations also changes with the time. By analyzing the behavior, stations
with least number available bikes and the stations with high number of available bikes
which causes the least number of empty stands at a point of time can be found out.
Grouping of stations with similar behavior help the BSS to implement the solution
of issues with reduced cost. So this study focuses on clustering the stations with
similar behavior together. Detecting the groups of similar stations helps providers to
implement a group targeted strategies to resolve the issues.

Thus this study on Dublin Bikes can help them use this result to identify the existing
issues in their operations and propose the solution to resolve those issues in an efficient
way.

1.2 Research Question

How can functional mixture models like Bayesian Non-Parametric mixture models be
used to cluster similar Bike stations using Dublin Bikes data?

1http://www.dublinbikes.ie/
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1.3 Research Objective

The objectives put forth to address the research question are:

1. A novel method of using Bayesian non-parametric mixture models for clustering
the stations.

2. Executing the model to cluster the stations in a meaningful and easily inter-
pretable way.

3. Converting the discrete observation like available number of bikes in a station
into a single entity by transforming to functional data for each stations and using
that for clustering.

4. Carrying out simulated experiments to show that Bayesian Non-Parametric Mix-
ture Models work fine for clustering.

5. Analyze the spatial organization of the clusters resulted.

6. Identify the recommendations to BSSs to balance the available number of bikes
in the stations

1.4 Research Challenges

1. The data collection - to continuously collect the data for four weeks in 1 hour
interval without failure.

2. Tuning the hyperparameters of the model for good results.

3. Analysis of the trend of the available number of bikes in each station with time
manually to get the insights about the stations and to see how good are the
clusters formed.

4. The behavior of the stations may be different based on the time of the day, the
period of the year, like the vacation time etc.
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1.5 Thesis Overview

Applying Bayesian Non-Parameteric(BNP) Mixture models is a novel approach in
the analysis of bike stations using BSS data. The Dirichlet Process Mixture Model
of Gaussians(DPM-G) is arguably the most popular Bayesian Non-Parametric(BNP)
Mixture Models. This model is used in this study to cluster the stations. The uncer-
tainty of assigning an observation to a cluster could be captured through BNP mixture
models[4]. That is the randomness of the system is captured using BNP models.

The data for the analysis, Dublin Bikes data, is collected in real time using the API
provided by the company called JCDecaux2. The data is collected over the course of
4 weeks. The data collection started on May 14, 2018 till June 12, 2018. The data is
collected for 105 Dublin bikes stations in one hour interval. The data is collected for
695 time points. The 4 weeks data is averaged to single week for analysis. Loading
profile for each of the 105 stations are created using the available number of bikes in
each of the stations using data of the average week with 168 time points.

Fourier series is used to smooth the data to get rid of the measurement error that
can arise. DPM-G model is proposed to cluster the stations. The interpretation of
the clusters are carried out. Analysis of weekday and weekend are also performed
separately.

Simulation experiment is also carried out to show the performance of BNP models
work for clustering. R software is used for implementation and Python is used for data
collection.

1.6 Thesis Structure

The thesis is organized as follows. Chapter 2 presents the background and related work.
Chapter 3 explains the methods used for the study followed by Chapter 4 presenting
the model proposed. The Simulation experiment conducted is presented in Chapter 5
which shows the model works fine for clustering. The Chapter 6 discusses the analysis
of the Dublin Bikes data, interpretation of obtained clusters, the suggestions to the
BSSs and limitations. The study concludes with conclusion and future works.

2https://developer.jcdecaux.com/#/home



Chapter 2

Background and Related Work

In this chapter, the review of the literature on the Bike sharing system, and Bayesian
Non-Parametric Mixture Models is carried out. Separate research on each of the topics
is conducted.

2.1 Bike Sharing System

There are several studies conducted on the bike sharing system in different places.
Several Bike Sharing System(BSS) are introduced in Europe. By analyzing this data
helps to see the benefits of the BSS in the economy growth and urban stability. The
benefits of this system can also be used by other places to start a similar service. The
clustering of the BSS data is closely related to the activities like transportation, leisure
etc in a city. Analysis of this data helps in the applications like the urban planning
and choice of business location[5].

A study on different BSSs to identify the strength and weaknesses is carried out in
[6]. They conducted the study on around seven BSSs. The study aims in analyzing
common operating patterns in each of the BSS and to propose solution to get rid of
issues. The approach was to cluster the stations with the same behavior. The data
is collected for a span of one month. The data is open and could be collected using
the API provided by JCDecaux company and Transport for London initiative 1. The
data has 3230 loading profiles for each of the stations for 1448 time points. The data

1https://tfl.gov.uk/info-for/open-data-users/

5
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was smoothed using Fourier Basis using 41 basis functions. A new functional model
called FunFEM is developed through the study. It aims in clustering the functional
data (specifically, time series data). The proposed model is based on the Discrimi-
native Functional Mixture (DFM) model. DFM models the data into discriminative
subspace[6]. The model selection is carried out either by the “slope heuristic" or by
BIC. The model also takes care of determining the number of basis functions. This
is possible by using the discriminating subspace in selecting the basis functions. This
is achieved by introducing sparsity through a l1-type penalization. Numerical experi-
ments are carried out in evaluating the performance of the proposed technique. It is
also compared to the state-of-the-art methods. It turned out that it is a good challenger
for them. Then the proposed clustering technique is applied to the real data which
is the BSS data. The obtained clusters were analyzed and meaning interpretations
are drawn. Unlike the proposed model in this study, In this technique the number of
clusters is either given or the model tries to find out using BIC or “slope heuristic".
Addition to that, the model proposed in [6] does not consider the uncertainty or the
randomness of the cluster assignment which is taken into account in this study by using
BNP mixture models.

One is the [7] which studies the Vélo’v system in Lyon, France. In this work, signal
processing and data mining is used to analyze the Vélo’v system to answer economic
and social questions of the transportation. There are two types of analysis carried
out in this study which are Standard statistical study and Data Mining. Standard
statistical studies are carried out which yields the time dynamics based on the data
which tells the cyclostationarity and nonstationarity trend, spatial patterns which tells
the incoming and outgoing flow of bikes in each of the stations and forecasting the
number of bicycle rentals. Data Mining tools are used for clustering of the flows of
activities between stations and to cluster the stations in communities. Extraction of
different clusters based on the data is of our interest as this study is the clustering of the
stations based on the properties of the stations like the availability of bikes etc. The
clustering of flows of activities between stations is done based on the time patterns
of the flow of the bikes. It is achieved through the K-means algorithm. Silhouette
value is measured and used to check how good the clusters formed are. Dimensionality
reduction technique Principle Component Analysis (PCA) is used for dimensionality
reduction. The clustering of the stations in communities is based on the amount of
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transfer of bicycles between each of the stations. They found out that the clustering
based on geographical proximities is the best criteria for grouping. In this study, the
clustering of the stations is done effectively only based on the geographical aspect of
the stations. The main goal of [7] is to answer the socio-economic questions related to
the community using the study.

[5] shows a case study with Vélib’ system of Paris. In the study, a statistical model
is presented to cluster the bike stations according to the usage profiles. It analyzes the
arrival and departure of each of the bikes in the stations. The model is based upon the
count series clustering. It automatically clusters the stations based on the data. The
trip data consist of the departure station, departure time, arrival stations and arrival
time. Based on this data, a count statistic is generated which describes the usage
profile of each stations. The counts are aggregated per hour. The proposed model also
deals with the difference in the behavior during both weekdays and weekends. Poisson
mixtures is used to build the generative model as the data observed are counts. There
are two additional variables - a latent variable that is used to indicate the membership of
the station in a cluster and an observed variable is to encode the difference between the
weekdays and weekends. The generative model assumes that the arrival and departure
counts per hour is independent knowing the cluster of stations and cluster of days. EM
algorithm is used for maximum likelihood estimation with problems involving missing
values or latent variables. The evolution of the log-likelihood with respect to the
number of clusters was evaluated to select the appropriate number of clusters. The
elbow heuristic on the plot above is considered to get the correct clusters.

Another study [8] was conducted on the Bike Sharing System (BSS) in Barcelona
called Bicing. The study is conducted to get the insights on the city dynamics and
human behavior based on BSS, examining the relationship between the spatiotemporal
patterns of bike usage and city behavior and geography and study of how the time of the
day affect the pattern of the bike usage and the prediction of the bike usage patterns.
The data is collected in every two minutes from the Bicing webpage. The elements
like geolocation of the stations, number of available bikes and the number of vacant
parking slots are collected. The data collection is carried out for a span of 13 weeks.
Temporal patterns are analyzed by comparing the DayViews(averaging the stations
data that matched certain criteria in every five minutes per day) of normalized weekday
and weekend Activity Score(AS) for all the stations. To analyze the Spatiotemporal
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patterns âĂŞ how bike usage pattern depended on the location of the stations, a
hierarchical clustering technique called the dendrogram clustering [9] is over Day Views
of each stations. Two clusters are built: Activity Clusters which is based on the
weekdays Activity Score Day Views and Bicycle Clusters which is based on the weekday
Available Bicycle DayViews. The normalized weekday DayView representations of each
of the stations was made and also the similarity matrix was constructed that stores the
Dynamic Time Wrapping (DTW- which is a distance metric with a one-hour Sakoe-
Chiba band ([10]) between each cluster are created. The clustering started by assigning
each station to separate clusters. The clustering continued till the average intercluster-
to-intracluster distance is more than the weight applied to decrease the total number
of clusters. The algorithm used to cluster is not having any knowledge about the
geolocation of stations. Prediction of the station usage is also carried in the study
which is not mentioned in detail here as we are interested in the clustering.

[11] also shows how the analysis of BSS data is useful in evaluating the success
of policy shifts by transport authority and the transport system. The analysis was
conducted on London’s shared bicycle scheme called Barclay’s Cycle Hire. The main
objective is to validate the hypothesis of the new policy shift masks the change of
the spatial and temporal usage patterns of the system. So, the analysis was done
on the data collected pre- and post- policy change. The data is collected as two
separate datasets. One for the pre-policy change period and another one for the post
period. The Normalized Available Bicycles(NAB) is calculated and taken as the metric.
NAB is the total number of available bikes in each station divided by the total size of
each station. This is taken into consideration as the size of each station is different.
Temporal analysis is carried out in both the datasets by taking the average of the NABs.
The analysis is also done separately for weekdays and weekends for both the datasets.
In the spatio-temporal analysis, week day pattern of each stations is geographically
distributed is analyzed. Hierarchical clustering algorithm used in [12] is used for this.
In the algorithm, each station is represented by the time series vector of the NABs.
Using the 2-sided-moving average is used to smooth the data. Each station is assigned
to a cluster. Similarity of each cluster is calculated and based on that, similar clusters
are merged. This process is continued till the pre-defined number of clusters is reached.
The 2-sided-average is averaging the stations with its neighbors. That is, each element
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pi is averaged with its neighbors - pi+1 and pi−1. That is,

Pi = (1/3) ∗ (pi−1 + pi + pi+1)

The similarity of the clusters p and q is calculated using the Euclidean distance
between the time series of p and q as

Sim(p, q) =
√∑

i

(pi − qi)2

When a cluster p with x number of stations are merged with the cluster q with
y number of stations, the weighted average is calculated for the new cluster n with
weights are the number of stations in each of the clusters.

ni = ((x ∗ pi) + (y ∗ qi))
(x+ y)

The clustering also done for both the datasets. In this algorithm the number of
clusters is predefined and it is selected as six. It is selected empirically to obtain more
intra-cluster similarity and less inter-cluster similarity. The study could find out some
effects to some of the stations as a result of the policy change. In this study we are not
predefining the number of cluster like this study. The clusters are created automatically
by the Bayesian non-parametric mixture model which is the major difference between
this algorithm.

Unless using a clustering technique, [13] generates insights of bike sharing system
by mining the bike sharing data. The insights are gathered from analyzing 38 systems
located in Europe, Asia, Australasia, Middle East and the Americas. This study pro-
poses a classification of the bike shares based on the geographical footprint and diurnal,
day-of-week and spatial variations. The data is collected using the API provided by
each of the BSSs in every 2 minutes. When there is a downtown of the system, the
data is collected in every 10-20 minutes. The data was collected for 2 years and over
80 cities. Three types of characteristics of the docking station footprints are analyzed
- Aggregate characteristics, Spatial characteristics and Temporal characteristics. First
one, aggregate characteristics include maximum number of docking stations, maximum
number of available bikes, the largest difference between the daily minimum number
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of bicycles and the maximum. Using these, the maximum load factor and maximum
intraday load factor change are calculated. Spatial characteristics include the latitude
of the centroid of the system, area of influence of the system, the observed mean dif-
ference between docking stations, Z-score which defines if the system is statistically
clustered, random or disperse, and the compactness ratio which describes the measure
of the shape of the system compared with a theoretical circular footprint around its
center. The last one, the temporal characteristics include the load factor and a nor-
malized version of the redistribution required to level out the load across the system.
How are these measures vary on an intraday and weekday/weekend basis is also an-
alyzed. The number of full and empty docking points within a docking stations are
counted up regularly to obtain the these measures. The load factor is calculated by
simply aggregating these across the system. The redistribution measure is obtained by
comparing the deviation of the load factor of each station with the average across the
system at that point of time. Based on the measures calculated, a comparative study is
conducted between each of the bike sharing systems. A simple qualitative classification
of the systems based on the temporal characteristics is obtained. This classified each
of the BSS based on the Dominant pattern of the system and predicted demographic.
Dominant patterns are “Seven-day commuter peak" with predicted demographic as
“Commuters", “Two commuter peaks during weekdays, one peak at weekend" with
predicted demographic as “Commuters and weekend leisure users", etc. The applica-
tions of the study are - to obtain the demographic and community detection and to
handle redistribution problem. Using the demographic patterns, a hypothesis can be
formed to get the characteristics of the users in each of the city and also the city itself.
By analyzing the usage peaks and weekend usage, the characteristics of the city like
working hours of the city, the weekend habits of the city dwellers can be obtained.
The operators can create a profile for each of the users and their journeys based on
the data. This can be used to analyze the user patterns and accordingly changing the
load redistribution strategy to address the trend changes in the number of user types
(commuters, tourists, etc). These insights help in the proper budgeting of the future
systems and also helps the existing systems to do necessary changes for the extension
or the pricing approaches.
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2.2 Bayesian Non-Parametric Mixture Models

Several studies are carried out in using the Bayesian approach in clustering. These
studies show how effective is using Bayesian approach in clustering.

The study [14] proposes a statistical model using Bayesian model-based hierarchical
clustering technique to cluster genes with similar expression time profiles. The main
objective of the study was to help the biologists to detect the structure within the data
by clustering the genes with similar dynamics by exploratory analysis data relating to
the gene transcription in Anopheline mosquitoes’ immune response system [14]. The
clustering helps to identify the genes controlled by the same biological mechanism. The
approach is to capture the temporal variations within the clusters using the non-linear
regression splines. Bayesian approach is used to include the uncertain quantities like
the number of clusters and to obtain posterior probabilities that are comparable across
all other models. The expression profiles of 2771 genes at 6 time points are considered
for clustering. The Bayesian Hierarchical clustering based on maximizing the marginal
probability is used to cluster the genes. The method starts with prior cluster C. Then
each time, clusters are visited. The clusters are visited by finding the nearest clusters.
The clusters are merged if the marginal probability increases. This is carried out till the
number of clusters become 1. The best cluster is visited is chosen which maximizes the
marginal probability. The resulted clusters obtained using the method are analyzed.
This shows that the method worked well to detect interesting structures from the data.

Another study [15] uses Dirichlet process Von Mises-Fisher mixture models (DPVMM)
which is a BNP model to cluster I-vector data. Here the objective of the study is to
cluster the utterances that are represented as i-vectors which are directional data. I-
vectors are usually used in speaker verification. They are clustered to identify the
speaker classes. This study focuses mainly on the comparison study of DPVMMs and
Dirichlet Process Gaussian Mixture Models (DPGMMs). It also compares the tradi-
tional methods which is k-means to the Bayesian models. As the data is a direction
data, DPVMM performs well. The comparison study also shows the same. DPVMM
is actually a challenge for the tradition clustering technique called k-means. The val-
ues obtained for DPGMMs are also close o the kmeans value. This study shows that
Bayesian approaches are also as good as the traditional clustering techniques.
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2.3 Summary

Clustering of the bike stations is carried out as the method to analyze the usage pattern
of each of the Bike Sharing Systems. Several algorithms and techniques have used to
cluster the stations based on the data. But most of the algorithms require to predefine
the number of clusters before the algorithm is run. The Bayesian non-parametric
mixture models which is used in this study, does not require to predefine the number
of the cluster. Based on the properties of the data, the model itself tries to find out the
apt number of clusters. Several Bayesian mixture models are used for clustering. Here
we are using DPM-G for clustering which is a BNP model. This helps in capturing the
uncertainty of the cluster assignment.



Chapter 3

Methods

3.1 Functional Data

According to [16], Functional data is considering observed data as a single entity rather
than considering it as a sequence of individual observations. Usually, functional data
is observed as discretely n pairs (tj, yj) where yj is the snapshot of function y at time
tj and j = 1,...,n, with some measured error.

When t is considered cyclically, for example when t is the time of year, then the
functions satisfy periodic boundary conditions. Such data for functions are periodic
functions. The ones which are not cyclic are non-periodic.

3.2 Smoothing of data

When observations are recorded, there is a chance of having some measurement error.
This causes the roughness of the data. So, the data can be smoothed to get rid of the
error.

3.3 Basis Functions

Basis function system is a set of known functions φk which are mathematically inde-
pendent of each other and such that, by taking weighted sum or linear combination

13
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of a sufficiently large number of k of these functions, they can approximate arbitrarily
well any function[16]. One such basis function is the Fourier series system,

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), sin(3ωt), cos(3ωt), ...., sin(kωt), cos(kωt),...
Basis function procedures represent a function x by a linear expansion expansion

x(t) =
K∑
k=1

ckφk(t)

in terms of K known basis functions φk[16][17], where ck represents coefficients.
By basis expansion, it represents infinite dimensional world of functions with a finite

dimensional framework of vector c [16]. Therefore K is the dimension of expansion.

3.4 Fourier Basis

One of the best known expansion is Fourier Series:
x(t) = c0 + c1 sin ωt + c2 sin ωt + c3 sin 2ωt + c4 cos 2ωt +....., where basis

functions defined as[16],
φ0(t) = 1
φ2r−1(t) = sin(rωt)
φ2r(t) = cos(rωt)
The basis is periodic with period 2π/ω. Based on the parameter ω, the period can

be determined. Fourier basis is used for extremely stable data with weak local features
and where the curvature tends to be of the same order everywhere [16].

3.5 Bayesian Nonparametric Models and Cluster-
ing

In order to introduce Bayesian Nonparametrics (BNP) methods for clustering we start
with the basics.
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3.5.1 Statistical model

According, e.g., to [18], A statistical Model M on a sample space X is defined as the
set of probability measures on X. That is if the space of all probability measures on
X is denoted as PM(X), M is a subset of PM(X) ie, M ⊂ PM(X). Assume that the
elements of M are indexed by a parameter theta with values in a parametric space T,
that is,

M = {Pθ|θ ∈ T}

If the dimension of T is finite, then the model is called parametric. The model M
is called Non-Parametric if T is of infinite dimension.

3.5.2 Bayesian and Bayesian Nonparametric Models

In Bayesian statistics, the parameter is modeled as a random variable and the uncer-
tainty is expressed as randomness. The random variable is denoted as Θ with values
in T. Modeling assumption is made on how Θ is distributed by choosing a specific
distribution Q and assuming Q = L(Θ)[18]. Q is called the prior distribution of Θ or
prior of the model. So, a Bayesian model is composed by a model M and a prior Q.
The objective of Bayesian inference is to find out the posterior distribution which is
the conditional distribution of Θ given the data.

A Bayesian model with parameter space which has infinite dimension is called a
nonparametric Bayesian model. As a result, the prior distribution of a nonparametric
model will be a distribution defined on an infinite dimensional space.

3.5.3 Mixture Models

Mixture models are used for density estimation and clustering. In a mixture model,
each observation is assumed to be part of a cluster [19]. In clustering, observations are
grouped into different sets of groups which are mutually exclusive. Following e.g. [18],
mixture models are introduced as follows. Let Xi be an observation assigned to the
cluster k and the cluster assignment be defined as a random variable Li. That is,

Li = k,
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means, Xi belongs to cluster k. The probability of an observation X being assigned to
cluster k is given as

Pk(•) := P [X ∈ •|L = k]

The probability for a newly generated observation to be assigned to cluster k[18] is

ck := P{L = k}

As the clusters are mutually exclusive,

∑
k

ck = 1

.
Then the distribution of X is

P (•) =
∑
k∈N

ckPk(•) (3.1)

Models of this form are called mixture models. If there is finite number of clusters in
the mixture, that is k is finite, then such mixtures are called finite mixture. Assuming
all Pk are distributions in a parametric model {Pφ|φ ∈ Ωφ}, for some parametric space
Ωφ, whose elements have a conditional density p(x|φ) [18]. Then Pk can be represented
by the density p(x|φk). Then P in Equation 3.1 has density [18]

p(x) =
∑
k∈N

ckp(x|φk)

If θ is a discrete probability measure on Ωφ, then it can be represented in the form

θ(•) =
∑
k∈N

ckδφk
(•).

Then the density p(x) can be written as

p(x) =
∑
k∈N

ckp(x|φk) =
∫
p(x|φ)θ(dφ)

and θ is called the mixing measure.
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All the mixture models used in the clustering can be parameterized by discrete
probability measures [18]. Hence a mixture model M can be represented as

M = {Pθ|θ ∈ T}

where T is the set of discrete probability measures on Ωθ.

3.5.4 Bayesian Mixture Models

The mixture models with random mixture measures are called Bayesian mixture mod-
els. Specifically, a random mixture measure can be defined as

Θ =
∑
k∈N

Ckδφk
,

where the Ck and φk, for k∈N are random variables. The prior Q is the distribution
on the random mixing measure Θ.

3.5.5 Dirichlet Process Mixture Models (DPMM)

One of the popular Bayesian nonparametric mixture models is the Dirichlet Process
Mixture Models(DPMM). In this case, if the random discrete probability measures Θ
is generated by[20]:

1. Break-off sticks

V 1, V 2, ..... iid∼ Beta(1, α)

and
Ck := Vk

k−1∏
j=1

(1− Vk),

where Vk are the bunch of variable that are sampled from the beta distribution
with parameters 1 and α. The value of these variables lies between 0 and 1 ([0,1]).

Using the stick-breaking procedure, the Ck are calculated (see the Figure 3.1).
Ck gives the weights. The length of stick to which it is broke is defined using the
variables Vk.



18

Figure 3.1: Stick Breaking Procedure

2. Draw atoms

Then the original distribution G is approximated by drawing from that distribu-
tion. φk is called atom.

φ1, φ2, ....
iid∼ G

3. Merge to a complete distribution

Θ =
∑
k∈N

Ckδφk

If the random discrete probability measures Θ is generated by the above mentioned
method is Dirichlet Process (DP) and denoted as DP(α,G) [18] [21], where Concentra-
tion parameter α > 0 and Base measure G is the probability measure on Ωφ.

There are mainly two effects for α. One is, If the value is large is set for α, it
indicates that the prior guess is given more weight. The other one is, if the value is set
high for α, it indicates that the number of clusters formed is high.

In DP, the probability measures are discrete probability measures. This induces
ties which is the basis for clustering.

Dirichlet Process Mixture Models are constructed by combining DP with an obser-
vation model p(x|φ) [22]. Here the DP acts as a prior on model parameters.

Chinese Restaurant Process (CRP)

Chinese Restaurant Process (CRP) [23] is another representation of the DP. This can
be used to clearly seen how the clustering is carried out using DP. If ψ is random
partition of N then CRP is the distribution over infinite partition of the integers [24]
P (ψ ∈ •) that can be obtained on partitions when we take as prior Q a DP with
parameters (α,G0). ψ is not affected by the choice of G0. The algorithm of CRP
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shows how the clustering is carried out by depicting how the elements are added to the
existing clusters or partitions and how the new clusters or partitions are created. In
[18], the algorithm is given as the sampling scheme. The algorithm can be written as:
For n=1,2,....

1. Insert n into an existing partition ψk with probability

(|ψk|)
(α + (n− 1))

2. Create a new partition with n as the only element with probability

α

(α + (n− 1))

3.5.6 Dirichlet process mixture of Gaussians (DPM-G)

When the observed model on which DP is combined is Gaussian Model, then the
resulting model is Dirichlet Process mixture of Gaussians.



Chapter 4

Model

The model is defined stepwise as follows:

1. Data

Let
¯
X be the set of n observations of functional data with m number of attributes

for each of the observations that is

¯
X =

¯
X1, ¯

X2, ......, ¯
Xn, where

¯
X1 = (X1,1, X2,1, ....., Xm,1)

¯
X2 = (X1,2, X2,2, ....., Xm,2)

.

.

.

¯
Xn = (X1,n, X2,n, ...., Xm,n)

2. Fourier Smoothing

Let p is the number of basis for the Fourier Basis. Let
¯
β be the set of Fourier

coefficients that are obtained for each of the observations after applying Fourier
smoothing, that is

¯
β =

¯
β1,

¯
β2, .....,

¯
βn, where

20
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¯
β1 = (β1,1, β2,1, ....., βp,1)

¯
β2 = (β1,2, β2,2, ....., βp,2)

.

.

.

¯
βn = (β1,n, β2,n, ....., βp,n)

3. Multivariate Gaussian Distribution

The Fourier coefficients of each of the observations are considered as a random
vector conditionally distributed as a multivariate Gaussian distribution. That is,

¯
βi|(µi,Σi) iid∼ Np(µi,Σi),

where µi ∈ Rp is the mean and Σi ∈ Sp++
1 is the covariance matrix of the

multivariate Gaussian distribution..

4. Conditional i.i.d Sampling

(µi,Σi) are generated by sampling their elements independent and identically
distributed (iid), conditionally on p̂ from the given distribution. That is,

(µi,Σi)|p̂ iid∼ p̂

5. Dirichlet Process Model of Gaussian (DPM-G)

The Dirichlet Process with parameters Base Distribution G0 and concentration
parameter α is used as the prior over the distribution p̂. That is,

p̂ ∼ DP (α,G0)
1Sp

++ is the space of symmetric positive definite matrix p x p matrices, defined as Sp
++ = A ∈

Rp×p : A = AT andxT Ax > 0 for all x ∈ Rp such that x 6= 0 .
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This is the DPM-G model. The base measure for this model can be specified
as proposed, e.g.,in [25], where G0 is defined as the product of two independent
distribution like Multivariate Normal Distribution and Inverse- Wishart distri-
bution, respectively for µ which is the location parameter and Σ which is scaling
parameter. That is,

G0(dµ, dΣ; π) = Nd(dµ;m0, B0)× IW (dΣ;ϑ0, S0),

where the notation π is used to denote the vector of model hyperparameters
(m0, B0, ϑ0, S0). Specifically,

m0 is mean of the location component of the base measure.

B0 is variance of the location component of the base measure.

ϑ0 is the degree of freedom of distribution of the scale component and

S0 is the characteristic matrix of the scale component.

In turn, B0 can be defined as an Inverse-Wishart distributed random variable
with b1is the degrees of freedom and characteristic matrix B1.

Notice that, in order for an Inverse-Wishart distribution to be well defined, the
number Î¡ of degrees of freedom must be such that ϑ0 > d+1, where d is the
dimension of the data.

6. Gibbs Sampling that relies on the Blackwell-McQueen Polya urn Scheme is used
to sample from the posterior distribution and cluster assignment is determined.
The posterior distribution is also obtained using the R Package BNPmix2 by
Riccardo Corradin [25].

7. The BNP clustering gives the posterior over the entire space of clusterings [26].
The best clustering is obtained using the method proposed in [26] using similarity
matrix. In Bayesian cluster analysis, the similarity matrix is the matrix whose
elements on [i,j] corresponds to the posterior probability that the observations i
and j are together in a cluster. It is generated by computing the proportion of
the clusterings in which observations i and j are together in a cluster. i and j are

2https://github.com/rcorradin/BNPmix
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the two bike stations here. Then the distance between each of the partition and
the similarity matrix is calculated. By minimizing the distance means, the min-
imizing the lower bound to the posterior expected Variation of Information(VI
between two clusterings is defined as the sum of the entropies minus two times
the mutual information) which depends on the posterior through the posterior
similarity matrix. For this, the Greedy Search algorithm is used. In this algo-
rithm, at each iteration, one closest ancestors or descendants is considered and
move in the direction of minimum posterior expected loss with the VI distance.
Thus the best partition is selected.



Chapter 5

Simulation Study(Numerical
Experimentations)

A simulation experiment is carried out investigate the performance of Bayesian Non-
Parametric mixture models for clustering the functional data. The setup of the sim-
ulation is a slight variation of the one proposed by [27] and also used by [28] and
[29].

A sample of n = 100 curves is generated based on the simulation setting mentioned
above. More specifically four distinct clusters of curves, each one of size 25, are sampled
from the functions

Cluster 1 : X(t) = (1)h1(t) + ε(t), t ∈ [1, 21],

Cluster 2 : X(t) = (1)h2(t) + ε(t), t ∈ [1, 21],

Cluster 3 : X(t) = (1) cos (2t) + ε(t), t ∈ [1, 21],

Cluster 4 : X(t) = (1) sin (2t− 2) + ε(t), t ∈ [1, 21],

where h1 and h2 are defined as

h1(t) = max(6− |t− 7|)

h2(t) = max(6− |t− 15|)

24
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The curves are generated at 101 equidistant points between 1 and 21 (t = 1, 1.2,...
,21).

ε(t) is the white noise, and it is generated as 101 independent random numbers
normally distributed with mean zero and variance 0.5, ie V ar(ε(t)) = 0.5. The Figure
5.1 shows the curves generated for each of these functions.

Figure 5.1: Simulated curves generated

The generated curves are then smoothed using Fourier Basis smoothing. Clustering
is carried out by using Dirichlet Mixture model of Gaussians(DPM-G) to model the
vectors of coefficients

¯
βi, for i=1,2,...,100. The details of these methods are given below.
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5.1 Discriminative basis function

As the curves generated here are somewhat periodic, the Fourier basis smoothing (with
11 basis functions) is chosen to reconstruct the functional form of the data. The curves
are periodic and thus choosing the right basis function to smooth the data without
losing information contained in the data.

Figure 5.2: Simulated curves after smoothing using Fourier Basis with 11 basis func-
tions

Here, the number of basis functions is taken as the 11 as it seems a good compro-
mise which conveniently smooths the curves without losing much of the information
contained in the data. The selection was based on visual investigation of the actual
curve and the smoothed curve. Notice that, as the error is also introduced into each
of the curves while they are being generated, if a larger number of basis functions is
selected, the smoothed curve would fit also the error possible leading to poor clustering
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of the curves. To avoid that, the smallest number of basis which allows to decently fit
the data is taken for smoothing.

Figure 5.2 shows the smoothed curves obtained by Fourier basis smoothing using 11
basis functions. In the Figure 5.1, each color represents the set of the curves generated
from one of the functions mentioned above. In the Figure 5.2, which shows the curves
after smoothing, it is possible to clearly see each set of curves discriminatingly. This
helps in good clustering of the curves.

5.2 Model Estimation

DPM-G model is used to cluster the smoothed curves, based on the coefficients
¯
βi of

each smoothed curve. . In order to implement our clustering procedure, all the model
parameters need to be set. As for this simulated study, the expected output is known
(that is four clusters of 25 curves each), the model parameters are set based on that.
Trial and error method is used to fine tune the system.

Before the analysis, the coefficient vectors
¯
βi, for i=1,...,100, are is standardized

component by component, so to make everything onto the same scale. The DPM-G
model is then fitted to the standardized data.

For location parameter of the base measure µ, Inverse Wishart Prior distribution is
taken for B0 and Normal distribution for m0. B0 is set as IW(60, 0.5*diag(variance of
the data)). That is B1 is set as the diagonal sample variance of the data and the degree
of freedom is set as 60. A larger value is taken for the degree of freedom to reduce the
sampling variability. m0|B0 ∼ m0 is taken as the default value provided by the package
BNPmix which is the column mean of the data. For scaled parameter of the base
measure Σ, Inverse Wishart Prior Distribution is taken as IW(70, (1/7)*diag(variance
of the data)). That is, Degree of freedom ϑ0 is set as 70 and S0 is set as sample variance
of the data. As the coefficient vectors

¯
βi are standardized, the mean is 0 and sample

variance is 1. That is, diag(variance of the data) is the identity matrix.
As DPM-G is a Bayesian non-parametric mixture model, we do not have to explic-

itly define the number of components in the mixture. So the exact number of clusters
which is 4 is not given to the model. Rather, a prior guess for the number of clusters is
given as 30 clusters by suitably specifying the total mass of the DP. More specifically,
this is done by solving the equation to obtain the prior expected number of clusters as
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per (Pitman, 2002), where:

E[Number of clusters] =
t∑

(i=1)

α

(α + i− 1) ,

where t is the number of curves here which is 100. The prior estimate of the number
of clusters is taken as 30 and hence the value of α is calculated. The α which is the
concentration parameter is obtained as 14.24. This is given as one of the parameters in
the prior specification of the model. Intuitively, the model will let the data choose the
number of clusters, number which can potentially deviate from the number specified
as prior guess. This is a convenient feature of BNP mixture models.

The Gibbs sampler that relies on Blackwell-McQueen Polya Urn Scheme is used for
the realization of posterior distribution which is in the BNPmix package by Riccardo
Corradin [25]. 2000 iterations with burn-in period of 500 were used to draw posterior
inference.

Figure 5.3: Output of the one of the 100 repetitions

The BNP provides posterior in the entire space of partitions. The similarity matrix
is generated which has the elements ([i,j]) that are posterior probability that observa-
tion i and j are together. Posterior probability is obtained by computing the proportion
of clusterings which has i and j together in a cluster. Here, i and j are the two sim-
ulated curves. Then the best partition is chosen which minimizes distance between
the similarity matrix and the posterior of the partitions. That is, by minimizing the
posterior expected variation of information(VI). For this, Greedy search algorithm is
used as the optimization method. It considers the one closest ancestors or descendants
at each iteration and move in the direction of the minimum posterior expected loss
with the VI distance. Thus, the best partition is chosen. Figure 5.3 shows the output
of the one of the repetitions.
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Effect of Hyperparameters

The number of clusters changed as the hyperparameters are changed. When B1 in-
creases, which in turn affects B0, causes the variance of the location component to
increase. Hence, the number of clusters decreases and the size of the existing clus-
ters increases. When S0 increases, variance of the scaling parameter increases which
also reduces the number of clusters. Therefore, proper selection of the parameters is
required for the system to perform well.

5.3 Statistical Analysis of Clusters Formed

The 2-dimensional plots between any two pairs of functions of the basis system are
shown in Figure 5.4. It can be seen that in few of the plots, the set of four clusters is
clearly identifiable. But in most of the cases, the scatterplots appear as if only three
clusters were composing the data, with two clusters appearing very close to each other.
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Figure 5.4: The 2-Dimensional plot between each of the basis functions

For example, in Figure 5.5, a plot of const vs sin1 is shown. In that, identifying four
clusters seems difficult from the 2-D plot. It shows the number of clusters as three.
But by analyzing the Figure 5.6, plot of sin2 vs cos5, it seems possible to identify
four cluster even though they are not well separated. Figure 5.7 shows the boundary
marked for each of the clusters for plot in Figure 5.6.
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Figure 5.5: The 2-Dimensional plot of fourier coefficients const vs sin1

Figure 5.6: The 2-Dimensional plot of fourier coefficients sin2 and cos5
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Figure 5.7: The 2-Dimensional plot of fourier coefficients sin2 and cos5 with cluster
boundary

The model parameters are set so that the four clusters are identified. The Table
5.1 below shows the number of clusters identified as four clusters with 25 curves each
in each clusters and number of three clusters formed with one cluster with 50 curves
clustered and the rest two with 25 curves each.

5.3.1 Evaluation

To investigate the performance of the proposed clustering method, the true output and
the observed output are evaluated. The Evaluation is done on each of the levels. First
one is based on the number of clusters got for each of the 100 repetitions. Second one

Number of Clusters formed Frequency of identifying
Four clusters (25,25,25,25) 61
Three clusters (50, 25,25) 27
Others 12

Table 5.1: The different set of clusters identified in each repetition of simulation ex-
periment
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is based on 2000 iterations within each of the 100 repetitions and the third one is the
entropy calculation.

We will start with the first one which is based on the number of clusters obtained
for each of the 100 repetitions. As the it is simulated experiment, we know the true
number of clusters for the data is 4 clusters. The model is executed to cluster the 100
curves (25 each for each of the function) 100 times. The number of clusters identified
are noted. Out of 100 times, the right clusters are identified 61 times. That is,

The percentage of times right clustering detected = 61%

It is calculated as,

Number of times the right clustering detected = (#EST_PART = true)
(#Repetitions = 100)

where EST_PART is the number of clusters obtained in each of the repetitions.
Any clusters which are not four cluster with 25 curves each was not included as the

right clustering. So, 61% seems pretty good.
Average number of clusters is calculated by taking the sum of the number of clusters

obtained in each of the repetitions and dividing that by 100. This is obtained as 3.9.
The deviation of the average of the number of clusters obtained from the expected
number of clusters (which is 4) is calculated as the mean squared error. The Mean
Squared Error is calculated as:

MSE = 1
100

100∑
rep=1

(K̂EST
rep − 4)2

This is obtained as 0.96. This shows that the proposed method is of adequate
performance.

The second evaluation considers each of the 2000 iterations of each repetition. Let
Kn is the number of cluster formed within each of the n=2000 iterations of each repe-
tition. Let K̂rep is the Expectation of the number of clusters formed for 2000 iterations
for each of the 100 repetitions. That is E(Kn|¯

X). It is obtained as a list of 100 ele-
ments. Average of K̂rep for 100 repetitions is calculated as 4.35. The Mean Squared
Error (MSE) which gives the deviation of this average of K̂rep from true clusters which
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is 4 is calculated as 1.39.
The next one is the entropy calculation. Entropy is calculated for each of the 100

repetitions on the number of clusters formed. The true entropy is calculated as below:

H(Ω) = −
∑
k

p(wk) log p(wk)

= −
∑
k

|wk|
N

log |wk|
N

True clustering is 25 each for each 4 clusters. So, entropy of each cluster is

Entropy of each cluster = − 25
100 log 25

100 = 0.35

Similarly, entropy for all the four clusters are calculated which is the same value.
That is, 0.3465736. Therefore, total entropy is calculated as:

Total entropy = 0.35 ∗ 4

= 1.39

This is the True entropy (e0).
With the above entropy equation, the entropy is calculated for each of the clusters

obtained for each of the 100 repetitions. Then the mean entropy is calculated as:

Mean entropy ê = 1
100

100∑
i=1

ei

It is calculated as 1.30.
Mean Squared Error (MSE) is also calculated to find the deviation of the mean

entropy of the observed clustering from the true entropy. It is obtained as 0.04. This
shows that, the proposed method performs good as the deviation of the observed
entropy from the true entropy is less.

The evaluation of the simulated experiment proves that the method performs ad-
equately in clustering the functional data. Hence, this method can be used to cluster
Dublin bikes data.



Chapter 6

Bike Sharing Data

6.1 Data Preparation

The objective is to cluster the stations based on the usage of the bikes. The data is
collected for the 4 weeks in one hour interval. There are 105 stations considered in
the analysis. There were three new stations introduced in between the data collection
started. Those stations are "Avondale Road", "Charleville Road" and "North Circular
Road (O’Connell’s)". The data of these stations are not included in the analysis as
there is no full data for the four weeks for these stations. Different features of each of
the stations are collected which are, available bikes stands, capacity of the stations etc.
Only the one related to the availability of the bikes are used for the analysis which are
’available_bikes’ and ’bike_stands’. ’position’ which gives the longitude and latitude
of the location of each of the stations are also used to locate stations on Google Maps1.
The datetime at which the data is collected is also noted along with the station data
that we get from the API. This helps in transforming the data to functional data as
the function of time.

Based on the location of the stations and the daily and weekly habits of the inhab-
itants, it is expected to have a periodic behavior in the stations usage patterns with a
natural period of one week. Usage pattern is the pattern which shows how the bikes
are getting consumed or dropped off at different point of time. This can be found out
using how the available bikes changes in each of the stations at different point in time.

1https://www.google.com/maps
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Say, if a station is near to the industrial area, where most of the offices are situated. In
such station, it is expected to have more available bikes at the station in the morning
as the people commute to the office during morning time and they drop off the bikes in
these stations. The pattern is exactly opposite in the evening. Most of those stations
might be empty as the flow of the bikes are from these stations to other parts espe-
cially residential area. But there is a possibility of a sudden change in the behavior or
a sudden deviation from the normal behavior (a sudden peak or sudden drop) of the
bike stations when there is an unexpected situation comes up like a group of tourists
visited the country and many of them took Dublin bikes to roam around the city. It
is also could be due to some rainfall, which decreases the use of bikes which will in
turn changes the behavior of the stations. These things affect the normal behavior of
each of the stations. To avoid such exceptions to affect directly the normal behavior,
instead of considering the whole 4 weeks data as it is, it is averaged to a single week.
Hence, the clustering of stations based on the similar behavior is more effective if it is
based on the average data than the considering the four weeks data as it is.

To compare the stations with different capacity of the bikes, the stations data is
normalized. So the metric used is Normalized Available Bicycle(NAB) [8] [11] which is
the number of the bikes, denoted by B, in the stations at a time divided by the total
capacity of the station which is denoted by S. Number of bikes is the ‘available_bikes’
in the data and station capacity is the ‘bike_stands’. NAB of the ith station at time t
is given by,

NABi,t = Bi,t

Si,t
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Figure 6.1: The usage profiles of 6 stations
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This is the loading profile of each of the stations. Plotting the loading profile as
the function of time gives the usage pattern of each of the stations(which can be also
called as the usage profile of each of the stations). The usage profiles of some of the
stations are showed in the Figure 6.1.

6.2 Discriminative Basis Function

The data is smoothed using the Fourier basis. As the data has the periodic behavior,
the Fourier basis with basis functions corresponding to the sine and cosine functions of
periods equivalent to the fraction of natural period of data is selected for smoothing.
The number of basis function is chosen as 25. The selection was based on the visual
comparison of the data and the smoothed data curves. The intention was to select a
basis which is not very big, at the same time, not too small so that the missing out of
information does not happen. It models the data into a discriminative subspace with
the dimension equal to the number of basis function. If the number of basis is taken as
very large, finding similar groups based from this dimensional space will be difficult.
So, selecting the number of basis function as neither a very large value nor a very small
value, is important for good clustering. The Figure 6.2 shows the data and also the
smoothed data. From the Figure 6.2, it can be seen that, 25 basis functions are good
enough to smooth the data.
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Figure 6.2: The usage profiles smoothed using Fourier basis with 25 basis functions of
6 stations
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Figure 6.3: Coefficients of the fourier basis
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The two dimensional plot of the coefficients of the Fourier basis is shown in the
Figure 6.3

6.3 Model Estimation

From the theoretical point of view, the intention is to cluster the stations into mean-
ingful clusters based on its usage profiles. The DPM-G is applied on the Dublin Bikes
data to cluster the station. That is, this section shows the application of the DPM-G
model to the Dublin Bikes data which has proved to be good enough to cluster the
functional data using simulation experiment.

The data is standardized to mean 0. This is done by standardizing. The Fourier
coefficients that are obtained after the smoothing of the data is standardized using the
equation:

Z = X − µ
σ

, where Z is the standardized data.
X is the data to be standardized, which is Fourier coefficients here.
µ is the mean of the data, that is mean of the Fourier coefficients.
σ is the standard deviation of the data, that is the standard deviation of the Fourier

coefficients.
This gives the standardized normal distribution. The DPM-G model is fitted on

this standardized data. As the Fourier coefficients are standardized the mean of the
coefficients is 0 and sample variance is 1.

The model parameter is set and the model is fine tuned using the trial and error
method. The parameters are changed by observing the clusters formed to result in
the meaningful and interpretable clusters. The same distributions as in the simulation
experiment (section) are taken for location parameter of the base measure Âţ and
scaling parameter of the base measure Σ. The distribution of the hyperparameters B0

and m0 of µ is taken as the Inverse-Wishart Prior distribution and Normal distribution
respectively. B0 is set as IW(180, 6*diag(variance of the data)*(180-25-1)). That is
degree of freedom (b1) is set as 180 and B1 is set as the 6 times the variance of the
data * (degree of freedom (b1) -number of basis function - 1). To reduce the sampling
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variability and also to give weightage to the prior guess, the degree of freedom is given
as the large value. The value is finalized based on the trial and error method. m0

is taken as the default value provided by the BNPmix package by Riccardo Corradin
[25]. That is the column mean of the data. Here the mean of the data is 0 as the
data is standardized. The distribution of the Σ is taken as the Inverse Wishart Prior
Distribution with IW(200,(1/3)*diag(variance of the data)*(180-25-1)). The degree of
freedom ϑ0 is set as a large value 200, for the above mentioned reason. S0 is set as one
third times the variance of the data * (degree of freedom (ϑ0)-number of basis function
-1).

The concentration parameter α is set as 0.5 in the intention of intimating the system
that the expected number of clusters that is needed is not large number. The clusters
with more than 10% of the total stations are considered good clusters. As there are
105 stations in the analysis, 10% of 105 is approximately greater than 10 stations in a
cluster. Because the homogenous clusters of bike stations with less than 10 is not good
enough to execute the group-based strategies for resolving the issues that can arise in
the BSSs. So, value of α is set as a small value.

As used in the BMPmix package [25] , the posterior distribution is realized using
the Gibbs sampler that relies on the Blackwell-McQueen Polya Urn Scheme. The
model is executed for 15000 iterations with burn-in period of 100 for drawing posterior
inference. The more number of iterations, the more the sampler converges, resulting
in right estimate of the clusters.

Figure 6.4: Output of the model for Dublin bikes - whole data

The result of the BNP is the posterior in the space of partition. To get the correct
cluster, the similarity matrix is used. The similarity matrix is generated by computing
the posterior probability of i and j observations together in a cluster. This is calculated
based on the proportion that observation i and j are together from the partitions. Then
the best partition is chosen which minimizes the distance between the similarity matrix
and the partitions. Here i and j are the bike stations. The optimization algorithm
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Greedy search is used to find out the best partition which minimize the posterior
expected loss with the VI distance. Figure 6.4 shows the output of the one of the
iterations of complete Dublin bikes data.

Analysis is also carried out separately for weekday and weekend data along with
the whole data (weekday and weekend data together). The same model with hyper-
parameters set is executed for weekday and weekend analysis. This separate analysis
is carried out as it can be seen from the Figure 6.2 that for some stations (station
No 4), the weekday usage is more compared to the weekend. For some stations like
station No:5, the usage is profile is more on the weekend than during the weekdays.
This motivated to investigate separately on the weekday and weekend data. This also
helps in understanding the weekend and weekend habits of the inhabitants.

6.4 Clustering Results for Dublin Bikes Data

The DPM-G model is applied on the Dublin bikes data. The model parameters are
set to obtain the clusters of stations that have meaningful interpretations. The details
of the model parameters are mentioned above. Notice that, it is possible to improve
results by even more fine tuning of the model. The result given here is based on the
best results that is obtained so far.

The resulted clusters are fairly enough to get the interpretation of the similarity of
the usage profile of its member stations. The clusters with number of cluster elements
greater than 10, which is approximately more than the 10% of the total stations, are
considered for analysis. The rest of the clusters with less than 10 stations are considered
as small clusters.

First, the whole data (including both weekday and weekend data together) is ana-
lyzed. After that, the clusters formed for weekday and weekend are analyzed.

6.4.1 Dublin Bikes - Whole Data Analysis

Dublin Bikes data collected for 4 weeks was averaged to a single week and used here.
The resulted clusters after the model is executed is shown in the Figure 6.5.
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Figure 6.5: The obtained cluster for whole data(including both weekday and weekend)

As mentioned earlier, the clusters with less than 10 stations are considered as small
clusters. They are shown as dark or grey symbols. Each symbol denotes each of the
small clusters. The more emphasis here is given to the clusters which have more than
10 stations. From the Figure 6.5, there are three main clusters denoted as cluster 1,
2 and 3. Cluster 1,2 and 3 have 31, 15 and 35 stations respectively. The clusters are
linked with each other but at the same easily distinguishable. The small clusters are
formed in between these main clusters. The cluster are mainly analyzed based on the
temporal patterns. That is, the trend of the Normalized Available Bicycles (NAB) with
the time. By seeing the clusters formed, the spatial organization can also be identified
even though the location is no considered for analysis.
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Cluster Interpretation - Large Clusters

Temporal patterns The trend of the Normalized Available Bikes with time is in
a periodic form. This is then smoothed using Fourier Basis which also retains the
periodic characteristics. This is considered as the temporal pattern for each of the
stations used to cluster the stations. Based on the time pattern, the clusters formed
can be interpreted as below.

The Figure 6.6, Figure 6.7 and Figure 6.8 show the smoothed data using Fourier
series as the function of time for each of the clusters.

Figure 6.6: Normalized
available bikes with respect
to time for cluster1

Figure 6.7: Normalized
available bikes with respect
to time for cluster2

Figure 6.8: Normalized
available bikes with respect
to time for cluster3

It can be seen that, the stations with similar temporal patterns are clustered into
similar group. Figure 6.6 shows the pattern for the stations belong to the cluster 1. It
can be seen that, for these stations, the weekday usage is periodic and consistent and
when it reaches weekend, the variation of usage rate reduces. The weekday pattern
shows that, the available number of bikes decreased till half of the day, then it starts to
increase. This means, the people in that area move to different places in the morning
and reach back in the evening. Then these areas could be the residential areas of the
region. People use bikes to commute for education or for work and then come back to
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home at the end of the day.
By analyzing the patterns of the stations in cluster 2 (Figure 6.7), it can be seen

that, the weekday usage is less in these stations compared to the weekend usage.The
usage is more in the weekend or when it gets near to the weekend. So, these are areas
of recreational activities in Dublin.

From pattern of stations in cluster 3 (Figure 6.8), it can be inferred that the metric
Normalized Available Bikes follows a periodic pattern during weekday and the changes
to this metric is less during weekend. During the weekdays, the inflow of the bikes is
high till the mid of the day and then the bike count is decreased by the end of the
day. This indicates that, the region in which these stations are situated could be an
industrial area where people come to work or study.

From the interpretation based on the temporal patterns, it is evident that the
clusters formed using this model are meaningful.

Spatial characteristics The location of the stations is not considered in the model
for clustering. The DPM-G model only uses the Normalized Available Bikes (NAB)
with respect to time after smoothing as the data. But from the clusters obtained from
the model, it can be inferred that location has influence on the similar behavior of the
stations in each of the cluster. The Figure 6.5 shows that, the stations in cluster 1 are
mainly located in the residential area of Dublin. Temporal pattern (discussed earlier)
also portrays the same inference. Similarly, it is easily noticeable that the stations
in cluster 3 are mainly on the industrial area of Dublin where most of the offices are
situated. In this area, the people come during the first half of the day and then leaves
by evening. So, the number of available bikes starts increasing till mid of the day and
then it decreases as the people start to leave to home from office which is exactly the
temporal pattern obtained for cluster 3. The location of stations that belongs to cluster
2 are mainly in that part of Dublin where all the shops, mall, cafes, night clubs etc
are situation. The behavior of the temporal pattern also shows that the usage is more
during the weekend than the weekdays for stations in cluster 2.

It is evident from above that spatial organization of clusters in a way proves that
the clusters formed based on the trend of normalized available bikes with time are
meaningful and logically clustered.



47

6.4.2 Cluster Interpretation - Small Clusters

The clusters with number of stations less than 10 are considered as small clusters. The
behavior of small clusters are discussed here.

Figure 6.9: Normalized available bikes with
respect to time for cluster5

Figure 6.10: Normalized available bikes
with respect to time for cluster6

The trend of NAB with time for clusters 5 and 6 are shown in the Figure 6.9 and
Figure 6.10. The number of stations in cluster 5 and cluster 6 are 4 and 5 respectively.
The periodic behavior continues throughout the week. There is no difference of behavior
between weekday and weekend. For cluster 5, the outflow is more first and then inflow
of bikes increases. That is the available bikes decreases till a certain time of the day and
then increases till the end of the day. The behavior is exactly reverse in case of cluster
6. The inflow of bikes is high first and then the outflow of bikes increases for cluster6.
That is available bikes increases till a certain time of the day and then decreases till
the end of the day. This is the main difference between cluster 5 and cluster 6.
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Figure 6.11: Normalized available bikes
with respect to time for cluster7

Figure 6.12: Normalized available bikes
with respect to time for cluster10

The Figure 6.11 and Figure 6.12 show the clusters 7 and 10 respectively. The
cluster 7 has 4 stations and cluster 10 has 1 station. The stations in these clusters
have a different behavior compared to other clusters. The cluster 7 shows an irregular
pattern during first few days of the week and then it becomes periodic by the middle of
the week before it becomes irregular by the end of the week. For cluster10, the trend
starts with a periodic pattern and then it becomes non-periodic from the mid of the
week. This shows that the stations which deviate from the periodic behavior are also
captured as clusters even though the number of stations that belongs to these clusters
are small. This irregular behavior indicates that the demand for the bikes in these
stations varies unexpectedly. Less variation in the trend signals that the usage rate is
minimal at these stations at times.

6.4.3 Dublin Bikes - Weekday and Weekend Data Analysis

The Dublin Bikes data collected during 4 weeks and averaged into a single week is
separated into weekday and weekend data for an independent analysis of weekday and
weekend usage. The same model with the same value set for the hyperparameters is
executed for both weekday and weekend data after smoothing. The resulted clusters
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for weekday and weekend are shown in the Figure 6.13 and Figure 6.14.

Figure 6.13: The obtained cluster for weekday

For the weekday, there are three main clusters similar to the clusters obtained for
whole data analysis. The locations of the clusters also remain the same. But the
number of small clusters (the clusters with number of stations less than 10 stations)
is more than that resulted from analysis of whole data. Most of the small clusters are
situated in the borderline of three main clusters. That is, usage profile of some of the
stations that belong to the small clusters get more similar to the usage profiles of the
stations that belongs to the main clusters when the weekend data is also considered
with the weekday data. Even then, from the Figure 6.13, it is evident that the clusters
formed are sensible and meaningful. Hence, the clustering is good.
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Figure 6.14: The obtained cluster for weekend with small clusters shown
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Figure 6.15: The obtained cluster for weekend without demarcating small clusters
shown
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The clusters that are resulted by analyzing the weekend data alone is shown in the
Figure 6.14. The number of small clusters is more than the number of solid shape
available to denote in the plot. Hence other symbols like ‘$’, ‘&’ etc. are used to
represent small clusters. Another figure (Figure 6.15) which shows the main clusters
colored triangles and small clusters using a grey filled circle is also shown in order to
demarcate the main clusters from the small clusters. It is visible that there are only
two main clusters formed. Rest all the clusters formed are small clusters. There 30
small clusters formed. The large two clusters are mainly located in the industrial area
and the residential area of Dublin. The small clusters are formed in the middle of these
two main clusters. The reason behind the large number of clusters formed is size of the
data. If the weekend is only considered, the data itself is small. Analysis pattern based
on the behavior of station just for two days is difficult. Even the small changes in the
pattern causes the station to be clustered as a different cluster. Even then, the main
clusters that are formed are meaningful and hence the clusters formed by the model is
good.

6.5 Limitations

There are several limitations for the Dublin Bikes data. One of the limitations is that,
the stations are filled if the availability of bikes is low or bikes are removed if it has high
available bikes using the removal/balancing operations carried out by Dublin Bikes BSS
. This results in a sudden spike of the available bikes without any reason. This is not
considered in the analysis.

The other factors like a public holiday or sudden rainfall that also affect the usage
of bikes or the tourists season when there is a huge inflow of tourists etc. could also
affect the BSS functioning. The intention of averaging the four weeks into single weeks
is to handle such situations. But a vast study specifically analysing such cases is not
carried out.
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6.6 Suggestions to BSSs

Based on the cluster analysis, suggestions could be given for balance/removal opera-
tions of BSS. From the cluster analysis (with whole data Figure 6.5), it can be seen
that the outflow of bikes from stations in cluster 1 increases till mid of the day. That
means, the availability of bikes decreases during that time. There could be chance of
stations getting empty. At the same time, it can be seen that, till the mid of the day,
the inflow of bikes to the stations in cluster 3 increases. That means, the number of
available bikes increases in these stations. This could lead to stations getting full. This
makes the number of empty stands to drop off the bikes to decrease also. During this
time of the day, the BSSs operators should work on balancing the available bikes at
these stations by transforming the bikes at stations in cluster 3 to stations in cluster1.
The case is reverse during the next half of the day at these stations in cluster1 and
cluster3. Then, for balancing the number of bikes, it should be taken from cluster1 to
cluster3.

In the resulted cluster (for whole data Figure 6.5), there are 7 small clusters with
less than 10 stations. Analyzing larger clusters with more number of stations show
that these stations are working fine. When small clusters are analyzed, it can be seen
that, the stations have the trend of available bikes with time, not periodic through
out the week. That means, demand of the bikes at these stations varies unexpectedly
throughout the week. Less variation in the pattern indicates minimal usage rate.
A detailed study on the reasons for this irregularity and minimal usage rate should
be conducted. Introduction of new policies to improve those stations should also be
performed by the BSS for the smooth functioning of the Dublin Bikes.



Chapter 7

Conclusion and Future Work

The motivation for this study is to analyze the Dublin Bikes data which is one of
the popular BSS in Dublin to see how the stations with the same behavior or usage
profile can be clustered together for the group targeted strategies to be applied for
resolution of issues with reduced cost. Applying a BNP model was a novel approach
in analyzing the BSS data also motivated for this study. The DPM-G model which is
one of the BNP models is proposed to cluster the stations. The data is transformed
to a functional data as the function of time and smoothed using the Fourier series.
A Gibbs sampler that relies on the Blackwell-McQueen Polya urn Scheme is used to
sample from the posterior distribution and cluster assignment is determined. To this
end the BNPmix Package[25] was used. The BNP models provide posterior on the
entire space of partitions. The best partition is chosen using the similarity matrix as
suggested by [26] by minimizing the posterior expected Variation of Information (VI).

A simulation experiment was conducted to prove that the model works fine. The
performance of the model in clustering is also evaluated. It shows a good performance
in clustering the functional data. Simulated study was also able to show that the BNP
models could extract clusters based on the data and no need of explicitly defining the
number of clusters.

The model was applied to the Dublin Bikes data. The data is collected for a period
of 4 weeks in 1-hour interval using the API provided by JCDecaux. Then the data is
averaged to a single week to reduce the sudden deviation of the behavior of the stations
from the usual behavior due to some external factor like sudden rush of tourists etc.

54
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The behavior of the station is calculated as the usage profile which is defined by the
metric normalized available bikes (available number of bikes divided by capacity of the
station). The data is then smoothed using Fourier Basis and DPM-G is applied. The
challenge was to set the model parameter to tune the model for the right estimate of
clusters. The clusters obtained were meaningful and easily interpretable which helps
in applying group targeted strategies for the issue resolution by BSS. The clusters are
obtained based on the trend of Normalized Available Bikes (NAB) with time. Even
then, if we check the spatial organization, the clusters are organized region wise which is
stations in residential area are clustered together and that of industrial area is clustered
as a separate cluster. This also proves that the obtained results are good.

The study can also be extended by mitigating the limitations of the project. In
the study, the factors that affect the availability of bikes like the removal/balancing
operation of the BSS which removes bikes or drops off bikes based on the number
of bikes in a station, public holidays which is a deviation from the normal behavior
of the stations, climate changes like heavy rainfall etc. Studying these factors also
will help in improving the result obtained. This can be taken as a future work. The
number of basis chosen in smoothing the data is chosen based on the visual comparison
of the data curve and the smooth curve. A sensitive study could be carried out in
determining the number of basis function which is not carried out in this study due to
time restrictions. A sensitive study could also be carried out in determining the values
for hyperparameters even though the values are set in this study by understanding the
meaning of the parameters and examining the clusters formed. These can also be taken
as a future work. The evaluation of clusters could also be extended by calculating the
Rand Index which is a measure that gets the similarity between two clusterings[30].
This evaluation could also be taken in the future work.
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Appendix

Abbreviations
AS Activity Score
BNP Bayesian Non-Parametric
BSS Bike Sharing System
DFM Discriminative Functional Mixture Model
DP Dirichlet Process
DPM-G Dirichlet Process Mixture model of Gaussian
DPMM Dirichlet Process Mixture Models
DPVMM Dirichlet process Von Mises-Fisher Mixture Models
DTW Dynamic Time Wrapping
IW Inverse-Wishart
NAB Normalized Available Bicycles
PCA Principle Component Analysis
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