
Heterogeneous Multi-Agent Deep Reinforcement

Learning for Traffic Lights Control

Jeancarlo Josue Arguello Calvo

A dissertation submitted to University of Dublin, Trinity College

in fulfilment of the requirements for the degree of

Master of Science in Computer Science Future Networked

Systems

August 2018

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Jeancarlo Josue Arguello Calvo

August 26, 2018

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Jeancarlo Josue Arguello Calvo

August 26, 2018

Acknowledgments

To my lovely girlfriend Vivian, for supporting me unconditionally during all this year

that we have been apart. To my supervisor, Prof. Ivana Dusparic, for her guidance in

this research process. To my roommate, Larry, for always being there. And finally, to

all my family for all their support, for believe in me and for always being there for me

without questioning me.

Gracias Totales y Pura vida!!!

Jeancarlo Josue Arguello Calvo

University of Dublin, Trinity College

August 2018

iv

Abstract

People are wasting time in traffic jams that often are caused by an inefficient control

of traffic lights in intersections. In recent years several approaches have been taken in

order to optimize traffic flow in junctions. The most promising technique has been

Reinforcement Learning (RL) due to its capacity to learn the dynamics of complex

problems without any human intervention. Different RL implementations have been

applied in urban traffic control (UTC) to optimize towards single and multiple agents

achieving collaboration. The main problem of these approaches is the curse of dimen-

sionality that arises from the exponential growth of the state and action spaces because

of the number of intersections.

RL had a breakthrough when it was combined with Neural Networks to implement a

method so called Deep Reinforcement Learning (DRL) which enhances hugely the per-

formance of RL for large scale problems. Cutting edge Deep Learning (DL) techniques

have demonstrated to work very well for traffic lights in single agent environments.

Nonetheless, when the problem scales up to multiple intersections the need for coor-

dination becomes more complex, and as a result, the latest studies take advantage of

the similarity of agents in order to train several agents at the same time. However, the

usage of homogeneous junctions is not a real world scenario where a city has different

layouts of intersections.

This thesis proposes to use Independent Deep Q-Network (IDQN) to train hetero-

v

geneous multi-agents to deal with both the curse of dimensionality and the need for

collaboration. The curse of dimensionality is handled by using the Deep Q-Network

technique, whose performance and stability is enhanced by using aggregated methods

such as Dueling Networks for faster training by computing separately the value and

the advantage functions, Double Q-Learning for selecting better Q-values by preventing

overoptimistic value estimations and Prioritized Experience Replay for learning more

efficient from the experience replay memory by sampling more frequently transitions

from which there is a high expected learning progress. IDQN trains simultaneously and

separately each agent which allow us to support heterogeneous agents. Unfortunately,

this technique can lead to convergence problems because one agent’s learning makes

the environment appear non-stationary to other agents, and this problem conflicts with

experience replay memory on which DQN relies. We address this issue by conditioning

each agent’s value function on a fingerprint that disambiguates the age of the data

sampled from the replay memory.

The proposed solution is evaluated in the widely used open source SUMO simula-

tor. We demonstrate that the proposed IDQN technique is suitable for optimization of

traffic light control in a heterogeneous multi-agent setting with the usage of the pro-

posed fingerprint technique that stabilizes the experience replay memory in order to

deal with non-stationary environments. We show that it outperforms normal fixed-time

and DQN without experience replay.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1

1.1 Multi-Agent Training Schemes . 2

1.1.1 Centralized . 2

1.1.2 Parameter Sharing . 3

1.1.3 Independent . 3

1.2 Issues in Multi-Agent Environments . 4

1.2.1 Agent Dependency . 4

1.2.2 Agent Heterogeneity . 5

1.2.3 Cooperation in Heterogeneous Environments 5

1.3 Thesis Aims and Objectives . 6

1.4 Thesis Assumptions . 6

1.5 Thesis Contribution . 7

1.6 Document Structure . 8

Chapter 2 Background and Related Work 9

2.1 Reinforcement Learning . 9

2.1.1 Q-Learning . 12

2.2 Deep Learning . 13

vii

2.2.1 Backpropagation . 13

2.2.2 Convolutional Neural Networks 14

2.2.3 Optimization Algorithms . 15

2.3 Deep Reinforcement Learning . 16

2.3.1 Deep Q Networks . 17

2.3.2 Double DQN . 18

2.3.3 Prioritized Experience Replay 19

2.3.4 Dueling Network . 21

2.4 Multi-Agent Reinforcement Learning 22

2.4.1 Independent DQN . 23

2.4.2 Fingerprints . 24

2.5 Deep Reinforcement Learning in Traffic Control 24

2.5.1 Multi-Agent Reinforcement Learning 25

2.5.2 Single Agent Deep Reinforcement Learning 31

2.5.3 Multi-Agent Deep Reinforcement Learning 38

2.6 Summary . 43

Chapter 3 Design 44

3.1 Traffic Light Control Problem . 44

3.1.1 State Representation . 45

3.1.2 Action Space . 46

3.1.3 Reward Function . 49

3.2 Deep Reinforcement Learning Techniques 51

3.3 Deep Neural Network Architecture . 57

3.4 Single Agent Training . 58

3.5 Multi-Agent Design . 58

3.5.1 Training . 61

3.6 Summary . 61

Chapter 4 Implementation 64

4.1 Simulation Environment . 64

4.2 Deep Reinforcement Learning . 65

4.2.1 TrafficEnv . 65

viii

4.2.2 TrafficTfInput . 66

4.2.3 DQNAgent . 66

4.3 Neural Network Architecture . 67

4.3.1 Optimizer . 70

4.4 Multi-Agent Deep Reinforcement Learning 72

4.4.1 TrafficEnv . 72

4.4.2 DQNAgent . 73

4.5 IDQN Neural Network . 73

4.6 Summary . 74

Chapter 5 Evaluation 75

5.1 Objectives . 75

5.2 Metrics . 76

5.3 Evaluation Scenarios . 76

5.3.1 Evaluation Techniques . 76

5.3.2 Scenarios . 77

5.4 Setup . 77

5.4.1 Network Layout . 78

5.4.2 Traffic Demand . 79

5.4.3 Hyper-paraments . 80

5.5 Results and Analysis . 80

5.5.1 Low Traffic Load . 81

5.5.2 High Traffic Load . 86

5.6 Evaluation Summary . 88

Chapter 6 Conclusions and Future Work 89

6.1 Thesis Contribution . 89

6.2 Future Work . 90

Appendix A Appendix 93

A.1 Traffic Demand Generation . 93

A.2 Metrics for Experiments . 95

A.3 Complete views of the Implementation of the Deep Neural Network . . 96

ix

Bibliography 99

x

List of Tables

2.1 Existing research in Multi-Agent Reinforcement Learning for Traffic Sig-

nal Control . 26

2.2 Test environments of existing research in Multi-Agent Reinforcement

Learning for Traffic Signal Control . 31

2.3 Existing research in Single Agent Deep Reinforcement Learning for Traf-

fic Signal Control . 32

2.4 Existing research in Multi-agent Deep Reinforcement Learning for Traf-

fic Signal Control . 39

2.5 Test environments of existing research in Multi-agent Deep Reinforce-

ment Learning for Traffic Signal Control 42

3.1 DRL techniques evaluation hyper-parameters 50

3.2 DRL techniques evaluation hyper-parameters 51

4.1 Reward function evaluation hyper-parameters 70

5.1 Multi-agent evaluation hyper-parameters 81

xi

List of Figures

1.1 Heteregenous Muti-agent setting . 4

2.1 Reinforcement Learning [1] . 11

2.2 A popular single stream Q-network (top) and the dueling Q-network

(bottom). The dueling network has two streams to separately estimate

(scalar) state-value and the advantages for each action; the green output

module implements equation (2.21) to combine them. Both networks

output Q-values for each action [2] . 22

2.3 Distributed W-Learning [3] . 27

2.4 Architecture [4] . 28

2.5 The deep SAE neural network for approximating Q function [5] 33

2.6 DNN structure. Note that the small matrices and vectors in this figure

are for illustration simplicity, whose dimensions should be set accord-

ingly in DNN implementation [6] . 34

2.7 Agent training process [6] . 35

2.8 The architecture of the deep convolutional neural network to approxi-

mate the Q-value [7] . 36

2.9 The architecture of the reinforcement learning model in our system [7] . 37

2.10 Non parametric control learnt by experience. A neural network decides [8] 40

3.1 State Representations . 45

3.2 Traffic light phases available to agent with 4 roads 47

3.3 Traffic light phases available to agent with 3 roads 48

3.4 Reward Functions Experiment . 50

3.5 DQN Single Agent Experiments . 52

xii

3.6 DDQN Single Agent Experiments . 53

3.7 Prioritized DDQN Single Agent Experiments 55

3.8 Prioritized Dueling DDQN Single Agent Experiments 56

3.9 The architecture of the Deep Neural Network. 57

3.10 Multi-Agent Partial Observation . 61

4.1 DRL Traffic Control System Class Diagram 65

4.2 Dueling Network built with TensorFlow [9] 68

4.3 Deep Q-Networks built with TensorFlow [9] 69

4.4 Comparison between RMSProp and Adam Optimizers 71

4.5 IDQN Traffic Control System Class Diagram 72

4.6 Independent Deep Q-Networks for 3 agents built with TensorFlow [9] . 73

5.1 Network Layout for Multi-Agent Experiments 78

5.2 Entry and Departure points in Network for Multi-Agent Experiments.

Green points correspond to entry and departure points, while blue points

are intersections. 79

5.3 Low Traffic IDQN Experiments . 83

5.4 Low Traffic IDQN Experiments with Standard ERM 85

5.5 High Traffic IDQN Experiments . 87

A.1 Single intersection routes . 94

A.2 Whole view of the Neural Network Architecture built with TensorFlow [9] 96

A.3 Zoomed upper view of Whole Neural Network Architecture built with

TensorFlow [9] . 97

A.4 Zoomed lower view of Whole Neural Network Architecture built with

TensorFlow [9] . 98

xiii

Chapter 1

Introduction

This thesis addresses heterogeneous multi-agents for urban traffic control (UTC) sys-

tems as the first study applying Deep Reinforcement Leaning (DRL) in a heterogeneous

network layout which is a reflection of the cities in the real world. It proposes the usage

of DRL to deal with the curse of dimensionality that suffers Reinforcement Learning

approaches by using Neural Networks which works better for complex large problems.

It also uses Indepedent Q-Learning (IQL), where each agent learns independently and

simultaneously its own policy, treating other agents as part of the environment. How-

ever, the environment becomes nonstationary from the point of view of each agent, as

it involves the interaction with other agents who are themselves learning at the same

time, ruling out any convergence guarantees. The technique used for this problem is

Deep Q-Networks which relies in a component so called experience replay memory in

order to stabilize and improve the learning. However, this memory is incompatible

with non-stationary environments. In order to combine the experience replay memory

and IQL, we used a technique of fingerprinting which stabilizes the memory against

the non-stationarity. This fingerprint disambiguates the age of the data sampled from

the replay memory. We evaluate the usage of IQL with Deep Q-Networks in a multi-

agent setting by using a simulation of an urban traffic control system. This chapter

motivates the work, introduces multi-agent optimization and IQL, outlines the main

contributions of this work, and presents a roadmap for the remainder of the thesis.

1

1.1 Multi-Agent Training Schemes

This section describes three training schemes for multi-agent DRL. It outlines the

advantages and disadvantages of each approach, and describes how each can be used

in DRL.

The following approaches to multi-agent decision making under uncertainty are

based in the theory of Markov Decision Processes (MDPs), for example Decentralized

Partially Observable MDPs (Dec-POMDPs) [10] which are intractable without commu-

nication; and Multiagent MDPs (MMDPs) and POMDPs (MPOMDPs), which assume

free communication between agents [11].

1.1.1 Centralized

This method assumes a joint model for the actions and observations of all the agents.

A centralized policy maps the joint observation of all the agents to a joint action, which

is based on a MPOMDP policy. The major problem of a MPOMDP is the exponential

growth in the observation and actions spaces with the number of agents. This can be

address by factoring the action space of centralized multi-agent systems. Assuming

that the joint action space can be split into individual components for each agent, the

factored centralized multi-agent system can then be defined as a set of independent

sub-policies that map the joint observation to an action for a single agent [12].

In a policy gradient approach this is done by dividing the joint action probability

as P(−→a) =
∏

i P(ai) where ai are the individual actions of an agent. As a result,

the output of the neural network policy has to capture just the action distributions

for each single agent rather than the joint action distributions for all the agents. In

systems with discrete actions, the size of the action space is decreased from ‖A‖n to

n‖A‖, where n is the number of agents and A is the action space for a individual agent.

In spite of the significant reduction in the size of the action space, the exponential

growth in the observation space makes centralized approaches unusable for complex

cooperative problems [12].

2

1.1.2 Parameter Sharing

This approach is only suitable for homogeneous agents, hence it is inappropriate for the

goal of this research which aims to work with heterogeneous agents. When the agents

are homogeneous, their policies can be trained more efficiently using parameter shar-

ing. In this method all the agents share the parameters of a single policy. This allows

the policy to be trained with the experiences of all agents at the same time. Nonethe-

less, it allows different behaviors between agents because each agent receives different

observations. In this approach, the control is decentralized but not the learning, which

makes it the most scalable approach out of the three described in this section, however

its disadvantage is that it does not work for heterogeneous agents [12].

A policy gradient version of the parameter sharing training approach is presented

in [13]. At each iteration of the TRPO algorithm, the decentralized policy is used to

sample trajectories from each agent. The batch of trajectories from all the agents is

used to compute the advantage value and maximize the following objective [12].

1.1.3 Independent

In this method each agent learns its own policy by following a Dec-POMDP approach.

Independent policies map an agents local observation to an action for that agent.

One strength is that it makes learning of heterogeneous policies easier. This can be

advantageous in situations where agents may need to take on specific roles in order to

coordinate and receive reward. Although, there are two complications on this approach.

First, the training of independents policies does not scale to large numbers of agents

because the agents do not share experience with each other. The training requires a

policy for each agent, which increases the computational and memory resources needed

when the policies are represented by complex models such as neural networks. Second,

as the agents are learning and adjusting their policies simultaneously, the modifications

in the policies make the environment dynamics non-stationary. This normally leads

to instability issues, and it is incompatible with DRL approaches based on Deep Q-

Networks (DQN) that relies on experience replay memory to stabilize and enhance the

learning. The standard experience replay memory of DQN can quickly turns the stored

experiences obsolete due to the updates of other agents that are perceived as part of

the environment [12]. We address the latter issue by using a fingerprint as proposed in

3

[14]. This technique is going to be explained later in Chapter 2 and 4.

1.2 Issues in Multi-Agent Environments

In this section we introduce and analyze properties of multi-agent that can conflict to

achieve a good performance of the UTC system. Specifically, we discuss issues of agent

heterogeneity dependency, as well as consequences that these might have on agent

collaboration.

1.2.1 Agent Dependency

The performance of an agent in a multi-agent settings can be impacted, directly or

indirectly, and both positively and negatively, by other agents actions [15]. In the case

of a UTC system the performance of one junction can be affected by some or all of its

upstream and/or downstream neighbours.

Figure 1.1: Heteregenous Muti-agent setting

For an example, consider Figure 1.1 which shows 4 linked intersections controlled by

agents A1, A2, A3 and A4. If the intersection managed by agent A3 is oversaturated,

traffic can come to a standstill and queues at that junction can spill over downstream

to block the junction managed by agent A2. No traffic will then be able to pass

through this junction regardless of the actions of A2, as there will be no available

space on the upstream road. Similarly, the efficiency of A3, A1, and any other agents

4

at other intersections that feed traffic to A2 can cause oversaturation at A2 if they are

letting pass more traffic than A2 is clearing. The dependency can also be extended

to the agents further downstream from A2, such as A4, as that agent influences the

performance of A3, which in turn influences the performance of A2, causing a potential

dependency between non neighbouring agents A2 and A4. As a consequence, there is

a transitive dependency between all of the agents in a UTC system. Due to this

dependency, agents should consider not only their local view benefit, but also the

repercussion of other agents’ actions, specially their immediate neighbours.

1.2.2 Agent Heterogeneity

It is specially hard for agents to take the needs of other agents into consideration when

agents are heterogeneous and implement different policies. The first source of hetero-

geneity is the discrepancy in the agents operating environment and capabilities. For

instance, in a UTC system the intersections can have several layouts, i.e., the number

of incoming and outgoing ways and the allowed traffic operations can be distinct. In

RL, this results on agents having different state and action spaces, since the combi-

nations of traffic signal phases available to agents managing the junctions of different

layout differ. As a consequence, the agents do not have a common interpretation of

the meaning of particular states and/or actions.

1.2.3 Cooperation in Heterogeneous Environments

Due to the aforementioned issues, an optimal performance of the system as a whole

might not be as simple as optimizing the performance of all agents individually, but

they may require to cooperate with each other in order to achieve a global optimal

behaviour. In order to implement cooperation, some information should be shared

or exchange with the purpose of overcoming the aforementioned problems. However,

heterogeneous agents are not able to exchange experiences with each other, as their

state and actions spaces differ, such that the learning obtained at one agent is not

useful to other agents with different state-action spaces. Once the exchange information

component is chosen, it is important to determine with whom each agent is going to

cooperate. As the levels of dependency between agents might differ, an agent might

only need to collaborate with other agents whose actions it is influenced by, and agents

5

that are influenced by its local actions. For example, it might need to cooperate only

with neighbour agents.

1.3 Thesis Aims and Objectives

The general objective of the thesis is to address the gap in DRL-based self-optimization

techniques for traffic control lights, whereby existing techniques address either a sin-

gle agent, or address collaborative optimization in multi-agent systems, but towards

only homogeneous agents. We believe that, if DRL-based techniques are widely used

for optimization in UTC systems, they need to be able to optimize towards multiple

heterogeneous agents simultaneously. Such an approach can be applied to realistic

intersection scenarios of any city worldwide. This thesis argues that DRL is a suitable

basis for such a technique, due its ability to learn suitable behaviours without requiring

a model of the environment, and ability to deal with large complex problems. This

thesis analyses requirements for such an multi-agent DRL-based method for optimiza-

tion heterogeneous environments, presents the design and implementation of a suitable

technique, and evaluates it in a simulation of UTC.

1.4 Thesis Assumptions

In designing and evaluating this multi-agent DRL, this thesis makes a number of as-

sumptions about the environment in which it is to be deployed. The design assumptions

limit the scope of the thesis by limiting the number of issues that it addresses, while the

evaluation environment assumptions are imposed by the capabilities and limitations of

the UTC simulation system used.

In this thesis, agents are assumed to be stationary, i.e., their locations are fixed and

they do not move through the environment. This is the case in our evaluation area, as

agents are associated with traffic lights, which are stationary. Agents are also assumed

to be failure-free, and hence issues arising from agents not being able to contact their

neighbours, or agents receiving incomplete or inaccurate information are not addressed.

The state space is assumed to be a post-processing representation of video images

of traffic cameras, additionally is assumed that all the intersections have the same

6

capabilities of observation of the state, i.e., the same viewpoint, image resolution and

view size.

System timing on all agents in the system is synchronized, and the agents are

assumed to make decisions simultaneously at fixed time intervals. This thesis does

not investigate how asynchronous decision making would impact on the design and

performance of the multi-agent DRL approach.

In the simulations performed in this thesis, the behaviour of traffic lights is de-

termined by the simulated control mechanism (DRL or the baselines), while the be-

haviour of cars, i.e., their starting position, route, and destination, are predefined. A

consequence of this characteristic of the simulation environment is that, if there is no

available road space for cars to join the simulation at the junction specified as their

starting position, they are not inserted into the simulation.

1.5 Thesis Contribution

This thesis identifies and motivates the need for a DRL-based heterogeneous multi-

agent technique as it has not been studied before. It intends to answer the question

of if DRL is a suitable technique for heterogeneous multi-agent for UTC system. It

presents the challenges of a heterogeneous multi-agent UTC system using DRL, and

based on them proposes the requirements for such a technique. The main contri-

bution of the thesis is the design, implementation and evaluation of a DRL method

for heterogeneous multi-agent traffic light control system. Unlike existing DRL-based

techniques, Independent Deep Q-Network (IDQN) enables the optimization of hetero-

geneous junctions that are a more realistic reflection of real cities where the layout of

the intersections are different. IDQN enables collaboration between agents regardless

of the policies they implement, enabling optimization in heterogeneous environments.

IDQN uses Independent Q-Learning where each agent independently learns its own

policy, treating other agents as part of the environment. IDQN learns and takes into

consideration the dependencies between policies of other agents in order to improve

their local and global performance with the usage of a fingerprint in the experience

replay memory that avoids the instability caused by the non-stationarity of the en-

vironment. Finally, this thesis evaluates the technique in a simulation of UTC. The

evaluation shows that it is suitable for application in UTC, as it outperforms existing

7

UTC techniques.

1.6 Document Structure

The structure of the thesis is as follows. Chapter 2 presents the background material

about the cutting edge Reinforcement Learning and Deep Learning techniques that

are used for the proposed work. It focuses on RL model free algorithms, providing

the background of these techniques. It also presents the state-of-the-art studies in the

field for single and multi-agent environments with and without Deep Learning for UTC

systems. It introduces multi-agents methods for UTC and different Neural Networks

architectures for single and multi-agent systems. Chapter 3 describes the design of

the proposed research. Chapter 4 describes the implementation of the design stated in

Chapter 3. Chapter 5 presents the evaluation of the suggested study as a heterogeneous

multi-agent DRL technique and analyses the findings. Chapter 6 concludes this thesis

with the summary of the work and outlines the issues that remain open for future work.

8

Chapter 2

Background and Related Work

This sections covers the main technical concepts to be used in order to build an adaptive

traffic signal control (ATSC). The first section presents Reinforcement Learning which

is essential for dynamic complex problems and its most popular technique, so called Q-

Learning. The second section introduces the concept of Deep Learning and its impact

nowadays. The third sections describes Deep Reinforcement Learning and the state-

of-the-art methods for Deep Q-Learning. The next section describes our proposed

technique, Independent Deep Q-Network (IDQN) with fingerprint. The last section

gives the reasons to use DRL in UTC problems and it presents recent studies for single

and multi agents in UTC problems.

2.1 Reinforcement Learning

Reinforcement learning (RL) is about learning optimal actions from specific situations

where the agent has to discover which actions maximize a reward signal by explor-

ing them in a trial-and-error basis. These actions may affect future situations and

subsequent reward signals [1].

RL is formulated in the mathematical representation of a complex decision making

process called Markov Decision Process (MDP) [16], which it is defined by:

• A time step t.

• A set of states s ∈ S.

9

• A set of actions a ∈ A.

• A transition function T(st, at, st+1), which is the probability that an action a

leads to st+1 from st, i.e. P(st+1 | st, at).

• A reward function R(st, at, st+1).

RL is the optimal control of incompletely-known MDP where the transition and the

reward functions are unknown. They are learned during the RL training. Therefore, in

RL an active decision making agent interacts with the environment in order to achieve

a goal regardless of the uncertainty.

Beyond the agent and the environment, there are other four subcomponents: (1) a

policy, (2) a reward signal, (3) a value function and (4) the model of the environment.

Firstly, a policy defines the behaviour of the agent at a given time, more specifically, a

policy maps observed states of the environment to actions in order to be taken when

in those states. In RL, the agent seeks to learn the optimal policy that corresponds

to the best action for every possible state, i.e. π* : S → A, where π represents the

policy. Secondly, a reward signal defines the goal in a RL system. On each time

step, the environment sends a reward to the agent when it transitions from a state st

to a state st+1. The agent’s objective is to maximize the expected reward, therefore

the policy will be altered in order to achieve the optimal policy that accomplishes

this. Thirdly, the value function is associated to a state, and it indicates the total

amount of reward an agent can expect to acquire over the long term, starting from

that state s and by following the policy π. Finally, the model mimics the dynamics of

the environment (transition and reward functions) allowing to make inferences about

how the environment will behave. Models are used for planning, meaning that the

agent can decide which actions to take by considering possible future situations before

it had experienced them. The algorithms that use models and planning are called

model-based. On the other hand, the algorithms that rely on trial-and-error to update

its knowledge are called model-free. Model-based algorithms are impractical as the

space and action spaces grows, therefore for complex problems model-free algorithms

are utilized, and are the ones that are going to be discussed further in this research.

Given these points, RL is a system where an agent interacts with the environment.

On each time step t, the agent perceives an state st in state space S from where it

10

Figure 2.1: Reinforcement Learning [1]

selects an action at in the action space A by following a policy π. The agent receives a

reward rt when it transitions to the state st+1 according to the environment dynamics,

the reward function R(st, at, st+1) and the transition function T(st, at, st+1) as shown

in Figure 2.1. In order to converge the algorithm faster, a discount factor γ ∈ [0, 1] is

applied to the total amount of reward as shows in Equation 2.1

Rt =
∞∑
t=0

γtR(st) (2.1)

The value function is used to evaluate a policy given:

V π(s) = R(s, π(s)) + E

[
∞∑
t=1

γtR (st, π (st))

]
(2.2)

The expectation operator averages over the stochastic transition model, which leads

to the following recursion:

V π(s) = R(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))V π(s
′
) (2.3)

By extracting a policy π from a value function V, the following equation is obtained:

π(s) = arg max
a∈A

[
R(s, a) + γ

∑
s′∈S

p(s
′ |s, a)V (s

′
)

]
(2.4)

And finally, the Bellman equation is given by:

11

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

p(s
′|s, a)V ∗(s

′
)

]
(2.5)

Solving this non-linear system of equations for each state s yields the optimal value

function, and consequently an optimal policy π*.

2.1.1 Q-Learning

As in RL, the transition and the reward functions are unknown because it has no prior

knowledge of the model (model-free), RL agents learn Q-values instead of learning

values. A Q-value is a function of state-action pair that returns a real value: Q: S x A

→ R. By using Q-values, the policy can be represented as:

π(s) = arg max
a∈A

Q(s, a) (2.6)

where the Q-value can be learned by using Q-learning updates [17]:

Q(s, a) = (1− α)Q(s, a) + α[R(s, a) + max
a∈A

Q(s′, a′)] (2.7)

where 0 < α ≤ 1 is a learning rate.

[17] demonstrated that Q-learning converges to the optimal policy with probability

1 as long as all actions are repeatedly sampled in all states and the Q-values are

represented discretely. Exploration is needed to make sure all action in all states are

sampled. As a consequence the dilemma of the trade-off between exploration and

exploitation arises. An agent must prefer the actions that it has found produce highest

rewards given actions it has tried in the past. However, in order to discover those

actions, it has to try new actions (exploration) that it has not performed before. At

some point, the agent has to use what it has learned (exploitation) in order to get

rewards. One common technique for exploration is to randomly select actions with

small probability, this is known as ε-greedy exploration.

12

2.2 Deep Learning

Deep learning (DL) is an machine learning implementation that is based in the knowl-

edge of the human brain, specifically in the biological neural networks, statistics and

applied math. In the last years, deep learning has had a huge growth and impact on its

popularity and usefulness, mainly due to the development of more powerful computers,

larger datasets and better techniques to train deeper networks [18].

Computational models that contains multiple processing layers can learn represen-

tations of data by using multiple levels of abstraction called artificial neural networks.

These layers are used by DL representation-learning methods that are obtained by

non-linear modules that each transforms one level of abstraction, from the beginning

with raw input to a higher abstract level. The main aspect of DL is that these layers

are not built by human, but they are learned directly from the data using a learning

mechanism. A DL architecture is a multilayer stack of simple modules which are sub-

ject to learning and many of them compute non-linear input-output mappings. Each

one of these modules can transform its input to boost both the selectivity and the

invariance of the representation[19].

DL can identify complex structures in large data sets by using the backpropagation

algorithm to indicate changes of internal parameters that are used as part of the pro-

cessing of the representation in each layer basing on the representation in the previous

layer. Deep convolutional nets have brought advances in images, video, speech and

audio recognition, whereas recurrent nets have shined on sequential data such as text

and speech

2.2.1 Backpropagation

The multilayer architectures can be trained by stochastic gradient descent as long as

the modules are relatively smooth functions of their inputs and of their internal weights

by using the backpropagation procedure which is a practical application of the chain

rule of derivatives. The reason is that the derivative of the objective function with

respect to the input of a module can be computed backwards from the gradient with

respect to the output of that module or the input of the subsequent module. The

backpropagation equation can be applied over and over again to spread gradients to

all modules, starting from the output where the prediction is made, until where the

13

input is fed. Once these gradients have been computed, the gradients with respect to

the weights of each module can be computed easier [19].

Another approach is to use feedforward neural network architectures, which can

learn to map a fixed-size to a fixed-size output. A set of units compute a weighted

sum of their inputs from the previous layer and pass the result through a non-linear

function in order to the next layer. The most common used non-linear function is the

rectified linear unit (ReLU). The units that are not in the input or output layer are

so-called hidden units. The hidden layers deceives the input in a non-linear manner

such that the categories become linearly separable by the last layer. Convolutional

neural network (CNN) is a specific feedforward network that is easier to train and it

generalizes better than networks with full connectivity[19].

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) processes data fed as multiple arrays. CNNs

are based on four insights: (1) local connections, (2) shared weights, (3) pooling and

the (4) use of many layers.

A CNN is structured as a succession of phases. The first phase consists of two

types of layers: (1) convolutional and (2) pooling layers. The units in a convolutional

layer are arranged in feature maps. Each unit is connected to local patches in the

feature maps of the previous layer through a set of weights called a filter bank, which

is shared for all the units in the respective feature map The result of this local weighted

sum is passed through a non-linearity function. The name of CNN is derived of the

filtering operation carried out by a feature map which is, mathematically, a discrete

convolution. On the other hand, a pooling layer merges semantically similar features

into one. A pooling unit computes the maximum of a local patch of units in one or in

a few feature maps. Adjacent pooling units take input from patches that are shifted

by more than one row or column, thereby reducing the dimension of the representation

and creating an invariance to small shifts and distortions. Backpropagation in CNN is

simple as a regular deep network, allowing all the weights in all the filter banks to be

trained[19].

14

2.2.3 Optimization Algorithms

Gradient descent is the most used algorithm to optimize neural networks. Gradient

descent is a way to minimize the cost function J(θ) by updating the parameters in

the opposite direction of the gradient of the cost function ∇θJ(θ). The most used

algorithms in Deep Learning are: (1) Momentum, (2) Adagrad, (3) AdaDelta, (4)

RMSProp and (5) ADAM.

Adagrad

[20] proposed Adagrad which as a method which adaptively updates parameters based

on a sum of squared gradients per parameter. It uses that value to normalize the

learning rate before the update for each parameter i with the formula:

Gt
i = Gt−1

i +

(
δJ(θ)

δσjt−1

)2

(2.8)

σjt = σjt−1 − α

Gt
i + ε

+
δJ(θ)σ
δσjt−1

(2.9)

where ε is a small constant to prevent division by zero.

The learning rate for each parameter is set adaptively based on past updates. If

past gradients for parameter i were large, the learning rate for i is small and vice-versa.

By dividing the learning rate by the sum of past square gradients, Adagrad removes

the need for extensive learning rate tuning.

RMSProp

RMSprop and Adadelta have both been developed independently from the need to solve

Adagrads aggressive diminishing learning rates. [21] proposed RMSProp in order to

solve that problem by defining an exponentially decaying average of squared gradients.

Gt
i = γGt−1

i + (1− γ)

(
δJ(θ)

δσjt

)2

(2.10)

where γ is recommended to be 0.9.

15

ADAM

[22] developed Adaptive Moment Estimation (ADAM) algorithm by combining Adamgrad

and RMSProp with a new implementation of Momemtum. It uses a decaying average

of squared gradients and a decaying average of past gradients:

mt = β1 ·mt−1 + (1− β1) · ∇J(θ) (2.11)

vt = β2 · vt−1 + (1− β2) · ∇J(θ)2 (2.12)

where mt and vt are estimates of the first moment (the mean) and the second

moment (the uncentered variance) of the gradients respectively. β1 and β2 are hyper-

parameters. Because mt and vt are initialized as zero vectors, this causes a biased

towards zero, especially during the initial time steps, and especially when the decay

rates are small due to β1 and β2 are close to 1. In order to solve this issue, the first

and second moment estimates are bias-corrected with:

m̂t =
mt

1− βt1
(2.13)

v̂t =
vt

1− βt2
(2.14)

and the final updating being:

θt = θt−1 − α ·
m̂t

√
v̂t + ε

(2.15)

2.3 Deep Reinforcement Learning

The curse of dimensionality given by large state and action spaces make unfeasible

to learn Q value estimates for each state and action pair independently as in normal

tabular Q-Learning. Therefore, Deep Reinforcement Learning (DRL) models the com-

ponents of RL with deep neural networks. The parameters of these networks are trained

by gradient descent to minimize some suitable loss function. The following subsections

describe the methods used for the current research to implement the proposed Deep

16

Reinforcement Learning in Traffic Light problem. More techniques are explained in

[23] and a benchmark of the aggregation of techniques is offered in [24].

2.3.1 Deep Q Networks

[25] proposed Deep Q-Networks (DQN) as a technique to combine Q-Learning with deep

neural networks where such technique proved to achieve super-human performance in

several Atari Games. This benchmark has become in the most common one.

Reinforcement learning is known to be unstable or even to diverge when a non-

linear function approximator such as a neural network is used to represent the Q value.

DQN addresses these instabilities by using two insights, experience replay and target

network.

The experience replay has three main advantages. Firstly, it allows greater data

efficiency because each step of experience is potentially used in many weight updates.

Secondly, learning directly from consecutive samples is inefficient, due to the correla-

tions between the samples; therefore, by randomizing the samples these correlations

can be broken and the variance of the updates can be reduced. Thirdly, when learning

on policy the current parameters determine the next data sample that the parameters

are trained on. By using this technique the behavior distribution is averaged over many

of the prior states, stabilizing the learning and avoiding fluctuations or divergence in

the parameters.

The another technique which improves the stability of neural networks is to use a

separate network to generating the targets yi during the Q-learning update. Specifi-

cally, every C updates the network Q is cloned in order to obtain a target network Q

and use Q for generating the Q-learning targets yi for the following C updates to Q. By

using this generations with older set of parameters it allows a delay between when an

update is done to Q and when that update affects the targets yi which makes unlikely

the presence of divergences or oscillations.

DQN parameterizes an approximate value function Q(s, a; θi) using CNN, where θi

are the weights of the network at iteration i. The experience replay stores the agent’s

experiences et = (st, at, rt, st+1) at each time step t in a dataset Dt = e1,,et pooled

over many episodes into a replay memory. Then, mini batches of experience drawn

uniformly at random from the dataset (s, a, r, s) ∼ U(D) are applied as Q-updates

17

during the training. The Q-learning update at iteration i follows the loss function:

Li(θi) = E(s,a,r,s)∼U(D)

[(
r + γmax

a′
Q
(
s′, a′; θ−i

)
−Q (s, a; θi)

)2]
(2.16)

where θi are the parameters of the Q-network at iteration i and θ−i are the target

network parameters. The target network parameters are only updated with the Q-

network parameters every C steps and are held fixed between individual updates. The

Algorithm 1 states the procedure.

Algorithm 1: Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights

Initialize target action-value function Q̂ with weights θ− = θ
for episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
for t = 1, T do

With probability ε select a random action at
otherwise select at = arg maxaQ(φ(st),a;θ)
Execute action at in emulator and observe reward rt and image xt+1

Set st+ 1 = st,at,xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt,at,rt,φt+1) in D
Sample random minibatch of transitions (φj,aj,rj,φj+1) from D

Set yj =

{
rj, if episode terminates at step j + 1

r + γmaxa′ Q̂(φj+1, a
′; θ−), otherwise

Perform a gradient descent step on (yj −Q(φj, aj; θ))
2 with respect to the

network parameters θ

Every C steps reset Q̂ = Q

2.3.2 Double DQN

The max operator in standard Q-learning and DQN uses the same values both to select

and to evaluate an action. It is known the this maximization sometimes produces to

learn unrealistically high action values which tends to prefer overestimated values over

18

underestimated values, resulting in overoptimistic value estimations. To prevent this,

Double Q-learning decouples the selection and the evaluation [26]. In this algorithm,

two value functions are learned by assigning each experience randomly to update one

of the two value functions, such that there are two sets of weights, θ and θ’. For each

update, one set of weights is used to determine the greedy policy and the other to

determine its value. After decoupling the selection and evaluation in Q-learning, the

Double Q-Learning error is formulated as:

Y DoubleQ
t = Rt+1 + γQ(st+1, arg max

a
Q(st+1, a; θt); θ

′
i) (2.17)

For DQN architectures is not desired to fully decoupled the target because the target

network provides a intuitive option for the second value function, without having to

include extra networks. For that reason, [27] propose to evaluate the greedy policy

according to the online network, but using the target network to estimate its value

given as result the Double DQN (DDQN) algorithm. Therefore, the DDQN can be

written as:

Y DDQN
t = Rt+1 + γQ(st+1, arg max

a
Q(st+1, a; θt); θ

−
i) (2.18)

The difference with the Double Q-learning is that the weights of the second network

θ′i are replaced with the weights of the target network θ−i for the evaluation of the

current greedy policy. The update to the target network works the same as normal

DQN.

2.3.3 Prioritized Experience Replay

[28] presented prioritized experience replay, a method that can make learning from

experience replay more efficient. Experience replay detaches online agents from pro-

cessing transitions in the exact order they are experienced. Prioritized replay detaches

agents from considering transitions with the same frequency that they are experienced.

[28] found that prioritized replay speeds up learning by a factor 2 in the performance

on the Atari benchmark. Prioritized replay samples more frequently transitions from

which there is a high expected learning progress. as measured by the magnitude of

their temporal-difference (TD) error. It samples transitions with probability pt relative

19

Algorithm 2: Dobuble DQN with proportional prioritization

Input: minibatch k, step size η, replay period K and size N, exponents α and β,
budget T.

Initialize replay memory D = ∅, 4 = 0, pi
Observer S0 and choose A0 ∼ πθ(S0)
for t = 1, T do

Observe St, R st, γt
Store transition (St−1,At−1,Rt,γt,St) in D with maximum priority pt =
maxi<t pi

if t ≡ 0 mod K then
for j = 1, k do

Sample transition j /sim P(j) = pαj /
∑

i p
α
i

Compute importance-sampling weight wj = (N · P(j))β / maxiwi
Compute TD-error δj = Rj +
γjQtarget(Sj, arg maxaQ(Sj, a))−Q(Sj−1, Aj−1)

Update transition priority pj ← |δj|
Accumulate weight-change 4← 4 = wj · δj · ∇θQ(Sj−1, Aj−1)

Update weights θ ← θ + η · 4, reset4 = 0
From time to time copy weights into target network θtarget ← θ

Choose action At ∼ πθ(St)

20

to the last encountered absolute TD error:

pt ∝
∣∣∣(Rt+1 + γt+1 max

a′
Q
(
s′, a′; θ−i

)
−Q (s, a; θi)

)∣∣∣ω (2.19)

Where ω is a hyper-parameter that determines the pattern of the distribution. New

transitions are pushed into the replay buffer memory with maximum priority, providing

a bias towards recent transitions. Algorithm 2 describes the process for a proportional

prioritization.

2.3.4 Dueling Network

Dueling Network is a technique proposed by [2] which computes separately the value

V(s) and advantage A(s, a) functions that are represented by a duelling architecture

that consists of two streams where each stream represents one of these functions. These

two streams are combined by an convolutional layer to produce an estimate of the

state-action value Q(s, a) as shown in Figure 2.2. The dueling network automatically

produces separate estimates of the state value and advantage functions without super-

vision. Besides that, it can learn which states are valuable, without having to explore

the consequence of each action for each state.

The Q-values corresponds to the optimality of taking an action a given a state s

being Q(s, a). The Q-value can decomposed as:

Qπ(s, a) = V π(s) + A(s, a) (2.20)

where the state-value V π(s) describes how optimal is to be in a state s, and ad-

vantage A(s,a) expresses how more optimal is to take an action a compared to other

actions. The final equation used for dueling network is:

Q(s, a; θ, α, β) = V (s; θ, β) +

(
A (s, a; θ, α)− 1

|A|
∑
a′

A (s, a; θ, α)

)
(2.21)

21

Figure 2.2: A popular single stream Q-network (top) and the dueling Q-network (bot-
tom). The dueling network has two streams to separately estimate (scalar) state-value
and the advantages for each action; the green output module implements equation
(2.21) to combine them. Both networks output Q-values for each action [2]

2.4 Multi-Agent Reinforcement Learning

Consider a cooperative multi-agent environment where n agents identified by a ε A ≡
{1,..., n} participate in a stochastic game G, denoted by a tuple <S, U, P, r, Z, O, n,

γ >. The environment consists of states st ε S, where at every time step t, each agent

takes an action uat ε U, forming a joint action ut ε U ≡ Un. The transition probabilities

are defined by P(st+1 | st, ut) : S x U x S → [0, 1]. A global reward function r(st, ut) :

S x U → R is shared between all the agents.

Each agent’s observations z ε Z follows an observation function O(st, a) : S x A →
Z. Each agent a conditions its behaviour on its own action-observation history τa ε T

≡ (Z x U)*, according to its policy πa(ua | τa) : T x U → [0, 1]. After each transition,

the action uat and new observation O(st, a) are added to τa, forming τ
′
a. Let the joint

quantities over agents be in bold, and the joint quantities over agents other than a

with the subscript -a, so that, e.g., u = [utt, u−a].

22

2.4.1 Independent DQN

Independent Q-Learning (IQL) was proposed in [29] to train agents independently while

each agent can learn its own policy by treating other agents as part of the environment.

Each agent learns its own Q-function that conditions only on the state and its own

action. IQL overcomes the scalability problems of centralised learning, but it introduces

the problem of the environment becoming nonstationary from the point of view of each

agent, as it involves other agents who are themselves learning at the same time, ruling

out any convergence guarantees [14].

Independent DQN (IDQN) is an extension of IQL with DQN for cooperative multi-

agent environment, where each agent a observes the partial state sat , selects an indi-

vidual action uat , and receives a team reward, rt shared among all agents. [30] com-

bines DQN with independent Q-learning, where each agent a independently and si-

multaneously learns its own Q-function Qa(s, ua; θai) [31]. Since our setting is partially

observable, IDQN can be implemented by having each agent condition on its action-

observation history, i.e., Qa(τa, ua). In DRL, this can be implemented by given to each

agent a DQN on its own observations and actions.

As mentioned before, a key component of DQN is the experience replay memory.

Unfortunately, the combination of experience replay with IQL appears to be problem-

atic because the non-stationarity introduced by IQL which provokes that the dynamics

that generated the data in the agent’s experience replay memory no longer indicate

the current dynamics in which the agent is learning. IQL without a experience replay

memory can learn relatively well in spite of the non-stationarity so long as each agent

is able to progressively record the other agents’ policies, which it is not the case with a

experience replay memory enabled which is constantly confusing the agent with obso-

lete experiences. Besides that, disabling the experience replay memory as in [31], it is

not the optimal decision since it limits the sample efficiency and threats the stability

of multi-agent training. Experience replay not only stabilises the training, but it also

enhances the sample efficiency by constantly reusing experience tuples, therefore it is

important for DQN to use it.

23

2.4.2 Fingerprints

The technique was introduced by [14] along with another technique with importance

sampling similar to Prioritized Replay Experience. In the evaluations the fingerprint

method outperforms the importance sampling technique for feed forwards neural net-

works, which are the ones we use in this research.

[14] states that the disadvantage of IQL is that it ignores the changing over time

of the other agents’ policies because it perceives these other agents as part of the envi-

ronment, which cause non-stationarity on its own Q-function. Hence, the Q-function

might be made stationary if it conditioned on the other agents’ policies.

The idea to address this problem is to use something similar to hyper Q-learning

where each agent’s state space is resized with an estimate of the other agents’ policies

computed via Bayesian inference. The study discards the usage of the weights of the

other agents’ networks θ−a in the new observation, i.e. O’(st) = { O(st), θ−a }, because

is far too large to include as input to the Q-function due other agents -a are using DQN

as well. Although, a key insight is that each agent does not need to be able to condition

on any possible θ−a, but only on those values of θ−a that actually impact its experience

replay memory. The sequence of policies that generated the data in this buffer can be

interpreted as following an one-dimensional trajectory through the high-dimensional

policy space. In order to stabilise experience replay should be enough if each agent’s

observations disambiguate where this trajectory the training sample originated from.

Based on those points, a fingerprint must be correlated with the true value of state-

action pairs given the other agents’ policies. It should gradually change over training

time in order to allow the model to generalise across experiences in which the other

agents execute policies as they learn.

2.5 Deep Reinforcement Learning in Traffic Con-

trol

RL technique naturally models the dynamics of complex systems by learning the control

actions and the consequences of the traffic flow. It aims to get the optimal control

policy from the training in the exploration phase according to the inputs and outputs

observed. The harder part of reinforcement learning for traffic signal problems has been

24

in the exponentially increasing complexity of the dimensionality with respect to the

number of traffic signal states (the curse of dimensionality). The state space for traffic

control problems is so huge that becomes too expensive to solve the problem within a

finite time by using a table based Q learning method. Similarly, a traditional function

approximator based Q learning method has difficulties capturing the dynamics of traffic

flows. DL is being used to tackle this problem because it can simultaneously solve the

modeling and optimization problems of complex systems by using techniques such as

DQN. The combination of both RL and DL techniques enables to use multiple layers of

artificial neural networks to learn to choose the action that maximizes the discounted

future reward without prior knowledge of the environment for huge dimensionality

problems.

This section recaps previous works on traffic management, especially in traffic light

control, using Artificial Intelligence techniques. It comprises research applying novel

techniques for RL and DRL with both single and multiple agents. The first section

presents works in RL multi-agents dealing with the problem of need for coordination.

Then, it proceeds to more recent approaches that utilize DRL with single agents to

deal with the curse of dimensionality. Finally, the last section analyzes DRL with

multi-agents approaches not only for traffic lights but also for other UTC problems.

2.5.1 Multi-Agent Reinforcement Learning

Applying Multi-Agent Reinforcement Learning (MARL) for ATSC problem can be

challenging because the agents can adapt to changes in the environment at a local level

leading to non-collaborative learning and control, and therefore, a non-optimal global.

For that reason, besides the curse of dimensionality that ATSC suffers, MARL is also

challenged with the need of coordination among the multiple agents. The following

MARL approaches seek to achieve a collaborative result in order to learn a global

optimal policy between intersections. Table 2.1 summarizes the studies introduced in

this section.

[3] presents Realtime Adaptive Learning-based Traffic Control system (REALT),

which can simultaneously optimize multiple traffic management goals, learn suitable

junction collaboration parameters and optimize the learning and decision-making phases

by using a RL algorithm called Distributed W-Learning (DWL). DWL allows hetero-

25

Table 2.1: Existing research in Multi-Agent Reinforcement Learning for Traffic Signal
Control

Research Algorithm State Action Phases Rewards

[3] Distributed
W-Learning

Number of ve-
hicles waiting
and presence
of public
transportation

Ability to gen-
erate multiple
phase groups

Difference of
traffic count
and no pres-
ence of public
transportation

[32] Q-Learning
and for learn-
ing and min-
sum commu-
nication for
sharing

Traffic condi-
tions (i.e. rate,
speed, and oc-
cupancy)

2 Number on-
road vehicles,
average of
arriving rates
and average of
departing rate

[4] Swarm Re-
inforcement
Learning

Average queue
length

4 Number of ve-
hicles waiting
and crossing

[33] Q-Learning for
learning and
MARLIN for
coordination

Queue length Mode de-
pendent and
configurable

Total Cumula-
tive Delay

geneous intelligent agents to collaborate between each other in order to simultaneously

meet multiple heterogeneous policies. As can be seen from Figure 2.3, DWL manages

two levels of optimization: local agent optimization by using local policies and collab-

orative optimization by using remote policies. Each DWL agent uses Q-learning to

achieve its own local goals. Remote policies are learned by each agent using Q-learning

to realize how its local actions affect its nearest neighbors policies. Both local and re-

mote policies suggest an action to be executed at each time step. To mediate between

these two policies, an agent uses W-learning to learn importance of agents policies in

each state and it represents them as W values. The action with the highest W-value

for the current state is executed.

[32] introduces Min-sum Approximate Q-Learning (MAQL) which provides a multi-

agent distributed reinforcement learning where the agents achieves collaboration of a

global optimal goal by incorporating a distributed communication technique into RL

such that the learning and searching cost of large scale multi-agent systems can be

26

Figure 2.3: Distributed W-Learning [3]

significantly reduced. Specifically, it decomposes the global Q-learning function into

local Q-learning functions in order that each local agent can compute its own local

optimal policy based on local observations. Then, it applies the max-sum message

passing algorithm to share information between agents in order to find a stable and

optimal global policy that is used by all agents. The distributed RL is represented as a

factor graph where each variable node i ∈ V and each function node l := i ∈ Vi, and they

are connected by a function Ql. A max-sum algorithm is used for transferring messages

between local variable and function nodes, and achieving a cooperative joint control

among all the agents. In the paper, the algorithm is called the min-sum communication

because it minimizes the delayed cost function Ql. This algorithm performs directly on

the factor graph by specifying the messages that should be transferred across variable

and function nodes. In theory, the max-sum algorithm guarantees to converge to

the optimal global solution if the factor graph is acyclic. However, the factor graph

normally contains cycles in practice due to the mutual dependencies between agents.

Even though, there is evidence that shows max-sum algorithm can accomplish positive

results even in cyclic factor graphs.

[4] used a population based method called Particle Swarm Optimization which en-

ables to find efficiently the global optimal solution for multi-modal functions with wide

solution space. Particle swarm optimization is a population-based method originally

designed for continuous optimization problems. Agents learn through their local ex-

periences and by exchanging information among them. The agents interact in two

manners: (1) intra-level or horizontal interaction; where the agents interacts with each

27

Figure 2.4: Architecture [4]

other in the same level, and (2) inter-level; where the agents interact with each other

in different levels of hierarchy. This communication is illustrated in Figure 2.4, as the

traffic agents uses intra-level interaction by sharing information between them through

swarm RL, and the communication between the monitor-agent and the traffic agents

is inter level.

[33] presents Multi-Agent Reinforcement Learning for Integrated Network of Adap-

tive Traffic Signal Controller (MARLIN-ATSC). The agents can be implemented in two

modes: (1) independent mode, where each junction learns and reacts independently of

other agents; and (2) integrated mode, where each junction coordinates control actions

with neighbour agents by implementing a MARLIN learning algorithm. MARLIN algo-

rithm maintains an explicit coordination while dealing with the curse of dimensionality

problem by exploiting the principle of locality of interaction among agents and utilizing

the modular Q-Learning technique. The principle of locality of interaction attempts

to estimate a local neighbourhood utility that maps the impact of an agent’s policy to

the global Q-value function while only considering the interaction with its neighbours.

Modular Q-learning splits the state space into partial state spaces that considerate

two agents which produce a manageable state space by keeping the size of the partial

state space as |S|2 regardless of the number of agents. In MARLIN, each agent plays

28

a Markov game [34, 35], also known as an Stochastic Game, with all its immediate

agents within its neighbourhood. Every agent has several learning modules where each

module corresponds to one game. Following the principle of modular Q-learning, the

state and action spaces are partitioned so that the agent can learn the joint policy with

one of the neighbours agents at a time.

Three out of the four approaches presented drew to a local learning first, to then

use a communication technique to either share or coordinate the learning across the

different agents. Only MARLIN-ATSC made usage of a different approach where the

agents learn along with its neighbors without any prior own local learning because this

study considered that the coordination can be achieved by taking into account the joint

state and joint action for the other agents. Besides that, only REALT allows to modify

the local goal independently, this is, the goals can be added, removed or modified, and

not all agents need to implement the same goals or have the same number of goals

which supports to handle different types of junctions.

Another interesting analysis to make is about the goals each work was trying to

optimize. Due to each goal in DWL is specified as an independent Q-learning process,

REALT implemented two policies: the first one is to optimize overall traffic flow by

rewarding positively if the overall traffic count at the current time-step is less than

at the previous time-step (i.e. the intersection cleared more traffic than it arrived in

the meantime), and the second is to prioritize special vehicles/buses, which rewards if

no special vehicle is waiting at any of its paths at decision time. On the other hand,

MAQL allows to each road of the simulated environment to be able to measure the real-

time traffic condition such as rate, speed, and occupancy. Besides that, each road has

a maximum capacity and a speed limit. Based on these conditions three parameters

can be estimated and targeted: (1) the number of on-road vehicles, (2) the moving

average of arriving rates and (3) the moving average of departing rates. In the case of

the Swarm RL, the reward function is based on the number of vehicles waiting in an

road of an intersection, and the number of vehicles crossed the junction coming from

another road of the intersection. It also used a penalty if the number of vehicles passing

over the roads is superior to the number of vehicles that are waiting for it. While in

MARLIN-ATSC, the reward is defined as the reduction in the total cumulative delay

associated with a junction, i.e., the difference between the total cumulative delays of

two successive decision points.

29

The final observation is about the evaluation and the results obtained in each study.

The Table 2 summarizes the environment for each work. First, REALT was rep-

resented in a simulation application called VISSIM which was set with 6 junctions,

using historical traffic and signal data of a real road network in Cork, Ireland. The

evaluation was against SCOOT, the traffic management system that controlled that

area. The performance comparison was done with three REALT settings and SCOOT

where the measured results were vehicle delay and number of stops. The three settings

of REALT outperformed SCOOT in low and medium traffic loads, however in high

loads the performance of SCOOT was better. In contrast, MAQL used the simulator

SUMO where simulated a traffic grid of 10x10 signalized intersections. It evaluated

the learning performance and convergence rate of MAQL using linear and sigmoid ap-

proximations. Then, it compared the performance of trained MAQL to decentralized

AQL (DAQL) method, which is the decentralized version of MAQL since each agent

learns independently without the message passing, and heuristic control methods .

The results demonstrated that the MAQL method had better performance than the

other approaches. It was also proved that DAQL method performed fast learning but

a greedy control. Additionally, DAQL and MAQL outperformed traditional heuristic

control models. Similar to MAQL, the Swarm RL research used SUMO but using four

junctions in a grid presentation with double lane edges. This research compared the

proposed method to a multi-agent architecture with standard Q-learning algorithm.

Results showed that the swarm Q-learning surpass the simple Q-learning causing less

average delay time and higher flow rate. Finally, MARLIN-ATSC used the simulator

PARAMICS with a network of 59 junctions of the lower downtown core of the City of

Toronto, ON, Canada, during the morning rush hour. The results demonstrated reduc-

tions in the average delay of 27% in independent mode and 39% in integrated mode.

Furthermore, the travel-time was decreased in 15% in independent mode and 26% in

integrated mode in the most congested roads in Downtown Toronto. An important

point to notice is that only two proposals, REALT and MARLIN-ATSC, were tested

with real traffic data.

30

Table 2.2: Test environments of existing research in Multi-Agent Reinforcement Learn-
ing for Traffic Signal Control

Research Number of Junc-
tions

Junction Struc-
tures

Environment

[3] 6 Irregular. All
structures are
different

VISSIM simulator.
Real data of West-
ern Road, Cork,
Ireland.

[32] 100 Regular 10x10
grid. All struc-
tures are the
same

SUMO simulator

[4] 4 Regular. All struc-
tures are the same

SUMO simulator

[33] 59 Irregular. Some
junctions have the
same structure but
not all

PARAMICS sim-
ulator. Real data
of Downtown
Toronto, ON,
Canada.

2.5.2 Single Agent Deep Reinforcement Learning

As mentioned before, DL helps to deal with the curse of dimensionality for complex

problems such as ASTC. This sections focuses only in single-agent approaches that

used DRL. The Table 2.3 shows a summary of the main aspects of previous works.

[5] made the estimation of Q-values with deep stacked autoencoders (SAE) neural

networks. The Figure 2.5 shows the architecture of this neural network which receives

as input the state and it outputs the Q-value for each possible action. The SAE neural

network contains several hidden layers of autoencoders where the outputs of each layer

is wired to the inputs of the successive layer. Autoencoder is a neural network that

defines the input and the target output to be the same. During Q-learning, the deep

SAE network is trained by minimizing the next loss function over samples of experience

until a specific time. The network was built with a four-layer SAE neural network and

two hidden layers. The hidden layers use a sigmoid activation function.

[36] proposed the combination of two RL algorithms: (1) deep policy-gradient (PG)

and (2) value-function based on a DNN, which perceives image observations in order

31

Table 2.3: Existing research in Single Agent Deep Reinforcement Learning for Traffic
Signal Control

Research Algorithm ArchitectureAction
Phases

State Reward Environment

[5] Deep Q-
Learning

Deep
Stacked
Autoen-
coders
Neural
Networks

2 Queue
Length

Difference
between
two
directions

PARAMICS
simulator

[36] Policy-
Gradient
and
Value-
Function

CNN 2 Four
snapshots
of inter-
section to
extract
posi-
tion and
speed of
vehicles

Difference
between
the total
cumu-
lative
delays of
two con-
secutive
actions

SUMO
simulator

[6] Deep Q-
Learning
and Ex-
perience
Replay

CCN
with
Target
Network

2 Snapshot
of inter-
section to
extract
posi-
tion and
speed of
vehicles

Change
in cu-
mulative
staying
time

SUMO
simulator

[7] Double
Q-
Learning
and Pri-
oritized
Expe-
rience
Replay

CNN
with Du-
eling and
Target
Networks

Multiple
phases,
propor-
tional
to the
dimen-
sionality
of the in-
tersection

Snapshot
of inter-
section to
extract
posi-
tion and
speed of
vehicles

Cumulative
waiting
time dif-
ference
between
two
cycles

SUMO
simulator

32

Figure 2.5: The deep SAE neural network for approximating Q function [5]

to produce control signals in an isolated intersection. The PG based agent maps its

observation directly to the control signal; however, the value-function-based agent first

estimates values for all legal control signals. The agent then selects the optimal control

action with the highest value. The state of the system is an snapshot of the current

state of a graphical simulator, SUMO graphical user interface in this case. This image

is sent to a CNN such that the application can detect the location and the presence of

all vehicles in each lane. The history of consecutive observation is stacked in the CNN

as input to estimate the speed and direction of the vehicles. In PG, the policy is defined

as a mapping from the input state to a probability distribution over the action space

where this policy distribution is learned with DNN by performing gradient descent on

the policy parameters. Meanwhile, in the value function-based algorithm, the DNN is

used to estimate the action-value function. The action-value-function maps the input

state to action values that represent the future reward that can be obtained by doing the

given action from the given state. The network was employed with two convolutional

layers and one fully connected layer. All three layers are activated with some non-linear

function that is not specified.

33

Figure 2.6: DNN structure. Note that the small matrices and vectors in this figure
are for illustration simplicity, whose dimensions should be set accordingly in DNN
implementation [6]

[6] proposed the usage of a DQN with experience replay and target network meth-

ods to improve the stability. The Figure 3.4 shows the architecture of the DNN as

follows: the state consists of the position and speed of vehicles that are fed to the CNN

as matrices P and V respectively. Each one of these matrices pass through two convo-

lutional layers that are activated with the ReLU function. Then, a traffic signal state

vector L is aggregated to the outputs of the two aforementioned networks, forming the

input of the third layer. The third and fourth layers are fully connected layers that are

also activated with ReLU functions. The output layer is another fully connected layer

that returns a vector of Q-values.

Figure 2.7 shows how an agent is trained in this model. The agent records observed

interaction experience into a replay memory M. Additionally, it used the estimated

Q-value from the DNN as the input of a target network to best approximate the

optimal Q-value. This target network has the same architecture as the DNN. It used

34

Figure 2.7: Agent training process [6]

the gradient descendent algorithm RMSProp to calculate the function cost with mini

batches. All in all, it randomly gets samples from the replay memory M to form

input data and target pairs (experience replay), and then uses them to update the

DNN parameters through the usage of the RMSProp algorithm. After updating the

parameters of the DNN, it also updates the parameters of the target network.

[7] defined the state as the position and speed of vehicles which are captured by a

snapshot image. This snapshot is transformed into a state-matrix divided in same size

grids. A CNN is utilized to match the states and expected future rewards. In order

to improve the performance, the study employed a series of state-of-the-art techniques

such as dueling network, double Q-learning network, and prioritized experience replay.

The architecture of the CNN is shown in Figure 2.8 which consists of three convolutional

layers and several fully connected. The first convolutional layer contains 32 4x4 filters

with stride 2. The second convolutional layer has 64 2x2 filters with stride 2. The

size of the output after two convolutional layers is 15x15x64. The third convolutional

layer has 128 2x2 filters with the stride of 1. The third convolutional layers output is

a 15x15x128 tensor. A fully-connected layer transfers the tensor into a 128x1 matrix.

After the fully-connected layer, the data are split into two parts with the same size

64x1. The first part is then used to calculate the value and the second part is for the

advantage. The size of the advantage is 9x1 because the action space size is 9. They

are combined again to get the Q value, which is the architecture of the dueling DQN.

ReLU was used as activation function in each convolutional layer.

35

Figure 2.8: The architecture of the deep convolutional neural network to approximate
the Q-value [7]

Figure 2.9 shows the entire process. The state (position and speed) and the tentative

actions are entered to the primary CNN to choose the most rewarding action. The

current state and action along with the next state and received reward are stored into

the memory as a four-tuple <s, a, r, s’>. Then, the data in memory is chosen by the

prioritized experience replay in order to generate mini-batches that are used to update

the primary CNNs parameters. Besides that, a target network is used to increase the

stability of the learning. Double DQN and dueling DQN are used to reduce the possible

overestimation and improve performance. By using this process, the Q function can

be approximated and therefore, the optimal policy can be obtained by choosing the

action with highest Q-value.

A comparison of the most important difference of RL parameters is done as follows.

Firstly, in terms of rewarding, SAE approach defined it as the absolute value of the

difference between north-south direction and east-west direction. While, [36] defined

it as the difference between the total cumulative delays of two consecutive actions. [6]

rewarded the agent if the time of vehicles staying at the intersection decreases. Last,

[7] defined it as the alteration of the cumulative waiting time between two consecutive

cycles. For the state representation, three out of four works used an image like repre-

36

Figure 2.9: The architecture of the reinforcement learning model in our system [7]

sentation, and those are the most recent approaches using DRL with single agents at

this moment, which suggests that snapshots of the intersection have proved to deliver

good results. The variables obtained from the image are position and speed for all the

studies, however those are processed and expressed differently.

It is interesting to notice that the DNNs architecture are getting more complex over

the years. First approaches only considered a simple CNN, but over the years tech-

niques to improve the stability of the learning and performance of the algorithm have

started to be used. Experience replay and target network are the methods that have

been more adopted because they have been verified to give good results for stability in

other fields. A common factor in the architectures is the usage of an image as input

to 2 or 3 convolutional layers that are connected to fully connected layers that one of

those is used as output. Besides that, most works used the activation function ReLU.

The last analysis of this sections is done to the evaluation of the proposals. First,

[5] evaluated both conventional RL (i.e. without DNN) and the proposed DRL traffic

controller. The DRL technique demonstrated to out-perform the conventional RL

approaches with reductions of around 14% in the average delay, and also reductions

in the number of fully stopped vehicles by 1020. Moreover, the DRL was able to

maintain shorter waiting queues. Second, [36] benchmarked proposed combination of

methods against a baseline traffic controller which always gives an equal fixed time to

each phase of the intersection. The proposed methods performed significantly better

than the baseline by receiving more reward magnitudes that were increased across the

epochs. This increasing reflects that the agent can learn an optimal control policy in a

37

stable way. Another evaluation was done using a Shallow Neural Network (SNN) which

only has one hidden layer. It demonstrated that the proposed models outperformed

the SNN method by reducing in 67% the average cumulative delay and 72% the queue

length for the PG method; while reductions of 68% in the average cumulative delay

and 73% in the queue length for the value-function-based method. Third, [6] examined

the learning performance, which converge and keeps stable after 800 episodes. Then, it

compared the vehicle delay performance of the proposed algorithm to that of another

two algorithms: (1) longest queue first algorithm and (2) fixed time control algorithm.

It demonstrated a reduction up to 86% compared to fixed time control algorithm and

up to 47% longest queue first algorithm for two out of four roads tested. The other

two roads the proposed research did not get good results. Finally, [7] compared the

proposed model against a pre-scheduled traffic signal. The propose demonstrated the

capability to learn a good policy under both the rush hours and normal traffic flow

rates. Moreover, it showed to reduce around 20% of the average waiting timing from

the starting training compared to the other strategy. It is important to notice that any

of these works were evaluated with real data.

2.5.3 Multi-Agent Deep Reinforcement Learning

This section covers the usage of DRL in multi-agents scenarios. The following studies

attempt to deal with the main challenges of ASTC. The proposed work will try to

outperforms the following studies. Table 2.4 summarizes the characteristics of the

existing approaches.

[8] used DRL for controlling the metering of highway on-ramps modelling the prob-

lem as discretized non-linear partial differential equations (PDEs) in a robust and

non-parametric manner. DRL enables the management of discretized PDEs whose pa-

rameters are unknown, random, and time-varying. The DNN architecture consists of a

nx3 array, where n is the number of discretization cells of the roadway in the simulator,

and every of these cells contain three variables: (1) the vehicle density scaled to a me-

dian value of 0, and a standard deviation of 1 in average, (2) a boolean value indicating

whether an off-ramp is present or not, and (3) a logarithmic scaled value that indicates

the number of vehicles standing by in the on-ramp queue if there is any, 0 otherwise.

Each agent examines a near discretized region of the highway with these three values

38

Table 2.4: Existing research in Multi-agent Deep Reinforcement Learning for Traffic
Signal Control

Research Algorithm Architecture Action
Phases

State Reward

[8] Partial
Differential
Equa-
tions for
learning.
Mutual
Weight
Regular-
ization for
sharing

CNN 2 Vehicle
density,
presence of
on-ramp,
and number
of vehicles
standing
by in the
on-ramp
queue

Number
of vehicles
leaving the
freeway

[37] Deep Q-
Learning,
Experience
Replay for
learning.
Transfer
planning
for sharing

CNN and
Target
Network

2 Snapshot of
intersection
to extract
the position
of vehicles
and traffic
signal con-
figuration

Combination
of delay
time, wait-
ing time,
teleports,
emergency
stops and
a flickering
flag

[38] Independent
Q-Learning
with Ex-
perience
Replay

Convolution-
based
Residual
Network

4 Four image-
like repre-
sentations:
vehicle
position,
vehicle
speed, traf-
fic signal
phase of
other in-
tersections,
and traf-
fic signal
phase of
the current
intersection

Exponential
relationship
between the
patience
of the
driver and
the time
waiting

39

Figure 2.10: Non parametric control learnt by experience. A neural network decides
[8]

in each observable cell. This data is processed with CNNs that are stacked in three

layers that create the local features. This local features are implemented as function

of the local values independently of the freeway location. As shown in Figure 2.10,

a last layer is located on the top of these CNNs to distribute the action a controller

can undertake, where each control output is formed of two values: (1) the mean and

(2) the variance of a Gaussian distribution. Thus, the maximum outflow is measured

with respect to this probability distribution. The trade-off between exploration and

exploitation is implicitly represented by this stochastic aspect of the controller. As

the DRL converges, the variance decreases, and the exploration intuitively becomes

exploitation.

The algorithm used to share the learning was called Mutual Weight Regularization

(MWR), which enables to share information across the agents while allow them to

specialized in their local goals. In order to alleviate the combinatorial explosion when

the number of agents increases, MWR allows that experiences and feedback to be

shared between agents, and still allows the agents to implement specific modifications

to adjust to local alterations. This is done with a hyper-parameter α, which defines the

40

weight of the regularization, and consequently how much mutual information is shared

between agents. Where α = 0 is equals to having independent policies for every agent,

and α = ∞ is equivalent to having a shared policy making algorithm for every agent.

[37] designed a DQN solution which uses experience replay and target network to

stabilize the learning. It represents the state as image that then is transform into a

binary matrix of the position of the vehicles with additional information of the traffic

lights configuration. The paper does not provides details about the DNN architecture.

The solution to multi-agents is made with transfer planning and max-plus algorithms.

Transfer planning allows to learn the Q-function for a sub-problem of a multi-agent

problem that later can be reused for the other similar subproblems by exploiting the

symmetries. Therefore, this algorithm only works for intersections that are equal. The

max-plus algorithm is used for coordination of the multi-agents in order to optimize

the joint global action over the entire coordination graph.

[38] presented Cooperative Deep Reinforcement Learning (CDRL), a multi-agent

framework that used a convolution-based residual network (ResNet) to speed up the

training process while providing reasonable results. It made use of Independent Q-

Learning (IQL) and Experience Replay. In IQL, each agent learns its own policy

independently and it considers other agents as part of the environment. Also, the

agents are able to track the policies of other agents in real time. To deal with non-

stationarity, only one junction will be trained at each training episode, the others will

react based on their previously learned policies. During training phase, the agent does

not communication with the other agents. Four image-like matrices are the state and

input of the DNN for each agent. However, only one agent will receive the reward

during each training cycle, and only the ResNet and replay memory of that agent is

updated. After an amount of iterations, the latest agent’s policy is distributed to the

other agents, and the training agent is changed to another one to start a new training

cycle.

The studies did not present plenty information about the DNN architecture. One

thing that can be noticed from two out of three works is that the tendency of using

image-like representation for the state is still used in multi-agent environments be-

cause it captures better the traffic light problem parameters. Furthermore, the same

two works used Experience Replay as single agents proposals in order to stabilize the

learning, however the usage of this technique is more complex in multi-agents. Both

41

studies isolated the training either to one agent level or to the minimal sub-problem

(coordination of two agents). As a consequence of this segregation, the topology of the

junctions is the same where they used a four intersection in a nine cell grid (#) sce-

nario producing the same intersection structure for all the agents, and the main reason

IQL and transfer planning worked. The presented work will attempt to overcome that

difficulty and to use an irregular topology.

Table 2.5: Test environments of existing research in Multi-agent Deep Reinforcement
Learning for Traffic Signal Control

Research Number of Junc-
tions

Junction Struc-
tures

Environment

[8] *29 on-ramps, not
junctions

Irregular. Some
on-ramps have the
same structure but
not all

BeATS simulator.
210 Eastbound
freeway in south-
ern California.

[37] 4 Regular. All struc-
tures are the same

SUMO simulator

[38] 4 Regular. All struc-
tures are the same

SUMO simulator

A comparison of the evaluation and results is presented as follows. [8] used real

data of 33 km of the 210 Eastbound freeway in southern California. The proposed

approach was benchmarked against 3 systems: (1) a baseline without any ramp meter-

ing, (2) the proposed DRL approach without MWR technique and (3) ALINEA, the

current state-of-the-art system used in the place. Two evaluation were made where

the MWR approach provides an important improvement compared to the baseline ant

he NOMWR approaches, however it did not outperform ALINEA. [37] compared the

proposal against a combination of two previous works that called Wiering/Kuyer. The

evaluation of this study did not present outstanding results neither. The proposed

approach outperforms the Wiering/Kuyer approach most of the time, but due to insta-

bility, it sometimes underperforms, especially in the four-agent case. Also, they found

a problem with the activation of the convolutional filters, these filters did not detect

vehicles after a while, even when vehicles are present. As a consequence, a traffic jam

is produced because the agent no longer switches lights. [38] evaluated CDRL against

three baselines algorithms: (1) Self-Organizing Traffic Lights (SOTL), a controller that

42

switches the lights according to the elapsed time and the queue length, (2) Q-Learning,

regular RL method, (3) DQN, each agent determines the alternation of action phase

only taking into account local traffic situations. The experiments demonstrated that

CDRL is the technique that converges slowest but once the convergence is complete,

CDRL behaves better than other techniques. Besides that, the performance of CDRL

in some experiments confirmed the importance of cooperation in multi-agent environ-

ments.

2.6 Summary

This chapter presented the key techniques used for the current research. It introduced

the concept of RL and its extension to DL as DRL. Then, it explained the different

state-of-the-art methods for Deep Q-Learning by using DQN and its aggregated tech-

niques which enhance the stability and performance of the training. Besides that, it

described the extension of DRL to our multi-agent setting and the technique we pro-

pose to overcome the non-stationarity in heterogeneous multi-agent UTC systems. The

chapter 3 and 4 explains in more detail the design and implementation, respectively,

of these key components.

In this chapter we presented related works in UTC for single and multiple agents.

The first subsection described some of the RL techniques used for multi-agents. Then

we presented the evolution of approach towards the usage of DL techniques to address

the curse of dimensionality. Firstly, we showed some works for single agent and then a

few multi-agent studies. From the latest works in multi-agent for UTC using DRL, we

noticed that none of the DQN approaches try to address a heterogeneous environment,

and they presented problems with the non-stationarity of the environment. We focus

our research on overcome these two issues as our contribution of the work as mentioned

in Chapter 1.

43

Chapter 3

Design

This chapter outlines the approach used to design the different components of the

Traffic Light Control problem as a RL problem. This section explains the applied algo-

rithms to tackle the problem of single and multiple intersections. It includes the design

of the Neural Network architecture as well as the algorithms and techniques applied

to train single and multiple agents in order to achieve a collaborative environment. It

presents the design of the proposed IDQN for the UTC in a heterogeneous multi-agent

environment in order to overcome the non-stationarity. Besides that, it presents and

justifies the design decisions taken when selecting different DQN techniques and RL

components. It presents the results of preliminary experiments performed in order to

determine the most suitable DRL techniques and RL components.

3.1 Traffic Light Control Problem

The Traffic Light Control problem is formulated as a RL problem where an agent

interacts with the environment which is a partial section of the road network which

contains the intersection with the traffic light that it is intended to manage at discrete

time steps t. Specifically, the agent observes an state st ∈ S at the beginning of a

time step t, then it chooses and actuates an action at ∈ A which corresponds to one

of the configurations the traffic signal can take. After taking the action at, the agent

transitions to the next state st+1 ∈ S and receives a reward rt. The next subsections

define these components.

44

3.1.1 State Representation

The state is a image-like representation of the current state of the simulator envi-

ronment (Figure 3.1a), similar to the concept used in [25]. The state consists of two

matrices of same size: (1) a binary matrix P for vehicle positions (Figure 3.1b), and (2)

a matrix S for vehicle speeds (Figure 3.1c). These matrices have been used in previous

works such as [6, 7, 38, 37].

(a) Simulation Environment State



0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0


(b) Position Matrix

0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.0 0.0 0.0 1.0
0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0


(c) Speed Matrix

Figure 3.1: State Representations

In order to create these matrices, the locations are calculated by mapping the con-

tinuous space of the simulated environment into a discretized environment by creating

a grid with cells of size C. The matrix P is a binary matrix where one indicates the

45

presence of a vehicle and zero the absence of a vehicle in the specific location as shown

in Figure 3.1b. The matrix S indicates the speed of the vehicle in the same cell posi-

tion where a vehicle was calculated to be located in the matrix P as shown in Figure

3.1c. The speed is represented as a percentage of the maximum allowed speed. This is

computed by dividing the current speed of vehicle by the maximum allowed speed.

3.1.2 Action Space

As mentioned in section 3.1, after an agent observes a state St at the beginning of each

time step t, and then the agent chooses one action at ∈ A. The action space A varies

depending of the structure of the intersection.

The Figure 3.2 presents the phases available to the agent with 4 roads. In this case,

the action space is defined as A = {NS, EW, NST; EWT} where NS stands for turning

green North-South roads as in Figure 3.2a, EW stands for turning green East-West

roads as in Figure 3.2b, NST stands for turning green North-South right turning as in

Figure 3.2c, and EWT stands for turning green East-West right turning as in Figure

??. On the other, the Figure 3.3 shows the the phases available to the agent with 3

roads. In this case, the action space is defined as A = {NS, EW, EWT}, which is

reduced by excluding NST which cannot be performed because there is not road to or

from the south. EW is the same as before as shown in Figure 3.3b. However, in the

case of NS and WET, the manoeuvres cars can take are different than before as shown

in Figures 3.3a and 3.3c

For each time step t, the agent can only choose one of these actions, and the other

three directions will be set to Red by default. The duration of each phase is 1 time

step. However, the agent implicitly determines how long each phase can last ranging

from 1 time step up to the final time step of the simulation. The phase can be only

changed by the agent when it decides to do it, therefore there is not a limit for how

long a phase can take.

Additional yellow phase is added during a fixed period of 3 time steps when the

previous action is different than the current chosen action. This middle yellow phase

reduces the risk of collisions.

46

(a) North-South (b) East-West

(c) North-South Turn (d) East-West Turn

Figure 3.2: Traffic light phases available to agent with 4 roads

47

(a) North-South (b) East-West

(c) East-West Turn

Figure 3.3: Traffic light phases available to agent with 3 roads

48

3.1.3 Reward Function

The definition of the reward function is one of the hardest part of RL. Therefore,

we evaluate several functions in order to choose a reward function that converges to

optimal policy. A reward is a scalar value rt ∈ R that is returned after the agent takes

an action at in the environment at each time step t.

Let wi,t be the ith vehicle’s waiting time at time step t, and Wt the total cumulative

waiting time for all the vehicles in the observation scope of the road network at time

step t as shows in equation 3.1. The reward function is formulated in equation 3.2.

The intention of the reward function is to reward positive the agent in a range (0.0,

1.0] where the agent’s reward loses value proportional to the cumulative waiting time

at time step t. Thus, the agent must keep short waiting time in order to receive higher

scores, and as consequence, this reward function accomplishes the goal of reducing the

driver’s waiting time at a junction.

Wt =
∑
i

wi,t (3.1)

rt =

 1.0
Wt
, if cummulative waiting time Wt is greater than 0

1.0, otherwise
(3.2)

The second option of rewarding is to use the difference of cumulative waiting time of

two consecutive time steps, namely t-1 and t, as it has been applied in [36, 6, 7]. This

reward function uses the same definition ofWt as shows in 3.1. Let beWt the cumulative

waiting time for the current time step being t and Wt−1 the cumulative waiting time

for the previous time step being t-1. This rewards seeks to reward positively the agent

when it reduces the waiting time for two consecutive time steps because this can be

translated to a relief in the traffic congestion in the intersection. On the other hand,

when the waiting time from two consecutive increases, the difference will be a negative

reward and thus it will penalize the agent because it is incrementing the waiting time.

Hence, the reward function is formulated as in equation 3.3.

rt = Wt−1 −Wt (3.3)

We tested both reward functions in order to chose the reward that get us the best

49

policy. The table 3.1 shows the hyperparameters used for the executions. The Figure

3.4 shows the comparison of both reward functions. As can been seen from figures 3.4b

and 3.4a, the first aforementioned function works undoubtedly better than the second

one by reducing significantly more both, the average waiting time and the average

waiting time. Based on these results, we decide to use the reward function of equation

3.2.

Table 3.1: DRL techniques evaluation hyper-parameters

Parameter Value

Episodes 1000
Time steps 3600000
Pre train time steps 2000
learning rate 0.0004
Exploration ε 1.0 → 0.01
Time steps from starting ε to ending ε 360000
Target network update 3000
Prioritization exponent α 0.6
Prioritization importance sampling β 0.4 → 1.0
Discount factor γ 0.99
Replay Memory size M 50000
Minibatch size B 32

(a) Average Waiting Time per Episode (b) Average Travel Time per Episode

Figure 3.4: Reward Functions Experiment

50

3.2 Deep Reinforcement Learning Techniques

This sections test the feasibility of using the different techniques available for DRL

from DQN to Prioritized Dueling DDQN by applying the aggregation of techniques in

the same order of the Atari games. This section presents the experiments executed in

order to select the best method for the traffic light problem that we formulate. The

table 3.2 shows the hyperparameters used for all the experiments.

Table 3.2: DRL techniques evaluation hyper-parameters

Parameter Value

Episodes 1000
Time steps 3600000
Pre train time steps 2500
learning rate 0.0004
Exploration ε 1.0 → 0.01
Time steps from starting ε to ending ε 360000
Target network update 3000
Prioritization exponent α 0.6
Prioritization importance sampling β 0.4 → 1.0
Discount factor γ 0.99
Replay Memory size M 50000
Minibatch size B 32

The results proved that after the exploration reaches 0.1 in the epsilon decay value

the agent starts to rapidly increase its rewards until accomplishes a maximum that is

kept afterwards.

The Figure 3.5 shows the results for a normal DQN as described in [25]. During

its stabilize point, DQN accomplishes rewards ranges from 100 to 200 in average as

illustrated in Figure 3.5a. The behaviour obtained in the average waiting time and

the average travel time by following the policy generated gives as a result a reduction

in both times. As shown in Figure 3.5b, the average waiting time is kept under 50

ms normally but there are episodes with peaks which get more than 250 ms. With

regarding to the average travel time, the Figure 3.5c demonstrates the times are the

same across all the simulation varying mostly between 100 to 102 ms.

The Figure 3.6 shows the results for DDQN methods as described in [27]. As can be

seen from Figure3.6a, the application of DDQN brings bad results with instability in

51

(a) Cumulative Rewards per Episode

(b) Average Waiting Time per Episode

(c) Average Travel Time per Episode

Figure 3.5: DQN Single Agent Experiments

52

(a) Cumulative Rewards per Episode

(b) Average Waiting Time per Episode

(c) Average Travel Time per Episode

Figure 3.6: DDQN Single Agent Experiments

53

the rewards which goes down until 50, which is 100% less that the minimum recorded

with DQN in its stability point. This issue was also seen in [37] where the study

suggests that, regardless of the state, DDQN assigns highly identical Q-values to all

actions. Despite of the instability of rewarding, the average waiting time and travel

time do not seems to be affected directly for this, they have a constant performance

even though it is poor performance in comparison with DQN. Figure 3.6b DDQN gets

twice the waiting time of DQN attaining values before 100 ms but higher than 50 ms.

The results of waiting travel time in Figure 3.6c are similar to DQN reaching between

100 and 105 ms approximately.

The Figure 3.7 shows the results of the Prioritized DDDQN as described in [28].

The Figure 3.7a illustrates that this technique gets to converge faster by reaching its

maximum around 300 episodes unlike the DQN and DDQN which reaches convergence

around 400 episodes. This shows the Prioritization Experience Replay helps the DDQN

with the instability issues, however the combination of this two techniques gets a very

similar performance than DQN in terms of rewarding. As can be seen from Figure 3.7b,

Prioritized DDQN makes better work keeping the waiting time under 50 ms without so

many increments in other episodes unlike DQN, thus it slightly outperforms DQN. In

terms of the travel time, the Figure 3.7c shows a similar performance than DQN with

an improvement in the stability of the learning. This is result of sampling experience

with high expected learning progress, which speeds up the learning, and thus the agent

can converge and generalize faster.

The Figure 3.8 shows the results of using Prioritized Dueling DDQN as described

in [2]. The Figure 3.8a shows how this technique converges slower at around 500

episodes where it reaches the highest rewards, however after that, it behaves more

stable achieving more constant similar values from consequent episodes and scoring

high rewards in the range of 120-200. The Figure 3.8b shows that this technique has a

similar effect as Prioritized DDQN for the average waiting time, it tends to accomplishes

waiting times below of 50 ms with few spikes of up to 100 ms, this demonstrates the

stability of the policy. The Figure 3.8c presents similar range of average travel time

which goes from 98 to 103 ms, nevertheless it behaves more stable (no presence of

spikes) after convergence.

After this experiments we concluded that the usage of Prioritized Dueling DDQN

provides a more stable behaviour, however the performance does not increase signifi-

54

(a) Cumulative Rewards per Episode

(b) Average Waiting Time per Episode

(c) Average Travel Time per Episode

Figure 3.7: Prioritized DDQN Single Agent Experiments

55

(a) Cumulative Rewards per Episode

(b) Average Waiting Time per Episode

(c) Average Travel Time per Episode

Figure 3.8: Prioritized Dueling DDQN Single Agent Experiments

56

cantly compare to the previous techniques. Despite the fact that the performance do

not suffer a important increase, we decide to use Prioritized Dueling DDQN because of

the stability it offers which can be very useful in the multi-agent scenario where stability

issues can be harder to handle because the increasing of agents and its non-stationary.

3.3 Deep Neural Network Architecture

Figure 3.9: The architecture of the Deep Neural Network.

The neural network used to train the agent for single and multi-agent environments

is the same as [2]. This neural network was used for all the experiments performed

during this research, except for the experimentation of techniques elaborated in 3.2.

Only the Prioritized Dueling DDQN uses this architecture, the other techniques use

a similar architecture without the split of the last layer which is the application of

Dueling Network as explained in section 2.3.4.

The Figure 3.9 illustrates the Deep Neural Network. There are 3 convolutional

layers followed by 2 fully-connected layers. The first convolutional layer has 32 8x8

filters with stride 4. The second convolutional layer has 64 4x4 filters with stride 2.

The third and final convolutional layer has 64 3x3 filters with stride 1. A dueling

network splits into two streams of fully connected layers. The value and advantage

57

streams both have a fully connected layer with 512 units. The final hidden layers of

the value and advantage streams are both fully-connected with the value stream having

one output and the advantage as many outputs as there are valid actions for the specific

type of intersection.

3.4 Single Agent Training

The agent is trained by using DDQN with Prioritize Experience Replay techniques in

the Deep Neural Network described in section 3.3. The algorithm 3 illustrates the pro-

cess. The observed state is fed to the Deep Neural Network to approximate the optimal

Q-value. A four-tuple of the current state, the action, the reward and the next state

< st, at, rt, st+1 > are stored into the memory D. The data is sampled from the memory

in minibatches by prioritizing the experience replay based on importance weights than

then are used to update the primary neural network’s parameters. A second network,

the target network is a separate neural network used to increase stability during the

learning and it is updated periodically every C steps with the parameters of the pri-

mary neural network. During the pre-train steps DDQN, none either updates to the

target network or computing of the TD-Error are done in order to give the experience

replay memory some data to do these steps later. and dueling DQN are applied in

order to reduce the possible overestimation and improve performance. This training

algorithm is based on the algorithms 1 and 2 presented in Chapter 2 for DQN and

Prioritized Experience Replay respectively.

3.5 Multi-Agent Design

This chapter has presented above the design for a single agent by using DQN with

aggregated techniques such as DDQN, Prioritized Experience Replay and Dueling Net-

work in order to improve the learning and performance of the agent. We extend this

single agent definition from DQN to IDQN, as explained in section 2.4. The extension

is designed as follows:

• State representation. As mentioned in Chapter 2, in order to stabilize the

experience replay memory for IDQN, a fingerprint needs to be defined. Let -a

58

Algorithm 3: DDQN with Prioritized Experience Replay for Agent Training on
Traffic Lights

Input: replay buffer size M, minibatch size B, greedy ε, learning rate α, learning
frequency λ, times steps T, target network update C, prioritized replay
parameters pα and pβ, pre-train steps pt

Initialize simulator with time steps T
Initialize optimizer with learning rate α
Initialize action-value function Q with random weights
Initialize replay memory D to capacity N and parameters pα, pβ and pε

Initialize target action-value function Q̂ with weights θ− = θ
for timestep = 1, T do

With probability ε select a random action at
otherwise select at = arg maxaQ(st,a;θ)
Execute action at in emulator and observe reward rt and state st+1

Store transition (st,at,rt,st+1) in D
Update st ← st+1

if t > pt and t ≡ 0 mod λ then
Sample minibatch of transitions (sj,aj,rj,sj+1) from D based on priorities
Minimize the error in Bellman’s equation and compute TD-error δj
Update the priorities in the replay buffer D with TD-error δj

Every C steps reset Q̂ = Q

59

be the other agents of agent a, such that we can include the importance weights

of the prioritized experience replay and the TD-Errors vectors sampled from

the other agents into the observation function as θ −a and TD−a respectively.

Given that, the new observation function is O’(s) = { O(s), θ −a, TD−a }. In our

approach, each agent’s experience replay sampling consists of 32 minibatches that

are included as a vector for both, the 32 importance weights of 32 TD-Errors, in

a column of an additional matrix F of the state defined above in 3.1.1 for the

single agent enviroment. Since the dimensions of our state matrices are 64x64,

this idea can support up to 64 neighbour agents, one per column. Normally,

this approach will be inefficient because an intersection will not have so many

neighbour intersections, so a lot of the space in this matrix will be filled with

zeros. In spite of the fact that this approach is quite inefficient, it is useful as

proof of concept for this research. We are not using the recommended parameters,

i.e. the iteration number e and the rate of exploration ε, because our state is a

collection of matrices and not scalar values as in [14]. The Figure 3.10 illustrates

how the global state is split into fixed partial observations for each agent. Every

agent can get the state of the environment that corresponds to their boundaries

creating partial views of the complete state environment.

• Action space. There is not modifications in the action space beyond the triv-

iality that because we are dealing with heterogeneous agents, each agent might

have different action spaces depending of the topology of the intersection.

• Reward function. The reward function does not change at all because our

previous definition help us to reward each agent for the global performance of

the system such the current defined function works perfect as a global reward

function.

• DRL techniques. Every agent uses the same set of techniques that performed

better in our tests which is the Dueling Prioritized DDQN.

• Neural Network architecture. Every agent uses the same architecture de-

tailed in section 3.3. Every agent has its own Neural Network copy in order to

allow it to learn its own local policy since every agent is trained independently

by using IDQN.

60

Figure 3.10: Multi-Agent Partial Observation

3.5.1 Training

The algorithm 4 shows the training performed for a multi-agent setting with fingerprint.

It looks very similar to the single agent training with some additional steps that deals

with the fingerprint and a couple of loops to execute steps for all the agents at once.

This is what makes several agents learn at the same time, and by having an deep neural

network for each agent, they can learn independently. However, this training cannot

be asynchronous because the agents share a single simulation environment.

3.6 Summary

This section presented the decisions taken for the main components of the single and

multi-agent DRL for the UTC problem. It described the main components of the RL

such as state and action spaces, reward function. It also provided some tests in order

to choose what reward function and DQN techniques to use. Additionally, it shows

the design of the neural network architecture used. Besides that, it illustrated the

61

Algorithm 4: Independent DDQN with Prioritized Experience Replay for Het-
erogeneous Multi-Agent Training on Traffic Lights

Input: replay buffer size M, minibatch size B, greedy ε, learning rate α, learning
frequency λ, times steps T, target network update C, prioritized replay
parameters pα and pβ, pre-train steps pt

Initialize simulator with time steps T
Initialize optimizer with learning rate α
Initialize agents A
Initialize action-value function Q with random weights for each agent A
Initialize replay memory D to capacity N and parameters pα, pβ and pε for
each agent A

Initialize target action-value function Q̂ with weights θ− = θ for each agent A;
for timestep = 1, T do

for agent = a, A do
With probability ε select a random action uat
otherwise select uat = arg maxuQ(sat ,u;θa)
Execute action uat in simulator

Get global reward rt
for agent = a, A do

Observe partial state sat+1

Add fingerprint to partial state sat+1

Store transition (sat ,u
a
t ,rt,s

a
t+1) in Da

Update sat ← sat+1

if t > pt and t ≡ 0 mod λ then
Sample minibatch of transitions (saj ,u

a
j ,rj,s

a
j+1) from Da based on

priorities
Minimize the error in Bellman’s equation and compute TD-error δaj
Update the priorities in the replay buffer Da with TD-error δaj

Every C steps reset Q̂a = Qa

62

training algorithm for both, single and multi-agent environments. The next chapter

will presents how we implemented these components.

63

Chapter 4

Implementation

This chapter describes the implementation of the multi-agent DRL system and the

UTC simulation environment. We introduce the OpenAI’s baseline framework [39]

that we used to implement the DRL agents. We describe the implementation of DRL

agents and the communication between agents and the simulation environment.

4.1 Simulation Environment

The simulation environment used for the experiments is SUMO [40]. SUMO is an open

source, highly portable, microscopic and continuous road traffic simulation package

designed to handle large road networks. We use the Python API so-called TraCI in

order interact with the simulator. This interface allows modifying and getting access

to components such as traffic lights and vehicles, thus we set the phases of the traffic

light according to the action chosen by the agent through this API. Besides that, this

interface allow us to recover metrics of the environment such as position and speed

of the vehicle in order to build up the state matrices, as well as the variables used

for the reward function. One of the variables used as part of the reward function is

the waiting time. The waiting time for a vehicle is defined by SUMO as the time (in

seconds) spent with a speed below 0.1 m/s since the last time it was faster than 0.1 m/s.

One simulated second in SUMO is equal to one time step. We use the accumulated

waiting time function of TraCI in order to collects the waiting time of every vehicle

over a certain time interval which in this case is the whole simulation time.

64

4.2 Deep Reinforcement Learning

The system offers the capabilities of using DQN, DDQN, Prioritized Experience Re-

play and Dueling Network thanks to the Open AI’s RL implementation algorithms

code [39]. OpenAI Baselines is a set of high-quality implementations of reinforcement

learning algorithms in Python which uses the library TensorFlow [9]. Their DQN im-

plementation and its variants are roughly on par with the scores in published papers.

The Figure 4.1 illustrates the classes from OpenAI’s implementation that were used as

base (white classes,) and the classes we extended (blue classes) in order to implement

our DQN agent which can interact with the SUMO’s API Traci (green class).

Figure 4.1: DRL Traffic Control System Class Diagram

4.2.1 TrafficEnv

TrafficEnv represents the environment which interfaces directly with TraCI API in or-

der to recover parameters that are used in the simulation and as part of the components

of RL.

The methods provided by TrafficEnv class are as follows:

65

• generate route file(self), which generates the traffic for all the road network

for each simulation based on a uniform distribution.

• get next observation(self), which gets transitions to the next step in the

simulation and build the state matrices for the new state.

• get reward(self), which returns the reward for the current transition.

• reset(self), which restarts all the settings of the simulation in order to start a

new episode.

• step(self, action), which takes an action at and transitions from st to the new

state st+1. This method returns the new states+1, the reward rt and a boolean

flag indicating if the episode or simulation have finished.

4.2.2 TrafficTfInput

TrafficTfInput works as a wrapper of a regular tensorflow placeholder. The main dif-

ferences are: (1) it possibly uses multiple placeholders internally and returns multiple

values and (2) it can apply light postprocessing to the value feed to placeholder. It

receives as parameters the shape of the tensor and the name of the underlying place-

holder. In our implementation this class wraps the observation of the environment

which is the state matrices that are the image-like representation of the environment.

4.2.3 DQNAgent

DQNAgent is the agent which interacts with the environment through the class Traf-

ficEnv and uses the implementation of the DRL algorithms from the different OpenAI

baseline’s classes. It implements the DQN-learning process by executing the Algorithm

3 of Chapter 4. Besides that, it builds the Convolutional Neural Network shows in 3.9

in Chapter 4. It allows to enable and disable the DRL techniques: DDQN, Prioritized

Experience Learning, Experience Replay and Dueling Network.

The DQN Agent requires the following parameters:

• simulation time st.

• pre-train pt.

66

• learning rate α.

• discount factor γ.

• minibatch size B.

• replay buffer size M.

• learning frequency λ.

• target network update C.

• prioritized experience replay parameters pα and pβ.

The methods provided by DQNAgent class are as follows:

• model(img in, num actions, scope), which creates a tensorflow graph with 3

CNN and 2 fully connected layers.

• dueling model(img in, num actions, scope, reuse=False), which creates a ten-

sorflow graph with 3 CNN and 2 fully connected layers for actions and state pairs

to create a dueling network.

• take action(self, t), which takes action and updates exploration ε-greedy value.

• store(self, rew, new obs, done), which stores the tuple <obs, rew, new obs, ac-

tion, done> into the replay buffer.

• learn(self, t), which minimizes the error in Bellman’s equation on a batch sam-

pled from replay buffer and compute TD-error.

• update target network(self, t), which updates the target network.

4.3 Neural Network Architecture

The architecture was build on top of the implementation of OpenAI baseline which

uses TensorFlow to program Neural Networks.

The Figure 4.2 shows the implementation in TensorFlow of the Dueling Network as

specified in the Figure 3.9. It consists of 3 convolutional neural networks followed by 2

67

Figure 4.2: Dueling Network built with TensorFlow [9]

68

fully-connected layers that both has an advantage (i.e. state value) and an action (i.e.

action value) streams.

Figure 4.3: Deep Q-Networks built with TensorFlow [9]

The Figure 4.3 shows the implementation in TensorFlow of the two Deep Q-Network

used for Deep Q-Learning. The Neural Network in the left is the primary network θ,

while the one in the right is the target network θ− which is updated periodically with

the weights of the primary network θ every C steps. Both networks are identical, and

they share the same aforementioned architecture specified in the Figures 3.9 and 4.2.

Finally, the Figure A.2(the figure was placed in the appendix section in order to

show the image as bigger as possible) describes the whole Neural Network infrastruc-

ture build in TensorFlow. It presents a holistic view of the Neural Network and the

interactions between the main components. All the components are collapsed in order

to show a summary view of the main components. The main components present in

the illustrations are:

• Primary Network represented as ”q func”.

• Target Network represented as ”target q func”

• Double DQN is represented in the output of ”q func 1” through the usage of the

”ArgMax”, ”one hot 1” and reduction of ”Sum” TensorFlow’s operations which

work as input for the selection and evaluation of the Q-values.

• ADAM Optimizer represented as ”Adam” with gradient (i.e. gradient descent)

and beta 1 power (i.e. β1) and beta 2 power (i.e. β2) as inputs.

69

4.3.1 Optimizer

This subsection intends to analyse the experiments done in order to select the op-

timizer that performs better between the two most popular optimizers used in the

previous works, namely RMSProp and ADAM. The evaluation were executed with

hyper-parameters show in Table 4.1

Table 4.1: Reward function evaluation hyper-parameters

Parameter Value

Episodes 1000
Time steps 3600000
Pre train time steps 2500
learning rate 0.0004
Exploration ε 1.0 → 0.01
Time steps from starting ε to ending ε 360000
Target network update 5000
Prioritization exponent α 0.6
Prioritization importance sampling β 0.4 → 1.0
Discount factor γ 0.99
Replay Memory size M 50000
Minibatch size B 32

Firstly, the figure 4.4a shows how ADAM starts getting higher rewards around 200

episodes. At around 400 episodes, ADAM outperforms RMSProp by 200%. After 600

episodes RMSProp starts getting higher results, however it stills under the performance

of ADAM which reaches around 100% more rewards.

Secondly, the figure 4.4b presents results that are correlated with the rewards since

from figure 4.4a can be noticed how bigger rewards result on lower average waiting

times. When ADAM starts getting better rewards at around 400 episodes, the average

waiting time is also decreased outperforming by ∼ %800 the RMSProp method. The

same behaviour happens with RMSProp when it starts getting larger rewards, the

average waiting time is reduced by ∼ %900 from episodes 400-600 to episodes 600-900.

Lastly, the figure 4.4c show a huge difference in the average travel time across the

whole training.

70

(a) Cumulative Reward per Episode

(b) Average Waiting Time per Episode (c) Average Travel Time per Episode

Figure 4.4: Comparison between RMSProp and Adam Optimizers

71

4.4 Multi-Agent Deep Reinforcement Learning

The figure 4.5 illustrates the classes implemented for IDQN. This is an small extension

of what was showed in section 4.2. The only additon is the class IDQN (marked with

red), which is a orchestrator between the simulator environment managed by TrafficEnv

and the agents implemented on DQNAgent.

Figure 4.5: IDQN Traffic Control System Class Diagram

Also, some small extensions were applied to the other classes in order to support

the IDQN.

4.4.1 TrafficEnv

The following methods were added:

• set phase(self, action, traffic light id, actions), which executes the action given

by the index action in the actions vector in the intersection with identifier traf-

72

fic light id. it is also responsible to introduce yellow lights if the phase is changed

from the previous state.

• make step(self), executes an step in the simulator, i.e. advances from st to st+1.

4.4.2 DQNAgent

The following methods were added:

• add fingerprint to obs(self, obs, weights, identifier, td errors), which adds the

weights and the td errors vector to the obs in the column identifier. Normally

used to add the fingerprint to the new observation of st1 .

• add fingerprint(self, weights, identifier, td errors), which encapsulates the pre-

vious method add fingerprint to obs with the current observation, i.e. state st.

4.5 IDQN Neural Network

Figure 4.6: Independent Deep Q-Networks for 3 agents built with TensorFlow [9]

The figure 4.6 shows the implementation of the IDQN for three agents. Every one

of these agents possesses one exact copy of the neural network described earlier in 4.3

and in A.3. The Tensor deep0 1 and deep0 are the neural networks of the intersection

73

with identifier 0 in the simulation, the same nomenclature is applied to the tensors of

intersections with identifiers 5 and 8.

4.6 Summary

In this chapter we have presented the implementation of DRL agents as defined by the

algorithm in Chapter 4. We also have presented the OpenAI Baseline code that we

used to implement the DRL agents. We have presented extensions to the framework we

have implemented in order to enable the development of Traffic Light DRL agents with

capability of interacting with the traffic simulator SUMO. We have then presented the

implementation in TensorFlow of the Deep Q Neural Network Architecture defined in

Chapter 4. Finally, we described how the implementation was extended for the classes

involved as for the Neural Networks in order to accomplish the IDQN technique.

74

Chapter 5

Evaluation

In this section we present an evaluation of IDQN as solution for multi-agent DRL

for heterogeneous agents in traffic light control. We present the objectives of the

evaluation, along with hyperparameters of the system that we used to execute the

experiments. It also describes the metrics for measuring the performance of the system.

We describe the experiments we used for the evaluation, and present and analyze their

outcomes.

5.1 Objectives

The goal of the evaluation of IDQN presented in this chapter is to establish how well

IDQN addresses the non-stationarity in a heterogeneous multi-agent environment. The

main objective of the design of IDQN was to provide a decentralized and independent

heterogeneous multi-agent optimization technique that establishes IDQN as the tech-

nique for UTC when using DRL methods. In Chapter 3 and 5 we outlined how the

design and implementation of IDQN addresses the requirements for such a system,

however, the success of IDQN as a technique for heterogeneous multi-agent technique

depends on its performance in a variety of evaluation scenarios.

IDQN can be said to have succeeded in addressing the non-stationarity for hetero-

geneous multi-agent setting if it satisfies the following performance requirements:

• IDQN outperforms existing UTC optimization techniques which cannot manage

heterogeneous intersections. Note that we only consider stationary traffic con-

75

ditions, as, once a suitable behaviour for that set of conditions has been learnt,

IDQN does not have the ability to adapt to a change in traffic pattern. Pattern

change detection and adaptation to new patterns is a subject for future work (see

Chapter 6).

• IDQN enhances the performance of UTC systems under a variety of traffic con-

ditions (e.g. traffic load, traffic patterns).

• IDQN is not impacted for the non-stationarity of the environment caused during

independent training.

5.2 Metrics

The metrics are the same as the ones used for single agents. These are: Cumulative

Rewards, Average Waiting Time and Average Travel Time. Every metric is sampled

per episode. More about metrics can be found in section A.2.

5.3 Evaluation Scenarios

In this section we describe the scenarios that we used to evaluate the suitability of

IDQN for heterogeneous multi-agent system. We first present the techniques that are

going to be tested against IDQN. Then, we describe the different scenarios where these

techniques are going to run.

5.3.1 Evaluation Techniques

• Fixed Time / Round Robin (FT). This is a predefined configuration for all

the traffic lights where the duration and order of the phases is fixed and pre con-

figured. In our experiments every phase takes 60 time steps, which corresponds

to 1 simulated minute. The order of the phases is given by SUMO. Our agent

just makes the transition to the next phase. This technique also keeps the yellow

transition duration to avoid collisions.

• IDQN without experience replay (ERM Disabled). It is a IDQN tech-

nique but the experience replay is disabled, therefore the agent cannot store

76

experiences. This technique is tested to verify if the agent can learn without

memory. By disabling the experience replay, the agent cannot be impacted for

the non-stationarity because it is not basing its decisions on possible corrupted

experience replays records.

• IDQN with prioritized experience replay (PEMR). It is a normal IDQN

technique which uses the experience replay as recommended for DQN. This tech-

nique is a target to be influenced by the non-stationarity of the environment as

has been explained before.

• IDQN with prioritized experience replay and fingerprint (PEMR +

FP). This is the proposed IDQN technique with the fingerprint to disambiguate

the age of experience replays. This technique should not be influenced by the

non-stationarity of the environment as has been explained before.

• IDQN with standard experience replay (ERM). This is IDQN with the

standard experience replay, not with prioritized experience replay.

5.3.2 Scenarios

Every technique will tested in the following scenarios:

• Low traffic load. A scenario where the number of vehicles is reduced. It

represents a normal flow where is not peek time. However, it is a good amount

of cars to produce traffic jams if the traffic control is not good.

• High traffic load. A scenario where the number of vehicles is overwhelming. It

represents the traffic load in peek times. This scenario certainly will produced

long queues and traffic jams even with good control. The idea is to verify if it is

possible and how much can be reduced in such a overcrowded scenario.

Every technique will use the parameters and network layout defined in section 5.4.

5.4 Setup

This sections describes the environment where the experiments were run as well as the

different parameters and configurations chosen. We first introduce the network layout

77

built in SUMO, present the traffic demand generation and the parameters used for the

simulator and the DRL learning.

5.4.1 Network Layout

The Figure 5.1 shows the layout of the city network we built to run the multi-agent

experiments in SUMO. We extended the network up to 3 intersections due to the com-

putational resources available. Because of the experience replay memory, every agent

can take several Gigabytes of RAM, whose size increment is caused mostly by the size

of the state representation. Our worst case scenario occurs with the fingerprint tech-

nique because it adds an extra matrix to the state, and the experience replay memory

has to store two states per record, i.e. st and st+1. In our fingerprint experiments,

the RAM reaches up to 10 Gigabytes using an experience memory size of 30000. This

differs with the 50000 used for single agent. We had to decreased the size because

it was not possible to maintain 50000 experience replay records per agent given the

available computational resources.

Figure 5.1: Network Layout for Multi-Agent Experiments

78

5.4.2 Traffic Demand

The demand traffic is generated with the algorithm 5 described in A.1. The traffic

demand generated for the multi-agent experiments set the values probability p = 0.1

for high load traffic and p = 0.05 for low traffic load. The time steps TS continues to

be 3600. As result, the expected number of vehicles in the simulation for high traffic

load is approximately 1900 to 2500 cars, and for low traffic load is approximately 1300

to 1600 cars, with departure times between 0 and 3600.

The Figure 5.2 shows the entry and departure points for the multi-agent experi-

ments. Every route is defined by specifying a source and a destination point (green

bullets), and one or more intersections (blue points) to pass through. For instance,

a simple route can be 6-5-0-2, and a longer and complicate route can be defined as

13-8-0-5-7. Therefore, routes with different lengths can be created.

Figure 5.2: Entry and Departure points in Network for Multi-Agent Experiments.
Green points correspond to entry and departure points, while blue points are intersec-
tions.

79

The routes created for our evaluation are the following:

• 6 → 5→ 0→ 2.

• 2 → 0→ 5→ 6.

• 4 → 0→ 8→ 10.

• 10 → 8→ 0→ 4.

• 13 → 8→ 9.

• 9 → 8→ 13.

• 4 → 0→ 5→ 7.

• 7 → 5→ 0→ 4.

• 13 → 8→ 0→ 2.

• 6 → 5→ 0→ 8→ 9.

5.4.3 Hyper-paraments

The table 5.1 describes the hype-parameters used for the multi-agent experiments.

They are the same hyper-parametes used for single-agents except for the Replay Mem-

ory size M, which had to be reduced due to the machine where the experiments were

carried out cannot support 3 concurrent agents with 50000 of memory. Every episode

corresponds to 1 hour of simulation time which is 3600 time steps, where every time

step is 1 simulated second.

5.5 Results and Analysis

In this section we analyse the performance of IDQN with respect to the evaluation

objectives outlined in section 5.1. We evaluate the efficiency of IDQN by comparing

against all the techniques mentioned in section 5.3.1 in two scenarios, high and low

traffic demand. We describe the results, analyse them and discuss how they relate to

the evaluation objectives.

80

Table 5.1: Multi-agent evaluation hyper-parameters

Parameter Value

Episodes 1000
Time steps 3600000
Pre train time steps 2500
Learning rate 0.0004
Exploration ε 1.0 → 0.01
Time steps from starting ε to ending ε 360000
Target network update 5000
Prioritization exponent α 0.6
Prioritization importance sampling β 0.4 → 1.0
Discount factor γ 0.99
Replay Memory size M 30000
Minibatch size B 32

5.5.1 Low Traffic Load

In this section we compare the performance of IDQN with 3 different techniques, i.e.

EMR Disabled, PEMR and PEMR + FP. Also, a baseline FT is added. As extra exper-

iment, a standard experience replay (ERM) was used to validate the results obtained

with prioritized experience replay in previous experiments. The Figure 5.3 presents

the set of experiments that we carried out in a low traffic load setup.

Figure 5.3a shows the cumulative reward obtained per episode for the 4 techniques.

FT gets a constant reward range that varies extremely low around 50. This is because

this techniques does not adjust its performance, and the variation are a product of the

discrepancy of the traffic generation from episode to episode. From this results, we

can notice that disabling the experience replay (EMR Disabled) gets very bad rewards,

even worse than the baseline, and it never learns. Therefore, disabling the experience

replay is not useful for our UTC problem. Finally, we compare the results of the two

more promising techniques, i.e. PERM and PERM + FP, out of the four presented.

The results shows the both techniques have identical performance getting 400% bigger

rewards than FT. They also learn very well in spite of the non-stationarity, increasing

the rewards from around 25-100 in the exploration phase up to around 200-250 in

the exploitation phase. They reach their optimal point at 300 episodes, where they

get to keep a stable rewarding. Based on this similarity on the results of PEMR and

81

PEMR + FP, we deduce that the fingerprint is not helping to get bigger rewards. We

analyse the other metrics, and based on that, we conclude why FP is not enhancing

the performance.

In terms of waiting time, as expected FT, similarly that in rewards, gets a con-

stant behaviour that varies proportionally to the number of cars generated from each

episode. In the case of the EMR Disabled, it shows the direct result of getting very

bad rewards which produces extremely high waiting times (results cut in 2000 ms as

maximum in order to show the other results in a visible comparable scale). Then, again

PEMR and PEMR + FP get alike performance, with very low waiting times which are

approximately 300% less than FT, with some episodes with peeks higher than this

baseline. From these results we can also conclude that the fingerprinting is not helping

to enhance the system.

Finally, in the average travel time, EMR Disabling continues getting extremely poor

results in comparison to other techniques. We also notice that FT, PEMR and PEMR

+ FP gets similar performance by achieving travel times of around 100 ms. This is

because this metric is not proper for the multi-agent setting because there are routes

with different lengths, some are very long routes and others are very short routes. This

metric worked for single agent because in that case all the routes had the same length.

This metric should change to an average travel time per route, but if there are many

routes another approach needs to be taken. It is frequent to see the average time of a

service reported (Strictly speaking, the term average does not refer to any particular

formula, but in practice it is understood as the arithmetic mean: given n values, add

up all the values, and divide by n). Nonetheless, the mean is not a good metric if the

”typical” time of a service wants to be known, because it does not indicate how many

cases actually experienced that time. Normally it is better to use percentiles. If a list

of times is taken and sorted from fastest to slowest, the median is the middle point.

For instance, if the median time is 100 ms, that means half of the vehicles travelled

in less than 100 ms, and half of them took them longer than 100 ms. This makes the

median a good metric to know how long vehicles typically take to travel. The median

is also known as the 50th percentile, and sometimes abbreviated as p50. All in all, we

are not analysing this measurement because it does not make sense for our multi-agent

setting.

Now, we move to analyse why the fingerprint is not making better the traffic light

82

(a) Cumulative Rewards per Episode

(b) Average Waiting Time per Episode

(c) Average Travel Time per Episode

Figure 5.3: Low Traffic IDQN Experiments

83

control. Our hypothesis holds two possible reasons:

• The components we chose for the fingerprint are not good, because they do not

correlate enough with the true value of state-action pairs given the other agents’

policies and/or it does not vary smoothly over training, which does not to allow

the model to generalise across experiences in which the other agents execute

policies as they learn. Likely another component of the DQN training should be

used as fingerprint.

• The prioritized experience replay is good enough to deal with the non-stationarity

because of main components such as the importance weights it uses to know

what records are more valuable samples. This weighting could be enough to

disambiguate the age of the data.

Of course, we should run more tests to prove if these hypothesis are true. Because

of the long time these experiments take to run, we only tried to verify the second

point by executing a test with a standard experience replay. The figure 5.4 shows this

additional experiment which compares the standard experience replay (EMR) against

our proposed fingerprint technique with Prioritized Experience Replay (PEMR + FP)

which gets an identical performance than Prioritized Experience Replay without fin-

gerprint (PEMR).

As shown in Figure 5.4a, both techniques, EMR and PEMR + FP, learn well, but

PEMR + FP obtains higher rewards outperforming ERM in around 45% in the highest

point of PEMR + PR when it gets rewards between 150 and 250 while EMR is getting

rewards ranging from 100 to 170. In the case of waiting time illustrated in 5.4b, they get

a similar performance, but EMR is more stable than PEMR + FP by not producing

peeks. As mentioned before, we ignore the average travel time because it is not a

good metric for the multi-agent setting. Regardless of the waiting time, we conclude

the Prioritized Experience Replay helps to deal with the non-stationarity by getting

bigger rewards, which indicates that PEMR has better performance than EMR. We can

minimize the importance of the waiting time results because they are a direct result

of the reward function, and PEMR is getting better results from the reward function

which is what the agent is going to look for. If by getting bigger rewards the waiting

time is not decreasing proportionally, it is a problem with the reward function that

84

(a) Cumulative Rewards per Episode

(b) Average Waiting Time per Episode

(c) Average Travel Time per Episode

Figure 5.4: Low Traffic IDQN Experiments with Standard ERM

85

do not correlate that strong with changes in the waiting time, and not a performance

problem of the technique. These results prove our second hypothesis that PEMR

can be good enough to deal with the non-stationarity. However, we cannot discard

the enhancement that fingerprinting can add to PEMR by selecting more appropriate

fingerprint components, and therefore, verifying if the first hypothesis is also true.

Although, due to time constraint we are not able to demonstrate the first hypothesis.

5.5.2 High Traffic Load

In this section we compare the performance of IDQN with 3 different techniques, i.e.

EMR Disabled, PEMR and PEMR + FP. Also, a baseline FT is added. The Figure

5.5 presents the set of experiments that we carried out in a high traffic load setup.

The Figure 5.5a illustrates the results for the cumulative rewards per episode. As

can be seen, FT makes a good job in this scenario along with PEMR, both outperforms

EMR Disabled and PEMR + FP in around 25%. It seems that the extra layer of

the fingerprint reduces the performance of the technique under intense traffic loads.

Moreover, none DRL technique gets to learn over the episodes, the performance is

constant across all the training. This can indicate that the agents needs more training

for such a high load. If we compare the rewarding pattern in Figure 5.3a, we notice

that all the DRL techniques are below FT before episode 100, but after it all PEMR

and PEMR + FP beat FT, and EMR Disabled becomes worse. This behaviour might

happen after more training episodes in high load. This bad performance in learning can

be also produced by a short exploration time, the e-greedy parameter can be increased

to allow a more extend exploration of the states.

In terms of the average waiting time, the results are similar to the low traffic load

on which techniques perform better. EMR Disabled gets very poor results with a

huge magnitude of difference in comparison to all the other techniques. Then, FT

gets constant average waiting times as expected reaching around 100% higher times.

PEMR and PEMR + FP are the technique which reach lowest waiting times with a

similar pattern of results, however PEMR + FP outperform slightly PERM. Alike the

reward results, there is not learning across the training.

We ignore the average waiting time as it does not make sense for multi-agent setting

as explained in the previous section.

86

(a) Cumulative Rewards per Episode

(b) Average Waiting Time per Episode

(c) Average Travel Time per Episode

Figure 5.5: High Traffic IDQN Experiments

87

5.6 Evaluation Summary

In this chapter we presented details of the evaluation of IDQN as a heterogeneous

DRL multi-agent technique. We have presented the evaluation objectives, described

the evaluation scenarios, the setup of the environment and presented and analysed the

results.

From the analysis of the results we conclude that IDQN is a suitable algorithm

for heterogeneous multi-agent UTC, and as such could be a promising approach to

optimization in other large-scale decentralized autonomic systems with similar char-

acteristics. However, the addition of the fingerprint is not helping the performance

of IDQN. It seems the Prioritized Experience Replay can deal better than a standard

Experience Replay with the non-stationarity of the environment. Although, the three

techniques achieve a good learning and performance, but it might be improve with a

better choice of a fingerprint.

IDQN outperforms the baseline (FT) and the existing multi-agent UTC techniques

by dealing with heterogeneous agents, and therefore, with the non-stationarity of the

environment (Objectives #1 and #3 as listed in section 5.1). IDQN enhances the

performance of UTC systems by managing adequately heterogeneous intersections in

low traffic load. Nevertheless, the high traffic load can need adjustments in the hyper-

parameters in order to get optimal results. Also, the IDQN with fingerprint we chose

is not improving the performance of the technique without it (Objective #2 as listed

in section 5.1).

88

Chapter 6

Conclusions and Future Work

In this chapter we summarize the thesis and review its most significant achievements.

We then conclude with a discussion of the remaining open research issues related to

this work.

6.1 Thesis Contribution

This thesis is the only recent work which addresses heterogeneous multi-agent DRL in

UTC systems.

Chapter 1 motivated the work by outlining issues in multi-agent optimization in

UTC systems. We argued that the main challenges in such systems arise from the

heterogeneity and dependency of agents caused by shared operating environments.

Due to these dependencies, we concluded that cooperation between agents could be

beneficial, however, we have identified that collaboration introduces further issues, for

example, with what other agents should they cooperate, how the changing environment

can affect the training of the agents (non-stationarity).

Chapter 2 gave the background material used to design and implement IDQN.

It covers RL and DRL techniques. Specifically, we describe the RL framework, the

operation of DL, the aggregated DRL techniques, IQL and the proposed fingerprint

method. In addition, it presented the more recent work in MARL, and single and

multi-agent DRL. This related work investigation showed that none study has tried

to work with heterogeneous network layouts because of the non-stationarity of the

89

environment.

Chapter 3 describes the design decisions taken to build the IDQN techniques. It

presented some experiments to back up the different design choices. Particularly, it

covered the RL components (i.e. state, actions and reward function), the neural net-

work design, the selection of the adequate DRL techniques, and the algorithms for

single and multi-agent settings.

Chapter 4 presented details of the implementation of IDQN for single and multi-

agents scenarios. This includes a brief review of the code, the implementation of the

neural network in TensorFlow, and the frameworks used for the simulator and the

DRL, SUMO and OpenAI baselines respectively.

Chapter 5 evaluated IDQN as a heterogeneous multi-agent DRL method for UTC

systems by using SUMO. We evaluated IDQN’s performance with different configura-

tions, i.e. without experience replay, with experience replay and with experience replay

with fingerprint. We compared against a baseline which uses a round robin approach.

We executed test in two traffic conditions, with low and high traffic loads. Our exper-

iments shows the IDQN is a suitable techniques for heterogeneous multi-agent UTC

environments which can deal with the non-stationarity of the environment. The best

results were obtained in the low traffic load. The high traffic load seems to need longer

training time. From the successful experiments, we proved the IDQN outperforms the

baseline and the experience replay is mandatory to learn efficiently. Nonetheless, the

fingerprint we chose do not add any performance enhancement over the normal priori-

tized experience replay. Both gets identical performance. We also demonstrated that

prioritized experience replay outperforms the standard experience replay in around

45% for the rewards.

6.2 Future Work

When designing and evaluating IDQN, we identified several areas where IDQN’s per-

formance and applicability could be extended and identified a number of areas for

potential future research. We outline these areas and discuss the remaining open re-

search issues below.

• New fingerprint: The fingerprint that consists of the prioritized experience

90

replay’s weights and the TD-Error does not improve the performance. Thus,

it needs further investigation and experimentation in order to find out better

components as candidates for fingerprint. Also, the way of how we integrate the

fingerprint as an additional matrix can be carefully studied to verify if it is the

best manner to add the fingerprint in a system the uses a image-like representation

as the state of the RL system.

• Aggregated DRL techniques: Use more aggregated DRL techniques that can

improve the performance of IDQN as was applied in Atari games in [24], such as

Multi-step learning, Distributional RL and Noisy Nets which ends creating the

Rainbow technique which is the current state-of-the-art DRL technique.

• Homogeneous intersection experimentation: Test IDQN’s performance in

a homogeneous multi-agent environment to validate whether it holds the same

performance as with heterogeneous multi-agent setting or it increases that per-

formance, and therefore, if it deals with the non-stationarity of a homogeneous

setting. This should be an easy verification as a homogeneous environment is a

simpler/trivial case of a heterogeneous environment.

• Scale multi-agent training with distributed computation: Place every

agent with its deep neural network in a different computer or node, and the

shared simulator in a different computer or node which interacts with all the

agents in a distributed manner. The purpose of a distributed system is to scale

the training to more than 3 agents by using several machines (Horizontal Scaling)

and not be limited by the computational resources of only one machine (Vertical

Scaling).

• Multi policy DRL: Extend the work to support multi policies with multi-

agents; for instance, special vehicles prioritization. [41] uses HER to achieve a

multi policy DRL.

• Different Demand Traffic Generation: The traffic demand generation used

follows a uniform distribution. However, in the real world the traffic demand

changes from different hour; i.e. it is higher in rush hours and lower at other

times, and different routes may have different demand distribution. A suitable

approach could be use real world street network and data.

91

• Longer Training Times We used 1000 episodes for all the experiments, however

the studies normally use 1600 to 2000 episodes of training. We use 1000 episodes

due to time constraints of the research. For example, the experiments of high load

traffic obtained suboptimal results that could have been caused by the limited

training time. Maybe some results would change significantly if they had had

more longer training times.

• Real images as state representations: Instead of using pre-processed image-

like matrices state representations, the system can use direct snapshots of the GUI

simulator. This helps to increase the flexibility of the system by eliminating things

like fixed cells to locate vehicles. Also, images can provide more information to

the agent. This can mean a change in some layers of the neural network.

• Pattern change detection and adaptation: IDQN could detect fluctuations

in the traffic flow and adapt its behaviour to those variations by changing the

policy somehow.

92

Appendix A

Appendix

A.1 Traffic Demand Generation

The cars for every simulation are auto generated. Each vehicle has a predefined route

which follows a list of connected edges with the source and destination points that a

vehicle must follow. This pre-configuration is defined in a demand XML configuration

file which is auto-generated by using the Algorithm 5. Every vehicle in SUMO consists

of three parts: (1) a vehicle type which describes the vehicle’s physical properties, (2)

a route the vehicle must follow and (3) the vehicle itself. Both routes and vehicle types

can be shared by several vehicles. It is not mandatory to define a vehicle type. If not

given, a default type is used.

Demand data is auto generated for both the single and multiple intersections using

Algorithm 5. It uses a uniform distribution to generate cars for all the routes.

The vehicle’s parameters work as follows:

• maxSpeed. The vehicle’s maximum velocity (in m/s).

• accel. The acceleration ability of vehicles of this type (in m/s2).

• decel. The deceleration ability of vehicles of this type (in m/s2).

• minGap. Empty space after leader [m].

• sigma. The driver imperfection (between 0 and 1).

93

Algorithm 5: Traffic Demand Generation

Define vehicle’s parameters: maxSpeed=15, accel=1.0, decel=4.5, minGap=0.3
and sigma=7

Initialize route types
Initialize probability p
for ts = 0, TS do

for route, route types do
Sample P ∼ U(0,1)
if P < p then

Add route with depart time ts and depart speed = 5

The Figure A.1 shows the routes used for single agent experiments, where the bullets

and the arrows correspond to source and departure points respectively.

The traffic demand generated for the single agent experiments set the values prob-

ability p = 0.1 and timesteps TS = 3600. The expected number of vehicles in the

simulation is ∼ 1440 cars, with departure times between 0 and 3600.

Figure A.1: Single intersection routes

94

A.2 Metrics for Experiments

We select 3 metrics that have been used in several DRL studies for UTC. These metrics

are taken for single and multi-agent experiments. Every metric is taken per episode.

A episode consists of 3600 time steps, and each time step is 1 simulated second. The

metrics are the following:

• Cumulative Reward. It is the most common metric for RL experiments due

to the performance of the algorithms is directly related with how many rewards

the agent can collect over the long time. The agent must collect as many rewards

as possible. Bigger numbers means better performance. The reward rt taken on

every time step t is accumulated until the episode is finished. This cumulation

reward scalar value is shown for every episode in the results.

• Average Waiting Time. This metric measures the effectiveness of the reward

function into the main goal of the system, which is to reduce the waiting time

of every driver in the traffic network. This metric is taken for every ith vehicle

that has updated its waiting time wi
t in the current time step t. Then, the sum

of all vehicles’ waiting time is the cumulative waiting time Wt at the time step

t. When the episode finishes, the sum of all the cumulative waiting time of every

time step, from 0 until 3600, is divided by 3600 in order to get the average of the

waiting time during an episode as shown in Equation A.1. The waiting time in

SUMO is defined in section 4.1. The waiting time is part of the reward function,

therefore this metric is correlated with the rewards of every episode.

AWT =
Wt

3600
(A.1)

• Average Travel Time. This metric is taken in the same way as the average

waiting time. On every time step t, new loaded vehicles in the network are

registered in a dictionary T with the timestamp of the time step when they enter

to the network as lt. Also, on every time step t, the loaded timestap of every

vehicle that departures the network is obtained from the dictionary T in order to

calculate the travel time of such vehicle. Therefore, the ith vehicle’s travel time

trit is calculated as the difference of the loaded time lt and the departure time dt

95

as shown in Equation A.2.

trit = dt − lt (A.2)

Similarly to the average waiting time, the sum of all vehicles’ travel time is the

cumulative travel time Tr. When the episode finishes, the cumulative travel time

is divided by the number of vehicles registered in the dictionary T in order to get

the average travel time of drivers during an episode as shown in Equation A.3.

Tr =

∑
i

trit

|T |
(A.3)

A.3 Complete views of the Implementation of the

Deep Neural Network

Figure A.2: Whole view of the Neural Network Architecture built with TensorFlow [9]

96

Figure A.3: Zoomed upper view of Whole Neural Network Architecture built with
TensorFlow [9]

97

Figure A.4: Zoomed lower view of Whole Neural Network Architecture built with
TensorFlow [9]

98

Bibliography

[1] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning, Second Edition

An Introduction. MIT Press, second edi ed., 2018.

[2] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling Network Architectures for Deep

Reinforcement Learning,” arXiv, no. 9, pp. 1–16, 2016.

[3] I. Dusparic and V. Cahill, “Autonomic multi-policy optimization in pervasive

systems,” ACM Transactions on Autonomous and Adaptive Systems, 2012.

[4] M. Tahifa, J. Boumhidi, and A. Yahyaouy, “Swarm reinforcement learning for traf-

fic signal control based on cooperative multi-agent framework,” Intelligent Systems

and Computer Vision (ISCV), 2015, pp. 1–6, 2015.

[5] L. Li, Y. Lv, and F.-Y. Wang, “Traffic signal timing via deep reinforcement learn-

ing,” IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 3, pp. 247–254, 2016.

[6] J. Gao, Y. Shen, J. Liu, M. Ito, and N. Shiratori, “Adaptive Traffic Signal Con-

trol: Deep Reinforcement Learning Algorithm with Experience Replay and Target

Network,” arXiv, pp. 1–10, 2017.

[7] X. Liang, X. Du, G. Wang, and Z. Han, “Deep Reinforcement Learning for Traffic

Light Control in Vehicular Networks,” Ieee Transactions on Vehicular Technology,

vol. 1, no. Xx, pp. 1–11, 2018.

[8] F. Belletti, D. Haziza, G. Gomes, and A. M. Bayen, “Expert Level Control of

Ramp Metering Based on Multi-Task Deep Reinforcement Learning,” IEEE Trans-

actions on Intelligent Transportation Systems, vol. 19, no. 4, pp. 1198–1207, 2018.

99

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,

D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,

X. Zheng, and G. Brain, “TensorFlow: A System for Large-Scale Machine Learning

TensorFlow: A system for large-scale machine learning,” in 12th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI ’16), pp. 265–284,

2016.

[10] D. Bernstein, R. Givan, and N. Immerman, “The complexity of decentralized

control of Markov decision processes,” Mathematics of operations research, vol. 27,

no. 4, pp. 819–840, 2002.

[11] D. V. Pynadath and M. Tambe, “The communicative multiagent team decision

problem: Analyzing teamwork theories and models,” Journal of Artificial Intelli-

gence Research, vol. 16, pp. 389–423, 2002.

[12] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative Multi-Agent Con-

trol Using Deep Reinforcement Learning,” Adaptive Learning Agents (ALA) 2017,

2017.

[13] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abeel, “Trust region policy

optimisation,” ICML, 2015.

[14] J. N. Foerster, N. Nardelli, G. Farquhar, P. H. S. Torr, P. Kohli, and S. Whiteson,

“Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning,”

CoRR, vol. abs/1702.0, 2017.

[15] J. Rosenschein and G. Zlotkin, “Designing conventions for automated negotia-

tion,” AI magazine, vol. 15, no. 3, pp. 29–46, 1994.

[16] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. New York, NY, USA: John Wiley & Sons, Inc., 1st ed., 1994.

[17] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3-4,

pp. 279–292, 1992.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

100

[19] Y. A. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[20] Y. Duchi, John and Hazan, Elad and Singer, “Adaptive Subgradient Methods for

Online Learning and Stochastic Optimization,” The Journal of Machine Learning

Research, vol. 12, no. 1532-4435, pp. 2121–2159, 2011.

[21] G. E. Hinton, N. Srivastava, and K. Swersky, “Lecture 6a Overview of mini-batch

gradient descent,” 2012.

[22] D. P. Kingma and J. L. Ba, “Adam: a Method for Stochastic Optimization,”

International Conference on Learning Representations 2015, pp. 1–15, 2015.

[23] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep

reinforcement learning: A brief survey,” 2017.

[24] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,

D. Horgan, B. Piot, M. G. Azar, and D. Silver, “Rainbow: Combining Improve-

ments in Deep Reinforcement Learning,” CoRR, vol. abs/1710.0, 2017.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-

tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and

D. Hassabis, “Human-level control through deep reinforcement learning,” Nature,

vol. 518, no. 7540, pp. 529–533, 2015.

[26] H. V. Hasselt, A. C. Group, and C. Wiskunde, “Double Q-learning,” Nips, pp. 1–9,

2010.

[27] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Dou-

ble Q-Learning,” in Proceedings of the Thirtieth AAAI Conference on Artificial

Intelligence, AAAI’16, pp. 2094–2100, AAAI Press, 2016.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Has-

sabis, H. van Hasselt, A. Guez, D. Silver, I. Sorokin, A. Seleznev, M. Pavlov,

101

A. Fedorov, A. Ignateva, D. Silver, A. Huang, C. J. Maddison, A. Guez,

L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershel-

vam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,

T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, T. Schaul,

J. Quan, I. Antonoglou, D. Silver, A. A. Rusu, S. Gomez Colmenarejo, C. Gul-

cehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih, K. Kavukcuoglu,

R. Hadsell, A. Radford, L. Metz, S. Chintala, H. F. Ólafsdóttir, C. Barry, A. B.

Saleem, D. Hassabis, H. J. Spiers, V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, M. Riedmiller, Q. V. Le, M. Ranzato, R. Monga,

M. Devin, K. Chen, G. S. Corrado, J. Dean, A. Y. Ng, V. Mnih, K. Kavukcuoglu,

D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.

Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,

D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, H. F. Ólafsdóttir, C. Barry, A. B.

Saleem, D. Hassabis, H. J. Spiers, T. Schaul, J. Quan, I. Antonoglou, D. Silver,

A. A. Rusu, S. Gomez Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick,

R. Pascanu, V. Mnih, K. Kavukcuoglu, R. Hadsell, H. van Hasselt, A. Guez,

D. Silver, K. Gregor, I. Danihelka, A. Graves, D. Jimenez Rezende, D. Wierstra,

N. Kalchbrenner, I. Danihelka, A. Graves, S. Lange, T. Gabel, M. Riedmiller,

N. Kalchbrenner, I. Danihelka, A. Graves, K. Gregor, I. Danihelka, A. Graves,

D. Jimenez Rezende, and D. Wierstra, “Prioritized Experience Replay,” Interna-

tional Conference in Machine Learning, vol. 4, no. 7540, p. 14, 2015.

[29] M. Tan, “Multi-Agent Reinforcement Learning: Independent vs. Cooperative

Agents,” in Machine Learning Proceedings 1993, pp. 330–337, Morgan Kaufmann

Publishers Inc., 1993.

[30] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and

R. Vicente, “Multiagent Cooperation and Competition with Deep Reinforcement

Learning,” arXiv, pp. 1–12, 2015.

[31] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning to Commu-

nicate with Deep Multi-Agent Reinforcement Learning,” CoRR, vol. abs/1605.0,

2016.

[32] T. Chu and J. Wang, “Traffic signal control by distributed Reinforcement Learning

102

with min-sum communication,” in 2017 American Control Conference (ACC),

pp. 5095–5100, 2017.

[33] S. El-Tantawy and B. Abdulhai, “Multi-Agent Reinforcement Learning for In-

tegrated Network of Adaptive Traffic Signal Controllers (MARLIN-ATSC),” in

2012 15th International IEEE Conference on Intelligent Transportation Systems,

pp. 319–326, 2012.

[34] M. L. Littman, “Markov games as a framework for multi-agent reinforcement

learning,” in Machine Learning Proceedings 1994, pp. 157–163, Morgan Kaufmann

Publishers Inc., 1994.

[35] B. Fan, Q. Pan, and H. Zhang, “A multi-agent coordination framework based on

Markov games,” in CSCWD 2004 - 8th International Conference on Computer

Supported Cooperative Work in Design - Proceedings, vol. 2, 2004.

[36] S. Mousavi, M. Schukat, and E. Howley, “Traffic light control using deep policy-

gradient and value-function-based reinforcement learning,” IET Intelligent Trans-

port Systems, vol. 11, no. 7, 2017.

[37] E. Van Der Pol and F. A. Oliehoek, “Coordinated Deep Reinforcement Learners

for Traffic Light Control,” NIPS’16 Workshop on Learning, Inference and Control

of Multi-Agent Systems, no. Nips, 2016.

[38] M. Liu, J. Deng, M. Xu, X. Zhang, and W. Wang, “Cooperative Deep Reinforce-

ment Learning for Traffic Signal Control,” 23rd ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD), Halifax 2017, 2017.

[39] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-

ford, J. Schulman, S. Sidor, and Y. Wu, “OpenAI Baselines.”

\url{https://github.com/openai/baselines}, 2017.

[40] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent Development and

Applications of {SUMO - Simulation of Urban MObility},” International Journal

On Advances in Systems and Measurements, vol. 5, pp. 128–138, dec 2012.

103

[41] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-

Grew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight Experience Replay,”

CoRR, vol. abs/1707.0, 2017.

104

